TW201738560A - Biological detecting cartridge and flowing method of detected fluid thereof - Google Patents
Biological detecting cartridge and flowing method of detected fluid thereof Download PDFInfo
- Publication number
- TW201738560A TW201738560A TW105112218A TW105112218A TW201738560A TW 201738560 A TW201738560 A TW 201738560A TW 105112218 A TW105112218 A TW 105112218A TW 105112218 A TW105112218 A TW 105112218A TW 201738560 A TW201738560 A TW 201738560A
- Authority
- TW
- Taiwan
- Prior art keywords
- flow
- fluid
- biometric
- detecting
- cassette
- Prior art date
Links
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
本發明是有關於一種檢測卡匣及其檢測流體的流動方法,且特別是有關於一種生物檢測卡匣及其檢測流體的流動方法。The present invention relates to a method of detecting a cassette and a flow of the detection fluid thereof, and more particularly to a method of flowing a bioassay cassette and its detection fluid.
一般而言,為了縮小生物檢測卡匣的大小,生物檢測卡匣中會採用微流道結構並通過毛細作用使檢測液體在微流道結構中流動。然而,微流道結構在生產製程上須以高精度方式進行生產,其不易生產且具有很高的不良率。In general, in order to reduce the size of the bioassay cassette, a microchannel structure is employed in the bioassay cassette and the detection liquid flows in the microchannel structure by capillary action. However, the microchannel structure must be produced in a high-precision manner in the production process, which is difficult to produce and has a high defect rate.
另外,在使用生物檢測卡匣來進行檢測時,一般需要提供定量的檢測流體(例如是血液)來與生物檢測卡匣內的藥劑混合。更明確地說,由於生物檢測卡匣內的藥劑量固定,若在生物檢測卡匣內與藥劑反應的檢測流體的量過多或是過少都會造成檢測值出現誤差。In addition, when using a bioassay cassette for detection, it is generally necessary to provide a quantitative detection fluid (eg, blood) to mix with the agent in the bioassay cassette. More specifically, since the amount of the drug in the bioassay cassette is fixed, if the amount of the detection fluid that reacts with the drug in the bioassay cassette is too large or too small, an error occurs in the detected value.
此外,進入生物檢測卡匣內的檢測流體是否能與生物檢測卡匣內的藥劑均勻地混合,對測試的結果也有著重大的影響。倘若生物檢測卡匣內的檢測流體與藥劑未均勻混合,就無法提供精準的量測值供使用者參考。尤其是在微量檢體的情況下,由於檢測流體的量過於稀少,不易與藥劑均勻混合,因此,為了避免上述狀況,一般必須等待較長時間,以確保生物檢測卡匣內的微量檢體與藥劑兩者完全混合均勻,才能進行接下來的生化檢測。In addition, whether the test fluid entering the bioassay cassette can be uniformly mixed with the drug in the bioassay cassette has a significant impact on the test results. If the test fluid in the bioassay cassette is not evenly mixed with the drug, accurate measurement values cannot be provided for the user's reference. Especially in the case of a micro-sample, since the amount of the detection fluid is too small, it is difficult to uniformly mix with the drug. Therefore, in order to avoid the above situation, it is generally necessary to wait for a long time to ensure that the micro-sample in the bioassay cassette is The two drugs are completely mixed evenly before the next biochemical test can be performed.
本發明提供一種生物檢測卡匣,藉由生物檢測卡匣內的流道結構設計,使其可通過施加不同方向的驅動力讓檢測流體在生物檢測卡匣內的流道結構中流動,如此,可有效降低製造的精細度的需求。此外,藉由生物檢測卡匣內的流道結構設計,可使與藥劑反應的檢測流體定量,並可使檢測流體快速地與藥劑均勻混合,以提供穩定的測試結果。The invention provides a biological detection cassette, which is designed by the flow path structure in the biological detection cassette so that the detection fluid can flow in the flow path structure in the biological detection cassette by applying driving forces in different directions, thus, It can effectively reduce the need for fineness of manufacturing. In addition, by designing the flow channel structure in the bioassay cassette, the detection fluid reactive with the agent can be quantified, and the test fluid can be quickly mixed with the agent to provide stable test results.
本發明提供一種生物檢測卡匣的檢測流體的流動方法,其在不同的時間點對生物檢測卡匣內的檢測流體施加不同方向的驅動力,讓檢測流體在生物檢測卡匣內的流道結構中流動,並能有效而快速地使檢測流體與藥劑混合均勻,以減少混合所需耗費的時間。The invention provides a method for detecting a flow of a detection fluid of a biological detection cassette, which applies a driving force of different directions to a detection fluid in a biological detection cassette at different time points, and allows a flow path structure of the detection fluid in the biological detection cassette It flows in and can effectively and quickly mix the test fluid with the agent to reduce the time required for mixing.
本發明一實施例提供一種生物檢測卡匣,適於收集一檢測流體,生物檢測卡匣包括:一收集口;一第一層流通結構,與收集口相通;以及一第二層流通結構,與第一層流通結構相通,其中,第一層流通結構與第二層流通結構設置於生物檢測卡匣內的不同平面。An embodiment of the present invention provides a biological detection cassette adapted to collect a detection fluid, the biological detection cassette comprising: a collection port; a first layer flow structure connected to the collection port; and a second layer circulation structure, and The first layer flow structure is in communication, wherein the first layer flow structure and the second layer flow structure are disposed on different planes within the biological detection cassette.
本發明一實施例提供一種生物檢測卡匣的檢測流體流動方法,包括:提供一檢測流體至一生物檢測卡匣;在一第一時間點,施加對應一第一方向的一第一驅動力於生物檢測卡匣中的檢測流體;以及在一第二時間點,施加對應一第二方向的一第二驅動力於生物檢測卡匣中的檢測流體,其中第一方向不同於第二方向。An embodiment of the present invention provides a method for detecting a fluid flow of a biometric cassette, comprising: providing a detection fluid to a biometric cartridge; and applying a first driving force corresponding to a first direction at a first time point The detection fluid in the bioassay cassette; and, at a second time point, applying a second driving force corresponding to a second direction to the detection fluid in the biometric cartridge, wherein the first direction is different from the second direction.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
圖1是根據本發明的一實施例的一生物檢測卡匣100的立體示意圖;圖2是圖1的生物檢測卡匣100的俯視透視示意圖。在本實施例中,生物檢測卡匣100包括一收集口110、一第一層流通結構120以及一第二層流通結構140,其中,收集口110與第一層流通結構120相通,而第一層流通結構120與第二層流通結構140相通,且第一層流通結構120與第二層流通結構140設置於生物檢測卡匣100內部的不同平面。1 is a perspective view of a biometric cartridge 100 according to an embodiment of the invention; and FIG. 2 is a top perspective view of the biometric cartridge 100 of FIG. In the present embodiment, the biometric cartridge 100 includes a collection port 110, a first layer flow structure 120, and a second layer flow structure 140, wherein the collection port 110 communicates with the first layer flow structure 120, and the first The layer flow structure 120 is in communication with the second layer flow structure 140, and the first layer flow structure 120 and the second layer flow structure 140 are disposed on different planes inside the biometric cassette 100.
在本實施例中,第一層流通結構120與第二層流通結構140設置於生物檢測卡匣100內部,且第一層流通結構120設置於第二層流通結構140上方,並與第二層流通結構140相通。其中,第一層流通結構120與第二層流通結構140彼此部分重疊。如圖2所示,生物檢測卡匣100內部的第一層流通結構120以實線表示,而第二層流通結構140則以虛線表示。In the present embodiment, the first layer flow structure 120 and the second layer flow structure 140 are disposed inside the biometric cassette 100, and the first layer flow structure 120 is disposed above the second layer flow structure 140, and the second layer The flow-through structure 140 is in communication. The first layer flow structure 120 and the second layer flow structure 140 partially overlap each other. As shown in FIG. 2, the first layer flow structure 120 inside the biometric cartridge 100 is indicated by a solid line, and the second layer flow structure 140 is indicated by a broken line.
在本發明實施例中,由於第一層流通結構120與第二層流通結構140設置於生物檢測卡匣100內部的不同平面,且第一層流通結構120與第二層流通結構140彼此之間可部分重疊,因此可有效地縮小生物檢測卡匣100的大小。In the embodiment of the present invention, since the first layer flow structure 120 and the second layer flow structure 140 are disposed on different planes inside the biological detection cassette 100, and the first layer flow structure 120 and the second layer flow structure 140 are between each other They can be partially overlapped, so the size of the biometric cartridge 100 can be effectively reduced.
請參閱圖1及圖2,本實施例的生物檢測卡匣100的第一層流通結構120包括一第一流道122以及一分離槽160。其中,第一流道122與收集口110相通,且第一流道122亦與分離槽160相通。本實施例的生物檢測卡匣100的第二層流通結構140包括至少一分流結構141。每一分流結構141包括一定量槽130、一第二流道142以及一混合槽組150。其中,定量槽130與第一層流通結構120的第一流道122相通,且定量槽130與混合槽組150通過第二流道142連接。Referring to FIG. 1 and FIG. 2 , the first layer flow structure 120 of the biometric cassette 100 of the present embodiment includes a first flow path 122 and a separation groove 160 . The first flow channel 122 is in communication with the collection port 110, and the first flow channel 122 is also in communication with the separation groove 160. The second layer flow structure 140 of the biometric cartridge 100 of the present embodiment includes at least one shunt structure 141. Each of the flow dividing structures 141 includes a certain amount of grooves 130, a second flow path 142, and a mixing tank group 150. The dosing tank 130 is in communication with the first flow path 122 of the first layer flow structure 120, and the dosing tank 130 is connected to the mixing trough group 150 through the second flow path 142.
在本發明實施例中,當檢測流體F(標示於圖4)從收集口110進入生物檢測卡匣100後,可通過在不同的時間點對生物檢測卡匣100中的檢測流體F施加對應方向的驅動力,使檢測流體F在生物檢測卡匣100內部的第一層流通結構120與第二層流通結構140中流動。In the embodiment of the present invention, when the detection fluid F (indicated in FIG. 4) enters the biometric cartridge 100 from the collection port 110, the corresponding direction can be applied to the detection fluid F in the biometric cartridge 100 at different time points. The driving force causes the detection fluid F to flow in the first layer flow-through structure 120 and the second layer flow-through structure 140 inside the bio-detection cassette 100.
請參閱圖3A及圖3B,圖3A及圖3B是適用於本發明實施例的生物檢測卡匣100的一檢測裝置10實施例的示意圖,其分別繪示在不同的時間點時,生物檢測卡匣100與檢測裝置10之間的關係。在此實施例中,檢測裝置10包括一轉動底座12。轉動底座12可沿一第一轉動軸心14轉動。生物檢測卡匣100可放置於轉動底座12上,並可沿一第二轉動軸心16相對於轉動底座12轉動,其中,第一轉動軸心14與第二轉動軸心16不共軸。此外,生物檢測卡匣100亦可通過轉動底座12的轉動而繞著第一轉動軸心14轉動。換句話說,生物檢測卡匣100可繞著第一轉動軸心14公轉,亦可沿第二轉動軸心16自轉。Please refer to FIG. 3A and FIG. 3B . FIG. 3A and FIG. 3B are schematic diagrams of an embodiment of a detecting device 10 suitable for the biometric cassette 100 of the embodiment of the present invention, which respectively show biometric cards at different time points. The relationship between the crucible 100 and the detecting device 10. In this embodiment, the detection device 10 includes a rotating base 12. The rotating base 12 is rotatable along a first rotational axis 14. The biometric cartridge 100 can be placed on the rotating base 12 and rotatable relative to the rotating base 12 along a second rotational axis 16, wherein the first rotational axis 14 is not coaxial with the second rotational axis 16. In addition, the biometric cartridge 100 can also be rotated about the first rotational axis 14 by the rotation of the rotating base 12. In other words, the biometric cartridge 100 can revolve around the first axis of rotation 14 and can also rotate about the second axis of rotation 16.
在此實施例的檢測裝置10中,通過在不同的時間點將生物檢測卡匣100沿第二轉動軸心16轉動至對應角度後,使生物檢測卡匣100通過轉動底座12的轉動而繞著第一轉動軸心14轉動,如此便可對檢測流體F施加對應方向的離心力。In the detecting device 10 of this embodiment, after the biometric cartridge 100 is rotated to a corresponding angle along the second rotational axis 16 at different time points, the biometric cartridge 100 is rotated around the rotating base 12 A rotation axis 14 is rotated, so that a centrifugal force corresponding to the direction of the detection fluid F can be applied.
舉例來說,假設在第一時間點時,生物檢測卡匣100沿第二轉動軸心16轉動至如圖3A所示的角度。在圖3A的角度中,生物檢測卡匣100上的A點是位於第一轉動軸心14與第二轉動軸心16連線的延伸線上。此時,當生物檢測卡匣100通過轉動底座12的轉動而繞著第一轉動軸心14轉動時,生物檢測卡匣100內的檢測流體F會受到往A點方向的離心力,進而往A點方向流動。For example, assume that at the first time point, the biometric cartridge 100 is rotated along the second axis of rotation 16 to an angle as shown in FIG. 3A. In the angle of FIG. 3A, point A on the biometric cartridge 100 is an extension line that is lined between the first rotational axis 14 and the second rotational axis 16. At this time, when the biometric cartridge 100 is rotated about the first rotation axis 14 by the rotation of the rotation base 12, the detection fluid F in the biometric cartridge 100 is subjected to the centrifugal force in the direction of the A point, and further to the point A. The direction flows.
接著,假設在第二時間點,生物檢測卡匣100沿第二轉動軸心16轉動至如圖3B所示的角度。在圖3B的角度中,生物檢測卡匣100上的B點是位於第一轉動軸心14與第二轉動軸心16連線的延伸線上。此時,而當生物檢測卡匣100通過轉動底座12的轉動而繞著第一轉動軸心14轉動時,生物檢測卡匣100內的檢測流體F會受到往B點方向的離心力,進而往B點方向流動。Next, assume that at the second time point, the biometric cartridge 100 is rotated along the second rotational axis 16 to an angle as shown in FIG. 3B. In the angle of FIG. 3B, point B on the biometric cartridge 100 is an extension line that is lined between the first rotational axis 14 and the second rotational axis 16. At this time, when the biometric cartridge 100 is rotated about the first rotation axis 14 by the rotation of the rotation base 12, the detection fluid F in the biometric cartridge 100 is subjected to the centrifugal force in the direction B, and further to B. Flow in the direction of the point.
通過上述實施例的檢測裝置10,生物檢測卡匣100內的檢測流體F可於不同的時間點受到對應方向的驅動力,而使檢測流體F於生物檢測卡匣100內部的第一層流通結構120與第二層流通結構140中流動。在本發明中,檢測裝置10並不以上述實施例為限。在本發明中,檢測裝置10主要用以在不同的時間點對生物檢測卡匣中的檢測流體F施加對應方向的驅動力。在另一實施例中,檢測裝置10亦可通過在不同的時間點驅動本發明提出的生物檢測卡匣往不同的方向移動,以達到在不同的時間點對生物檢測卡匣中的檢測流體F施加對應方向的驅動力的效果。Through the detecting device 10 of the above embodiment, the detecting fluid F in the biometric cartridge 100 can receive the driving force in the corresponding direction at different time points, and the first layer circulating structure of the detecting fluid F inside the biological detecting cassette 100 120 flows in the second layer flow structure 140. In the present invention, the detecting device 10 is not limited to the above embodiment. In the present invention, the detecting device 10 is mainly used to apply a driving force in a corresponding direction to the detecting fluid F in the biological detecting cassette at different time points. In another embodiment, the detecting device 10 can also move the biometric detection card proposed by the present invention in different directions at different time points to achieve the detection fluid F in the biometric detection card at different time points. The effect of applying a driving force in a corresponding direction is applied.
在本發明實施例中,由於檢測流體F在生物檢測裝置10內的移動方式是透過驅動力(例如是離心力)而被移動到生物檢測裝置10內的不同位置,因此,生物檢測裝置10內的流道尺寸的精細度限制較低,製造上較方便,也有良率佳成本低的優點。In the embodiment of the present invention, since the moving manner of the detecting fluid F in the biological detecting device 10 is moved to different positions in the biological detecting device 10 by the driving force (for example, centrifugal force), the inside of the biological detecting device 10 The flow path size has a low fineness limit, is convenient to manufacture, and has the advantages of good yield and low cost.
圖4至圖11是檢測流體F在本發明實施例的生物檢測卡匣100內的流動過程示意圖。在圖4至圖6,以及圖8中,生物檢測卡匣100內部的第一層流通結構120以實線表示,而第二層流通結構140則以虛線表示。在圖9至圖11中,生物檢測卡匣100內部的第一層流通結構120以虛線表示,而第二層流通結構140則以實線表示。下面將詳細地介紹生物檢測卡匣100的內部結構,並一同說明檢測流體F在生物檢測卡匣100中的流動及混合方法。4 to 11 are schematic views showing the flow of the detection fluid F in the biometric cartridge 100 of the embodiment of the present invention. In FIGS. 4-6, and 8, the first layer flow structure 120 inside the bioassay cassette 100 is shown in solid lines, while the second layer flow structure 140 is shown in dashed lines. In FIGS. 9-11, the first layer flow structure 120 inside the biometric cassette 100 is shown in dashed lines, while the second layer flow structure 140 is shown in solid lines. The internal structure of the bioassay cassette 100 will be described in detail below, and the flow and mixing method of the detection fluid F in the bioassay cassette 100 will be described together.
如圖4與圖5A所示,檢測流體F從收集口110進入生物檢測卡匣100,接著進入連通於收集口110的第一流道122。檢測流體F進入第一流道122後,檢測裝置10根據第一流道122的延伸方向對檢測流體F施加對應方向的驅動力,使檢測流體F沿著第一流道122流動。As shown in FIGS. 4 and 5A, the detection fluid F enters the biometric cartridge 100 from the collection port 110, and then enters the first flow channel 122 that communicates with the collection port 110. After the detection fluid F enters the first flow path 122, the detection device 10 applies a driving force in a corresponding direction to the detection fluid F according to the extending direction of the first flow path 122, and causes the detection fluid F to flow along the first flow path 122.
在本實施例中,第一流道122包括彎折連接的多個第一支部122a、122b、122c。更明確地說,第一流道122包括三個串聯的第一支部122a、122b、122c,其中兩個相連的第一支部122a、122b、122c之間分別存在一彎折。為了使檢測流體F沿著第一流道122依序流過第一支部122a、122b、122c,檢測裝置10根據第一支部122a、122b、122c的延伸方向,分別在不同的時間點對檢測流體F施加平行於第一支部122a、122b、122c的延伸方向的驅動力。In the present embodiment, the first flow path 122 includes a plurality of first branch portions 122a, 122b, 122c that are bent and connected. More specifically, the first flow path 122 includes three first branches 122a, 122b, 122c connected in series, wherein a bend is formed between each of the two connected first branches 122a, 122b, 122c. In order to sequentially flow the detection fluid F along the first flow path 122 through the first branch portions 122a, 122b, 122c, the detecting device 10 respectively detects the fluid F at different time points according to the extending direction of the first branch portions 122a, 122b, 122c. A driving force parallel to the extending direction of the first branch portions 122a, 122b, 122c is applied.
舉例而言,如圖5A所示,當欲使檢測流體F流過第一支部122a時,檢測裝置10根據第一支部122a的延伸方向,對檢測流體F施加平行於第一支部122a的延伸方向的驅動力D1,使檢測流體F流過第一支部122a,並聚集在二個第一支部122a及122b之間的彎折處,如圖5B所示。接著,當欲使檢測流體F流過下個第一支部122b時,檢測裝置10根據第一支部122b的延伸方向,對檢測流體F施加平行於第一支部122b的延伸方向的驅動力D2,使檢測流體F流過第一支部122b,並聚集在二個第一支部122b及122c之間的彎折處,如圖6所示。以此類推。For example, as shown in FIG. 5A, when the detecting fluid F is to flow through the first branch portion 122a, the detecting device 10 applies a direction parallel to the extending direction of the first branch portion 122a according to the extending direction of the first branch portion 122a. The driving force D1 causes the detecting fluid F to flow through the first branch portion 122a and gather at the bend between the two first branch portions 122a and 122b as shown in Fig. 5B. Next, when the detection fluid F is to flow through the next first branch portion 122b, the detecting device 10 applies a driving force D2 parallel to the extending direction of the first branch portion 122b to the detecting fluid F according to the extending direction of the first branch portion 122b. The detecting fluid F flows through the first branch portion 122b and is gathered at a bend between the two first branch portions 122b and 122c as shown in FIG. And so on.
在本實施例中,第一流道122包括三個串聯的第一支部122a、122b、122c,且這些串聯的第一支部122a、122b、122c之間存在的彎折設計,可在對檢測流體F施加不同方向的驅動力,使檢測流體F在第一流道122中流動的過程中,避免檢測流體F產生回流。然第一支部的個數並不以此為限,本領域技術人員可根據實際需求設計不同個數的第一支部。而檢測流體F在每個第一支部的流動方法則與上述的說明相似,在此便不再贅述。In the present embodiment, the first flow path 122 includes three first branches 122a, 122b, 122c connected in series, and the bent design existing between the first branch portions 122a, 122b, 122c of the series can be in the detection fluid F The driving force in different directions is applied to prevent the detecting fluid F from flowing back during the flow of the detecting fluid F in the first flow path 122. However, the number of the first branch is not limited thereto, and a person skilled in the art can design a different number of first branches according to actual needs. The method of detecting the flow of the fluid F in each of the first branches is similar to that described above and will not be described herein.
請參閱圖6,第一層流通結構120的分離槽160連接於其中二個第一支部122b、122c之間的彎折處,且分離槽160的延伸方向平行於其中一個第一支部122b。其中,檢測流體F先後依序流過上述二個第一支部122b、122c,而分離槽160的延伸方向平行於上述二個第一支部122b、122c中,檢測流體F先流過的第一支部122b。如圖5B所示,分離槽160連接於二個第一支部122b及112c之間的彎折處,且由於檢測流體F先流過第一支部112b後才流過第一支部112c,因此分離槽160的延伸方向平行於第一支部122b。Referring to FIG. 6, the separation groove 160 of the first layer flow-through structure 120 is connected to a bend between the two first branches 122b, 122c, and the separation groove 160 extends in a direction parallel to one of the first branches 122b. The detecting fluid F flows through the two first branch portions 122b and 122c in sequence, and the extending direction of the separating groove 160 is parallel to the first branch portions 122b and 122c, and the first branch portion through which the fluid F flows first is detected. 122b. As shown in FIG. 5B, the separation groove 160 is connected to the bend between the two first branches 122b and 112c, and since the detection fluid F flows through the first branch 112b before flowing through the first branch 112c, the separation groove The extending direction of 160 is parallel to the first branch portion 122b.
在本實施例中,第一層流通結構120的分離槽160用於通過持續對檢測流體F施加朝向分離槽160延伸方向的驅動力,以分離檢測流體F中不同密度的部分。其中,在驅動力的持續施加下,檢測流體F中具有較大密度的第一部分F1會流入分離槽160,而檢測流體F中具有較小密度的第二部分F2則仍位於第一流道122,如圖6所示。In the present embodiment, the separation groove 160 of the first layer flow-through structure 120 serves to separate portions of the detection fluid F at different densities by continuously applying a driving force to the detection fluid F in a direction in which the separation groove 160 extends. Wherein, under the continuous application of the driving force, the first portion F1 having a larger density in the detecting fluid F flows into the separating groove 160, and the second portion F2 having the smaller density in the detecting fluid F is still located in the first flow path 122. As shown in Figure 6.
以檢測流體F為血液F為例,血液F包括混合的具有較大密度的第一部分,即血球F1;及具有較小密度的第二部分,即血漿F2。由於血液F在生物檢測卡匣100內通過驅動力(例如是離心力)而流動,在圖5B中,當對血液F施加平行於第一支部122b的延伸方向的驅動力D2,使血液F流過第一支部122b並聚集在二個第一支部122b及122c之間的彎折處後,檢測裝置10持續對血液F施加朝向分離槽160延伸方向的驅動力D2,使具有較大密度的血球F1移動到分離槽160內,而具有較小密度的血漿F2則移動到第一流道122的第一支部122c,如圖6所示。當然,在其他實施例中,若生物檢測卡匣100不需要將檢測流體分離出密度大與密度小的成分,也可以省略分離槽160的設計。Taking the detection fluid F as blood F as an example, the blood F includes a mixed first portion having a larger density, that is, a blood cell F1; and a second portion having a smaller density, that is, plasma F2. Since the blood F flows by the driving force (for example, centrifugal force) in the biometric cartridge 100, in FIG. 5B, when the driving force D2 parallel to the extending direction of the first branch portion 122b is applied to the blood F, the blood F is caused to flow. After the first branch portion 122b is gathered at the bend between the two first branch portions 122b and 122c, the detecting device 10 continues to apply the driving force D2 toward the blood F to the direction in which the separation groove 160 extends, so that the blood cell F1 having a large density is provided. Moving into the separation tank 160, the plasma F2 having a smaller density moves to the first branch portion 122c of the first flow path 122, as shown in FIG. Of course, in other embodiments, if the biometric cartridge 100 does not need to separate the detection fluid from a component having a large density and a low density, the design of the separation groove 160 may be omitted.
在本實施例中,第一層流通結構120通過第一流道122的多個第一支部122a、122b、122c中的其中一個第一支部122c與第二層流通結構140的至少一分流結構141連接並相通,此與分流結構141連接的第一支部122c又稱為連接支部122c。換句話說,第一流道122的多個第一支部122a、122b、122c包含與分流結構141連接的連接支部122c。在本實施例中,連接支部122c具有搭配分流結構141的對應結構設計,後續將配合第二層流通結構140一併說明。In the present embodiment, the first layer flow-through structure 120 is connected to at least one of the plurality of first branch portions 122a, 122b, 122c of the first flow path 122 and the at least one shunt structure 141 of the second layer flow-through structure 140. In addition, the first branch portion 122c connected to the shunt structure 141 is also referred to as a connecting branch portion 122c. In other words, the plurality of first branches 122a, 122b, 122c of the first flow path 122 include a connection branch 122c that is coupled to the flow dividing structure 141. In the present embodiment, the connecting branch portion 122c has a corresponding structural design with the splitting structure 141, and will be described later in conjunction with the second layer circulating structure 140.
請參閱圖1,第二層流通結構140包括至少一分流結構141。各分流結構141包括一定量槽130、一第二流道142及一混合槽組150。定量槽130與第一流道122的連接支部122c相通,第二流道142與定量槽130相通,混合槽組150與第二流道142相通。在本實施例中,第二層流通結構140位在第一層流通結構130的下方,且定量槽130與第一流道122的連接支部122c部分重疊且相通。Referring to FIG. 1, the second layer flow structure 140 includes at least one shunt structure 141. Each of the flow dividing structures 141 includes a certain amount of grooves 130, a second flow path 142, and a mixing groove group 150. The dosing tank 130 communicates with the connecting branch portion 122c of the first flow path 122, the second flow path 142 communicates with the dosing tank 130, and the mixing trough group 150 communicates with the second flow path 142. In the present embodiment, the second layer flow structure 140 is located below the first layer flow structure 130, and the dosing groove 130 partially overlaps and communicates with the connection branch portion 122c of the first flow path 122.
請繼續參閱圖6,當血液F經過分離槽160進行不同密度的分離後,具有較小密度的血漿F2會位於第一流道122,並聚集在第一支部122b與連接支部122c之間的彎折處。接著,對血漿F2施加平行於連接支部122c的延伸方向的驅動力D3。當血漿F2在受到驅動力D3而在連接支部122c流動的過程中,通過連接支部122c上對應分流結構141的結構設計,使血漿F2優先進入第二層流通結構140的定量槽130。後續將詳細說明。Referring to FIG. 6, after the blood F passes through the separation tank 160 for separation of different densities, the plasma F2 having a smaller density is located in the first flow path 122, and is gathered at a bend between the first branch portion 122b and the connecting branch portion 122c. At the office. Next, a driving force D3 parallel to the extending direction of the connecting branch portion 122c is applied to the plasma F2. When the plasma F2 is in the process of being subjected to the driving force D3 and flowing in the connecting branch portion 122c, the plasma F2 is preferentially entered into the metering tank 130 of the second layer flow-through structure 140 by the structural design of the corresponding branching structure 141 on the connecting branch portion 122c. The details will be described later.
在本發明另一實施例中,若生物檢測卡匣100不需要將檢測流體分離出密度大與密度小的成分,並省略分離槽160的設計,則當檢測流體F流過第一支部122b並聚集在第一支部122b與連接支部122c之間的彎折處後,同樣可接著對檢測流體F施加平行於連接支部122c的延伸方向的驅動力D3,並通過連接支部122c上對應分流結構141的設計,使檢測流體F優先進入第二層流通結構140的定量槽130。In another embodiment of the present invention, if the biometric cartridge 100 does not need to separate the detection fluid from the component having a large density and a small density, and the design of the separation groove 160 is omitted, the detection fluid F flows through the first branch portion 122b. After being gathered at the bend between the first branch portion 122b and the connecting branch portion 122c, the driving force D3 parallel to the extending direction of the connecting branch portion 122c may be applied to the detecting fluid F, and the corresponding shunting structure 141 on the connecting portion 122c may be connected. It is designed to preferentially access the detection fluid F into the metering tank 130 of the second layer flow-through structure 140.
請參閱圖2及圖6至圖8,圖7是圖6沿A-A線段的剖面示意圖,圖8是圖6的局部放大示意圖。連接支部122c具有與各分流結構141對應的縮小通道123及連通孔125。連接支部122c通過連通孔125與對應分流結構141的定量槽130相通。連通孔125的流通截面寬W3大於縮小通道123的流通截面寬W2,且連通孔125位於縮小通道123的檢測流體F進入側。換句話說,檢測流體F會先流過連通孔125,而後流過縮小通道123。Please refer to FIG. 2 and FIG. 6 to FIG. 8. FIG. 7 is a cross-sectional view of FIG. 6 along line A-A, and FIG. 8 is a partial enlarged view of FIG. The connection branch portion 122c has a reduction passage 123 and a communication hole 125 corresponding to each of the flow dividing structures 141. The connecting branch portion 122c communicates with the dosing groove 130 of the corresponding shunting structure 141 through the communication hole 125. The flow-through section width W3 of the communication hole 125 is larger than the flow-through section width W2 of the reduction passage 123, and the communication hole 125 is located on the entry side of the detection fluid F of the reduction passage 123. In other words, the detection fluid F flows first through the communication hole 125 and then flows through the reduction passage 123.
在本實施例中,由於連通孔125的流通截面寬W3大於縮小通道123的流通截面寬W2,所以在平行於連接支部122c的延伸方向的驅動力D3下,檢測流體F會先往連通孔125流入定量槽130。當定量槽130滿了後,由於檢測流體F無法再往連通孔125流入定量槽130,因此溢出的檢測流體F會在驅動力D3下進入縮小通道123,並流過縮小通道123。In the present embodiment, since the flow cross-sectional width W3 of the communication hole 125 is larger than the flow cross-sectional width W2 of the narrowing passage 123, the detection fluid F first flows to the communication hole 125 under the driving force D3 parallel to the extending direction of the connecting branch portion 122c. Flow into the dosing tank 130. When the dosing tank 130 is full, since the detection fluid F cannot flow into the dosing groove 130 again to the communication hole 125, the overflowed detection fluid F enters the reduction passage 123 under the driving force D3 and flows through the reduction passage 123.
請先參閱圖6,在以檢測流體F為血液F的例子中,血液F在經過分離槽160進行不同密度的分離後,聚集在第一支部122b與連接支部122c之間的彎折處的血漿F2會被施加平行於連接支部122c的延伸方向的驅動力D3。接著,請參閱圖7及圖8,當血漿F2沿著連接支部122c流動至對應分流結構141的位置時(如圖8所示),由於連通孔125的流通截面寬W3大於縮小通道123的流通截面寬W2,所以血漿F2會先往連通孔125流入定量槽130(如圖7所示)。當此對應的定量槽130滿了後,溢出的血漿F2會流過縮小通道123,並繼續沿著連接支部122c流動。若生物檢測卡匣100具有多個分流結構141,則剩餘的血漿F2會繼續沿著連接支部122c流動至對應下一個分流結構141的位置,並重複上述的流動過程。Referring to FIG. 6, in the example in which the fluid F is detected as the blood F, the blood F is collected at a bend between the first branch portion 122b and the connecting branch portion 122c after separation of the different densities through the separation tank 160. F2 is applied with a driving force D3 parallel to the extending direction of the connecting branch portion 122c. Next, referring to FIG. 7 and FIG. 8, when the plasma F2 flows along the connecting branch portion 122c to the position corresponding to the shunting structure 141 (as shown in FIG. 8), the flow cross-sectional width W3 of the communicating hole 125 is larger than the circulation of the narrowing passage 123. The section width W2 is such that the plasma F2 first flows into the quantification tank 130 toward the communication hole 125 (as shown in Fig. 7). When the corresponding dosing tank 130 is full, the overflowed plasma F2 will flow through the narrowing passage 123 and continue to flow along the connecting branch 122c. If the biometric cartridge 100 has a plurality of diverting structures 141, the remaining plasma F2 will continue to flow along the connecting branch 122c to a position corresponding to the next shunting structure 141, and the above-described flow process is repeated.
在本實施例中,通過連接支部122c對應定量槽130的縮小通道123及連通孔125的不同截面寬度的設計,使檢測流體F先流入並填滿定量槽130,使進入分流結構141的檢測流體F具有設定的量。在本實施例中,生物檢測卡匣100具有四個分流結構141,同樣地,連接支部122c具有四個縮小通道123及四個連通孔125,其分別對應四個分流結構141的定量槽130。In the present embodiment, the detection fluid F first flows into and fills the dosing groove 130 by the connection branch portion 122c corresponding to the design of the narrowing passage 123 of the dosing groove 130 and the different cross-sectional width of the communication hole 125, so that the detecting fluid entering the diverting structure 141 is made. F has a set amount. In the present embodiment, the biometric cartridge 100 has four shunting structures 141. Similarly, the connecting branch 122c has four narrowing passages 123 and four communicating holes 125, which respectively correspond to the quantifying slots 130 of the four diverting structures 141.
從圖6至圖9可見,通過連接支部122c對應定量槽130的縮小通道123及連通孔125的不同截面寬度的設計,血漿F2流動的順序是傾向先通過連通孔125往定量槽130流去,再往左通過縮小通道123。換句話說,血漿F2會從右到左逐一地填滿這些定量槽130。定量槽130可確保之後流到混合槽組150內的血漿量在設定的範圍之間,以避免因血漿量過多或是過少造成檢測誤差。As can be seen from FIG. 6 to FIG. 9, by the design of the connecting portion 122c corresponding to the different cross-sectional widths of the narrowing passage 123 and the communicating hole 125 of the dosing groove 130, the order in which the plasma F2 flows tends to flow through the communicating hole 125 to the dosing groove 130 first. Further to the left, the channel 123 is narrowed. In other words, plasma F2 fills these dosing tanks 130 one by one from right to left. The dosing tank 130 ensures that the amount of plasma that flows into the mixing tank set 150 thereafter is between a set range to avoid detection errors due to excessive or too little plasma.
此外,請回到圖2,在本實施例中,生物檢測卡匣100更包括一溢流槽170,連接於第一流道122遠離收集口110的一端。如圖9所示,當血漿F2填滿於這些定量槽130之後,多餘的血漿F2會從連接支部122c流入溢流槽170。再者,請再參閱圖2,第一流道122遠離收集口110的一端還可連通於外露生物檢測卡匣100的一排氣孔190,使檢測流體F可順暢地於第一流道122中流動。In addition, please return to FIG. 2 , in this embodiment, the biometric cartridge 100 further includes an overflow tank 170 connected to one end of the first flow channel 122 away from the collection port 110 . As shown in FIG. 9, after the plasma F2 is filled in the dosing tanks 130, the excess plasma F2 flows from the connecting branch portion 122c into the overflow tank 170. Furthermore, referring to FIG. 2, one end of the first flow path 122 away from the collection port 110 can also communicate with an exhaust hole 190 of the exposed biological detection cassette 100, so that the detection fluid F can flow smoothly in the first flow path 122. .
請再參閱圖9,在本實施例中,分流結構141的數量以四個為例,但分流結構141的數量可隨著生物檢測卡匣的檢測項目數量而變。各分流結構141的第二流道142包括彎折連接的多個第二支部142a、142b。在本實施例中,這兩個第二支部142a、142b之間存在一彎折,以避免血漿F2回流。當血漿F2流到定量槽130之後,檢測裝置10可以對血漿F2先施以平行於第二支部142a的延伸方向的驅動力D4,使血漿F2流過第二支部142a,再施以平行於第二支部142b的延伸方向的驅動力D5,使血漿F2流過第二支部142b。同樣地,在本本發明中,第二支部的個數並不以此為限,本領域技術人員可根據實際需求設計不同個數的第二支部。Referring to FIG. 9 again, in the present embodiment, the number of the shunt structures 141 is exemplified by four, but the number of the shunt structures 141 may vary with the number of detection items of the biometric cassette. The second flow passage 142 of each of the flow dividing structures 141 includes a plurality of second branch portions 142a, 142b that are bent and connected. In this embodiment, there is a bend between the two second branches 142a, 142b to avoid backflow of plasma F2. After the plasma F2 flows to the quantification tank 130, the detecting device 10 may first apply a driving force D4 parallel to the extending direction of the second branch portion 142a to the plasma F2, and cause the plasma F2 to flow through the second branch portion 142a, and then apply parallel to the first portion 142a. The driving force D5 in the extending direction of the two branch portions 142b causes the plasma F2 to flow through the second branch portion 142b. Similarly, in the present invention, the number of the second branch is not limited thereto, and those skilled in the art can design different numbers of the second branch according to actual needs.
在本實施例中,混合槽組150包括了彼此相通的第一混合槽150a及第二混合槽150b。各第二流道142的第二支部142b與混合槽組150相連。如圖10所示,當血漿F2流至第二支部142b與混合槽組150的連接處之後,可對血漿F2施加朝向第一混合槽150a延伸方向的驅動力D6,使血漿F2流到第一混合槽150a內。接著,如圖11所示,再對血漿F2施加朝向第二混合槽150b延伸方向的驅動力D7,使血漿F2流到第二混合槽150b內。In the present embodiment, the mixing tank group 150 includes a first mixing tank 150a and a second mixing tank 150b that communicate with each other. The second branch portion 142b of each of the second flow passages 142 is connected to the mixing groove group 150. As shown in FIG. 10, after the plasma F2 flows to the junction of the second branch portion 142b and the mixing tank group 150, the driving force D6 toward the extending direction of the first mixing tank 150a can be applied to the plasma F2, so that the plasma F2 flows to the first The inside of the mixing tank 150a. Next, as shown in Fig. 11, a driving force D7 toward the extending direction of the second mixing tank 150b is applied to the plasma F2, and the plasma F2 is caused to flow into the second mixing tank 150b.
在本實施例中,第一混合槽150a及第二混合槽150b中的至少一者配置有藥劑,或者,第一混合槽150a及第二混合槽150b也可以分別配置有不同的藥劑。藥劑可事先配置於第一混合槽150a及第二混合槽150b內,待血漿F2流入第一混合槽150a及第二混合槽150b之後,使藥劑溶入血漿F2內。In the present embodiment, at least one of the first mixing tank 150a and the second mixing tank 150b is disposed with a chemical, or the first mixing tank 150a and the second mixing tank 150b may be disposed with different chemicals. The drug may be disposed in the first mixing tank 150a and the second mixing tank 150b in advance, and after the plasma F2 flows into the first mixing tank 150a and the second mixing tank 150b, the medicine is dissolved in the plasma F2.
在本實施例中,通過交替地施加驅動力D6、D7,血漿F2能往復地在第一混合槽150a及第二混合槽150b之間流動,以快速地與配置於第一混合槽150a及第二混合槽150b內的藥劑混合均勻,進而減少所需的混合時間。In the present embodiment, by alternately applying the driving forces D6, D7, the plasma F2 can reciprocally flow between the first mixing tank 150a and the second mixing tank 150b to be quickly disposed in the first mixing tank 150a and The chemicals in the two mixing tanks 150b are uniformly mixed, thereby reducing the required mixing time.
此外,如圖11所示,在本實施例中,生物檢測卡匣100更包括一排氣通道180。排氣通道180與第二流道142相通,以提供生物檢測卡匣100將流通結構內的氣體排出,以避免檢測流體F因為氣體堵塞而無法於流通結構內流動。In addition, as shown in FIG. 11, in the present embodiment, the biometric cartridge 100 further includes an exhaust passage 180. The exhaust passage 180 communicates with the second flow passage 142 to provide the biometric cartridge 100 to vent the gas within the flow-through structure to prevent the detection fluid F from flowing within the flow-through structure due to gas clogging.
圖12是根據本發明的另一實施例的一生物檢測卡匣200的示意圖。圖13是圖12的生物檢測卡匣200的局部放大示意圖。請參閱圖12與圖13,本實施例的生物檢測卡匣200與前一實施例的生物檢測卡匣100的主要差異在於,在前一實施例中,生物檢測卡匣100通過連接支部122的縮小通道123及連通孔125對應定量槽130,而在本實施例中,生物檢測卡匣100通過連接支部122的隔板290及連通孔225對應定量槽230。Figure 12 is a schematic illustration of a biometric cartridge 200 in accordance with another embodiment of the present invention. FIG. 13 is a partially enlarged schematic view of the biometric cartridge 200 of FIG. Referring to FIG. 12 and FIG. 13, the main difference between the biometric cartridge 200 of the present embodiment and the biometric cartridge 100 of the previous embodiment is that, in the previous embodiment, the biometric cartridge 100 is connected to the branch 122. The narrowing passage 123 and the communication hole 125 correspond to the dosing groove 130. In the present embodiment, the biometric cartridge 100 corresponds to the dosing groove 230 through the partition 290 and the communication hole 225 connecting the branch portion 122.
在前一實施例中,生物檢測卡匣100通過連接支部122c的縮小通道123及連通孔125的不同截面寬度的設計,使檢測流體F先流入並填滿定量槽130。然而,在定量槽130被填滿前,少部分的檢測流體F仍可能先流過縮小通道123。如圖8所示,血漿F2在連接支部122c中流動的過程中,雖然大部分的血漿F2會傾向先通過具有較大流通截面寬W3的連通孔125,並往下層的定量槽130流去,但是少部分的血漿F2在同時仍可能會沿著連接支部122c往具有較小流通截面寬W2的縮小通道123流去。In the previous embodiment, the biometric cartridge 100 is designed such that the detection fluid F first flows into and fills the dosing tank 130 by the design of the narrowing passage 123 connecting the branch portion 122c and the different cross-sectional width of the communication hole 125. However, a small portion of the detection fluid F may still flow through the reduction passage 123 before the dosing tank 130 is filled. As shown in Fig. 8, in the process in which the plasma F2 flows in the connecting branch portion 122c, most of the plasma F2 tends to pass through the communicating hole 125 having a large flow cross-sectional width W3, and flows to the lower quantitative tank 130. However, a small portion of the plasma F2 may still flow along the connecting branch 122c to the reduced channel 123 having a smaller flow cross-sectional width W2.
請參閱圖12及圖13,在本實施例中,生物檢測卡匣200的第一流道222的連接支部222c具有與各定量槽230對應的隔板290及連通孔225。連接支部222c通過連通孔225與對應的定量槽230相通。隔板290位在連通孔225上,並將連通孔225區分為進口225a及出口225b。其中,連通孔225的進口225a及出口225b分別位於隔板290兩側。Referring to FIG. 12 and FIG. 13 , in the present embodiment, the connecting branch portion 222 c of the first flow path 222 of the biometric cartridge 200 has a partition plate 290 and a communication hole 225 corresponding to each of the dosing grooves 230 . The connecting branch 222c communicates with the corresponding dosing groove 230 through the communication hole 225. The partition 290 is positioned on the communication hole 225, and the communication hole 225 is divided into an inlet 225a and an outlet 225b. The inlet 225a and the outlet 225b of the communication hole 225 are respectively located at two sides of the partition 290.
在本實施例的生物檢測卡匣200中,當血漿F2沿著連接支部222c流動至對應定量槽230的位置時,血漿F2受到隔板290的阻擋,而先從連通孔225的進口225a流入定量槽230。當此對應的定量槽230填滿之後,血漿F2會從連通孔225的出口225b流出,並繼續沿著連接支部222c流動。若生物檢測卡匣200具有多個定量槽230,則剩餘的血漿F2會繼續沿著連接支部122c流動至對應下一個定量槽230的位置,並重複上述的流動過程。In the biometric cartridge 200 of the present embodiment, when the plasma F2 flows along the connecting branch 222c to the position corresponding to the dosing tank 230, the plasma F2 is blocked by the partition 290, and flows in from the inlet 225a of the communicating hole 225 first. Slot 230. When the corresponding dosing tank 230 is filled, the plasma F2 will flow out from the outlet 225b of the communication hole 225 and continue to flow along the connecting branch 222c. If the bioassay cassette 200 has a plurality of metering slots 230, the remaining plasma F2 will continue to flow along the connecting branch 122c to a position corresponding to the next metering tank 230, and the above-described flow process is repeated.
綜上所述,本發明的生物檢測卡匣藉由將第一層流通結構與第二層流通結構設置於生物檢測卡匣內的不同平面,因此可有效地縮小生物檢測卡匣的大小。再者,本發明的生物檢測卡匣藉由多種延伸方向的流道、分離槽、定量槽及混合槽的設計,使本發明的生物檢測卡匣可通過在不同時序下施加不同方向的驅動力,使生物檢測卡匣內的檢測流體依序流至對應位置。相較於習知採用毛細作用使檢測流體流動的生物檢測卡匣,本發明的生物檢測卡匣的流道尺寸不需那麼精細,因此可提高製造的便利性。此外,通過連接支部上對應定量槽的結構設計,可確保流到混合槽並與混合槽內的藥劑反應的檢測流體的量值在設定的範圍之間,以避免因為檢測流體的量過多或過少而造成檢測值出現誤差。另外,藉由多個混合槽的設計,通過施加對應特定方向的驅動力,能夠使檢測流體快速地與配置於混合槽內的藥劑混合均勻,進而減少所需的混合時間。In summary, the bioassay cassette of the present invention can effectively reduce the size of the biometric cassette by placing the first layer flow structure and the second layer flow structure on different planes in the biometric cassette. Furthermore, the bioassay cassette of the present invention allows the biodetection cassette of the present invention to exert driving forces in different directions at different timings by designing a plurality of flow channels, separation grooves, dosing grooves and mixing grooves in the extending direction. The detection fluid in the bioassay cassette is sequentially flowed to the corresponding position. Compared with the conventional bioassay cassette which uses capillary action to cause the detection fluid to flow, the flow path size of the bioassay cassette of the present invention does not need to be so fine, so that the convenience of manufacture can be improved. In addition, by connecting the structural design of the corresponding quantitative groove on the branch, the amount of the detection fluid flowing to the mixing tank and reacting with the agent in the mixing tank can be ensured to be within a set range to avoid excessive or too little detection fluid. This causes an error in the detected value. Further, by designing the plurality of mixing grooves, by applying a driving force corresponding to a specific direction, the detection fluid can be quickly mixed with the agent disposed in the mixing tank, thereby reducing the required mixing time.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
A、B‧‧‧生物檢測卡匣上的位置
D1~D7‧‧‧驅動力
F‧‧‧檢測流體、血液
F1‧‧‧血球
F2‧‧‧血漿
W2、W3‧‧‧流通截面寬
10‧‧‧檢測裝置
12‧‧‧轉動底座
14‧‧‧第一轉動軸心
16‧‧‧第二轉動軸心
100、200‧‧‧生物檢測卡匣
110‧‧‧收集口
120、220‧‧‧第一層流通結構
122‧‧‧第一流道
122a、122b‧‧‧第一支部
122c‧‧‧第一支部、連接支部
123‧‧‧縮小通道
125、225‧‧‧連通孔
130、230‧‧‧定量槽
140‧‧‧第二層流通結構
141‧‧‧分流結構
142‧‧‧第二流道
142a、142b‧‧‧第二支部
150‧‧‧混合槽組
150a‧‧‧第一混合槽
150b‧‧‧第二混合槽
160‧‧‧分離槽
170‧‧‧溢流槽
180‧‧‧排氣通道
190‧‧‧排氣孔
222c‧‧‧連接支部
225a‧‧‧進口
225b‧‧‧出口
290‧‧‧隔板A, B‧‧‧ Location on the biometric cassette
D1~D7‧‧‧ driving force
F‧‧‧Detecting fluids, blood
F1‧‧‧ blood cells
F2‧‧‧ plasma
W2, W3‧‧‧ wide flow section
10‧‧‧Detection device
12‧‧‧Rotating base
14‧‧‧First rotation axis
16‧‧‧Second rotation axis
100, 200‧‧‧ biometric cards
110‧‧‧ collection port
120, 220‧‧‧ first-tier circulation structure
122‧‧‧First runner
122a, 122b‧‧‧ first branch
122c‧‧‧First branch, connecting branch
123‧‧‧Shrinking the channel
125, 225‧‧‧Connected holes
130, 230‧‧ ‧Quantitative tank
140‧‧‧Second floor circulation structure
141‧‧ ‧ shunt structure
142‧‧‧Second runner
142a, 142b‧‧‧second branch
150‧‧‧Mixed trough group
150a‧‧‧First mixing tank
150b‧‧‧Second mixing tank
160‧‧‧Separation tank
170‧‧‧Overflow trough
180‧‧‧Exhaust passage
190‧‧‧ venting holes
222c‧‧‧Connected branch
225a‧‧‧Import
225b‧‧‧Export
290‧‧ ‧ partition
圖1是根據本發明的一實施例的一生物檢測卡匣的立體示意圖。 圖2是圖1的生物檢測卡匣的俯視透視示意圖。 圖3A及圖3B是適用於本發明實施例的生物檢測卡匣的一檢測裝置實施例的示意圖,其分別繪示在不同的時間點時,生物檢測卡匣與檢測裝置之間的關係。 圖4至圖11是檢測流體在本發明實施例的生物檢測卡匣內的流動過程示意圖。 圖12是根據本發明的另一實施例的一生物檢測卡匣的示意圖。 圖13是圖12的生物檢測卡匣的局部放大示意圖。1 is a perspective view of a biometric cartridge according to an embodiment of the invention. 2 is a top perspective view of the biometric cassette of FIG. 1. 3A and 3B are schematic diagrams showing an embodiment of a detecting device for a biometric cassette according to an embodiment of the present invention, which respectively shows the relationship between the biometric cassette and the detecting device at different time points. 4 to 11 are schematic views showing the flow of the detection fluid in the bioassay cassette of the embodiment of the present invention. Figure 12 is a schematic illustration of a biometric cartridge in accordance with another embodiment of the present invention. Figure 13 is a partially enlarged schematic view of the biometric cartridge of Figure 12;
100‧‧‧生物檢測卡匣 100‧‧‧Biometric card
110‧‧‧收集口 110‧‧‧ collection port
120‧‧‧第一層流通結構 120‧‧‧First floor circulation structure
122‧‧‧第一流道 122‧‧‧First runner
122a、122b‧‧‧第一支部 122a, 122b‧‧‧ first branch
122c‧‧‧第一支部、連接支部 122c‧‧‧First branch, connecting branch
123‧‧‧縮小通道 123‧‧‧Shrinking the channel
125‧‧‧連通孔 125‧‧‧Connected holes
130‧‧‧定量槽 130‧‧‧Quantitative tank
140‧‧‧第二層流通結構 140‧‧‧Second floor circulation structure
141‧‧‧分流結構 141‧‧ ‧ shunt structure
142‧‧‧第二流道 142‧‧‧Second runner
142a、142b‧‧‧第二支部 142a, 142b‧‧‧second branch
150‧‧‧混合槽組 150‧‧‧Mixed trough group
150a‧‧‧第一混合槽 150a‧‧‧First mixing tank
150b‧‧‧第二混合槽 150b‧‧‧Second mixing tank
160‧‧‧分離槽 160‧‧‧Separation tank
170‧‧‧溢流槽 170‧‧‧Overflow trough
180‧‧‧排氣通道 180‧‧‧Exhaust passage
190‧‧‧排氣孔 190‧‧‧ venting holes
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105112218A TWI580963B (en) | 2016-04-20 | 2016-04-20 | Biological detecting cartridge and flowing method of detected fluid thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105112218A TWI580963B (en) | 2016-04-20 | 2016-04-20 | Biological detecting cartridge and flowing method of detected fluid thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI580963B TWI580963B (en) | 2017-05-01 |
TW201738560A true TW201738560A (en) | 2017-11-01 |
Family
ID=59367396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105112218A TWI580963B (en) | 2016-04-20 | 2016-04-20 | Biological detecting cartridge and flowing method of detected fluid thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI580963B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI835261B (en) * | 2021-11-11 | 2024-03-11 | 天亮醫療器材股份有限公司 | Detection cassette |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI735063B (en) * | 2018-11-08 | 2021-08-01 | 五鼎生物技術股份有限公司 | Reaction cassette and assay device |
TWI777356B (en) * | 2020-07-22 | 2022-09-11 | 天亮醫療器材股份有限公司 | Biological detection system and biological detection device |
CN113970634B (en) | 2020-07-22 | 2024-07-30 | 天亮医疗器材股份有限公司 | Biological detection system and biological detection device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200536601A (en) * | 2003-11-21 | 2005-11-16 | Ebara Corp | Micorfluidic treatment method and device |
TWI310835B (en) * | 2006-06-23 | 2009-06-11 | Ind Tech Res Inst | Gravity-driven fraction separator and method thereof |
US9857361B2 (en) * | 2013-03-15 | 2018-01-02 | Iris International, Inc. | Flowcell, sheath fluid, and autofocus systems and methods for particle analysis in urine samples |
-
2016
- 2016-04-20 TW TW105112218A patent/TWI580963B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI835261B (en) * | 2021-11-11 | 2024-03-11 | 天亮醫療器材股份有限公司 | Detection cassette |
Also Published As
Publication number | Publication date |
---|---|
TWI580963B (en) | 2017-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI580963B (en) | Biological detecting cartridge and flowing method of detected fluid thereof | |
EP3470143B1 (en) | Multiflux microfluidic chip based on active control on liquid flowing | |
JP5155320B2 (en) | Dilution effect measurement by quantitative double staining photometry | |
US8075853B2 (en) | Microchip | |
KR102010268B1 (en) | Microfluidic cell chip, method for cell culture and cell image analyzing apparatus using the same | |
US20060216195A1 (en) | Device and process for testing a sample liquid | |
US7938030B2 (en) | Analytical device | |
CN113171807B (en) | Concentration gradient and bacteria detection integrated micro-fluidic chip and design method thereof | |
CN105289763A (en) | Multi-index detection micro-fluidic chip capable of quantitatively shunting | |
JP5376427B2 (en) | Analytical device | |
CN103217519A (en) | Assay device having multiple reagent cells | |
JPS62292974A (en) | Rotary shear valve and method of distributing measuring aliquot thereof | |
TWI243705B (en) | Fluid analytical device | |
Grimmer et al. | Designing droplet microfluidic networks | |
JP6474768B2 (en) | Biological detection cartridge and flow method of detection fluid | |
TW200840641A (en) | Disk-shaped concentration regulation flow channel structure | |
US20210187504A1 (en) | Microfluidic device | |
KR20170064120A (en) | A bio-chip for injecting liquid with the required amount | |
CN108828247B (en) | Reagent disk testing device capable of simultaneously carrying out multiple diagnoses | |
JP5331798B2 (en) | Inspection target receptacle and inspection device provided with the inspection target receptacle | |
JP7148366B2 (en) | microfluidic device | |
CN217410813U (en) | Micro-fluidic chip | |
WO2014056951A1 (en) | Analytical method | |
CN108562755B (en) | Reagent disk testing device directly used for optical detection | |
TWI835261B (en) | Detection cassette |