TW201800507A - Hard coating film - Google Patents

Hard coating film Download PDF

Info

Publication number
TW201800507A
TW201800507A TW106106961A TW106106961A TW201800507A TW 201800507 A TW201800507 A TW 201800507A TW 106106961 A TW106106961 A TW 106106961A TW 106106961 A TW106106961 A TW 106106961A TW 201800507 A TW201800507 A TW 201800507A
Authority
TW
Taiwan
Prior art keywords
hard coating
meth
acrylate
coating film
coating layer
Prior art date
Application number
TW106106961A
Other languages
Chinese (zh)
Inventor
林巨山
金承熙
金東輝
Original Assignee
東友精細化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東友精細化工有限公司 filed Critical 東友精細化工有限公司
Publication of TW201800507A publication Critical patent/TW201800507A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • H04M1/0268Details of the structure or mounting of specific components for a display module assembly including a flexible display panel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

A hard coating film according to the present invention includes a transparent substrate layer; a first hard coating layer which is formed on one surface of the transparent substrate layer and formed of a cured product of a hard coating composition including a high elongation oligomer having an elastic modulus ranging from 10 to 3000 MPa and an elongation at break ranging from 30 to 150%; and a second hard coating layer which is formed on the other surface of the transparent substrate layer and has a Martens hardness ranging from 350 to 1000 N/mm2 and a compressive elastic modulus ranging from 4000 to 10000 MPa.

Description

硬質塗膜Hard coating

本發明係關於顯示出優異之抗衝擊性、抗彎曲性及抗劃傷性,且能使凹痕及捲曲之發生最小化之硬質塗膜。The present invention relates to a hard coating film that exhibits excellent impact resistance, bending resistance, and scratch resistance, and can minimize the occurrence of dents and curls.

近年來,隨著移動裝置(例如智慧型電話、平板電腦)之發展,需要更薄及更輕之顯示基板。作為具有優異機械效能之材料之玻璃或鋼化玻璃通常用於此等移動裝置之顯示視窗或前板。然而,玻璃由於其自身重量使得移動裝置之重量變重,且具有由於外部衝擊而損壞之問題。 因此,正在研究將塑膠樹脂作為玻璃之替代品。塑膠樹脂組合物適合於追求更輕之移動裝置之趨勢,因為其重量輕且不太可能破裂。特別地,已經提出了其中支撐基板塗佈有硬質塗層之組合物,以實現具有高硬度及耐磨性之組合物。 作為改善硬質塗層之表面硬度之方法,可考慮增加硬質塗層之厚度之方法。為了確保足夠之表面硬度以替代玻璃,必須實現恆定厚度之硬質塗層。 隨著硬質塗層之厚度增加,表面硬度會增加。然而,由於硬質塗層之固化收縮,起皺或捲曲增加,且同時硬質塗層容易破裂或剝離。因此,實際應用該方法並不容易。 近來,已經提出了一些用於實現高硬度之硬質塗膜且同時解決由固化收縮引起之硬質塗層開裂或捲曲之問題的方法。 韓國專利第10-1415839號涉及一種硬質塗膜,該硬質塗膜包括支撐基板;第一硬質塗層,該第一硬質塗層形成在該支撐基板之一個表面上且具有2000 MPa至3500 MPa之第一彈性模數;及第二硬質塗層,該第二硬質塗層形成在該支撐基板之另一個表面上且具有2000 MPa至3500 MPa之第二彈性模數,其中,該第一彈性模數及第二彈性模數之間的差值小於500 MPa,該第一硬質塗層及第二硬質塗層各自之厚度為50 μm至300 μm,且在1 kg之負荷下顯示出7H或更大之鉛筆硬度。然而,硬質塗佈組合物僅施塗在一個硬質塗層上,因此產生之硬質塗層不能表現出足夠之抗彎曲效能及抗衝擊性,以替代顯示器之玻璃面板,且亦表現出差之表面抗劃傷性。 另外,韓國專利第10-1470465號涉及一種硬質塗膜,該硬質塗膜包括支撐基板;第一硬質塗層,該第一硬質塗層形成於該支撐基板之一個表面上,且包括第一可光固化交聯共聚物單體,該第一可光固化交聯共聚物單體藉由由ASTM D638量測之伸長率為15%至200%之可光固化彈性體及單官能至六官能丙烯酸酯單體的交聯共聚製備;以及第二硬質塗層,該第二硬質塗層形成於該支撐基板之另一個表面上,且包括藉由三官能至六官能丙烯酸酯單體交聯共聚製備之第二可光固化交聯共聚物單體及分散於第二可光固化交聯共聚物單體中之無機顆粒,其中,該第一硬質塗層及第二硬質塗層各自之厚度為50 μm至300 μm,各自獨立地彼此相同或不同,且在1 kg之負荷下顯示出7H或更大之鉛筆硬度。然而,以上揭示之硬質塗佈組合物亦僅施塗在一個硬質塗層上,因此產生之硬質塗層不能表現出足夠之抗彎曲效能及抗衝擊性,以替代顯示器之玻璃面板,且亦表現出差之表面抗劃傷性。 [先前技術文獻] [專利文獻] 韓國專利第10-1415839號(2014年06月30日,LG Chem Ltd.) 韓國專利第10-1470465號(2014年12月02日,LG Chem Ltd.)In recent years, with the development of mobile devices (eg, smart phones, tablet computers), thinner and lighter display substrates are required. Glass or tempered glass, which is a material with excellent mechanical performance, is usually used for display windows or front panels of such mobile devices. However, the glass becomes heavy due to its own weight and has the problem of being damaged due to external impact. Therefore, research is being conducted on plastic resins as an alternative to glass. Plastic resin compositions are suitable for the trend of pursuing lighter mobile devices because they are lightweight and less likely to break. In particular, a composition in which a supporting substrate is coated with a hard coating layer has been proposed to realize a composition having high hardness and abrasion resistance. As a method of improving the surface hardness of the hard coating layer, a method of increasing the thickness of the hard coating layer can be considered. To ensure sufficient surface hardness to replace glass, a hard coating with a constant thickness must be achieved. As the thickness of the hard coating increases, the surface hardness increases. However, wrinkles or curls increase due to the curing shrinkage of the hard coating, and at the same time the hard coating is prone to cracking or peeling. Therefore, the practical application of this method is not easy. Recently, some methods have been proposed for realizing a hard coating film with high hardness and simultaneously solving the problem of cracking or curling of the hard coating layer caused by curing shrinkage. Korean Patent No. 10-1415839 relates to a hard coating film including a supporting substrate; a first hard coating layer formed on one surface of the supporting substrate and having a thickness of 2000 MPa to 3500 MPa; A first elastic modulus; and a second hard coating layer formed on the other surface of the support substrate and having a second elastic modulus of 2000 MPa to 3500 MPa, wherein the first elastic modulus The difference between the modulus and the second elastic modulus is less than 500 MPa. The thickness of each of the first hard coating layer and the second hard coating layer is 50 μm to 300 μm, and shows 7H or more under a load of 1 kg. Large pencil hardness. However, the hard coating composition is only applied on one hard coating layer, so the resulting hard coating layer cannot show sufficient bending resistance and impact resistance to replace the glass panel of the display, and also shows poor surface resistance. Scratchy. In addition, Korean Patent No. 10-1470465 relates to a hard coating film including a supporting substrate; a first hard coating layer, the first hard coating layer being formed on one surface of the supporting substrate, and including a first Photo-curable cross-linked copolymer monomer, the first photo-curable cross-linked copolymer monomer has a photo-curable elastomer having an elongation of 15% to 200% as measured by ASTM D638 and a monofunctional to hexafunctional acrylic acid Preparation of cross-linking copolymerization of ester monomers; and a second hard coating layer formed on the other surface of the support substrate, and including preparation by cross-linking and copolymerization of trifunctional to hexafunctional acrylate monomers The second photo-curable cross-linked copolymer monomer and the inorganic particles dispersed in the second photo-curable cross-linked copolymer monomer, wherein the thickness of each of the first hard coating layer and the second hard coating layer is 50 μm to 300 μm, each independently being the same or different from each other, and showing a pencil hardness of 7H or more under a load of 1 kg. However, the hard coating composition disclosed above is also applied to only one hard coating, so the resulting hard coating cannot exhibit sufficient bending resistance and impact resistance to replace the glass panel of the display, and also performs Scratch resistance on business trips. [Prior Art Literature] [Patent Literature] Korean Patent No. 10-1415839 (June 30, 2014, LG Chem Ltd.) Korean Patent No. 10-1470465 (December 02, 2014, LG Chem Ltd.)

本發明之目的為解決先前技術之問題,且本發明之一個目的為提供表現出優異之抗衝擊性、抗彎曲性及抗劃傷性且使凹痕及捲曲之發生最小化之硬質塗膜。 為了實現上述目的,根據本發明之硬質塗膜包括透明基板層;第一硬質塗層,該第一硬質塗層形成於該透明基板層之一個表面上,且由硬質塗佈組合物之固化產物形成,該硬質塗佈組合物包括彈性模數為10 MPa至3000 MPa且斷裂伸長率為30%至150%之高伸長率低聚物;以及第二硬質塗層,該第二硬質塗層形成於該透明基板層之另一個表面上,且其馬氏硬度(Martens hardness)為350 N/mm2 至1000 N/mm2 且壓縮彈性模數為4000 MPa至10000 MPa。 如上所述,根據本發明之硬質塗膜包括第一硬質塗層,該第一硬質塗層具有彈性模數及斷裂伸長率在特定範圍內之高伸長率低聚物,以及第二硬質塗層,該第二硬質塗層之馬氏硬度及壓縮彈性模數在特定範圍內,且因此可顯示出優異之抗衝擊性、抗彎曲性及抗劃傷性,且可使由硬質塗膜之固化收縮引起之捲曲的發生最小化。An object of the present invention is to solve the problems of the prior art, and an object of the present invention is to provide a hard coating film that exhibits excellent impact resistance, bending resistance, and scratch resistance, and minimizes occurrence of dents and curls. To achieve the above object, the hard coating film according to the present invention includes a transparent substrate layer; a first hard coating layer, the first hard coating layer is formed on one surface of the transparent substrate layer, and is a cured product of the hard coating composition Formed, the hard coating composition includes a high elongation oligomer having an elastic modulus of 10 MPa to 3000 MPa and an elongation at break of 30% to 150%; and a second hard coating layer, the second hard coating layer being formed On the other surface of the transparent substrate layer, the Martens hardness is 350 N / mm 2 to 1000 N / mm 2 and the compressive elastic modulus is 4000 MPa to 10000 MPa. As described above, the hard coating film according to the present invention includes a first hard coating layer having a high elongation oligomer having a modulus of elasticity and a breaking elongation within a specific range, and a second hard coating layer. The Martens hardness and compressive elastic modulus of the second hard coating layer are within a specific range, and therefore can show excellent impact resistance, bending resistance and scratch resistance, and can be cured by the hard coating film The occurrence of curl caused by shrinkage is minimized.

在下文中,將參考示例性實施方式詳細描述本發明。 硬質塗膜 如圖1所示,根據本發明之硬質塗膜100包括形成於透明基板層110之一個表面上之第一硬質塗層120及形成於透明基板層110之另一個表面上之第二硬質塗層130。此將在下面更詳細地描述。透明基板層 將下述之硬質塗佈組合物施塗在透明基板層110之至少一個表面上,然後固化以形成硬質塗膜100。 本文使用之術語「透明性」係指可見光之透射率為70%或大於70%或80%或大於80%。 透明基板層110可為具有透明性之任何聚合物膜。 具體地,透明基板層110可為由以下聚合物製成之膜:例如具有含環烯烴單體(例如降冰片烯或多環降冰片烯基單體)之環烯烴衍生物,纖維素(例如二乙醯纖維素、三乙醯纖維素、乙醯纖維素丁酸酯、異丁酯纖維素、丙醯纖維素、丁醯纖維素或乙醯丙醯纖維素),乙烯/乙酸乙烯酯共聚物、聚環烯烴、聚酯、聚苯乙烯、聚醯胺、聚醚醯亞胺、聚丙烯酸、聚醯亞胺、聚醚碸、聚碸、聚乙烯、聚丙烯、聚甲基戊烯、聚氯乙烯、聚偏氯乙烯、聚乙烯醇,聚乙烯醇縮醛、聚醚酮、聚醚醚酮、聚甲基丙烯酸甲酯、聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、聚萘二甲酸乙二酯、聚碳酸酯、聚胺酯、環氧樹脂等,且亦可為未取向膜或單軸取向膜或雙軸取向膜。此等聚合物可單獨使用或以兩種或更多種組合之使用。 可較佳使用具有優異之透明性及耐熱性之聚醯亞胺膜及單軸或雙軸取向聚酯膜,具有優異之透明性及耐熱性且能夠支撐大尺寸膜之環烯烴衍生物膜及聚甲基丙烯酸甲酯膜,以及具有透明性且不具有光學各向異性之三乙醯纖維素膜及異丁酯纖維素膜。第一硬質塗層 第一硬質塗層120可藉由在透明基板層110之一個表面上施塗包括高伸長率低聚物之硬質塗佈組合物,然後藉由紫外線照射使組合物光固化來形成。 第一硬質塗層120之厚度較佳為50 μm至300 μm。當第一硬質塗層120之厚度小於50 μm時,抗衝擊性會降低。另一方面,當第一硬質塗層120之厚度大於300 μm時,抗彎曲性會降低且會發生捲曲。第二硬質塗層 第二硬質塗層130可藉由在透明基板層110之另一個表面上施塗硬質塗佈組合物,然後藉由紫外線照射使組合物光固化來形成。 較佳地,第二硬質塗層130之馬氏硬度為350 N/mm2 至1000 N/mm2 ,壓縮彈性模數為4000 MPa 至10000 MPa。當第二硬質塗層130之馬氏硬度及壓縮彈性模數低於此等範圍時,抗劃傷性會降低且凹痕會發生。 第二硬質塗層130之厚度較佳為1 μm至20 μm,更佳5 μm至10 μm。當第二硬質塗層130之厚度小於1 μm時,抗劃傷性及抗凹痕性會降低。另一方面,當第二硬質塗層130之厚度大於20 μm時,該層會破裂或捲曲會發生。 硬質塗佈組合物包括高伸長率低聚物,且可進一步包括可光聚合化合物、溶劑、光引發劑及添加劑中之一者或多者。此將在下面更詳細地描述。 在此情況下,可藉由適當使用已知方法(例如模具塗佈、氣刀塗佈、逆輥塗佈、噴塗、刮塗、澆鑄、凹版塗佈、微凹版塗佈、旋塗等)進行塗佈製程,將硬質塗佈組合物施塗在透明基板上。可光聚合 化合物 可光聚合化合物用於形成第一硬質塗層120及第二硬質塗層130,且可為光聚合性單體、光聚合性低聚物等,其都包括光聚合性官能基。例如,可光聚合化合物可為光自由基聚合性化合物。 作為光聚合性單體,可使用在此項技術中使用之分子中具有通常使用之可光固化官能基的單體而沒有限制,例如不飽和基團(例如(甲基)丙烯醯基、乙烯基、苯乙烯基、烯丙基等)。更具體地,光聚合性單體可為例如單官能及/或多官能(甲基)丙烯酸酯。此等可單獨使用或以兩者或更多者組合使用。 本文使用之術語「(甲基)丙烯醯基-」係指「甲基丙烯醯基-」、「丙烯醯基-」或兩者。 具體地,(甲基)丙烯酸酯單體可係作為(甲基)丙烯酸酯之三羥甲基丙烷三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、甘油三(甲基)丙烯酸酯、三(2-羥乙基)異氰脲酸酯三(甲基)丙烯酸酯、乙二醇二(甲基)丙烯酸酯、丙二醇(甲基)丙烯酸酯、1,3-丁二醇二(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、二甘醇二(甲基)丙烯酸酯、三甘醇二(甲基)丙烯酸酯、二丙二醇二(甲基)丙烯酸酯、雙(2-羥乙基)異氰脲酸酯二(甲基)丙烯酸酯及環氧乙烷-或環氧丙烷-加成之聚(甲基)丙烯酸酯;低聚酯(甲基)丙烯酸酯、低聚醚(甲基)丙烯酸酯、低聚胺基甲酸酯(甲基)丙烯酸酯及低聚環氧(甲基)丙烯酸酯,其在分子中均具有1至3個(甲基)丙烯醯基;(甲基)丙烯酸羥乙酯、(甲基)丙烯酸羥丙酯、(甲基)丙烯酸羥丁酯及藉由將環氧乙烷或環氧丙烷加成至(甲基)丙烯酸酯而製備之產物;以及單(甲基)丙烯酸酯,例如具有三個或更少官能(甲基)丙烯醯基之單體(例如(甲基)丙烯酸異辛酯、(甲基)丙烯酸異癸酯、(甲基)丙烯酸十八酯、(甲基)丙烯酸四氫呋喃酯、(甲基)丙烯酸苯氧基乙酯等),以及二季戊四醇六(甲基)丙烯酸酯、二季戊四醇羥基五(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、雙三羥甲基丙烷四(甲基)丙烯酸酯等。此等可單獨使用或以兩者或更多者之組合使用。 光聚合性低聚物可包括例如選自由環氧(甲基)丙烯酸酯、胺基甲酸酯(甲基)丙烯酸酯及聚酯(甲基)丙烯酸酯組成之群中之一者或多者。特別地,可組合使用胺基甲酸酯(甲基)丙烯酸酯及聚酯(甲基)丙烯酸酯,或者可組合使用兩種類型之聚酯(甲基)丙烯酸酯。較佳地,可使用胺基甲酸酯(甲基)丙烯酸酯低聚物以改善固化產物之抗劃傷性及硬度,且提高第一硬質塗層120及第二硬質塗層130之彈性模數。 胺基甲酸酯(甲基)丙烯酸酯可根據此項技術中已知之方法,藉由在催化劑之存在下使分子中具有羥基之多官能(甲基)丙烯酸酯及具有異氰酸酯基之化合物反應來製備。 分子中具有羥基之多官能(甲基)丙烯酸酯可係選自由(甲基)丙烯酸2-羥基乙酯、(甲基)丙烯酸2-羥基異丙酯、(甲基)丙烯酸-4-羥基丁酯、己內酯開環之羥基丙烯酸酯,季戊四醇三(甲基)丙烯酸酯及季戊四醇四-(甲基)丙烯酸酯之混合物、以及二季戊四醇五-(甲基)丙烯酸酯及二季戊四醇六-(甲基)丙烯酸酯的混合物組成之群中之一者或多者。 另外,具有異氰酸酯基之化合物可係選自由以下組成之群中之一者或多者:1,4-二異氰酸基丁烷、1,6-二異氰酸基己烷、1,8-二異氰酸基辛烷、1,12-二異氰酸基十二烷、1,5-二異氰酸基-2-甲基戊烷、三甲基-1,6-二異氰酸基己烷、1,3-雙(異氰酸酯基甲基)環己烷、反式-1,4-環己烷二異氰酸酯、4,4'-亞甲基雙(環己基異氰酸酯)、異佛爾酮二異氰酸酯、甲苯-2,4-二異氰酸酯、甲苯-2,6-二異氰酸酯、二甲苯-1,4-二異氰酸酯、四甲基二甲苯-1,3-二異氰酸酯、1-氯甲基-2,4-二異氰酸酯、4,4'-亞甲基雙(2,6-二甲基苯基異氰酸酯)、4,4'-氧基雙(苯基異氰酸酯)、來自六亞甲基二異氰酸酯之三官能異氰酸酯及三甲基丙醇-甲苯二異氰酸酯加合物。 更具體地,胺基甲酸酯(甲基)丙烯酸酯低聚物可為在分子中包括兩個或更多個由下列化學式1表示之取代基及(甲基)丙烯醯基之化合物。 [化學式1] *-OC(=O)NH-* 胺基甲酸酯(甲基)丙烯酸酯低聚物可藉由1莫耳由以下化學式2表示之二異氰酸酯及2莫耳含活性氫之聚合性不飽和化合物反應來製備。 [化學式2] R1 -OC(=O)NH-R3 -NHC(=O)O-R2 在化學式2中,R1 及R2 各自獨立地為包括來自含活性氫之聚合性不飽和化合物之(甲基)丙烯醯基之取代基,且R3 為來自二異氰酸酯之二價取代基。 胺基甲酸酯(甲基)丙烯酸酯低聚物可藉由以下方式來製備:例如,使(甲基)丙烯酸2-羥基乙酯及2,4-甲苯二異氰酸酯反應,使(甲基)丙烯酸2-羥基乙酯及異佛爾酮二異氰酸酯反應,使(甲基)丙烯酸2-羥基丁酯及2,4-甲苯二異氰酸酯反應,使(甲基)丙烯酸2-羥基丁酯及異佛爾酮二異氰酸酯反應,使季戊四醇三(甲基)丙烯酸酯及2,4-甲苯二異氰酸酯反應,使季戊四醇三(甲基)丙烯酸酯及異佛爾酮二異氰酸酯反應,使季戊四醇三(甲基)丙烯酸酯及二環己基甲烷二異氰酸酯反應,使二季戊四醇五(甲基)丙烯酸酯及異佛爾酮二異氰酸酯反應,或使二季戊四醇五(甲基)丙烯酸酯及二環己基甲烷二異氰酸酯反應。 聚酯(甲基)丙烯酸酯可根據此項技術中已知之方法,藉由使聚酯多元醇及丙烯酸反應來製備。 聚酯(甲基)丙烯酸酯可為例如選自由聚酯丙烯酸酯、聚酯二丙烯酸酯、聚酯四丙烯酸酯、聚酯六丙烯酸酯、聚酯季戊四醇三丙烯酸酯、聚酯季戊四醇四丙烯酸酯及聚酯季戊四醇六丙烯酸酯組成之群中之一者或多者,但是本發明不限於此。 光聚合性單體及光聚合性低聚物可單獨使用或組合使用。當組合使用光聚合性單體及光聚合性低聚物時,可提高用於形成硬質塗層之組合物之加工性及相容性。 光聚合性單體及光聚合性低聚物之含量比可在考慮第一硬質塗層120及第二硬質塗層130之儲能彈性模數、收縮力、加工性等之情況下適當選擇,沒有特別限制。例如,光聚合性低聚物相對於光聚合性單體之含量比可為1:10至10:1。當聚合性低聚物相對於聚合性單體之含量比在該範圍之外時,第一硬質塗層120及第二硬質塗層130之儲能彈性模數降低或其收縮力增加。因此,硬度及可撓性會降低且會發生捲曲。 可光聚合化合物之含量沒有特別限制,但是,相對於100重量份之用於形成硬質塗層之組合物,較佳包括例如,1重量份至80重量份,更佳包括5重量份至50重量份之可光聚合化合物。當可光聚合化合物之含量小於1重量份時,塗層之彈性模數降低,且因此當彎曲時塗層會容易破裂。另一方面,當可光聚合化合物之含量大於80重量份時,由於黏度之增加,施塗性會降低,且由於表面流平性不足,外觀效能會降低。 此外,無機奈米填料亦可用於改善硬度及抗劃傷性。作為代表性之無機奈米填料,可使用二氧化矽(小於100 μm)。二氧化矽可具有或可不具有可參與表面光反應之可光固化基團。高伸長率低聚物 根據本發明之硬質塗佈組合物包括高伸長率低聚物。 較佳地,高伸長率低聚物之彈性模數為10 MPa至3000 MPa且斷裂伸長率為30%至150%。當彈性模數及斷裂伸長率在此等範圍內時,可表現出優異之抗彎曲性及抗衝擊性且使捲曲之發生最小化。 高伸長率低聚物包括可光固化(甲基)丙烯酸酯低聚物。 可光固化(甲基)丙烯酸酯低聚物可包括選自由環氧(甲基)丙烯酸酯、胺基甲酸酯(甲基)丙烯酸酯及聚酯(甲基)丙烯酸酯組成之群中之一者或多者。較佳地,組合使用胺基甲酸酯(甲基)丙烯酸酯及聚酯(甲基)丙烯酸酯,或者在一個分子中包括聚酯基團及胺基甲酸酯基團兩者。 環氧(甲基)丙烯酸酯可藉由使具有(甲基)丙烯醯基之羧酸與環氧化合物反應而獲得。具體地,環氧化合物可為(甲基)丙烯酸縮水甘油酯、C1 至C12 直鏈醇封端之縮水甘油醚、二甘醇二縮水甘油醚、三丙二醇二縮水甘油醚、雙酚A二縮水甘油醚、環氧乙烷改性之雙酚A二縮水甘油醚、環氧丙烷改性之雙酚A二縮水甘油醚、三羥甲基丙烷三縮水甘油醚、季戊四醇四縮水甘油醚、氫化雙酚A二縮水甘油醚、丙三醇二縮水甘油醚等。具有(甲基)丙烯醯基之羧酸可為(甲基)丙烯酸、2-(甲基)丙烯醯氧基乙基琥珀酸、2-(甲基)丙烯醯氧基乙基六氫鄰苯二甲酸等。 胺基甲酸酯(甲基)丙烯酸酯可藉由在催化劑之存在下使分子中具有羥基之多官能(甲基)丙烯酸酯及具有異氰酸酯基之化合物反應來製備。 分子中具有羥基之(甲基)丙烯酸酯可係選自由(甲基)丙烯酸2-羥基乙酯、(甲基)丙烯酸2-羥基異丙酯、(甲基)丙烯酸-4-羥基丁酯、己內酯開環之羥基丙烯酸酯,季戊四醇三(甲基)丙烯酸酯及季戊四醇四-(甲基)丙烯酸酯之混合物、以及二季戊四醇五-(甲基)丙烯酸酯及二季戊四醇六-(甲基)丙烯酸酯的混合物組成之群中之一者或多者。 分子中具有異氰酸酯基之化合物可係選自由以下組成之群中之一者或多者:1,4-二異氰酸基丁烷、1,6-二異氰酸基己烷、1,8-二異氰酸基辛烷、1,12-二異氰酸基十二烷、1,5-二異氰酸基-2-甲基戊烷、三甲基-1,6-二異氰酸基己烷、1,3-雙(異氰酸酯基甲基)環己烷、反式-1,4-環己烷二異氰酸酯、4,4'-亞甲基雙(環己基異氰酸酯)、異佛爾酮二異氰酸酯、甲苯-2,4-二異氰酸酯、甲苯-2,6-二異氰酸酯、二甲苯-1,4-二異氰酸酯、四甲基二甲苯-1,3-二異氰酸酯、1-氯甲基-2,4-二異氰酸酯、4,4'-亞甲基雙(2,6-二甲基苯基異氰酸酯)、4,4'-氧基雙(苯基異氰酸酯)、來自六亞甲基二異氰酸酯之三官能異氰酸酯及三甲基丙醇-甲苯二異氰酸酯加合物。 聚酯(甲基)丙烯酸酯,具體地,可為二丙烯酸酯(例如乙二醇二(甲基)丙烯酸酯、二甘醇二(甲基)丙烯酸酯、三甘醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、丙二醇二(甲基)丙烯酸酯、二丙二醇二(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、1,4-丁二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、三環癸烷二(甲基)丙烯酸酯、雙酚A二(甲基)丙烯酸酯等)、三羥甲基丙烷三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、雙三羥甲基丙烷四(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、三(2-(甲基)丙烯醯氧基乙基)異氰脲酸酯等。 較佳組合使用胺基甲酸酯(甲基)丙烯酸酯及聚酯(甲基)丙烯酸酯,或者在一個分子中包括聚酯基團及胺基甲酸酯基團兩者。特別地,具有線性結構之丙烯酸酯可用於形成具有30%或更大之伸長率之高伸長率塗膜。 相對於100重量%之全部硬質塗佈組合物,該硬質塗佈組合物較佳包括1重量%至90重量%,更佳地5重量%至80重量%之高伸長率低聚物。當高伸長率低聚物之含量小於1重量%時,難以形成塗膜,或者即使形成塗膜,亦難以製造具有足夠之抗衝擊性水準之硬質塗膜100。另一方面,當其含量大於90重量%時,由於製造硬質塗膜100期間之高黏度,塗膜之均勻性會降低。溶劑 溶劑為可溶解或分散上述組合物之材料,且可使用而沒有限制,只要其為此項技術中已知之硬質塗佈組合物之溶劑。 具體地,溶劑可較佳為醇(例如甲醇、乙醇、異丙醇、丁醇、甲基溶纖劑、乙基溶纖劑等),酮(例如甲基乙基酮、甲基丁基酮、甲基異丁基酮、二乙基酮、二丙基酮、環己酮等),乙酸酯(例如乙酸乙酯、乙酸丙酯、乙酸正丁酯、乙酸第三丁酯、甲基溶纖劑乙酸酯、乙基溶纖劑乙酸酯、丙二醇單甲醚乙酸酯、丙二醇單乙醚乙酸酯、丙二醇單丙醚乙酸酯、甲氧基丁基乙酸酯、甲氧基戊基乙酸酯等),烷烴(例如己烷、庚烷、辛烷等),苯或其衍生物(例如苯、甲苯、二甲苯等),醚(例如二甘醇二甲醚、二甘醇二乙醚、二甘醇二丙醚、二甘醇二丁醚、丙二醇單甲醚等)等。溶劑可單獨使用或以兩者或更多者組合使用。 相對於100重量%之全部硬質塗佈組合物,該硬質塗佈組合物較佳包括10重量%至95重量%之溶劑。當溶劑之含量小於10重量%時,不僅由於黏度之增加可加工性會降低,而且會不能充分進行透明基板層之溶脹。另一方面,當其含量大於95重量%時,乾燥製程會需要較長時間,且經濟可行性會降低。光引發劑 可任意使用光引發劑而沒有限制,只要其在此項技術中使用,且可係選自由羥基酮、胺基酮及奪氫型光引發劑組成之群中之一者或多者。 具體地,光引發劑可為2-甲基-1-[4-(甲硫基)苯基]-2-嗎啉基-1-丙酮、二苯基酮、苄基二甲基縮酮、2-羥基-2-甲基-1-苯基-1-酮、4-羥基環戊基酮、2,2-二甲氧基-2-苯基苯乙酮、蒽醌、茀、三苯胺、咔唑、3-甲基苯乙酮、4-氯苯乙酮、4,4-二甲氧基苯乙酮、4,4-二胺基二苯甲酮、1-羥基環己基-苯基-酮、二苯甲酮、二苯基(2,4,6-三甲基苯甲醯基)氧化膦等。此等可單獨使用或以兩種或更多種之組合使用。 相對於100重量%之全部硬質塗佈組合物,該硬質塗佈組合物較佳包括0.1重量%至10重量%,更佳1重量%至5重量%之光引發劑。當光引發劑之含量小於0.1重量%時,由於固化不充分,硬質塗佈組合物之固化速度會減小,且機械效能會降低。另一方面,當光引發劑含量大於10重量%時,塗膜會由於過固化而破裂。添加劑 在本發明之一個示例性實施方式中,塗佈組合物亦可包括添加劑,添加劑可包括選自由無機奈米顆粒、流平劑及穩定劑組成之群中之一者或多者。 可選擇性地添加無機奈米顆粒以改善硬質塗層之硬度。具體地,當在硬質塗膜組合物中包括無機奈米顆粒時,可進一步改善機械效能。更具體地,無機奈米顆粒均勻地形成在塗膜中,且因此可改善機械效能,例如耐磨性、抗劃傷性、鉛筆硬度等。 無機奈米顆粒可具有1 nm至100 nm,特別地1 nm至80 nm,更特別地5 nm至50 nm之平均直徑。當無機奈米顆粒之平均直徑在此等範圍內時,可防止在組合物中發生團聚之現象且因此形成均勻之塗膜,且防止塗膜之光學特性及機械效能之降低。 無機奈米顆粒可包括選自由Al2 O3 、SiO2 、ZnO、ZrO2 、BaTiO3 、TiO2 、Ta2 O5 、Ti3 O5 、ITO、IZO、ATO、ZnO-Al、Nb2 O3 、SnO、MgO及其組合組成之群中之一者或多者,但是本發明不限於此。無機奈米顆粒可包括此項技術中通常使用之金屬氧化物。 具體地,無機奈米顆粒可為Al2 O3 、SiO2 或ZrO2 。無機奈米顆粒可直接製造,或者可為其中無機奈米顆粒以10重量%至80重量%之濃度分散在有機溶劑中之市售產品。 流平劑可包括選自由矽氧烷基流平劑、氟基流平劑及丙烯酸類流平劑組成之群中之一者或多者。當在硬質塗膜組合物中包括流平劑時,在形成塗膜期間可賦予平滑性及塗佈性。 具體地,流平劑可為BYK-323、BYK-331、BYK-333、BYK-337、BYK-373、BYK-375、BYK-377或BYK-378,其均可自BYK Chemie GmbH商購獲得;TEGO Glide 410、TEGO Glide 411、TEGO Glide 415、TEGO Glide 420、TEGO Glide 432、TEGO Glide 435、TEGO Glide 440、TEGO Glide 450、TEGO Glide 455、TEGO Rad 2100、TEGO Rad 2200N、TEGO Rad 2250、TEGO Rad 2300、TEGO Rad 2500,其均可自Evonik TEGO Chemie GmbH商購獲得;FC-4430、FC-4432,其均可自3M商購獲得;諸如此類,但本發明不限於此。可使用此項技術中常用之流平劑。 穩定劑可包括選自由受阻胺、水楊酸苯酯、二苯甲酮、苯并三唑、鎳衍生物、自由基清除劑、多酚、亞磷酸酯及內酯穩定劑組成之群中之一者或多者。 本文中使用之術語「UV穩定劑」係指為了藉由阻擋或吸收UV射線來保護黏合劑之目的而添加之添加劑,因為由於連續UV射線曝露引起之分解,塗膜之固化表面變色且容易破裂。 基於原理,UV穩定劑可分類為吸收劑、淬滅劑或受阻胺光穩定劑(HALS)。此外,基於化學結構,UV穩定劑可分類為水楊酸苯酯(吸收劑)、二苯甲酮(吸收劑)、苯并三唑(吸收劑)、鎳衍生物(淬滅劑)或自由基清除劑。 然而,本發明不特別限於此,只要UV穩定劑不顯著改變黏合劑之初始顏色即可。 作為商業上可應用之產品之熱穩定劑,可單獨或組合使用多酚(主要熱穩定劑)及亞磷酸酯及內酯(次要熱穩定劑)。UV穩定劑及熱穩定劑可藉由適當調節其含量至不影響UV固化效能之水準來使用。 <圖像顯示裝置> 根據本發明之硬質塗膜可為可撓性顯示器之膜。具體地,硬質塗膜可用作顯示器(例如LCD、OLED、LED、FED等)之蓋板玻璃、各種移動通信終端、使用顯示器之智慧型電話或平板電腦之觸摸面板、電子紙等之功能層或替代品。 本發明提供包括硬質塗膜100之圖像顯示裝置。 另外,本發明提供包括硬質塗膜之可撓性顯示裝置之視窗。 在下文中,將參考示例性實施方式更詳細地描述本發明。然而,示例性實施方式應當僅認為為描述性的,且本發明不限於此。因此,應當理解,在不脫離本發明之範疇之情況下,熟習此項技術者可對示例性實施方式進行各種改變及修改。以下,除非另有說明,否則表示含量之所有「百分比」及「份」均以重量計。製備實施例 1 6 :用於硬質塗膜之組合物之製備 製備實施例 1 將70重量份之胺基甲酸酯丙烯酸酯(UA-122P,自Shin-Nakamura Chemical Co., Ltd.商購得)、25重量份之甲基乙基酮、4.5重量份之光引發劑(1-羥基環己基-苯基-酮)、及0.5重量份之流平劑(BYK-3570,自BYK Chemie GmbH商購得)使用攪拌器混合,且使用由聚丙烯(PP)製成之過濾器過濾以製備硬質塗佈組合物。此處,胺基甲酸酯丙烯酸酯之彈性模數為2070 MPa,斷裂伸長率為58%。製備實施例 2 將70重量份之胺基甲酸酯丙烯酸酯(UA-232P,自Shin-Nakamura Chemical Co., Ltd.商購得)、25重量份之甲基乙基酮、4.5重量份之光引發劑(1-羥基環己基-苯基-酮)、及0.5重量份之流平劑(BYK-3570,自BYK Chemie GmbH商購得)使用攪拌器混合,且使用由聚丙烯(PP)製成之過濾器過濾以製備硬質塗佈組合物。此處,胺基甲酸酯丙烯酸酯之彈性模數為1320 MPa,斷裂伸長率為135%。製備實施例 3 將70重量份之胺基甲酸酯丙烯酸酯(UA-122P,自Shin-Nakamura Chemical Co., Ltd.商購得)、25重量份之甲基乙基酮、4.5重量份之光引發劑(1-羥基環己基-苯基-酮)、及0.5重量份之流平劑(BYK-3570,自BYK Chemie GmbH商購得)使用攪拌器混合,且使用由聚丙烯(PP)製成之過濾器過濾以製備硬質塗佈組合物。此處,胺基甲酸酯丙烯酸酯之彈性模數為2570 MPa,斷裂伸長率為67%。製備實施例 4 將20重量份之季戊四醇三丙烯酸酯、50重量份之無機奈米二氧化矽溶膠(20 nm二氧化矽40%及甲基乙基酮60%)、25重量份之甲基乙基酮、4.7重量份之光引發劑(1-羥基環己基-苯基-酮)、及0.3重量份之流平劑(BYK-3570,自BYK Chemie GmbH商購得)使用攪拌器混合,且使用由聚丙烯(PP)製成之過濾器過濾以製備硬質塗佈組合物。將如此製備之硬質塗佈組合物塗佈在玻璃上並乾燥固化,然後使用奈米壓痕儀量測塗膜之馬氏硬度及壓縮彈性模數。結果,馬氏硬度為835 N/mm2 且壓縮彈性模數為9120 MPa。製備實施例 5 將30重量份之季戊四醇三丙烯酸酯、40重量份之無機奈米二氧化矽溶膠(二氧化矽40%及甲基乙基酮60%)、25重量份之甲基乙基酮、4.7重量份之光引發劑(1-羥基環己基-苯基-酮)、及0.3重量份之流平劑(BYK-3570,自BYK Chemie GmbH商購得)使用攪拌器混合,且使用由聚丙烯(PP)製成之過濾器過濾以製備硬質塗佈組合物。將如此製備之硬質塗佈組合物塗佈在玻璃上並乾燥固化,然後使用奈米壓痕儀量測塗膜之馬氏硬度及壓縮彈性模數。結果,馬氏硬度為785 N/mm2 且壓縮彈性模數為8830 MPa。製備實施例 6 將15重量份之季戊四醇三丙烯酸酯、15重量份之含有環氧乙烷之四官能丙烯酸酯(Miramer M4004,自Miwon Specialty Chemical Co., Ltd.商購得)、40重量份之無機奈米二氧化矽溶膠(二氧化矽40%及甲基乙基酮60%)、25重量份之甲基乙基酮、4.7重量份之光引發劑(1-羥基環己基-苯基-酮)、及0.3重量份之流平劑(BYK-3570,自BYK Chemie GmbH商購得)使用攪拌器混合,且使用由聚丙烯(PP)製成之過濾器過濾以製備硬質塗佈組合物。將如此製備之硬質塗佈組合物塗佈在玻璃上並乾燥固化,然後使用奈米壓痕儀量測塗膜之馬氏硬度及壓縮彈性模數。結果,馬氏硬度為399 N/mm2 且壓縮彈性模數為4970 MPa。實施例 1 9 以及比較實施例 1 5 :硬質塗膜之製造 實施例 1 將製備實施例1中製備之硬質塗佈組合物以使得固化後之組合物的厚度為200 μm的這樣一種方式塗佈在厚度為80 μm之聚醯亞胺膜之一個表面上。在塗佈膜之後,乾燥溶劑且以500 mJ/cm2 之整合光強度照射UV射線,以使組合物固化,從而製造第一硬質塗層。接著,將製備實施例4中製備之硬質塗佈組合物塗佈在其上塗佈有製備實施例1中製備之硬質塗佈組合物之聚醯亞胺膜的另一個表面上,以具有5 μm之厚度。在塗佈膜之後,乾燥溶劑且以500 mJ/cm2 之整合光強度照射UV射線,以使組合物固化,從而製造第二硬質塗層,由此製造硬質塗膜。實施例 2 除了使用製備實施例5中製備之硬質塗佈組合物用於第二硬質塗層外,以與實施例1相同之方式製造硬質塗膜。實施例 3 除了使用製備實施例6中製備之硬質塗佈組合物用於第二硬質塗層外,以與實施例1相同之方式製造硬質塗膜。實施例 4 除了使用製備實施例2中製備之硬質塗佈組合物用於第一硬質塗層外,以與實施例1相同之方式製造硬質塗膜。實施例 5 除了使用製備實施例2中製備之硬質塗佈組合物用於第一硬質塗層外,以與實施例2相同之方式製造硬質塗膜。實施例 6 除了使用製備實施例2中製備之硬質塗佈組合物用於第一硬質塗層外,以與實施例3相同之方式製造硬質塗膜。實施例 7 除了使用製備實施例3中製備之硬質塗佈組合物用於第一硬質塗層外,以與實施例1相同之方式製造硬質塗膜。實施例 8 除了使用製備實施例3中製備之硬質塗佈組合物用於第一硬質塗層外,以與實施例2相同之方式製造硬質塗膜。實施例 9 除了使用製備實施例3中製備之硬質塗佈組合物用於第一硬質塗層外,以與實施例3相同之方式製造硬質塗膜。比較實施例 1 除了不塗佈製備實施例1中製備之第一硬質塗佈組合物,且將製備實施例4中製備之第二硬質塗佈組合物以使固化後組合物之厚度為5 μm這樣一種方式塗佈在聚醯亞胺膜之一個表面上之外,以與實施例1相同之方式製造硬質塗膜,然後乾燥溶劑,且以500 mJ/cm2 之整合光強度照射UV射線,以使組合物固化。比較實施例 2 藉由以下製造硬質塗膜:將製備實施例4中製備之第二硬質塗佈組合物以使固化後組合物之厚度為5 μm這樣一種方式塗佈在厚度為80 μm之聚醯亞胺膜之兩個表面上,然後乾燥溶劑,且以500 mJ/cm2 之整合光強度照射UV射線,以使組合物固化。比較實施例 3 除了僅將在製備實施例1中製備之第一硬質塗層組合物以使固化後組合物之厚度為200 μm這樣一種方式塗佈之外,以與實施例1相同之方式製造硬質塗膜,然後乾燥溶劑,且以500 mJ/cm2 之整合光強度照射UV射線,以使組合物固化。在此情況下,第一硬質塗層朝向下側,並評價透明基板層側之抗衝擊性及抗劃傷性。比較實施例 4 藉由以下製造硬質塗膜:將製備實施例1中製備之第一硬質塗佈組合物以使固化後組合物之厚度為5 μm這樣一種方式塗佈在厚度為80 μm之聚醯亞胺膜之兩個表面上,然後乾燥溶劑,且以500 mJ/cm2 之整合光強度照射UV射線,以使組合物固化。比較實施例 5 除了將第二硬質塗層以使固化後第二硬質塗佈組合物之厚度為5 μm這樣一種方式塗佈在第一硬質塗層上之外,以與實施例1相同之方式製造硬質塗膜。實驗實施例 實施例1至9以及比較實施例1至5中製備之硬質塗膜之性質以如下方式測定,其結果示於表1。本發明中使用之測定方法及評價方法如下。 1. 室溫下之抗彎曲性之評價 將第二硬質塗層朝向內側,且將硬質塗膜對折以在其表面之間具有6 mm之間距。然後,藉由肉眼觀察及確定該膜再次展開時摺疊部分是否發生破裂,其結果示於下表1中。 良好:在摺疊部分沒有破裂 不合格:在摺疊部分破裂 2. 高溫及高濕下之抗彎曲性 將處於以下狀態(將第二硬質塗層朝向內側,且將硬質塗膜對折以在其表面之間具有6 mm之間距)之膜在85℃、85 RH%之條件下處理24小時,然後評價膜是否發生異常,其結果示於下表1中。 良好:在摺疊部分處沒有異常 不合格:在摺疊部分或整個表面處破裂 3. 抗衝擊性 使用50 μm光學透明黏合劑(OCA) (彈性模數為0.08MPa)將硬質塗膜之相對表面,亦即透明基板層之表面,黏附至玻璃上。然後,當將鋼球自50 cm之高度落在硬質塗佈表面上時,測定未破壞硬質塗膜下方之玻璃之該鋼球的最大重量,其結果示於下表1中。 4. 凹痕 使用50 μm光學透明黏合劑(OCA) (彈性模數為0.08MPa)將硬質塗膜之相對表面,亦即透明基材層之表面,黏附至玻璃上。然後,當將9H鉛筆自5 cm之高度落在硬質塗佈表面上五次時,觀察是否存在由鉛筆引起之凹痕,結果示於下表1中。 ◎:五次都沒有觀察到凹痕 Ο:一次觀察到凹痕 △:三次觀察到凹痕 X:五次都觀察到凹痕 5. 抗劃傷性 使用25 μm之丙烯酸黏合劑將硬質塗膜之相對表面,亦即透明基板層,黏合至玻璃上。然後使用鋼絲絨#0000在1 kg/cm2 之載荷下對硬質塗層之表面進行劃痕試驗,其中鋼絲絨來回移動十次。然後,藉由目視確定劃痕之數量。 ◎:等於或小於10條劃痕 Ο:等於或小於20條劃痕 △:等於或小於30條劃痕 X:大於30條劃痕 6. 捲曲 將硬質塗膜切割成10 cm × 10 cm之尺寸,且在25℃及48 RH%之條件下保持24小時。然後,評價自底部提起各邊緣之程度,其結果示於下表1中。 ◎:四個邊緣之平均高度為20 mm或小於20 mm Ο:四個邊緣之平均高度為50 mm或小於50 mm Δ:四個邊緣之平均高度大於50 mm X:四個邊緣經完全提起,且因此膜以圓柱形形式捲起 [表1]

Figure TW201800507AD00001
參照表1,可看出,在根據本發明之實施例1至9中,顯示出優異之室溫下之抗彎曲性、高溫高濕下之抗彎曲性、抗衝擊性、抗凹痕性及抗劃傷性,且可使捲曲之發生最小化。 同時,可看出,在比較實施例1及2中表現出5 g之差之抗衝擊性,且在比較實施例3及4中表現出差之抗凹痕性及抗劃傷性。 同時,可看出,在比較實施例5中藉由將第二硬質塗層形成於第一硬質塗層上,發生輕微之捲曲。Hereinafter, the present invention will be described in detail with reference to exemplary embodiments. < Hard Coating Film > As shown in FIG. 1, the hard coating film 100 according to the present invention includes a first hard coating layer 120 formed on one surface of the transparent substrate layer 110 and a first hard coating layer 120 formed on the other surface of the transparent substrate layer 110. Second hard coating layer 130. This will be described in more detail below. Transparent substrate layer The following hard coating composition is applied to at least one surface of the transparent substrate layer 110, and then cured to form a hard coating film 100. The term "transparency" as used herein means that the transmittance of visible light is 70% or more, or 70% or 80%, or more than 80%. The transparent substrate layer 110 may be any polymer film having transparency. Specifically, the transparent substrate layer 110 may be a film made of a polymer such as a cycloolefin derivative having a cyclic olefin-containing monomer (for example, norbornene or polycyclic norbornene-based monomer), and cellulose (for example, Diethyl cellulose, triethyl cellulose, ethyl cellulose butyrate, isobutyl cellulose, propyl cellulose, butyl cellulose, or acetyl propyl cellulose), ethylene / vinyl acetate copolymer Polymers, polycyclic olefins, polyesters, polystyrene, polyfluorene, polyetherimine, polyacrylic acid, polyimide, polyetherfluorene, polyfluorene, polyethylene, polypropylene, polymethylpentene, Polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyvinyl acetal, polyether ketone, polyether ether ketone, polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate The diester, polyethylene naphthalate, polycarbonate, polyurethane, epoxy resin, etc. may also be an unoriented film, a uniaxially oriented film, or a biaxially oriented film. These polymers may be used alone or in a combination of two or more. Polyimide films and uniaxially or biaxially oriented polyester films having excellent transparency and heat resistance can be preferably used. Cyclic olefin derivative films having excellent transparency and heat resistance and capable of supporting large-sized films and Polymethyl methacrylate film, and triethyl cellulose film and isobutyl cellulose film which have transparency and do not have optical anisotropy. First hard coating layer The first hard coating layer 120 may be formed by applying a hard coating composition including a high elongation oligomer on one surface of the transparent substrate layer 110, and then photo-curing the composition by ultraviolet irradiation. form. The thickness of the first hard coating layer 120 is preferably 50 μm to 300 μm. When the thickness of the first hard coating layer 120 is less than 50 μm, the impact resistance is reduced. On the other hand, when the thickness of the first hard coating layer 120 is more than 300 μm, the bending resistance is reduced and curling may occur. Second hard coating layer The second hard coating layer 130 may be formed by applying a hard coating composition on the other surface of the transparent substrate layer 110 and then photo-curing the composition by ultraviolet irradiation. Preferably, the Martens hardness of the second hard coating layer 130 is 350 N / mm 2 to 1000 N / mm 2 , and the compressive elastic modulus is 4000 MPa to 10000 MPa. When the Martens hardness and compressive elastic modulus of the second hard coating layer 130 are lower than these ranges, scratch resistance may be reduced and dents may occur. The thickness of the second hard coating layer 130 is preferably 1 μm to 20 μm, and more preferably 5 μm to 10 μm. When the thickness of the second hard coating layer 130 is less than 1 μm, scratch resistance and dent resistance are reduced. On the other hand, when the thickness of the second hard coating layer 130 is more than 20 μm, the layer may be cracked or curled. The hard coating composition includes a high elongation oligomer, and may further include one or more of a photopolymerizable compound, a solvent, a photoinitiator, and an additive. This will be described in more detail below. In this case, it can be performed by appropriately using a known method (e.g., die coating, air knife coating, reverse roll coating, spray coating, knife coating, casting, gravure coating, micro gravure coating, spin coating, etc.) In the coating process, a hard coating composition is applied on a transparent substrate. Photopolymerizable compound The photopolymerizable compound is used to form the first hard coating layer 120 and the second hard coating layer 130, and may be a photopolymerizable monomer, a photopolymerizable oligomer, and the like, all of which include a photopolymerizable functional group. . For example, the photopolymerizable compound may be a photoradical polymerizable compound. As the photopolymerizable monomer, a monomer having a commonly used photocurable functional group in a molecule used in this technology can be used without limitation, such as an unsaturated group (e.g., (meth) acrylfluorenyl, ethylene Group, styryl, allyl, etc.). More specifically, the photopolymerizable monomer may be, for example, a monofunctional and / or polyfunctional (meth) acrylate. These may be used alone or in combination of two or more. The term "(meth) acrylfluorenyl-" as used herein refers to "methacrylfluorenyl-", "acrylfluorenyl-", or both. Specifically, the (meth) acrylate monomer may be trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, glycerol tri (meth) acrylate as (meth) acrylate Ester, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol (meth) acrylate, 1,3-butanediol di (Meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, di Glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, bis (2-hydroxyethyl) isocyanurate di (meth) acrylic acid Esters and ethylene oxide- or propylene oxide-addition poly (meth) acrylates; oligoester (meth) acrylates, oligoether (meth) acrylates, oligourethanes (Meth) acrylates and oligomeric epoxy (meth) acrylates, each having 1 to 3 (meth) acrylfluorenyl groups in the molecule; hydroxyethyl (meth) acrylate, (meth) acrylic acid Hydroxypropyl ester, hydroxybutyl (meth) acrylate and ethylene oxide Or products prepared by addition of propylene oxide to (meth) acrylates; and mono (meth) acrylates, such as monomers having three or fewer functional (meth) acryl groups (e.g., (meth) ) Isooctyl acrylate, isodecyl (meth) acrylate, octadecyl (meth) acrylate, tetrahydrofuran (meth) acrylate, phenoxyethyl (meth) acrylate, etc.), and dipentaerythritol hexa ( (Meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate, pentaerythritol tetra (meth) acrylate, bistrimethylolpropane tetra (meth) acrylate, and the like. These may be used alone or in a combination of two or more. The photopolymerizable oligomer may include, for example, one or more selected from the group consisting of epoxy (meth) acrylate, urethane (meth) acrylate, and polyester (meth) acrylate . In particular, a urethane (meth) acrylate and a polyester (meth) acrylate may be used in combination, or two types of polyester (meth) acrylate may be used in combination. Preferably, a urethane (meth) acrylate oligomer can be used to improve the scratch resistance and hardness of the cured product, and to improve the elastic mold of the first hard coating layer 120 and the second hard coating layer 130. number. The urethane (meth) acrylate can be obtained by reacting a polyfunctional (meth) acrylate having a hydroxyl group in the molecule and a compound having an isocyanate group according to a method known in the art. preparation. The polyfunctional (meth) acrylate having a hydroxyl group in the molecule may be selected from the group consisting of 2-hydroxyethyl (meth) acrylate, 2-hydroxyisopropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate Esters, caprolactone ring-opening hydroxy acrylates, mixtures of pentaerythritol tri (meth) acrylate and pentaerythritol tetra- (meth) acrylate, and dipentaerythritol penta- (meth) acrylate and dipentaerythritol hexa- ( One or more of the group consisting of a mixture of meth) acrylates. In addition, the compound having an isocyanate group may be one or more selected from the group consisting of: 1,4-diisocyanatobutane, 1,6-diisocyanatohexane, 1,8 -Diisocyanate octane, 1,12-diisocyanatododecane, 1,5-diisocyanato-2-methylpentane, trimethyl-1,6-diisocyanate Acid hexane, 1,3-bis (isocyanatemethyl) cyclohexane, trans-1,4-cyclohexane diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate), isophor Ketone diisocyanate, toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, xylene-1,4-diisocyanate, tetramethylxylene-1,3-diisocyanate, 1-chloroform -2,4-diisocyanate, 4,4'-methylenebis (2,6-dimethylphenylisocyanate), 4,4'-oxybis (phenylisocyanate), derived from hexamethylene Trifunctional isocyanate of diisocyanate and trimethylpropanol-toluene diisocyanate adduct. More specifically, the urethane (meth) acrylate oligomer may be a compound including two or more substituents represented by the following Chemical Formula 1 and a (meth) acrylfluorenyl group in a molecule. [Chemical Formula 1] * -OC (= O) NH- * Urethane (meth) acrylate oligomer can be represented by the following formula 2 diisocyanate and 2 moles containing active hydrogen It is prepared by reacting a polymerizable unsaturated compound. [Chemical Formula 2] R 1 -OC (= O) NH-R 3 -NHC (= O) OR 2 In Chemical Formula 2, R 1 and R 2 are each independently a polymerizable unsaturated compound containing active hydrogen-containing compounds. A substituent of (meth) acrylfluorenyl, and R 3 is a divalent substituent derived from a diisocyanate. Urethane (meth) acrylate oligomers can be prepared by, for example, reacting 2-hydroxyethyl (meth) acrylate and 2,4-toluene diisocyanate to make (meth) The reaction of 2-hydroxyethyl acrylate and isophorone diisocyanate reacts 2-hydroxybutyl (meth) acrylate and 2,4-toluene diisocyanate to react 2-hydroxybutyl (meth) acrylate and isophor Ketone diisocyanate reacts pentaerythritol tri (meth) acrylate and 2,4-toluene diisocyanate to react pentaerythritol tri (meth) acrylate and isophorone diisocyanate to make pentaerythritol tri (methyl) The acrylate and dicyclohexylmethane diisocyanate are reacted to react dipentaerythritol penta (meth) acrylate and isophorone diisocyanate, or the dipentaerythritol penta (meth) acrylate and dicyclohexylmethane diisocyanate are reacted. The polyester (meth) acrylate can be prepared by reacting a polyester polyol and acrylic acid according to a method known in the art. The polyester (meth) acrylate may be, for example, selected from polyester acrylate, polyester diacrylate, polyester tetraacrylate, polyester hexaacrylate, polyester pentaerythritol triacrylate, polyester pentaerythritol tetraacrylate, and One or more of the group consisting of polyester pentaerythritol hexaacrylate, but the present invention is not limited thereto. The photopolymerizable monomer and the photopolymerizable oligomer can be used alone or in combination. When a photopolymerizable monomer and a photopolymerizable oligomer are used in combination, the processability and compatibility of the composition for forming a hard coating layer can be improved. The content ratio of the photopolymerizable monomer and the photopolymerizable oligomer can be appropriately selected in consideration of the storage elastic modulus, shrinkage force, and processability of the first hard coating layer 120 and the second hard coating layer 130. There are no particular restrictions. For example, the content ratio of the photopolymerizable oligomer to the photopolymerizable monomer may be 1:10 to 10: 1. When the content ratio of the polymerizable oligomer to the polymerizable monomer is outside this range, the storage elastic modulus of the first hard coating layer 120 and the second hard coating layer 130 decreases or its shrinking force increases. Therefore, hardness and flexibility are reduced and curling occurs. The content of the photopolymerizable compound is not particularly limited, but preferably includes, for example, 1 to 80 parts by weight, and more preferably 5 to 50 parts by weight relative to 100 parts by weight of the composition for forming a hard coat layer. Parts of photopolymerizable compounds. When the content of the photopolymerizable compound is less than 1 part by weight, the elastic modulus of the coating layer is reduced, and thus the coating layer is easily broken when bent. On the other hand, when the content of the photopolymerizable compound is more than 80 parts by weight, the applicability may decrease due to an increase in viscosity, and the appearance efficiency may decrease due to insufficient surface leveling. In addition, inorganic nano fillers can also be used to improve hardness and scratch resistance. As a typical inorganic nano filler, silicon dioxide (less than 100 μm) can be used. Silicon dioxide may or may not have photocurable groups that can participate in surface photoreactions. High elongation oligomer The hard coating composition according to the present invention includes a high elongation oligomer. Preferably, the elastic modulus of the high elongation oligomer is 10 MPa to 3000 MPa and the elongation at break is 30% to 150%. When the elastic modulus and elongation at break are within these ranges, excellent bending resistance and impact resistance can be exhibited and the occurrence of curling can be minimized. High elongation oligomers include photocurable (meth) acrylate oligomers. The photocurable (meth) acrylate oligomer may include one selected from the group consisting of epoxy (meth) acrylate, urethane (meth) acrylate, and polyester (meth) acrylate One or more. Preferably, a urethane (meth) acrylate and a polyester (meth) acrylate are used in combination, or both a polyester group and a urethane group are included in one molecule. An epoxy (meth) acrylate can be obtained by reacting a carboxylic acid having a (meth) acrylfluorenyl group with an epoxy compound. Specifically, the epoxy compound may be glycidyl (meth) acrylate, C 1 to C 12 linear alcohol-terminated glycidyl ether, diethylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, bisphenol A Diglycidyl ether, ethylene oxide modified bisphenol A diglycidyl ether, propylene oxide modified bisphenol A diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, Hydrogenated bisphenol A diglycidyl ether, glycerol diglycidyl ether, and the like. The carboxylic acid having a (meth) acrylfluorenyl group may be (meth) acrylic acid, 2- (meth) acryloxyethyl succinic acid, 2- (meth) acryloxyethyl hexahydroo-benzene Dicarboxylic acid and so on. The urethane (meth) acrylate can be prepared by reacting a polyfunctional (meth) acrylate having a hydroxyl group in the molecule and a compound having an isocyanate group in the presence of a catalyst. The (meth) acrylate having a hydroxyl group in the molecule may be selected from the group consisting of 2-hydroxyethyl (meth) acrylate, 2-hydroxyisopropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, Caprolactone ring-opening hydroxy acrylate, a mixture of pentaerythritol tri (meth) acrylate and pentaerythritol tetra- (meth) acrylate, and dipentaerythritol penta- (meth) acrylate and dipentaerythritol hexa- (methyl ) One or more of the group consisting of a mixture of acrylates. The compound having an isocyanate group in the molecule may be selected from one or more of the group consisting of: 1,4-diisocyanatobutane, 1,6-diisocyanatohexane, 1,8 -Diisocyanate octane, 1,12-diisocyanatododecane, 1,5-diisocyanato-2-methylpentane, trimethyl-1,6-diisocyanate Acid hexane, 1,3-bis (isocyanatemethyl) cyclohexane, trans-1,4-cyclohexane diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate), isophor Ketone diisocyanate, toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, xylene-1,4-diisocyanate, tetramethylxylene-1,3-diisocyanate, 1-chloroform -2,4-diisocyanate, 4,4'-methylenebis (2,6-dimethylphenylisocyanate), 4,4'-oxybis (phenylisocyanate), derived from hexamethylene Trifunctional isocyanate of diisocyanate and trimethylpropanol-toluene diisocyanate adduct. Polyester (meth) acrylate, specifically, a diacrylate (e.g., ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate Ester, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, 1,4-butanediol Di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tricyclodecane di (meth) acrylate, bisphenol A Di (meth) acrylate, etc.), trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, bistrimethylolpropane tetra (methyl) Acrylate), dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tris (2- (meth) acryloxyethyl) isocyanurate, and the like. It is preferable to use a urethane (meth) acrylate and a polyester (meth) acrylate in combination, or to include both a polyester group and a urethane group in one molecule. In particular, an acrylate having a linear structure can be used to form a high-elongation coating film having an elongation of 30% or more. The hard coating composition preferably includes a high elongation oligomer of 1 to 90% by weight, more preferably 5 to 80% by weight, relative to 100% by weight of the entire hard coating composition. When the content of the high elongation oligomer is less than 1% by weight, it is difficult to form a coating film, or even if a coating film is formed, it is difficult to produce a hard coating film 100 having a sufficient level of impact resistance. On the other hand, when the content is more than 90% by weight, the uniformity of the coating film may decrease due to the high viscosity during the production of the hard coating film 100. Solvent A solvent is a material that can dissolve or disperse the above-mentioned composition, and can be used without limitation as long as it is a solvent for a hard coating composition known in the art. Specifically, the solvent may preferably be an alcohol (for example, methanol, ethanol, isopropanol, butanol, methyl cellosolve, ethyl cellosolve, etc.), and a ketone (e.g. methyl ethyl ketone, methyl butyl ketone) , Methyl isobutyl ketone, diethyl ketone, dipropyl ketone, cyclohexanone, etc.), acetate (e.g. ethyl acetate, propyl acetate, n-butyl acetate, third butyl acetate, methyl Cellosolve acetate, ethylcellosolve acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, methoxybutyl acetate, methoxy Pentyl acetate, etc.), alkanes (such as hexane, heptane, octane, etc.), benzene or its derivatives (such as benzene, toluene, xylene, etc.), ethers (such as diglyme, Glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, propylene glycol monomethyl ether, etc.). The solvent may be used alone or in combination of two or more. The hard coating composition preferably includes 10 to 95% by weight of a solvent relative to 100% by weight of the entire hard coating composition. When the content of the solvent is less than 10% by weight, not only the workability is reduced due to an increase in viscosity, but also the swelling of the transparent substrate layer may not be sufficiently performed. On the other hand, when the content is more than 95% by weight, the drying process may take a long time, and the economic feasibility may decrease. The photoinitiator may be any photoinitiator without limitation as long as it is used in the technology, and may be one or more selected from the group consisting of a hydroxyketone, an amino ketone, and a hydrogen abstraction type photoinitiator. . Specifically, the photoinitiator may be 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinyl-1-acetone, diphenyl ketone, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenyl-1-one, 4-hydroxycyclopentyl ketone, 2,2-dimethoxy-2-phenylacetophenone, anthraquinone, fluorene, triphenylamine , Carbazole, 3-methylacetophenone, 4-chloroacetophenone, 4,4-dimethoxyacetophenone, 4,4-diaminobenzophenone, 1-hydroxycyclohexyl-benzene Ketone-ketone, benzophenone, diphenyl (2,4,6-trimethylbenzyl) phosphine oxide and the like. These may be used alone or in a combination of two or more. The hard coating composition preferably includes a photoinitiator from 0.1 to 10% by weight, more preferably from 1 to 5% by weight, relative to 100% by weight of the entire hard coating composition. When the content of the photoinitiator is less than 0.1% by weight, the curing speed of the hard coating composition is reduced due to insufficient curing, and the mechanical efficiency is reduced. On the other hand, when the content of the photoinitiator is more than 10% by weight, the coating film may be cracked due to over-curing. Additives In an exemplary embodiment of the present invention, the coating composition may further include additives, and the additives may include one or more selected from the group consisting of inorganic nano particles, a leveling agent, and a stabilizer. Optionally, inorganic nano particles can be added to improve the hardness of the hard coating. Specifically, when inorganic nano particles are included in the hard coating film composition, the mechanical efficiency can be further improved. More specifically, inorganic nano particles are uniformly formed in the coating film, and thus mechanical properties such as abrasion resistance, scratch resistance, pencil hardness, and the like can be improved. The inorganic nanoparticle may have an average diameter of 1 nm to 100 nm, specifically 1 nm to 80 nm, and more specifically 5 nm to 50 nm. When the average diameter of the inorganic nano particles is within these ranges, it is possible to prevent the phenomenon of agglomeration in the composition and thus to form a uniform coating film, and prevent the optical characteristics and mechanical efficiency of the coating film from being lowered. The inorganic nano particles may include a material selected from the group consisting of Al 2 O 3 , SiO 2 , ZnO, ZrO 2 , BaTiO 3 , TiO 2 , Ta 2 O 5 , Ti 3 O 5 , ITO, IZO, ATO, ZnO-Al, Nb 2 O 3. One or more of the group consisting of SnO, MgO and combinations thereof, but the present invention is not limited thereto. Inorganic nano particles may include metal oxides commonly used in the art. Specifically, the inorganic nano particles may be Al 2 O 3 , SiO 2 or ZrO 2 . The inorganic nano particles may be directly manufactured, or may be a commercially available product in which the inorganic nano particles are dispersed in an organic solvent at a concentration of 10% to 80% by weight. The leveling agent may include one or more selected from the group consisting of a siloxane-based leveling agent, a fluorine-based leveling agent, and an acrylic leveling agent. When a leveling agent is included in the hard coating film composition, smoothness and coatability can be imparted during the formation of the coating film. Specifically, the leveling agent may be BYK-323, BYK-331, BYK-333, BYK-337, BYK-373, BYK-375, BYK-377, or BYK-378, which are all commercially available from BYK Chemie GmbH ; TEGO Glide 410, TEGO Glide 411, TEGO Glide 415, TEGO Glide 420, TEGO Glide 432, TEGO Glide 435, TEGO Glide 440, TEGO Glide 450, TEGO Glide 455, TEGO Rad 2100, TEGO Rad 2200N, TEGO Rad 2250, TEGO Rad 2300, TEGO Rad 2500, both of which are commercially available from Evonik TEGO Chemie GmbH; FC-4430, FC-4432, both of which are commercially available from 3M; and the like, but the present invention is not limited thereto. Leveling agents commonly used in this technology can be used. The stabilizer may include one selected from the group consisting of a hindered amine, phenyl salicylate, benzophenone, benzotriazole, a nickel derivative, a radical scavenger, a polyphenol, a phosphite, and a lactone stabilizer. One or more. The term "UV stabilizer" as used herein refers to an additive added for the purpose of protecting the adhesive by blocking or absorbing UV rays, because the cured surface of the coating film discolors and easily breaks due to decomposition caused by continuous UV rays exposure. . Based on the principle, UV stabilizers can be classified as absorbers, quenchers or hindered amine light stabilizers (HALS). In addition, based on chemical structure, UV stabilizers can be classified as phenylsalicylate (absorber), benzophenone (absorber), benzotriazole (absorber), nickel derivative (quenching agent), or free Based scavenger. However, the present invention is not particularly limited as long as the UV stabilizer does not significantly change the initial color of the adhesive. As heat stabilizers for commercially available products, polyphenols (main heat stabilizers) and phosphites and lactones (secondary heat stabilizers) can be used alone or in combination. UV stabilizers and thermal stabilizers can be used by appropriately adjusting their content to a level that does not affect the UV curing performance. <Image display device> The hard coating film according to the present invention may be a film of a flexible display. Specifically, the hard coating film can be used as a functional layer for a cover glass of a display (e.g., LCD, OLED, LED, FED, etc.), various mobile communication terminals, a touch panel for a smart phone or tablet using a display, electronic paper, etc. Or alternatives. The present invention provides an image display device including a hard coating film 100. In addition, the present invention provides a window of a flexible display device including a hard coating film. Hereinafter, the present invention will be described in more detail with reference to exemplary embodiments. However, the exemplary embodiments should be considered only descriptive, and the present invention is not limited thereto. Therefore, it should be understood that those skilled in the art can make various changes and modifications to the exemplary embodiments without departing from the scope of the present invention. In the following, unless otherwise stated, all "percentages" and "parts" indicating content are by weight. Preparation Examples 1 to 6 : Preparation of Compositions for Hard Coating Films Preparation Example 1 Commercially obtained 70 parts by weight of urethane acrylate (UA-122P, commercially available from Shin-Nakamura Chemical Co., Ltd. Obtained), 25 parts by weight of methyl ethyl ketone, 4.5 parts by weight of a photoinitiator (1-hydroxycyclohexyl-phenyl-one), and 0.5 parts by weight of a leveling agent (BYK-3570 from BYK Chemie GmbH Commercially available) Mix using a stirrer and filter using a filter made of polypropylene (PP) to prepare a hard coating composition. Here, the elastic modulus of the urethane acrylate is 2070 MPa, and the elongation at break is 58%. Preparation Example 2 70 parts by weight of urethane acrylate (UA-232P, commercially available from Shin-Nakamura Chemical Co., Ltd.), 25 parts by weight of methyl ethyl ketone, and 4.5 parts by weight of A photoinitiator (1-hydroxycyclohexyl-phenyl-one) and a leveling agent (BYK-3570, commercially available from BYK Chemie GmbH) in an amount of 0.5 parts by weight were mixed using a stirrer, and polypropylene (PP) was used. The manufactured filter was filtered to prepare a hard coating composition. Here, the elastic modulus of the urethane acrylate is 1,320 MPa, and the elongation at break is 135%. Preparation Example 3 70 parts by weight of urethane acrylate (UA-122P, commercially available from Shin-Nakamura Chemical Co., Ltd.), 25 parts by weight of methyl ethyl ketone, and 4.5 parts by weight of A photoinitiator (1-hydroxycyclohexyl-phenyl-one) and a leveling agent (BYK-3570, commercially available from BYK Chemie GmbH) in an amount of 0.5 parts by weight were mixed using a stirrer, and polypropylene (PP) was used. The manufactured filter was filtered to prepare a hard coating composition. Here, the elastic modulus of the urethane acrylate is 2570 MPa, and the elongation at break is 67%. Preparation Example 4 20 parts by weight of pentaerythritol triacrylate, 50 parts by weight of inorganic nanometer silica sol (40 nm of silicon dioxide at 40 nm and 60% of methyl ethyl ketone), and 25 parts by weight of methyl ethyl Ketone, 4.7 parts by weight of a photoinitiator (1-hydroxycyclohexyl-phenyl-one), and 0.3 parts by weight of a leveling agent (BYK-3570, commercially available from BYK Chemie GmbH) are mixed using a stirrer, and Filtration using a filter made of polypropylene (PP) to prepare a hard coating composition. The thus prepared hard coating composition was coated on glass and dried and cured, and then the Martens hardness and the compressive elastic modulus of the coating film were measured using a nanoindenter. As a result, the Martens hardness was 835 N / mm 2 and the compressive elastic modulus was 9120 MPa. Preparation Example 5 30 parts by weight of pentaerythritol triacrylate, 40 parts by weight of inorganic nanometer silica sol (40% of silicon dioxide and 60% of methyl ethyl ketone), and 25 parts by weight of methyl ethyl ketone , 4.7 parts by weight of a photoinitiator (1-hydroxycyclohexyl-phenyl-one), and 0.3 parts by weight of a leveling agent (BYK-3570, commercially available from BYK Chemie GmbH) are mixed using a stirrer, and the A filter made of polypropylene (PP) was filtered to prepare a hard coating composition. The thus prepared hard coating composition was coated on glass and dried and cured, and then the Martens hardness and the compressive elastic modulus of the coating film were measured using a nanoindenter. As a result, the Martens hardness was 785 N / mm 2 and the compressive elastic modulus was 8830 MPa. Preparation Example 6 15 parts by weight of pentaerythritol triacrylate, 15 parts by weight of tetrafunctional acrylate containing ethylene oxide (Miramer M4004, commercially available from Miwon Specialty Chemical Co., Ltd.), and 40 parts by weight Inorganic nano silica colloid (40% silica and 60% methyl ethyl ketone), 25 parts by weight of methyl ethyl ketone, and 4.7 parts by weight of a photoinitiator (1-hydroxycyclohexyl-phenyl- Ketone), and 0.3 parts by weight of a leveling agent (BYK-3570, commercially available from BYK Chemie GmbH) are mixed using a stirrer, and filtered using a filter made of polypropylene (PP) to prepare a hard coating composition . The thus prepared hard coating composition was coated on glass and dried and cured, and then the Martens hardness and the compressive elastic modulus of the coating film were measured using a nanoindenter. As a result, the Martens hardness was 399 N / mm 2 and the compressive elastic modulus was 4970 MPa. Examples 1 to 9 and Comparative Examples 1 to 5 : Production Example 1 of Hard Coating Film The method of preparing the hard coating composition prepared in Example 1 so that the thickness of the cured composition was 200 μm It was coated on one surface of a polyimide film having a thickness of 80 μm. After coating the film, the solvent was dried and irradiated with UV rays at an integrated light intensity of 500 mJ / cm 2 to cure the composition, thereby manufacturing a first hard coating layer. Next, the hard coating composition prepared in Preparation Example 4 was coated on the other surface of the polyimide film on which the hard coating composition prepared in Preparation Example 1 was applied so as to have 5 μm thickness. After coating the film, the solvent was dried and irradiated with UV rays at an integrated light intensity of 500 mJ / cm 2 to cure the composition, thereby manufacturing a second hard coating layer, thereby manufacturing a hard coating film. Example 2 A hard coating film was produced in the same manner as in Example 1 except that the hard coating composition prepared in Preparation Example 5 was used for the second hard coating layer. Example 3 A hard coating film was produced in the same manner as in Example 1 except that the hard coating composition prepared in Preparation Example 6 was used for the second hard coating layer. Example 4 A hard coating film was produced in the same manner as in Example 1 except that the hard coating composition prepared in Preparation Example 2 was used for the first hard coating layer. Example 5 A hard coating film was produced in the same manner as in Example 2 except that the hard coating composition prepared in Preparation Example 2 was used for the first hard coating layer. Example 6 A hard coating film was produced in the same manner as in Example 3, except that the hard coating composition prepared in Preparation Example 2 was used for the first hard coating layer. Example 7 A hard coating film was produced in the same manner as in Example 1 except that the hard coating composition prepared in Preparation Example 3 was used for the first hard coating layer. Example 8 A hard coating film was produced in the same manner as in Example 2 except that the hard coating composition prepared in Preparation Example 3 was used for the first hard coating layer. Example 9 A hard coating film was produced in the same manner as in Example 3 except that the hard coating composition prepared in Preparation Example 3 was used for the first hard coating layer. Comparative Example 1 except that the first hard coating composition prepared in Preparation Example 1 was not applied, and the second hard coating composition prepared in Preparation Example 4 was used so that the thickness of the cured composition was 5 μm Such a method was applied to one surface of the polyimide film, a hard coating film was produced in the same manner as in Example 1, and then the solvent was dried, and UV rays were irradiated at an integrated light intensity of 500 mJ / cm 2 , To cure the composition. Comparative Example 2 produced a hard coating film by coating the second hard coating composition prepared in Preparation Example 4 on a polymer having a thickness of 80 μm in such a manner that the thickness of the cured composition was 5 μm. On both surfaces of the sulfonimide film, the solvent was dried, and UV rays were irradiated at an integrated light intensity of 500 mJ / cm 2 to cure the composition. Comparative Example 3 was manufactured in the same manner as in Example 1, except that the first hard coating composition prepared in Preparation Example 1 was coated in such a manner that the thickness of the cured composition was 200 μm. A hard coating film is then dried, and the composition is cured by irradiating UV rays at an integrated light intensity of 500 mJ / cm 2 . In this case, the first hard coating layer faces the lower side, and the impact resistance and scratch resistance of the transparent substrate layer side are evaluated. Comparative Example 4 produced a hard coating film by coating the first hard coating composition prepared in Preparation Example 1 on a polymer having a thickness of 80 μm in such a manner that the thickness of the cured composition was 5 μm. On both surfaces of the sulfonimide film, the solvent was dried, and UV rays were irradiated at an integrated light intensity of 500 mJ / cm 2 to cure the composition. Comparative Example 5 was performed in the same manner as in Example 1 except that the second hard coating layer was coated on the first hard coating layer such that the thickness of the second hard coating composition after curing was 5 μm. Manufacture of hard coating film. Experimental Examples The properties of the hard coating films prepared in Examples 1 to 9 and Comparative Examples 1 to 5 were measured in the following manner, and the results are shown in Table 1. The measurement methods and evaluation methods used in the present invention are as follows. 1. Evaluation of bending resistance at room temperature The second hard coating layer was directed inward, and the hard coating film was folded in half to have a distance of 6 mm between its surfaces. Then, whether or not the folded portion was broken when the film was unfolded again was observed and confirmed with the naked eye, and the results are shown in Table 1 below. Good: No rupture at the folded portion. Unqualified: rupture at the folded portion. 2. The bending resistance under high temperature and high humidity will be in the following state (with the second hard coating facing inward and the hard coating film folded in half on its surface. Films with a distance of 6 mm between them were treated at 85 ° C and 85 RH% for 24 hours, and then the films were evaluated for abnormality. The results are shown in Table 1 below. Good: There are no abnormal failures at the folded portion: cracks at the folded portion or the entire surface 3. Impact resistance Use 50 μm optically clear adhesive (OCA) (elastic modulus 0.08 MPa) to place the opposite surface of the hard coating film, That is, the surface of the transparent substrate layer is adhered to the glass. Then, when the steel ball was dropped on the hard coating surface from a height of 50 cm, the maximum weight of the steel ball that did not damage the glass under the hard coating film was measured, and the results are shown in Table 1 below. 4. The indentation uses 50 μm optically clear adhesive (OCA) (elastic modulus 0.08 MPa) to adhere the opposite surface of the hard coating film, that is, the surface of the transparent substrate layer, to the glass. Then, when the 9H pencil was dropped on the hard-coated surface five times from a height of 5 cm, the presence or absence of dents caused by the pencil was observed, and the results are shown in Table 1 below. :: No dent was observed five times 〇: Dent was observed once △: Dent was observed three times X: Dent was observed five times 5. Scratch resistance Hard coating film was made using a 25 μm acrylic adhesive The opposite surface, that is, the transparent substrate layer, is adhered to the glass. Then use steel wool # 0000 to perform a scratch test on the surface of the hard coating under a load of 1 kg / cm 2 , in which the steel wool moves back and forth ten times. Then, the number of scratches was determined visually. ◎: 10 or less scratches 0: 20 or less scratches △: 30 or less scratches X: 30 or more scratches 6. Curl the hard coating film to a size of 10 cm × 10 cm And kept at 25 ℃ and 48 RH% for 24 hours. Then, the extent to which each edge was lifted from the bottom was evaluated, and the results are shown in Table 1 below. ◎: The average height of the four edges is 20 mm or less. 〇: The average height of the four edges is 50 mm or less. Δ: The average height of the four edges is more than 50 mm. X: The four edges are completely lifted. And therefore the film is rolled up in a cylindrical form [Table 1]
Figure TW201800507AD00001
Referring to Table 1, it can be seen that in Examples 1 to 9 according to the present invention, excellent bending resistance at room temperature, bending resistance at high temperature and humidity, impact resistance, dent resistance, and Scratch resistance and minimize the occurrence of curl. At the same time, it can be seen that Comparative Examples 1 and 2 exhibited a poor impact resistance of 5 g, and Comparative Examples 3 and 4 exhibited poor dent resistance and scratch resistance. At the same time, it can be seen that, in Comparative Example 5, by forming the second hard coating layer on the first hard coating layer, slight curling occurred.

100‧‧‧硬質塗膜
110‧‧‧透明基板層
120‧‧‧第一硬質塗層
130‧‧‧第二硬質塗層
100‧‧‧hard coating
110‧‧‧ transparent substrate layer
120‧‧‧The first hard coating
130‧‧‧second hard coating

圖1表示根據本發明之硬質塗膜。Fig. 1 shows a hard coating film according to the present invention.

100‧‧‧硬質塗膜 100‧‧‧hard coating

110‧‧‧透明基板層 110‧‧‧ transparent substrate layer

120‧‧‧第一硬質塗層 120‧‧‧The first hard coating

130‧‧‧第二硬質塗層 130‧‧‧second hard coating

Claims (9)

一種硬質塗膜,該硬質塗膜包含: 透明基板層; 第一硬質塗層,該第一硬質塗層形成於該透明基板層之一個表面上且由硬質塗佈組合物之固化產物形成,該硬質塗佈組合物包括彈性模數為10 MPa至3000 MPa且斷裂伸長率為30%至150%之高伸長率低聚物;以及 第二硬質塗層,該第二硬質塗層形成於該透明基板層之另一個表面上,且該第二硬質塗層之馬氏硬度為350 N/mm2 至1000 N/mm2 且壓縮彈性模數為4000 MPa至10000 MPa。A hard coating film comprising: a transparent substrate layer; a first hard coating layer, the first hard coating layer being formed on one surface of the transparent substrate layer and formed from a cured product of the hard coating composition, the The hard coating composition includes a high elongation oligomer having an elastic modulus of 10 MPa to 3000 MPa and an elongation at break of 30% to 150%; and a second hard coating layer formed on the transparent layer On the other surface of the substrate layer, the Martens hardness of the second hard coating layer is 350 N / mm 2 to 1000 N / mm 2 and the compressive elastic modulus is 4000 MPa to 10000 MPa. 如請求項1之硬質塗膜,其中,該硬質塗佈組合物亦包括可光聚合化合物、溶劑、光引發劑及添加劑中之一者或多者。The hard coating film according to claim 1, wherein the hard coating composition also includes one or more of a photopolymerizable compound, a solvent, a photoinitiator, and an additive. 如請求項1之硬質塗膜,其中,該高伸長率低聚物包括可光固化(甲基)丙烯酸酯低聚物。The hard coating film of claim 1, wherein the high elongation oligomer includes a photocurable (meth) acrylate oligomer. 如請求項3之硬質塗膜,其中,該可光固化(甲基)丙烯酸酯低聚物係選自由環氧(甲基)丙烯酸酯、胺基甲酸酯(甲基)丙烯酸酯、聚酯(甲基)丙烯酸酯及具有胺基甲酸酯基團及聚酯基團的(甲基)丙烯酸酯組成之群中之一者或多者。The hard coating film of claim 3, wherein the photocurable (meth) acrylate oligomer is selected from the group consisting of epoxy (meth) acrylate, urethane (meth) acrylate, polyester One or more of a group consisting of a (meth) acrylate and a (meth) acrylate having a urethane group and a polyester group. 如請求項1之硬質塗膜,其中,該第一硬質塗層之厚度為50 μm 至300 μm。The hard coating film of claim 1, wherein the thickness of the first hard coating layer is 50 μm to 300 μm. 如請求項1之硬質塗膜,其中,該第二硬質塗層之厚度為1 μm 至20 μm。The hard coating film of claim 1, wherein the thickness of the second hard coating is 1 μm to 20 μm. 如請求項1之硬質塗膜,其中,相對於100重量%之全部之硬質塗佈組合物,該硬質塗佈組合物包括1重量%至90重量%之該高伸長率低聚物。The hard coating film according to claim 1, wherein the hard coating composition includes the high elongation oligomer in an amount of 1 to 90% by weight based on 100% by weight of the entire hard coating composition. 一種視窗,其包含如請求項1至7中任一項之硬質塗膜。A window including a hard coating film according to any one of claims 1 to 7. 一種圖像顯示裝置,其包含如請求項8之視窗。An image display device includes a window as claimed in claim 8.
TW106106961A 2016-03-04 2017-03-03 Hard coating film TW201800507A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
??10-2016-0026372 2016-03-04
KR20160026372 2016-03-04
KR1020170023025A KR20170103644A (en) 2016-03-04 2017-02-21 Hard coating film
??10-2017-0023025 2017-02-21

Publications (1)

Publication Number Publication Date
TW201800507A true TW201800507A (en) 2018-01-01

Family

ID=59967904

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106106961A TW201800507A (en) 2016-03-04 2017-03-03 Hard coating film

Country Status (2)

Country Link
KR (2) KR20170103644A (en)
TW (1) TW201800507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795919A (en) * 2019-07-30 2021-12-14 积水保力马科技株式会社 Electronic substrate and photocurable composition
TWI808307B (en) * 2019-02-28 2023-07-11 日商積水保力馬科技股份有限公司 Electronic substrate and photocurable composition

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212544A1 (en) * 2017-05-19 2018-11-22 동우화인켐 주식회사 Hard coating film and image display apparatus comprising same
KR102612459B1 (en) * 2017-10-27 2023-12-08 어플라이드 머티어리얼스, 인코포레이티드 Flexible cover lens membranes
JP7438110B2 (en) 2017-12-08 2024-02-26 スリーエム イノベイティブ プロパティズ カンパニー flexible hard coat
EP3759190A1 (en) 2018-02-28 2021-01-06 3M Innovative Properties Company Adhesives comprising polymerized units of secondary hexyl (meth)acrylates
JP7281481B2 (en) * 2018-11-27 2023-05-25 富士フイルム株式会社 HARD COAT FILM, ARTICLE INCLUDED WITH HARD COAT FILM, AND IMAGE DISPLAY DEVICE
JP6697603B1 (en) * 2019-03-27 2020-05-20 グンゼ株式会社 Cover film
US11827811B2 (en) 2019-05-09 2023-11-28 3M Innovative Properties Company Flexible hardcoat
US11827802B2 (en) 2019-05-09 2023-11-28 3M Innovative Properties Company Flexible hardcoat
CN114072468A (en) 2019-05-09 2022-02-18 3M创新有限公司 Flexible hard coating
JP7404406B2 (en) 2019-06-26 2023-12-25 アプライド マテリアルズ インコーポレイテッド Flexible multilayer cover lens laminate for foldable display
CN113930179A (en) * 2020-06-29 2022-01-14 华为技术有限公司 Protection film, flexible screen module and electronic equipment of flexible screen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101415838B1 (en) 2012-08-23 2014-07-09 주식회사 엘지화학 Composition for hard coating
KR101415839B1 (en) 2012-08-23 2014-07-09 주식회사 엘지화학 Hard coating film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808307B (en) * 2019-02-28 2023-07-11 日商積水保力馬科技股份有限公司 Electronic substrate and photocurable composition
CN113795919A (en) * 2019-07-30 2021-12-14 积水保力马科技株式会社 Electronic substrate and photocurable composition
CN113795919B (en) * 2019-07-30 2023-03-31 积水保力马科技株式会社 Electronic substrate and photocurable composition

Also Published As

Publication number Publication date
KR20200008007A (en) 2020-01-22
KR20170103644A (en) 2017-09-13

Similar Documents

Publication Publication Date Title
TW201800507A (en) Hard coating film
US20170253707A1 (en) Hard Coating Film
KR102556906B1 (en) Hard coating film and image display device using the same
JP6987574B2 (en) Hard coating film and image display device equipped with it
TW201726387A (en) Laminate film and display device comprising the same
US20170253706A1 (en) Hard Coating Film
TW201742882A (en) Hard coating film and flexible display having the same
TWI696671B (en) Compositon for hard coating, optical film and display device using the same
JP2018059062A (en) Hard coating composition and hard coating film prepared therewith
JP2017206699A (en) Hard coating composition and hard coating film using the same
JP2017165953A (en) Hard coat composition
TW201708450A (en) Hard coating film and polarizing plate and image display device comprising the same having both excellent hardness and softness characteristics for protecting the polarizing plate
JP6155346B2 (en) Coating composition
TW201807108A (en) Hard coating composition, hard coating film, window film and display device comprising the same
KR20200008648A (en) Hard coating film
TW201807109A (en) Hard coating composition, and hard coating film, window film and display device comprising the same
TWI510531B (en) Plastic film
KR102031660B1 (en) Hard Coating Composition and Hard Coating Film Using the Same
TWI796288B (en) Hard coating film and image display device using the same
TW201800506A (en) Hard coating composition
KR102336271B1 (en) Composition for forming hard coating and optical film using the same