TW201738553A - Gas detection device - Google Patents

Gas detection device Download PDF

Info

Publication number
TW201738553A
TW201738553A TW105113470A TW105113470A TW201738553A TW 201738553 A TW201738553 A TW 201738553A TW 105113470 A TW105113470 A TW 105113470A TW 105113470 A TW105113470 A TW 105113470A TW 201738553 A TW201738553 A TW 201738553A
Authority
TW
Taiwan
Prior art keywords
light
cavity
module
reflective structure
projected
Prior art date
Application number
TW105113470A
Other languages
Chinese (zh)
Other versions
TWI595226B (en
Inventor
林增隆
余少雲
宋育泰
Original Assignee
熱映光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 熱映光電股份有限公司 filed Critical 熱映光電股份有限公司
Priority to TW105113470A priority Critical patent/TWI595226B/en
Application granted granted Critical
Publication of TWI595226B publication Critical patent/TWI595226B/en
Publication of TW201738553A publication Critical patent/TW201738553A/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The instant disclosure provides a gas detection device including a chamber module, a light module, and an optical sensing module. The chamber module includes a condenser chamber, receiving chamber, and sampling chamber. The condenser chamber includes a first reflective structure and a second reflective structure. The first reflective structure includes a first focal point and a second focal point. The second reflective structure includes a center point. The first focal point corresponds to the center point. The light module disposed on the condenser chamber to generate a light. The light module includes a light unit, wherein the light unit corresponds to the first focal point and center point. The optical sensing module includes optical sensing unit, wherein the optical sensing unit disposed in the receiving chamber.

Description

氣體量測裝置 Gas measuring device

本發明涉及一種氣體量測裝置,特別是涉及一種可量測氣體濃度的氣體量測裝置。 The present invention relates to a gas measuring device, and more particularly to a gas measuring device capable of measuring gas concentration.

首先,現在市面上販售的二氧化碳偵測裝置或二氧化碳分析儀,幾乎都是採用非分散式紅外線(Non-dispersive Infrared,NDIR)吸收法來偵測氣體濃度,其主要依據比爾-朗伯定律(Beer-Lambert law)進行計算。它的原理係利用氣體對紅外線特殊波長的吸收特性以及氣體濃度與吸收量成正比之特性,來偵測特定氣體濃度。例如一氧化碳對4.7微米(μm)波長、二氧化碳對4.3微米(μm)波長之紅外線的吸收性最強。 First of all, the carbon dioxide detection devices or carbon dioxide analyzers currently on the market almost all use the non-dispersive infrared (NDIR) absorption method to detect the gas concentration, which is mainly based on the Beer-Lambert law. Beer-Lambert law) for calculations. Its principle is to use a gas to absorb the specific wavelength of infrared rays and the concentration of gas is proportional to the amount of absorption to detect specific gas concentrations. For example, carbon monoxide has the strongest absorption of 4.7 micrometer (μm) wavelength and carbon dioxide to infrared light of 4.3 micrometer (μm) wavelength.

以目前市面上之氣體濃度量測裝置的量測精度,仍然受限於氣體採樣室的結構設計,當投射至紅外線感測器的紅外線的量減少,將會影響氣體濃度的量測精度。如專利公告第TWI513973號的“氣體濃度偵測裝置”專利案中,由於用於容置光源發射器3的偵測單元2的第一開口端22未具有特別之結構設計,因此無法有效利用光源發射器3所產生的光線。 The measurement accuracy of the gas concentration measuring device currently on the market is still limited by the structural design of the gas sampling chamber. When the amount of infrared light projected to the infrared sensor is reduced, the measurement accuracy of the gas concentration will be affected. In the "gas concentration detecting device" patent of the patent publication No. TWI513973, since the first open end 22 of the detecting unit 2 for accommodating the light source emitter 3 does not have a special structural design, the light source cannot be effectively utilized. Light generated by the emitter 3.

另外,如專利公告第TWM476923號的“高效率之非色散式紅外線氣腔”專利案中,主要利用橢圓型雙焦點特性,將紅外線光源置於一焦點,紅外線感測器置於另一焦點,以獲得高集光性,同時滿足紅外線感測器所需之窄入射角需求。但是,TWM476923號專利案,雖然能有效的提高集光性,但是,將會因為了利用橢圓雙焦點的特性而增加紅外線氣腔本體200的長度。再者,也容 易因生產組裝工藝所造成的誤差,而使得紅外線感測器不在正確的焦點位置上,進而導致紅外線感測器的接收訊號下降。 In addition, in the patent application "High-efficiency non-dispersive infrared air cavity" of the patent publication No. TWM476923, the elliptical bifocal characteristic is mainly used, the infrared light source is placed at a focus, and the infrared sensor is placed at another focus. Achieve high concentrating while meeting the narrow incident angle requirements required for infrared sensors. However, although the TWM476923 patent can effectively improve the light collecting property, the length of the infrared gas chamber body 200 will be increased by utilizing the characteristics of the elliptical bifocal. Furthermore, it is also Due to the error caused by the production assembly process, the infrared sensor is not in the correct focus position, which causes the infrared sensor to receive the signal.

進一步而言,以典型的紅外線光感測器而言,投射到紅外線光感測器上的入射光線的入射角大於20度時,將會因為濾波片有一定波帶寬度,而使得濾波片峰值向短波長偏移約為40nm(nanometer)。藉此,將會造成有一部分原本不屬於待測氣體吸收的光線得以投射至紅外線光感測器,而另一部分與待測氣體濃度相互關聯的光線被攔截在外,從而降低了信號強度,進而降低了實際上的量測精度。 Further, in a typical infrared light sensor, when the incident angle of the incident light projected onto the infrared light sensor is greater than 20 degrees, the filter peak will be caused by the filter having a certain band width. The shift to short wavelength is about 40 nm (nanometer). Thereby, a part of the light which is not absorbed by the gas to be tested is projected to the infrared light sensor, and another part of the light which is correlated with the gas concentration to be measured is intercepted, thereby reducing the signal intensity and thereby reducing The actual measurement accuracy.

藉此,如何提供一種能夠有效提高集光性,避免生產組裝偏差的影響,同時縮短氣體採樣室長度的氣體量測裝置,以克服上述的缺失,已然成為該項技術所欲解決的重要課題。 Therefore, how to provide a gas measuring device capable of effectively improving the light collecting property, avoiding the influence of production assembly deviation and shortening the length of the gas sampling chamber, to overcome the above-mentioned defects, has become an important subject to be solved by the technology.

本發明所要解決的技術問題在於,針對現有技術的不足提供一種氣體量測裝置,其能夠利用由第一反射結構及第二反射結構所形成的聚光腔體而有效提高集光性。 The technical problem to be solved by the present invention is to provide a gas measuring device capable of effectively improving the light collecting property by utilizing the concentrating cavity formed by the first reflecting structure and the second reflecting structure in view of the deficiencies of the prior art.

為了解決上述的技術問題,本發明所採用的其中一種技術方案是提供一種氣體量測裝置,其包括一腔體模組、一發光模組以及一光感測模組。所述腔體模組包括一聚光腔體、一容置腔體及一連接於所述聚光腔體及所述容置腔體之間的採樣腔體,其中所述聚光腔體具有一第一反射結構及一連接於所述第一反射結構的第二反射結構,所述第一反射結構具有一第一焦點及一對應於所述第一焦點的第二焦點,所述第二反射結構具有一中心點,所述第一焦點與所述中心點彼此相對應設置。所述發光模組設置於所述聚光腔體上,以產生一光線T,所述發光模組包括一發光單元,其中所述發光單元對應於所述第一焦點及所述中心點。所述光感測模組包括一光感測單元,所述光感測單元設置於所述容置腔體中。 In order to solve the above technical problem, one of the technical solutions adopted by the present invention is to provide a gas measuring device, which comprises a cavity module, a light emitting module and a light sensing module. The cavity module includes a concentrating cavity, an accommodating cavity, and a sampling cavity connected between the concentrating cavity and the accommodating cavity, wherein the concentrating cavity has a first reflective structure and a second reflective structure connected to the first reflective structure, the first reflective structure having a first focus and a second focus corresponding to the first focus, the second The reflective structure has a center point, and the first focus and the center point are disposed opposite each other. The light emitting module is disposed on the concentrating cavity to generate a light T. The light emitting module includes a light emitting unit, wherein the light emitting unit corresponds to the first focus and the center point. The light sensing module includes a light sensing unit, and the light sensing unit is disposed in the receiving cavity.

本發明的有益效果在於,本發明實施例所提供的氣體量測裝置,可以利用“所述第一反射結構具有一第一焦點及一對應於所述第一焦點的第二焦點,所述第二反射結構具有一中心點,所述第一焦點與所述中心點彼此相對應設置”以及“所述發光單元對應於所述第一焦點及所述中心點”的技術特徵,以提高腔體模組的集光性。 The gas measuring device provided by the embodiment of the present invention can utilize the “the first reflecting structure having a first focus and a second focus corresponding to the first focus, the first The two-reflection structure has a center point, the first focus and the center point are disposed corresponding to each other and the technical feature of the light-emitting unit corresponding to the first focus and the center point to improve the cavity The light collection of the module.

為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與附圖,然而所提供的附圖僅提供參考與說明用,並非用來對本發明加以限制。 For a better understanding of the features and technical aspects of the present invention, reference should be made to the accompanying drawings.

Q‧‧‧氣體量測裝置 Q‧‧‧Gas measuring device

1,1’,1”,1'''‧‧‧腔體模組 1,1',1",1'''‧‧‧ cavity module

1a‧‧‧上腔體模組 1a‧‧‧Upper cavity module

1b‧‧‧下腔體模組 1b‧‧‧ lower cavity module

11‧‧‧聚光腔體 11‧‧‧Concentrating cavity

111‧‧‧第一反射結構 111‧‧‧First reflection structure

112‧‧‧第二反射結構 112‧‧‧Second reflective structure

12‧‧‧容置腔體 12‧‧‧ accommodating cavity

13,13’‧‧‧採樣腔體 13,13'‧‧‧Sampling chamber

131,131’‧‧‧第一開口端 131,131’‧‧‧ first open end

132,132’‧‧‧第二開口端 132,132’‧‧‧second open end

133,133’‧‧‧上表面 133,133’‧‧‧ upper surface

134,134’‧‧‧下表面 134,134'‧‧‧ lower surface

135‧‧‧氣體擴散槽 135‧‧‧ gas diffusion tank

14‧‧‧導光部 14‧‧‧Light Guide

141‧‧‧導光面 141‧‧‧Lighting surface

15‧‧‧開槽 15‧‧‧ slotting

16‧‧‧氣體過濾膜 16‧‧‧ gas filtration membrane

2‧‧‧發光模組 2‧‧‧Lighting module

21‧‧‧發光單元 21‧‧‧Lighting unit

22‧‧‧連接線 22‧‧‧Connecting line

3‧‧‧光感測模組 3‧‧‧Light sensing module

31‧‧‧光感測單元 31‧‧‧Light sensing unit

32‧‧‧連接線 32‧‧‧Connecting line

4‧‧‧基板模組 4‧‧‧Substrate module

F1‧‧‧第一焦點 F1‧‧‧ first focus

F2‧‧‧第二焦點 F2‧‧‧second focus

O‧‧‧中心點 O‧‧‧ Center Point

T‧‧‧光線 T‧‧‧Light

T1,T1’,T1”‧‧‧第一光線 T1, T1’, T1”‧‧‧ first light

T11,T11’‧‧‧第一投射光線 T11, T11’‧‧‧ first projected light

T12,T12’‧‧‧第一反射光線 T12, T12’‧‧‧ first reflected light

T2‧‧‧第二光線 T2‧‧‧second light

T21‧‧‧第二投射光線 T21‧‧‧second projected light

T22‧‧‧第二反射光線 T22‧‧‧second reflected light

T23‧‧‧第三反射光線 T23‧‧‧third reflected light

L1,L1’‧‧‧第一預定距離 L1, L1’‧‧‧ first predetermined distance

L2,L2’‧‧‧第二預定距離 L2, L2’‧‧‧ second predetermined distance

H‧‧‧預定高度 H‧‧‧Predetermined height

W‧‧‧預定寬度 W‧‧‧Predetermined width

α‧‧‧預定角度 α‧‧‧Predetermined angle

β,β’‧‧‧夾角 ,,β’‧‧‧ angle

θ1,θ1’‧‧‧第一入射角 Θ1, θ1'‧‧‧ first incident angle

θ2,θ2’‧‧‧第二入射角 Θ2, θ2'‧‧‧second angle of incidence

HH‧‧‧水平軸線 HH‧‧‧ horizontal axis

VV‧‧‧垂直軸線 VV‧‧‧vertical axis

S‧‧‧採樣空間 S‧‧‧Sampling space

K1,K2‧‧‧固定孔 K1, K2‧‧‧ fixing holes

E‧‧‧橢圓曲率曲面 E‧‧‧Elliptical curvature surface

C‧‧‧正圓曲率曲面 C‧‧‧Rounded Curvature Surface

圖1為本發明第一實施例氣體量測裝置的其中一立體組合示意圖。 1 is a schematic perspective view of one of the gas measuring devices of the first embodiment of the present invention.

圖2為本發明第一實施例氣體量測裝置的另外一立體組合示意圖。 2 is another schematic perspective view of the gas measuring device according to the first embodiment of the present invention.

圖3為本發明第一實施例氣體量測裝置的其中一立體分解示意圖。 3 is a perspective exploded view of the gas measuring device according to the first embodiment of the present invention.

圖4為本發明第一實施例氣體量測裝置的另外一立體分解示意圖。 4 is another perspective exploded view of the gas measuring device according to the first embodiment of the present invention.

圖5為本發明第一實施例氣體量測裝置的立體剖面示意圖。 Figure 5 is a perspective cross-sectional view showing a gas measuring device according to a first embodiment of the present invention.

圖6為本發明第一實施例氣體量測裝置的側視剖面示意圖。 Figure 6 is a side cross-sectional view showing the gas measuring device of the first embodiment of the present invention.

圖7為本發明第一實施例氣體量測裝置的其中一光線投射示意圖。 Fig. 7 is a schematic view showing a light projection of the gas measuring device according to the first embodiment of the present invention.

圖8為本發明第一實施例氣體量測裝置的另外一光線投射示意圖。 Fig. 8 is a schematic view showing another ray projection of the gas measuring device according to the first embodiment of the present invention.

圖9為本發明第一實施例氣體量測裝置的側視示意圖。 Fig. 9 is a side elevational view showing the gas measuring device of the first embodiment of the present invention.

圖10為本發明第一實施例氣體量測裝置的其中一種實施方式的側視示意圖。 Figure 10 is a side elevational view showing one embodiment of a gas measuring device according to a first embodiment of the present invention.

圖11為本發明第一實施例氣體量測裝置的另外一種實施方式的側視示意圖。 Figure 11 is a side elevational view showing another embodiment of the gas measuring device according to the first embodiment of the present invention.

圖12為圖11的A部分的局部放大示意圖。 Fig. 12 is a partially enlarged schematic view showing a portion A of Fig. 11;

圖13為本發明第二實施例氣體量測裝置的其中一種實施方式的側視示意圖。 Figure 13 is a side elevational view showing one embodiment of a gas measuring device according to a second embodiment of the present invention.

圖14為本發明第二實施例氣體量測裝置的另外一種實施方式的側視示意圖。 Figure 14 is a side elevational view showing another embodiment of a gas measuring device according to a second embodiment of the present invention.

圖15A為本發明第三實施例氣體量測裝置的其中一實施方式的立體剖面示意圖。 Fig. 15A is a schematic perspective cross-sectional view showing an embodiment of a gas measuring device according to a third embodiment of the present invention.

圖15B為本發明第三實施例氣體量測裝置的另外一實施方式的立體剖面示意圖。 Figure 15B is a schematic perspective cross-sectional view showing another embodiment of a gas measuring device according to a third embodiment of the present invention.

圖15C為本發明第三實施例氣體量測裝置的再一實施方式的立體剖面示意圖。 Figure 15C is a perspective, cross-sectional view showing still another embodiment of the gas measuring device according to the third embodiment of the present invention.

以下是通過特定的具體實例來說明本發明所公開有關“氣體量測裝置”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本發明的精神下進行各種修飾與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,予以聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的技術範圍。 The following is a description of an embodiment of the present invention relating to a "gas measuring device" by a specific specific example, and those skilled in the art can understand the advantages and effects of the present invention from the contents disclosed in the present specification. The present invention may be carried out or applied in various other specific embodiments, and various modifications and changes can be made without departing from the spirit and scope of the invention. In addition, the drawings of the present invention are merely illustrative and are not intended to be construed in terms of actual dimensions. The following embodiments will further explain the related technical content of the present invention, but the disclosure is not intended to limit the technical scope of the present invention.

第一實施例 First embodiment

首先,請參閱圖1至圖5所示,本發明第一實施例提供一種氣體量測裝置Q,其包括一腔體模組1、一發光模組2、一光感測模組3以及一基板模組4。發光模組2及光感測模組3可電性連接於基板模組4上,此外,基板模組4還可以與一顯示單元(圖中未示出)、控制單元(圖中未示出)、及處理單元(圖中未示出)電性連接。舉例來說,發光模組2可為產生紅外線光源的紅外線發光器,光感測模組3為紅外線光感測器,例如可為單通道紅外線光感測器,或者是雙通道紅外線光感測器(其中一個紅外線收集窗口可用來偵測氣體濃度,另外一個紅外線收集窗口可用來偵測紅外線光源是否老化的問題,且兼具有相互校正之功能),然本發明不以此為限。 First, referring to FIG. 1 to FIG. 5, a first embodiment of the present invention provides a gas measuring device Q, which includes a cavity module 1, a light emitting module 2, a light sensing module 3, and a Substrate module 4. The light-emitting module 2 and the light-sensing module 3 are electrically connected to the substrate module 4. The substrate module 4 can also be connected to a display unit (not shown) and a control unit (not shown). And a processing unit (not shown) is electrically connected. For example, the light-emitting module 2 can be an infrared light-emitting device that generates an infrared light source, and the light-sensing module 3 is an infrared light sensor, for example, a single-channel infrared light sensor, or a dual-channel infrared light sensor. One of the infrared collection windows can be used to detect the gas concentration, and the other infrared collection window can be used to detect the aging of the infrared light source, and has the function of mutual correction. However, the invention is not limited thereto.

藉此,本發明實施例所提供的氣體量測裝置Q可以量測待檢 測氣體的濃度或者是其他性質,附帶一提,待檢測氣體可以是二氧化碳、一氧化碳或二氧化碳及一氧化碳的組合,本發明不以待檢測氣體為限制。換句話說,可通過不同的發光模組2及光感測模組3而量測不同的待檢測氣體。舉例來說,以量測氣體濃度而言,可利用改變光感測模組3上的波長濾波器(濾波片)而量測不同的待檢測氣體。 Thereby, the gas measuring device Q provided by the embodiment of the invention can measure the to be inspected The concentration of the gas or other properties is measured. Incidentally, the gas to be detected may be carbon dioxide, carbon monoxide or a combination of carbon dioxide and carbon monoxide, and the present invention is not limited by the gas to be detected. In other words, different gases to be detected can be measured by different light-emitting modules 2 and light-sensing modules 3. For example, in terms of measuring the gas concentration, different wavelengths of the gas to be detected can be measured by changing the wavelength filter (filter) on the light sensing module 3.

接著,請一併參閱圖5及圖6所示,腔體模組1具有一採樣空間S,且腔體模組1包括一聚光腔體11、一容置腔體12及一連接於聚光腔體11及容置腔體12之間的採樣腔體13。發光模組2可包括一發光單元21,發光單元21可設置於聚光腔體11上,以產生一光線T,例如紅外線光線。光感測模組3可包括一光感測單元31,光感測單元31可設置於容置腔體12中,以接收發光單元21所產生的光線T。 Then, as shown in FIG. 5 and FIG. 6 , the cavity module 1 has a sampling space S, and the cavity module 1 includes a concentrating cavity 11 , a receiving cavity 12 , and a connection The optical cavity 11 and the sampling cavity 13 between the accommodating cavities 12. The light emitting module 2 can include a light emitting unit 21, and the light emitting unit 21 can be disposed on the light collecting cavity 11 to generate a light T, such as infrared light. The light sensing unit 3 can include a light sensing unit 31. The light sensing unit 31 can be disposed in the receiving cavity 12 to receive the light T generated by the light emitting unit 21.

另外,如圖1至圖4所示,腔體模組1可由上腔體模組1a及下腔體模組1b所組成,以便於製造與組裝。舉例來說,上腔體模組1a及下腔體模組1b可利用鎖固件(圖中未示出)螺鎖於固定孔K1中,以結合上腔體模組1a及下腔體模組1b。腔體模組1也可以利用鎖固件(圖中未示出)螺鎖於固定孔K2中,以將腔體模組1固定於基板模組4上。附帶一提,基板模組4可為一印刷電路板(Printed Circuit Board,PCB),發光模組2還可包括一連接線22,光感測模組3還可包括一連接線32。發光模組2的連接線22及光感測模組3的連接線32可通過焊接方式將發光單元21及光感測單元31穩固地固定於基板模組4上,以防止外力而造成接觸不良之情形產生。 In addition, as shown in FIG. 1 to FIG. 4, the cavity module 1 can be composed of an upper cavity module 1a and a lower cavity module 1b for manufacturing and assembly. For example, the upper cavity module 1a and the lower cavity module 1b can be screwed into the fixing hole K1 by using a locker (not shown) to combine the upper cavity module 1a and the lower cavity module. 1b. The cavity module 1 can also be screwed into the fixing hole K2 by a locking member (not shown) to fix the cavity module 1 to the substrate module 4. It is to be noted that the substrate module 4 can be a printed circuit board (PCB). The light module 2 can further include a connecting line 22, and the light sensing module 3 can further include a connecting line 32. The connecting line 22 of the light-emitting module 2 and the connecting line 32 of the light-sensing module 3 can firmly fix the light-emitting unit 21 and the light-sensing unit 31 to the substrate module 4 by welding to prevent external contact and cause poor contact. The situation arises.

接著,請同時參閱圖5至圖6所示,採樣腔體13可具有一矩形形狀,例如長方形,然本發明不以此為限,須說明的是,第三實施例中將進一步說明採樣腔體13的形狀。採樣腔體13內部的各個表面,如上表面133、下表面134及側表面(未標號)可設有一 反射層(圖中未示出),反射層可通過金屬電鍍方式或塑膠電鍍方式形成於採樣腔體13內,反射層可以由含金金屬、鎳金屬或者金金屬及鎳金屬的混合物所組成。藉此,矩形形狀的採樣腔體13就如同一矩形光學積分器,其工作原理是發光模組2所產生的光線T通過採樣腔體13內的反射層在採樣腔體13中來回反射,使得發光模組2所產生的光線T在採樣腔體13內進行光源強度的相互疊加,使得疊加起來的光線T能夠均勻分佈。 Next, please refer to FIG. 5 to FIG. 6 at the same time, the sampling cavity 13 may have a rectangular shape, such as a rectangular shape, but the invention is not limited thereto. It should be noted that the sampling cavity will be further described in the third embodiment. The shape of the body 13. The respective surfaces inside the sampling cavity 13 may be provided with a surface 133, a lower surface 134 and a side surface (not labeled). A reflective layer (not shown) may be formed in the sampling cavity 13 by metal plating or plastic plating. The reflective layer may be composed of a gold-containing metal, a nickel metal or a mixture of gold metal and nickel metal. Thereby, the rectangular shaped sampling cavity 13 is like a rectangular optical integrator, and the working principle is that the light T generated by the light emitting module 2 is reflected back and forth in the sampling cavity 13 through the reflective layer in the sampling cavity 13 so that The light rays T generated by the light-emitting module 2 are superimposed on each other in the sampling cavity 13 so that the superimposed light rays T can be uniformly distributed.

承上述,採樣腔體13還進一步設置有一個或多個垂直貫穿採樣腔體13上表面133或下表面134的氣體擴散槽135,氣體擴散槽135可設置於採樣腔體13的第一開口端131及第二開口端132之間。另外,氣體擴散槽135為長方形的形狀,以圖6來說,氣體擴散槽135的剖面形狀可呈一V字形的形狀,使得待檢測氣體通過白努利效應(Bernoulli's principle),讓氣體流經V字形的形狀的氣體擴散槽135時,因著V字形形狀的氣體擴散槽135的口徑大小改變,而讓氣體流速變快,以使氣體擴散更為快速而讓測量時間縮短。進一步來說,腔體模組1還進一步包括一設置在氣體擴散槽135上的氣體過濾膜16,舉例來說,氣體過濾膜16可為一防水透氣膜,可避免待檢測氣體的懸浮微粒進入腔體模組1當中,而造成腔體模組1內部污染或影響量測精度。 In the above, the sampling cavity 13 is further provided with one or more gas diffusion grooves 135 vertically penetrating the upper surface 133 or the lower surface 134 of the sampling cavity 13, and the gas diffusion groove 135 may be disposed at the first open end of the sampling cavity 13. Between 131 and the second open end 132. In addition, the gas diffusion groove 135 has a rectangular shape. As shown in FIG. 6, the cross-sectional shape of the gas diffusion groove 135 may have a V-shape, so that the gas to be detected passes through the Bernoulli's principle, allowing the gas to flow through. In the case of the gas diffusion groove 135 having a V shape, the gas flow rate is increased by the size of the V-shaped gas diffusion groove 135, so that the gas diffusion speed is faster and the measurement time is shortened. Further, the cavity module 1 further includes a gas filter membrane 16 disposed on the gas diffusion tank 135. For example, the gas filter membrane 16 can be a waterproof gas permeable membrane to prevent the aerosol of the gas to be detected from entering. In the cavity module 1, the internal cavity of the cavity module 1 is polluted or the measurement accuracy is affected.

接著,請再參閱圖1、圖3、圖5及圖6所示,以本發明第一實施例而言,腔體模組1還進一步包括一設置於採樣腔體13及容置腔體12之間的導光部14,導光部14可具有一導光面141,以通過導光面141將發光單元21所產生的光線T反射至光感測單元31中。舉例來說,導光面141上可塗佈有前述反射層(圖中未示出),或者是導光面141為一反射鏡,本發明不以此為限。另外,腔體模組1還可進一步包括一開槽15,開槽15可連接於導光部14及容置腔體12之間。藉以使得採樣腔體13的下表面134與光感測單元31之間彼此相距一預定高度H(請參閱圖9所示)。藉此, 發光單元21所產生的光線T能夠大致呈“L”形的方式由發光單元21投射至光感測單元31上。須注意的是,在其他實施方式(如第二實施例)中,也可以不設置有導光部14,而使得發光單元21所產生的光線T在通過上表面133及下表面134的反覆反射後而直接投射至光感測單元31中。 The first embodiment of the present invention further includes a cavity module 13 and a receiving cavity 12 . The light guiding portion 14 and the light guiding portion 14 may have a light guiding surface 141 to reflect the light T generated by the light emitting unit 21 into the light sensing unit 31 through the light guiding surface 141. For example, the light guiding surface 141 may be coated with the foregoing reflective layer (not shown), or the light guiding surface 141 may be a mirror. The invention is not limited thereto. In addition, the cavity module 1 can further include a slot 15 , and the slot 15 can be connected between the light guiding portion 14 and the receiving cavity 12 . Thereby, the lower surface 134 of the sampling cavity 13 and the light sensing unit 31 are spaced apart from each other by a predetermined height H (refer to FIG. 9). With this, The light T generated by the light emitting unit 21 can be projected onto the light sensing unit 31 by the light emitting unit 21 in a substantially "L" shape. It should be noted that in other embodiments (such as the second embodiment), the light guiding portion 14 may not be disposed, so that the light T generated by the light emitting unit 21 is reflected by the upper surface 133 and the lower surface 134. Then, it is directly projected into the light sensing unit 31.

接著,請同時參閱圖6至圖8所示,以下將進一步說明發光單元21所投射之光線T的路徑與腔體模組1之結構關係。聚光腔體11可具有一第一反射結構111及一連接於第一反射結構111的第二反射結構112。舉例來說,第一反射結構111及第二反射結構112兩者的曲率不同,第一反射結構111可具有一橢圓曲率曲面E,第二反射結構112可具有一正圓曲率曲面C。藉此,第一反射結構111具有一第一焦點F1及一對應於第一焦點F1的第二焦點F2,第二反射結構112具有一中心點O,第一反射結構111的第一焦點F1與第二反射結構112的中心點O彼此相對應設置。舉例來說,第一焦點F1與中心點O彼此可相互重疊,然本發明不以此為限,在其他實施方式中,第一焦點F1與中心點O彼此可非常鄰近地設置。另外,發光單元21可對應於第一焦點F1及中心點O而設置。優選地,發光單元21可直接設置於第一焦點F1及中心點O上。 Next, please refer to FIG. 6 to FIG. 8 at the same time, and the relationship between the path of the light T projected by the light-emitting unit 21 and the cavity module 1 will be further described below. The concentrating cavity 11 can have a first reflective structure 111 and a second reflective structure 112 connected to the first reflective structure 111. For example, the curvatures of the first reflective structure 111 and the second reflective structure 112 are different. The first reflective structure 111 may have an elliptical curvature surface E, and the second reflective structure 112 may have a perfect circular curvature surface C. Thereby, the first reflective structure 111 has a first focus F1 and a second focus F2 corresponding to the first focus F1, the second reflective structure 112 has a center point O, and the first focus F1 of the first reflective structure 111 is The center points O of the second reflective structures 112 are disposed corresponding to each other. For example, the first focus F1 and the center point O may overlap each other. However, the present invention is not limited thereto. In other embodiments, the first focus F1 and the center point O may be disposed very close to each other. In addition, the light emitting unit 21 may be disposed corresponding to the first focus F1 and the center point O. Preferably, the light emitting unit 21 can be directly disposed on the first focus F1 and the center point O.

承上述,光線T包括一投射於第一反射結構111的第一投射光線T11及一投射於第二反射結構112的第二投射光線T21,發光單元21所產生的第一投射光線T11及第二投射光線T21可通過第一反射結構111及第二反射結構112的曲面反射後,而分別形成投射到光感測模組3上的第一光線T1及第二光線T2。 In the above, the light T includes a first projected light T11 projected on the first reflective structure 111 and a second projected light T21 projected on the second reflective structure 112. The first projected light T11 and the second generated by the light emitting unit 21 The projected light T21 can be reflected by the curved surfaces of the first reflective structure 111 and the second reflective structure 112 to form the first light T1 and the second light T2 projected onto the light sensing module 3, respectively.

承上述,請參閱圖7所示,以下將先說明發光單元21投射在第一反射結構111上的光路徑。詳細來說,第一投射光線T11可通過第一反射結構111的反射,以形成一投射至第一反射結構111的第二焦點F2的第一反射光線T12,藉此,第一投射光線T11及 第一反射光線T12兩者相互配合,可形成一投射至光感測單元31上的第一光線T1。換句話說,第一反射光線T12可通過採樣腔體13內的上表面133及下表面134反覆反射而形成投射至光感測單元31的第一光線T1。 In view of the above, please refer to FIG. 7, the light path of the light-emitting unit 21 projected on the first reflective structure 111 will be described below. In detail, the first projected light T11 can be reflected by the first reflective structure 111 to form a first reflected light T12 projected to the second focus F2 of the first reflective structure 111, whereby the first projected light T11 and The first reflected light T12 cooperates with each other to form a first light T1 projected onto the light sensing unit 31. In other words, the first reflected light T12 can be reflected by the upper surface 133 and the lower surface 134 in the sampling cavity 13 to form a first light T1 projected to the light sensing unit 31.

承上述,請參閱圖8所示,以下將接著說明發光單元21投射在第二反射結構112上的光路徑。第二投射光線T21通過第二反射結構112的反射,以形成一投射至第一反射結構111的第二反射光線T22,第二反射光線T22通過第一反射結構111的反射,以形成一投射至第一反射結構111的第二焦點F2的第三反射光線T23,第二投射光線T21、第二反射光線T22及第三反射光線T23相互配合,以形成一投射至光感測單元31上的第二光線T2。須說明的是,原則上第二反射光線T22可通過第二反射結構112的中心點O及第一反射結構111的第一焦點F1,但是,為避免混淆,圖8中所顯示的第二反射光線T22,以未通過第一焦點F1的方式呈現。 In view of the above, please refer to FIG. 8, and the light path of the light-emitting unit 21 projected on the second reflective structure 112 will be described below. The second projected light T21 is reflected by the second reflective structure 112 to form a second reflected light T22 projected to the first reflective structure 111, and the second reflected light T22 is reflected by the first reflective structure 111 to form a projection to The third reflected light T23, the second projected light T21, the second reflected light T22, and the third reflected light T23 of the second focus F2 of the first reflective structure 111 cooperate with each other to form a first projection onto the light sensing unit 31. Two rays T2. It should be noted that, in principle, the second reflected light T22 can pass through the center point O of the second reflective structure 112 and the first focus F1 of the first reflective structure 111, but to avoid confusion, the second reflection shown in FIG. The light ray T22 is presented in such a manner that it does not pass through the first focus F1.

接著,請參閱圖9所示,詳細來說,採樣腔體13具有一第一開口端131及一對應於第一開口端131的第二開口端132。第一開口端131連接於聚光腔體11,第二開口端132連接於容置腔體12。以本發明第一實施例來說,導光部14可連接於第二開口端132及容置腔體12之間,導光部14的導光面141可相對於一水平軸線HH(請參閱圖10所示)傾斜一介於30度至60度之間的預定角度α(圖中未示出),或者是導光部14的導光面141相對於光感測單元31的表面傾斜一介於30度至60度之間的預定角度α。優選地,預定角度α可以為45度。換句話說,光感測單元31的表面與水平軸線HH相互平行。另外,優選地,開槽15可連接於導光部14及容置腔體12之間。以圖9而言,開槽15具有一預定寬度W,鄰近於第二開口端132的下表面134及光感測單元31之間具有一預定高度H,預定寬度W及預定高度H符合下列公式:(0.8*W) ≦H≦(3*W),其中H為預定高度H,W為預定寬度W。 Next, referring to FIG. 9 , in detail, the sampling cavity 13 has a first open end 131 and a second open end 132 corresponding to the first open end 131 . The first open end 131 is connected to the concentrating cavity 11 , and the second open end 132 is connected to the accommodating cavity 12 . In the first embodiment of the present invention, the light guiding portion 14 can be connected between the second open end 132 and the accommodating cavity 12, and the light guiding surface 141 of the light guiding portion 14 can be opposite to a horizontal axis HH (see 10 is inclined to a predetermined angle α between 30 degrees and 60 degrees (not shown), or the light guiding surface 141 of the light guiding portion 14 is inclined with respect to the surface of the light sensing unit 31. A predetermined angle α between 30 degrees and 60 degrees. Preferably, the predetermined angle α may be 45 degrees. In other words, the surface of the light sensing unit 31 and the horizontal axis HH are parallel to each other. In addition, preferably, the slot 15 is connectable between the light guiding portion 14 and the receiving cavity 12. As shown in FIG. 9, the slot 15 has a predetermined width W, and a predetermined height H is formed between the lower surface 134 adjacent to the second open end 132 and the light sensing unit 31, and the predetermined width W and the predetermined height H satisfy the following formula. :(0.8*W) ≦H≦(3*W), where H is a predetermined height H and W is a predetermined width W.

進一步地,鄰近於第一開口端131的上表面133及下表面134之間具有一第一預定距離L1,鄰近於第二開口端132的上表面133及下表面134之間具有一第二預定距離L2。以本發明實施例來說,為了改變第一反射光線T12或是第三反射光線T23投射在光感測單元31上的入射角,第一預定距離L1及第二預定距離L2可以不同。優選地,第二預定距離L2大於第一預定距離L1。再者,預定高度H及第二預定距離L2可符合下列公式:(0.8*L2)≦H≦(3*L2),其中H為預定高度H,L2為第二預定距離L2。換句話說,預定寬度W可以等於第二預定距離L2。 Further, a first predetermined distance L1 is formed between the upper surface 133 and the lower surface 134 adjacent to the first open end 131, and a second predetermined portion is adjacent between the upper surface 133 and the lower surface 134 adjacent to the second open end 132. Distance L2. In the embodiment of the present invention, in order to change the incident angle of the first reflected light T12 or the third reflected light T23 projected on the light sensing unit 31, the first predetermined distance L1 and the second predetermined distance L2 may be different. Preferably, the second predetermined distance L2 is greater than the first predetermined distance L1. Furthermore, the predetermined height H and the second predetermined distance L2 may conform to the following formula: (0.8*L2) ≦H ≦ (3*L2), where H is a predetermined height H and L2 is a second predetermined distance L2. In other words, the predetermined width W may be equal to the second predetermined distance L2.

另外,舉例來說,以本發明第一實施例而言,矩形採樣腔體13的橫截面積(請參閱圖15A至圖15C所示)大於或等於光感測單元31的感測面積。再者,由於目前雙通道紅外線光感測器的尺寸大約為4毫米(millimeter,mm)*2毫米(mm),因此第二預定距離L2可以為2.1毫米(mm),而預定寬度W也可以等於第二預定距離L2的尺寸,然本發明不以此為限,在其他實施方式中,預定寬度W的尺寸大小也可以介於(1.1*L2)至(2.3*L2)之間的距離。預定高度H可以介於1毫米(mm)至2毫米(mm)之間,更優選地,可以為1.5毫米(mm),然本發明不以此為限。 Further, for example, in the first embodiment of the present invention, the cross-sectional area of the rectangular sampling cavity 13 (see FIGS. 15A to 15C) is greater than or equal to the sensing area of the light sensing unit 31. Furthermore, since the size of the current two-channel infrared light sensor is approximately 4 millimeters (millimeter, mm) * 2 millimeters (mm), the second predetermined distance L2 may be 2.1 millimeters (mm), and the predetermined width W may also be The size is equal to the second predetermined distance L2, but the invention is not limited thereto. In other embodiments, the size of the predetermined width W may also be between (1.1*L2) and (2.3*L2). The predetermined height H may be between 1 millimeter (mm) and 2 millimeters (mm), and more preferably may be 1.5 millimeters (mm), although the invention is not limited thereto.

接著,請參閱圖10至12所示,以下將說明第一預定距離L1及第二預定距離L2兩者相同之情形對光線T之影響,以及第一預定距離L1及第二預定距離L2兩者不同之情形對光線T之影響,以下以第一光線(T1’,T1”)進行說明。如圖10所示,其代表第一預定距離L1及第二預定距離L2兩者相同。發光單元21所產生的第一投射光線T11’通過第一反射結構111的反射後所產生的第一反射光線T12’可具有一第一入射角θ1,第一入射角θ1為第一反射光線T12’與採樣腔體13的下表面134之間的夾角。第一反射光線T12’通過採樣腔體13內部的反覆反射後,再通過45度的導光 面141反射後,可形成一具有第二入射角θ2且投射於光感測單元31上的第一光線T1’,其中,第二入射角θ2為光感測單元31的垂直軸線VV(垂直光感測單元31表面的軸線)與第一光線T1’之間的夾角。舉例來說,由於第一預定距離L1及第二預定距離L2兩者相同,即,採樣腔體13的上表面133平行於下表面134,所以,當第一入射角θ1為23度時,第二入射角θ2仍為23度。 Next, referring to FIGS. 10 to 12, the influence of the case where the first predetermined distance L1 and the second predetermined distance L2 are the same on the ray T, and the first predetermined distance L1 and the second predetermined distance L2 will be described below. The influence of the different conditions on the light T is hereinafter described by the first light (T1', T1". As shown in Fig. 10, it represents the same as the first predetermined distance L1 and the second predetermined distance L2. The first reflected light T12' generated by the reflection of the first projected light T11' through the first reflective structure 111 may have a first incident angle θ1, and the first incident angle θ1 is the first reflected light T12' and the sampling The angle between the lower surface 134 of the cavity 13. The first reflected light T12' is reflected by the interior of the sampling cavity 13, and then passes through the 45-degree light guide. After the surface 141 is reflected, a first light ray T1 ′ having a second incident angle θ2 and projected on the light sensing unit 31 can be formed, wherein the second incident angle θ2 is a vertical axis VV of the light sensing unit 31 (vertical light) The angle between the axis of the surface of the sensing unit 31 and the first light ray T1'. For example, since the first predetermined distance L1 and the second predetermined distance L2 are the same, that is, the upper surface 133 of the sampling cavity 13 is parallel to the lower surface 134, when the first incident angle θ1 is 23 degrees, The two incident angles θ2 are still 23 degrees.

接著,如圖11及圖12所示,代表第一預定距離L1及第二預定距離L2兩者不同,第二預定距離L2大於第一預定距離L1。藉此,採樣腔體13的下表面134與水平軸線HH之間具有一介於0.1度至5度之間的夾角β。優選地,以本發明第一實施例而言,夾角β可介於0.3度至3度,更優選為0.5度,然本發明不以此為限。發光單元21所產生的第一投射光線T11’通過第一反射結構111的反射後所產生的第一反射光線T12’可具有一第一入射角θ1’,第一反射光線T12’通過採樣腔體13內部的反覆反射後,再通過45度的導光面141反射後,可形成一具有第二入射角θ2’且投射於光感測單元31上的第一光線T1”。舉例來說,由於第一預定距離L1及第二預定距離L2兩者不同,即,採樣腔體13的上表面133非平行於下表面134,所以,當第一入射角θ1’為23度時,第一光線T1”將會受到夾角β的影響,而使得第二入射角θ2’變為18度。因此,光感測單元31相較於第一預定距離L1及第二預定距離L2兩者相同的情況下,可以進一步接收到更多設定波長的紅外線光。換句話說,光線T(第一光線T1’及第二光線T2)較佳為垂直進入光感測單元31為佳。另外,須說明的是,本發明不以入射角20度為臨界值,20度僅為舉例,在其他實施方式中,不同的光感測單元31可以有不同於20度以下的較佳入射角。 Next, as shown in FIGS. 11 and 12, the first predetermined distance L1 and the second predetermined distance L2 are different, and the second predetermined distance L2 is greater than the first predetermined distance L1. Thereby, the lower surface 134 of the sampling chamber 13 and the horizontal axis HH have an angle β between 0.1 and 5 degrees. Preferably, in the first embodiment of the present invention, the angle β may be between 0.3 degrees and 3 degrees, more preferably 0.5 degrees, but the invention is not limited thereto. The first reflected light T12' generated by the first projected light ray T11' generated by the light-emitting unit 21 may have a first incident angle θ1', and the first reflected light T12' passes through the sampling cavity. After the internal reflection is reflected by the 45-degree light guiding surface 141, a first light ray T1" having a second incident angle θ2' and projected on the light sensing unit 31 can be formed. For example, The first predetermined distance L1 and the second predetermined distance L2 are different, that is, the upper surface 133 of the sampling cavity 13 is not parallel to the lower surface 134, so when the first incident angle θ1' is 23 degrees, the first light T1 "It will be affected by the angle β, so that the second incident angle θ2' becomes 18 degrees. Therefore, when the light sensing unit 31 is the same as the first predetermined distance L1 and the second predetermined distance L2, more infrared light of a set wavelength can be further received. In other words, the light T (the first light T1' and the second light T2) preferably enters the light sensing unit 31 vertically. In addition, it should be noted that the present invention does not take the incident angle of 20 degrees as a critical value, and 20 degrees is only an example. In other embodiments, different light sensing units 31 may have a better incident angle different from 20 degrees or less. .

第二實施例 Second embodiment

首先,請參閱圖13及圖14所示,本發明第二實施例提供一種氣體量測裝置Q,由圖13至圖14與圖10至圖11的比較可知, 第二實施例與第一實施例最大的差別在於:第二實施例所提供的腔體模組1’可不具有導光部14及開槽15,而是直接將發光單元21所產生的光線T投射至光感測單元31上。優選地,採樣腔體13可具有一第一開口端131’、一第二開口端132’、一上表面133’及一下表面134’。 First, referring to FIG. 13 and FIG. 14, a second embodiment of the present invention provides a gas measuring device Q. As can be seen from a comparison between FIG. 13 to FIG. 14 and FIG. 10 to FIG. The maximum difference between the second embodiment and the first embodiment is that the cavity module 1 ′ provided by the second embodiment does not have the light guiding portion 14 and the slot 15 , but directly generates the light T generated by the light emitting unit 21 . Projected onto the light sensing unit 31. Preferably, the sampling cavity 13 can have a first open end 131', a second open end 132', an upper surface 133' and a lower surface 134'.

承上述,第一開口端131’的上表面133’及下表面134’之間具有一第一預定距離L1’,第二開口端132’的上表面133’及下表面134’之間具有一第二預定距離L2’。如圖13所示,第一預定距離L1’及第二預定距離L2’可以兩者相同,然而,如圖14所示,為了提高光感測單元31所能夠接收到的紅外線能量,第一預定距離L1’及第二預定距離L2’也可以如同前述第一實施例所述的兩者不同,且第一預定距離L1’及第二預定距離L2’可以大於第一預定距離L1’。藉此,採樣腔體13’的下表面134’可以與水平軸線HH之間具有一介於0.1度至5度之間的夾角β’。 In the above, the first open end 131' has a first predetermined distance L1' between the upper surface 133' and the lower surface 134', and the upper surface 133' and the lower surface 134' of the second open end 132' have a The second predetermined distance L2'. As shown in FIG. 13, the first predetermined distance L1' and the second predetermined distance L2' may be the same, however, as shown in FIG. 14, in order to increase the infrared energy that the light sensing unit 31 can receive, the first predetermined The distance L1' and the second predetermined distance L2' may also be different as described in the foregoing first embodiment, and the first predetermined distance L1' and the second predetermined distance L2' may be greater than the first predetermined distance L1'. Thereby, the lower surface 134' of the sampling chamber 13' may have an included angle β' between 0.1 and 5 degrees with the horizontal axis HH.

另外,須說明的是,第二實施例所提供的發光模組2、光感測模組3、聚光腔體11、容置腔體12及採樣腔體13’與前面所述第一實施例相仿,在此容不再贅述。 In addition, it should be noted that the light-emitting module 2, the light sensing module 3, the concentrating cavity 11, the accommodating cavity 12, and the sampling cavity 13' provided by the second embodiment are the same as the first embodiment described above. The example is similar and will not be repeated here.

第三實施例 Third embodiment

首先,請參閱圖15A至15C所示,圖15A至15C將進一步說明採樣腔體13的其他形狀。舉例來說,前述矩形形狀的採樣腔體13可以如圖15A所示,然本發明不以此為限。換句話說,腔體模組1”的橫截面也可以如圖15B所示的具有五邊形的橫截面,或者是腔體模組1'''的橫截面也可以如圖15C所示的具有六邊形的橫截面,即,腔體模組(1,1’,1”,1''')可以具有多邊形形狀的橫截面。另外,具有五邊形形狀或是六邊形形狀的橫截面的腔體模組(1”,1''')的第一預定距離L1及第二預定距離L2可以不同(圖中未示出),即,第一開口端131及第二開口端132的橫截面的面積不同。 First, referring to Figures 15A through 15C, other shapes of the sampling cavity 13 will be further illustrated in Figures 15A through 15C. For example, the foregoing rectangular shaped sampling cavity 13 can be as shown in FIG. 15A, but the invention is not limited thereto. In other words, the cross section of the cavity module 1" may also have a pentagonal cross section as shown in FIG. 15B, or the cross section of the cavity module 1"' may also be as shown in FIG. 15C. There is a cross section of a hexagon, that is, the cavity module (1, 1 ', 1", 1"') may have a polygonal shaped cross section. In addition, the first predetermined distance L1 and the second predetermined distance L2 of the cavity module (1", 1"') having a cross-section of a pentagonal shape or a hexagonal shape may be different (not shown in the drawing) That is, the areas of the cross sections of the first open end 131 and the second open end 132 are different.

值得說明的是,具有長方形形狀的橫截面的腔體模組1,優選 可適用於雙通道紅外線光感測器(由於兩個紅外線收集窗口呈長方形形狀)。另外,具有五邊形形狀或是六邊形形狀的橫截面的腔體模組(1”,1''')優選可適用於單通道紅外線光感測器(由於單通道紅外線光感測器的紅外線收集窗口大體上呈圓形形狀或方形形狀,可以利用具有五邊形形狀或是六邊形形狀的橫截面的腔體模組(1”,1''')包圍紅外線收集窗口)。 It is worth noting that the cavity module 1 having a rectangular cross section is preferably Can be applied to dual-channel infrared light sensors (since the two infrared collection windows are rectangular). In addition, the cavity module (1", 1"" having a cross-section of a pentagonal shape or a hexagonal shape is preferably applicable to a single-channel infrared light sensor (due to a single-channel infrared light sensor) The infrared collecting window has a substantially circular shape or a square shape, and the infrared collecting window can be surrounded by a cavity module (1", 1"" having a cross section of a pentagonal shape or a hexagonal shape).

進一步來說,第三實施例所提供的腔體模組(1”,1'''),與前述實施例相仿,在此容不再贅述。即,腔體模組(1”,1''')內部的表面可進一步設有一反射層,以進一步使得發光模組2所產生的光線T在採樣腔體13內進行光源強度的相互疊加,使得疊加起來的光線T能夠均勻分佈。 Further, the cavity module (1", 1"') provided by the third embodiment is similar to the previous embodiment, and will not be described again here. That is, the cavity module (1", 1' The inner surface of the '') may further be provided with a reflective layer to further superimpose the light sources T generated by the light-emitting module 2 in the sampling cavity 13 so that the superimposed light rays T can be evenly distributed.

實施例的有益效果 Advantages of the embodiment

綜上所述,本發明的有益效果在於,本發明實施例所提供的氣體量測裝置Q,可以利用“第一反射結構111具有一第一焦點F1及一對應於第一焦點F1的第二焦點F2,第二反射結構112具有一中心點O,第一焦點F1與中心點O彼此相對應設置”及“發光單元21對應於第一焦點F1及中心點O”的技術特徵,而提高腔體模組(1,1’,1”,1''')的集光性。同時,將第一反射光線T11及第三反射光線T23投射於採樣腔體(13,13’)的第一開口端(131,131’),以進一步使第一反射光線T11及第三反射光線T23反覆反射於採樣腔體(13,13’)中。 In summary, the gas measuring device Q provided by the embodiment of the present invention can utilize the “first reflective structure 111 having a first focus F1 and a second corresponding to the first focus F1. Focus F2, the second reflective structure 112 has a center point O, the first focus F1 and the center point O are corresponding to each other, and the "light-emitting unit 21 corresponds to the first focus F1 and the center point O", and the cavity is improved. Light collecting property of the body module (1, 1', 1", 1"'). At the same time, the first reflected light T11 and the third reflected light T23 are projected to the first of the sampling cavity (13, 13') The open end (131, 131') further reflects the first reflected light T11 and the third reflected light T23 in the sampling cavity (13, 13').

進一步來說,通過分別由橢圓曲率曲面E及正圓曲率曲面C所組成的聚光腔體11,可以大幅縮短採樣腔體(13,13’)的長度,同時也能夠通過第一反射結構111及第二反射結構112進行聚光,而提高發光單元所投射出的紅外線能量。再者,第一反射光線T12及第三反射光線T23投射到具有45度角的導光面141後,第一反射光線T12及第三反射光線T23可轉動45度,並且均勻的投射至光感測單元31上。 Further, by the concentrating cavity 11 composed of the elliptical curvature surface E and the perfect circular curvature surface C, respectively, the length of the sampling cavity (13, 13') can be greatly shortened, and at the same time, the first reflective structure 111 can also be passed. And the second reflective structure 112 condenses to increase the infrared energy projected by the light emitting unit. Furthermore, after the first reflected light T12 and the third reflected light T23 are projected onto the light guiding surface 141 having an angle of 45 degrees, the first reflected light T12 and the third reflected light T23 can be rotated by 45 degrees, and uniformly projected to the light sense. On the measuring unit 31.

另外,通過“第二預定距離L2大於第一預定距離L1”的技術特徵,可改變投射至光感測模組3的光線T(第一光線T1以及第二光線T2)的入射角(第二入射角θ2),以增進量測精度。換句話說,可通過採樣腔體13而使得原本大於20度的第一入射角θ1,經第二預定距離L2大於第一預定距離L1”的技術特徵,而使得投射至光感測單元31的光線轉換成小於20度的第二入射角(θ2,θ2’)。 In addition, by the technical feature that the second predetermined distance L2 is greater than the first predetermined distance L1, the incident angle of the light T (the first light T1 and the second light T2) projected to the light sensing module 3 can be changed (second Incident angle θ2) to improve measurement accuracy. In other words, the first incident angle θ1 originally greater than 20 degrees and the technical feature of the first predetermined distance L1 being greater than the first predetermined distance L1" may be caused by the sampling cavity 13 to be projected to the light sensing unit 31. The light is converted into a second angle of incidence (θ2, θ2') of less than 20 degrees.

藉此,通過上述架構,能夠改善現有技術由於紅外線光集中於一點上時,容易因組裝公差或震動而導致紅外線光無法有效投射到光感測單元31上的問題,並能夠提高腔體模組(1,1’,1”,1''')的集光性。 Therefore, according to the above structure, the prior art can improve the problem that the infrared light cannot be efficiently projected onto the light sensing unit 31 due to assembly tolerance or vibration when the infrared light is concentrated on one point, and the cavity module can be improved. The light collection property of (1,1',1",1''').

以上所述僅為本發明的優選可行實施例,並非因此侷限本發明的專利範圍,所以全部運用本發明說明書及附圖內容所做的等效技術變化,均包含於本發明的保護範圍內。 The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, all equivalents of the present invention are included in the scope of the present invention.

Q‧‧‧氣體量測裝置 Q‧‧‧Gas measuring device

1‧‧‧腔體模組 1‧‧‧ cavity module

1a‧‧‧上腔體模組 1a‧‧‧Upper cavity module

1b‧‧‧下腔體模組 1b‧‧‧ lower cavity module

11‧‧‧聚光腔體 11‧‧‧Concentrating cavity

111‧‧‧第一反射結構 111‧‧‧First reflection structure

112‧‧‧第二反射結構 112‧‧‧Second reflective structure

12‧‧‧容置腔體 12‧‧‧ accommodating cavity

13‧‧‧採樣腔體 13‧‧‧Sampling chamber

135‧‧‧氣體擴散槽 135‧‧‧ gas diffusion tank

14‧‧‧導光部 14‧‧‧Light Guide

16‧‧‧氣體過濾膜 16‧‧‧ gas filtration membrane

2‧‧‧發光模組 2‧‧‧Lighting module

21‧‧‧發光單元 21‧‧‧Lighting unit

22‧‧‧連接線 22‧‧‧Connecting line

3‧‧‧光感測模組 3‧‧‧Light sensing module

31‧‧‧光感測單元 31‧‧‧Light sensing unit

32‧‧‧連接線 32‧‧‧Connecting line

4‧‧‧基板模組 4‧‧‧Substrate module

K2‧‧‧固定孔 K2‧‧‧ fixing hole

S‧‧‧採樣空間 S‧‧‧Sampling space

Claims (10)

一種氣體量測裝置,其包括:一腔體模組,所述腔體模組包括一聚光腔體、一容置腔體以及一連接於所述聚光腔體及所述容置腔體之間的採樣腔體,其中所述聚光腔體具有一第一反射結構以及一連接於所述第一反射結構的第二反射結構,所述第一反射結構具有一第一焦點及一對應於所述第一焦點的第二焦點,所述第二反射結構具有一中心點,所述第一焦點與所述中心點彼此相對應設置;一發光模組,所述發光模組設置於所述聚光腔體上,以產生一光線,所述發光模組包括一發光單元,其中所述發光單元對應於所述第一焦點及所述中心點;以及一光感測模組,所述光感測模組包括一光感測單元,所述光感測單元設置於所述容置腔體中。 A gas measuring device includes: a cavity module, the cavity module includes a concentrating cavity, an accommodating cavity, and a concentrating cavity and the accommodating cavity a sampling cavity, wherein the concentrating cavity has a first reflective structure and a second reflective structure connected to the first reflective structure, the first reflective structure has a first focus and a corresponding The second reflective structure has a center point, the first focus and the center point are disposed corresponding to each other; and a light emitting module, the light emitting module is disposed at the second focus The illuminating cavity includes a light emitting unit, wherein the light emitting unit corresponds to the first focus and the center point; and a light sensing module, The light sensing module includes a light sensing unit, and the light sensing unit is disposed in the receiving cavity. 如請求項1所述的氣體量測裝置,其中,所述第一反射結構具有一橢圓曲率曲面,所述第二反射結構具有一正圓曲率曲面,所述發光單元設置於所述第一焦點及所述中心點上。 The gas measuring device according to claim 1, wherein the first reflecting structure has an elliptical curvature curved surface, the second reflecting structure has a perfect circular curvature curved surface, and the light emitting unit is disposed at the first focus And the center point. 如請求項1所述的氣體量測裝置,其中,所述光線包括一投射於所述第一反射結構的第一投射光線以及一投射於所述第二反射結構的第二投射光線,所述第一投射光線通過所述第一反射結構的反射,以形成一投射至所述第二焦點的第一反射光線,所述第一投射光線以及所述第一反射光線相互配合,以形成一投射至所述光感測單元上的第一光線,所述第二投射光線通過所述第二反射結構的反射,以形成一投射至所述第一反射結構的第二反射光線,所述第二反射光線通過所述第一反射結構的反射,以形成一投射至所述第二焦點的第三反射光線,所述第二投射光線、所述第二反射光線以及所述第三反射光線相 互配合,以形成一投射至光感測單元上的第二光線。 The gas measuring device of claim 1, wherein the light ray comprises a first projected ray projected onto the first reflective structure and a second projected ray projected on the second reflective structure, The first projected light is reflected by the first reflective structure to form a first reflected light that is projected to the second focus, and the first projected light and the first reflected light cooperate to form a projection a first light incident on the light sensing unit, the second projected light is reflected by the second reflective structure to form a second reflected light projected onto the first reflective structure, the second Reflecting light is reflected by the first reflective structure to form a third reflected light that is projected to the second focus, the second projected light, the second reflected light, and the third reflected light Interworking to form a second light that is projected onto the light sensing unit. 如請求項1所述的氣體量測裝置,其中,所述採樣腔體具有一上表面以及一下表面,所述採樣腔體具有一第一開口端以及一對應於所述第一開口端的第二開口端,所述第一開口端連接於所述聚光腔體,所述第二開口端連接於所述容置腔體,所述第一開口端的所述上表面及所述下表面之間具有一第一預定距離,所述第二開口端的所述上表面及所述下表面之間具有一第二預定距離,所述第二預定距離大於所述第一預定距離。 The gas measuring device of claim 1, wherein the sampling cavity has an upper surface and a lower surface, the sampling cavity has a first open end and a second corresponding to the first open end An open end, the first open end is connected to the concentrating cavity, and the second open end is connected to the accommodating cavity, between the upper surface and the lower surface of the first open end Having a first predetermined distance, a second predetermined distance between the upper surface and the lower surface of the second open end, the second predetermined distance being greater than the first predetermined distance. 如請求項4所述的氣體量測裝置,其中,所述腔體模組還進一步包括一設置於所述採樣腔體及所述容置腔體之間的導光部,鄰近於所述第二開口端的所述下表面與所述光感測單元之間具有一預定高度,所述預定高度及所述第二預定距離符合下列公式:(0.8*L2)≦H≦(3*L2),其中H為所述預定高度,L2為所述第二預定距離。 The gas measuring device of claim 4, wherein the cavity module further comprises a light guiding portion disposed between the sampling cavity and the receiving cavity, adjacent to the first The lower surface of the two open ends and the photo sensing unit have a predetermined height, and the predetermined height and the second predetermined distance conform to the following formula: (0.8*L2) ≦H≦(3*L2), Where H is the predetermined height and L2 is the second predetermined distance. 如請求項1所述的氣體量測裝置,其中,所述腔體模組還進一步包括一設置於所述採樣腔體及所述容置腔體之間的導光部,所述導光部具有一導光面,所述導光面相對於一水平軸線傾斜一介於30度至60度之間的預定角度。 The gas measuring device of claim 1, wherein the cavity module further comprises a light guiding portion disposed between the sampling cavity and the accommodating cavity, the light guiding portion There is a light guiding surface that is inclined with respect to a horizontal axis by a predetermined angle between 30 degrees and 60 degrees. 如請求項1所述的氣體量測裝置,其中,所述腔體模組還進一步包括一設置於所述採樣腔體及所述容置腔體之間的導光部以及一開槽,所述開槽連接於所述導光部及所述容置腔體之間,所述採樣腔體具有一上表面及一下表面,所述開槽具有一預定寬度,所述採樣腔體的所述下表面及所述光感測單元之間具有一預定高度,所述預定寬度及所述預定高度符合下列公式:(0.8*W)≦H≦(3*W),其中H為所述預定高度,W為所述預定寬度。 The gas measuring device of claim 1, wherein the cavity module further comprises a light guiding portion disposed between the sampling cavity and the accommodating cavity, and a slot. The slot is connected between the light guiding portion and the receiving cavity, the sampling cavity has an upper surface and a lower surface, the slot has a predetermined width, and the sampling cavity is The lower surface and the light sensing unit have a predetermined height, and the predetermined width and the predetermined height conform to the following formula: (0.8*W) ≦H ≦ (3*W), where H is the predetermined height , W is the predetermined width. 如請求項1所述的氣體量測裝置,其中,所述採樣腔體還進一步具有一氣體擴散槽,所述氣體擴散槽設置於所述第一開口端 及所述第二開口端之間。 The gas measuring device according to claim 1, wherein the sampling chamber further has a gas diffusion groove, and the gas diffusion groove is disposed at the first open end And between the second open ends. 如請求項1所述的氣體量測裝置,其中,所述發光模組為紅外線發光器,所述光感測模組為紅外線光感測器。 The gas measuring device of claim 1, wherein the light emitting module is an infrared light emitting device, and the light sensing module is an infrared light sensor. 如請求項1所述的氣體量測裝置,其中,所述採樣腔體的一橫截面為矩形形狀、五邊形形狀或六邊形形狀。 The gas measuring device according to claim 1, wherein a cross section of the sampling chamber is a rectangular shape, a pentagon shape or a hexagonal shape.
TW105113470A 2016-04-29 2016-04-29 Gas detection device TWI595226B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105113470A TWI595226B (en) 2016-04-29 2016-04-29 Gas detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105113470A TWI595226B (en) 2016-04-29 2016-04-29 Gas detection device

Publications (2)

Publication Number Publication Date
TWI595226B TWI595226B (en) 2017-08-11
TW201738553A true TW201738553A (en) 2017-11-01

Family

ID=60189338

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105113470A TWI595226B (en) 2016-04-29 2016-04-29 Gas detection device

Country Status (1)

Country Link
TW (1) TWI595226B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100494103B1 (en) * 2003-12-12 2005-06-10 (주)이엘티 Optical gas sensor
JP5870270B2 (en) * 2011-10-24 2016-02-24 パナソニックIpマネジメント株式会社 Detector
TWI513973B (en) * 2014-01-29 2015-12-21 Radiant Innovation Inc Gas concentration detection device

Also Published As

Publication number Publication date
TWI595226B (en) 2017-08-11

Similar Documents

Publication Publication Date Title
JP5906407B2 (en) Gas component detector
WO2021212931A1 (en) Two-dimensional, multi-point-reflection, long-optical-distance gas sensor probe, and gas sensor
TWI513974B (en) Detector
WO2016095816A1 (en) Sample measurement pool
CN104155241A (en) Long-path optical absorption cell adjustable in optical path
JP6183227B2 (en) Insertion type gas concentration measuring device
US10533939B2 (en) Gas detection device
JP6264741B2 (en) Spectroscopic analyzer
TWI651526B (en) Gas detection device
TWI595226B (en) Gas detection device
US10025077B2 (en) Device for measuring solution concentration
KR20130082482A (en) Optical wave guide
JP2018084523A5 (en)
CN207717616U (en) A kind of sensor probe and gas-detecting device
US20180088038A1 (en) Gas detection device
TWI592647B (en) Gas detection device and method for detecting gas concentration
KR20160032863A (en) Infrared Gas Analyzer
KR102334769B1 (en) Optical cavity for reducing external environment effect and gas sensor having the same
US10054538B1 (en) Gas detection device
US11921031B2 (en) Compact gas sensor
US9927359B1 (en) Gas detection device
KR101412212B1 (en) Optical wave guide
TWI513973B (en) Gas concentration detection device
CN108956407B (en) Light path converging structure
CN206594055U (en) Moisture content determining device