TW201739280A - Method of PUCCH resource allocation and user equipment - Google Patents

Method of PUCCH resource allocation and user equipment Download PDF

Info

Publication number
TW201739280A
TW201739280A TW106111064A TW106111064A TW201739280A TW 201739280 A TW201739280 A TW 201739280A TW 106111064 A TW106111064 A TW 106111064A TW 106111064 A TW106111064 A TW 106111064A TW 201739280 A TW201739280 A TW 201739280A
Authority
TW
Taiwan
Prior art keywords
uplink control
control channel
physical
physical uplink
pucch
Prior art date
Application number
TW106111064A
Other languages
Chinese (zh)
Other versions
TWI642313B (en
Inventor
李建樟
楊維東
陳柏熹
Original Assignee
聯發科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/474,299 external-priority patent/US20170245263A1/en
Application filed by 聯發科技股份有限公司 filed Critical 聯發科技股份有限公司
Publication of TW201739280A publication Critical patent/TW201739280A/en
Application granted granted Critical
Publication of TWI642313B publication Critical patent/TWI642313B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method of physical uplink control channel (PUCCH) resource allocation to increase multiplexing capacity in enhanced licensed assisted access (eLAA) is proposed. New design of Physical Uplink Control Channel (PUCCH) is proposed. Across frequency domain of the channel bandwidth, multiple resource block repetitions are allocated for different UEs for uplink PUCCH transmission to satisfy the occupied channel bandwidth requirement for unlicensed carrier access. In addition, the resource elements of a single PUCCH resource block are partially spread into different repetitions to increase multiplexing capacity and to reduce peak to average power ratio (PAPR).

Description

eLAA中的PUCCH資源分配以及峰值平均功率比降低 PUCCH resource allocation and peak-to-average power ratio reduction in eLAA 【交叉引用】【cross reference】

本申請是2017年2月3日遞交的,發明名稱為「Peak to Average Power Ratio Reduction in eLAA」的美國非臨時申請案15/423,999的部份延續案,根據35 U.S.C.§120要求其優先權,且將上述申請作為參考。而申請案15/423,999根據35 U.S.C.§119要求2016年2月5日遞交的,發明名稱為「The Method of PAPR Reduction in eLAA」的美國臨時申請案62/291,585的優先權;要求2016年2月17日遞交的,發明名稱為「The Method of PAPR Reduction in eLAA」的美國臨時申請案62/296,148的優先權,且將上述申請作為參考。本申請案另根據35 U.S.C.§119要求2016年4月1日遞交的,發明名稱為「Resource Allocation of PUCCH in Unlicensed Carrier」的美國臨時申請案62/316,611的優先權,且將上述申請作為參考。 This application is a continuation of the US non-provisional application 15/423,999, filed on February 3, 2017, entitled "Peak to Average Power Ratio Reduction in eLAA", which is claimed in accordance with 35 USC §120. The above application is hereby incorporated by reference. Application No. 15/423,999, the priority of US Provisional Application No. 62/291,585, entitled "The Method of PAPR Reduction in eLAA", filed on February 5, 2016, in accordance with 35 USC §119; The priority of U.S. Provisional Application Serial No. 62/296,148, entitled,,,,,,,,,,,,, The present application claims priority to U.S. Provisional Application Serial No. 62/316,611, the entire disclosure of which is assigned to the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all

本發明係相關於無線網路通訊,尤指一種授權輔助存取(Licensed Assisted Access,LAA)無線通訊系統中的峰值物理上行鏈路控制通道(Physical Uplink Control Channel,PUCCH)資源分配以及峰值平均功率比(Average Power Ratio,PAPR)降低。 The invention relates to wireless network communication, in particular to a peak physical uplink control channel (Physical Uplink Control) in a licensed auxiliary access (LAA) wireless communication system. Channel, PUCCH) resource allocation and peak power ratio (PAPR) are reduced.

第三代行動通訊合作夥伴項目(Third generation partnership project,3GPP)和長期演進(Long Term Evolution,LTE)行動电訊系統可提供高資料速率、較低延遲以及改進的系統性能。隨著物聯網(Internet of Things,IOT)以及其他新型用戶設備(User Equipment,UE)的快速發展,支援機器通訊的需求呈指數級增長。為了滿足這種指數級增長的通訊需求,需要額外頻譜(即無線電頻譜)。授權頻譜的數量是有限的,因此,通訊提供商需要指望未授權頻譜來滿足通訊需求的指數級增長。一種推薦方案是採用授權頻譜和未授權頻譜的組合,這種方案被稱為「授權輔助存取」或「LAA」。在這種方案中,諸如LTE的已建立通訊協議可用於授權頻譜以提供第一通訊鏈路,LTE也可用於未授權頻譜以提供第二通訊鏈路。 The Third Generation Partnership Project (3GPP) and the Long Term Evolution (LTE) mobile telecommunications system provide high data rates, low latency, and improved system performance. With the rapid development of the Internet of Things (IOT) and other new User Equipment (UE), the demand for supporting machine communication has grown exponentially. In order to meet this exponentially growing communication demand, additional spectrum (ie radio spectrum) is required. The number of licensed spectrum is limited, so communication providers need to count on unlicensed spectrum to meet exponential growth in communication demand. One recommended solution is to use a combination of licensed spectrum and unlicensed spectrum. This scheme is called "authorized access" or "LAA". In such an approach, an established communication protocol such as LTE can be used to authorize the spectrum to provide the first communication link, and LTE can also be used for the unlicensed spectrum to provide the second communication link.

此外,LAA僅利用未授權頻譜通過載波聚合(Carrier Aggregation,CA)進程來增強下行鏈路(downlink,DL),而增強LAA(enhanced LAA,eLAA)允許上行鏈路(uplink,UL)流(stream)也同樣利用5GHz未授權頻帶。儘管eLAA理論上簡單,但實際應用起來并遵守有關於未授權頻譜使用的各政府規章并不那麼簡單。此外,在次(secondary)未授權鏈路上維持可靠通訊需要技術改進。 In addition, the LAA uses only the unlicensed spectrum to enhance the downlink (DL) through the Carrier Aggregation (CA) process, while the enhanced LAA (eLAA) allows the uplink (UL) stream (stream). ) The 5 GHz unlicensed band is also utilized. Although eLAA is theoretically simple, it is not so simple to actually apply and comply with government regulations regarding the use of unlicensed spectrum. In addition, maintaining technical reliability on secondary unlicensed links requires technical improvements.

在3GPP LTE網路中,演進通用陸地無線電存取網路(Evolved Universal Terrestrial Radio Access Network, E-UTRAN)包括多個基地台(如演進節點B(evolved Node-B,eNB)),與多個行動站台(可被稱為UE)通訊。正交頻分多址(Orthogonal Frequency Division Multiple Access,OFDMA)具有對多路徑衰落(multipath fading)的穩健性(robustness)、較高的頻譜效率以及頻寬適應性(bandwidth scalability),因此已被選擇用於LTE DL無線電存取方案。通過將系統頻寬的不同子帶(即子載波組,可被稱為資源塊(Resource Block,RB))基於各使用者的現有通道狀況分配給各使用者,DL中的多址得以實現。在LTE網路中,物理下行鏈路控制通道(Physical Downlink Control Channel,PDCCH)用於DL調度(scheduling)。物理下行鏈路共享通道(Physical Downlink Shared Channel,PDSCH)用於DL資料。類似地,物理上行鏈路控制通道(Physical Uplink Control Channel,PUCCH)用於承載UL控制資訊。物理上行鏈路共享通道(Physical Uplink Shared Channel,PUSCH)用於UL資料。 In the 3GPP LTE network, the Evolved Universal Terrestrial Radio Access Network (Evolved Universal Terrestrial Radio Access Network, E-UTRAN) includes a plurality of base stations (e.g., evolved Node-Bs (eNBs)) that communicate with a plurality of mobile stations (which may be referred to as UEs). Orthogonal Frequency Division Multiple Access (OFDMA) has been chosen for multipath fading robustness, high spectral efficiency, and bandwidth scalability. Used in LTE DL radio access solutions. Multiple access in the DL is achieved by assigning different subbands of the system bandwidth (i.e., subcarrier groups, referred to as Resource Blocks (RBs)) to each user based on the existing channel conditions of each user. In an LTE network, a Physical Downlink Control Channel (PDCCH) is used for DL scheduling. The Physical Downlink Shared Channel (PDSCH) is used for DL data. Similarly, a Physical Uplink Control Channel (PUCCH) is used to carry UL control information. The Physical Uplink Shared Channel (PUSCH) is used for UL data.

一些國家對未授權載波存取所佔據的通道頻寬有要求。具體來說,所佔據的通道頻寬應為所聲明(declared)標稱(nominal)通道頻寬的80%到100%之間。在已建立的通訊期間,裝置被允許暫時操作在一模式中,在該模式中其所佔據的通道頻寬可降低至標稱通道頻寬的40%以及最小值為4MHz。所佔據的頻寬被定義為包含訊號的99%功率的頻寬。標稱通道頻寬是分配給單個載波的包含保護頻帶(guard band)的頻率的最寬頻帶(至少5MHz)。 Some countries have requirements for the channel bandwidth occupied by unlicensed carrier access. Specifically, the occupied channel bandwidth should be between 80% and 100% of the declared nominal channel bandwidth. During the established communication, the device is allowed to temporarily operate in a mode in which the channel bandwidth it occupies can be reduced to 40% of the nominal channel bandwidth and the minimum value is 4 MHz. The occupied bandwidth is defined as the bandwidth including the 99% power of the signal. The nominal channel bandwidth is the widest band (at least 5 MHz) of the frequency of the guard band allocated to a single carrier.

因此,尋求一種PUSCH/PUCCH的設計,以滿足 eLAA無線通訊網路中對所佔據通道頻寬的要求。 Therefore, a PUSCH/PUCCH design is sought to meet The bandwidth requirements of the occupied channel in the eLAA wireless communication network.

本發明提供一種UL傳送方法,以降低eLAA中的PAPR。提出一種PUCCH和PUSCH的新型設計。在通道頻寬的頻域上,為不同的UE分配多個資源交錯進行UL PUCCH/PUSCH傳送,以滿足未授權載波存取對所佔據通道頻寬的要求。此外,採用具有共相位項的UL傳送,以降低所得到波形的PAPR。 The present invention provides a UL transmission method to reduce PAPR in eLAA. A new design of PUCCH and PUSCH is proposed. In the frequency domain of the channel bandwidth, multiple resource allocations are allocated for different UEs to perform UL PUCCH/PUSCH transmission to meet the requirements of the occupied channel bandwidth for the unlicensed carrier access. In addition, UL transmission with co-phase terms is employed to reduce the PAPR of the resulting waveform.

在一實施例中,UE在OFDM無線通訊網路中獲取一組資源塊用於UL通道,該組資源塊在頻域上分佈,以佔據整個通道頻寬的預定比例。UE採用包含一組共相位項的共相位矢量,其中共相位矢量的每個共相位項應用於該組資源塊中的相應的資源塊上。UE在採用共相位矢量的UL通道上發送包含UL資訊的無線電訊號。 In an embodiment, the UE acquires a set of resource blocks for use in the UL channel in the OFDM wireless communication network, the set of resource blocks being distributed over the frequency domain to occupy a predetermined proportion of the entire channel bandwidth. The UE employs a co-phase vector comprising a set of co-phase terms, wherein each co-phase term of the co-phase vector is applied to a corresponding one of the set of resource blocks. The UE transmits a radio signal containing UL information on the UL channel using the coherent vector.

在另一實施例中,基地台在OFDM無線通訊網路中分配第一組資源塊給第一UE。基地台分配第二組資源塊給第二UE。第一組資源塊和第二組資源塊包含在頻域上形成交錯的交織的PRB,且每個交錯佔據整個通道頻寬的預定比例。基地台同时调度第一UE和第二UE,以用於分别在第一组资源块和第二组资源块上进行的UL传送。 In another embodiment, the base station allocates a first set of resource blocks to the first UE in the OFDM wireless communication network. The base station allocates a second set of resource blocks to the second UE. The first set of resource blocks and the second set of resource blocks comprise PRBs that form interleaved interlaces in the frequency domain, and each interlace occupies a predetermined proportion of the entire channel bandwidth. The base station simultaneously schedules the first UE and the second UE for UL transmissions on the first set of resource blocks and the second set of resource blocks, respectively.

在另一新穎性方面,本發明提供一種PUCCH資源分配方法,以提高eLAA中的複用能力。提出一種PUCCH的新型設計。在通道頻寬的頻域上,多個資源塊重複被分配給不同的UE進行UL PUCCH傳送,以滿足未授權載波存取對所 佔據通道頻寬的要求。此外,單個PUCCH資源塊的資源元素被部分地擴頻,形成不同的重複,以提高複用能力,并資源PAPR。 In another novel aspect, the present invention provides a PUCCH resource allocation method to improve multiplexing capability in an eLAA. A new design of PUCCH is proposed. In the frequency domain of the channel bandwidth, multiple resource blocks are repeatedly allocated to different UEs for UL PUCCH transmission to satisfy the unlicensed carrier access pair. Occupy the channel bandwidth requirements. In addition, resource elements of a single PUCCH resource block are partially spread to form different repetitions to improve multiplexing capability and resource PAPR.

以下段落將描述其他實施例和優勢。本部份內容並無意圖限制本發明,本發明的範圍以申請專利範圍所界定者為準。 Other embodiments and advantages will be described in the following paragraphs. This section is not intended to limit the invention, and the scope of the invention is defined by the scope of the claims.

100、200‧‧‧無線通訊系統 100, 200‧‧‧ wireless communication system

101‧‧‧eNB 101‧‧‧eNB

102-104‧‧‧UE 102-104‧‧‧UE

120、130‧‧‧PUCCH 120, 130‧‧‧PUCCH

201、211‧‧‧無線裝置 201, 211‧‧‧ wireless devices

202、212‧‧‧記憶體 202, 212‧‧‧ memory

203、213‧‧‧處理器 203, 213‧‧‧ processor

204‧‧‧調度器 204‧‧‧ Scheduler

205‧‧‧編碼器 205‧‧‧Encoder

206、216‧‧‧RF收發機 206, 216‧‧‧RF transceiver

207、208、217、218‧‧‧天線 207, 208, 217, 218‧‧ antenna

209、219‧‧‧OFDM/OFDMA模組 209, 219‧‧‧OFDM/OFDMA modules

210、220‧‧‧程式指令和資料 210, 220‧‧‧ Program instructions and information

214‧‧‧分割電路 214‧‧‧Split circuit

215‧‧‧解碼器 215‧‧‧Decoder

221、231‧‧‧配置電路 221, 231‧‧‧ configuration circuit

232‧‧‧資源分佈電路 232‧‧‧Resource distribution circuit

710、810‧‧‧上方圖 710, 810‧‧‧ above picture

720、820‧‧‧下方圖 720, 820‧‧‧ below

1000、1300‧‧‧表 1000, 1300‧‧‧

1101-1103、1201-1203、1701-1704、1801-1804‧‧‧步驟 Steps 1101-1103, 1201-1203, 1701-1704, 1801-1804‧‧

第1圖是根據一新穎性方面的具有修改後PUCCH/PUSCH設計和PAPR降低的無線通訊系統的示意圖。 1 is a schematic diagram of a wireless communication system with modified PUCCH/PUSCH design and PAPR reduction in accordance with a novel aspect.

第2圖是根據一新穎性方面的無線發送裝置和接收裝置的簡化方塊示意圖。 2 is a simplified block diagram of a wireless transmitting device and receiving device in accordance with a novel aspect.

第3圖是PUCCH設計的一示範例的示意圖,其可滿足所佔據通道頻寬的要求。 Figure 3 is a schematic diagram of an exemplary PUCCH design that satisfies the requirements of the occupied channel bandwidth.

第4圖是PUCCH格式4的PUCCH設計的一示範例的示意圖,其可滿足所佔據通道頻寬的要求。 Figure 4 is a schematic diagram of an exemplary PUCCH design of PUCCH format 4 that satisfies the requirements of the occupied channel bandwidth.

第5圖是PUCCH格式4的PUCCH設計的另一示範例的示意圖,其可滿足所佔據通道頻寬的要求。 Figure 5 is a schematic diagram of another exemplary PUCCH design of PUCCH format 4 that satisfies the requirements of the occupied channel bandwidth.

第6圖是交錯PUSCH設計的一示範例的示意圖,其可滿足所佔據通道頻寬的要求。 Figure 6 is a schematic diagram of an exemplary interleaved PUSCH design that satisfies the requirements of the occupied channel bandwidth.

第7圖是處理阻礙問題的UL調度的一實施例的示意圖。 Figure 7 is a schematic diagram of an embodiment of a UL scheduling that deals with hindering problems.

第8圖是具有SRS傳送的UL調度的一實施例的示意圖。 Figure 8 is a schematic diagram of an embodiment of UL scheduling with SRS transmission.

第9圖是PUCCH或PUSCH上的UL傳送採用共相位矢量以降低PAPR的一實施例的示意圖。 Figure 9 is a schematic diagram of an embodiment of UL transmission on PUCCH or PUSCH employing a co-phase vector to reduce PAPR.

第10圖是採用DRMS係數的共相位矢量的一示範例的示意圖。 Fig. 10 is a diagram showing an example of a common phase vector using DRMS coefficients.

第11圖是根據一新穎性方面的可降低PAPR的PUCCH/PUSCH上的UL傳送方法的流程圖。 11 is a flow diagram of a UL transmission method on a PUCCH/PUSCH that can reduce PAPR according to a novel aspect.

第12圖是根據一新穎性方面的從基地台的角度的PUCCH/PUSCH的UL調度方法流程圖。 Figure 12 is a flow chart of a UL scheduling method for PUCCH/PUSCH from the perspective of a base station in accordance with a novel aspect.

第13圖是PUCCH格式1/1a/1b/2/2a/2b/3/4/5的複用能力的示意圖。 Figure 13 is a diagram showing the multiplexing capability of the PUCCH format 1/1a/1b/2/2a/2b/3/4/5.

第14圖是根據一新穎性方面的一個RB的部份RE進行PUCCH擴頻的一示範例的示意圖。 Figure 14 is a diagram showing an exemplary PUCCH spread spectrum of a partial RE of an RB according to a novel aspect.

第15圖是根據一新穎性方面的多個RB的部份RE進行PUCCH塊擴頻的一示範例的示意圖。 Figure 15 is a diagram showing an exemplary PUCCH block spreading according to a partial RE of a plurality of RBs according to a novel aspect.

第16圖是根據一新穎性方面的多個RB的部份RE進行PUCCH分佈擴頻的一示範例的示意圖。 Figure 16 is a diagram showing an exemplary PUCCH distribution spreading according to a partial RE of a plurality of RBs according to a novel aspect.

第17圖是根據一新穎性方面的從UE角度的採用部份RE擴頻的PUCCH資源分配方法的流程圖。 Figure 17 is a flow diagram of a PUCCH resource allocation method employing partial RE spreading from a UE perspective in accordance with a novel aspect.

第18圖是根據一新穎性方面的從eNB角度的採用部份RE擴頻的PUCCH資源分配方法的流程圖。 Figure 18 is a flow diagram of a PUCCH resource allocation method employing partial RE spreading from the perspective of an eNB in accordance with a novel aspect.

以下將詳述本發明的一些實施例,其中某些示範例通過附圖描述。 Some embodiments of the invention are described in detail below, some of which are illustrated by the accompanying drawings.

第1圖是根據一新穎性方面的具有PUCCH/PUSCH設計和PAPR降低的無線通訊系統的示意圖。行動通訊網路100為正交頻分複用(Orthogonal Frequency Division Multiplexing,OFDM)/OFDMA系統,包含一基地台eNB 101以及多個用戶設備UE 102、UE 103和UE 104。在基於OFDMA DL的3GPP LTE系統中,無線電資源在時域上被劃分成子訊框(subframe),每個子訊框包含兩個時隙(slot)。基於系統頻寬,每個OFDMA符號在頻域上進一步由多個OFDMA子載波組成。資源柵格(resource grid)的基礎單元被稱為資源元素(Resource Element,RE),其跨越(span)一個OFDMA符號上的一個OFDMA子載波。RE可組成物理資源塊(Physical Resource Block,PRB),其中每個PRB由一個時隙中的12個連續子載波組成。 1 is a schematic diagram of a wireless communication system with PUCCH/PUSCH design and PAPR reduction in accordance with a novel aspect. Mobile communication network 100 is Orthogonal Frequency Division Multiplexing (Orthogonal Frequency A Division Multiplexing, OFDM)/OFDMA system comprising a base station eNB 101 and a plurality of user equipments UE 102, UE 103 and UE 104. In an OFDMA DL-based 3GPP LTE system, radio resources are divided into sub-frames in the time domain, and each sub-frame contains two slots. Based on the system bandwidth, each OFDMA symbol is further composed of a plurality of OFDMA subcarriers in the frequency domain. The base unit of the resource grid is called a Resource Element (RE), which spans one OFDMA subcarrier on one OFDMA symbol. The REs may constitute a Physical Resource Block (PRB), where each PRB consists of 12 consecutive subcarriers in one slot.

當存在DL封包要從eNB發送給UE時,每個UE獲取DL分配,如PDSCH中的一組無線電資源。當UE需要在UL發送封包給eNB時,UE從eNB獲得分配PUSCH的許可(grant),其中PUSCH由一組UL無線電資源組成。UE從特定用於(targeted specifically)該UE的PDCCH中獲得DL或UL調度資訊。此外,廣播控制資訊也在PDCCH中發送給蜂巢細胞(cell)中的所有UE。由PDCCH承載的DL或UL調度資訊以及廣播控制資訊被稱為下行鏈路控制資訊(Downlink Control Information,DCI)。在UE具有資料或RRC信令時,包含HARQ ACK/NACK、CQI、MIMO反饋、調度請求的上行鏈路控制資訊(Uplink Control Information,UCI)由PUCCH或PUSCH承載。 When there is a DL packet to be transmitted from the eNB to the UE, each UE acquires a DL allocation, such as a group of radio resources in the PDSCH. When the UE needs to transmit a packet to the eNB at the UL, the UE obtains a grant for allocating a PUSCH from the eNB, where the PUSCH is composed of a set of UL radio resources. The UE obtains DL or UL scheduling information from a PDCCH that is specifically targeted to the UE. In addition, the broadcast control information is also transmitted to all UEs in the cell in the PDCCH. The DL or UL scheduling information carried by the PDCCH and the broadcast control information are referred to as Downlink Control Information (DCI). When the UE has data or RRC signaling, the uplink control information (UCI) including the HARQ ACK/NACK, the CQI, the MIMO feedback, and the scheduling request is carried by the PUCCH or the PUSCH.

LAA已被提出以滿足通訊需求的指數級增長。在LAA中,采用授權頻譜和未授權頻譜的組合。諸如LTE的已 建立通訊協議可用於授權頻譜以提供第一通訊鏈路,LTE也可用於未授權頻譜以提供第二通訊鏈路。此外,LAA僅採用未授權頻譜通過CA進程來增強DL,而eLAA允許UL流也同樣利用5GHz未授權頻帶。但是,一些國家對未授權載波存取所佔據的通道頻寬有要求。具體來說,所佔據通道頻寬應為所聲明標稱通道頻寬的80%到100%之間。如此一來,LTE中的既有PUCCH和PUSCH設計可能無法滿足此類要求。 LAA has been proposed to meet exponential growth in communication needs. In the LAA, a combination of licensed spectrum and unlicensed spectrum is employed. Such as LTE Establishing a communication protocol can be used to authorize the spectrum to provide a first communication link, and LTE can also be used for an unlicensed spectrum to provide a second communication link. In addition, the LAA only uses the unlicensed spectrum to enhance the DL through the CA process, while the eLAA allows the UL stream to also utilize the 5 GHz unlicensed band. However, some countries have requirements for the channel bandwidth occupied by unlicensed carrier access. Specifically, the occupied channel bandwidth should be between 80% and 100% of the nominal channel bandwidth stated. As a result, existing PUCCH and PUSCH designs in LTE may not meet such requirements.

在第1圖所示的示範例中,PUCCH 120被分配給UE 102以用於UL控制資訊。PUCCH 120的無線電資源需在頻域上進行擴頻(spread),以滿足對所佔據通道頻寬的要求。PUCCH 130被分配給UE 103以用於UL控制資訊。PUCCH 130的無線電資源也需在頻域上進行擴頻,以滿足對所佔據通道頻寬的要求。PUCCH 120和PUCCH 130形成跨越整個頻域的不同資源交錯(interlace)。類似地,對於PUSCH來說,若eNB 101在一子訊框中調度多個UE,則其可能無法確保每個UE的傳送都滿足所佔據頻寬要求。用於每個UE的PUSCH的無線電資源因此需要在頻域上進行擴頻。舉例來說,具有交織的(interleaved)PRB的標稱通道頻寬上的多個資源交錯可作為PUSCH分配給多個UE。 In the example shown in Figure 1, PUCCH 120 is assigned to UE 102 for UL control information. The radio resources of the PUCCH 120 need to be spread in the frequency domain to meet the bandwidth requirements of the occupied channels. The PUCCH 130 is assigned to the UE 103 for UL control information. The radio resources of the PUCCH 130 also need to be spread in the frequency domain to meet the bandwidth requirements of the occupied channels. PUCCH 120 and PUCCH 130 form different resource interlaces across the entire frequency domain. Similarly, for PUSCH, if the eNB 101 schedules multiple UEs in a subframe, it may not be able to ensure that each UE's transmissions meet the occupied bandwidth requirements. The radio resources for the PUSCH of each UE therefore need to be spread over the frequency domain. For example, multiple resource interlaces on a nominal channel bandwidth with interleaved PRBs may be allocated to multiple UEs as PUSCHs.

由於很多子載波分量通過逆快速傅里葉變換(Inverse Fast Fourier Transformation,IFFT)操作被添加,OFDM系統中的發送訊號可在時域具有較高的峰值。如此一來,與單載波系統相比,OFDM系統會具有較高的PAPR。此外,LAA中對所佔據通道頻寬的要求甚至會導致更高的 PAPR,因為既有PUCCH和PUSCH在整個頻域的資源交錯中被複製。根據一新穎性方面,共相位矢量(co-phasing vector)用於不同PRB上的複製品(replicate),以降低PAPR。 Since many subcarrier components are added by Inverse Fast Fourier Transformation (IFFT) operation, the transmitted signal in the OFDM system can have a higher peak in the time domain. As a result, the OFDM system will have a higher PAPR than a single carrier system. In addition, the LAA requirements for the occupied channel bandwidth may even lead to higher PAPR, because both PUCCH and PUSCH are replicated in resource interleaving throughout the frequency domain. According to a novel aspect, a co-phasing vector is used for replicas on different PRBs to reduce PAPR.

第2圖是根據一新穎性方面的無線裝置201和211的簡化方塊示意圖。對於無線裝置201(如傳送裝置)來說,天線207和208發送并接收無線電訊號。RF收發機模組206耦接到天線,從天線接收RF訊號,將其轉換為基頻訊號並發送給處理器203。RF收發機206也將從處理器接收的基頻訊號轉換為RF訊號,並將RF訊號發送給天線207和208。處理器203處理接收到的基頻訊號,並調用不同的功能模組和電路,以實施無線裝置201中的功能。記憶體202存儲程式指令和資料210,以控制裝置201的運作。 2 is a simplified block diagram of wireless devices 201 and 211 in accordance with a novel aspect. For wireless device 201 (e.g., a transmitting device), antennas 207 and 208 transmit and receive radio signals. The RF transceiver module 206 is coupled to the antenna, receives the RF signal from the antenna, converts it to a baseband signal, and transmits it to the processor 203. The RF transceiver 206 also converts the baseband signal received from the processor to an RF signal and transmits the RF signal to the antennas 207 and 208. The processor 203 processes the received baseband signals and invokes different functional modules and circuits to implement the functions in the wireless device 201. The memory 202 stores program instructions and data 210 to control the operation of the device 201.

類似地,對於無線裝置211(如接收裝置)來說,天線217和218發送并接收無線電訊號。RF收發機模組216耦接到天線,從天線接收RF訊號,將其轉換為基頻訊號並發送給處理器213。RF收發機216也將從處理器接收的基頻訊號轉換為RF訊號,並將RF訊號發送給天線217和218。處理器213處理接收到的基頻訊號,並調用不同的功能模組和電路,以實施無線裝置211中的功能。記憶體212存儲程式指令和資料220,以控制無線裝置211的運作。 Similarly, for wireless device 211 (e.g., receiving device), antennas 217 and 218 transmit and receive radio signals. The RF transceiver module 216 is coupled to the antenna, receives the RF signal from the antenna, converts it to a baseband signal, and transmits it to the processor 213. The RF transceiver 216 also converts the baseband signal received from the processor to an RF signal and transmits the RF signal to the antennas 217 and 218. The processor 213 processes the received baseband signals and invokes different functional modules and circuits to implement the functions in the wireless device 211. The memory 212 stores program instructions and data 220 to control the operation of the wireless device 211.

無線裝置201和211也包含一些功能模組和電路,這些功能模組和電路可被實施和配置以執行本發明的實施例。在第2圖所示的示範例中,無線裝置201為傳送裝置,包含編碼器205、調度器204、OFDMA模組209以及配置電路 221。無線裝置211為接收裝置,包含解碼器215、反饋電路214、OFDMA模組219以及配置電路231。請注意,一無線裝置既可以是傳送裝置也可以是接收裝置。不同的功能模組和電路可通過軟體、韌體、硬體和任何組合實施和配置。當被處理器203和213執行時(如通過執行程式碼210和220),功能模組和電路允許傳送裝置201和接收裝置211執行本發明的實施例。 Wireless devices 201 and 211 also include functional modules and circuits that can be implemented and configured to perform embodiments of the present invention. In the example shown in FIG. 2, the wireless device 201 is a transmitting device, including an encoder 205, a scheduler 204, an OFDMA module 209, and a configuration circuit. 221. The wireless device 211 is a receiving device and includes a decoder 215, a feedback circuit 214, an OFDMA module 219, and a configuration circuit 231. Please note that a wireless device can be either a transmitting device or a receiving device. Different functional modules and circuits can be implemented and configured by software, firmware, hardware, and any combination. When executed by processors 203 and 213 (e.g., by executing code 210 and 220), the functional modules and circuitry allow transmitting device 201 and receiving device 211 to perform embodiments of the present invention.

在一示範例中,傳送裝置(基地台)通過配置電路211為UE配置無線電資源(PUCCH/PUSCH),通過調度器204為UE調度DL和UL傳送,通過編碼器205編碼待發送的資料封包,并通過OFDM模組209發送OFDM無線電訊號。接收裝置(UE)通過配置電路231獲取用於PUCCH/PUSCH的所分配的無線電資源,通過分割電路232劃分所分配的資源,通過資源分佈電路232將不同部份分佈到所分配資源上,通過解碼器215接收并解碼DL資料封包,并通過OFDM模組219在PUCCH/PUSCH上發送UL資訊,其中應用共相位矢量以降低無線電訊號的PAPR。 In an exemplary embodiment, the transmitting device (base station) configures a radio resource (PUCCH/PUSCH) for the UE through the configuration circuit 211, schedules DL and UL transmissions for the UE through the scheduler 204, and encodes the data packet to be transmitted by the encoder 205. The OFDM radio signal is transmitted through the OFDM module 209. The receiving device (UE) acquires the allocated radio resources for the PUCCH/PUSCH through the configuration circuit 231, divides the allocated resources by the dividing circuit 232, distributes the different parts to the allocated resources through the resource distribution circuit 232, and decodes The 215 receives and decodes the DL data packet and transmits the UL information on the PUCCH/PUSCH through the OFDM module 219, wherein the common phase vector is applied to reduce the PAPR of the radio signal.

對於PUCCH格式(format)1/1a/1a、2/2a/2b、3和5來說,頻域中所佔據資源僅為1個PRB,因此無法滿足所佔據通道頻寬的要求。對於PUCCH格式4來說,每個PUCCH可有多個資源塊。PUCCH格式4包含頻域中的個連續PRB,其中。由於PUCCH格式4的資源塊為連續的,對所佔據通道頻寬的要求可能也無法滿足。為了簡便起見,PUCCH格式4的資源分配如下所示,其中ns為時隙索引, 時隙0和時隙1之間有移位(shift)。 For the PUCCH formats 1/1a/1a, 2/2a/2b, 3, and 5, the resources occupied in the frequency domain are only 1 PRB, and thus the bandwidth of the occupied channel cannot be satisfied. For PUCCH format 4, there may be multiple resource blocks per PUCCH. PUCCH format 4 contains in the frequency domain Continuous PRB, of which . Since the resource blocks of PUCCH format 4 are contiguous, the requirements for the occupied channel bandwidth may not be met. For the sake of simplicity, the resource allocation of PUCCH format 4 is as follows, where n s is the slot index and there is a shift between slot 0 and slot 1.

第3圖是PUCCH設計的一示範例的示意圖,其可滿足所佔據通道頻寬的要求。對於PUCCH格式1/1a/1a、2/2a/2b、3和5來說,可考慮在頻域中對PUCCH資源進行擴頻,以滿足所佔據通道頻寬的要求。舉例來說,PUCCH資源可每M個RB重複一次。如第3圖所示,M=5,且所佔據的PUCCH PRB的索引為{1,56,11,...,96}。 Figure 3 is a schematic diagram of an exemplary PUCCH design that satisfies the requirements of the occupied channel bandwidth. For PUCCH formats 1/1a/1a, 2/2a/2b, 3, and 5, it may be considered to spread the PUCCH resources in the frequency domain to meet the requirements of the occupied channel bandwidth. For example, PUCCH resources may be repeated every M RBs. As shown in Fig. 3, M = 5, and the index of the occupied PUCCH PRB is {1, 56, 11, ..., 96}.

第4圖是PUCCH格式4的PUCCH設計的一示範例的示意圖,其可滿足所佔據通道頻寬的要求。對於PUCCH格式4來說,可考慮兩種方案來滿足所佔據通道頻寬的要求。在第4圖所示的示範例中,PUCCH資源可在頻域中進行塊擴頻(block-spread)。舉例來說,PUCCH資源可每M個RB重複一次。如第4圖所示,M=5。通過每5個PRB被複製一次,PUCCH格式4的3個連續PRB在頻域中進行擴頻。所佔據PRB的索引為{1,2,3,6,7,8,11,12,13,...,96,97,98}。 Figure 4 is a schematic diagram of an exemplary PUCCH design of PUCCH format 4 that satisfies the requirements of the occupied channel bandwidth. For PUCCH format 4, two schemes can be considered to meet the requirements of the occupied channel bandwidth. In the example shown in FIG. 4, the PUCCH resource can be block-spread in the frequency domain. For example, PUCCH resources may be repeated every M RBs. As shown in Figure 4, And M = 5. By repeating every 5 PRBs, 3 consecutive PRBs of PUCCH format 4 are spread in the frequency domain. The index of the occupied PRB is {1, 2, 3, 6, 7, 8, 11, 12, 13, ..., 96, 97, 98}.

第5圖是PUCCH格式4的PUCCH設計的另一示範例的示意圖,其可滿足所佔據通道頻寬的要求。在第5圖中,PUCCH的資源首先在整個頻寬中被均勻分配(uniformly allocated)。隨後,每個PUCCH PRB在相應的子塊或區域中進行擴頻。舉例來說,在第5圖中,PUCCH格式4的3個連 續PRB通過兩步在頻域中進行擴頻。在第一步中,3個PRB在頻域中被均勻散佈,這會將頻域劃分成3個區域。在第二步中,在每個區域,每個PUCCH PRB在相應的子塊/區域中每M個RB重複一次。第1個PUCCH RB在區域[0,32]中每M個RB重複一次,第2個PUCCH RB在區域[33,65]中每M個RB重複一次,第3個PUCCH RB在區域[66,99]中每M個RB重複一次。 Figure 5 is a schematic diagram of another exemplary PUCCH design of PUCCH format 4 that satisfies the requirements of the occupied channel bandwidth. In Figure 5, the resources of the PUCCH are first uniformly allocated throughout the bandwidth. Each PUCCH PRB is then spread in the corresponding sub-block or region. For example, in Figure 5, three consecutive PRBs of PUCCH format 4 are spread in the frequency domain by two steps. In the first step, the three PRBs are evenly spread in the frequency domain, which divides the frequency domain into three regions. In the second step, in each region, each PUCCH PRB is repeated every M RBs in the corresponding sub-block/area. The first one in the region of the PUCCH RB [0,32] M of each RB repeat, RB in the PUCCH second region [33, 65] in every M RB repeat, RB in the PUCCH third region [66, 99] repeats every M RBs.

LTE中可採用跳頻(frequency hopping),如子訊框內(intra-subframe)跳頻中的鏡像映射(mirror mapping),來滿足一些UE的所佔據通道頻寬要求。在Rel-10中,也可採用兩種集群分配(cluster allocation)。兩種集群分配也可用於滿足一些UE的所佔據通道頻寬要求。然而,若eNB需要在一子訊框中調度多個UE,則其可能無法確保每個UE的傳送都滿足所佔據通道頻寬要求。一種可能性是在有所佔據通道頻寬要求的區域中,只有有限數目的UE可在一子訊框中調度,且需要由eNB調度來確保要求得以滿足。 Frequency hopping, such as mirror mapping in intra-subframe frequency hopping, can be used in LTE to meet the channel bandwidth requirements of some UEs. In Rel-10, two types of cluster allocation can also be used. Two cluster assignments can also be used to meet the channel bandwidth requirements of some UEs. However, if the eNB needs to schedule multiple UEs in a subframe, it may not be able to ensure that each UE's transmission meets the occupied channel bandwidth requirements. One possibility is that in areas where bandwidth requirements are occupied, only a limited number of UEs can be scheduled in a subframe and scheduled by the eNB to ensure that the requirements are met.

第6圖是交錯PUSCH設計的一示範例的示意圖,其可滿足所佔據通道頻寬的要求。以20MHz通道為例,鑒於所佔據頻寬應占80%的要求,一個交錯中第一個PRB和最後一個PRB之間的頻率間隔(frequency interval)至少為16MHz。如第6圖中所示,每個資源交錯具有相同數目的資源單元,每個資源單元以長方形塊表示,且一個資源交錯的資源單元以相同陰影表示。(N-1)個資源單元的頻寬<=2MHz。一個資源交錯是可許可給UE的資源的最小值。因此,N也是 可同時在一個子訊框中被調度的UE的數目。假定一個資源單元為一PRB,則2MHz/180KHz=11。而N還需為100的因數。因此,一個子訊框中PRB的數目N可被選作10。假定可許可給UE一個或多個資源交錯,并考慮到DFT擴頻的FFT尺寸只能以2、3、5作為其因數,一個UE可在一個子訊框中被許可給10、20、30、40、50、60、80、90或100個PRB。取決於eLAA UL上通過的業務(traffic),資源許可的粒度(granularity)可能夠好或不夠好。當發現需要更好的粒度時,一種方案是採用更小的資源單元,如採用6個音調(tone)用於一個資源單元,則可得到N=20,且一個資源交錯由60個音調組成。請注意,除用於PUSCH外,一個或多個資源交錯也可用於PUCCH。 Figure 6 is a schematic diagram of an exemplary interleaved PUSCH design that satisfies the requirements of the occupied channel bandwidth. Taking a 20 MHz channel as an example, the frequency interval between the first PRB and the last PRB in an interlace is at least 16 MHz, in view of the 80% bandwidth requirement. As shown in FIG. 6, each resource interleave has the same number of resource elements, each resource unit is represented by a rectangular block, and one resource interleaved resource unit is represented by the same shading. (N-1) resource units have a bandwidth <= 2 MHz. A resource interleave is the minimum of resources that can be licensed to the UE. Therefore, N is also The number of UEs that can be scheduled in one subframe at the same time. Assuming that one resource unit is a PRB, 2MHz/180KHz=11. N also needs to be a factor of 100. Therefore, the number N of PRBs in a subframe can be selected as 10. It is assumed that one or more resource interlaces can be granted to the UE, and considering that the FFT size of DFT spreading can only be 2, 3, 5 as its factor, one UE can be licensed to 10, 20, 30 in one subframe. , 40, 50, 60, 80, 90 or 100 PRBs. Depending on the traffic passed on the eLAA UL, the granularity of the resource license may be good or not good enough. When it is found that a better granularity is needed, one solution is to use a smaller resource unit, such as 6 tones for one resource unit, then N=20, and one resource interleave consists of 60 tones. Note that one or more resource interleaves can be used for PUCCH in addition to PUSCH.

第7圖是處理阻礙問題(block issue)的UL調度的一實施例的示意圖。如第7圖中的上方圖710所示,當eNB將2個緊接著的子訊框調度給不同UE時,UE 1的UL傳送可能會阻礙UE 2的傳送。為了避免這種情況,如第7圖中的下方圖720所示,UE 1可在子訊框n空出(drop)最後一個符號,從而給調度在子訊框n+1中進行傳送的UE 2創建空閒通道評估(Clear Channel Assessment,CCA)機會。 Figure 7 is a schematic diagram of an embodiment of UL scheduling for handling block issues. As shown in the upper diagram 710 in FIG. 7, when the eNB schedules two subsequent subframes to different UEs, the UL transmission of the UE 1 may hinder the transmission of the UE 2. In order to avoid this, as shown in the lower diagram 720 in FIG. 7, the UE 1 may drop the last symbol in the subframe n, thereby scheduling the UE to be transmitted in the subframe n+1. 2 Create a Clear Channel Assessment (CCA) opportunity.

第8圖是具有探測參考訊號(Sounding Reference Signal,SRS)傳送的UL調度的一實施例的示意圖。當非週期(aperiodic)SRS與PUSCH一起發送時,SRS仍可佔據UE上行鏈路傳送的最後一個符號。當發送寬頻SRS時,并不需要採用資源交錯來將訊號擴頻到整個通道。換句話說,通過資源交 錯在整個通道上擴頻用於PUSCH/PUCCH,而非SRS。若SRS被請求用於子訊框n中的UE 1,則如第8圖的上方圖810所示,需要進一步的修改。當然,也可以在子訊框n+1(而非子訊框n)的起始創建空的符號。eNB可在DL控制中(如在公用PDCCH或專用於UE的PDCCH中)將上述情況通過信號發送。通過eNB的信令,被調度在子訊框n+1進行傳送的UE可了解CCA機會(空符號)是根據第8圖中的上方圖810確定(子訊框n中的最後一個OFDM符號)還是根據第8圖中的下方圖820確定(子訊框n+1中的第一個OFDM符號)。 Figure 8 is a schematic diagram of an embodiment of a UL Scheduling with Sounding Reference Signal (SRS) transmission. When an aperiodic SRS is transmitted with the PUSCH, the SRS can still occupy the last symbol of the UE uplink transmission. When transmitting a wideband SRS, there is no need to use resource interleaving to spread the signal to the entire channel. In other words, through resources The spread is spread over the entire channel for PUSCH/PUCCH instead of SRS. If the SRS is requested for UE 1 in subframe n, as shown in the upper diagram 810 of Figure 8, further modifications are required. Of course, it is also possible to create an empty symbol at the beginning of the subframe n+1 (instead of the subframe n). The eNB may signal the above in DL control (as in a common PDCCH or a PDCCH dedicated to the UE). Through the signaling of the eNB, the UE scheduled to transmit in the subframe n+1 can know that the CCA opportunity (empty symbol) is determined according to the upper diagram 810 in FIG. 8 (the last OFDM symbol in the subframe n) It is also determined according to the lower diagram 820 in Fig. 8 (the first OFDM symbol in subframe n+1).

第9圖是PUCCH或PUSCH上的UL傳送採用共相位矢量以降低PAPR的一實施例的示意圖。假定PUCCH或PUSCH映射到一個資源交錯,如在一個資源交錯的所有PRB複製既有PUCCH,則得到的波形的PAPR可能會很高。舉例來說,假定PUCCH格式2在10個PRB上進行複製(如在20MHz系統中,100個PRB中的資源交錯為(PRB 1,11,21,...,91)),則PAPR可能會很高。根據一新穎性方面,採用共相位項(term)來降低PAPR。 Figure 9 is a schematic diagram of an embodiment of UL transmission on PUCCH or PUSCH employing a co-phase vector to reduce PAPR. Assuming that the PUCCH or PUSCH is mapped to a resource interlace, such as all PUBs that are interleaved in one resource, there is a PUCCH, and the PAPR of the resulting waveform may be high. For example, suppose PUCCH format 2 is replicated on 10 PRBs (eg, in a 20 MHz system, resources in 100 PRBs are interleaved to (PRB 1, 11, 21, ..., 91)), then PAPR may Very high. According to a novel aspect, co-phase terms are used to reduce PAPR.

在第9圖所示的示範例中,假定PUCCH佔據一PRB,即PUCCH訊號為r_{k,l},其中k為載波索引,且0<=k<=11。l為時隙0的OFDM符號索引,且0<=l<=6。在時隙0,PUCCH在第0個、20個、40個、60個以及80個PRB中重複。所複製的訊號可表示如下:對於第0個RB來說,y0_{k,1}=r_{k,l} In the example shown in FIG. 9, it is assumed that the PUCCH occupies a PRB, that is, the PUCCH signal is r_{k, l}, where k is a carrier index, and 0<=k<=11. l is the OFDM symbol index of slot 0, and 0 <= l <= 6. At time slot 0, the PUCCH is repeated in the 0th, 20th, 40th, 60th, and 80th PRBs. The copied signal can be expressed as follows: For the 0th RB, y0_{k, 1}=r_{k, l}

對於第20個RB來說,y1_{k+12*20,l}=r_{k,l} For the 20th RB, y1_{k+12*20,l}=r_{k,l}

對於第40個RB來說,y2_{k+12*40,l}=r_{k,l} For the 40th RB, y2_{k+12*40,l}=r_{k,l}

對於第60個RB來說,y3_{k+12*60,l}=r_{k,l} For the 60th RB, y3_{k+12*60,l}=r_{k,l}

對於第80個RB來說,y4_{k+12*80,l}=r_{k,l} For the 80th RB, y4_{k+12*80,l}=r_{k,l}

由於存在5次重複,我們需要5個共相位項c0、c1、c2、c3以及c4。則共相位之後得到的訊號變成:Z0=y0 * C0 Since there are 5 repetitions, we need 5 co-phase terms c0, c1, c2, c3, and c4. Then the signal obtained after the common phase becomes: Z0=y0 * C0

Z1=y0 * C1 Z1=y0 * C1

Z2=y0 * C2 Z2=y0 * C2

Z3=y0 * C3 Z3=y0 * C3

Z4=y0 * C4 Z4=y0 * C4

在時隙1進行相同的進程。已證明不同PRB上的複製品應用一些共相位項可導致得到的波形具有較低的PAPR。 The same process is performed in time slot 1. It has been demonstrated that the application of some co-phase terms to replicas on different PRBs results in a waveform with a lower PAPR.

第10圖是採用解調變參考訊號(demodulation reference signal,DRMS)係數的共相位矢量的一示範例的示意圖。具體來說,與簡單複製方案相比后發現,截短的(truncated)DMRS係數可更好的降低PAPR。舉例來說,在簡單複製方案中,對10次PRB重複來說,共相位矢量為[1,1,1,1,1,1,1,1,1,1],所有的共相位項等於1。另一方面,DMRS係數的基礎序列(base sequence)為:r(n)=ej φ(n)π/4 Figure 10 is a diagram showing an example of a common phase vector using demodulation reference signal (DRMS) coefficients. Specifically, compared with the simple replication scheme, it is found that the truncated DMRS coefficient can better reduce the PAPR. For example, in a simple copy scheme, for 10 PRB repetitions, the co-phase vector is [1,1,1,1,1,1,1,1,1,1], and all co-phase terms are equal to 1. On the other hand, the base sequence of the DMRS coefficient is: r(n)=e j φ(n)π/4

-其中,φ(n)的值由第10圖中的表1000給定。 - wherein the value of φ(n) is given by the table 1000 in Fig. 10.

對於10次重複來說,由於一個資源交錯中有10個PRB,在長度為12的DMRS係數中,元素1-10、2-11或3-12 被選作長度為10的共相位項。請注意,共有30個具有不同μ值的不同的DMRS係數組,這些不同的DMRS係數組可由不同的蜂巢細胞選擇,作為共相位項用於不同的UE。 For 10 repetitions, due to 10 PRBs in a resource interlace, elements 1-10, 2-11 or 3-12 in a DMRS coefficient of length 12 Selected as a co-phase term of length 10. Note that there are a total of 30 different sets of DMRS coefficients with different values of DMRS, which can be selected by different cellular cells as co-phase terms for different UEs.

第11圖是根據一新穎性方面的可降低PAPR的PUCCH/PUSCH上的UL傳送方法的流程圖。在步驟1101中,UE在OFDM無線通訊網路中獲取一組資源塊用於UL通道,該組資源塊在頻域上分佈,以佔據整個通道頻寬的預定比例。在步驟1102中,UE採用包含一組共相位項的共相位矢量,其中共相位矢量的每個共相位項應用於該組資源塊中的相應的資源塊上。在步驟1103中,UE在採用共相位矢量的UL通道上發送包含UL資訊的無線電訊號。 11 is a flow diagram of a UL transmission method on a PUCCH/PUSCH that can reduce PAPR according to a novel aspect. In step 1101, the UE acquires a set of resource blocks for use in the UL channel in the OFDM wireless communication network, the set of resource blocks being distributed in the frequency domain to occupy a predetermined proportion of the entire channel bandwidth. In step 1102, the UE employs a co-phase vector comprising a set of co-phase terms, wherein each co-phase term of the co-phase vector is applied to a corresponding one of the set of resource blocks. In step 1103, the UE transmits a radio signal containing UL information on the UL channel employing the coherence vector.

第12圖是根據一新穎性方面的從基地台的角度的PUCCH/PUSCH的UL調度方法流程圖。在步驟1201中,基地台在OFDM無線通訊網路中分配第一組資源塊給第一UE。在步驟1202中,基地台分配第二組資源塊給第二UE。第一組資源塊和第二組資源塊包含在頻域上形成交錯的交織的PRB,且每個交錯佔據整個通道頻寬的預定比例。在步驟1203中,基地台同时调度第一UE和第二UE,以用於分别在第一组资源块和第二组资源块上进行的UL传送。 Figure 12 is a flow chart of a UL scheduling method for PUCCH/PUSCH from the perspective of a base station in accordance with a novel aspect. In step 1201, the base station allocates a first set of resource blocks to the first UE in the OFDM wireless communication network. In step 1202, the base station allocates a second set of resource blocks to the second UE. The first set of resource blocks and the second set of resource blocks comprise PRBs that form interleaved interlaces in the frequency domain, and each interlace occupies a predetermined proportion of the entire channel bandwidth. In step 1203, the base station simultaneously schedules the first UE and the second UE for UL transmissions on the first set of resource blocks and the second set of resource blocks, respectively.

PUCCH的複用能力(multiplexing capacity)PUCCH multiplexing capacity

除了滿足對所佔據通道頻寬的要求之外,PUCCH的設計也應允許盡可能多的不同UE的PUCCH複用。第13圖中的表1300顯示了PUCCH格式1/1a/1b/2/2a/2b/3/4/5的複用能力。PUCCH格式1/1a/1b最多包含12個循環移位(cyclic shifts)以及3個正交覆蓋碼(covering code),因此最大複用能力為36。而PUCCH格式2/2a/2b包含12個循環移位,因此複用能力為12。PUCCH格式3包含5個正交覆蓋碼,因此複用能力為5。由於PUCCH格式4既不包含循環移位也不包含正交覆蓋碼,其複用能力僅為1。PUCCH格式5採用2個正交覆蓋碼,因此複用能力為2。 In addition to meeting the requirements for the occupied channel bandwidth, the PUCCH design should also allow for PUCCH multiplexing of as many different UEs as possible. The table 1300 in Fig. 13 shows the multiplexing capability of the PUCCH format 1/1a/1b/2/2a/2b/3/4/5. PUCCH format 1/1a/1b contains up to 12 cyclic shifts (cyclic Shifts) and 3 orthogonal covering codes, so the maximum multiplexing capacity is 36. The PUCCH format 2/2a/2b contains 12 cyclic shifts, so the multiplexing capability is 12. PUCCH format 3 contains 5 orthogonal cover codes, so the multiplexing capability is 5. Since PUCCH format 4 contains neither cyclic shift nor orthogonal cover code, its multiplexing capability is only one. The PUCCH format 5 uses two orthogonal cover codes, so the multiplexing capability is two.

假定採用PUCCH格式4,每M個RB重複一次。當PUCCH的尺寸為1個RB時(n=1),一個子訊框中最多複用M個來自不同UE的PUCCH。另一方面,當PUCCH的尺寸為n個RB時,一個子訊框中最多複用 M/n 個來自不同UE的PUCCH。PUCCH的尺寸越大,複用能力越低。舉例來說,假定對於所有UE來說,M=5且n=1,則一個子訊框中只能複用5個來自不同UE的PUCCH。 It is assumed that PUCCH format 4 is used, and it is repeated once every M RBs. When the size of the PUCCH is 1 RB (n=1), a maximum of M PUCCHs from different UEs are multiplexed in one subframe. On the other hand, when the size of the PUCCH is n RBs, the maximum multiplexing in one subframe M/n PUCCH from different UEs. The larger the size of the PUCCH, the lower the multiplexing capability. For example, assume that for all UEs, M=5 and n=1, only 5 PUCCHs from different UEs can be multiplexed in one subframe.

為了提高複用能力,我們提出一種方案,其中單個PUCCH RB的RE部份地(partially)在每M個RB中擴頻一次。一個PUCCH RB被劃分成N個均等的PUCCH部份,每個部份包含初始PUCCH的12個RE中的12/N,其中N從{1,2,3,4,6,12}中選出。一般來說,當PUCCH的部份RE被擴頻時,PUCCH格式4的複用能力為N M/n ,是之前第3-5圖中描述的簡單重複方法的N倍。 In order to improve the multiplexing capability, we propose a scheme in which the RE of a single PUCCH RB is partially spread once every M RBs. One PUCCH RB is divided into N equal PUCCH parts, each part containing 12/N of 12 REs of the initial PUCCH, where N is selected from {1, 2, 3, 4, 6, 12}. Generally, when part of the RE of the PUCCH is spread, the multiplexing capability of the PUCCH format 4 is N. M/n Is N times the simple repeating method described in the previous figures 3-5.

第14圖是根據一新穎性方面的一個RB的部份RE進行PUCCH擴頻的一示範例的示意圖。在第14圖所示的示範例中,每個PUCCH佔據包含12個RE的一個RB(n=1),其被劃分成四個PUCCH部份,每部份具有3個RE(N=4)。 不同的部份每10個RB分佈一次(M=10),且每個部份每40個RB重複一次(N*M=40)。舉例來說,第一部份1在RB0、RB40和RB80重複,第二部份2在RB10、RB50和RB90重複,第三部份3在RB20和RB60重複,第四部份4在RB30和RB70重複。可以看出,所提出的部份RE擴頻方法的複用能力為簡單重複方法的N倍。採用簡單重複方法,n=1且M=10時的複用能力為(M/n)=10。而採用所提出的部份RE擴頻方法,n=1、N=4且M=10時的複用能力為(4(M/n))=40。這是因為每個PUCCH RB僅佔據3個RE,剩下的未被佔用的9個RE可用於其他UE的PUCCH傳送。 Figure 14 is a diagram showing an exemplary PUCCH spread spectrum of a partial RE of an RB according to a novel aspect. In the example shown in FIG. 14, each PUCCH occupies one RB (n = 1) containing 12 REs, which is divided into four PUCCH parts, each having 3 REs (N=4) . The different parts are distributed once every 10 RBs (M=10), and each part is repeated every 40 RBs (N*M=40). For example, the first part 1 is repeated in RB0, RB40 and RB80, the second part 2 is repeated in RB10, RB50 and RB90, the third part 3 is repeated in RB20 and RB60, and the fourth part 4 is in RB30 and RB70. repeat. It can be seen that the proposed RE spreading method has a multiplexing capacity N times that of the simple repetition method. With a simple repetition method, the multiplexing capacity when n=1 and M=10 is (M/n)=10. With the proposed partial RE spread spectrum method, the multiplexing capability when n=1, N=4, and M=10 is (4(M/n))=40. This is because each PUCCH RB occupies only 3 REs, and the remaining 9 REs that are not occupied can be used for PUCCH transmission of other UEs.

第15圖是根據一新穎性方面的用於多個UE的部份PUCCH塊擴頻的一示範例的示意圖。在第15圖所示的示範例中,PUCCH擴頻參數為n=2、N=3以及M=5。頻域上的總通道頻寬為25個PRB,可表示為PRB 0,PRB 1,...,PRB 24。這意味著PUCCH格式佔據2個連續的PRB(n=2),每個PUCCH PRB被劃分成3個均等的部份(N=3),這些部份在頻域上每5個PRB擴頻一次(M=5)。舉例來說,對於UE 0來說,第1個PRB被劃分成部份1、2和3,第2個PRB也被劃分成部份1、2和3。第1個PRB的部份1在PRB 0上分佈,第2個PRB的部份1在PRB 1上分佈。第1個PRB的部份2在PRB 5上分佈,第2個PRB的部份2在PRB 6上分佈。第1個PRB的部份3在PRB 10上分佈,第2個PRB的部份3在PRB 11上分佈。相同的分佈在PRB 15、PRB 16、PRB 20和PRB 21上重複。類似地,對於UE 1來說,第1個PRB被劃分成部份1、 2和3,第2個PRB也被劃分成部份1、2和3。第1個PRB的部份1在PRB 0上分佈,第2個PRB的部份1在PRB 1上分佈。第1個PRB的部份2在PRB 5上分佈,第2個PRB的部份2在PRB 6上分佈。第1個PRB的部份3在PRB 10上分佈,第2個PRB的部份3在PRB 11上分佈。相同的分佈在PRB 15、PRB 16、PRB 20和PRB 21上重複。可以看到,由於僅PUCCH的部份RE被擴頻到每個PUCCH PRB,UE 0和UE 1可共享相同的PUCCH PRB資源配置。 Figure 15 is a diagram of an exemplary embodiment of partial PUCCH block spreading for multiple UEs in accordance with a novel aspect. In the example shown in Fig. 15, the PUCCH spreading parameters are n = 2, N = 3, and M = 5. The total channel bandwidth in the frequency domain is 25 PRBs, which can be expressed as PRB 0, PRB 1, ..., PRB 24. This means that the PUCCH format occupies 2 consecutive PRBs (n=2), and each PUCCH PRB is divided into 3 equal parts (N=3), which are spread every 5 PRBs in the frequency domain. (M=5). For example, for UE 0, the first PRB is divided into parts 1, 2, and 3, and the second PRB is also divided into parts 1, 2, and 3. Part 1 of the first PRB is distributed on PRB 0, and part 1 of the second PRB is distributed on PRB 1. Part 2 of the first PRB is distributed on PRB 5, and part 2 of the second PRB is distributed on PRB 6. Part 3 of the first PRB is distributed on PRB 10, and part 3 of the second PRB is distributed on PRB 11. The same distribution is repeated on PRB 15, PRB 16, PRB 20 and PRB 21. Similarly, for UE 1, the first PRB is divided into parts 1. 2 and 3, the second PRB is also divided into parts 1, 2 and 3. Part 1 of the first PRB is distributed on PRB 0, and part 1 of the second PRB is distributed on PRB 1. Part 2 of the first PRB is distributed on PRB 5, and part 2 of the second PRB is distributed on PRB 6. Part 3 of the first PRB is distributed on PRB 10, and part 3 of the second PRB is distributed on PRB 11. The same distribution is repeated on PRB 15, PRB 16, PRB 20 and PRB 21. It can be seen that since only a part of the REs of the PUCCH are spread to each PUCCH PRB, UE 0 and UE 1 can share the same PUCCH PRB resource configuration.

為了將不同的PUCCH資源分配給每個UE,eNB需要將PUCCH PRB和PUCCH劃分通過訊號發送給每個UE。舉例來說,對於UE 0來說,eNB需要指示PUCCH資源在PRB 0的部份1以及PRB 1的部份1上分配。類似地,對於UE 1來說,eNB需要指示PUCCH資源在PRB 0的部份3以及PRB 1的部份3上分配。若存在其他UE,則他們的PUCCH可分配在其他位置。舉例來說,eNB需要告知UE 2其PUCCH資源從PRB 2開始,且位於部份2;告知UE 3其PUCCH資源從PRB 0開始,且位於部份2。每個UE接收到屬於自己的信令後,即可獲取所分配的PUCCH資源,並進行UL傳送。 In order to allocate different PUCCH resources to each UE, the eNB needs to transmit PUCCH PRB and PUCCH partitions to each UE by signal. For example, for UE 0, the eNB needs to indicate that the PUCCH resource is allocated on part 1 of PRB 0 and part 1 of PRB 1. Similarly, for UE 1, the eNB needs to indicate that the PUCCH resource is allocated on part 3 of PRB 0 and part 3 of PRB 1. If there are other UEs, their PUCCH can be assigned to other locations. For example, the eNB needs to inform the UE 2 that its PUCCH resource starts from PRB 2 and is located in part 2; it informs UE 3 that its PUCCH resource starts from PRB 0 and is located in part 2. After each UE receives its own signaling, it can acquire the allocated PUCCH resources and perform UL transmission.

第16圖是根據一新颖性方面的用於多個UE的部份PUCCH分布映射以及自擴頻(self-spreading)的一示范例的示意圖。在第16图所示的示范例中,PUCCH扩频参数为n=2,N=3以及M=5。頻域上的總通道頻寬為25個PRB,可表示為PRB 0,PRB 1,...,PRB 24。這意味著PUCCH格式佔據2個連續的PRB(n=2),每個PUCCH PRB被劃分成3個均等的部 份(N=3),這些部份在頻域上每5個PRB擴頻一次(M=5)。對於UE 0和UE 1來說,第1個PRB被劃分成部份1、2和3,第2個PRB也被劃分成部份1、2和3。整個通道頻寬被劃分成n=2分段(section),第1個RB的部份被映射到第一分段PRB 0-PRB 11,第2個RB的部份被映射到第二分段PRB 12-PRB 24。舉例來說,對於第1個RB來說,UE 0和UE 1的部份1被映射到PRB 0,UE 0和UE 1的部份2被映射到PRB 5,UE 0和UE 1的部份3被映射到PRB 10。另一方面,對於第2個RB來說,UE 0和UE 1的部份1被映射到PRB 12,UE 0和UE 1的部份2被映射到PRB 17,UE 0和UE 1的部份3被映射到PRB 22。 Figure 16 is a schematic diagram of an example of partial PUCCH distribution mapping and self-spreading for multiple UEs in accordance with a novel aspect. In the example shown in Fig. 16, the PUCCH spreading parameters are n = 2, N = 3, and M = 5. The total channel bandwidth in the frequency domain is 25 PRBs, which can be expressed as PRB 0, PRB 1, ..., PRB 24. This means that the PUCCH format occupies 2 consecutive PRBs (n=2), and each PUCCH PRB is divided into 3 equal parts. Parts (N=3), these parts are spread once every 5 PRBs in the frequency domain (M=5). For UE 0 and UE 1, the first PRB is divided into parts 1, 2 and 3, and the second PRB is also divided into parts 1, 2 and 3. The entire channel bandwidth is divided into n=2 sections, the part of the first RB is mapped to the first segment PRB 0-PRB 11, and the part of the second RB is mapped to the second segment PRB 12-PRB 24. For example, for the first RB, UE 0 and Part 1 of UE 1 are mapped to PRB 0, UE 0 and Part 2 of UE 1 are mapped to PRB 5, part of UE 0 and UE 1 3 is mapped to PRB 10. On the other hand, for the second RB, UE 0 and Part 1 of UE 1 are mapped to PRB 12, and UE 0 and Part 2 of UE 1 are mapped to PRB 17, UE 0 and part of UE 1 3 is mapped to PRB 22.

與沒有擴頻的情形相比,PUCCH資源在頻域上擴頻時的PAPR會變得比較大。與簡單的PUCCH重複方法相比,上述部份RE擴頻下的PUCCH重複方法不僅可以提高複用能力,還可以降低PAPR。此外,還可採用前面提到的共相位矢量,以進一步降低所得到無線電訊號波形的PAPR。 Compared with the case without spread spectrum, the PAPR of the PUCCH resource when it is spread in the frequency domain becomes larger. Compared with the simple PUCCH repetition method, the PUCCH repetition method in the above partial RE spread spectrum can not only improve the multiplexing capability but also reduce the PAPR. In addition, the aforementioned co-phase vectors can also be employed to further reduce the PAPR of the resulting radio signal waveform.

第17圖是根據一新穎性方面的從UE角度的採用部份RE擴頻的PUCCH資源分配方法的流程圖。在步驟1701中,UE在OFDM無線通訊網絡中從基地台接收信令,其中信令包含PUCCH資源的資訊。PUCCH資源包含頻域上每M個PRB中的多個PUCCH PRB,以佔據整個通道頻寬的預定比例。在步驟1702中,UE將每個PUCCH PRB劃分成N個PUCCH部份,每個部份包含相等數目的RE。在步驟1703中,針對頻域上的每個PUCCH PRB,UE基於信令將一個PUCCH部份分 佈到一個PRB上,以獲取PUCCH資源。最後在步驟1704中,UE在所獲取的PUCCH資源上發送包含UL控制資訊的無線電訊號。 Figure 17 is a flow diagram of a PUCCH resource allocation method employing partial RE spreading from a UE perspective in accordance with a novel aspect. In step 1701, the UE receives signaling from the base station in an OFDM wireless communication network, wherein the signaling includes information of the PUCCH resource. The PUCCH resource contains a plurality of PUCCH PRBs per M PRBs in the frequency domain to occupy a predetermined proportion of the entire channel bandwidth. In step 1702, the UE divides each PUCCH PRB into N PUCCH portions, each portion containing an equal number of REs. In step 1703, for each PUCCH PRB in the frequency domain, the UE divides one PUCCH part based on signaling. Route to a PRB to obtain PUCCH resources. Finally, in step 1704, the UE transmits a radio signal including UL control information on the acquired PUCCH resource.

第18圖是根據一新穎性方面的從eNB角度的採用部份RE擴頻的PUCCH資源分配方法的流程圖。在步驟1801中,基地台在OFDM無線通訊網路中為UE分配PUCCH資源。PUCCH資源包含頻域上每M個PRB中的多個PUCCH PRB,以佔據整個通道頻寬的預定比例。在步驟1802中,基地台將每個PUCCH PRB劃分成N個PUCCH部份,其中每個部份包含相等數目的RE。在步驟1803中,針對頻域上的每個PUCCH PRB,基地台將每個PUCCH部份分佈到一個PRB上。在步驟1804中,基地台發送包含PUCCH PRB和PUCCH劃分資訊的信令給UE,以用於UL傳送。 Figure 18 is a flow diagram of a PUCCH resource allocation method employing partial RE spreading from the perspective of an eNB in accordance with a novel aspect. In step 1801, the base station allocates PUCCH resources for the UE in the OFDM wireless communication network. The PUCCH resource contains a plurality of PUCCH PRBs per M PRBs in the frequency domain to occupy a predetermined proportion of the entire channel bandwidth. In step 1802, the base station divides each PUCCH PRB into N PUCCH portions, each of which contains an equal number of REs. In step 1803, for each PUCCH PRB on the frequency domain, the base station distributes each PUCCH portion onto one PRB. In step 1804, the base station transmits signaling including PUCCH PRB and PUCCH split information to the UE for UL transmission.

本發明可以其他特定形式體現而不脫離本發明之精神和基本特徵。上述實施例僅作為說明而非用來限制本發明,本發明之保護範圍當視後附之申請專利範圍所界定者為準。凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The invention may be embodied in other specific forms without departing from the spirit and scope of the invention. The above-described embodiments are intended to be illustrative only and not to limit the invention, and the scope of the invention is defined by the scope of the appended claims. Equivalent changes and modifications made in accordance with the scope of the present invention should be within the scope of the present invention.

Claims (11)

一種方法,包含:由一用戶設備在一正交頻分複用無線通訊網路中從一基地台接收一信令,其中所述信令包含物理上行鏈路控制通道資源的資訊,且所述物理上行鏈路控制通道資源包含頻域上每M個物理資源塊中的多個物理上行鏈路控制通道物理資源塊,以佔據一整個通道頻寬的一預定比例;將每個物理上行鏈路控制通道物理資源塊劃分成N個物理上行鏈路控制通道部份,其中每個部份包含相等數目的資源元素;針對頻域上的每個物理上行鏈路控制通道物理資源塊,基於所述信令將一個物理上行鏈路控制通道部份分佈到一個物理資源塊上,以獲取所述物理上行鏈路控制通道資源;以及在所獲取的物理上行鏈路控制通道資源上發送包含上行鏈路控制資訊的一無線電訊號。 A method comprising: receiving, by a user equipment, a signaling from a base station in an orthogonal frequency division multiplexing wireless communication network, wherein the signaling includes information of physical uplink control channel resources, and the physical The uplink control channel resource includes a plurality of physical uplink control channel physical resource blocks in each of the M physical resource blocks in the frequency domain to occupy a predetermined ratio of an entire channel bandwidth; each physical uplink control is controlled The channel physical resource block is divided into N physical uplink control channel parts, each part of which contains an equal number of resource elements; for each physical uplink control channel physical resource block in the frequency domain, based on the letter Having a physical uplink control channel portion distributed onto a physical resource block to acquire the physical uplink control channel resource; and transmitting the uplink control on the acquired physical uplink control channel resource A radio signal of information. 如申請專利範圍第1項所述之方法,其中所述物理上行鏈路控制通道具有佔據一個物理資源塊的一格式,所述N個物理上行鏈路控制通道部份每M個物理資源塊分佈一次,且每個物理上行鏈路控制通道部份每N*M個物理資源塊重複一次。 The method of claim 1, wherein the physical uplink control channel has a format occupying one physical resource block, and the N physical uplink control channel portions are distributed per M physical resource blocks. Once, and each physical uplink control channel portion is repeated every N*M physical resource blocks. 如申請專利範圍第1項所述之方法,其中所述物理上行鏈路控制通道具有佔據n個連續物理資源塊的一格式,所述格式被劃分成n*N個物理上行鏈路控制通道部份,其中所 述n*N個物理上行鏈路控制通道部份每M個物理資源塊分佈一次。 The method of claim 1, wherein the physical uplink control channel has a format occupying n consecutive physical resource blocks, and the format is divided into n*N physical uplink control channel units. Share The n*N physical uplink control channel parts are distributed once every M physical resource blocks. 如申請專利範圍第3項所述之方法,其中每n個物理上行鏈路控制通道部份對應於每n個連續物理資源塊,在每M個物理資源塊的n個連續物理資源塊上分佈一次。 The method of claim 3, wherein each n physical uplink control channel portion corresponds to every n consecutive physical resource blocks, and is distributed over n consecutive physical resource blocks of each M physical resource blocks. once. 如申請專利範圍第3項所述之方法,其中一整個通道頻寬被劃分成n個分段,且所述N個物理上行鏈路控制通道部份中的每個部份對應於所述n個連續物理資源塊中的一個物理資源塊,在所述n個分段的一個分段中,每M個物理資源塊的一個物理資源塊上分佈一次。 The method of claim 3, wherein an entire channel bandwidth is divided into n segments, and each of the N physical uplink control channel portions corresponds to the n One physical resource block in a contiguous physical resource block is distributed once on one physical resource block of each M physical resource block in one segment of the n segments. 如申請專利範圍第1項所述之方法,其中將一共相位矢量應用於所述資源塊集合,以降低所述無線電訊號的峰值平均功率比。 The method of claim 1, wherein a common phase vector is applied to the set of resource blocks to reduce a peak-to-average power ratio of the radio signals. 如申請專利範圍第6項所述之方法,其中所述共相位矢量包含多個解調變參考訊號係數。 The method of claim 6, wherein the common phase vector comprises a plurality of demodulation variable reference signal coefficients. 一種用戶設備,包含:接收機,用來由一用戶設備在一正交頻分複用無線通訊網路中從一基地台接收一信令,其中所述信令包含物理上行鏈路控制通道資源的資訊,且所述物理上行鏈路控制通道資源包含頻域上每M個物理資源塊中的多個物理上行鏈路控制通道物理資源塊,以佔據一整個通道頻寬的一預定比例;分割電路,用來將每個物理上行鏈路控制通道物理資源塊劃分成N個物理上行鏈路控制通道部份,其中每個部份包 含相等數目的資源元素;資源分配電路,用來針對頻域上的每個物理上行鏈路控制通道物理資源塊,基於所述信令將一個物理上行鏈路控制通道部份分佈到一個物理資源塊上,以獲取所述物理上行鏈路控制通道資源;以及發送機,用來在所獲取的物理上行鏈路控制通道資源上發送包含上行鏈路控制資訊的一無線電訊號。 A user equipment, comprising: a receiver for receiving, by a user equipment, a signaling from a base station in an Orthogonal Frequency Division Multiplexing (OFDM) wireless communication network, wherein the signaling includes physical uplink control channel resources Information, and the physical uplink control channel resource includes a plurality of physical uplink control channel physical resource blocks in each of the M physical resource blocks in the frequency domain to occupy a predetermined ratio of a whole channel bandwidth; the dividing circuit For dividing each physical uplink control channel physical resource block into N physical uplink control channel parts, each part of which is packaged Having an equal number of resource elements; a resource allocation circuit for controlling each channel physical resource block for each physical uplink in the frequency domain, and distributing a physical uplink control channel portion to a physical resource based on the signaling Blocking to obtain the physical uplink control channel resource; and a transmitter for transmitting a radio signal including uplink control information on the acquired physical uplink control channel resource. 一種方法,包含:在一正交頻分複用無線通訊網路中為一用戶設備分配一物理上行鏈路控制通道資源,其中所述物理上行鏈路控制通道資源包含頻域上每M個物理資源塊中的多個物理上行鏈路控制通道物理資源塊,以佔據一整個通道頻寬的一預定比例;將每個物理上行鏈路控制通道物理資源塊劃分成N個物理上行鏈路控制通道部份,其中每個部份包含相等數目的資源元素;針對頻域上的每個物理上行鏈路控制通道物理資源塊,將一個物理上行鏈路控制通道部份分佈到一個物理資源塊上;以及發送包含所述物理上行鏈路控制通道物理資源塊和物理上行鏈路控制通道劃分資訊的一信令給所述用戶設備,以用於上行鏈路傳送。 A method includes: allocating a physical uplink control channel resource to a user equipment in an orthogonal frequency division multiplexing wireless communication network, wherein the physical uplink control channel resource includes every M physical resources in a frequency domain Multiple physical uplink control channel physical resource blocks in the block to occupy a predetermined ratio of a whole channel bandwidth; each physical uplink control channel physical resource block is divided into N physical uplink control channel sections And each of the portions includes an equal number of resource elements; for each physical uplink control channel physical resource block in the frequency domain, a physical uplink control channel portion is distributed to one physical resource block; Sending a signaling including the physical uplink control channel physical resource block and physical uplink control channel split information to the user equipment for uplink transmission. 如申請專利範圍第9項所述之方法,其中所述物理上行鏈路控制通道具有佔據一個物理資源塊的一格式,所述N個 物理上行鏈路控制通道部份每M個物理資源塊分佈一次,且每個物理上行鏈路控制通道部份每N*M個物理資源塊重複一次。 The method of claim 9, wherein the physical uplink control channel has a format occupying one physical resource block, the N The physical uplink control channel portion is distributed once every M physical resource blocks, and each physical uplink control channel portion is repeated once every N*M physical resource blocks. 如申請專利範圍第9項所述之方法,其中所述物理上行鏈路控制通道具有佔據n個連續物理資源塊的一格式,所述格式被劃分成n*N個物理上行鏈路控制通道部份,其中所述n*N個物理上行鏈路控制通道部份每M個物理資源塊分佈一次。 The method of claim 9, wherein the physical uplink control channel has a format occupying n consecutive physical resource blocks, the format being divided into n*N physical uplink control channel units And wherein the n*N physical uplink control channel portions are distributed once every M physical resource blocks.
TW106111064A 2016-04-01 2017-03-31 Method of pucch resource allocation and user equipment TWI642313B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662316611P 2016-04-01 2016-04-01
US62/316,611 2016-04-01
US15/474,299 2017-03-30
US15/474,299 US20170245263A1 (en) 2016-02-05 2017-03-30 PUCCH Resource Allocation and Peak to Average Power Ratio Reduction in eLAA

Publications (2)

Publication Number Publication Date
TW201739280A true TW201739280A (en) 2017-11-01
TWI642313B TWI642313B (en) 2018-11-21

Family

ID=59962628

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106111064A TWI642313B (en) 2016-04-01 2017-03-31 Method of pucch resource allocation and user equipment

Country Status (5)

Country Link
EP (1) EP3427531A4 (en)
CN (1) CN109076529A (en)
BR (1) BR112018070171A2 (en)
TW (1) TWI642313B (en)
WO (1) WO2017167265A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190313413A1 (en) * 2018-04-06 2019-10-10 Mediatek Inc. Interlace Design For New Radio Unlicensed Spectrum Operation
WO2020006027A1 (en) * 2018-06-29 2020-01-02 Sharp Laboratories Of America, Inc. Ultra-reliability design for physical uplink control channel (pucch) in 5th generation (5g) new radio (nr)
KR102202779B1 (en) * 2018-07-27 2021-01-14 아서스테크 컴퓨터 인코포레이션 Method and apparatus for power saving method on pdsch (physical downlink shared channel) reception in a wireless communication system
CN110831156B (en) * 2018-08-07 2024-03-26 黎光洁 Configuration method of elastic frame structure
CN114205898A (en) * 2019-01-10 2022-03-18 华为技术有限公司 Communication method, communication apparatus, and storage medium
CN114866200A (en) * 2021-01-20 2022-08-05 展讯通信(上海)有限公司 Method and device for sending uplink control channel, server and terminal equipment
CN113630340B (en) * 2021-06-22 2024-04-05 北京邮电大学 Method, device, electronic equipment and medium for distributing bandwidth resources

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101653022B1 (en) * 2009-05-29 2016-08-31 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 Terminal apparatus, base station apparatus, transmission method, receiving method, and integrated circuit
CN102281593B (en) * 2011-07-06 2014-09-10 电信科学技术研究院 Method, system and device for sending and receiving uplink control information
US8995385B2 (en) * 2011-08-05 2015-03-31 Samsung Electronics Co., Ltd. Apparatus and method for UE-specific demodulation reference signal scrambling
CN105227266B (en) * 2012-01-12 2019-06-14 华为技术有限公司 Method, user equipment and the base station of transmitting uplink control information
US9750005B2 (en) * 2013-01-06 2017-08-29 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
CN105451155B (en) * 2014-09-26 2020-10-27 中兴通讯股份有限公司 Channel and signal transmission method, corresponding terminal and base station

Also Published As

Publication number Publication date
BR112018070171A2 (en) 2019-01-29
TWI642313B (en) 2018-11-21
EP3427531A1 (en) 2019-01-16
EP3427531A4 (en) 2019-06-12
CN109076529A (en) 2018-12-21
WO2017167265A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
CN110771083B (en) Method, apparatus and system for transmitting or receiving control channel and data channel in wireless communication system
US20170237592A1 (en) Peak to average power ratio reduction in elaa
TWI642313B (en) Method of pucch resource allocation and user equipment
AU2018215316B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US9979581B2 (en) Control channel design for eLAA
JP7220708B2 (en) Signaling aspects for indicating co-scheduled DMRS ports in MU-MIMO
CN101978664B (en) Frequency hopping pattern and arrangement for sounding reference signal
US20170245263A1 (en) PUCCH Resource Allocation and Peak to Average Power Ratio Reduction in eLAA
US20180070348A1 (en) Communication system, base station apparatus, mobile station apparatus, and communication method
RU2449480C2 (en) Configuration of reference probing signal
EP3579638A1 (en) Base station device, terminal device, communication method, and integrated circuit
TWI736878B (en) Wireless communication terminal, wireless communication base station, wireless communication method and integrated circuit
CN115642993A (en) Method, apparatus and system for transmitting or receiving uplink control channel
CN112106316A (en) Method for multiplexing uplink control information in wireless communication system and apparatus using the same
TWI669974B (en) Method of resource element (re) allocation for uplink control information (uci) on physical uplink shared channel (pusch) and communication apparatus
JP2016136733A (en) Apparatus and method for enhancing features of uplink reference signals
CN104335652B (en) User terminal, wireless communications method and wireless communication system
KR20120123417A (en) Apparatus and method for enabling low latency transmissions in the uplink of a communication system
US8886238B2 (en) Method of allocating radio resource in wireless communication system
JP2023036731A (en) Communication system, method, and integrated circuit
KR101691470B1 (en) Wireless communication system and method for allocating resource of control channel thereof
CN110663211A (en) Non-orthogonal signaling for radio access networks
KR20210039839A (en) Method and apparatus for transmitting uplink control informations in multiple uplink channels in wireless communication system
JP2014116952A (en) Device and method for improving feature of uplink reference signal
CN118020266A (en) Method for transmitting uplink channel in wireless communication system and apparatus therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees