TW201739215A - Methods, apparatuses and systems directed to common transport of backhaul and fronthaul traffic - Google Patents

Methods, apparatuses and systems directed to common transport of backhaul and fronthaul traffic

Info

Publication number
TW201739215A
TW201739215A TW106105741A TW106105741A TW201739215A TW 201739215 A TW201739215 A TW 201739215A TW 106105741 A TW106105741 A TW 106105741A TW 106105741 A TW106105741 A TW 106105741A TW 201739215 A TW201739215 A TW 201739215A
Authority
TW
Taiwan
Prior art keywords
xcf
mac
forwarding
frame
information
Prior art date
Application number
TW106105741A
Other languages
Chinese (zh)
Inventor
路卡 科米納爾迪
亞蘭 穆拉德
拉比庫馬 普拉格達
道格拉斯 卡斯特
Original Assignee
Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idac控股公司 filed Critical Idac控股公司
Publication of TW201739215A publication Critical patent/TW201739215A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/34Source routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, apparatuses, systems, devices, and computer program products directed to common transport of backhaul and fronthaul traffic (collectively "crosshaul traffic") are provided. Among new methodologies and/or technologies provided herein is a crosshaul common frame (XCF) adapted to carry, among other information, new control information for enabling optimized forwarding and/or management of any packet-based crosshaul traffic. The optimized forwarding and/or management may be enhanced with segment routing adaptation of the XCF. And pursuant to the XCF being MAC-in-MAC protocol compatible, not only can the forwarding of the XCF be carried out by packet switching elements supporting common XCF-domain forwarding and management controls (and hence, capable of utilizing the new control information), but also by legacy MAC-in-MAC protocol (Ethernet) switches not under the XCF-domain common forwarding control.

Description

回載及前向回傳之訊務共用傳輸方法、裝置及系統Traffic sharing transmission method, device and system for returning and forward return

相關申請的交叉引用Cross-reference to related applications

本申請要求享有2016年2月22日提交的美國臨時專利申請第62/298,428號以及2016年2月22日提交的美國臨時專利申請第62/298,449號的權益,其中每一個申請在這裡都被全部引入以作為參考。This application claims the benefit of U.S. Provisional Patent Application No. 62/298,428, filed on Feb. 22, 2016, and U.S. Provisional Patent Application No. 62/298,449, filed on Feb. 22, 2016, each of which is hereby All are incorporated by reference.

本申請關於有線和/或無線通信。This application relates to wired and/or wireless communications.

對於下一代通信系統(例如第五代(5G)通信系統)來說,其目標是實現一組頗具野心的關鍵性能指標(KPi),例如容量、時延和/或效率,與此同時,網路操作者也在面臨著關於降低其成本(例如總體擁有成本)以及擴展其服務供給的挑戰。當前的無線電存取網路(RAN)架構(包括雲端RAN(C-RAN))成本過高,並且未必適於有效地滿足5G需求。未經修改的前向回傳域(從C-RAN開始)可能會包括確定性的頻寬饑渴點對點鏈路,例如光纖上的共用公共無線電介面(CPRI),這種鏈路的成本過高且不可縮放以用於在5G中預計規模將會很大的高密集化處理,例如小型胞元以及多輸入多輸出(MIMO)技術。For next-generation communication systems, such as fifth-generation (5G) communication systems, the goal is to achieve a set of ambitious key performance indicators (KPi) such as capacity, latency and/or efficiency, while Road operators are also faced with the challenge of reducing their costs (such as total cost of ownership) and expanding their service offerings. Current Radio Access Network (RAN) architectures, including Cloud RAN (C-RAN), are cost prohibitive and are not necessarily suitable for effectively meeting 5G requirements. Unmodified forward backhaul domains (starting with C-RAN) may include deterministic bandwidth hunger-to-peer links, such as the Common Public Radio Interface (CPRI) on fiber, which is too costly It is not scalable for high-density processing where large scale is expected in 5G, such as small cells and multiple input multiple output (MIMO) technology.

另一方面,隨著異構性不斷提升且獨立管理的技術的出現,回載域的複雜性不斷增長,由此其成本也在不斷提升,而這同樣也提出了一項挑戰,那就是滿足5G中的嚴格的端到端(E2E)時延的需求。當前已存在用於演進前向回傳和回載的方法,例如用於前向回傳的乙太網上的CPRI,例如最新發佈的標準IEEE 1904.3,以及回載中的軟體定義網路(SDN)和/或網路功能虛擬化(NFV)可實施性。On the other hand, with the emergence of increasingly heterogeneous and independently managed technologies, the complexity of the reloading domain continues to grow, and as a result, its cost is also increasing, and this also presents a challenge, that is, to meet Strict end-to-end (E2E) latency requirements in 5G. There are currently methods for evolving forward backhaul and backhaul, such as CPRI for Ethernet on forward backhaul, such as the newly released standard IEEE 1904.3, and the software-defined network (SDN) in the backhaul. And/or Network Function Virtualization (NFV) enforceability.

在以下的具體實施方式部分中將會闡述眾多的具體細節,以便提供關於這裡揭露的實施例和/或範例的全面理解。然而應該理解,此類實施例和範例是可以在沒有這裡詳細闡述的一些或所有具體細節的情況下實踐的。在其他情況下,眾所周知的方法、過程、元件和電路並未被詳細描述,以免與後續描述相混淆。更進一步,在這裡沒有具體描述的實施例和範例也是可以實踐的,由此可以替換在這裡描述、揭露或以其他方式顯性、隱性和/或內在提供(統稱為“提供”)的實施例及其他範例或者與之結合。範例通信系統 Numerous specific details are set forth in the Detailed Description of the <RTIgt; It should be understood, however, that such embodiments and examples may be practiced without some or all of the specific details set forth herein. In other instances, well-known methods, procedures, components, and circuits have not been described in detail to avoid obscuring the description. Further, the embodiments and examples not specifically described herein are also practiced, and thus the implementations described, disclosed, or otherwise disclosed, implicitly, and/or inherently (collectively referred to as "providing") may be substituted. Examples and other examples or combined with them. Example communication system

這裡提供的方法、裝置和系統非常適合同時涉及有線和無線網路的通信。有線網路是眾所周知的。關於各種類型的無線裝置和基礎架構的綜述是對照第1A圖至第1E圖提供的,其中網路的各種元件都可以使用、執行這裡提供的方法、裝置和系統,依照這裡提供的方法、裝置和系統來佈置,和/或被調適和/或配置成用於這裡提供的方法、裝置和系統。The methods, apparatus, and systems provided herein are well suited for communication involving both wired and wireless networks. Wired networks are well known. An overview of various types of wireless devices and infrastructure is provided in connection with Figures 1A through 1E, in which various elements of the network may be used to perform the methods, apparatus, and systems provided herein, in accordance with the methods and apparatus provided herein. And systems are arranged, and/or adapted and/or configured for use in the methods, apparatus, and systems provided herein.

第1A圖是可以實施所揭露的一個或多個實施例的例通信系統100的圖式。範例通信系統100被提供只用於展示目的,且不限於所揭露實施例。通信系統100可以是為多個無線使用者提供語音、資料、視訊、消息傳遞、廣播等內容的多重存取系統。該通信系統100通過共用包括無線頻寬在內的系統資源來允許多個無線使用者存取此類內容。作為範例,通信系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)等等。FIG. 1A is a diagram of an example communication system 100 in which one or more of the disclosed embodiments may be implemented. The example communication system 100 is provided for illustrative purposes only and is not limited to the disclosed embodiments. Communication system 100 can be a multiple access system that provides content, such as voice, data, video, messaging, broadcast, etc., to multiple wireless users. The communication system 100 allows multiple wireless users to access such content by sharing system resources including wireless bandwidth. As an example, communication system 100 may use one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA). Single carrier FDMA (SC-FDMA) and the like.

如第1A圖所示,通信系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d,無線電存取網路(RAN)104,核心網路106,公共切換電話網路(PSTN)108,網際網路110以及其他網路112,但是應該瞭解,所揭露的實施例設想了任意數量的WTRU、基地台、網路和/或網路元件。每一個WTRU 102a、102b、102c、102d可以是被配置成在無線環境中操作和/或通信的任何類型的裝置。例如,WTRU 102a、102b、102c、102d可以被配置成傳輸和/或接收無線訊號,並且可以包括使用者設備(UE)、行動站、固定或行動用戶單元、呼叫器、行動電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、消費類電子裝置等等。As shown in FIG. 1A, communication system 100 can include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, 102d, radio access network (RAN) 104, core network 106, public switched telephone network (PSTN). 108, the Internet 110 and other networks 112, but it should be understood that the disclosed embodiments contemplate any number of WTRUs, base stations, networks, and/or network elements. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. For example, the WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals, and may include user equipment (UE), mobile stations, fixed or mobile subscriber units, pagers, mobile phones, personal digital assistants. (PDA), smart phones, laptops, small laptops, personal computers, wireless sensors, consumer electronics, and more.

通信系統100還可以包括基地台114a和基地台114b。每一個基地台114a、114b可以是被配置成通過與WTRU 102a、102b、102c、102d中的至少一個有無線介面來促使存取一個或多個通信網路的任何類型的裝置,該網路則可以是核心網路106、網際網路110和/或網路112。作為範例,基地台114a、114b可以是基地收發台(BTS)、節點B、e節點B、本地節點B、本地e節點B、網站控制器、存取點(AP)、無線路由器等等。雖然每一個基地台114a、114b都被描述成是單個元件,但是應該瞭解,基地台114a、114b可以包括任何數量的互連基地台和/或網路元件。Communication system 100 can also include a base station 114a and a base station 114b. Each of the base stations 114a, 114b may be any type of device configured to facilitate access to one or more communication networks by having a wireless interface with at least one of the WTRUs 102a, 102b, 102c, 102d, the network then It can be core network 106, internet 110, and/or network 112. As an example, base stations 114a, 114b may be base transceiver stations (BTS), Node Bs, eNodeBs, local Node Bs, local eNodeBs, website controllers, access points (APs), wireless routers, and the like. While each of the base stations 114a, 114b is depicted as a single component, it should be understood that the base stations 114a, 114b can include any number of interconnected base stations and/or network elements.

基地台114a可以是RAN 104的一部分,並且該RAN還可以包括其他基地台和/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a和/或基地台114b可以被配置成在稱為胞元(未顯示)的特別地理區域內部傳輸和/或接收無線訊號。胞元可被進一步劃分成胞元扇區。例如,與基地台114a關聯的胞元可分為三個扇區。由此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,胞元的每個扇區有一個。在另一個實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術,由此可以為胞元中的每個扇區使用多個收發器。The base station 114a may be part of the RAN 104, and the RAN may also include other base stations and/or network elements (not shown), such as a base station controller (BSC), a radio network controller (RNC), a relay. Nodes and so on. Base station 114a and/or base station 114b may be configured to transmit and/or receive wireless signals within a particular geographic area known as a cell (not shown). The cell can be further divided into cell sectors. For example, a cell associated with base station 114a can be divided into three sectors. Thus, in one embodiment, base station 114a may include three transceivers, that is, one for each sector of the cell. In another embodiment, base station 114a may use multiple input multiple output (MIMO) technology whereby multiple transceivers may be used for each sector in a cell.

基地台114a、114b可以經由空中介面116來與WTRU 102a、102b、102c、102d的其中之一或更多進行通信,該空中介面可以是任何適當的無線通信鏈路(例如射頻(RF)、微波、紅外線(IR)、紫外線(UV)、可見光等等)。該空中介面116可以用任何適當的無線電存取技術(RAT)來建立。The base stations 114a, 114b may communicate with one or more of the WTRUs 102a, 102b, 102c, 102d via an empty intermediation plane 116, which may be any suitable wireless communication link (e.g., radio frequency (RF), microwave , infrared (IR), ultraviolet (UV), visible light, etc.). The null plane 116 can be established using any suitable radio access technology (RAT).

更具體地說,如上所述,通信系統100可以是多重存取系統,並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。舉例來說,RAN 104中的基地台114a與WTRU 102a、102b、102c可以實施諸如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其可以使用寬頻CDMA(WCDMA)來建立空中介面116。WCDMA可以包括諸如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)之類的通信協定。HSPA則可以包括高速下鏈封包存取(HSDPA)和/或高速上鏈封包存取(HSUPA)。More specifically, as noted above, communication system 100 can be a multiple access system and can utilize one or more channel access schemes such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, base station 114a and WTRUs 102a, 102b, 102c in RAN 104 may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may use Wideband CDMA (WCDMA) An empty mediation plane 116 is created. WCDMA may include communication protocols such as High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA can include High Speed Downlink Packet Access (HSDPA) and/or High Speed Uplink Packet Access (HSUPA).

在另一個實施例中,基地台114a與WTRU 102a、102b、102c可以實施演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,該技術可以使用長期演進(LTE)和/或先進LTE(LTE-A)來建立空中介面116。In another embodiment, the base station 114a and the WTRUs 102a, 102b, 102c may implement a radio technology such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and/or Advanced LTE (LTE-A) is used to establish an empty intermediate plane 116.

在其他實施例中,基地台114a與WTRU 102a、102b、102c可以實施IEEE 802.16(全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通信系統(GSM)、用於GSM增強資料速率演進(EDGE)、GSM EDGE(GERAN)等無線電存取技術。In other embodiments, base station 114a and WTRUs 102a, 102b, 102c may implement IEEE 802.16 (Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, Provisional Standard 2000 (IS-2000), Interim Standard 95 (IS-95), Provisional Standard 856 (IS-856), Global System for Mobile Communications (GSM), Radio Access Technology for GSM Enhanced Data Rate Evolution (EDGE), GSM EDGE (GERAN).

作為範例,第1A圖中的基地台114b可以是無線路由器、本地節點B、本地e節點B或存取點,並且可以使用任何適當的RAT來促成局部區域中的無線連接,例如營業場所、住宅、載具、校園等等。在一個實施例中,基地台114b與WTRU 102c、102d可以通過實施諸如IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在另一個實施例中,基地台114b與WTRU 102c、102d可以通過實施諸如IEEE 802.15之類的無線電技術來建立無線個人區域網路(WPAN)。在再一個實施例中,基地台114b和WTRU 102c、102d可以通過使用基於胞元的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以直接連接到網際網路110。由此,基地台114b未必需要經由核心網路106來存取網際網路110。As an example, base station 114b in FIG. 1A may be a wireless router, a local Node B, a local eNodeB, or an access point, and any suitable RAT may be used to facilitate wireless connectivity in a local area, such as a business location, residential , vehicles, campuses, etc. In one embodiment, base station 114b and WTRUs 102c, 102d may establish a wireless local area network (WLAN) by implementing a radio technology such as IEEE 802.11. In another embodiment, base station 114b and WTRUs 102c, 102d may establish a wireless personal area network (WPAN) by implementing a radio technology such as IEEE 802.15. In still another embodiment, base station 114b and WTRUs 102c, 102d may establish picocells or femtocells by using a cell based RAT (e.g., WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.). As shown in FIG. 1A, the base station 114b can be directly connected to the Internet 110. Thus, the base station 114b does not necessarily need to access the Internet 110 via the core network 106.

RAN 104可以與核心網路106通信,該核心網路可以是被配置成向WTRU 102a、102b、102c、102d的其中之一或更多提供語音、資料、應用和/或網際網路協定語音(VoIP)服務的任何類型的網路。例如,核心網路106可以提供呼叫控制、記帳服務、基於行動位置的服務、預付費呼叫、網際網路連接、視訊分發等等,和/或執行使用者認證之類的高級安全功能。雖然在第1A圖中沒有顯示,但是應該瞭解,RAN 104和/或核心網路106可以直接或間接地和其他那些與RAN 104使用相同RAT或不同RAT的RAN進行通信。例如,除了與使用E-UTRA無線電技術的RAN 104連接之外,核心網路106還可以與使用GSM無線電技術的另一RAN(未顯示)通信。The RAN 104 can be in communication with a core network 106, which can be configured to provide voice, data, application, and/or internet protocol voice to one or more of the WTRUs 102a, 102b, 102c, 102d ( VoIP) Any type of network that serves. For example, core network 106 may provide call control, billing services, action location based services, prepaid calling, internet connectivity, video distribution, etc., and/or perform advanced security functions such as user authentication. Although not shown in FIG. 1A, it should be appreciated that the RAN 104 and/or the core network 106 can communicate directly or indirectly with other RANs that use the same RAT or different RATs as the RAN 104. For example, in addition to being connected to the RAN 104 using the E-UTRA radio technology, the core network 106 can also communicate with another RAN (not shown) that uses the GSM radio technology.

核心網路106還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路切換電話網路。網際網路110可以包括使用共用通信協定的互聯電腦網路及裝置的全球性系統,該協定可以是TCP/IP網際網路協定族中的傳輸控制協定(TCP)、使用者資料包協定(UDP)和網際網路協定(IP)。網路112可以包括由其他服務供應商擁有和/或操作的有線或無線通信網路。例如,網路112可以包括與一個或多個RAN相連的另一個核心網路,該一個或多個RAN可以與RAN 104使用相同RAT或不同RAT。The core network 106 can also serve as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include a circuit switched telephone network that provides Plain Old Telephone Service (POTS). The Internet 110 may include a global system of interconnected computer networks and devices that use a shared communication protocol, which may be a Transmission Control Protocol (TCP), User Data Packet Protocol (UDP) in the TCP/IP Internet Protocol suite. ) and Internet Protocol (IP). Network 112 may include a wired or wireless communication network that is owned and/or operated by other service providers. For example, network 112 may include another core network connected to one or more RANs that may use the same RAT or a different RAT as RAN 104.

通信系統100中WTRU 102a、102b、102c、102d之一些或所有可以包括多模式能力,換言之,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路通信的多個收發器。例如,第1A圖所示的WTRU 102c可以被配置成與使用基於胞元的無線電技術的基地台114a通信,以及與可以使用IEEE 802無線電技術的基地台114b通信。Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities, in other words, the WTRUs 102a, 102b, 102c, 102d may include multiple transceivers that communicate with different wireless networks over different wireless links. . For example, the WTRU 102c shown in FIG. 1A can be configured to communicate with a base station 114a that uses a cell-based radio technology, and with a base station 114b that can use an IEEE 802 radio technology.

第1B圖是範例WTRU 102的系統圖式。該範例WTRU 102是出於範例的目的而被提供,而非用於限制所揭露的實施方式。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136以及其他週邊設備138。應該瞭解的是,在保持符合實施例的同時,WTRU 102還可以包括前述元件的任何子結合。FIG. 1B is a system diagram of an example WTRU 102. The example WTRU 102 is provided for purposes of example and is not intended to limit the disclosed embodiments. As shown in FIG. 1B, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a keypad 126, a display/trackpad 128, a non-removable memory 130, and a removable Memory 132, power source 134, global positioning system (GPS) chipset 136, and other peripheral devices 138. It should be appreciated that the WTRU 102 may also include any sub-combination of the aforementioned elements while remaining consistent with the embodiments.

處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任何類型的積體電路(IC)、狀態機等等。處理器118可以執行訊號編碼、資料處理、功率控制、輸入/輸出處理和/或其他任何能使WTRU 102在無線環境中操作的功能。處理器118可以耦合至收發器120,收發器120可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118和收發器120描述成是分別組件,但是應該瞭解,處理器118和收發器120可以整合在一個電子元件或晶片中。The processor 118 can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors associated with the DSP core, a controller, a microcontroller , Dedicated Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) circuits, any other type of integrated circuit (IC), state machine, and more. The processor 118 can perform signal encoding, data processing, power control, input/output processing, and/or any other functionality that enables the WTRU 102 to operate in a wireless environment. The processor 118 can be coupled to a transceiver 120 that can be coupled to the transmit/receive element 122. Although FIG. 1B depicts processor 118 and transceiver 120 as separate components, it should be understood that processor 118 and transceiver 120 can be integrated into one electronic component or wafer.

傳輸/接收元件122可以被配置成經由空中介面116來傳輸通往基地台(例如基地台114a)的訊號或接收來自基地台(例如基地台114a)的訊號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置成傳輸和/或接收RF訊號的天線。在另一個實施例中,作為範例,傳輸/接收元件122可以是被配置成傳輸和/或接收IR、UV或可見光訊號的放射器/檢測器。在再一個實施例中,傳輸/接收元件122可以被配置成傳輸和接收RF和光訊號。應該瞭解的是,傳輸/接收元件122可以被配置成傳輸和/或接收無線訊號的任何結合。The transmit/receive element 122 can be configured to transmit signals to the base station (e.g., base station 114a) or receive signals from the base station (e.g., base station 114a) via the null plane 116. For example, in one embodiment, the transmit/receive element 122 can be an antenna configured to transmit and/or receive RF signals. In another embodiment, as an example, the transmit/receive element 122 can be an emitter/detector configured to transmit and/or receive IR, UV, or visible light signals. In still another embodiment, the transmit/receive element 122 can be configured to transmit and receive RF and optical signals. It should be appreciated that the transmit/receive element 122 can be configured to transmit and/or receive any combination of wireless signals.

此外,雖然在第1B圖中將傳輸/接收元件122描述成是單個元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。因此,在一個實施例中,WTRU 102可以包括兩個或多個經由空中介面116來傳輸和接收無線訊號的傳輸/接收元件122(例如多個天線)。Moreover, although the transmit/receive element 122 is depicted as a single element in FIG. 1B, the WTRU 102 may include any number of transmit/receive elements 122. More specifically, the WTRU 102 may use MIMO technology. Thus, in one embodiment, the WTRU 102 may include two or more transmission/reception elements 122 (e.g., multiple antennas) that transmit and receive wireless signals via the null intermediaries 116.

收發器120可以被配置成對傳輸/接收元件122將要傳輸的訊號進行調變,以及對傳輸/接收元件122接收的訊號進行解調。如上所述,WTRU 102可以具有多模式能力。因此,收發器120可以包括讓WTRU 102借助諸如UTRA和IEEE 802.11之類的多個RAT來進行通信的多個收發器。The transceiver 120 can be configured to modulate the signals to be transmitted by the transmitting/receiving element 122 and to demodulate the signals received by the transmitting/receiving elements 122. As noted above, the WTRU 102 may have multi-mode capabilities. Thus, transceiver 120 may include multiple transceivers that allow WTRU 102 to communicate via multiple RATs, such as UTRA and IEEE 802.11.

WTRU 102的處理器118可以耦合至揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元),並且可以接收來自揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以從任何適當的記憶體(例如非可移記憶體130和/或可移記憶體132)中存取訊號,以及將資訊存入這些記憶體。該非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶體儲存裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶條、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從並非實體位於WTRU 102的記憶體存取資訊,以及將資料存入該記憶體(例如位於伺服器或本地電腦(未顯示))。The processor 118 of the WTRU 102 may be coupled to a speaker/microphone 124, a keypad 126, and/or a display/touchpad 128 (eg, a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit), and may User input data from speaker/microphone 124, keypad 126, and/or display/touchpad 128 (eg, a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit) is received. The processor 118 can also output user profiles to the speaker/microphone 124, the keypad 126, and/or the display/trackpad 128. In addition, processor 118 can access signals from any suitable memory (e.g., non-removable memory 130 and/or removable memory 132) and store the information in these memories. The non-removable memory 130 can include random access memory (RAM), read only memory (ROM), hard disk, or any other type of memory storage device. The removable memory 132 can include a Subscriber Identity Module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 may access information from memory that is not physically located in the WTRU 102 and store the data in the memory (eg, at a server or local computer (not shown)).

處理器118可以接收來自電源134的電力,並且可以被配置分發和/或控制用於WTRU 102中的其他組件的電力。電源134可以是為WTRU 102供電的任何適當的裝置。舉例來說,電源134可以包括一個或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池、燃料電池等等。The processor 118 can receive power from the power source 134 and can be configured to distribute and/or control power for other components in the WTRU 102. Power source 134 may be any suitable device that powers WTRU 102. For example, the power source 134 may include one or more dry battery packs (such as nickel-cadmium (Ni-Cd), nickel-zinc (Ni-Zn), nickel-hydrogen (NiMH), lithium-ion (Li-ion), etc., solar energy Batteries, fuel cells, etc.

處理器118還可以與GPS晶片組136耦合,該晶片組可以被配置成提供與WTRU 102的當前位置相關的位置資訊(例如經度和緯度)。WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的加上或取代GPS晶片組136資訊之位置資訊,和/或根據從兩個或多個附近基地台接收的訊號定時來確定其位置。應該瞭解的是,在保持符合實施例的同時,WTRU 102可以借助任何適當的定位方法來獲取位置資訊。The processor 118 can also be coupled to a GPS chipset 136 that can be configured to provide location information (e.g., longitude and latitude) related to the current location of the WTRU 102. The WTRU 102 may receive location information from base stations (e.g., base stations 114a, 114b) plus or in place of GPS chipset 136 information via null intermediaries 116, and/or based on signal timing received from two or more nearby base stations. To determine its location. It should be appreciated that the WTRU 102 may obtain location information by any suitable positioning method while remaining consistent with the embodiments.

處理器118還可以耦合到其他週邊設備138,其可以包括提供附加特徵、功能和/或有線或無線連接的一個或多個軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針、衛星收發器、數位相機(用於照片或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放器、媒體播放器、視訊遊戲機模組、網際網路瀏覽器等等。The processor 118 may also be coupled to other peripheral devices 138, which may include one or more software and/or hardware modules that provide additional features, functionality, and/or wired or wireless connections. For example, peripheral device 138 may include an accelerometer, an electronic compass, a satellite transceiver, a digital camera (for photo or video), a universal serial bus (USB) port, a vibrating device, a television transceiver, a hands-free headset, a Bluetooth® mode. Group, FM radio unit, digital music player, media player, video game console module, internet browser, etc.

第1C圖是根據一個實施例的RAN 104和核心網路106的系統圖式。如上所述,RAN 104可以使用UTRA無線電技術而經由空中介面116來與WTRU 102a、102b、102c進行通信。RAN 104還可以與核心網路106通信。如第1C圖所示,RAN 104可以包括節點B 140a、140b、140c,其中每一個節點B都可以包括經由空中介面116與WTRU 102a、102b、102c通信的一個或多個收發器。節點B 140a、140b、140c中的每一個都可以關聯於RAN 104內部的特別胞元(未顯示)。RAN 104還可以包括RNC 142a、142b。應該瞭解的是,在保持與實施例相符的同時,RAN 104可以包括任何數量的節點B和RNC。1C is a system diagram of RAN 104 and core network 106, in accordance with one embodiment. As described above, the RAN 104 can communicate with the WTRUs 102a, 102b, 102c via the null plane 116 using UTRA radio technology. The RAN 104 can also communicate with the core network 106. As shown in FIG. 1C, RAN 104 may include Node Bs 140a, 140b, 140c, each of which may include one or more transceivers in communication with WTRUs 102a, 102b, 102c via null intermediaries 116. Each of the Node Bs 140a, 140b, 140c may be associated with a particular cell (not shown) internal to the RAN 104. The RAN 104 may also include RNCs 142a, 142b. It should be appreciated that the RAN 104 may include any number of Node Bs and RNCs while remaining consistent with the embodiments.

如第1C圖所示,節點B 140a、140b可以與RNC 142a進行通信。此外,節點B 140c可以與RNC 142b進行通信。節點B 140a、140b、140c可以經由Iub介面來與相應的RNC 142a、142b進行通信。RNC 142a、142b彼此則可以經由Iur介面來進行通信。RNC 142a、142b之每一個可以被配置成控制與之相連的相應節點B 140a、140b、140c。另外,RNC 142a、142b之每一個都可被配置成執行或支援其他功能,例如外環功率控制、負載控制、許可控制、封包排程、交接控制、巨集分集、安全功能、資料加密等等。As shown in FIG. 1C, Node Bs 140a, 140b can communicate with RNC 142a. Additionally, Node B 140c can communicate with RNC 142b. Node Bs 140a, 140b, 140c may communicate with respective RNCs 142a, 142b via an Iub interface. The RNCs 142a, 142b can communicate with each other via the Iur interface. Each of the RNCs 142a, 142b can be configured to control the respective Node Bs 140a, 140b, 140c to which it is connected. In addition, each of the RNCs 142a, 142b can be configured to perform or support other functions, such as outer loop power control, load control, admission control, packet scheduling, handover control, macro diversity, security functions, data encryption, and the like. .

第1C圖所示的核心網路106可以包括媒體閘道(MGW)144、行動切換中心(MSC)146、服務GPRS支持節點(SGSN)148、和/或閘道GPRS支持節點(GGSN)150。雖然前述每個元件都被描述成是核心網路106的一部分,但是應該瞭解,核心網路操作者之外的其他實體也可以擁有和/或操作這些元件的任一者。The core network 106 shown in FIG. 1C may include a media gateway (MGW) 144, a mobile switching center (MSC) 146, a serving GPRS support node (SGSN) 148, and/or a gateway GPRS support node (GGSN) 150. While each of the foregoing elements is described as being part of the core network 106, it should be understood that other entities other than the core network operator may also own and/or operate any of these elements.

RAN 104中的RNC 142a可以經由IuCS介面連接到核心網路106中的MSC 146。MSC 146則可以連接到MGW 144。MSC 146和MGW 144可以為WTRU 102a、102b、102c提供針對PSTN 108之類的電路切換式網路的存取,以便促成WTRU 102a、102b、102c與傳統陸線通信裝置間的通信。The RNC 142a in the RAN 104 can be connected to the MSC 146 in the core network 106 via an IuCS interface. The MSC 146 can then be connected to the MGW 144. MSC 146 and MGW 144 may provide WTRUs 102a, 102b, 102c with access to circuit switched networks such as PSTN 108 to facilitate communication between WTRUs 102a, 102b, 102c and conventional landline communication devices.

RAN 104中的RNC 142a還可以經由IuPS介面連接到核心網路106中的SGSN 148。該SGSN 148則可以連接到GGSN 150。SGSN 148和GGSN 150可以為WTRU 102a、102b、102c提供針對網際網路110之類的封包切換網路的存取,以便促成WTRU 102a、102b、102c與IP賦能裝置之間的通信。The RNC 142a in the RAN 104 can also be connected to the SGSN 148 in the core network 106 via an IuPS interface. The SGSN 148 can then be connected to the GGSN 150. The SGSN 148 and GGSN 150 may provide the WTRUs 102a, 102b, 102c with access to a packet switched network, such as the Internet 110, to facilitate communication between the WTRUs 102a, 102b, 102c and IP-enabled devices.

如上所述,核心網路106還可以連接到網路112,該網路可以包括其他服務供應商擁有和/或操作的其他有線或無線網路。As noted above, the core network 106 can also be connected to the network 112, which can include other wired or wireless networks that are owned and/or operated by other service providers.

第1D圖是根據另一個實施例的RAN 104以及核心網路106的系統圖式。如上所述,RAN 104可以使用E-UTRA無線電技術而經由空中介面116來與WTRU 102a、102b、102c進行通信。此外,RAN 104還可以與核心網路106通信。FIG. 1D is a system diagram of RAN 104 and core network 106 in accordance with another embodiment. As described above, the RAN 104 can communicate with the WTRUs 102a, 102b, 102c via the null plane 116 using E-UTRA radio technology. In addition, the RAN 104 can also communicate with the core network 106.

RAN 104可以包括e節點B 160a、160b及160c,但是應該瞭解,在保持與實施例相符的同時,RAN 104可以包括任何數量的e節點B。每一個e節點B 160a、160b及160c可以包括一個或多個收發器,以便經由空中介面116來與WTRU 102a、102b、102c通信。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。由此,舉例來說,e節點B 160a可以使用多個天線來向WTRU 102a傳輸無線訊號,以及接收來自WTRU 102a的無線訊號。The RAN 104 may include eNodeBs 160a, 160b, and 160c, but it should be appreciated that the RAN 104 may include any number of eNodeBs while remaining consistent with the embodiments. Each eNodeB 160a, 160b, and 160c may include one or more transceivers to communicate with the WTRUs 102a, 102b, 102c via the null plane 116. In one embodiment, the eNodeBs 160a, 160b, 160c may implement MIMO technology. Thus, for example, eNodeB 160a may use multiple antennas to transmit wireless signals to, and receive wireless signals from, WTRU 102a.

每一個e節點B 160a、160b、160c可以關聯於特別胞元(未顯示),並且可以被配置成處理無線電資源管理決定、交接決定、上鏈和/或下鏈中的使用者排程等等。如第1D圖所示,e節點B 160a、160b、160c彼此可以在X2介面上進行通信。Each eNodeB 160a, 160b, 160c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, user scheduling in the uplink and/or downlink, etc. . As shown in FIG. 1D, the eNodeBs 160a, 160b, 160c can communicate with each other on the X2 interface.

第1D圖所示的核心網路106可以包括行動性管理閘道(MME)162、服務閘道164以及封包資料網路(PDN)閘道166。雖然上述每一個元件都被描述成是核心網路106的一部分,但是應該瞭解,核心網路操作者之外的其他實體同樣可以擁有和/或操作這些元件的任一者。The core network 106 shown in FIG. 1D may include an active management gateway (MME) 162, a service gateway 164, and a packet data network (PDN) gateway 166. While each of the above elements is described as being part of the core network 106, it should be understood that other entities than the core network operator may also own and/or operate any of these elements.

MME 162可以經由S1介面來與RAN 104中的每一個e節點B 160a、160b、160c相連,並且可以充當控制節點。例如,MME 162可以負責認證WTRU 102a、102b、102c的使用者,啟動/去啟動承載,在WTRU 102a、102b、102c的初始附著過程中選擇特別服務閘道等等。該MME 162還可以提供控制平面功能,以便在RAN 104與使用了GSM或WCDMA之類的其他無線電技術的其他RAN(未顯示)之間執行切換。The MME 162 may be connected to each of the eNodeBs 160a, 160b, 160c in the RAN 104 via an S1 interface and may act as a control node. For example, MME 162 may be responsible for authenticating the users of WTRUs 102a, 102b, 102c, initiating/deactivating bearers, selecting special service gateways during initial attachment of WTRUs 102a, 102b, 102c, and the like. The MME 162 may also provide control plane functionality to perform handover between the RAN 104 and other RANs (not shown) that employ other radio technologies such as GSM or WCDMA.

服務閘道164可以經由S1介面連接到RAN 104中的e節點B 160a、160b、160c之每一個。該服務閘道164通常可以路由和轉發通往/來自WTRU 102a、102b、102c的使用者資料封包。服務閘道164還可以執行其他功能,例如在e節點B間的交接期間錨定使用者平面,在下鏈資料可供WTRU 102a、102b、102c使用時觸發傳呼、管理和儲存WTRU 102a、102b、102c的上下文等等。Service gateway 164 may be connected to each of eNodeBs 160a, 160b, 160c in RAN 104 via an S1 interface. The service gateway 164 can typically route and forward user data packets to/from the WTRUs 102a, 102b, 102c. The service gateway 164 may also perform other functions, such as anchoring the user plane during handover between eNodeBs, and triggering paging, management, and storage of the WTRUs 102a, 102b, 102c when the downlink information is available to the WTRUs 102a, 102b, 102c Context and so on.

服務閘道164還可以連接到PDN閘道166,該PDN閘道可以為WTRU 102a、102b、102c提供針對諸如網際網路110之類的封包切換網路的存取,以便促成WTRU 102a、102b、102c與IP賦能裝置之間的通信。The service gateway 164 can also be coupled to a PDN gateway 166 that can provide the WTRUs 102a, 102b, 102c with access to a packet switched network, such as the Internet 110, to facilitate the WTRUs 102a, 102b, Communication between 102c and the IP-enabled device.

核心網路106可以促成與其他網路的通信。例如,核心網路106可以為WTRU 102a、102b、102c提供針對PSTN 108之類的電路切換式網路的存取,以便促成WTRU 102a、102b、102c與傳統陸線通信裝置之間的通信。作為範例,核心網路106可以包括IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之通信,其中該IP閘道充當了核心網路106與PSTN 108之間的介面。此外,核心網路106還可以為WTRU 102a、102b、102c提供針對網路112的存取,其中該網路可以包括其他服務供應商擁有和/或操作的其他有線或無線網路。The core network 106 can facilitate communication with other networks. For example, core network 106 may provide WTRUs 102a, 102b, 102c with access to circuit-switched networks such as PSTN 108 to facilitate communication between WTRUs 102a, 102b, 102c and conventional landline communication devices. As an example, core network 106 may include or be in communication with an IP gateway, such as an IP Multimedia Subsystem (IMS) server, where the IP gateway acts as an interface between core network 106 and PSTN 108. In addition, core network 106 may also provide WTRUs 102a, 102b, 102c with access to network 112, which may include other wired or wireless networks owned and/or operated by other service providers.

第1E圖是根據另一個實施例的RAN 104和核心網路106的系統圖式。RAN 104可以是通過使用IEEE 802.16無線電技術而在空中介面116上與WTRU 102a、102b、102c通信的存取服務網路(ASN)。如以下進一步論述的那樣,WTRU 102a、102b、102c、RAN 104以及核心網路106的不同功能實體之間的通信鏈路可被定義成參考點。FIG. 1E is a system diagram of RAN 104 and core network 106 in accordance with another embodiment. The RAN 104 may be an Access Service Network (ASN) that communicates with the WTRUs 102a, 102b, 102c over the null plane 116 by using IEEE 802.16 radio technology. As discussed further below, the communication links between the different functional entities of the WTRUs 102a, 102b, 102c, RAN 104, and core network 106 may be defined as reference points.

如第1E圖所示,RAN 104可以包括基地台170a、170b、170c以及ASN閘道182,但是應該瞭解,在保持與實施例相符的同時,RAN 104可以包括任何數量的基地台及ASN閘道。每一個基地台170a、170b、170c都可以關聯於RAN 104中的特別胞元(未顯示),並且每個基地台都可以包括一個或多個收發器,以便經由空中介面116來與WTRU 102a、102b、102c進行通信。在一個實施例中,基地台170a、170b、170c可以實施MIMO技術。由此,舉例來說,基地台180a可以使用多個天線來向WTRU 102a傳輸無線訊號,以及接收來自WTRU 102a的無線訊號。基地台170a、170b、170c還可以提供行動性管理功能,例如交遞觸發、隧道建立、無線電資源管理、訊務分類、服務品質(QoS)策略實施等等。ASN閘道182可以充當訊務聚集點,並且可以負責實施傳呼、用戶設定檔快取、針對核心網路106的路由等等。As shown in FIG. 1E, the RAN 104 may include base stations 170a, 170b, 170c and ASN gateway 182, but it should be understood that the RAN 104 may include any number of base stations and ASN gateways while remaining consistent with the embodiments. . Each of the base stations 170a, 170b, 170c may be associated with a particular cell (not shown) in the RAN 104, and each base station may include one or more transceivers to communicate with the WTRU 102a via the null plane 116, 102b, 102c communicate. In one embodiment, base stations 170a, 170b, 170c may implement MIMO technology. Thus, for example, base station 180a can use multiple antennas to transmit wireless signals to, and receive wireless signals from, WTRU 102a. Base stations 170a, 170b, 170c may also provide mobility management functions such as handover triggering, tunnel establishment, radio resource management, traffic classification, quality of service (QoS) policy enforcement, and the like. The ASN gateway 182 can act as a traffic aggregation point and can be responsible for implementing paging, user profile cache, routing to the core network 106, and the like.

WTRU 102a、102b、102c與RAN 104之間的空中介面116可被定義成是實施IEEE 802.16規範的R1參考點。另外,WTRU 102a、102b、102c中的每一個都可以與核心網路106建立邏輯介面(未顯示)。WTRU 102a、102b、102c與核心網路106之間的邏輯介面可被定義成R2參考點,該參考點可以用於認證、授權、IP主機配置管理和/或行動性管理。The null interfacing plane 116 between the WTRUs 102a, 102b, 102c and the RAN 104 may be defined as an Rl reference point that implements the IEEE 802.16 specification. In addition, each of the WTRUs 102a, 102b, 102c can establish a logical interface (not shown) with the core network 106. The logical interface between the WTRUs 102a, 102b, 102c and the core network 106 can be defined as an R2 reference point that can be used for authentication, authorization, IP host configuration management, and/or mobility management.

基地台170a、170b及170c之每一者之間的通信鏈路可被定義成R8參考點,該參考點包含了用於促成WTRU交接以及基地台之間的資料傳送的協定。基地台170a、170b、170c與ASN閘道172之間的通信鏈路可被定義成R6參考點。該R6參考點可以包括用於促成基於與WTRU 102a、102b、180c中每一者相關聯的行動性事件的行動性管理的協定。The communication link between each of the base stations 170a, 170b, and 170c can be defined as an R8 reference point that includes protocols for facilitating WTRU handover and data transfer between base stations. The communication link between the base stations 170a, 170b, 170c and the ASN gateway 172 can be defined as an R6 reference point. The R6 reference point can include an agreement to facilitate mobility management based on an action event associated with each of the WTRUs 102a, 102b, 180c.

如第1E圖所示,RAN 104可以連接到核心網路106。RAN 104與核心網路106之間的通信鏈路可以被定義成R3參考點,作為範例,該參考點包含了用於促成資料傳送和行動性管理能力的協定。核心網路106可以包括行動IP本地代理(MIP-HA)174、認證授權記帳(AAA)伺服器176以及閘道178。雖然前述每個元件都被描述成是核心網路106的一部分,但是應該瞭解,核心網路操作者以外的實體也可以擁有和/或操作這些元件的任一者。As shown in FIG. 1E, the RAN 104 can be connected to the core network 106. The communication link between the RAN 104 and the core network 106 can be defined as an R3 reference point, which, by way of example, includes protocols for facilitating data transfer and mobility management capabilities. The core network 106 may include a Mobile IP Home Agent (MIP-HA) 174, an Authentication and Authorization Accounting (AAA) server 176, and a gateway 178. While each of the foregoing elements is described as being part of the core network 106, it should be understood that entities other than the core network operator may also own and/or operate any of these elements.

MIP-HA 174可以負責實施IP位址管理,並且可以讓WTRU 102a、102b、102c可以在不同的ASN和/或不同的核心網路之間漫遊。MIP-HA 174可以為WTRU 102a、102b、102c提供針對網際網路110之類的封包切換網路的存取,以便促成WTRU 102a、102b、102c與IP賦能裝置之間的通信。AAA伺服器176可以負責實施使用者認證以及支援使用者服務。閘道178可以促成與其他網路的交互工作。例如,閘道178可以為WTRU 102a、102b、102c提供對於PSTN 108之類的電路切換式網路的存取,以便促成WTRU 102a、102b、102c與傳統陸線通信裝置之間的通信。另外,閘道178還可以為WTRU 102a、102b、102c提供針對網路112的存取,其中該網路可以包括其他服務供應商擁有和/或操作的其他有線或無線網路。The MIP-HA 174 may be responsible for implementing IP address management and may allow the WTRUs 102a, 102b, 102c to roam between different ASNs and/or different core networks. The MIP-HA 174 may provide the WTRUs 102a, 102b, 102c with access to a packet switched network, such as the Internet 110, to facilitate communication between the WTRUs 102a, 102b, 102c and IP-enabled devices. The AAA server 176 can be responsible for implementing user authentication and supporting user services. Gateway 178 can facilitate interaction with other networks. For example, gateway 178 may provide WTRUs 102a, 102b, 102c with access to circuit-switched networks such as PSTN 108 to facilitate communication between WTRUs 102a, 102b, 102c and conventional landline communication devices. In addition, gateway 178 may also provide WTRUs 102a, 102b, 102c with access to network 112, which may include other wired or wireless networks owned and/or operated by other service providers.

雖然在第1E圖中沒有顯示,但是應該瞭解,RAN 104可以連接到其他ASN,並且核心網路106可以連接到其他核心網路。RAN 104與其他ASN之間的通信鏈路可被定義成R4參考點,該參考點可以包括用於協調WTRU 102a、102b、102c在RAN 104與其他ASN之間的行動的協定。核心網路106與其他核心網路之間的通信鏈路可以被定義成R5參考點,該參考點可以包括用於促成家庭核心網路與被訪核心網路之間交互工作的協定。Although not shown in FIG. 1E, it should be appreciated that the RAN 104 can be connected to other ASNs and the core network 106 can be connected to other core networks. The communication link between the RAN 104 and the other ASNs may be defined as an R4 reference point, which may include an agreement for coordinating the actions of the WTRUs 102a, 102b, 102c between the RAN 104 and other ASNs. The communication link between the core network 106 and other core networks can be defined as an R5 reference point, which can include protocols for facilitating interworking between the home core network and the visited core network.

第2圖示出了一個可以實踐或實施這裡的實施例所在的範例通信系統200。該通信系統200僅僅是出於例證目的提供的,並且不對所揭露的實施例構成限制。如第2圖所示,通信系統200包括基地台214和WTRU 202a、202b。本領域技術人員將會理解,通信系統200可以包括第2圖未顯示的額外元件。FIG. 2 illustrates an example communication system 200 in which the embodiments herein may be practiced or implemented. The communication system 200 is provided for illustrative purposes only and does not limit the disclosed embodiments. As shown in FIG. 2, communication system 200 includes a base station 214 and WTRUs 202a, 202b. Those skilled in the art will appreciate that communication system 200 can include additional components not shown in FIG.

作為範例,基地台214可以是基地台114(第1A圖)、節點B 140(第1C圖)、e節點B 160(第1D圖)和基地台170(第1E圖)中的任何一個。基地台214也可以包括與基地台114、節點B 140、e節點B 160以及基地台170相似和/或不同的功能。例如,基地台214可以包含用於支持5G以及實施這裡包含的過程、技術等等的功能。As an example, base station 214 may be any of base station 114 (FIG. 1A), Node B 140 (FIG. 1C), eNode B 160 (FIG. 1D), and base station 170 (FIG. 1E). Base station 214 may also include similar and/or different functions as base station 114, Node B 140, eNodeB 160, and base station 170. For example, base station 214 can include functionality for supporting 5G and implementing the processes, techniques, and the like included herein.

基地台214可被配置成用於小型胞元操作和/或部署。基地台214可被配置成支援任何的釐米波(cmW)和毫米波(mmW)操作。為了簡化描述,在這裡可以使用術語“x mW”來指cmW和mmW中的任何一個。作為補充和/或替換,基地台214還可以被配置成支援用於3GPP 系統版本12指定的小型胞元操作和/或部署有關的各種(例如所有或一些)功能和/或特徵。關於這一點,基地台214能夠並行、同時和/或以其它方式而與LTE、LTE-A或類似類型(統稱為“LTE”)的空中介面連結來操作x mW空中介面。基地台214可以配備各種先進天線配置和波束成形技術中的至少一種,例如能夠允許基地台214同時在寬波束圖案中傳送LTE下鏈通道以及在一個或多個窄波束圖案中傳送x mW通道的技術。基地台214還可以被配置成使用被調適成具有用於支援不具有或是未使用其x mW上鏈傳輸能力的WTRU的特徵和過程(例如這裡揭露的特徵和過程)的LTE上鏈配置。Base station 214 can be configured for small cell operation and/or deployment. The base station 214 can be configured to support any centimeter wave (cmW) and millimeter wave (mmW) operation. To simplify the description, the term may be used herein "x mW" refers to any of a cmW and mmW. Additionally and/or alternatively, base station 214 may also be configured to support various (eg, all or some) functions and/or features related to small cell operations and/or deployments specified by 3GPP system version 12. In this regard, the base station 214 can operate the x mW null interfacing plane in parallel, simultaneously, and/or otherwise with an empty interfacing plane of LTE, LTE-A, or similar type (collectively "LTE"). The base station 214 can be equipped with at least one of various advanced antenna configurations and beamforming techniques, for example, capable of allowing the base station 214 to simultaneously transmit LTE downlink channels in a wide beam pattern and x mW channels in one or more narrow beam patterns. technology. Base station 214 may also be configured to use and is adapted to process having the features (e.g., features and processes disclosed herein) do not have support for a WTRU or which x mW unused capacity on an LTE uplink transmission chain configuration.

作為範例,WTRU 202a、202b中的每一個可以是WTRU 102(第1A圖至第1E圖)中的任何一個。WTRU 202a、202b中的每一個同樣可以包含與WTRU 102相似和/或不同的功能。WTRU 202a、202b可以包含用於支援5G之特徵以及實施這裡所包含的過程、技術等等的功能。為了簡化描述,當在這裡使用“WTRU 204”時,其可以指WTRU 202a、202b中的任何一個。As an example, each of the WTRUs 202a, 202b may be any of the WTRUs 102 (FIGS. 1A-1E). Each of the WTRUs 202a, 202b may also include similar and/or different functionality to the WTRU 102. The WTRUs 202a, 202b may include functionality for supporting the features of 5G and implementing the processes, techniques, and the like included herein. To simplify the description, when "WTRU 204" is used herein, it may refer to any of the WTRUs 202a, 202b.

WTRU 202a、202b中的每一個都可以被配置成支援x mW操作。WTRU 202a、202b可被進一步配置成支援用於3GPP系統版本12規定的使用者裝置操作和/或部署的各種(例如全部或一些)功能和/或特徵。WTRU 202a、202b中的每一個都能並行、同時和/或以其他方式而相互連結來操作LTE和x mW空中介面。WTRU 202a、202b之每一個都可以具有兩組天線以及附帶的RF鏈;其中一組被配置成在LTE波段中操作,並且另一組被配置成在x mW頻段中操作。然而,本揭露並不侷限於此,並且WTRU可以具有任何數量的天線組以及附帶的RF鏈。WTRU 202a、202b之每一個都可以包括一個或多個基帶處理器,並且這些基帶處理器可以包括用於LTE頻段以及x mW頻段的基帶處理的分別或者至少部分結合的功能。作為範例,這些基帶處理功能可以共用用於x mW和LTE空中介面的硬體塊。綜述 WTRU 202a, 202b each of which can be configured to support operation x mW. The WTRUs 202a, 202b may be further configured to support various (eg, all or some) functions and/or features for user device operations and/or deployment as specified by the 3GPP system Release 12. WTRU 202a, 202b each of which can be parallel, concurrently, and / or connected to each other in other ways to operate the LTE air interface and x mW. WTRU 202a, 202b of each antenna may have two RF chains and incidental; wherein a group is configured to operate in the LTE band, and the other set is configured to operate in a frequency band x mW. However, the disclosure is not limited in this respect, and the WTRU may have any number of antenna groups and accompanying RF chains. WTRU 202a, 202b of each may include one or more baseband processors, and these functions may include a baseband processor and a baseband processor x mW LTE bands are bands or at least partially bound. As an example, these functions may be common for the baseband processing hardware block x mW and an LTE air interface. Review

特別地,本揭露所涉及的方法、裝置、系統、設備以及電腦程式產品針對的是回載和前向回傳訊務(統稱為“跨行程(crosshaul)訊務”)的共用傳輸。在這裡提供的新的方法和/或技術中,其中一種新的方法和/或技術是一種跨行程共用訊框(XCF),其中該XCF被調適成攜帶讓任何基於封包的跨行程訊務之最佳化轉發及/或管理能進行的新的控制資訊以及其他資訊。且依照MAC-in-MAC協定相容的XCF,XCF的轉發不但可以由支援共用XCF域轉發和管理控制(由此能夠使用該新的控制資訊)的封包切換元件來執行,而且還可以由舊有的MAC-in-MAC協定的(例如乙太網)切換機在沒有憑藉XCF域共用轉發控制的情況下執行。In particular, the methods, apparatus, systems, devices, and computer program products of the present disclosure are directed to shared transmissions of both backhaul and forward backhaul traffic (collectively referred to as "crosshaul traffic"). Among the new methods and/or techniques provided herein, one of the new methods and/or techniques is a cross-trip common frame (XCF), where the XCF is adapted to carry any packet-based cross-trip traffic. Optimize forwarding and/or management of new control information and other information that can be performed. And in accordance with the XCF compatible with the MAC-in-MAC protocol, the forwarding of the XCF can be performed not only by the packet switching component that supports the shared XCF domain forwarding and management control (and thus the new control information), but also by the old Some MAC-in-MAC protocol (eg Ethernet) switchers do not perform with XCF domain shared forwarding control.

XCF攜帶的新的控制資訊考允許不同類型的跨行程訊務的多工以及轉發和網路管理最佳化處理。此類資訊可以是在MAC-in-MAC協定訊框的酬載和/或標頭中攜帶的。如果是在酬載中攜帶的,因為切換機在做出轉發決定之前需要讀取該訊框酬載的一部分,由此可能會引入額外延遲。此外,如果使用的是802.1AE中,那麼該在每一躍程上都必須解密和重新加密酬載,由此將會進一步增大切換延遲。另外,在酬載中添加新的資訊可能需要引入新的XCF層以及新的切換機硬體設計。The new control information carried by XCF allows for multiplexing of different types of cross-trip traffic as well as forwarding and network management optimization. Such information may be carried in the payload and/or header of the MAC-in-MAC protocol frame. If it is carried in the payload, the switch needs to read a portion of the frame payload before making a forwarding decision, which may introduce additional delay. In addition, if 802.1AE is used, then the payload must be decrypted and re-encrypted on each hop, which will further increase the handover delay. In addition, adding new information to the payload may require the introduction of a new XCF layer and a new switch hardware design.

作為替換,在MAC-in-MAC標頭中可以攜帶該額外資訊。舉例來說,如果額外資訊是在MAC-in-MAC標頭範本的已定義欄位內部攜帶的,那麼這將可以確保與舊有切換機相容。這意味著MAC-in-MAC舊有切換機能夠依照MAC-in-MAC協定來解釋這種欄位,並且具有XCF能力的切換機可以用不同的方式對其進行解釋,並且由此對其進行利用來用於跨行程訊務的轉發最佳化。第二種替換方案(例如使用MAC-in-MAC標頭作為XCF的基線範本)要比第一替換方案更為有利。與已有硬體的相容性會因為資料和控制平面的分離性而得到保持,由此不需要修改已有的傳統乙太網硬體來支援XCF(因為其在硬體級將會作為MAC-in-MAC協定參數出現)。作為範例,如果額外(新的)控制資訊是在乙太網(802.2)子層所共用的欄位中攜帶的,那麼將可以保持與MAC服務的相容性。在這種情況下,MAC服務相容性會通過將相同欄位置於子層標頭中的不同位置(例如借助IEEE 802.11ak機制來在IEEE 802.11上將MAC-in-MAC映射)來避免欄位轉變。如在下文中詳細描述的那樣,XCF可以通過使MAC-in-MAC範本範例化(其範例是在第4圖中顯示的)來攜帶新的控制資訊和/或欄位。Alternatively, this additional information can be carried in the MAC-in-MAC header. For example, if additional information is carried inside a defined field of the MAC-in-MAC header template, this will ensure compatibility with the old switch. This means that the MAC-in-MAC legacy switch can interpret this field in accordance with the MAC-in-MAC protocol, and the XCF-capable switcher can interpret it in different ways and thereby Use for forwarding optimization for cross-trip traffic. A second alternative (such as using a MAC-in-MAC header as a baseline template for XCF) is more advantageous than the first alternative. Compatibility with existing hardware is maintained due to the separation of data and control planes, thus eliminating the need to modify existing legacy Ethernet hardware to support XCF (because it will act as a MAC at the hardware level) -in-MAC protocol parameters appear). As an example, if additional (new) control information is carried in a field shared by the Ethernet (802.2) sublayer, then compatibility with the MAC service will be maintained. In this case, MAC service compatibility avoids fields by placing the same column at different locations in the sublayer header (eg, mapping MAC-in-MAC over IEEE 802.11 with the IEEE 802.11ak mechanism). change. As described in detail below, the XCF can carry new control information and/or fields by instantiating the MAC-in-MAC template (examples of which are shown in FIG. 4).

在一個實施例中,一種在網路實體中實施的方法可以包括以下的任何一項:使用XCF來產生和傳送跨行程訊務,其中該XCF被編碼用於MAC-in-MAC協定相容以及支援跨行程訊務的共用XCF域轉發和/或管理。在一個實施例中,XCF可以包括被編碼成支援跨行程訊務的轉發和管理之任一個的一個或多個MAC-in-MAC協定欄位/參數。In one embodiment, a method implemented in a network entity can include any of the following: using XCF to generate and transmit cross-travel traffic, wherein the XCF is encoded for MAC-in-MAC protocol compatibility and Supports shared XCF domain forwarding and/or management of cross-trip traffic. In one embodiment, the XCF may include one or more MAC-in-MAC protocol fields/parameters that are encoded to support any of the forwarding and management of cross-travel traffic.

在一個實施例中,一種在網路實體中實施的方法可以包括以下的任何一項:使用XCF來產生和傳送跨行程訊務,其中該XCF是MAC-in-MAC協定相容的,並且編碼了一個或多個MAC-in-MAC協定欄位/參數,以支持共用的XCF域轉發和/或管理控制(統稱為“共用XCF域控制”)。In one embodiment, a method implemented in a network entity can include any of the following: using XCF to generate and transmit cross-travel traffic, wherein the XCF is MAC-in-MAC protocol compatible and encoded One or more MAC-in-MAC protocol fields/parameters to support shared XCF domain forwarding and/or management control (collectively referred to as "shared XCF domain control").

在一個實施例中,XCF可以具有以MAC-in-MAC協定訊框範本(“MAC-in-MAC範本”)的範例化為基礎的結構和特徵。通過XCF之MAC-in-MAC向後相容,可以支持不具有XCF能力的舊有MAC-in-MAC切換機。這些舊有切換機不會受到共用XCF域控制,由此不能充分利用在XCF中設置的選項來最佳化跨行程訊務轉發處理。而具有XCF能力的切換機則可以充分利用共用XCF域控制。In one embodiment, the XCF may have structures and features based on the instantiation of a MAC-in-MAC protocol frame template ("MAC-in-MAC template"). Backward compatible with XCF's MAC-in-MAC, it can support legacy MAC-in-MAC switchers without XCF capability. These legacy switches are not subject to shared XCF domain control and thus cannot fully utilize the options set in the XCF to optimize cross-trip traffic forwarding processing. Switching machines with XCF capabilities can take advantage of shared XCF domain control.

在這裡提供的新的方法和/或技術中,其中一種新的方法和/或技術是用於在舊有的MAC-in-MAC協定(乙太網)切換機上實施XCF特徵的一個子集的同時舒解舊有乙太網切換機上的MAC表格大小的問題的增強方案,該問題是起因於與支持XCF域控制的一個封包切換元件(例如跨行程轉發實體(XFE)節點)相關聯的多個乙太網位址(例如因為限制XCF位址空間)。Among the new methods and/or techniques provided herein, one of the new methods and/or techniques is for implementing a subset of XCF features on legacy MAC-in-MAC protocol (Ethernet) switchers. An enhanced solution to the problem of the size of the MAC table on the old Ethernet switch, which is caused by a packet switching element (such as a cross-trip forwarding entity (XFE) node) that supports XCF domain control. Multiple Ethernet addresses (for example, because the XCF address space is limited).

在這裡提供的新的方法和/或技術之間的是通過應用分段路由之以XCF結構為基礎的跨行程訊務的轉發和管理。這可以轉換成(1)在基線的MAC-in-MAC部分添加新的XCF標頭部分,以便定義一個有序分段列表;以及(2)定義新的控制資訊(例如最後一個分段,新的EtherType),以使該分段路由能夠適當運作。Between the new methods and/or technologies provided herein is the forwarding and management of cross-travel traffic based on the XCF structure by applying segmentation routing. This can be converted into (1) adding a new XCF header portion in the MAC-in-MAC portion of the baseline to define an ordered segment list; and (2) defining new control information (eg, last segment, new) EtherType) to enable the segmentation routing to function properly.

並且,在這裡提供的新的方法和/或技術之間的是一種新的結構,該結構包含了用於快速重新路由(無需等待中心控制器反應(例如對網路元件故障之類的事件做出反應))和在發生網路元件故障(例如傳輸鏈路故障)的情況下降低訊務損失的回退路徑上的資訊相關的固定長度的有序列表。Also, between the new methods and/or techniques provided herein is a new architecture that includes for fast rerouting (without waiting for the central controller to react (eg, to events such as network component failures). Outgoing)) and an ordered list of fixed lengths associated with information on the fallback path of reduced traffic loss in the event of a network component failure (eg, a transmission link failure).

依照這裡提供的新的方法和技術,XCF的結構和特徵可以基於以下:(i)用於滿足跨行程訊務傳輸需要的MAC-in-MAC範本的範例化,以及(ii)分段路由的應用。In accordance with the new methods and techniques provided herein, the structure and features of the XCF can be based on the following: (i) the instantiation of the MAC-in-MAC template for inter-transmission traffic transmission requirements, and (ii) segmentation routing. application.

第3圖是示出了範例通信環境300的框圖。該通信環境300可以包括傳輸網路301。該傳輸網路301可以包括舊有域303和XCF域304。XCF域304可以包括經由分段310相互連接的第一和第二子域306、308。在第一和第二子域306、308以及分段310中的每一個的內部可以使用一或多個不同的傳輸和資料鏈路技術。第一和第二子域306、308與分段310之間的介面所使用傳輸或資料鏈路技術可以是互不相同的。雖然可以使用不同的傳輸或資料鏈路技術,但是第一和第二子域306、308、分段310、及其他定義了XCF域304的元件(如果有的話)可以支援使用了XCF的跨行程訊務的共用傳輸。雖然沒有顯示,但是XCF域304可以包括:用於互連第一和第二子域306、308的更多分段;和/或一個或多個額外子域;及對於每一個額外子域而言之用於將此額外子域與第一子域306、第二子域308和/或其他額外子域(如果有的話)互連的一個或多個額外分段。作為替換,XCF域304可以只包括單個子域。FIG. 3 is a block diagram showing an example communication environment 300. The communication environment 300 can include a transmission network 301. The transport network 301 can include an old domain 303 and an XCF domain 304. The XCF domain 304 can include first and second sub-domains 306, 308 that are interconnected via a segment 310. One or more different transmission and data link technologies may be used within each of the first and second sub-domains 306, 308 and segment 310. The transmission or data link techniques used by the interface between the first and second sub-domains 306, 308 and segment 310 may be different from one another. Although different transport or data link techniques may be used, the first and second sub-domains 306, 308, segment 310, and other components (if any) that define the XCF domain 304 may support cross-sections using XCF. Shared transmission of the trip service. Although not shown, the XCF domain 304 can include: more segments for interconnecting the first and second sub-domains 306, 308; and/or one or more additional sub-domains; and for each additional sub-domain One or more additional segments used to interconnect this additional sub-domain with the first sub-domain 306, the second sub-domain 308, and/or other additional sub-domains, if any. Alternatively, XCF domain 304 may include only a single subdomain.

第一子域306可以包括經由本地分段與跨行程調適單元(XAU)316、318、319和320以及乙太網切換機322互連的XFE 312。該第一子域306還可以包括經由本地分段與乙太網切換機322互連以及與分段310有介面的XFE 314。第二子域308可包括第一XFE 324,該第一XFE 324與分段310有介面且經由本地分段與乙太網切換機334互聯。第二子域308同樣可以包括經由本地分段與XFE 324、乙太網切換機334、XAU 330、322以及第三XFE 328互連的第二XFE 326。該XFE 312、314、324、326以及328可以連同乙太網切換機322、334一起執行XCF的封包切換。The first sub-domain 306 can include an XFE 312 interconnected with the inter-trip adaptation units (XAU) 316, 318, 319, and 320 and the Ethernet switch 322 via local segments. The first sub-domain 306 may also include an XFE 314 that is interconnected with the Ethernet switch 322 via a local segment and interfaced with the segment 310. The second sub-domain 308 can include a first XFE 324 that interfaces with the segment 310 and is interconnected with the Ethernet switch 334 via local segments. The second sub-domain 308 may also include a second XFE 326 interconnected with the XFE 324, the Ethernet switch 334, the XAUs 330, 322, and the third XFE 328 via local segments. The XFEs 312, 314, 324, 326, and 328 can perform XCF packet switching along with the Ethernet switchers 322, 334.

正如這裡更詳細描述的那樣,在XCF域中處理的XCF可被編碼用於MAC-in-MAC協定相容以及支援XCF域中的跨行程訊務的共用轉發和/或管理。舉例來說,XFE 312、314、324、326和328可以使用XCF域的共用轉發控制,並且可以充分利用在XCF中設置的選項來最佳化跨行程訊務轉發。乙太網切換機322、334可以是不支援XCF域的共用轉發控制的舊有MAC-in-MAC(沒有XCF能力的)切換機。由於由乙太網切換機322、334所處理的XCF是為了MAC-in-MAC協定(向後)相容而被編碼的,因此可以使用MAC-in-MAC協定轉發控制。舊有的MAC-in-MAC切換機不能充分利用在XCF中設置的選項來最佳化跨行程訊務轉發。As described in more detail herein, the XCF processed in the XCF domain can be encoded for MAC-in-MAC protocol compatibility and to support shared forwarding and/or management of cross-travel traffic in the XCF domain. For example, XFEs 312, 314, 324, 326, and 328 can use the shared forwarding control of the XCF domain and can take advantage of the options set in the XCF to optimize cross-travel traffic forwarding. The Ethernet switch 322, 334 may be a legacy MAC-in-MAC (without XCF capability) switch that does not support shared forwarding control of the XCF domain. Since the XCF handled by the Ethernet switch 322, 334 is encoded for MAC-in-MAC protocol (backward) compatibility, MAC-in-MAC protocol forwarding control can be used. Older MAC-in-MAC switchers cannot take full advantage of the options set in XCF to optimize cross-trip traffic forwarding.

XAU 316、318、319、320、330和332可以對XCF進行調適,以便與外部的(例如非XCF)互連域交換跨行程訊務。該外部互連域可以包括:(或者包括與以下各項相關聯的域)存取網路336、338;舊有域303;核心網路340;雲端/資料中心,例如基帶單元(BBU)伺服器342;存取網路344;防火牆346等等。舉例來說,XAU 316、318可以通過調適XCF而分別與存取網路336、338交換跨行程訊務;XAU 320、330可以通過調適XCF而與舊有域303和/或存取網路344交換跨行程訊務;以及XAU 332可以通過調適XCF而與核心網路340交換跨行程訊務。The XAUs 316, 318, 319, 320, 330, and 332 can adapt the XCF to exchange cross-travel traffic with external (eg, non-XCF) interconnect domains. The external interconnect domain may include: (or include domains associated with) access networks 336, 338; legacy domain 303; core network 340; cloud/data center, such as baseband unit (BBU) servo 342; access network 344; firewall 346, and the like. For example, the XAUs 316, 318 can exchange cross-travel traffic with the access networks 336, 338, respectively, by adapting the XCF; the XAUs 320, 330 can be adapted to the old domain 303 and/or the access network 344 by adapting the XCF. The cross-travel traffic is exchanged; and the XAU 332 can exchange cross-trip traffic with the core network 340 by adapting the XCF.

通信環境300可以包括網路控制器350。該網路控制器350可以與XCF域304的實體交換各種資訊,例如與XFE 312、314、324、326和328以及XAU 316、318、319、320、330和332切換資訊。該資訊可以包括用於提供XCF域304的實體來執行轉發和佇列管理的規則、參數等等。Communication environment 300 can include network controller 350. The network controller 350 can exchange various information with entities of the XCF domain 304, such as with XFEs 312, 314, 324, 326, and 328 and XAUs 316, 318, 319, 320, 330, and 332. This information may include rules, parameters, etc. for providing entities of the XCF domain 304 to perform forwarding and queue management.

最近,針對EU H2020 5G-Crosshaul專案,用於跨行程訊務的共用封包切換格式之設計的工作已開始進行。依照這裡的說明書和申請專利範圍的XCF有可能會是該共用封包切換格式的一個可採用的解決方案。XCF意在能以用於不同訊務設定檔之所保證的QoS來傳輸和多工各種(現有和新的)前向回傳和回載訊務。如上所述,XCF可被編碼用於MAC-in-MAC協定相容以及支援XCF域中的跨行程訊務的共用轉發和/或管理。Recently, for the EU H2020 5G-Crosshaul project, the design of a common packet switching format for cross-border traffic has begun. The XCF in accordance with the specification and patent application scope herein is likely to be an available solution for the shared packet switching format. XCF is intended to transmit and multiplex various (existing and new) forward backhaul and reload traffic with guaranteed QoS for different traffic profiles. As noted above, the XCF can be encoded for MAC-in-MAC protocol compatibility and to support shared forwarding and/or management of cross-travel traffic in the XCF domain.

供應商骨幹橋(IEEE 802.1ah-2008,也被稱為“MAC-in-MAC”)是一組用於供應商網路上的路由的架構和協定,其允許在不損失每一個客戶的個別定義的虛擬區域網路(VLAN)的情況下互連多個供應商橋接網路。供應商骨幹橋-訊務工程(IEEE 802.1Qay-2009,也被稱為“PBB-TE”)會通過消除淹漫、動態創建的轉發表、擴充樹協定以及通過將資料與控制平面分離來擴展MAC-in-MAC行為。PBB-TE將乙太網技術調適於載波(carrier)回載類傳輸網路,並且利用了乙太網內在的規模經濟。The Vendor Backbone Bridge (IEEE 802.1ah-2008, also known as "MAC-in-MAC") is a set of architectures and protocols for routing on the provider's network that allow for the individual definition of each customer without loss. The interconnection of multiple vendors bridges the network in the case of virtual local area networks (VLANs). Vendor Backbone Bridge - Traffic Engineering (IEEE 802.1Qay-2009, also known as "PBB-TE") expands by eliminating flooding, dynamically created forwarding tables, augmenting tree agreements, and by separating data from the control plane MAC-in-MAC behavior. PBB-TE adapts Ethernet technology to carrier-loaded transmission networks and takes advantage of the economies of scale inherent in Ethernet.

IEEE標準802.11最初是作為存取網路設計的,其中假設了所連接裝置將會是該網路的葉節點。近來,對於使用802.11鏈路的關注不但在存取方面有所增長,而且在傳輸網路方面也所有提升。舉例來說,802.11ad操作在60吉赫(GHz)的波段,並且能夠提供同樣適合回載傳輸的高頻寬鏈路。IEEE 802.11ak修訂版可選地擴展了802.11標準,由此能在裝置之間建立可在符合IEEE Std 802.1Q的網路內部用作傳輸鏈路的通信鏈路。IEEE 802.1Qbz和IEEE 802.1ac修訂版連同IEEE 802.11ak一起定義了關於802.11媒體的橋接處理的增強方案。由此,在IEEE 802.11鏈路上可以原生地(natively)攜帶MAC-in-MAC訊框,而不需要執行轉換或封裝。The IEEE standard 802.11 was originally designed as an access network, assuming that the connected device would be the leaf node of the network. Recently, attention to the use of 802.11 links has not only increased in access, but also in the transmission network. For example, 802.11ad operates in the 60 GHz band and is capable of providing high frequency wide links that are also suitable for backhaul transmission. The IEEE 802.11ak revision optionally extends the 802.11 standard, thereby enabling communication links between devices to be used as transmission links within an IEEE Std 802.1Q compliant network. The IEEE 802.1Qbz and IEEE 802.1ac revisions together with IEEE 802.11ak define an enhanced scheme for bridging processing of 802.11 media. Thus, the MAC-in-MAC frame can be carried natively on the IEEE 802.11 link without performing conversion or encapsulation.

MAC-in-MAC協定能夠支援舊有的乙太網(MAC-in-MAC)切換機,並且能夠支持在不同的域之間和跨越了不同鏈路技術(例如光學、無線等等)的透明(對使用者而言)互連。然而,MAC-in-MAC協定初始是為了回載的載波級傳輸設計和使用的,並且由此被認為不足以被最佳化以轉發新的訊務分類,也就是具有嚴格的時延和抖動需求的前向回傳訊務或是前向回傳與回載的混合體。The MAC-in-MAC protocol can support legacy MAC-in-MAC switchers and support transparency across different domains and across different link technologies (eg optical, wireless, etc.) (for the user) interconnection. However, the MAC-in-MAC protocol was originally designed and used for backhaul carrier-level transmission and is therefore considered insufficient to be optimized to forward new traffic classifications, ie with strict delay and jitter. The forward return traffic of the demand or the mixture of forward return and reload.

第4圖是示出了MAC-in-MAC訊框的範例範本(“MAC-in-MAC範本”)400的框圖。該MAC-in-MAC範本400可以包括MAC-in-MAC標頭402。該MAC-in-MAC標頭402可以包括用於指定MAC-in-MAC協定的各種參數的多個欄位。舉例來說,這些欄位包括用於指定(48位元)乙太網目的地位址的B-Dest位址欄位404以及用於指定(48位元)乙太網源位址的B-Src位址欄位406。如這裡更詳細描述的那樣,MAC-in-MAC範本400可以為XCF提供用以攜帶XCF域控制以及提供與舊有乙太網切換機的向後相容性的基礎。Figure 4 is a block diagram showing an example template ("MAC-in-MAC Template") 400 of a MAC-in-MAC frame. The MAC-in-MAC template 400 can include a MAC-in-MAC header 402. The MAC-in-MAC header 402 may include a plurality of fields for specifying various parameters of the MAC-in-MAC protocol. For example, these fields include a B-Dest address field 404 for specifying (48-bit) Ethernet destination address and a B-Src for specifying (48-bit) Ethernet source address. Address field 406. As described in greater detail herein, the MAC-in-MAC template 400 can provide the XCF with the basis for carrying XCF domain control and providing backward compatibility with legacy Ethernet switchers.

第5圖是示出了範例的跨行程共用訊框(XCF)500(以下將其稱為“XCF 500i”)的中間形式的框圖。XCF 500可以MAC-in-MAC範本400(如所示)或是MAC-in-MAC範本400之外的一個或多個MAC-in-MAC範本的全部或部分之範例化為基礎。為了簡化後續描述中的說明,第3圖所示的範例通信環境的各種元件(例如傳輸網路301的元件)可以結合XCF 500(及其中間形式)而被引用。XCF 500及其中間形式可以在其他通信環境中以及被未具體提及的第3圖所示的範例通信環境中的元件使用、部署等等。Fig. 5 is a block diagram showing an intermediate form of an exemplary cross-trip common frame (XCF) 500 (hereinafter referred to as "XCF 500i"). The XCF 500 may be based on the instantiation of all or part of one or more MAC-in-MAC templates other than the MAC-in-MAC template 400 (as shown) or the MAC-in-MAC template 400. To simplify the description in the following description, various elements of the example communication environment shown in FIG. 3 (e.g., elements of transport network 301) may be referenced in conjunction with XCF 500 (and its intermediate form). The XCF 500 and its intermediate forms can be used, deployed, etc. in other communication environments as well as in the example communication environment shown in Figure 3, not specifically mentioned.

XCF 500可以包括XCF標頭502。該XCF標頭502可以具有控制資訊的MAC-in-MAC標頭402的範例化為基礎,其中該控制資訊被編碼成允許使用MAC-in-MAC協定而適當(適當/正確)轉發XCF 500,以及XCF域的共用轉發和/或管理控制(“XCF域轉發控制”)。用於編碼該控制資訊的編碼處理可以是允許使用MAC-in-MAC協定以及XCF域轉發控制兩者來解釋XCF 500的任何類型的編碼處理。舉例來說,該編碼處理可以對控制資訊進行編碼,以便可以使用MAC-in-MAC協定來解釋XCF標頭502(和/或XCF 500),以及在對一些或全部XCF 標頭502應用了散列函數之後使用XCF域轉發控制來解釋XCF標頭502。The XCF 500 can include an XCF header 502. The XCF header 502 may be based on an instantiation of a MAC-in-MAC header 402 with control information encoded to allow appropriate (proper/correct) forwarding of the XCF 500 using a MAC-in-MAC protocol, And shared forwarding and/or management control of the XCF domain ("XCF Domain Forwarding Control"). The encoding process used to encode the control information may be any type of encoding process that allows the XCF 500 to be interpreted using both the MAC-in-MAC protocol and the XCF domain forwarding control. For example, the encoding process can encode the control information so that the XCF header 502 (and/or XCF 500) can be interpreted using the MAC-in-MAC protocol, and the hash is applied to some or all of the XCF headers 502. The column function is followed by XCF field forwarding control to interpret the XCF header 502.

作為替換,該編碼處理可以通過編碼控制資訊來將XCF域控制資訊佈置於XCF標頭502的一個或多個部分(例如欄位、位元等等)之間,其不會影響使用MAC-in-MAC協定進行XCF的適當轉發處理。例如,XCF標頭502可以包括XCF標頭子部分503。該XCF子部分503可以B-Dest位址欄位404和B-Src位址欄位406的範例化為基礎,其中(i)目的地位址和源位址資訊被佈置在XCF子部分503的部分之間,以便允許使用MAC-in-MAC協定來適當轉發XCF,以及(ii)XCF域控制資訊(例如與活動分段有關的控制資訊)被佈置在XCF子部分502的一個或多個部分之間,其不會影響到使用MAC-in-MAC協定的XCF的適當轉發處理。在依照此類範例的實施例中,控制資訊的編碼處理可以類似於將B-Dest和/或B-Src位址的一個或多個位元改成用於XCF域控制資訊。編碼處理的結果可以是XCF標頭子部分503與用於目的地和/或源定址的常規的B-Dest和/或B-Scr位址相比具有較少的位元。作為替換,改變用途的位元可以具有雙重含義。舉例來說,改變用途的位元可以同時代表MAC-in-MAC協定目的地和/或源定址以及XCF-域控制資訊。Alternatively, the encoding process may arrange XCF domain control information between one or more portions of the XCF header 502 (eg, fields, bits, etc.) by encoding control information that does not affect the use of MAC-in - The MAC protocol performs the appropriate forwarding processing of the XCF. For example, the XCF header 502 can include an XCF header subsection 503. The XCF sub-portion 503 can be based on the instantiation of the B-Dest address field 404 and the B-Src address field 406, wherein (i) the destination address and source address information are arranged in portions of the XCF sub-portion 503. Between, in order to allow the use of the MAC-in-MAC protocol to properly forward the XCF, and (ii) XCF domain control information (eg, control information related to active segmentation) is placed in one or more portions of the XCF sub-portion 502 In the meantime, it does not affect the proper forwarding processing of the XCF using the MAC-in-MAC protocol. In an embodiment in accordance with such an example, the encoding process of the control information may be similar to changing one or more bits of the B-Dest and/or B-Src address to XCF domain control information. The result of the encoding process may be that the XCF header subsection 503 has fewer bits than the conventional B-Dest and/or B-Scr address for destination and/or source addressing. Alternatively, a bit that changes usage may have a dual meaning. For example, a changed-purpose bit can simultaneously represent MAC-in-MAC protocol destination and/or source addressing and XCF-domain control information.

在實施例中,XCF標頭子部分503可以包括XCF分段部分504以及XCF源部分506。XCF分段部分504和XCF源部分506可以分別以B-Dest位址欄位404和B-Src位址欄位406的範例化為基礎。舊有MAC-in-MAC切換機可以將XCF分段部分504解釋成舊有的(例如48位元)乙太網目的位址,並且可以將XCF源部分506解釋成舊有的(例如48位元)乙太網源位址。具有XCF能力的切換機所執行的轉發決定和控制可以與該XCF分段部分504和/或XCF源部分506相關聯的查找為基礎。In an embodiment, the XCF header subsection 503 can include an XCF segmentation portion 504 and an XCF source portion 506. XCF segmentation portion 504 and XCF source portion 506 may be based on the instantiation of B-Dest address field 404 and B-Src address field 406, respectively. The legacy MAC-in-MAC switcher can interpret the XCF segmentation portion 504 as an old (e.g., 48-bit) Ethernet destination address and can interpret the XCF source portion 506 as legacy (e.g., 48-bit). Yuan) Ethernet source address. The forwarding decisions and controls performed by the XCF capable switcher may be based on a lookup associated with the XCF segmentation portion 504 and/or the XCF source portion 506.

XCF分段部分504可以攜帶與XCF域304(第3圖)的活動分段相關聯的XCF域控制資訊,例如分段310以及子域306、308的本地分段中的任何一個。XCF分段部分504可以包括XCF目的地位址部分508以及XCF目的地控制部分510。XCF目的地位址部分508可以指示或表示XCF 500的XCF域轉發位址。作為範例,XCF目的位址部分508可以是具有XCF能力的切換機(例如XFE 312、314、324、326和328以及XAU 316、318、319、320、330和332中的任何一個)的(例如24位元)唯一識別符。XCF目的地控制部分510可以包括用於活動分段內部的轉發最佳化的XCF域控制資訊。這種XCF域轉發最佳化資訊可以包括能在XCF目的地控制部分510的各種訊框控制欄位中攜帶的各種參數。如第5圖所示,關於訊框控制欄位的範例可以包括緊急欄位516、順序欄位518、多目的地欄位520、功率管理欄位522、搶佔欄位524、保護訊框欄位526、更多資料欄位528以及保留欄位530。The XCF segmentation portion 504 can carry XCF domain control information associated with the active segment of the XCF domain 304 (FIG. 3), such as segment 310 and any of the local segments of the sub-domains 306, 308. The XCF segmentation portion 504 can include an XCF destination address portion 508 and an XCF destination control portion 510. The XCF destination address portion 508 can indicate or represent the XCF domain forwarding address of the XCF 500. As an example, XCF destination address portion 508 can be an XCF capable switch (eg, XFE 312, 314, 324, 326, and 328 and any of XAU 316, 318, 319, 320, 330, and 332) (eg, 24-bit) unique identifier. The XCF destination control portion 510 can include XCF domain control information for forwarding optimization within the active segment. Such XCF domain forwarding optimization information may include various parameters that can be carried in various frame control fields of the XCF destination control portion 510. As shown in FIG. 5, examples of the frame control field may include an emergency field 516, a sequence field 518, a multi-destination field 520, a power management field 522, a preemption field 524, and a protection frame field 526. More data fields 528 and reserved fields 530.

緊急欄位516可以攜帶緊急指示符。該緊急指示符可以小到單個位元,並且可被設置成一個用於指示需要立即處理XCF 500的特別值。該緊急指示符可以出於各種原因和/或條件而被設置成這樣的值,例如在XCF 500中攜帶有顯性的擁塞通知(或其他任何OAM)資訊的時候。任何目的地XFE或CAU都可以考慮該緊急欄位516,例如任何具有與XCF目的地位址部分508相匹配或者相一致的位址的XFE或XAU。除了目的地XFE或XAU之外的其他XFE和/或XAU不需要考慮緊急欄位516。The emergency field 516 can carry an emergency indicator. The emergency indicator can be as small as a single bit and can be set to a special value indicating that the XCF 500 needs to be processed immediately. The emergency indicator can be set to such a value for various reasons and/or conditions, such as when the XCF 500 carries explicit congestion notification (or any other OAM) information. The emergency field 516 can be considered by any destination XFE or CAU, such as any XFE or XAU having an address that matches or matches the XCF destination address portion 508. The XFE and/or XAU other than the destination XFE or XAU need not consider the emergency field 516.

順序欄位518可以攜帶有序遞送服務指示符。該有序遞送服務指示符可以小到單個位元,並且可被設置成一個用於指示XFE 500需要(例如要求)按次序的遞送服務的特別值。通常,有序遞送服務指示符可在需要有序遞送服務的XCF中被設置成這樣的值。該有序遞送服務指示符可被設置成指示在諸如802.2 LLC類型2之類的連接導向的操作模式中需要有序遞送服務。The sequence field 518 can carry an ordered delivery service indicator. The ordered delivery service indicator can be as small as a single bit and can be set to a special value used to indicate that the XFE 500 needs (eg, requires) an orderly delivery service. In general, an ordered delivery service indicator can be set to such a value in an XCF that requires an in-order delivery service. The ordered delivery service indicator can be set to indicate that an orderly delivery service is required in a connection-oriented mode of operation, such as 802.2 LLC type 2.

多目的地欄位520可以攜帶多目的地指示符。該多目的地指示符可以小到單個位元,並且可被設置成一個用於指示XCF 500具有多個目的地(例如經由多播、任播、廣播)的特定值。在被設置為這樣的值的時候,XCF目的地位址508可以指定用於轉發XCF 500的分發樹。The multi-destination field 520 can carry a multi-destination indicator. The multi-destination indicator can be as small as a single bit and can be set to a specific value used to indicate that the XCF 500 has multiple destinations (eg, via multicast, anycast, broadcast). When set to such a value, the XCF destination address 508 can specify a distribution tree for forwarding the XCF 500.

功率管理欄位522可以攜帶功率管理指示符。該功率管理指示符可以小到單個位元,並且可以被設置成一個用於指示在傳送XCF 500的XFE和/或XAU上支援功率管理模式的特別值。The power management field 522 can carry a power management indicator. The power management indicator can be as small as a single bit and can be set to a special value indicating that the power management mode is supported on the XFE and/or XAU of the transmitting XCF 500.

搶佔欄位524可以攜帶搶佔指示符。該搶佔指示符可以小到單個位元,並且可被設置成一個用於指示是否可以搶佔XCF的特別值。通常,對於非關鍵性訊務而言,搶佔指示符可被設置成這種值。The preemption field 524 can carry a preemption indicator. The preemption indicator can be as small as a single bit and can be set to a special value indicating whether the XCF can be preempted. Typically, for non-critical traffic, the preemption indicator can be set to this value.

保護訊框欄位526可以攜帶保護訊框指示符。該保護訊框可以小到單個位元,並且可被設置成一個用於指示該酬載已經包含了以通過密碼加密封裝演算法處理的資訊的特定值。(例如GCM-AES -128之類的預設加密套件)。The protection frame field 526 can carry a protection frame indicator. The protection frame can be as small as a single bit and can be set to a specific value indicating that the payload already contains information processed by the cryptographic encapsulation algorithm. (For example, a default cipher suite such as GCM-AES-128).

更多資料欄位528可以攜帶一個更多資料指示符。該更多資料指示符可以小到單個位元,並且可被設置成一個用於指示預計將會發送屬於相同I-SID的更多資料的特別值。通常,在任何XCF資料訊框中(其中預期將會發送屬於相同I-SID的更多資料),該更多資料指示符將被設置成這樣的值。More data field 528 can carry a more data indicator. The more information indicator can be as small as a single bit and can be set to a special value indicating that more data is expected to be sent belonging to the same I-SID. Typically, in any XCF data frame where more data belonging to the same I-SID is expected to be sent, the more data indicator will be set to such a value.

保留欄位530可以攜帶被保留以供將來使用的位元。Reserved field 530 can carry bits that are reserved for future use.

在所顯示的範例中,訊框控制欄位共同佔據24位元,並且XCF目的地位址部分508佔據了XCF分段部分504的24位元(以與舊有(例如48位元)乙太網目的地位址相對應的B-Dest位址欄位404的範例化為基礎)。 XCF分段部分504可以將較多的位元分配給XCF目的地位址部分508,以及將較少的位元分配給XCF目的地控制部分510,反之亦然。作為替換,XCF分段部分504的所有位元可能不會被分配給XCF目的地位址部分508以及XCF目的地控制部分510,並且XCF分段部分504可以相應地分配這些位元。In the example shown, the frame control field occupies 24 bits together, and the XCF destination address portion 508 occupies 24 bits of the XCF segment portion 504 (to the old (eg, 48-bit) Ethernet) The destination address corresponds to the example of the B-Dest address field 404 corresponding to the base address). The XCF segmentation portion 504 can allocate more bits to the XCF destination address portion 508 and assign fewer bits to the XCF destination control portion 510, and vice versa. Alternatively, all of the bits of XCF segmentation portion 504 may not be assigned to XCF destination address portion 508 and XCF destination control portion 510, and XCF segment portion 504 may allocate these bits accordingly.

XCF源部分506可以攜帶與XCF 500的酬載(“XCF酬載”)相關聯的XCF域控制資訊。XCF源部分506可以包括XCF源位址部分512以及XCF源控制部分514。XCF源位址部分512可以指示或表示XCF 500的XCF域源位址。舉例來說,XCF源位址部分512可以是發起XCF 500之具有XCF能力的切換機(例如XFE 312、314、324、326和328以及XAU 316、318、319、320、330和332中的任何一個)的(例如24位元)唯一識別符。XCF源控制部分514可以包括用於XCF域304內部的轉發最佳化的XCF域控制資訊。這種XCF域轉發最佳化資訊可以包括能在XCF源控制部分510的各種訊框控制欄位中攜帶的各種參數。如第5圖所示,這些訊框控制欄位的範例可以包括服務品質(QoS)設定檔/訊務欄位532、SN/TS欄位534以及序號/時間戳記欄位536。The XCF source portion 506 can carry XCF domain control information associated with the payload of the XCF 500 ("XCF payload"). The XCF source portion 506 can include an XCF source address portion 512 and an XCF source control portion 514. The XCF source address portion 512 can indicate or represent the XCF domain source address of the XCF 500. For example, XCF source address portion 512 can be an XCF capable switcher that initiates XCF 500 (eg, XFE 312, 314, 324, 326, and 328 and any of XAU 316, 318, 319, 320, 330, and 332). A) (eg 24-bit) unique identifier. The XCF source control portion 514 can include XCF domain control information for forwarding optimization within the XCF domain 304. Such XCF domain forwarding optimization information may include various parameters that can be carried in various frame control fields of the XCF source control portion 510. As shown in FIG. 5, examples of these frame control fields may include a Quality of Service (QoS) profile/traffic field 532, an SN/TS field 534, and a sequence number/time stamp field 536.

QoS設定檔/訊務分類欄位532可以攜帶QoS設定檔/訊務分類指示符。作為範例,QoS設定檔/訊務分類指示符可以是8位元;並且可以指定與XCF 500相關聯的QoS設定檔(也被稱為訊務分類)。可能的值及其含義的範例是:0x1:fronthaul.cpri,0x2:fronthaul.ngfi,0x10:backhaul.best.effort,0x11:backhaul.video.livestream,0x12:backhaul.voip等等。不同的時遲、抖動以及頻寬需求典型地是與每一個QoS設定檔/訊務分類相關聯。副檔名cpri和ngfi可以分別指共用公共無線電介面(CPRI)和下一代前向回傳介面(NGFI)。The QoS Profile/Traffic Classification field 532 can carry a QoS Profile/Traffic Classifier indicator. As an example, the QoS profile/traffic classification indicator can be 8 bits; and a QoS profile associated with the XCF 500 (also referred to as traffic classification) can be specified. Examples of possible values and their meanings are: 0x1: fronthaul.cpri, 0x2: fronthaul.ngfi, 0x10: backhaul.best.effort, 0x11: backhaul.video.livestream, 0x12: backhaul.voip and so on. Different time delays, jitters, and bandwidth requirements are typically associated with each QoS profile/traffic classification. The extensions cpri and ngfi can refer to the Common Public Radio Interface (CPRI) and the Next Generation Forward Return Interface (NGFI), respectively.

SN/TS欄位534可以攜帶SN/TS指示符。該SN/TS指示符可以小到單個位元,並且可被設置成不同的值以指示是否將序號/時間戳記欄位536解釋成序號或時間戳記。The SN/TS field 534 may carry an SN/TS indicator. The SN/TS indicator can be as small as a single bit and can be set to a different value to indicate whether the sequence number/time stamp field 536 is interpreted as a sequence number or timestamp.

作為範例,序號/時間戳記欄位536可以是15位元,並且可以攜帶序號或時間戳記。舉例來說,如果SN/TS欄位534被設置成1,那麼序號/時間戳記欄位536可以包含與諸如IP、乙太網、NGFI、CPRI等等的SDU(服務資料單元)相關聯的序號。否則,該序號/時間戳記欄位536將會包含時間戳記。As an example, the sequence number/time stamp field 536 can be 15 bits and can carry a sequence number or time stamp. For example, if the SN/TS field 534 is set to 1, the sequence number/time stamp field 536 may contain a sequence number associated with an SDU (Service Data Unit) such as IP, Ethernet, NGFI, CPRI, and the like. . Otherwise, the sequence number/time stamp field 536 will contain a timestamp.

在所顯示的範例中,XCF源控制部分514的訊框控制欄位共同佔據了24位元,並且XCF源位址部分512佔據了XCF源部分506的24位元(以與舊有(例如48位元)乙太網源位址相對應的B-Src位址欄位406的範例化為基礎)。XCF源部分504可以將較多的位元分配給XCF源位址部分512,以及將較少的位元分配給XCF源控制部分514,反之亦然。作為替換,XCF源部分506的所有位元可能不會被分配給XCF源位址部分512以及XCF源控制部分514,並且XCF源部分504可以相應地分配該位元。In the example shown, the frame control field of the XCF source control portion 514 occupies a total of 24 bits, and the XCF source address portion 512 occupies the 24-bit of the XCF source portion 506 (to match the old (eg 48) The bit) is based on the example of the B-Src address field 406 corresponding to the source address of the Ethernet. The XCF source portion 504 can allocate more bits to the XCF source address portion 512 and assign fewer bits to the XCF source control portion 514, and vice versa. Alternatively, all of the bits of XCF source portion 506 may not be allocated to XCF source address portion 512 and XCF source control portion 514, and XCF source portion 504 may allocate the bit accordingly.

在第5圖所示的範例中,MAC-in-MAC範本400的範例化導致將XCF分段部分504和XCF源部分506(分別與B-Dest欄位404和B-Src位址欄位406相對應)中的每一個分割成多個子欄位;並且這其中的一些子欄位可以攜帶XCF域控制資訊。這種分割可以基於以下的一項或多項: 1、該乙太網位址的長度是48位元,所以該位址必須是全域唯一的。在XCF域中,定址處理並不需要是全域唯一的(例如,由於與供應商域相關聯);允許重新/改為將位址空間的一部分用於攜帶XCF域控制資訊。 2、舊有切換機會將XCF域控制資訊視為B-Dest和B-Src位址的一部分。的確,使用MAC-in-MAC範本400或是其他標準相容的MAC-in-MAC範本來範例化XCF將能夠實現舊有相容性。 3、由於使用了XCF域控制資訊來最佳化XCF轉發,因此,在訊框接收開始之後,其應該在可實踐的時候立即可用。通過將XCF域控制資訊部署於XCF中的最先接收的部分,可以允許為時延敏感的訊框實施有效的直通轉發處理。 4、目的地和源位址是乙太網、802.1D以及802.1Q網路中始終存在的欄位。由此不必修改標準的MAC服務介面來將XCF域控制資訊從一個網路層傳遞到另一個網路層。舉例來說,這些欄位在乙太網與802.11訊框之間的映射是由標準的MAC介面定義的。 5、乙太網目的地和源位址是始終編碼在訊框開端的,並且永遠都不會被加密。此外,在採用MacSec/LinkSec操作時,802.1AE會對802.1Q標籤(例如C-標籤,S-標籤)進行加密。In the example shown in FIG. 5, the instantiation of the MAC-in-MAC template 400 results in the XCF segmentation portion 504 and the XCF source portion 506 (with the B-Dest field 404 and the B-Src address field 406, respectively) Each of the corresponding ones is divided into a plurality of subfields; and some of the subfields may carry XCF domain control information. This segmentation can be based on one or more of the following: 1. The length of the Ethernet address is 48 bits, so the address must be globally unique. In the XCF domain, the addressing process does not need to be globally unique (eg, due to association with the vendor domain); allowing a portion of the address space to be used to carry XCF domain control information again/replace. 2. The old switching opportunity treats the XCF domain control information as part of the B-Dest and B-Src addresses. Indeed, using the MAC-in-MAC Template 400 or other standard-compliant MAC-in-MAC templates to instantiate XCF will enable legacy compatibility. 3. Since the XCF domain control information is used to optimize XCF forwarding, it should be available as soon as it is practical after the frame reception begins. By deploying XCF domain control information to the first received portion of the XCF, it is possible to implement efficient pass-through forwarding for delay-sensitive frames. 4. The destination and source address are the fields that are always present in the Ethernet, 802.1D, and 802.1Q networks. This eliminates the need to modify the standard MAC service interface to pass XCF domain control information from one network layer to another. For example, the mapping of these fields between Ethernet and 802.11 frames is defined by the standard MAC interface. 5. The destination and source address of the Ethernet network are always encoded at the beginning of the frame and will never be encrypted. In addition, 802.1AE encrypts 802.1Q tags (such as C-tags, S-tags) when operating with MacSec/LinkSec.

舊有乙太網切換機上的轉發處理是以乙太網目的地位址之查找為基礎的,對於XCF 500來說,其可以用XCF目的地位址部分508以及XCF目的地控制部分510來表示。在舊有的乙太網切換機上,XCF域控制位元的不同結合可被解釋成是不同的乙太網目的地位址。這樣一來,該XCF域控制位元的適當配置也可以促使舊有乙太網切換機在不同的埠上導引跨行程訊務(即使舊有切換機不直接對其支援)。The forwarding process on the legacy Ethernet switch is based on the lookup of the destination address of the Ethernet. For the XCF 500, it can be represented by the XCF destination address portion 508 and the XCF destination control portion 510. On the old Ethernet switch, the different combinations of XCF domain control bits can be interpreted as different Ethernet destination addresses. In this way, the proper configuration of the XCF domain control bit can also cause the old Ethernet switch to guide the cross-travel traffic on different ports (even if the old switch does not directly support it).

XCF 500可以採用如下所述的方式支援舊有的乙太網切換機。舊有的乙太網切換機可以將XCF解釋成標準的MAC-in-MAC訊框。XCF目的地位址部分508與XCF目的地控制部分510的結合可以基於MAC-in-MAC範本的XCF範例化而被解釋成乙太網目的地位址。XCF源位址部分512與XCF源控制部分514的結合可以基於MAC-in-MAC範本的XCF範例化而被解釋成乙太網源位址。B-VID、I-SID、S-Tag以及C-Tag可以依照802.1Q標準並基於MAC-in-MAC範本的XCF範例化來解釋。The XCF 500 can support legacy Ethernet switchers in the manner described below. The old Ethernet switch can interpret XCF as a standard MAC-in-MAC frame. The combination of the XCF destination address portion 508 and the XCF destination control portion 510 can be interpreted as an Ethernet destination address based on the XCF instantiation of the MAC-in-MAC template. The combination of the XCF source address portion 512 and the XCF source control portion 514 can be interpreted as an Ethernet source address based on the XCF instantiation of the MAC-in-MAC template. B-VID, I-SID, S-Tag, and C-Tag can be interpreted in accordance with the 802.1Q standard and based on the XCF paradigm of the MAC-in-MAC template.

舊有的乙太網切換機可以基於XCF目的地位址部分508與XCF目的地控制部分510的結合(形成乙太網目的地位址的等價物)以及B-VID和I-SID來轉發跨行程訊務:依照802.1Q標準。The legacy Ethernet switch can forward the cross-trip traffic based on the combination of the XCF destination address portion 508 and the XCF destination control portion 510 (forming the equivalent of the Ethernet destination address) and the B-VID and I-SID. : According to the 802.1Q standard.

XCF目的地位址部分508(其為XCF域內部的每一個XAU/XFE所獨有)可以與XCF目的地控制部分510(位元)的任何可能的結合相結合;由此,多個乙太網位址可與每一個XAU/XFE相關聯(例如,具有XCF位址0x00:11:22的XFE可以與乙太網位址0x00:11:22:uv:wx:yz相關聯,其中u,v,w,x,y,z是任何可能的十六進位值)。通過適當配置控制資訊來創建能被舊有切換機看到的乙太網目的地位址的不同結合,在舊有的乙太網切換機上同樣可以實施一些XCF域控制。這一點可以通過使得新的位址欄位和控制位元相容於MAC-in-MAC範本和舊有的乙太網切換機來促成。The XCF destination address portion 508 (which is unique to each XAU/XFE within the XCF domain) can be combined with any possible combination of the XCF destination control portion 510 (bits); thus, multiple Ethernet networks The address can be associated with each XAU/XFE (eg, an XFE with an XCF address of 0x00:11:22 can be associated with an Ethernet address of 0x00:11:22:uv:wx:yz, where u,v , w, x, y, z are any possible hexadecimal values). By appropriately configuring the control information to create different combinations of destination addresses that can be seen by the old switcher, some XCF domain control can also be implemented on the old Ethernet switch. This can be facilitated by making the new address field and control bits compatible with the MAC-in-MAC template and the legacy Ethernet switch.

第6圖是示出了可以實踐或實施實施例的範例網路實體600的框圖。為了簡化後續描述中的說明,第3圖所示的範例通信環境的各種元件和/或XCF 500可以結合網路實體500而被引用。FIG. 6 is a block diagram showing an example network entity 600 in which embodiments may be practiced or implemented. To simplify the description in the subsequent description, various elements of the example communication environment and/or XCF 500 shown in FIG. 3 may be referenced in connection with network entity 500.

網路實體600可以包括或者被配置成是XFE或XAU,例如XFE 312、314、324、326和328或XAU 316、318、319、320、330和332中的一個。該網路實體600可以包括一個或多個入站埠601,共用切換層603,以及一個或多個出站埠605。入站埠601可以接收一個或多個MAC-in-MAC相容的訊框。該MAC-in-MAC相容的訊框可以包括XCF以及其他MAC-in-MAC相容的(“非共用跨行程”)訊框。入站埠601可以將MAC-in-MAC相容的訊框發送到共用切換層603。Network entity 600 may include or be configured to be an XFE or XAU, such as one of XFE 312, 314, 324, 326, and 328 or XAU 316, 318, 319, 320, 330, and 332. The network entity 600 can include one or more inbound ports 601, a shared switching layer 603, and one or more outbound ports 605. Inbound port 601 can receive one or more MAC-in-MAC compatible frames. The MAC-in-MAC compatible frame may include XCF and other MAC-in-MAC compatible ("non-shared cross-trip") frames. The inbound port 601 can send a MAC-in-MAC compatible frame to the common switching layer 603.

共用切換層603可以包括訊框鑒別器611,第一和第二轉發決定實體613、615以及第一和第二佇列管理實體617、619。訊框鑒別器實體611可以接收來自入站埠601的MAC-in-MAC相容的訊框。該訊框鑒別器實體611可以基於所接收的訊框的匹配欄位(例如Src/Dst欄位)與控制器提供的匹配規則來區分XCF訊框與非共用跨行程訊框。作為範例,控制器提供的匹配規則可以包括通配匹配規則。訊框鑒別器實體611可以將非共用跨行程訊框發送到第一轉發決定實體613(例如用於舊有轉發決定)。該訊框鑒別器實體611可以將XCF發送到第二轉發決定實體615(例如用於XCF轉發決定)。The shared handover layer 603 can include a frame discriminator 611, first and second forwarding decision entities 613, 615, and first and second queue management entities 617, 619. The frame discriminator entity 611 can receive the MAC-in-MAC compatible frame from the inbound port 601. The frame discriminator entity 611 can distinguish the XCF frame from the non-shared cross-hop frame based on the matching field of the received frame (eg, the Src/Dst field) and the matching rule provided by the controller. As an example, the matching rules provided by the controller may include wildcard matching rules. The frame discriminator entity 611 can send the non-shared cross-hop frame to the first forwarding decision entity 613 (eg, for legacy forwarding decisions). The frame discriminator entity 611 can send the XCF to the second forwarding decision entity 615 (eg, for XCF forwarding decisions).

第一轉發決定實體613可以從訊框鑒別器實體611接收非共用跨行程訊框。第一轉發決定實體613可以使用舊有/相應的轉發過程來處理非共用跨行程訊框。該第一轉發決定實體613可以將經過處理的非共用跨行程訊框發送到第一佇列管理實體617(例如用於舊有佇列管理)。該第一佇列管理實體617可以從第一轉發決定實體613接收非共用跨行程訊框。第一佇列管理實體617可以使用舊有/相應的佇列管理過程來處理非共用跨行程訊框。第一佇列管理實體617可以根據第一轉發決定實體613做出的轉發決定並使用由第一佇列管理實體617執行的佇列管理來將非共用跨行程訊框發送到出站埠605中的適當出站埠。The first forwarding decision entity 613 can receive the non-shared cross-hop frame from the frame discriminator entity 611. The first forwarding decision entity 613 can use the old/corresponding forwarding process to process the non-shared cross-hop frame. The first forwarding decision entity 613 can send the processed non-shared cross-hop frame to the first queue management entity 617 (eg, for legacy queue management). The first queue management entity 617 can receive the non-shared cross-hop frame from the first forwarding decision entity 613. The first queue management entity 617 can process the non-shared cross-hop frame using the old/corresponding queue management process. The first queue management entity 617 can send the non-shared cross-hop frame to the outbound queue 605 according to the forwarding decision made by the first forwarding decision entity 613 and using the queue management performed by the first queue management entity 617. The appropriate outbound 埠.

第二轉發決定實體615可以從訊框鑒別器實體611接收XCF。第二轉發決定實體615可以使用XCF共用轉發過程處理XCF。作為範例,第二轉發決定實體615可以解碼存在於XCF中的XCF資訊。該第二轉發決定實體615可以處理XCF資訊,並且可以基於所處理的XCF資訊來執行轉發。該第二轉發決定實體615可以將XCF發送到第二佇列管理實體619(例如用於XCF佇列管理)。The second forwarding decision entity 615 can receive the XCF from the frame discriminator entity 611. The second forwarding decision entity 615 can process the XCF using the XCF shared forwarding process. As an example, the second forwarding decision entity 615 can decode the XCF information present in the XCF. The second forwarding decision entity 615 can process the XCF information and can perform forwarding based on the processed XCF information. The second forwarding decision entity 615 can send the XCF to the second queue management entity 619 (eg, for XCF queue management).

第二佇列管理實體619可以接收來自第二轉發決定實體615的XCF。第二佇列管理實體619可以基於XCF管理規則來執行佇列管理過程。第二佇列管理實體619可以根據第二轉發決定實體615做出的轉發決定並結合第二佇列管理實體619執行的佇列管理來將XCF發送到出站埠605中的適當出站埠。The second queue management entity 619 can receive the XCF from the second forwarding decision entity 615. The second queue management entity 619 can perform the queue management process based on the XCF management rules. The second queue management entity 619 can send the XCF to the appropriate outbound port in the outbound port 605 based on the forwarding decision made by the second forwarding decision entity 615 in conjunction with the queue management performed by the second queue management entity 619.

第7圖是示出了範例的跨行程共用訊框(XCF)700的框圖。XCF 700可以MAC-in-MAC範本400(或者除MAC-in-MAC範本400之外的一個或多個MAC-in-MAC範本)的全部或部分範例化以及分段路由的應用為基礎。XCF 700可以通過添加用於攜帶分段路由控制的新的欄位來促成分段路由處理的應用。該XCF 700可以包括XCF標頭MAC-in-MAC部分705以及XCF標頭分段路由部分707。XCF標頭MAC-in-MAC部分705和XCF標頭分段路由部分707中的一個可以包括攜帶分段路由控制的欄位;其範例是在欄位750-760中顯示的。在下文中將會參考第8圖至第9圖來描述XCF 700及其特別欄位750-760更多細節。FIG. 7 is a block diagram showing an example cross-stroke common frame (XCF) 700. The XCF 700 may be based on all or part of the instantiation of the MAC-in-MAC template 400 (or one or more MAC-in-MAC templates other than the MAC-in-MAC template 400) and the application of the segmentation route. The XCF 700 can facilitate the application of segment routing processing by adding new fields for carrying segmented routing control. The XCF 700 can include an XCF header MAC-in-MAC portion 705 and an XCF header segment routing portion 707. One of the XCF header MAC-in-MAC portion 705 and the XCF header segment routing portion 707 may include fields carrying segmentation routing control; examples of which are shown in fields 750-760. More details of the XCF 700 and its special fields 750-760 will be described below with reference to Figures 8-9.

第8圖是示出了被配置成支援分段路由的範例的跨行程共用訊框(XCF)800的框圖。XCF 800可以是XCF的獨立形式。作為替換,XCF 800也可以是XCF 700的中間形式。XCF 800可以基於第5圖的XCF 500(同樣可以是XCF 700的中間形式)而構建。雖然XCF 800可以與XCF 500不同的MAC-in-MAC範本的範例化為基礎,但為了簡化後續描述,XCF 800包括並基於XCF 500而構建。Figure 8 is a block diagram showing an inter-trip common frame (XCF) 800 that is configured to support segmented routing. The XCF 800 can be a standalone form of XCF. Alternatively, XCF 800 can also be an intermediate form of XCF 700. The XCF 800 can be constructed based on the XCF 500 of Figure 5 (which can also be an intermediate form of the XCF 700). Although XCF 800 can be based on the instantiation of a different MAC-in-MAC template from XCF 500, to simplify the subsequent description, XCF 800 includes and builds on XCF 500.

XCF 800可以通過在XCF標頭502中添加諸如欄位850-860之類的用於攜帶分段路由控制的新的欄位來促成分段路由處理的應用。該分段路由控制可以包括XCF可能穿過的分段的有序列表(“有序分段列表”)。該有序分段列表可以包括活動分段804以及一個或多個非活動分段809。在指定時間,只有分段的其中之一是可以活動的,並且其餘分段將會保持不活動,直至完成該活動分段的處理。在其處理完成之後,活動分段804將會變成非活動的,並且可被從有序分段列表中移除或者添加到非活動分段809中。該有序分段列表中的下一個分段可被啟動(也就是變成新的活動分段,例如XCF分段0),並且可以保持啟動,直到其處理完成之前,由此可以為一些或所有非活動分段重複該迴圈。The XCF 800 can facilitate the application of the segment routing process by adding a new field, such as fields 850-860, for carrying segmentation routing control in the XCF header 502. The segmentation routing control may include an ordered list of segments ("ordered segmentation lists") that the XCF may traverse. The ordered segment list can include an activity segment 804 and one or more inactive segments 809. At the specified time, only one of the segments is active, and the remaining segments will remain inactive until the processing of the active segment is completed. After its processing is complete, the activity segment 804 will become inactive and may be removed from the ordered segment list or added to the inactive segment 809. The next segment in the ordered segment list can be started (ie, become a new active segment, such as XCF segment 0), and can remain started until its processing is complete, thereby allowing for some or all The loop is repeated for the inactive segment.

若是在XCF 500(第5圖)上建構,XCF 800的XCF標頭502可以包括XCF標頭MAC-in-MAC部分805和XCF標頭分段路由部分807。XCF標頭MAC-in-MAC部分805可以與範例的XCF 500(第5圖)相類似的方式來範例化MAC-in-MAC協定訊框。XCF標頭分段路由部分807可以是在MAC-in-MAC酬載(第4圖)內部攜帶的,並且可以定義分段路由控制欄位。該分段路由控制欄位可以攜帶有序分段列表中的非活動分段809。該有序分段列表中的每一個分段可以通過XCF-Dst位址與XCF-Dst控制欄位的結合來識別。XCF分段0(XCF子部分503)可以識別活動分段804。XCF分段1...k ...XCF分段k +1可以識別有序分段清單中的非活動分段809。If constructed on XCF 500 (Fig. 5), XCF header 502 of XCF 800 may include an XCF header MAC-in-MAC portion 805 and an XCF header segment routing portion 807. The XCF header MAC-in-MAC portion 805 can instantiate the MAC-in-MAC protocol frame in a manner similar to the exemplary XCF 500 (Figure 5). The XCF header segmentation routing portion 807 can be carried inside the MAC-in-MAC payload (Fig. 4) and can define a segmentation routing control field. The segmentation routing control field can carry the inactive segment 809 in the ordered segment list. Each segment in the ordered segment list can be identified by a combination of the XCF-Dst address and the XCF-Dst control field. The XCF segment 0 (XCF sub-portion 503) can identify the active segment 804. The XCF segment 1... k ... XCF segment k +1 can identify the inactive segment 809 in the ordered segment list.

在XCF標頭MAC-in-MAC部分805和/或XCF標頭分段路由部分807中可以包含新的控制資訊,以便允許支有段路由支持的XCF 800的全部操作。該新的控制資訊可以用各種控制欄位來表述,這其中包括“其他分段”欄位850以及新的EtherType欄位852。New control information may be included in the XCF header MAC-in-MAC portion 805 and/or the XCF header segment routing portion 807 to allow for full operation of the XCF 800 with segment routing support. The new control information can be represented by various control fields, including the "Other Segments" field 850 and the new EtherType field 852.

其他分段欄位850可以小到單個位元,並且可被包括在XCF-Dst控制位元510中。該其他分段欄位850可被設置成一個用於有序列表中的最後一個條目(即該列表中的最後一個分段)的值(例如設置成0),並且可被設置成用於所有其他分段堆疊條目的別的值(例如設置成1),其用訊號通告仍有其他分段存在且需要處理。The other segmentation fields 850 can be as small as a single bit and can be included in the XCF-Dst control bit 510. The other segmentation field 850 can be set to a value (eg, set to 0) for the last entry in the ordered list (ie, the last segment in the list) and can be set to be used for all Other values of other segmentation stack entries (for example, set to 1), which use signal announcements that there are still other segments present and need to be processed.

新的EtherType欄位852可被佈置在XCF標頭MAC-in-MAC部分805中。該新的EtherType欄位852可以用訊號通告用於XCF標頭MAC-in-MAC部分805中的EtherType的新的值,以便識別XCF標頭分段路由部分807的存在。The new EtherType field 852 can be placed in the XCF header MAC-in-MAC portion 805. The new EtherType field 852 can signal the new value for the EtherType in the XCF header MAC-in-MAC portion 805 to identify the presence of the XCF header segment routing portion 807.

第9圖是示出了被配置成支援分段路由的範例跨行程共用訊框(XCF)900的框圖。XCF 900可以是XCF的獨立形式。作為替換,XCF 900可以是XCF 700的一個範例。雖然XCF 900可以與XCF 500和XCF 800不同的MAC-in-MAC範本的範例化為基礎,但為了簡化後續描述,XCF 900包括並XCF 500和800上構建。FIG. 9 is a block diagram showing an example cross-trip shared frame (XCF) 900 configured to support segmented routing. The XCF 900 can be a standalone form of XCF. Alternatively, XCF 900 can be an example of XCF 700. Although XCF 900 can be based on the instantiation of different MAC-in-MAC templates for XCF 500 and XCF 800, to simplify the subsequent description, XCF 900 includes and builds on XCF 500 and 800.

XCF 900可以擴展XCF 800來提供快速重新路由機制。該快速重新路由機制可以通過在XCF標頭502中添加新的欄位(例如XCF子部分503中的欄位954-960)來提供。舉例來說,在網路元件故障的情況中,那麼可以採用快速重新路由機制來盡可能快地重新路由訊務。這種行為可以通過將固定長度的有序路徑清單(“有序路徑清單”)插入XCF標頭502中來實現。該有序路徑清單可以是由網路控制器為每個分段(例如預先)配置的。在鏈路故障的情況中,那麼XFE可以使用該有序路徑清單主動獲知回退路徑。在額外的新欄位中具有第一路徑(“路徑1”)欄位954,第二路徑(“路徑2”)欄位956,第三路徑(“路徑3”)欄位958以及第四路徑(“路徑4”)欄位960。路徑1欄位954、路徑2欄位956、路徑3欄位958和路徑4欄位960中的每一個都被顯示成具有兩位元的長度。然而,欄位954-960中的每一個的長度都可以長於或短於兩位元。The XCF 900 can extend the XCF 800 to provide a fast reroute mechanism. This fast rerouting mechanism can be provided by adding a new field in the XCF header 502 (e.g., fields 954-960 in the XCF subsection 503). For example, in the event of a network component failure, a fast reroute mechanism can be employed to reroute traffic as quickly as possible. This behavior can be achieved by inserting a fixed length list of ordered paths ("Ordered Path List") into the XCF header 502. The ordered list of paths can be configured by the network controller for each segment (eg, in advance). In the case of a link failure, then the XFE can actively learn the fallback path using the ordered path list. In the additional new field there is a first path ("Path 1") field 954, a second path ("Path 2") field 956, a third path ("Path 3") field 958 and a fourth path. ("Path 4") field 960. Each of path 1 field 954, path 2 field 956, path 3 field 958, and path 4 field 960 is shown as having a length of two bits. However, each of the fields 954-960 can be longer or shorter than two digits.

路徑1欄位954可以識別用於轉發定向到XCF-Dst位址508所識別的XFE(或XAU)的XCF的較佳路徑。路徑2欄位956可以在沿路徑1欄位954識別的較佳路徑上發生一個或多個鏈路故障的情況下識別第一回退(fallback)路徑。路徑3欄位958可以在沿路徑2欄位956識別的第一回退路徑發生一個或多個鏈路故障的情況下識別第二回退路徑。路徑4欄位960可以在沿路徑3欄位958識別的第二回退路徑發生一個或多個鏈路故障的情況下識別第三回退路徑。Path 1 field 954 may identify a preferred path for forwarding XCF directed to the XFE (or XAU) identified by XCF-Dst address 508. Path 2 field 956 may identify a first fallback path if one or more link failures occur on the preferred path identified along path 1 field 954. Path 3 field 958 may identify the second back-off path if one or more link failures occur along the first back-off path identified by path 2 field 956. Path 4 field 960 may identify a third backoff path if one or more link failures occur along the second backoff path identified by path 3 field 958.

對於每一個分段進而對於每一個XCF目的地位址,網路控制器可以將XFE定義和/或配置成具有用於到達相同XFE的四個、四個以上、四個以下的不同路徑。每一條路徑都可以用兩個位元、兩個以上的位元或是兩個以下的位元值來識別。通過使用所配置的路徑以及欄位954-960,XFE可以在檢測到鏈路故障的時候(例如在鏈路上沒有載波的時候)開始重新路由訊務,而不用等待網路控制器對此類事件做出回應。結果,XFE能夠最小化訊務損失和/或重傳。For each segment and thus for each XCF destination address, the network controller can define and/or configure the XFE to have four, more than four, four or fewer different paths for reaching the same XFE. Each path can be identified by two bits, more than two bits, or two or less bit values. By using the configured path and fields 954-960, the XFE can start rerouting traffic when a link failure is detected (for example, when there is no carrier on the link), without waiting for the network controller to respond to such events. Respond. As a result, XFE is able to minimize traffic loss and/or retransmission.

第10圖是示出了可以實踐或實施實施例的範例網路實體1000的框圖。為了簡化後續描述中的說明,第3圖所示的範例通信環境的各種元件和/或XCF 500-900可以結合網路實體1000而被引用。FIG. 10 is a block diagram showing an example network entity 1000 in which embodiments may be practiced or implemented. To simplify the description in the subsequent description, various elements of the example communication environment and/or XCF 500-900 shown in FIG. 3 may be referenced in connection with network entity 1000.

網路實體1000可以包括或者被配置成是XFE或XAU,例如XFE 312、314、324、326和328或是XAU 316、318、319、320、330和332之一。該網路實體1000可以包括一個或多個入站埠1001,共用切換層1003以及一個或多個出站埠1005。入站埠1001可以接收一個或多個MAC-in-MAC相容的訊框。該MAC-in-MAC相容的訊框可以包括XCF和非共用跨行程訊框。入站埠1001可以向共用切換層1003發送MAC-in-MAC相容的訊框。Network entity 1000 may include or be configured to be an XFE or XAU, such as XFE 312, 314, 324, 326, and 328 or one of XAUs 316, 318, 319, 320, 330, and 332. The network entity 1000 can include one or more inbound ports 1001, a shared switching layer 1003, and one or more outbound ports 1005. Inbound port 1001 can receive one or more MAC-in-MAC compatible frames. The MAC-in-MAC compatible frame may include an XCF and a non-shared cross-hop frame. The inbound port 1001 can send a MAC-in-MAC compatible frame to the common switching layer 1003.

共用切換層1003可以包括訊框鑒別器1011,第一和第二轉發決定實體1013、1015,第一和第二佇列管理實體1017、1019以及分段路由處理實體1021。訊框鑒別器實體1011可以接收來自入站埠1001的MAC-in-MAC相容的訊框。訊框鑒別器實體1011可以基於所接收的訊框的匹配欄位(例如Src/Dst欄位)與諸如通配匹配規則之類的由控制器提供的匹配規則來區分XCF訊框與非共用跨行程訊框。該訊框鑒別器實體1011可以將非共用跨行程訊框發送到第一轉發決定實體1013。該訊框鑒別器實體1011可以向第二轉發決定實體1015發送XCF。The shared handover layer 1003 may include a frame discriminator 1011, first and second forwarding decision entities 1013, 1015, first and second queue management entities 1017, 1019, and a segmentation routing processing entity 1021. The frame discriminator entity 1011 can receive the MAC-in-MAC compatible frame from the inbound port 1001. The frame discriminator entity 1011 can distinguish between XCF frames and non-shared crosses based on matching fields of the received frame (eg, Src/Dst fields) and matching rules provided by the controller, such as wildcard matching rules. Itinerary frame. The frame discriminator entity 1011 may send the non-shared cross-hop frame to the first forwarding decision entity 1013. The frame discriminator entity 1011 can send the XCF to the second forwarding decision entity 1015.

第一轉發決定實體1013可以從訊框鑒別器實體1011接收非共用跨行程訊框。第一轉發決定實體1013可以使用舊有/相應的轉發過程來處理非共用跨行程訊框。該第一轉發決定實體1013可以將經過處理的非共用跨行程訊框發送到第一佇列管理實體1017。該第一佇列管理實體1017可以接收來自第一轉發決定實體1013的非共用跨行程訊框。該第一佇列管理實體1017可以使用舊有/相應的佇列管理過程來處理非共用跨行程訊框。該第一佇列管理實體1017可以根據第一轉發決定實體1013做出的轉發決定並以第一佇列管理實體1017執行的佇列管理來將非共用跨行程訊框發送到出站埠1005中的適當出站埠。The first forwarding decision entity 1013 may receive the non-shared cross-hop frame from the frame discriminator entity 1011. The first forwarding decision entity 1013 can process the non-shared cross-hop frame using the old/corresponding forwarding process. The first forwarding decision entity 1013 may send the processed non-shared cross-hop frame to the first queue management entity 1017. The first queue management entity 1017 can receive the non-shared cross-hop frame from the first forwarding decision entity 1013. The first queue management entity 1017 can process the non-shared cross-hop frame using the old/corresponding queue management process. The first queue management entity 1017 may send the non-shared cross-hop frame to the outbound interface 1005 according to the forwarding decision made by the first forwarding decision entity 1013 and the queue management performed by the first queue management entity 1017. The appropriate outbound 埠.

第二轉發決定實體1015可以接收來自訊框鑒別器實體1011的XCF。該第二轉發決定實體1015可以使用XCF共用轉發過程來處理XCF。第二轉發決定實體1015可以對存在於XCF中的XCF資訊進行解碼。該第二轉發決定實體1015可以處理XCF資訊,並且可以基於經過處理的XCF資訊來執行轉發處理。第二轉發決定實體1015可以向第二佇列管理實體1019發送沒有分段路由資訊的XCF。第二轉發決定實體1015可以向分段路由處理實體1021發送帶有分段路由資訊的XCF。The second forwarding decision entity 1015 can receive the XCF from the frame discriminator entity 1011. The second forwarding decision entity 1015 can process the XCF using the XCF shared forwarding procedure. The second forwarding decision entity 1015 can decode the XCF information present in the XCF. The second forwarding decision entity 1015 can process the XCF information and can perform forwarding processing based on the processed XCF information. The second forwarding decision entity 1015 may send the XCF without the segmentation routing information to the second queue management entity 1019. The second forwarding decision entity 1015 can send the XCF with the segmentation routing information to the segment routing processing entity 1021.

分段路由處理實體1021可以基於分段路由資訊來接收和處理帶有分段路由資訊的XCF。該分段路由處理實體1021可以將經過分段路由處理的XCF發送到第二佇列管理實體1019。The segmentation routing processing entity 1021 can receive and process the XCF with segmentation routing information based on the segmentation routing information. The segmentation routing processing entity 1021 may send the XCF that has been subjected to the segmentation routing process to the second queue management entity 1019.

第二佇列管理實體1019可以接收來自第二轉發決定實體1015和分段路由處理實體1021中的任何一個的XCF。該第二佇列管理實體1019可以基於XCF管理規則來執行佇列管理過程。該第二佇列管理實體1019可以依照由第二轉發決定實體1015所做的轉發決定以及以第二佇列管理實體1019執行的佇列管理而將XCF發送到出站埠1005中的適當出站埠。跨域的多訊務封裝以及分段路由轉發範例 The second queue management entity 1019 can receive the XCF from any of the second forwarding decision entity 1015 and the segment routing processing entity 1021. The second queue management entity 1019 can perform the queue management process based on the XCF management rules. The second queue management entity 1019 can send the XCF to the appropriate outbound in the outbound port 1005 in accordance with the forwarding decision made by the second forwarding decision entity 1015 and the queue management performed by the second queue management entity 1019. port. Cross-domain multi-service encapsulation and segmentation routing forwarding examples

第11圖顯示了在乙太網相容的多資料鏈路環境中的XCF封裝和轉發的範例。該XCF封裝和轉發處理可以快速重新路由支援的分段路由為基礎。為了簡化說明,該XCF封裝和轉發範例疊加在第3圖的範例通信環境300上。以下將會結合第12圖至第17圖來提供內部封裝和轉發機制。Figure 11 shows an example of XCF encapsulation and forwarding in an Ethernet-compatible multiple data link environment. The XCF encapsulation and forwarding process can be based on fast rerouting supported segmentation routes. To simplify the illustration, the XCF encapsulation and forwarding paradigm is superimposed on the example communication environment 300 of FIG. The internal encapsulation and forwarding mechanisms will be provided below in conjunction with Figures 12 through 17.

在所顯示的範例中,XCF可以是從左向右轉發的,並且XCF中添加的協定標頭是在XCF的右側顯示的。在一個實施例中,通信環境300中的存取網路344可以包括固定存取切換機。(資料鏈路)子域306可以是IEEE 802.11ad無線網狀網路。(資料鏈路)子域308可以是IEEE 802.3aq光纖網路。資料鏈路舊有域303可以是同步數位階層(SDH)網路。In the example shown, the XCF can be forwarded from left to right, and the contract header added in the XCF is displayed on the right side of the XCF. In one embodiment, access network 344 in communication environment 300 can include a fixed access switch. The (data link) sub-domain 306 can be an IEEE 802.11ad wireless mesh network. The (data link) sub-domain 308 can be an IEEE 802.3aq fiber network. The data link legacy domain 303 can be a synchronous digital hierarchy (SDH) network.

以下訊務流可以顯示基於XCF 900的XCF封裝和分段路由轉發。為使例證清楚,在XCF標頭中攜帶的B-VID、I-SID、S-標籤、C-標籤等等被統稱為“XCF欄位”。範例的訊務流 1 2 The following traffic flows can display XCF encapsulation and segmentation routing forwarding based on XCF 900. For clarity of illustration, the B-VID, I-SID, S-tag, C-tag, etc. carried in the XCF header are collectively referred to as the "XCF Field". Example traffic flow 1 and 2

對於以下描述來說,術語“[1]”和術語“[2]”指的是在第11圖中用類似形式的方框數字識別的訊務流1和2的訊務,並且用括弧包圍的數字指的是在第11圖中用類似形式的帶圈數字識別的訊務流的轉發階段。轉發階段( 1 )範例 For the following description, the terms "[1]" and the term "[2]" refer to the traffic of traffic streams 1 and 2 identified by a similar form of box numbers in Figure 11 and surrounded by brackets. The number refers to the forwarding phase of the traffic stream identified by a similar form of circled number in Figure 11. Forwarding phase ( 1 ) example

WTRU 302a可以連接到存取網路336。存取網路336可被配置成具有特別的功能分割。直到基帶單元(BBU)伺服器342(5)解碼前向回傳資料[1],WTRU 302a的訊務(WTRU-1資料)的訊務可能不會被識別。前向回傳資料[1]可以是與存取網路336相關聯的前向回傳資料(例如CPRI訊務),並且其有可能包括取決於所使用的介面的前向回傳特定標頭。時延和封包延遲變化預算可能與前向回傳資料[1]相關聯。舉例來說,為了解碼CPRI訊務,BBU伺服器342必須在某個延遲以內接收到訊號。封包延遲變化(PDV)與時延需求是同樣重要的。的確,即使滿足了時延需求,過強的(例如大的)PDV也會影響到CPRI解碼的正確性。依照傳輸網路的觀點,前向回傳資料[1]可以是在時延和PDV方面具有高優先順序的訊務。轉發階段( 2 )範例 The WTRU 302a may be connected to the access network 336. Access network 336 can be configured to have a particular functional partition. Until the baseband unit (BBU) server 342(5) decodes the forward backhaul data [1], the traffic of the WTRU 302a's traffic (WTRU-1 data) may not be identified. The forward backhaul data [1] may be forward backhaul data associated with the access network 336 (eg, CPRI traffic), and it may include forward header specific headers depending on the interface used. . Delay and packet delay variation budgets may be associated with forward backhaul data [1]. For example, to decode CPRI traffic, the BBU server 342 must receive the signal within a certain delay. Packet delay variation (PDV) is just as important as latency requirements. Indeed, even if the delay requirements are met, an excessive (eg large) PDV will affect the correctness of the CPRI decoding. According to the transmission network, the forward backhaul data [1] can be a high priority message in terms of delay and PDV. Forwarding phase ( 2 ) example

網路控制器350可以在XAU 316上配置與存取網路336產生的前向回傳資料[1]有關的訊框化和封裝參數。XAU 316可以將XCF標頭附加於前向回傳資料[1]。該XCF標頭可以用以下欄位值的其中之一或更多來範例化: a. - 若XCF是由XAU 316發起的,XCF Src攜帶了XAU 316的XCF域中的XCF源位址; b. - 由於前向回傳資料[1]被預定用於BBU伺服器342上的解碼,並且XAU 319是定向到BBU伺服器342的訊務的XCF目的地位址,因此XCF Dst 攜帶了XAU 319的XCF目的地位址; c. - 範例的XCF-Dst控制值可以包括:緊急:0,順序:1(CPRI訊務是不能無序接收的:端點上的重新排序將會引入前向回傳介面所無法容忍的額外時延),多目的地:0,搶佔:0,保護訊框:0,其他分段:0,路徑1:1,路徑2:2,路徑3:3; d. - 範例的XCF-Src控制值可以包括:QoS設定檔/訊務分類:Fronthaul.CPRI-over-E,SN/TS位元:TS,時間戳記值:當前時間戳記。XFE可以使用這些值而在本地實施遵從網路控制器配置的規則之時延和PDV;以及 e. - 在這個階段可以配置B-VID和I-SID,而S-標籤和C-標籤則僅僅是在所封裝的訊框不包含這些標籤的情況下在XAU上配置的。這種情況有可能在前向回傳資料[1]在前向回傳特定標頭中沒有包含S-標籤和C-標籤的時候出現。The network controller 350 can configure the frame and encapsulation parameters associated with the forward backhaul data [1] generated by the access network 336 on the XAU 316. The XAU 316 can attach the XCF header to the forward return data [1]. The XCF header can be instantiated with one or more of the following field values: a. - If the XCF is initiated by XAU 316, the XCF Src carries the XCF source address in the XCF field of XAU 316; - Since the forward backhaul data [1] is intended for decoding on the BBU server 342 and the XAU 319 is the XCF destination address of the traffic directed to the BBU server 342, the XCF Dst carries the XAU 319 XCF destination address; c. - The XCF-Dst control value of the example can include: Urgent: 0, Sequence: 1 (CPRI traffic cannot be received out of order: Reordering on the endpoint will introduce a forward backhaul interface Additional delays that cannot be tolerated), multiple destinations: 0, preemption: 0, protection frame: 0, other segments: 0, path 1:1, path 2: 2, path 3: 3; d. - example The XCF-Src control value may include: QoS profile/traffic classification: Fronthaul.CPRI-over-E, SN/TS bit: TS, timestamp value: current timestamp. The XFE can use these values to locally implement the latency and PDV of the rules that are compliant with the network controller configuration; and e. - B-VID and I-SID can be configured at this stage, while S-tags and C-tags are only It is configured on the XAU if the encapsulated frame does not contain these tags. In this case, it is possible that the forward-backed data [1] appears when the forward header does not contain the S-tag and the C-tag in the specific header.

S1可以是活動分段(例如包括XCF Dst、XCF Dst Ctrl、XCF Src以及XCF Src Ctrl中的任何一個),並且在XCF標頭分段路由部分507中不會添加其他分段。這是因為在BBU伺服器342(5)有可能會解碼前向回傳訊務[1],並且或許不可能對訊務進行更進一步的區分,直到BBU正確解碼訊號。XAU 316可以保持與訊務流[1]相關聯的流狀態。在子域306是IEEE 802.11無線網狀網路的實施例中,XAU 316可以將XCF映射到802.11訊框上,並且可以通過無線鏈路來將其發送到XAU 319。轉發階段( 3 )範例 S1 may be an active segment (eg, including any of XCF Dst, XCF Dst Ctrl, XCF Src, and XCF Src Ctrl), and no other segments are added in the XCF header segment routing portion 507. This is because it is possible for the BBU server 342(5) to decode the forward backhaul traffic [1], and it may not be possible to further distinguish the traffic until the BBU correctly decodes the signal. The XAU 316 can maintain the flow state associated with the traffic flow [1]. In embodiments where sub-domain 306 is an IEEE 802.11 wireless mesh network, XAU 316 can map the XCF onto an 802.11 frame and can send it to XAU 319 over a wireless link. Forwarding phase ( 3 ) example

XFE 312可以依據S1和XCF欄位中包含的資訊而依據以下的一項或多項來轉發前向回傳訊務: a. XCF Dst和XCF Dst控制路徑1(假設路徑1是活動的):確定輸出埠;以及 b. XCF Dst控制和XCF Src控制欄位:確定前向回傳訊務[1]QoS以及內部佇列管理和切換,例如基於QoS設定檔/訊務分類、時間戳記、搶佔、順序等等來確定。The XFE 312 may forward the forward backhaul traffic according to one or more of the following information based on the information contained in the S1 and XCF fields: a. XCF Dst and XCF Dst control path 1 (assuming path 1 is active): Determine output以及; and b. XCF Dst control and XCF Src control field: determine forward backhaul traffic [1] QoS and internal queue management and switching, such as based on QoS profile / traffic classification, time stamp, preemption, order, etc. Wait to confirm.

網路控制器350可以繼續監視傳輸網路301,並且可以獲知將一個訊框從XAU 316傳送到XAU 319所需要的(例如所必需的)時間。在XFE 312上配置的規則可以與端到端路徑相關聯,以便在本地實施QoS需求。舉例來說,在由XFE 312轉發的時候,前向回傳資料[1]的訊框不會耗盡時延預算,然而,如果XFE 312過度延遲這些訊框的轉發處理,那麼它們有可能會耗盡時延預算。實際上,QoS需求涉及的是端到端路徑(在本範例中,路徑末端是XAU 319)。轉發階段( 4 )範例 The network controller 350 can continue to monitor the transport network 301 and can learn the time (e.g., required) required to transfer a frame from the XAU 316 to the XAU 319. Rules configured on XFE 312 can be associated with an end-to-end path to implement QoS requirements locally. For example, when forwarding by XFE 312, the frame of forward back data [1] will not exhaust the delay budget. However, if XFE 312 excessively delays the forwarding processing of these frames, then they may Run out of delay budget. In fact, the QoS requirements involve an end-to-end path (in this example, the end of the path is XAU 319). Forwarding phase ( 4 ) example

網路控制器350可以在XAU 319上配置與存取網路336產生的前向回傳訊務[1]有關的解訊框和解封裝參數。由於S1會在XAU 319上終止,並且由於XCF Dst位址是XAU 319的位址,且其他分段位元被設置成0,因此,XAU 319可以剝離XCF標頭。依照所使用的功能分割,XAU 319可以將額外標頭附加於該訊框,並且將其轉發到BBU伺服器342(5)。轉發階段( 5 )範例 The network controller 350 can configure the XAU 319 with the decoding frame and decapsulation parameters associated with the forward backhaul traffic [1] generated by the access network 336. Since S1 will terminate on XAU 319, and since the XCF Dst address is the address of XAU 319 and the other segment bits are set to 0, XAU 319 can strip the XCF header. Depending on the functional partition used, the XAU 319 can attach an additional header to the frame and forward it to the BBU server 342 (5). Forwarding phase ( 5 ) example

BBU伺服器342可以解碼前向回傳資料[1],其產生WTRU-1資料[2]。此後,該WTRU-1資料[2]可被回送到XAU 319。轉發階段( 6 )範例 The BBU server 342 can decode the forward backhaul data [1], which generates the WTRU-1 data [2]. Thereafter, the WTRU-1 data [2] can be sent back to the XAU 319. Forwarding phase ( 6 ) example

網路控制器350可以在XAU 319上配置與BBU伺服器342生成的WTRU-1資料[2]有關的訊框化和封裝參數。假設WTRU-1資料[2]必須由防火牆346進行分析,網路控制器350可採用如下方式來決定/確定WTRU-1資料[2]的一個或多個路徑。 a. S2(從XAU 319到XFE 314)可被設置成活動分段:該分段完全屬於子域306,並且XFE 314是從子域306通往子域308所要穿過的切換機。該分段可以屬於XCF標頭MAC-in-MAC部分。 b. S3(從XFE 314到XFE 328)可被設置成有序列表中到來的第一分段。該分段完全屬於子域308。並且該分段可以屬於XCF標頭分段路由部分。 c. S4(從XFE 328穿防火牆346到XAU 332)可被設置成最後一個分段。該分段屬於子域308,並且XAU 332可以是從XCF域304通往核心網路340所要穿的調適功能。該分段可以屬於XCF標頭分段路由部分。The network controller 350 can configure the frame and encapsulation parameters associated with the WTRU-1 data [2] generated by the BBU server 342 on the XAU 319. Assuming that WTRU-1 data [2] must be analyzed by firewall 346, network controller 350 can determine/determine one or more paths for WTRU-1 data [2] in the following manner. a. S2 (from XAU 319 to XFE 314) may be set to active segmentation: the segment belongs entirely to subdomain 306, and XFE 314 is the switcher to pass through from subdomain 306 to subdomain 308. This segment can belong to the XCF header MAC-in-MAC portion. b. S3 (from XFE 314 to XFE 328) can be set to the first segment coming in the ordered list. This segment belongs entirely to subdomain 308. And the segment can belong to the XCF header segment routing part. c. S4 (from XFE 328 through firewall 346 to XAU 332) can be set to the last segment. The segment belongs to subdomain 308, and XAU 332 can be an adaptation function to be taken from XCF domain 304 to core network 340. This segment can belong to the XCF header segment routing portion.

XAU 319可以將XCF標頭附加於WTRU-1資料[2],其中該標頭具有用於S2的以下欄位值: a. XCF Src:可以攜帶在XAU 319(作為源)的XCF域中的XCF源位址; b. XCF Dst:可以攜帶第一個分段(即XFE 314)的XCF目的地位址; c. 範例的XCF-Dst控制值可以包括:緊急:0,順序:0,多個目的地:0,搶佔:1,保護訊框:0,其他分段:1(指示XCF標頭分段路由部分中攜帶的其他分段),路徑1:1,路徑2:2,路徑3:3; d. 範例的XCF-Src控制值可以包括:QoS設定檔/訊務分類:backhaul.video.stream,SN/TS位元:SN,序號值:當前視訊訊框編號。XFE可以使用這些值而在本地實施遵從網路控制器配置的規則之時延和PDV;以及 e. 在這個階段可以為WTRU-1資料[2]配置B-VID、I-SID、S-標籤以及C-標籤。The XAU 319 may append the XCF header to the WTRU-1 data [2], where the header has the following field values for S2: a. XCF Src: may be carried in the XCF domain of the XAU 319 (as the source) XCF source address; b. XCF Dst: XCF destination address that can carry the first segment (ie, XFE 314); c. The XCF-Dst control value of the example may include: urgent: 0, order: 0, multiple Destination: 0, preemption: 1, protection frame: 0, other segments: 1 (indicates other segments carried in the XCF header segment routing part), path 1:1, path 2: 2, path 3: 3; d. The XCF-Src control value of the example may include: QoS profile/traffic classification: backhaul.video.stream, SN/TS bit: SN, sequence number value: current video frame number. The XFE can use these values to locally implement the delay and PDV of the rules that are compliant with the network controller configuration; and e. At this stage, the B-VID, I-SID, S-tag can be configured for the WTRU-1 data [2]. And C-tags.

XAU 319可以是保持與訊務流[2]相關聯的狀態的網路中唯一節點。假設子域306是IEEE 802.11無線網狀網路,XAU 319可以將XCF映射到802.11訊框上,並且可以通過無線鏈路來對其進行傳輸。轉發階段( 7 )範例 The XAU 319 can be the only node in the network that maintains the state associated with the traffic flow [2]. Assuming sub-domain 306 is an IEEE 802.11 wireless mesh network, XAU 319 can map XCF onto an 802.11 frame and can transmit it over a wireless link. Forwarding phase ( 7 ) example

與轉發階段(3)範例相似,XFE 312可以基於包含在S2和XCF欄位中的資訊而依照以下的一項或多項來轉發回載訊務[2]: a. XCF Dst和XCF Dst控制路徑1(假設路徑1是活動的):確定輸出埠;以及 b. XCF Dst控制和XCF Src控制欄位:確定[2]的QoS以及內部佇列管理和切換,例如基於QoS設定檔/訊務分類、搶佔、順序等等來確定。轉發階段( 8 )範例 Similar to the forwarding phase (3) paradigm, the XFE 312 can forward the reload traffic according to one or more of the following information based on the information contained in the S2 and XCF fields [2]: a. XCF Dst and XCF Dst control paths 1 (assuming path 1 is active): determine output 埠; and b. XCF Dst control and XCF Src control field: determine [2] QoS and internal queue management and switching, eg based on QoS profile/traffic classification , preemption, order, etc. to determine. Forwarding phase ( 8 ) example

舊有的乙太網切換機322可以基於包含了S2和XCF欄位的XCF標頭MAC-in-MAC部分所包含的資訊來轉發WTRU-1資料[2]。舊有的乙太網切換機可以採用如下方式將XCF格式解釋成純(plain) MAC-in-MAC訊框: a. 由於MAC-in-MAC範本的XCF範例化,XCF Dst位址和XCF Dst控制可被解釋成是乙太網目的地位址;以及 b. 同樣,XCF Src位址和XCF Src控制可被解釋成是乙太網源位址。The legacy Ethernet switch 322 can forward WTRU-1 data based on the information contained in the MAC-in-MAC portion of the XCF header containing the S2 and XCF fields [2]. The old Ethernet switch can interpret the XCF format as a plain MAC-in-MAC frame as follows: a. Due to the XCF instantiation of the MAC-in-MAC template, the XCF Dst address and the XCF Dst Control can be interpreted as an Ethernet destination address; and b. Similarly, the XCF Src address and XCF Src control can be interpreted as an Ethernet source address.

B-VID、I-SID、S-標籤和C-標籤可以依照標準來解釋。B-VID, I-SID, S-tag, and C-tag can be interpreted in accordance with standards.

舊有的乙太網轉發處理可以基於: a. 乙太網目的地位址:在XCF域內部,XCF Dst位址(即24位元)是每一個XAU/XFE所獨有的,該XCF Dst位址可與XCF Dst控制位元(即24位元)的任何可能的結合相結合。由此,多個乙太網位址可以與每一個XAU/XFE相關聯。舊有的乙太網切換機將這些結合之任一者轉發到相同的XAU/XFE;以及 b. B-VID和I-SID:依照802.1Q標準。轉發階段( 9 )範例 The old Ethernet forwarding process can be based on: a. Ethernet destination address: Inside the XCF domain, the XCF Dst address (ie, 24-bit) is unique to each XAU/XFE, and the XCF Dst bit The address can be combined with any possible combination of XCF Dst control bits (ie, 24-bit). Thus, multiple Ethernet addresses can be associated with each XAU/XFE. The old Ethernet switcher forwards either of these combinations to the same XAU/XFE; and b. B-VID and I-SID: according to the 802.1Q standard. Forwarding phase ( 9 ) example

XFE 314可以是S2的目的地。XFE 314可以通過對以下欄位執行查找來檢測出需要轉發該訊框: a. 緊急:如果設置成0,則該訊框不應該在本地由XAU/XFE進行處理。在S2中,該位元可被設置成0;以及 b. 其他分段:如果設置成1,則XCF標頭分段路由部分存在其他分段。在S2中,該位元可被設置成1。XFE 314 can be the destination of S2. The XFE 314 can detect that the frame needs to be forwarded by performing a lookup on the following fields: a. Urgent: If set to 0, the frame should not be processed locally by the XAU/XFE. In S2, the bit can be set to 0; and b. Other segments: If set to 1, there are other segments in the XCF header segment routing portion. In S2, the bit can be set to 1.

接下來,XFE 314可以用S3替換S2,其可以將它們從XCF標頭分段路由部分中移除。此後,XFE 314可以使用S3中包含的資訊來轉發XCF,例如遵循轉發階段(7)範例中描述的過程來轉發。假設子域308是IEEE 802.3aq光纖網路,XFE 314可能不會映射該訊框,並且可以直接在光纖鏈路上發送XCF。轉發階段( 10 )範例 Next, XFE 314 can replace S2 with S3, which can remove them from the XCF header segment routing portion. Thereafter, XFE 314 can forward the XCF using the information contained in S3, for example, following the procedure described in the Forwarding Phase (7) example. Assuming sub-domain 308 is an IEEE 802.3aq fiber network, XFE 314 may not map the frame and may send XCF directly over the fiber link. Forwarding phase ( 10 ) example

當已經在XAU 316推送了WTRU-1資料[2]上的XCF標頭(包括所有分段)之後,XFE 324和XFE 326之間的鏈路將會發生故障。其結果是路徑1(最初由控制器在S3上配置)不可用(如使用X 標記的虛線所顯示的那樣)。XFE 324可以檢測到鏈路故障,並且依照在回退路徑上的S3中包含的資訊,XFE 324可以決定在穿過乙太網切換機334而不是XFE 326的路徑2上轉發XCF。由此,XFE 324可以基於S3中包含的資訊來轉發XCF,其可以如下所示: a. XCF Dst和XCF Dst控制路徑2(由於鏈路故障,路徑1不可用,路徑2是活動的):確定輸出埠;以及 b. XCF Dst控制和XCF Src控制欄位:確定WTRU-1資料[2]的QoS以及內部佇列管理和切換,例如基於QoS設定檔/訊務分類、時間戳記、搶佔、順序等等來確定。After the XCF header (including all segments) on the WTRU-1 data [2] has been pushed at the XAU 316, the link between the XFE 324 and the XFE 326 will fail. The result is that path 1 (originally configured by the controller on S3) is not available (as shown by the dashed line marked with X ). The XFE 324 can detect a link failure and, in accordance with the information contained in S3 on the fallback path, the XFE 324 can decide to forward the XCF on path 2 through the Ethernet switch 334 instead of the XFE 326. Thus, XFE 324 can forward XCF based on the information contained in S3, which can be as follows: a. XCF Dst and XCF Dst control path 2 (path 1 is not available due to link failure, path 2 is active): Determine output 埠; and b. XCF Dst control and XCF Src control field: determine QoS for WTRU-1 data [2] and internal queue management and handover, eg based on QoS profile/traffic classification, timestamp, preemption, Order and so on to determine.

如果路徑2同樣發生故障,那麼XFE 324可以基於路徑3來轉發XCF。如果路徑3同樣發生故障時,這時可以執行相同的過程,並且XFE 324需要基於路徑4轉發該訊框。轉發階段( 11 )範例 If path 2 also fails, XFE 324 can forward XCF based on path 3. If path 3 also fails, the same process can be performed and XFE 324 needs to forward the frame based on path 4. Forwarding phase ( 11 ) example

乙太網切換機334可以使用S3中包含的資訊而依照(8)中描述的過程來轉發XCF。轉發階段( 12 )範例 The Ethernet switch 334 can forward the XCF according to the procedure described in (8) using the information contained in S3. Forwarding phase ( 12 ) example

作為範例,如同在轉發階段(9)範例中描述的那樣,XFE 328可以終止S3並將其替換成S4。XFE 328可以通過對以下欄位執行查找處理來檢測出首先需要將該訊框轉發到防火牆346(而不是直接轉發給XAU 332): a. 單單XCF Dst可能不足以確定輸出埠;以及 b. 通過聯合使用訊務分類、B-VID和I-D,可以確定WTRU-1資料[2]在到達核心網路340之前需要穿過防火牆346。As an example, as described in the forwarding phase (9) example, XFE 328 may terminate S3 and replace it with S4. The XFE 328 can detect that the frame needs to be forwarded to the firewall 346 first (instead of forwarding directly to the XAU 332) by performing a lookup process on the following fields: a. The XCF Dst alone may not be sufficient to determine the output; and b. Using the traffic classification, B-VID, and ID in combination, it can be determined that the WTRU-1 data [2] needs to pass through the firewall 346 before reaching the core network 340.

作為範例,XFE 328可以使用S4中包含的資訊而依照轉發階段(7)範例中描述的過程來轉發XCF。轉發階段( 13 )範例 As an example, XFE 328 can forward the XCF using the information contained in S4 in accordance with the procedures described in the forwarding phase (7) example. Forwarding phase ( 13 ) example

防火牆346不會做出任何切換決定。它可以(例如最終)依照網路控制平面決定來阻攔或丟棄訊務。例如,防火牆346可以阻止定向到任何特定IP位址的任何通信。在本範例中,防火牆沒有阻攔WTRU-1資料[2],並且其可被透明地中繼到XAU 328。轉發階段( 14 )範例 Firewall 346 does not make any switching decisions. It can (for example, eventually) block or drop traffic in accordance with network control plane decisions. For example, firewall 346 can block any communication directed to any particular IP address. In this example, the firewall does not block WTRU-1 data [2] and it can be transparently relayed to XAU 328. Forwarding phase ( 14 ) example

網路控制器350可以在XAU 328上配置與WTRU-1資料[2]有關的解訊框和解封裝參數。由於S4會在XAU 328上終止,並且由於XCF Dst位址是XAU 328的位址,且其他分段位元被設置成0,因此,XAU 328可以剝離XCF標頭。此後,XAU 328可以將WTRU-1資料[2]轉發到核心網路340。依照在核心網路340中使用的協定,XAU 328可以將額外標頭在轉發它之前附加於WTRU-1資料[2]。範例的訊務流 A Network controller 350 may configure the WTRU-1 profile [2] response frame and decapsulation parameters on XAU 328. Since S4 will terminate on XAU 328, and since the XCF Dst address is the address of XAU 328 and the other segment bits are set to 0, XAU 328 can strip the XCF header. Thereafter, XAU 328 can forward WTRU-1 data [2] to core network 340. In accordance with the protocol used in core network 340, XAU 328 may append additional headers to WTRU-1 data [2] before forwarding it. Example traffic flow A

對於後續描述來說,術語“[A]”指的是在第11圖中用類似形式的方框字母識別的訊務流A的訊務,並且用括弧包圍的大寫字母指的是在第11圖中用類似形式的方框字母識別的訊務流的轉發階段。轉發階段( A )範例 For the subsequent description, the term "[A]" refers to the traffic of traffic flow A identified by a similar form of box letter in Figure 11, and the capital letter surrounded by brackets refers to the 11th. The forwarding phase of the traffic flow identified by a similar form of box letter is shown. Forwarding phase ( A ) example

WTRU 302b可以連接到存取網路338,該存取網路可以是沒有功能分割的無線電存取網路。WTRU 302b可以與操作者網路以外的一些伺服器進行通信,並且可以直接將回載訊務[A]發送到核心網路340。為了簡單起見,舊有切換機348可被認為是核心網路340中的傳輸網路的存在點。封包丟失率預算可以與回載訊務[A]相關聯,並且在這裡不需要最大時延或PDV。舉例來說,WTRU 302b可以在遠端伺服器上執行行動電話應用程式備份。依照傳輸網路的觀點,回載訊務[A]是在時延和PDV方面具有低優先順序的訊務,但在封包丟失率方面具有高優先順序。轉發階段( B )範例 The WTRU 302b may be connected to an access network 338, which may be a radio access network without functional partitioning. The WTRU 302b can communicate with some servers other than the operator network and can directly send the reloaded traffic [A] to the core network 340. For simplicity, the legacy switch 348 can be considered to be the point of presence of the transport network in the core network 340. The packet loss rate budget can be associated with the reload traffic [A] and does not require maximum latency or PDV here. For example, the WTRU 302b may perform a mobile phone application backup on a remote server. According to the transmission network, the reloaded traffic [A] is a low-priority traffic in terms of delay and PDV, but has a high priority in terms of packet loss rate. Forwarding phase ( B ) example

網路控制器350可以在XAU 318上配置與WTRU 302b生成的回載資料[A]有關的訊框化和封裝參數。XAU 318可以將帶有以下欄位值的XCF標頭附加於回載訊務[A]: a. XAU 318是XCF Src:它是XCF域中的XCF源位址; b. XAU 320是XCF Dst:回傳資料[A]會經由舊有域303而被轉發,以便到達核心網路340。由此,XAU 320是用於回載訊務[A]的XCF目的地位址。 c. 範例的XCF-Dst控制值可以包括:緊急:0,順序:0,多個目的地:0,搶佔:1,保護訊框:1,其他分段:0; d. 範例的XCF-Src控制值可以包括:QoS設定檔/訊務分類:backhaul.ftp-session,SN/TS位元:SN,序號值:當前序號。XFE可以在本地使用這些值來在本地實施遵從網路控制器配置的規則之時延和PDV;以及 e. 在這個階段可以為回載訊務[A]配置B-VID、I-SID、S-標籤和C-標籤。The network controller 350 can configure the frame and encapsulation parameters associated with the backhaul data [A] generated by the WTRU 302b on the XAU 318. XAU 318 may append the XCF header with the following field value to the reload traffic [A]: a. XAU 318 is XCF Src: it is the XCF source address in the XCF domain; b. XAU 320 is XCF Dst The return data [A] will be forwarded via the old domain 303 to reach the core network 340. Thus, XAU 320 is the XCF destination address used to reload traffic [A]. c. The XCF-Dst control values of the example may include: Urgent: 0, Sequence: 0, Multiple destinations: 0, Preemption: 1, Protection frame: 1, Other segments: 0; d. Example XCF-Src The control value may include: QoS profile/traffic classification: backhaul.ftp-session, SN/TS bit: SN, sequence number value: current sequence number. The XFE can use these values locally to implement local delays and PDVs that comply with the rules configured by the network controller; and e. At this stage, B-VID, I-SID, S can be configured for the reload traffic [A]. - Labels and C-tags.

SA是活動分段(例如XCF Dst、XCF Dst Ctrl、XCF Src以及XCF Src Ctrl中的任何一個),並且在XCF標頭分段路由部分中並未添加其他分段。假設子域306是IEEE 802.11無線網狀網路,XAU 318可以將XCF映射到802.11訊框上,並且可以通過無線鏈路來對其進行傳輸。轉發階段( C )範例 The SA is an active segment (such as any of XCF Dst, XCF Dst Ctrl, XCF Src, and XCF Src Ctrl), and no other segments are added in the XCF header segment routing portion. Assuming sub-domain 306 is an IEEE 802.11 wireless mesh network, XAU 318 can map XCF onto an 802.11 frame and can transmit it over a wireless link. Forwarding phase ( C ) example

XFE 312可以基於如下的SA和XCF欄位中的資訊來轉發回載訊務: a. XCF Dst位址和XCF Dst控制:確定輸出埠;以及 b. XCF Dst控制和XCF Src控制欄位:確定回載訊務[A]的QoS以及內部佇列管理和切換,例如基於QoS設定檔/訊務分類、時間戳記、搶佔、順序等等來確定。The XFE 312 can forward the backhaul traffic based on the information in the SA and XCF fields as follows: a. XCF Dst address and XCF Dst control: determine output 埠; and b. XCF Dst control and XCF Src control field: OK The QoS of the backhaul [A] and the internal queue management and handover are determined, for example, based on QoS profile/traffic classification, time stamp, preemption, order, and the like.

網路控制器350可以持續監視傳輸網路310,並且可以知道將一個訊框從XAU 318傳送到XAU 320所需要(例如所要求)的時間。在XFE 312上配置的規則可以與端到端路徑相關聯,以便在本地實施QoS需求。轉發階段( D )範例 The network controller 350 can continuously monitor the transport network 310 and can know the time (e.g., required) required to transfer a frame from the XAU 318 to the XAU 320. Rules configured on XFE 312 can be associated with an end-to-end path to implement QoS requirements locally. Forwarding phase ( D ) example

網路控制器350可以在XAU 320上配置與關聯於WTRU 302b的回載訊務[A]有關的解訊框和解封裝參數。由於SA會在XAU 320上終止,並且由於XCF Dst位址是XAU 320的位址,且其他分段位元被設置成0,因此,XAU 320可以剝離XCF標頭。該XAU 320可以將回載訊務[A]轉發到存在點,即舊有切換機348。該XAU 320可以依照舊有域303中使用的協定來將額外標頭附加於回載訊務[A]。轉發階段( E )範例 The network controller 350 can configure the XBOX 320 with the demodulation box and decapsulation parameters associated with the reload traffic [A] associated with the WTRU 302b. Since the SA will terminate on the XAU 320, and since the XCF Dst address is the address of the XAU 320 and the other segmented bits are set to 0, the XAU 320 can strip the XCF header. The XAU 320 can forward the reload traffic [A] to the point of presence, the legacy switch 348. The XAU 320 can append additional headers to the reload traffic [A] in accordance with the protocol used in the old domain 303. Forwarding phase ( E ) example

舊有切換機348處於XCF域304外部,並且可以作為舊有存在點操作。The legacy switch 348 is external to the XCF domain 304 and can operate as an old point of presence.

穿過相同XFE的多個XCF訊務設定檔的範例是通過轉發階段(3)、(7)和(C)範例給出的。在相同的XFE上可以多工前向回傳訊務[1]與回載訊務[2]、[A],其中該XFE可以使用XCF控制欄位來實施QoS需求。舊有的乙太網切換機 MAC 表格填充範例 An example of multiple XCF traffic profiles that traverse the same XFE is given by the forwarding stages (3), (7), and (C). Multiplexed forward traffic [1] and reloaded traffic [2], [A] can be multiplexed on the same XFE, where the XFE can use the XCF control field to implement QoS requirements. Old Ethernet switch MAC table filling example

為了舒解舊有乙太網切換機上的MAC表格的大小,所以沒有必要保存與每一個XFE相關聯的所有乙太網位址,可以使用在舊有乙太網切換機上運行的用於正確填充MAC表格的MAC學習演算法。MAC表格的填充可以採用以下方式來執行:XCF目的地控制部分510攜帶的控制資訊之結合會操縱舊有乙太網切換機執行的轉發決定,以便在沒有XCF能力的節點上實施XCF特徵的一個子集。In order to relieve the size of the MAC table on the old Ethernet switch, it is not necessary to save all the Ethernet addresses associated with each XFE, and it can be used for running on the old Ethernet switch. Correctly fill the MAC learning algorithm of the MAC table. The padding of the MAC table may be performed in the following manner: the combination of the control information carried by the XCF destination control section 510 controls the forwarding decision performed by the old Ethernet switcher to implement one of the XCF features on the node without the XCF capability. Subset.

第12圖和第13圖顯示了由控制器通過一個或多個XFE觸發的舊有乙太網切換機MAC表格填充的範例。為了簡化後續描述中的說明,第3圖所示的範例通信環境的各種元件可以結合第12圖和第13圖而被引用。Figures 12 and 13 show an example of the old Ethernet switch MAC table padding triggered by the controller via one or more XFEs. To simplify the description in the subsequent description, various elements of the example communication environment shown in FIG. 3 can be referenced in connection with FIGS. 12 and 13.

通常,舊有的乙太網切換機可以對訊框進行處理,並且可以基於乙太網目的地位址來將其轉發。舊有的乙太網切換機可以從其接收的訊框中獲知乙太網位址,然後將此類資訊儲存在內部的MAC表格中。在此類切換機接收到一個新的訊框的任何時候,它會將該訊框的源乙太網位址連同埠(其從該埠接收該訊框)一起保存在表格中。這意味著在該切換機下一次接收到以這個乙太網位址作為目的地的訊框時,它將會獲知(通過在其位址表中查看)將該訊框轉發到哪個埠。由於舊有的乙太網切換機不受網路控制器的控制(這意味著網路控制器不能直接填充MAC表格),因此,MAC表格的填充可以在外部通過向該舊有乙太網切換機發送具有特定源乙太網位址的多個乙太網訊框來觸發。這些源位址可以對應於在XCF源位址部分512和XCF目的地控制部分510中攜帶的控制資訊的不同結合。Usually, the old Ethernet switch can process the frame and forward it based on the destination address of the Ethernet. The old Ethernet switch can learn the address of the Ethernet from the frame it receives, and then store this information in the internal MAC table. Whenever such a switch receives a new frame, it saves the frame's source Ethernet address along with the frame (which receives the frame from that frame) in a table. This means that the next time the switch receives a frame with this Ethernet address as its destination, it will know (by viewing it in its address table) which frame to forward the frame to. Since the old Ethernet switch is not controlled by the network controller (which means that the network controller cannot directly fill the MAC table), the MAC table padding can be switched externally to the old Ethernet network. The machine sends multiple Ethernet frames with specific source Ethernet addresses to trigger. These source addresses may correspond to different combinations of control information carried in the XCF source address portion 512 and the XCF destination control portion 510.

第12圖顯示了在舊有乙太網切換機334上MAC表格如何由XFE 324、326、328所填充。在以下範例中,包含了XFE和舊有乙太網切換機的每一對節點都可以存在三種可能的路由(舉例來說,舊有乙太網切換機334可以基於以下路由到達XFE 328:直接到達XFE 328,經由XFE 326(XFE 326-XFE 328);以及經由XFE 324、326(XFE 324 - XFE 326 - XFE 328))。每一個路由都可以通過控制位元的不同結合來識別。舉例來說,用於到達XFE 328的第一個路由可以由形成乙太網位址328.1的XCF源位址部分512和XCF目的地控制部分510中攜帶的控制資訊的結合來識別。同樣,第二路由可以通過乙太網位址328.2來識別,並且第三路由可以通過乙太網位址328.3來識別。對於XFE 324、326來說,以XCF源位址部分512和XCF目的地控制部分510中攜帶的控制資訊的結合變化為基礎的類似的路由識別同樣是可以使用的。Figure 12 shows how the MAC table is populated by XFEs 324, 326, 328 on the legacy Ethernet switch 334. In the following example, there may be three possible routes for each pair of nodes including the XFE and the old Ethernet switch (for example, the old Ethernet switch 334 can reach the XFE 328 based on the following route: directly XFE 328 is reached via XFE 326 (XFE 326-XFE 328); and via XFE 324, 326 (XFE 324 - XFE 326 - XFE 328)). Each route can be identified by a different combination of control bits. For example, the first route used to reach XFE 328 can be identified by a combination of XCF source address portion 512 forming the Ethernet address 328.1 and control information carried in XCF destination control portion 510. Similarly, the second route can be identified by the Ethernet address 328.2, and the third route can be identified by the Ethernet address 328.3. For XFE 324, 326, similar route identification based on the combined change of control information carried in XCF source address portion 512 and XCF destination control portion 510 is also available.

通常,MAC學習過程在舊有的乙太網切換機上始終是活動的。這意味著只要舊有切換機接收到具有未被保存在MAC表格中的乙太網源位址的訊框,那麼該舊有乙太網切換機就會在MAC表格中添加一個新的條目。若XCF源位址部分512和XCF源控制部分514代表了乙太網源位址,網路控制器可以通過禁用一些特徵(例如時間戳記)來舒解MAC表格大小。舉例來說,不同的路由可以通過XCF源控制部分514中的QoS設定檔/訊務分類欄位來識別。由此,定向到相同目的地但具有不同QoS設定檔的訊務可以在不同的埠上被轉發。Usually, the MAC learning process is always active on the old Ethernet switch. This means that as long as the old switch receives a frame with an Ethernet source address that is not stored in the MAC table, the old Ethernet switch adds a new entry to the MAC table. If the XCF source address portion 512 and the XCF source control portion 514 represent the Ethernet source address, the network controller can relax the MAC table size by disabling some features, such as a timestamp. For example, different routes may be identified by the QoS profile/traffic classification field in the XCF source control portion 514. Thus, traffic directed to the same destination but with different QoS profiles can be forwarded on different ports.

為了操作舊有乙太網切換機334來填充其MAC表格1301(第13圖),網路控制器可以指示每一個XFE向舊有的乙太網切換機334發送在XCF源位址部分512和XCF源控制部分514(作為乙太網源位址)中攜帶的不同控制資訊結合的多個乙太網訊框。在第12圖中顯示了這種被從XFE發送到乙太網切換機334的訊框的乙太網源和目的地位址值的範例1201、1203以及1205。In order to operate the legacy Ethernet switch 334 to populate its MAC table 1301 (Fig. 13), the network controller can instruct each XFE to send the XCF source address portion 512 to the legacy Ethernet switch 334 and A plurality of Ethernet frames combined with different control information carried in the XCF source control section 514 (as the Ethernet source address). Examples 1201, 1203, and 1205 of such Ethernet source and destination address values for frames sent from the XFE to the Ethernet switch 334 are shown in FIG.

在接收到第12圖中報告的所有的訊框之後,舊有的乙太網切換機324可以基於這些訊框的乙太網源位址以及埠(其從該埠接收它們)來填充MAC表格1301(第13圖)。通過使用基於所發送的訊框填充的MAC表格1301,網路控制器可以藉由選擇形成了在該MAC表格中保存的乙太網位址的XCF域控制資訊的特定結合,而在舊有的乙太網切換機334上導引跨行程訊務。內部封裝和轉發範例 After receiving all the frames reported in FIG. 12, the old Ethernet switch 324 can populate the MAC table based on the Ethernet source addresses of the frames and the UI from which they are received. 1301 (figure 13). By using the MAC table 1301 populated based on the transmitted frame, the network controller can control the specific combination of the XCF domain control information forming the Ethernet address stored in the MAC table, while in the old The cross-travel traffic is guided on the Ethernet switch 334. Internal encapsulation and forwarding examples

以下提供的是XFE和XAU內部過程的實例。Provided below are examples of XFE and XAU internal processes.

第14圖是示出了在XFE執行的高級XCF轉發處理1400的範例的框圖。該XCF轉發過程1400可以包括以下的任何一項。Figure 14 is a block diagram showing an example of an advanced XCF forwarding process 1400 performed at XFE. The XCF forwarding process 1400 can include any of the following.

如在1402所示,XFE可以在鏈路1(例如802.11)上接收XCF。接收引擎可以對資料鏈路訊框(例如802.11)進行處理(以例如檢測衝突),並且該訊框可被傳遞到(入站)映射層(1404)。As shown at 1402, the XFE can receive the XCF on link 1 (e.g., 802.11). The receiving engine can process the data link frame (e.g., 802.11) (e.g., detect collisions) and the frame can be passed to the (inbound) mapping layer (1404).

如在1406所示,(入站)映射層可以在需要時執行鏈路1的訊框欄位到MAC-in-MAC XCF範例化的映射(例如將802.11訊框映射到MAC-in-MAC範本中)。由此得到的XCF可被傳遞到共用切換層(1408)。As shown at 1406, the (inbound) mapping layer can perform the mapping of the link field of link 1 to the MAC-in-MAC XCF when needed (eg, mapping an 802.11 frame to a MAC-in-MAC template) in). The resulting XCF can be passed to the shared switching layer (1408).

如在1410所示,共用切換層可以基於網路控制器配置的一些規則和/或參數來處理傳入的XCF,並且可以決定將該訊框轉發到何處以及如何轉發該訊框(作為範例,以便滿足時延預算、PDV預算、封包丟失率、回退路徑等等)。處理管道可以包括3個階段,即入站處理(1412)、出站處理(1414)以及佇列管理(1416)。在處理之後,XCF可被傳遞到(出站)映射層,以便通過鏈路2進行傳輸(1418)。As shown at 1410, the shared switching layer can process the incoming XCF based on some rules and/or parameters configured by the network controller and can decide where to forward the frame and how to forward the frame (as an example) In order to meet the delay budget, PDV budget, packet loss rate, fallback path, etc.). The processing pipeline can include three phases, namely inbound processing (1412), outbound processing (1414), and queue management (1416). After processing, the XCF can be passed to the (outbound) mapping layer for transmission over link 2 (1418).

如1420所示,(出站)映射層可以在需要時執行將XCF欄位映射到鏈路2的訊框欄位(例如優先順序)的處理(例如將XCF映射到802.11訊框上)。由此產生的鏈路2訊框可被傳遞到傳輸引擎,以便在鏈路2上進行傳輸(1422)。如1424所示,該傳輸引擎可以在鏈路2上傳送所產生的鏈路2訊框。As shown at 1420, the (outbound) mapping layer can perform the process of mapping the XCF field to the frame field of link 2 (eg, prioritization) as needed (eg, mapping the XCF onto the 802.11 frame). The resulting link 2 frame can be passed to the transport engine for transmission on link 2 (1422). As shown at 1424, the transport engine can transmit the resulting link 2 frame on link 2.

第15圖顯示出了與XCF到達XFE埠3以及在埠2上中繼有關的內部轉發過程1500的範例。映射和轉發可以使用以下的處理塊來執行。Figure 15 shows an example of an internal forwarding process 1500 associated with XCF arriving at XFE 埠 3 and relaying on 埠 2. Mapping and forwarding can be performed using the following processing blocks.

在處理塊1502可以執行與在埠3上接收XCF相關聯的各種過程。如處理塊1504所示,所執行的可以是以物理方式接收XCF的過程(例如同步和前端處理)。此外也可以執行在埠3上使用的資料鏈路層技術所需要的(例如所要求的)MAC操作。如處理塊1506所示,資料鏈路訊框可被映射到乙太網範本XCF格式。作為範例,802.11中的位址1和2可被映射到乙太網中的目的地位址和源位址。XCF可被傳遞到共用切換層(1508)。Various processes associated with receiving the XCF on 埠3 may be performed at processing block 1502. As shown in processing block 1504, what is performed may be the process of physically receiving the XCF (eg, synchronization and front-end processing). It is also possible to perform (eg required) MAC operations required by the data link layer technology used on 埠3. As shown in processing block 1506, the data link frame can be mapped to the Ethernet template XCF format. As an example, addresses 1 and 2 in 802.11 can be mapped to destination and source addresses in the Ethernet. The XCF can be passed to the shared switching layer (1508).

在處理塊1510上可以執行XCF轉發過程。如處理塊1512所示,入站處理可以指定匹配規則以及一個或多個輸出埠。XFE可以基於位址、標籤以及控制欄位/位元及其任何結合來匹配XCF(舉例來說,XCF可以通過XCF Dst.位址、XCFSrc.位址、流散列、TTL以及QoS設定檔欄位來被匹配)。在規則成功匹配了XCF之後,入站處理可以識別該訊框的輸出埠。該匹配規則可以由網路控制器配置。如處理塊1514所示,出站處理可以指定在傳輸前應用於XCF的行動。作為範例,此類處理可以包括在C-標籤存在的情況下減少TTL,以及基於QoS設定檔、時間戳記和/或優先順序欄位的最適當的傳輸佇列的配置。如處理塊1516所示,佇列管理可以利用多種佇列傳輸機制而在XCF級實施QoS。該佇列可以實施訊務整形器。該訊務整形器可用於通過延遲其他種類(例如可在該階段實施的QoS需求)來最佳化或保證性能,改善時延和/或增加一些種類的訊框的可用頻寬。在該佇列管理決定傳送訊框之後,其可以與底層的映射層取得聯繫。An XCF forwarding process can be performed at processing block 1510. As shown in processing block 1512, the inbound process can specify a matching rule and one or more output ports. XFE can match XCF based on address, label, and control field/bit and any combination thereof (for example, XCF can pass XCF Dst. address, XCFSrc. address, stream hash, TTL, and QoS profile fields). Come to be matched). After the rule successfully matches the XCF, the inbound process can identify the output port of the frame. This matching rule can be configured by the network controller. As shown in processing block 1514, the outbound processing can specify the action to apply to the XCF prior to transmission. As an example, such processing may include reducing TTL in the presence of a C-tag, and configuration of the most appropriate transmission queue based on QoS profiles, timestamps, and/or priority fields. As shown in processing block 1516, the queue management can implement QoS at the XCF level using a variety of queue transmission mechanisms. This queue can implement a traffic shaper. The traffic shaper can be used to optimize or guarantee performance by delaying other types (such as QoS requirements that can be implemented at this stage), improving latency and/or increasing the available bandwidth of some types of frames. After the queue management decides to transmit the frame, it can contact the underlying mapping layer.

在處理塊1518上可以執行用於促成埠2上的XCF傳輸的過程。如處理塊1520所示,XCF可被映射到特定的資料鏈路層訊框格式(例如IEEE 802.11)。如處理塊1522所示,可以執行在埠2上使用的資料鏈路層技術所需要的(例如所要求的)MAC操作。此外也可以執行用於對XCF進行物理傳輸的過程(例如同步和前端處理)。A process for facilitating XCF transmission on 埠2 may be performed at processing block 1518. As shown in processing block 1520, the XCF can be mapped to a particular data link layer frame format (e.g., IEEE 802.11). As shown in processing block 1522, the MAC operations required (e.g., required) for the data link layer technology used on 埠2 may be performed. It is also possible to perform processes for physical transmission of XCF (eg, synchronization and front-end processing).

第16圖是示出了XAU上的範例的高級XCF調適/轉換處理1600的框圖。該調適/轉換和轉發處理1600可以包括以下的任何一項。Figure 16 is a block diagram showing an example advanced XCF adaptation/conversion process 1600 on the XAU. The adaptation/conversion and forwarding process 1600 can include any of the following.

如1602所示,XAU可以在鏈路1上接收封裝在資料鏈路訊框(即乙太網)中的舊有訊框(即IEEE 1904.3)。該資料鏈路訊框可以由接收引擎進行處理(例如用於檢測衝突),並且可被傳遞到(入站)映射層(1604)。As shown at 1602, the XAU can receive the old frame (ie, IEEE 1904.3) encapsulated in the data link frame (ie, Ethernet) on link 1. The data link frame can be processed by the receiving engine (e.g., for detecting collisions) and can be passed to the (inbound) mapping layer (1604).

如1606所示,(入站)映射層可以執行將鏈路1的訊框欄位映射到舊有訊框(例如片段ID)的處理。由此得到的舊有訊框可被傳遞到舊有操作層(1608)。As shown at 1606, the (inbound) mapping layer can perform the process of mapping the frame field of link 1 to the old frame (e.g., segment ID). The old frame thus obtained can be passed to the old operational layer (1608).

如1610所示,舊有操作層可以實施與舊有協定相關的所有操作(例如標記時間戳記)。該舊有操作層可以將舊有訊框傳遞到轉換/調適層(1612)。As shown in 1610, the old operational layer can implement all operations associated with the old agreement (eg, tag timestamps). The old operational layer can pass the old frame to the conversion/adaptation layer (1612).

如1614所示,轉換/調適層可以組訊框(例如CPRI串流的封包化處理)以及將舊有訊框轉換成XCF。由此得到的XCF可被傳遞到共用切換層(1616)。As shown in 1614, the conversion/adaptation layer can be used for grouping frames (eg, packetization of CPRI streams) and converting old frames to XCF. The resulting XCF can be passed to the shared switching layer (1616).

如1618所示,共用切換層可以實施先前該的相同的XFE轉發功能。在該處理之後,XCF可被傳遞到(出站)映射層,以便進行傳輸(1620)。As shown at 1618, the shared switching layer can implement the same XFE forwarding function as previously described. After this processing, the XCF can be passed to the (outbound) mapping layer for transmission (1620).

如1622所示,(出站)映射層可以在需要時將XCF欄位映射到鏈路2訊框欄位(例如優先順序)。由此得到的鏈路2訊框可被傳遞到傳輸層,以便在鏈路2上進行傳輸(1624)。如1626所示,傳輸引擎可以在鏈路2上傳送所產生的鏈路2訊框。As indicated by 1622, the (outbound) mapping layer can map XCF fields to link 2 frame fields (eg, prioritization) as needed. The resulting link 2 frame can be passed to the transport layer for transmission over link 2 (1624). As shown at 1626, the transport engine can transmit the resulting link 2 frame on link 2.

第17圖顯示了與XCF到達XAU埠3以及在埠2上中繼相關的內部轉發過程1700的範例。映射和轉發處理可以使用以下的處理塊來執行。Figure 17 shows an example of an internal forwarding process 1700 associated with XCF arriving at XAU 埠 3 and relaying on 埠 2. The mapping and forwarding process can be performed using the following processing blocks.

在處理塊1702上可以執行與在埠1上接收訊號(即CPRI串流)相關聯的過程。如處理塊1704所示,所執行的可以是物理接收和MAC操作(如果存在的話)(例如使用如第15圖所述的過程,即處理塊1.1)。如處理塊1706所示,任何最終的資料鏈路欄位都可被移除,並且傳入的訊號可被映射在舊有協定中。在處理塊1706之後,該訊框可被傳遞到轉換/調適層。如處理塊1708所示,任何非封包化的串流都是可以訊框化的。訊框化過程可以由網路控制器配置(例如每一個訊框的大小)。訊務可被映射在MAC-in-MAC XCF格式中(也就是在該階段設置QoS設定檔欄位和時間戳記)。在使用分段路由支援的XCF時,XCF標頭分段路由部分可被添加到XCF標頭MAC-in-MAC部分。此外,有序分段列表也是可以添加的。此後,XCF可被傳遞到共用切換層。A process associated with receiving a signal (i.e., a CPRI stream) on 埠1 can be performed at processing block 1702. As shown in processing block 1704, what may be performed may be physical reception and MAC operations (if any) (e.g., using the process as described in Fig. 15, i.e., processing block 1.1). As shown in processing block 1706, any final data link fields can be removed and the incoming signals can be mapped in the legacy protocol. After processing block 1706, the frame can be passed to the conversion/adaptation layer. As shown in processing block 1708, any non-encapsulated stream can be framed. The frame process can be configured by the network controller (for example, the size of each frame). Traffic can be mapped in the MAC-in-MAC XCF format (ie, the QoS profile field and timestamp are set at this stage). When using segmented routing supported XCF, the XCF header segmentation routing portion can be added to the XCF header MAC-in-MAC portion. In addition, an ordered list of segments can also be added. Thereafter, the XCF can be passed to the shared switching layer.

在處理塊1710上可以執行XCF轉發過程。如處理塊1712所示,可以執行入站處理(例如使用與第15圖中描述的過程相同的過程,即處理塊1512)。如處理塊1714所示,出站處理可被執行(例如使用與第15圖中描述的過程相同的過程,即處理塊1514)。如處理塊1716所示,佇列管理可被執行(例如使用與第15圖中描述的過程相同的過程,即處理塊1516)。An XCF forwarding process can be performed at processing block 1710. As shown in processing block 1712, inbound processing may be performed (e.g., using the same process as described in FIG. 15, i.e., processing block 1512). As shown in processing block 1714, the outbound processing can be performed (e.g., using the same process as described in FIG. 15, i.e., processing block 1514). As shown in processing block 1716, queue management can be performed (e.g., using the same process as described in FIG. 15, i.e., processing block 1516).

在處理塊1718上可以執行用於促成埠4上的XCF傳輸的過程。如處理塊1720所示,所執行的可以是映射和封裝過程(例如使用與第15圖描述的過程相同的過程,即處理塊1520)。如處理塊1722所示,所執行的可以是MAC操作和物理傳輸過程(例如使用與第15圖中描述的過程相同的過程,即處理塊1522)。A process for facilitating XCF transmission on 埠4 may be performed at processing block 1718. As shown in processing block 1720, what may be performed may be a mapping and encapsulation process (e.g., using the same process as described in FIG. 15, i.e., processing block 1520). As shown in processing block 1722, what may be performed may be a MAC operation and a physical transfer process (e.g., using the same process as described in FIG. 15, i.e., processing block 1522).

第18圖是示出了針對跨行程訊務的共用傳輸的代表過程1800的流程圖。該代表過程1800可以在網路實體中實施,例如XFE、XAU或是在這裡以其他方式揭露和/或在第3圖和第11圖至第17圖中示出的網路實體。Figure 18 is a flow diagram showing a representative process 1800 for a shared transmission for cross-trip traffic. The representative process 1800 can be implemented in a network entity, such as XFE, XAU, or a network entity otherwise disclosed herein and/or illustrated in Figures 3 and 11 through 17.

參考第18圖,網路實體可以接收包括XCF的多個MAC-in-MAC相容的訊框(1802)。在一個實施例中,XCF可被編碼用於MAC-in-MAC相容協定以及支持跨行程訊務的共用轉發和/或管理。在一個實施例中,XCF可以包括被編碼成支援跨行程訊務的轉發和管理中的任一者的一個或多個MAC-in-MAC協定欄位/參數。Referring to Figure 18, the network entity can receive a plurality of MAC-in-MAC compatible frames (1802) including XCF. In one embodiment, the XCF may be encoded for MAC-in-MAC compatible protocols and support shared forwarding and/or management of cross-trip traffic. In one embodiment, the XCF may include one or more MAC-in-MAC protocol fields/parameters encoded to support any of forwarding and management of cross-travel traffic.

在一個實施例中,XCF可以包括XCF標頭。該XCF標頭可以有控制資訊之MAC-in-MAC標頭的範例化為基礎,其中該控制資訊被編碼成允許使用MAC-in-MAC協定XCF域轉發控制來適當轉發XCF。在一個實施例中,用於編碼控制資訊的編碼處理可以包括允許使用MAC-in-MAC協定和XCF域轉發控制來解釋XCF的任何編碼類型。在一個實施例中,該編碼處理可以對控制資訊進行編碼,以便可以使用MAC-in-MAC協定來解釋XCF標頭和/或XCF,以及在對一些或所有XCF標頭應用了函數之後使用XCF域轉發控制來解釋XCF標頭和/或XCF。在一個實施例中,該編碼處理可以編碼控制資訊,以便在不會影響使用MAC-in-MAC協定來適當轉發XCF的XCF標頭的一個或多個部分之間佈置XCF域控制資訊。In one embodiment, the XCF may include an XCF header. The XCF header may be based on an instantiation of a MAC-in-MAC header of control information, wherein the control information is encoded to allow proper forwarding of the XCF using MAC-in-MAC protocol XCF domain forwarding control. In one embodiment, the encoding process for encoding the control information may include allowing any encoding type of the XCF to be interpreted using the MAC-in-MAC protocol and the XCF domain forwarding control. In one embodiment, the encoding process may encode control information such that the MAC-in-MAC protocol may be used to interpret the XCF header and/or XCF, and XCF may be used after applying a function to some or all of the XCF headers. Domain forwarding control to interpret the XCF header and/or XCF. In one embodiment, the encoding process may encode control information to arrange XCF domain control information between one or more portions of the XCF header that do not affect the proper forwarding of the XCF using the MAC-in-MAC protocol.

在一個實施例中,XCF標頭可以包括XCF標頭子部分。XCF子部分可以B-Dest位址欄位和B-Src位址欄位的範例化為基礎,其中:(i)目的地和源定址資訊被佈置在XCF子部分的部分之間,以便允許使用MAC-in-MAC協定來適當轉發XCF,以及(ii)XCF域控制資訊被佈置在XCF子部分的一個或多個部分中,其不影響到使用MAC-in-MAC協定來適當轉發XCF。在一個實施例中,控制資訊的編碼處理類似於將B-Dest和/或B-Src位址的一個或多個位元改成用於XCF域控制資訊。在一個實施例中,編碼的結果可能是XCF標頭子部分與用於目的地和/或源定址的常規B-Dest和/或B-Src位址相比具有更少的位元。在一個實施例中,改變用途的位元可以具有雙重含義;該改變用途的位元同時代表了MAC-in-MAC協定目的地和/或源定址以及XCF域控制資訊。In one embodiment, the XCF header may include an XCF header subsection. The XCF subsection may be based on the instantiation of the B-Dest address field and the B-Src address field, where: (i) destination and source addressing information is placed between portions of the XCF subsection to allow for use The MAC-in-MAC protocol to properly forward the XCF, and (ii) the XCF domain control information is arranged in one or more portions of the XCF sub-portion, which does not affect the proper forwarding of the XCF using the MAC-in-MAC protocol. In one embodiment, the encoding process of the control information is similar to changing one or more bits of the B-Dest and/or B-Src address to XCF domain control information. In one embodiment, the result of the encoding may be that the XCF header subsection has fewer bits than the regular B-Dest and/or B-Src address for destination and/or source addressing. In one embodiment, the bit of the changed purpose may have a dual meaning; the changed use of the bit represents both the MAC-in-MAC protocol destination and/or source addressing and the XCF domain control information.

在一個實施例中,XCF標頭可以包括XCF標頭子部分,並且XCF標頭子部分可以包括XCF分段部分和XCF源部分。XCF分段部分和XCF源部分可以分別以B-Dest位址欄位和B-Src位址欄位的範例化為基礎。In one embodiment, the XCF header may include an XCF header sub-portion, and the XCF header sub-portion may include an XCF segment portion and an XCF source portion. The XCF segmentation portion and the XCF source portion may be based on the instantiation of the B-Dest address field and the B-Src address field, respectively.

網路實體可以基於所接收的MAC-in-MAC相容的訊框的匹配欄位以及控制器提供的匹配規則來區分XCF與其他MAC-in-MAC相容的訊框(1804)。網路實體可以獲取佈置在XCF中的XCF資訊(1806)。該網路實體可以通過解碼XCF以及處理經過解碼的XCF來獲取佈置在XCF中的XCF資訊。網路實體可以基於所獲取的XCF資訊來執行轉發(1808)。網路實體可以基於XCF管理規則來執行佇列管理過程(1810)。The network entity may distinguish the XCF from other MAC-in-MAC compatible frames based on the received MAC-in-MAC compatible frame matching field and the matching rules provided by the controller (1804). The network entity can obtain XCF information (1806) arranged in the XCF. The network entity can obtain the XCF information arranged in the XCF by decoding the XCF and processing the decoded XCF. The network entity can perform forwarding based on the acquired XCF information (1808). The network entity can perform the queue management process (1810) based on the XCF management rules.

網路實體可以可選地處理其他MAC-in-MAC相容的訊框(1812)。舉例來說,網路實體可以使用以下的任何一項來執行其他MAC-in-MAC相容的訊框的處理:(i)舊有的轉發和佇列管理過程,以及(ii)依照用於其他MAC-in-MAC相容的訊框的MAC-in-MAC相容協定的轉發和佇列管理過程。網路實體可以傳送XCF和其他MAC-in-MAC相容的訊框中的任何一個(1814)。The network entity can optionally process other MAC-in-MAC compatible frames (1812). For example, a network entity may use any of the following to perform processing of other MAC-in-MAC compatible frames: (i) legacy forwarding and queue management procedures, and (ii) Forwarding and queue management of MAC-in-MAC compatible protocols for other MAC-in-MAC compatible frames. The network entity can transmit any of the XCF and other MAC-in-MAC compatible frames (1814).

第19圖是示出了針對跨行程訊務的共用傳輸的代表過程1900的流程圖。該代表過程1800可以在網路實體中實施,例如XFE、XAU或是在這裡以其他方式揭露和/或在第3圖和第11圖至第17圖中示出的網路實體。該代表過程1900與代表過程1800(第18圖)相似,並且為了簡單起見,這裡不再重複這兩個過程所共有的各種實施例。Figure 19 is a flow diagram showing a representative process 1900 for a shared transmission for cross-trip traffic. The representative process 1800 can be implemented in a network entity, such as XFE, XAU, or a network entity otherwise disclosed herein and/or illustrated in Figures 3 and 11 through 17. The representative process 1900 is similar to the representative process 1800 (Fig. 18), and for simplicity, the various embodiments common to both processes are not repeated here.

參考第19圖,網路實體可以接收包括XCF的多個MAC-in-MAC相容的訊框(1902)。XCF可以MAC-in-MAC協定訊框的範本和分段路由的應用的範例化為基礎。Referring to Figure 19, the network entity can receive a plurality of MAC-in-MAC compatible frames including XCF (1902). The XCF can be based on the sample of the MAC-in-MAC protocol frame and the application of the segmentation route.

網路實體可以基於所接收的MAC-in-MAC相容的訊框的匹配欄位和控制器提供的匹配規則來區分XCF與其他MAC-in-MAC相容的訊框(1904)。該網路實體可以獲取佈置在XCF中的XCF資訊(1906)。網路實體可以通過對XCF進行解碼並處理解碼的XCF來獲得XCF中設置的XCF資訊。網路實體可以從XCF資訊中確定使用分段路由(1908)。網路實體可以基於所獲取的XCF資訊以及從XCF提取的分段路由資訊來執行轉發處理(1910)。在一個實施例中,分段路由資訊可以包括XCF可能穿過的分段的有序列表。在一個實施例中,XCF可以包括具有第一和第二部分的XCF標頭。該第一部分可以攜帶活動分段,該第二部分可以攜帶有序分段列表。在一個實施例中,第一部分可以對應於XCF標頭的XCF目的地位址以及XCF目的地控制部分。在一個實施例中,第二部分可以對應於XCF標頭的酬載。The network entity may distinguish the XCF from other MAC-in-MAC compatible frames based on the received MAC-in-MAC compatible frame matching field and the matching rules provided by the controller (1904). The network entity can obtain XCF information (1906) arranged in the XCF. The network entity can obtain the XCF information set in the XCF by decoding the XCF and processing the decoded XCF. The network entity can determine from the XCF information to use the segmentation route (1908). The network entity may perform forwarding processing based on the acquired XCF information and segmentation routing information extracted from the XCF (1910). In one embodiment, the segmentation routing information may include an ordered list of segments that the XCF may pass through. In one embodiment, the XCF may include an XCF header having first and second portions. The first portion can carry an active segment, and the second portion can carry an ordered segmented list. In one embodiment, the first portion may correspond to an XCF destination address of the XCF header and an XCF destination control portion. In one embodiment, the second portion may correspond to the payload of the XCF header.

在一個實施例中,在指定時間只有多個分段中的一個可以是活動的。直到在活動分段的處理完成,其餘分段可以保持不活動。網路實體可以基於活動分段是否完成來用下一個分段的分段路由資訊更新匹配欄位(1912)。在一個實施例中,在處理完成之後,活動分段可能變成不活動,和/或可被從列表中移除。在一個實施例中,有序列表中的下一個分段將會成為活動分段,並且會保持啟動,直到其處理被完成。響應於去啟動,該活動分段可被從XCF標頭的第一部分移除,並且將被替換成來自XCF標頭的第二部分中的有序列表的新啟動的分段。在一個實施例中,分段路由資訊可以包括用於重新路由XCF的重新路由機制。該重新路由機制可以通過XCF標頭中攜帶的固定長度的有序路徑清單來促成。In one embodiment, only one of the plurality of segments may be active at a given time. Until the processing of the active segment is completed, the remaining segments can remain inactive. The network entity may update the matching field with the segmentation routing information for the next segment based on whether the active segmentation is complete (1912). In one embodiment, the activity segment may become inactive after processing is complete, and/or may be removed from the list. In one embodiment, the next segment in the ordered list will become the active segment and will remain active until its processing is completed. In response to deactivation, the active segment may be removed from the first portion of the XCF header and will be replaced with a newly initiated segment from the ordered list in the second portion of the XCF header. In one embodiment, the segmentation routing information may include a rerouting mechanism for rerouting the XCF. This rerouting mechanism can be facilitated by a fixed length list of ordered paths carried in the XCF header.

在一個實施例中,轉發決定和控制可以與XCF分段部分和/或XCF源部分相關聯的查找為基礎。XCF分段部分可以攜帶與XCF域的活動分段相關聯的XCF域控制資訊。在一個實施例中,XCF分段部分可以包括XCF目的地位址部分和XCF目的地控制部分。XCF目的位址部分可以指示或可以表示XCF的XCF域轉發位址。在一個實施例中,XCF目的地位址部分可以包括具有XCF能力的切換機的唯一識別符。In one embodiment, the forwarding decisions and controls may be based on a lookup associated with the XCF segmentation portion and/or the XCF source portion. The XCF segmentation portion may carry XCF domain control information associated with active segments of the XCF domain. In one embodiment, the XCF segmentation portion may include an XCF destination address portion and an XCF destination control portion. The XCF destination address portion may indicate or may represent the XCF domain forwarding address of the XCF. In one embodiment, the XCF destination address portion may include a unique identifier of the XCF capable switcher.

在一個實施例中,XCF目的地控制部分可以包括用於在活動分段內部的轉發最佳化的XCF域控制資訊。XCF域轉發最佳化資訊可以包括在XCF目的地控制部分的一個或多個訊框控制欄位中攜帶的一個或多個資訊。In one embodiment, the XCF destination control portion may include XCF domain control information for forwarding optimization within the active segment. The XCF domain forwarding optimization information may include one or more information carried in one or more frame control fields of the XCF destination control portion.

在一個實施例中,XCF源部分可以攜帶與XCF的酬載相關聯的XCF域控制資訊。XCF源部分可以包括XCF源位址部分和XCF源控制部分。XCF源位址部分可以指示或可以表示XCF的XCF域源位址。在一個實施例中,XCF源位址部分包括發起XCF之具有XCF能力的切換機的唯一識別符。在一個實施例中,XCF源控制部分可以包括用於XCF域內部的轉發最佳化的XCF域控制資訊。In one embodiment, the XCF source portion may carry XCF domain control information associated with the payload of the XCF. The XCF source portion may include an XCF source address portion and an XCF source control portion. The XCF source address portion may indicate or may represent the XCF domain source address of the XCF. In one embodiment, the XCF source address portion includes a unique identifier of the XCF capable switcher that originated the XCF. In one embodiment, the XCF source control portion may include XCF domain control information for forwarding optimization within the XCF domain.

網路實體可以基於XCF管理規則來執行佇列管理過程(1914)。網路實體可以可選地處理其他MAC-in-MAC相容的訊框(1916)。舉例來說,網路實體可以使用以下的任何一項來執行其他MAC-in-MAC相容的訊框的處理:(i)舊有的轉發和佇列管理過程,以及(ii)依照用於其他MAC-in-MAC相容的訊框的MAC-in-MAC相容協定的轉發和佇列管理過程。網路實體可以傳送任何XCF以及其他MAC-in-MAC相容的訊框(1918)。結論 The network entity can perform the queue management process (1914) based on the XCF management rules. The network entity can optionally process other MAC-in-MAC compatible frames (1916). For example, a network entity may use any of the following to perform processing of other MAC-in-MAC compatible frames: (i) legacy forwarding and queue management procedures, and (ii) Forwarding and queue management of MAC-in-MAC compatible protocols for other MAC-in-MAC compatible frames. The network entity can transmit any XCF and other MAC-in-MAC compatible frames (1918). in conclusion

出於範例之目的,在這裡提供了範例的XCF(如第5圖、第7圖至第9圖所示)以及使用這些訊框執行之代表操作和/或過程,並且其他共用跨行程訊框也是可以使用的。其他共用跨行程訊框(也被稱為共用訊框格式(CFF)訊框)以及用於使用此類訊框的代表操作和過程的細節可以在2017年01月31日提交的美國臨時專利申請第62/452,741號中找到,其中該申請在這裡被全部引入以作為參考。For the purposes of this example, an example XCF (as shown in Figure 5, Figures 7 through 9) and representative operations and/or processes performed using these frames are provided here, and other shared cross-talk frames are provided. It can also be used. Other shared cross-talk frames (also known as Common Frame Format (CFF) frames) and details of the operations and processes used to use such frames can be filed on January 31, 2017 in US Provisional Patent Applications Found in No. 62/452,741, the entire disclosure of which is incorporated herein by reference.

雖然上文中提供的特徵和元素採用了特定的結合,但是本領域普通技術人員將會瞭解,每一個特徵或元件既可以單獨使用,也可以與其他特徵和元件進行任何結合。本揭露並不是依照本申請中描述的特定實施例來限制的,並且這些實施例應該作為關於不同方面的範例。正如本領域技術人員清楚瞭解的那樣,在不脫離本揭露的實質和範圍的情況下,眾多的修改和變化都是可行的。本申請的說明書中使用的元件、行為或指令不應被理解成對本發明而言是至關重要或是不可或缺的,除非明確地採用這種方式提供。除了這裡枚舉的方法和裝置之外,本領域技術人員可以從以上的描述中清楚瞭解處於本揭露的範圍以內的功能等價的方法和裝置。此類修改和變化應該落入附加申請專利範圍的範圍以內。本揭露僅僅依照附加申請專利範圍及其此類申請專利範圍有權保護的等價物的完整範圍而被限制。應該理解的是,本揭露並不侷限於特定的方法或系統。While the features and elements are described above in terms of specific combinations, those skilled in the art will appreciate that each feature or element can be used alone or in combination with other features and elements. The disclosure is not limited in terms of the specific embodiments described herein, and these embodiments should be considered as examples of various aspects. Numerous modifications and variations are possible without departing from the spirit and scope of the disclosure. The elements, acts or instructions used in the description of the present application should not be construed as essential or essential to the invention, unless explicitly provided in this manner. Functionally equivalent methods and apparatus within the scope of the present disclosure will be apparent to those skilled in the art from the foregoing description. Such modifications and variations are intended to fall within the scope of the appended claims. The disclosure is limited solely by the scope of the appended claims and the full scope of the equivalents It should be understood that the present disclosure is not limited to a particular method or system.

還應該理解的是,這裡使用的術語僅僅是為了描述特別的實施例,其目的並不是進行限制。這裡使用的術語“視訊”可以表示在時間基礎上顯示的快照、單個圖像和/或多個圖像中的任何一個。另舉一例,這裡引用的術語“使用者設備”及其縮寫“UE”可以是指(i)如上所述的無線傳輸和/或接收單元(WTRU);(ii)如上所述的WTRU的多個實施例中的任何一個;(iii)具有無線能力和/或有線能力(例如可連線)的裝置,特別地,該裝置配置了如上所述的WTRU的一些或所有結構和功能;(iii)配置了與如上所述的WTRU的所有結構和功能相比相對較少的結構和功能的具有無線能力和/或有線能力的裝置;或(iv)類似裝置。在這裡對照第1A圖至第1E圖提供了可以代表這裡述及的任一WTRU的範例WTRU的細節。It is also understood that the terminology used herein is for the purpose of describing particular embodiments and the The term "video" as used herein may refer to any of a snapshot, a single image, and/or multiple images displayed on a time basis. As another example, the term "user equipment" and its abbreviation "UE" as referred to herein may refer to (i) a wireless transmission and/or reception unit (WTRU) as described above; (ii) a plurality of WTRUs as described above. Any of the embodiments; (iii) a device having wireless capabilities and/or wired capabilities (e.g., connectable), in particular, the device is configured with some or all of the structure and functionality of the WTRU as described above; a device having wireless capabilities and/or cable capabilities configured with relatively few structures and functions compared to all of the structures and functions of the WTRU as described above; or (iv) similar devices. Details of an example WTRU that may represent any of the WTRUs described herein are provided herein with respect to Figures 1A-1E.

此外,這裡描述的方法可以在引入到電腦可讀媒體中以供電腦或處理器執行的電腦程式、軟體或韌體中實施。電腦可讀媒體的範例包括電子訊號(通過有線或無線連接傳輸)和電腦可讀儲存媒體。關於電腦可讀儲存媒體的範例包括但不侷限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶裝置、諸如內部硬碟和可拆卸磁片之類的磁媒體、磁光媒體,以及CD-ROM碟片和數位多用途碟片(DVD)之類的光媒體。與軟體相關聯的處理器可以用於實施在WTRU、UE、終端、基地台、RNC或任何主機電腦中使用的射頻收發器。Moreover, the methods described herein can be implemented in a computer program, software or firmware embodied in a computer readable medium for execution by a computer or processor. Examples of computer readable media include electronic signals (transmitted over a wired or wireless connection) and computer readable storage media. Examples of computer readable storage media include, but are not limited to, read only memory (ROM), random access memory (RAM), scratchpad, cache memory, semiconductor memory devices, such as internal hard drives, and removable Magnetic media such as magnetic sheets, magneto-optical media, and optical media such as CD-ROM discs and digital versatile discs (DVD). A processor associated with the software can be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host computer.

在不脫離本發明的範圍的情況下,以上提供的方法、裝置和系統的各種變化都是可能的。有鑒於可被應用的各種實施例,應該理解的是,所示出的實施例僅僅是一些範例,並且不應被視為是對後續申請專利範圍的範圍進行限制。舉例來說,這裡提供的實施例包括手持裝置,其中該裝置可以包括任何適當電壓源或是隨該任何適當電壓源使用,該任何適當電壓的任何適當的電壓源提供任何適當電壓,該任何適當電壓是例如電池等等。Various variations of the methods, apparatus, and systems provided above are possible without departing from the scope of the invention. In view of the various embodiments that can be applied, it is to be understood that the illustrated embodiments are only a few examples and are not to be construed as limiting the scope of the appended claims. For example, embodiments provided herein include a handheld device, where the device can include any suitable voltage source or be used with any suitable voltage source, any suitable voltage source of any suitable voltage providing any suitable voltage, any suitable The voltage is, for example, a battery or the like.

此外,在上述實施例中提到了包含處理器的處理平臺、計算系統、控制器和其他裝置。這些裝置可以包括至少一個中央處理器(“CPU”)和記憶體。依照電腦程式設計領域的技術人員的實踐,對於操作或指令的行為或符號性表示的引用可以由不同的CPU和記憶體來執行。此類行為和操作或指令可被稱為“執行”、“電腦執行”或“CPU執行”。Furthermore, processing platforms, computing systems, controllers, and other devices including processors are mentioned in the above embodiments. These devices may include at least one central processing unit ("CPU") and memory. References to the behavior or symbolic representation of an operation or instruction may be performed by different CPUs and memories in accordance with the practice of those skilled in the art of computer programming. Such behaviors and operations or instructions may be referred to as "execution," "computer execution," or "CPU execution."

本領域普通技術人員將會瞭解,行為以及用符號表示的操作或指令包括由CPU來操縱電子訊號。電子系統代表的是可能導致電子訊號之結果的變換或減少,以及將資料位元保存在記憶體系統中的記憶體位置,由此重新配置或以其他方式變更CPU操作以及其他訊號處理的資料位元。保持資料位元的記憶體位置是具有與資料位元對應或代表資料位元的特別電、磁、光或有機屬性的實體位置。應該理解的是,這裡的實施例並不侷限於上述平臺或CPU,並且其他平臺和CPU同樣可以支援所描述的方法。One of ordinary skill in the art will appreciate that the behavior and the operations or instructions represented by the symbols include the manipulation of the electronic signals by the CPU. The electronic system represents the transformation or reduction of the results that may result in the electronic signal, and the storage of the data bits in the memory location in the memory system, thereby reconfiguring or otherwise altering the CPU operation and other signal processing data bits. yuan. The memory location holding the data bit is a physical location having a particular electrical, magnetic, optical or organic property corresponding to or representing the data bit. It should be understood that the embodiments herein are not limited to the above described platforms or CPUs, and that other platforms and CPUs may also support the described methods.

資料位元還可以保持在電腦可讀媒體上,其中該媒體包括磁片、光碟以及其他任何可供CPU讀取的揮發(例如隨機存取記憶體(“RAM”))或非揮發(例如唯讀記憶體(“ROM”))大型存放區系統。電腦可讀媒體可以包括協作或互連的電腦可讀媒體,這些媒體既可以專有存在於處理系統之上,也可以分佈在多個位於處理系統本地或遠端的互連處理系統之中。應該理解的是,這些範例實施例並不侷限於上述記憶體,且其他的平臺和記憶體同樣可以支援所描述的方法。The data bits can also be held on a computer readable medium, including the magnetic disk, the optical disk, and any other volatiles (such as random access memory ("RAM")) or non-volatile (for example, random access memory ("RAM")) that can be read by the CPU. Read memory ("ROM")) large storage area system. The computer readable medium can comprise a cooperating or interconnected computer readable medium that can exist either exclusively on the processing system or in a plurality of interconnected processing systems local or remote to the processing system. It should be understood that these example embodiments are not limited to the above described memory, and that other platforms and memories may also support the described methods.

在一個說明性實施例中,這裡描述的任何操作、處理等等都可以作為保存在電腦可讀媒體上的電腦可讀指令來實施。該電腦可讀指令可以由行動單元、網路元件和/或其他任何計算裝置的處理器來運行。In one illustrative embodiment, any of the operations, processes, and the like described herein can be implemented as computer readable instructions stored on a computer readable medium. The computer readable instructions can be executed by a mobile unit, a network element, and/or a processor of any other computing device.

在系統的各個方面的硬體和軟體實施之間幾乎是沒有區別的。使用硬體還是軟體通常(但也並不是始終如此,因為在某些上下文中,在硬體和軟體之間做出的選擇有可能會很重要)是代表了成本與效率之間的折衷的設計選擇。這裡描述的處理和/或系統和/或其他技術可以由各種載具來實施(例如硬體、軟體和/或韌體),並且較佳的載具可以隨著部署該處理和/或系統和/或其他技術的上下文而改變。舉例來說,如果實施方案確定速度和精度是首要的,那麼實施方可以選擇主要採用硬體和/或韌體載體。如果靈活度是首要的,則實施方可以選擇主要採用軟體的實施方式。作為替換,實施方可以選擇硬體、軟體和/或韌體的某種結合。There is almost no difference between hardware and software implementation in all aspects of the system. Whether using hardware or software is usually (but not always, because in some contexts, the choice between hardware and software may be important) is a compromise that represents a compromise between cost and efficiency. select. The processes and/or systems and/or other techniques described herein can be implemented by various vehicles (eg, hardware, software, and/or firmware), and preferred carriers can be deployed with the process and/or system and / or the context of other technologies change. For example, if the implementation determines that speed and accuracy are paramount, the implementer may choose to primarily employ hardware and/or firmware carriers. If flexibility is paramount, the implementer can choose the implementation that primarily uses software. Alternatively, the implementer may choose some combination of hardware, soft body and/or firmware.

以上的詳細描述已經借助於使用框圖、流程圖和/或範例而對裝置和/或處理的不同實施例進行了描述。就像此類框圖、流程圖和/或範例包含了一個或多個功能和/或操作那樣,本領域技術人員將會理解,此類框圖、流程圖或範例內部的每一個功能和/操作可以單獨和/或共同地由範圍廣泛的硬體、軟體、韌體或者近乎其任何結合來實施。在一個實施例中,這裡描述的主題的若干個部分可以借助於專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)、數位訊號處理器(DSP)和/或其他整合格式來實現。然而,本領域技術人員將會認識到,這裡揭露的實施例的一些方面可以全部或者部分在積體電路中以等效的方式實施,作為在一個或多個電腦上運行的一個或多個電腦程式(例如作為在一個或多個電腦系統上運行的一個或多個程式)來實施,作為在一個或多個處理器上運行的一個或多個程式(例如作為在一個或多個微處理器上運行的一個或多個程式)來實施,作為韌體來實施,或者作為近乎其任何結合來實施,並且依照本揭露,關於軟體和/或韌體的電路設計和/或代碼編寫同樣落入本領域技術人員的技術範圍以內。此外,本領域技術人員將會瞭解,這裡描述的主題的機制可以作為程式產品而以各種形式分發,並且無論使用了何種特別類型的訊號承載媒體來實際執行該分發,這裡描述的主題的說明性實施例都是適用的。關於訊號承載媒體的範例包括但不限於以下各項:可記錄型媒體,例如軟碟、硬碟驅動器、CD、DVD、數位磁帶、電腦記憶體等等,以及傳輸類型的媒體,例如數位和/或類比通信媒體(例如光纜、波導、有線通信鏈路、無線通信鏈路等等)。The above detailed description has described various embodiments of the devices and/or processes in the <RTIgt; As such block diagrams, flow diagrams, and/or examples include one or more functions and/or operations, those skilled in the art will appreciate that each of the functions and/or The operations may be performed individually and/or collectively by a wide range of hardware, software, firmware or any combination thereof. In one embodiment, portions of the subject matter described herein may be implemented by means of an application integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), and/or other integrated formats. . However, those skilled in the art will appreciate that aspects of the embodiments disclosed herein may be implemented in whole or in part in an integrated circuit as one or more computers running on one or more computers. A program (eg, as one or more programs running on one or more computer systems) as one or more programs running on one or more processors (eg, as one or more microprocessors) One or more programs running on it are implemented, implemented as firmware, or implemented as almost any combination thereof, and in accordance with the present disclosure, circuit design and/or code writing for software and/or firmware also falls within It is within the technical scope of those skilled in the art. Moreover, those skilled in the art will appreciate that the mechanisms of the subject matter described herein can be distributed in various forms as a program product, and the description of the subject matter described herein, regardless of the particular type of signal bearing medium used to actually perform the distribution. Sexual embodiments are applicable. Examples of signal-bearing media include, but are not limited to, recordable media such as floppy disks, hard disk drives, CDs, DVDs, digital tapes, computer memory, and the like, as well as transmission type media such as digital and/or Or analog communication media (eg, fiber optic cable, waveguide, wired communication link, wireless communication link, etc.).

本領域技術人員將會認識到,在本領域中,以這裡闡述的方式來描述裝置和/或過程以及在此後使用工程實踐來將所描述的此類裝置和/或過程整合到資料處理系統中都是很常見的。也就是說,這裡描述的裝置和/或處理的至少一部分可以借助合理數量的實驗而被整合到資料處理系統中。本領域技術人員將會認識到,典型的資料處理系統通常可以包括系統單元殼體,視訊顯示裝置,諸如揮發性和非揮發性記憶體之類的記憶體,諸如微處理器和數位訊號處理器之類的處理器,諸如作業系統、驅動器、圖形化使用者介面和應用程式之類的計算實體,諸如觸控板或螢幕之類的一個或多個交互作用裝置,和/或包括反饋迴路和控制馬達的控制系統(例如用於感測位置和/或速度的回饋,用於行動和/或調節組件和/或參量的控制電動機)。典型的資料處理系統可以使用任何合適的商用元件來實現,例如那些通常會在資料計算/通信和/或網路計算/通信系統中發現的元件。Those skilled in the art will recognize that in the art, devices and/or processes are described in the manner set forth herein, and engineering practices are used thereafter to integrate such described devices and/or processes into a data processing system. It is very common. That is, at least a portion of the devices and/or processes described herein can be integrated into a data processing system with a reasonable amount of experimentation. Those skilled in the art will recognize that typical data processing systems may typically include system unit housings, video display devices, memory such as volatile and non-volatile memory, such as microprocessors and digital signal processors. A processor, such as a computing system, a driver, a graphical user interface, and an application, such as a touchpad or a screen, or one or more interaction devices, and/or includes a feedback loop and A control system that controls the motor (eg, feedback for sensing position and/or speed, control motor for acting and/or regulating components and/or parameters). A typical data processing system can be implemented using any suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.

這裡描述的主題有時示出包含在其他不同的元件內部或是與之相連的不同元件。應該理解的是,如此描述的體系結構僅僅是一些範例,並且用於實施相同功能的其他眾多的架構實際上都是可以實施的。在概念上,實現相同功能的元件的任何佈置都被有效地“關聯”,由此可以實現期望的功能。因此,在這裡結合在一起以實現特定功能的任何兩個組件都可被認為是彼此“關聯”的,由此將會實現期望的功能,而不用考慮架構或中間組件。同樣地,以這種方式關聯的任何兩個元件也可以被視為彼此“可操作地連接”或“可操作地耦合”,以便實現期望的功能,並且能以這種方式關聯的任何兩個元件也可以被視為彼此“能夠可操作地耦合”,以便實現期望的功能。關於能夠可操作地耦合的特定範例包括但不侷限於可以在實體上配對和/或在實體上交互作用的元件和/或可以以無線方式交互作用和/或無線交互作用的元件和/或在邏輯上交互和/或可在邏輯上交互作用的元件。The subject matter described herein sometimes shows different elements contained within or connected to other different elements. It should be understood that the architecture so described is merely an example, and that many other architectures for implementing the same functionality can be implemented in practice. Conceptually, any arrangement of elements that perform the same function is effectively "associated", thereby achieving the desired function. Accordingly, any two components herein combined to achieve a particular function can be considered to be "associated" with each other, thereby achieving the desired functionality, regardless of architecture or intermediate components. Likewise, any two elements that are associated in this manner can also be seen as "operably connected" or "operably coupled" to each other in order to achieve the desired function, and any two that can be associated in this manner. The elements may also be considered to be "operably coupled" to each other in order to achieve the desired function. Specific examples of being operatively coupled include, but are not limited to, elements that can be physically paired and/or physically interacting and/or elements that can interact in a wireless manner and/or wirelessly interact and/or Components that logically interact and/or can interact logically.

至於在這裡使用了實質上任何的複數和/或單數術語,本領域技術人員可以根據上下文和/或應用適當地從複數轉換為單數和/或從單數轉換為複數。為了清楚起見,在這裡可以明確地闡述各種單數/複數置換。The use of substantially any plural and/or singular terminology herein may be used to change from the plural to the singular and/or from the singular to the plural, depending on the context and/or application. For the sake of clarity, various singular/plural permutations can be explicitly set forth herein.

本領域技術人員將會理解,一般來說,在這裡尤其是附加申請專利範圍(例如附加申請專利範圍的主體)中使用的術語通常應該作為“開放式”術語(舉例來說,術語“包括”應被解釋成“包括但不侷限於”,術語“具有”被解釋成“至少具有”,術語“包含”應被解釋為“包括但不侷限於”等等)。本領域技術人員將會進一步理解,如果所引入的申請專利範圍敘述針對的是特定的數量,那麼在該申請專利範圍中應該明確地敘述這種意圖,並且如果沒有這種敘述,那麼此類意圖是不存在的。舉例來說,如果所預期的是僅僅一個項目,那麼可以使用術語“單個”或類似語言。作為理解輔助,後續的附加申請專利範圍和/或這裡的描述可以包括使用介紹性短語“至少一個”以及“一個或多個”來引入申請專利範圍的敘述。然而,使用此類短語不應被解釋成是這樣一種申請專利範圍敘述的引入方式,即通過不定冠詞“一”或“一個”來將包含以這種方式引入的申請專利範圍敘述的任何特定的申請專利範圍侷限於只包含一個此類敘述的實施例,即使相同的申請專利範圍包含了介紹性短語“一個或多個”或者“至少一個”以及諸如“一”或“一個”之類的不定冠詞的時候也是如此(例如,“一”和/或“一個”應該被解釋成是指“至少一個”或者“一個或多個”)。這對於使用定冠詞來引入申請專利範圍敘述的時候也是如此。此外,即使明確敘述了所引入的特定數量的申請專利範圍敘述,本領域技術人員也會認識到,這種敘述應被解釋成至少是指所敘述的數量(例如在沒有其他修飾語的情況下的關於“兩個敘述”的無修飾敘述意味著至少兩個敘述或是兩個或更多敘述)。此外,在這些實例中,如果使用了與“A、B和C等等中的至少一個”相類似的規約,那麼此類結構通常應該具有本領域技術人員所理解的該規約的意義(例如,“具有A、B和C中的至少一個的系統”將會包括但不侷限於只具有A、只具有B、只具有C、具有A和B、具有A和C、具有B和C和/或具有A、B和C等等的系統)。在使用了與“A、B或C等等中的至少一個”相似的規約的實例中,此類結構通常應該具有本領域技術人員所理解的該規約的意義(舉例來說,“具有A、B或C中的至少一個的系統”包括但不限於只具有A,只具有B、只具有C、具有A和B,具有A和C,具有B和C和/或具有A、B和C等等的系統)。本領域技術人員會將進一步理解,無論在說明書,申請專利範圍還是附圖中,提出兩個或更多替換項的幾乎任何分離性的詞語和/或短語都應被理解成預期了包括這些項中的一個、任一項或是所有兩項的可能性。舉例來說,短語“A或B”將被理解成包括“A”或“B”或“A和B”的可能性。此外,這裡使用的跟隨有一系列的多個項目和/或多個項目類別的術語“任何一個”旨在包括單獨或與其他專案和/或其他項目類別相結合的項目和/或專案類別中的“任何一個”、“任何結合” 、“任意的多個”和/或“任意的多個的結合”。此外,這裡使用的術語“集合”旨在包括任何數量的項目,其中包括零。另外,這裡使用的術語“數量”旨在包括任何數量,其中包括零。Those skilled in the art will appreciate that, in general, terms used herein, particularly in the context of additional patent applications (e.g., subject matter in the scope of additional claims), should generally be construed as "open" (for example, the term "include" It should be interpreted as "including but not limited to", the term "having" is to be interpreted as "having at least" and the term "comprising" is to be interpreted as "including but not limited to" and the like. It will be further understood by those skilled in the art that, if the scope of the claimed patent is directed to a particular number, such intent should be explicitly recited in the scope of the application, and if no such It does not exist. For example, if only one item is expected, the term "single" or similar language may be used. As an aid to understanding, the scope of the appended claims and/or the description herein may include the use of the introductory phrases "at least one" and "one or more". However, the use of such phrases should not be construed as a limitation of the scope of the claims. The scope of the patent application is limited to embodiments that include only one such description, even if the same patent application scope includes the introductory phrase "one or more" or "at least one" and such as "one" or "one". The same is true for indefinite articles (for example, "a" and/or "a" should be interpreted to mean "at least one" or "one or more". This is also true when using definite articles to introduce the scope of the patent application. In addition, even if a specific number of patent application scopes are specifically recited, those skilled in the art will recognize that such a description should be interpreted to mean at least the recited (eg, in the absence of other modifiers) The unmodified narrative of "two narratives" means at least two narratives or two or more narratives). Moreover, in these examples, if a protocol similar to "at least one of A, B, and C, etc." is used, such a structure should generally have the meaning of the protocol as understood by those skilled in the art (for example, "System having at least one of A, B, and C" will include, but is not limited to, only having A, only having B, having only C, having A and B, having A and C, having B and C, and/or Systems with A, B, C, etc.). In instances where a protocol similar to "at least one of A, B, or C, etc." is used, such a structure should generally have the meaning of the protocol as understood by those skilled in the art (for example, "having A," A system of at least one of B or C" includes but is not limited to having only A, only having B, having only C, having A and B, having A and C, having B and C, and/or having A, B, and C, etc. Etc. system). It will be further understood by those skilled in the art that, in the specification, the scope of the claims, or the accompanying drawings, The possibility of one, any or both of the items. For example, the phrase "A or B" will be understood to include the possibilities of "A" or "B" or "A and B." In addition, the term "any one" as used herein that is followed by a series of multiple items and/or multiple item categories is intended to include items and/or project categories that are separate or combined with other projects and/or other item categories. "any one", "any combination", "any number of" and/or "any combination of multiples". Moreover, the term "set" as used herein is intended to include any number of items, including zero. Additionally, the term "amount" as used herein is intended to include any quantity, including zero.

此外,如果本揭露的特徵或方面是依照馬庫什群組的方式描述的,那麼本領域技術人員將會認識到,本揭露由此是依照馬庫什組中的任意的單個成員或成員子群組描述的。Moreover, if the features or aspects of the present disclosure are described in terms of a Markush group, those skilled in the art will recognize that the present disclosure is thus in accordance with any single member or member of the Markush group. Group description.

正如本領域技術人員所理解的那樣,出於任何和所有目的,例如在提供書面描述方面,這裡揭露的所有範圍還包含了任何和所有可能的子範圍以及其子範圍結合。所列出的任何範圍都可以很容易地被認為是充分描述和啟用了被分解成至少兩等分、三等分、四等分、五等分、十等分等等的相同範圍。作為非限制性範例,本文論述的每一個範圍都很容易即可分解成下部的三分之一、中間的三分之一以及上部的三分之一範圍。本領域技術人員將會理解,諸如“至多”、“至少”、“大於”、“小於”等等的所有語言包含了所敘述的數位,並且指代的是隨後可被分解成如上所述的子範圍的範圍。最後,正如本領域技術人員所理解的那樣,一個範圍會包括每一個單獨的成員。由此,舉例來說,具有1-3個胞元的群組指的是具有1、2或3個胞元的群組。同樣,具有1-5個單元的組是指具有1、2、3、4或5個胞元的群組,依此類推。All ranges disclosed herein are intended to cover any and all possible sub-ranges and sub-ranges thereof for any and all purposes. Any of the ranges listed can be readily considered to fully describe and enable the same range that is broken down into at least two equal parts, three equal parts, four equal parts, five equal parts, ten equal parts, and the like. As a non-limiting example, each of the ranges discussed herein can be easily broken down into the lower third, the middle third, and the upper third. Those skilled in the art will appreciate that all languages such as "at most", "at least", "greater than", "less than" and the like encompass the recited digits and are intended to be subsequently decomposed as described above. The range of subranges. Finally, as will be understood by those skilled in the art, a range will include each individual member. Thus, for example, a group having 1-3 cells refers to a group having 1, 2, or 3 cells. Likewise, a group having 1-5 units refers to a group having 1, 2, 3, 4, or 5 cells, and so on.

此外,除非進行說明,申請專利範圍不應該被錯誤地當作僅限於所描述的順序或要素。作為補充,任何申請專利範圍中使用的術語“用於……的裝置”旨在援引35 U .S .C . §112 , ¶ 6或裝置-加-功能的申請專利範圍格式,並且沒有單詞“用於……的裝置”的任何申請專利範圍均不具有這種意義。In addition, the scope of patent application should not be construed as being limited to the described order or elements. In addition, the term "means for" used in the scope of any patent application is intended to invoke 35 U.S.C. §112, ¶6 or device-plus-function patent application range format, and without the words " The scope of any patent application for "means for" does not have such a meaning.

100、200‧‧‧通信系統
102、102a、102b、102c、102d、202a、202b、302a、302b‧‧‧無線傳輸/接收單元(WTRU)
104‧‧‧無線電存取網路(RAN)
106、340‧‧‧核心網路
108‧‧‧公共切換電話網路(PSTN)
110‧‧‧網際網路
112‧‧‧其他網路
114a、114b、170a、170b、170c、214‧‧‧基地台
116‧‧‧空中介面
118‧‧‧處理器
120‧‧‧收發器
122‧‧‧傳輸/接收元件
124‧‧‧揚聲器/麥克風
126‧‧‧小鍵盤
128‧‧‧顯示器/觸控板
130‧‧‧非可移記憶體
132‧‧‧可移記憶體
134‧‧‧電源
136‧‧‧全球定位系統(GPS)晶片組
138‧‧‧週邊設備
140a、140b、140c‧‧‧節點B
142a、142b‧‧‧無線電網路控制器(RNC)
144‧‧‧媒體閘道(MGW)
146‧‧‧行動切換中心(MSC)
148‧‧‧服務GPRS支持節點(SGSN)
150‧‧‧閘道GPRS支持節點(GGSN)
160a、160b、160c‧‧‧e節點B
162‧‧‧行動性管理閘道(MME)
164‧‧‧服務閘道
166‧‧‧封包資料網路(PDN)閘道
172‧‧‧存取服務網路(ASN)閘道
174‧‧‧行動IP本地代理(MIP-HA)
176‧‧‧認證授權記帳(AAA)伺服器
178‧‧‧閘道
301‧‧‧傳輸網路
303‧‧‧資料鏈路舊有域
304‧‧‧跨行程轉發實體(XFE)域
306、308‧‧‧子域
310‧‧‧分段
312、314、324、326、328‧‧‧跨行程轉發實體(XFE)
316、318、319、320、330、332‧‧‧跨行程調適單元(XAU)
322、334‧‧‧乙太網切換機
336、388、344‧‧‧存取網路
342‧‧‧基帶單元(BBU)伺服器
346‧‧‧防火牆
348‧‧‧舊有切換機
350‧‧‧網路控制器
400‧‧‧MAC-in-MAC範本
402‧‧‧MAC-in-MAC標頭
404‧‧‧B-Dest位址欄位
406‧‧‧B-Src位址欄位
500、700、800、900‧‧‧跨行程共用訊框(XCF)
502‧‧‧XCF標頭
503‧‧‧XCF子部分
504‧‧‧XCF分段部分
506‧‧‧XCF源部分
508‧‧‧XCF目的地位址部分
510‧‧‧XCF目的地控制部分
512‧‧‧XCF源位址部分
514‧‧‧XCF源控制部分
516‧‧‧緊急欄位
518‧‧‧順序欄位
520‧‧‧多目的地欄位
522‧‧‧功率管理欄位
524‧‧‧搶佔欄位
526‧‧‧保護訊框欄位
528‧‧‧更多資料欄位
530‧‧‧保留欄位
532‧‧‧服務品質(QoS)設定檔/訊務欄位
534‧‧‧SN/TS欄位
536‧‧‧序號/時間戳記欄位
600、1000‧‧‧網路實體
601、1001‧‧‧入站埠
603、1003、1408‧‧‧共用切換層
605、1005‧‧‧出站埠
611、1011‧‧‧訊框鑒別器
613、615、1013、1015‧‧‧轉發決定實體
617、619、1017、1019‧‧‧佇列管理實體
705‧‧‧MAC-in-MAC部分
707‧‧‧XCF標頭分段路由部分
750-760、850-860、954-960‧‧‧欄位
804‧‧‧活動分段
809‧‧‧非活動分段
1021‧‧‧處理實體
1201、1203、1205‧‧‧範例
1301‧‧‧MAC表格
1412‧‧‧入站處理
1414‧‧‧出站處理
1416‧‧‧佇列管理
1502、1504、1506、1508、1518、1520、1522、1702、1704、1708、1718;1720、1722‧‧‧處理塊
1800‧‧‧代表過程
IP‧‧‧網際網路協定
XCF‧‧‧跨行程共用訊框
100, 200‧‧‧ communication system
102, 102a, 102b, 102c, 102d, 202a, 202b, 302a, 302b ‧ ‧ WTRU
104‧‧‧Radio Access Network (RAN)
106, 340‧‧‧ core network
108‧‧‧Public Switched Telephone Network (PSTN)
110‧‧‧Internet
112‧‧‧Other networks
114a, 114b, 170a, 170b, 170c, 214‧‧ ‧ base station
116‧‧‧Intermediate mediation
118‧‧‧Processor
120‧‧‧ transceiver
122‧‧‧Transmission/receiving components
124‧‧‧Speaker/Microphone
126‧‧‧Keypad
128‧‧‧Display/Touchpad
130‧‧‧ Non-removable memory
132‧‧‧Removable memory
134‧‧‧Power supply
136‧‧‧Global Positioning System (GPS) chipset
138‧‧‧ Peripherals
140a, 140b, 140c‧‧‧ Node B
142a, 142b‧‧‧ Radio Network Controller (RNC)
144‧‧‧Media Gateway (MGW)
146‧‧‧Action Switching Center (MSC)
148‧‧‧Serving GPRS Support Node (SGSN)
150‧‧‧Gateway GPRS Support Node (GGSN)
160a, 160b, 160c‧‧‧e Node B
162‧‧‧Action Management Gateway (MME)
164‧‧‧ service gateway
166‧‧‧ Packet Data Network (PDN) Gateway
172‧‧‧Access Service Network (ASN) Gateway
174‧‧‧Action IP Local Agent (MIP-HA)
176‧‧‧Authorization and Authorization Accounting (AAA) Server
178‧‧‧Chute
301‧‧‧Transport network
303‧‧‧Data link old domain
304‧‧‧Inter-trip forwarding entity (XFE) domain
306, 308‧‧ ‧ subdomain
Section 310‧‧
312, 314, 324, 326, 328‧‧‧ Inter-trip forwarding entities (XFE)
316, 318, 319, 320, 330, 332‧‧‧ Cross-stroke Adaptation Unit (XAU)
322, 334‧‧‧ Ethernet switch
336, 388, 344‧‧‧ access network
342‧‧‧Baseband Unit (BBU) Server
346‧‧‧Firewall
348‧‧‧Old switch machine
350‧‧‧Network Controller
400‧‧‧MAC-in-MAC template
402‧‧‧MAC-in-MAC header
404‧‧‧B-Dest address field
406‧‧‧B-Src address field
500, 700, 800, 900‧‧‧ Cross-Travel Common Frame (XCF)
502‧‧‧XCF header
503‧‧‧XCF subsection
504‧‧‧XCF segmentation
506‧‧‧XCF source section
508‧‧‧XCF destination address section
510‧‧‧XCF Destination Control Section
512‧‧‧XCF source address section
514‧‧‧XCF source control section
516‧‧‧Emergency field
518‧‧‧ sequence field
520‧‧‧Multiple destinations
522‧‧‧Power Management Field
524‧‧‧ Grab the field
526‧‧‧protection frame
528‧‧‧More information fields
530‧‧‧Reserved fields
532‧‧‧Quality of Service (QoS) Profile/Traffic Field
534‧‧‧SN/TS field
536‧‧‧Sequence/time stamp field
600, 1000‧‧‧ network entities
601, 1001‧‧‧ Inbound 埠
603, 1003, 1408‧‧‧share switching layer
605, 1005‧‧‧ outbound information
611, 1011‧‧‧ frame discriminator
613, 615, 1013, 1015‧‧ ‧ forwarding decision entity
617, 619, 1017, 1019‧‧‧ listed management entities
705‧‧‧MAC-in-MAC part
707‧‧‧XCF header segment routing part
750-760, 850-860, 954-960‧‧‧ fields
804‧‧‧ activity segmentation
809‧‧‧Inactive segmentation
1021‧‧ ‧ Processing entity
Examples of 1201, 1203, 1205‧‧
1301‧‧‧MAC form
1412‧‧‧Inbound processing
1414‧‧‧Outbound processing
1416‧‧‧ queue management
1502, 1504, 1506, 1508, 1518, 1520, 1522, 1702, 1704, 1708, 1718; 1720, 1722‧ ‧ processing blocks
1800‧‧‧ representative process
IP‧‧‧Internet Protocol
XCF‧‧‧cross-trip sharing frame

更詳細的理解可以從以下結合附加於此的附圖舉例給出的具體實施方式部分中得到。與具體實施方式部分一樣,附圖中的這些圖形都是範例。如此一來,附圖和具體實施方式部分不應該被認為是限制性的,並且其他同等效用的範例也是可行以及可能的。此外,附圖中的相同參考數字(“ref.”)指示的是相同的元件,並且其中: 第1A圖是可以實施所揭露的一個或多個實施例的範例通信系統的系統圖式; 第1B圖是可以在第1A圖所示的通信系統內部使用的範例無線傳輸/接收單元(WTRU)的系統圖式; 第1C圖、第1D圖和第1E圖是可以在第1A圖示出的通信系統內部使用的範例無線電存取網路以及範例核心網路的系統圖式; 第2圖示出了可以實踐或實施實施例的範例環境; 第3圖是示出了具有跨行程(crosshaul)共用訊框(XCF)域的範例通信環境的框圖; 第4圖是示出了MAC-in-MAC訊框的範例範本的框圖; 第5圖是示出了範例的跨行程共用訊框(XCF)的框圖; 第6圖是示出了可以實踐或實施實施例的範例網路實體的框圖; 第7圖是示出了具有分段路由控制的範例XCF的框圖; 第8圖是示出了被配置成支援分段路由的範例XCF的框圖; 第9圖是示出了具有分段路由控制的XCF的範例快速重新路由機制的框圖; 第10圖是示出了可以實踐或實施實施例的範例網路實體的框圖; 第11圖顯示了在乙太網相容的多資料鏈路場景中以快速重新路由支持的分段路由處理為基礎的XCF封裝和轉發的範例; 第12圖和第13圖是示出了舊有的乙太網切換機MAC表格填充的範例的框圖; 第14圖是示出了在跨行程轉發實體(XFE)上執行的高級XCF轉發處理的範例的框圖; 第15圖是示出了XFE的範例的內部轉發過程的框圖; 第16圖是示出了跨行程調適單元(XAU)上的高級XCF調適/轉換處理之範例的框圖; 第17圖是示出了XAU的範例的內部轉發過程的框圖; 第18圖是示出了針對跨行程訊務的共用傳輸的代表過程的流程圖;以及 第19圖是示出了針對跨行程訊務的共用傳輸的代表過程的流程圖。A more detailed understanding can be obtained from the Detailed Description section given below by way of example with reference to the accompanying drawings. As in the Detailed Description, the figures in the figures are examples. As such, the drawings and detailed description are not to be considered as limiting, In addition, the same reference numerals ("ref.") in the drawings indicate the same elements, and wherein: FIG. 1A is a system diagram of an exemplary communication system in which one or more of the disclosed embodiments may be implemented; 1B is a system diagram of an exemplary wireless transmit/receive unit (WTRU) that can be used within the communication system shown in FIG. 1A; FIGS. 1C, 1D, and 1E are diagrams that can be shown in FIG. 1A. An exemplary radio access network used within a communication system and a system diagram of an example core network; FIG. 2 illustrates an example environment in which embodiments may be practiced or implemented; and FIG. 3 is a diagram showing crosshaul Block diagram of an example communication environment for a Common Frame (XCF) domain; Figure 4 is a block diagram showing an example template for a MAC-in-MAC frame; Figure 5 is a cross-talk common frame showing an example (XCF) block diagram; Figure 6 is a block diagram showing an example network entity in which embodiments may be practiced or implemented; Figure 7 is a block diagram showing an example XCF with segmented routing control; The figure shows an example XCF configured to support segmentation routing. Figure 9 is a block diagram showing an example fast rerouting mechanism for XCF with segmented routing control; Figure 10 is a block diagram showing an example network entity in which embodiments may be practiced or implemented; Figure 11 shows an example of XCF encapsulation and forwarding based on segmented routing processing supported by fast reroute in an Ethernet-compatible multi-link scenario; Figures 12 and 13 show the old A block diagram of an example of an Ethernet switch MAC table padding; Figure 14 is a block diagram showing an example of advanced XCF forwarding processing performed on a cross-trip forwarding entity (XFE); Figure 15 is a diagram showing A block diagram of an internal forwarding process of an example of XFE; Figure 16 is a block diagram showing an example of advanced XCF adaptation/conversion processing on a cross-stroke adaptation unit (XAU); Figure 17 is an example showing an example of XAU A block diagram of the internal forwarding process; FIG. 18 is a flow chart showing a representative process of the shared transmission for the cross-trip traffic; and FIG. 19 is a flow showing the representative process of the shared transmission for the cross-travel traffic Figure.

1800‧‧‧代表過程 1800‧‧‧ representative process

Claims (26)

一種在一網路實體中實施的方法,該方法包括: 接收多個MAC-in-MAC相容的訊框,其中包括跨行程共用訊框(XCF); 基於該所接收的MAC-in-MAC相容的訊框的匹配欄位與控制器提供的匹配規則來區分該XCF與其他MAC-in-MAC相容的訊框; 對於該XCF, 獲取佈置在該XCF中的XCF資訊; 基於該所獲取的XCF資訊來執行轉發;以及 基於XCF管理規則來執行佇列管理過程。A method implemented in a network entity, the method comprising: receiving a plurality of MAC-in-MAC compatible frames, including a cross-trip shared frame (XCF); based on the received MAC-in-MAC The matching field of the compatible frame and the matching rule provided by the controller distinguish the XCF from other MAC-in-MAC compatible frames; for the XCF, obtain the XCF information arranged in the XCF; Obtain XCF information to perform forwarding; and perform a queue management process based on XCF management rules. 如申請專利範圍第1項所述的方法,進一步包括: 使用以下的任何一項來處理該其他MAC-in-MAC相容的訊框:(i)舊有的轉發和佇列管理過程,以及(ii)依照用於該其他MAC-in-MAC相容的訊框的一MAC-in-MAC相容協定的轉發和佇列管理過程。The method of claim 1, further comprising: processing the other MAC-in-MAC compatible frame using any of the following: (i) an old forwarding and queue management process, and (ii) a forwarding and queue management process in accordance with a MAC-in-MAC compatible protocol for the other MAC-in-MAC compatible frames. 如前述任一申請專利範圍所述的方法,進一步包括: 對於該XCF, 從該XCF資訊中確定使用了分段路由,其中執行轉發進一步以從該XCF中提取的分段路由資訊為基礎;以及 使用一下一個分段的分段路由資訊來更新該匹配欄位。The method of any of the preceding claims, further comprising: determining, for the XCF, from using the segmentation route from the XCF information, wherein performing forwarding is further based on segmentation routing information extracted from the XCF; Use the segmentation routing information of one segment to update the matching field. 如申請專利範圍第3項所述的方法,其中該XCF是以MAC-in-MAC協定訊框的一範本的範例化以及分段路由的一應用為基礎的。The method of claim 3, wherein the XCF is based on the instantiation of a template of the MAC-in-MAC protocol frame and an application of the segmentation route. 如申請專利範圍第3項所述的方法,其中該XCF包括指示快速重新路由的回退路徑的資訊之一有序清單,該方法進一步包括: 回應於檢測到一前路徑的至少一部分不可用,使用指示了用於快速重新路由的回退路徑的資訊之該有序清單。The method of claim 3, wherein the XCF includes an ordered list of information indicating a fallback path for fast rerouting, the method further comprising: responsive to detecting that at least a portion of the previous path is unavailable, Use this ordered list of information indicating the fallback path for fast rerouting. 如前述任一申請專利範圍所述的方法,其中獲取佈置在該XCF中的XCF資訊包括: 解碼該XCF;以及 處理該所解碼的XCF。The method of any of the preceding claims, wherein obtaining XCF information arranged in the XCF comprises: decoding the XCF; and processing the decoded XCF. 如前述任一申請專利範圍所述的方法,進一步包括:傳送XCF和其他MAC-in-MAC相容的訊框中的任何一個。The method of any of the preceding claims, further comprising: transmitting any of the XCF and other MAC-in-MAC compatible frames. 如前述任一申請專利範圍所述的方法,其中該XCF被編碼用於MAC-in-MAC協定相容,以及用於支援該跨行程訊務的共用轉發和管理中的任一者。A method as claimed in any one of the preceding claims, wherein the XCF is encoded for MAC-in-MAC protocol compatibility, and for any of shared forwarding and management for supporting the cross-travel traffic. 如申請專利範圍第8項所述的方法,其中該XCF包括被編碼成支援該跨行程訊務的該共用轉發和管理中的任一者的一個或多個MAC-in-MAC協定欄位/參數。The method of claim 8, wherein the XCF includes one or more MAC-in-MAC protocol fields encoded as any of the shared forwarding and management supporting the cross-travel traffic/ parameter. 如前述任一申請專利範圍所述的方法,其中該XCF包括一XCF標頭。The method of any of the preceding claims, wherein the XCF comprises an XCF header. 如申請專利範圍第10項所述的方法,其中該XCF標頭是以具有控制資訊的一MAC-in-MAC標頭的範例化為基礎,該控制資訊被編碼成允許使用MAC-in-MAC協定以及XCF域轉發控制中的任何一者來適當轉發該XCF。The method of claim 10, wherein the XCF header is based on an instantiation of a MAC-in-MAC header with control information encoded to allow MAC-in-MAC Any one of the agreement and the XCF domain forwarding control to forward the XCF appropriately. 如申請專利範圍第11項所述的方法,其中用於編碼該控制資訊的編碼包括允許使用該MAC-in-MAC協定以及該XCF域轉發控制來解釋該XCF的編碼之任何類型。The method of claim 11, wherein the encoding for encoding the control information comprises allowing the MAC-in-MAC protocol and the XCF domain forwarding control to be used to interpret any type of encoding of the XCF. 如申請專利範圍第12項所述的方法,其中該編碼對該控制資訊進行編碼,以便該XCF標頭和該XCF中的任何一個在對該XCF標頭之一些或全部應用了一函數之後使用該MAC-in-MAC協定及該XCF域轉發控制是可解釋的。The method of claim 12, wherein the encoding encodes the control information such that the XCF header and any one of the XCFs are used after applying a function to some or all of the XCF headers. The MAC-in-MAC protocol and the XCF domain forwarding control are interpretable. 如申請專利範圍第12項所述的方法,其中該編碼通過編碼該控制資訊來將XCF域控制資訊佈置在不會影響使用該MAC-in-MAC協定來適當轉發該XCF的該XCF標頭的一個或多個部分之間。The method of claim 12, wherein the encoding, by encoding the control information, arranging XCF domain control information without affecting the use of the MAC-in-MAC protocol to properly forward the XCF header of the XCF Between one or more parts. 一種包含電路的網路實體,其中該電路包括一處理器以及儲存了該處理器可執行指令的記憶體,該電路被配置成: 接收多個MAC-in-MAC相容的訊框,其中包括跨行程共用訊框(XCF); 基於該所接收的MAC-in-MAC相容的訊框的匹配欄位與控制器提供的匹配規則來區分該XCF與其他MAC-in-MAC相容的訊框; 對於該XCF, 獲取佈置在該XCF中的XCF資訊; 基於該所獲取的XCF資訊來執行轉發;以及 基於XCF管理規則來執行佇列管理過程。A network entity comprising a circuit, wherein the circuit includes a processor and a memory storing instructions executable by the processor, the circuit configured to: receive a plurality of MAC-in-MAC compatible frames, including Cross-stroke common frame (XCF); distinguishing the XCF from other MAC-in-MAC-compatible messages based on the matching field of the received MAC-in-MAC compatible frame and the matching rule provided by the controller a frame; for the XCF, acquiring XCF information arranged in the XCF; performing forwarding based on the acquired XCF information; and performing a queue management process based on the XCF management rule. 如申請專利範圍第15項所述的網路實體,其中該電路被配置成: 使用以下的任何一者來處理該其他MAC-in-MAC相容的訊框:(i)舊有的轉發和佇列管理過程,以及(ii)依照用於該其他MAC-in-MAC相容的訊框的一MAC-in-MAC相容協定的轉發和佇列管理過程。The network entity of claim 15, wherein the circuit is configured to: process the other MAC-in-MAC compatible frame using any of: (i) legacy forwarding and The queue management process, and (ii) the forwarding and queue management process in accordance with a MAC-in-MAC compatible protocol for the other MAC-in-MAC compatible frames. 一種包含電路的網路實體,該電路包括一處理器以及儲存該處理器可執行指令的記憶體,該電路被配置成: 接收多個MAC-in-MAC相容的訊框,其中包括跨行程共用訊框(XCF); 基於該所接收的MAC-in-MAC相容的訊框的匹配欄位與控制器提供的匹配規則來區分該XCF與其他MAC-in-MAC相容的訊框; 對於該XCF, 獲取佈置在該XCF中的XCF資訊; 從該XCF資訊中確定使用了分段路由; 基於該所獲取的XCF資訊以及從該XCF中提取的分段路由資訊來執行轉發處理;以及 基於XCF管理規則來執行佇列管理過程。A network entity comprising a circuit, the circuit comprising a processor and a memory storing executable instructions of the processor, the circuit configured to: receive a plurality of MAC-in-MAC compatible frames, including cross-stroke a common frame (XCF); distinguishing the XCF from other MAC-in-MAC compatible frames based on the matching field of the received MAC-in-MAC compatible frame and the matching rule provided by the controller; Obtaining XCF information arranged in the XCF for the XCF; determining, using the segmentation route from the XCF information; performing forwarding processing based on the acquired XCF information and segmentation routing information extracted from the XCF; The queue management process is performed based on the XCF management rules. 如申請專利範圍第17項所述的網路實體,其中該電路被配置成: 對於該XCF, 使用一下一個分段的分段路由資訊來更新該匹配欄位。The network entity of claim 17, wherein the circuit is configured to: for the XCF, update the matching field using a segmented segmentation routing information. 如申請專利範圍第15項至第18項中任一項所述的網路實體,其中被配置成獲取佈置在該XCF中的XCF資訊的該電路包括被配置成執行以下處理的該電路: 解碼該XCF;以及 處理該所解碼的XCF。The network entity of any one of clauses 15 to 18, wherein the circuitry configured to acquire XCF information disposed in the XCF comprises the circuitry configured to perform the following processing: decoding The XCF; and processing the decoded XCF. 如申請專利範圍第15項至第19項中任一項所述的網路實體,其中該電路被配置成傳送該XCF以及其他MAC-in-MAC相容的訊框中的任何一個。The network entity of any one of clauses 15 to 19, wherein the circuit is configured to transmit any of the XCF and other MAC-in-MAC compatible frames. 如申請專利範圍第15項至第20項中任一項所述的網路實體,其中該XCF被編碼以用於MAC-in-MAC協定相容,以及用於支援該跨行程訊務的共用轉發和管理的任一者。The network entity of any one of clauses 15 to 20, wherein the XCF is encoded for MAC-in-MAC protocol compatibility, and for supporting the sharing of the cross-travel traffic. Any of forwarding and management. 如申請專利範圍第15項至第21項中任一項所述的網路實體,其中該XCF包括一XCF標頭。The network entity of any one of clauses 15 to 21, wherein the XCF includes an XCF header. 如申請專利範圍第22項所述的網路實體,其中該XCF標頭是以具有控制資訊的一MAC-in-MAC標頭的一範例化為基礎,該控制資訊被編碼成允許使用該MAC-in-MAC協定以及XCF域轉發控制中的任何一者來適當轉發該XCF。The network entity of claim 22, wherein the XCF header is based on an example of a MAC-in-MAC header with control information, the control information being encoded to allow use of the MAC Any one of the -in-MAC protocol and the XCF domain forwarding control to properly forward the XCF. 如申請專利範圍第23項所述的網路實體,其中用於編碼該控制資訊的編碼包括允許使用該MAC-in-MAC協定以及該XCF域轉發控制來解釋該XCF的編碼之任何類型。The network entity of claim 23, wherein the encoding for encoding the control information comprises allowing the MAC-in-MAC protocol and the XCF domain forwarding control to be used to interpret any type of encoding of the XCF. 如申請專利範圍第24項所述的網路實體,其中該編碼處理對該控制資訊進行編碼,以便該XCF標頭和該XCF中的任何一個在對該XCF標頭的一些或全部應用了一函數之後使用該XCF域轉發控制及使用該MAC-in-MAC協定是可解釋的。The network entity of claim 24, wherein the encoding process encodes the control information such that any one of the XCF header and the XCF is applied to some or all of the XCF headers. It is interpretable that the function uses the XCF domain forwarding control and uses the MAC-in-MAC protocol. 如申請專利範圍第24項所述的網路實體,其中該編碼通過編碼該控制資訊來將XCF域控制資訊佈置在不會影響使用該MAC-in-MAC協定而適當轉發該XCF的該XCF標頭的一個或多個部分之間。The network entity of claim 24, wherein the encoding, by encoding the control information, arranging the XCF domain control information to the XCF standard that does not affect the proper forwarding of the XCF using the MAC-in-MAC protocol Between one or more parts of the head.
TW106105741A 2016-02-22 2017-02-21 Methods, apparatuses and systems directed to common transport of backhaul and fronthaul traffic TW201739215A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662298428P 2016-02-22 2016-02-22
US201662298449P 2016-02-22 2016-02-22

Publications (1)

Publication Number Publication Date
TW201739215A true TW201739215A (en) 2017-11-01

Family

ID=58264598

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106105741A TW201739215A (en) 2016-02-22 2017-02-21 Methods, apparatuses and systems directed to common transport of backhaul and fronthaul traffic

Country Status (2)

Country Link
TW (1) TW201739215A (en)
WO (1) WO2017147076A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3618518B1 (en) * 2018-08-28 2022-11-30 Mitsubishi Electric R&D Centre Europe B.V. Method for wireless network management and network node for implementing the same
WO2020160564A1 (en) * 2019-03-19 2020-08-06 Futurewei Technologies, Inc. Preferred path routing in ethernet networks
CN110535772B (en) * 2019-08-27 2020-06-16 南京中兴软件有限责任公司 Method, device and network element for sending and receiving segmented routing traffic engineering strategy
EP4268433A1 (en) * 2020-12-22 2023-11-01 Telefonaktiebolaget LM Ericsson (publ) Fronthaul network route tracing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8619784B2 (en) * 2007-01-25 2013-12-31 Brixham Solutions Ltd. Mapping PBT and PBB-TE traffic to VPLS and other services

Also Published As

Publication number Publication date
WO2017147076A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
WO2019223466A1 (en) Communication method and device
EP2751964B1 (en) Implementing a 3g packet core in a cloud computer with openflow data and control planes
US9497661B2 (en) Implementing EPC in a cloud computer with openflow data plane
KR101638668B1 (en) Method and apparatus for a multi-radio access technology layer for splitting downlink-uplink over different radio access technologies
EP2831733B1 (en) Implementing epc in a cloud computer with openflow data plane
CN112368980B (en) Method for adding one or more network services to an MPLS network
EP4114115A1 (en) Message processing method and related device
US11343781B2 (en) Link establishment between a radio equipment controller (REC) and radio equipment (RE) in a fronthaul network
JP2017531405A (en) Anchoring IP devices in ICN networks
DK2599266T3 (en) Managing network traffic via a fixed access
TW201739215A (en) Methods, apparatuses and systems directed to common transport of backhaul and fronthaul traffic
WO2018106868A1 (en) Slicing switch resources
US11234163B1 (en) Dynamic eCPRI header compression
WO2014177170A1 (en) Sctp multi homing in lte backhaul with two parallel ipsec tunnels for two different ip addresses
WO2023202082A1 (en) Data packet transmission method, communication device, computer-readable storage medium and computer program product
WO2022103172A1 (en) Method and apparatus for configuring software-defined wide area network in communication system
WO2017172681A1 (en) Mitigating crc calculations in networks that utilize segment routing
WO2021155918A1 (en) Sending data to a network function
WO2023110119A1 (en) Systems and methods for integrated access and backhaul encapsulation in hybrid backhaul networks
BR102014031148B1 (en) OPTIMIZED BASE STATION ARCHITECTURE FOR 4G NETWORKS IN SCENARIOS WITH CENTRALIZATION OF MULTI-CELL PROCESSING UNITS
WO2015168856A1 (en) Multiflow transmission method and device