TW201737924A - Combination therapy for neuroblastoma using MDA-7/IL-24 with therapeutic agents - Google Patents
Combination therapy for neuroblastoma using MDA-7/IL-24 with therapeutic agents Download PDFInfo
- Publication number
- TW201737924A TW201737924A TW106110923A TW106110923A TW201737924A TW 201737924 A TW201737924 A TW 201737924A TW 106110923 A TW106110923 A TW 106110923A TW 106110923 A TW106110923 A TW 106110923A TW 201737924 A TW201737924 A TW 201737924A
- Authority
- TW
- Taiwan
- Prior art keywords
- ctv
- cells
- cancer
- neuroblastoma
- mda
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/19—Cytokines; Lymphokines; Interferons
- A61K38/20—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/704—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/76—Viruses; Subviral particles; Bacteriophages
- A61K35/761—Adenovirus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10311—Mastadenovirus, e.g. human or simian adenoviruses
- C12N2710/10341—Use of virus, viral particle or viral elements as a vector
- C12N2710/10343—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/10011—Adenoviridae
- C12N2710/10311—Mastadenovirus, e.g. human or simian adenoviruses
- C12N2710/10341—Use of virus, viral particle or viral elements as a vector
- C12N2710/10345—Special targeting system for viral vectors
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Virology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Mycology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
相關申請 本申請案主張2016年3月30日提交的美國臨時專利申請號62/315,126之優先權,該專利申請之全部內容以引用之方式併入本申請案中。本申請案亦引用多個公開出版物,該等公開出版物的全部內容以引用之方式併入本申請案中。RELATED APPLICATIONS This application claims priority to U.S. Provisional Patent Application Serial No. 62/315, filed on Jan. The disclosure also refers to a number of publications, the entire disclosure of which is hereby incorporated by reference.
關於聯邦政府資助研究或研發的聲明 本發明至少部分由政府美國政府資助, 並榮獲以下機構的資助:根據美國國家衛生研究院(National Institutes of Health)授與之R01 CA097318及P30 CA016059進行。美國政府對本發明或擁有一定的權利。STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT This invention was made, at least in part, by the Government of the United States Government and was funded by the following agencies: R01 CA097318 and P30 CA016059 awarded by the National Institutes of Health. The U.S. Government has certain rights in the invention.
技術領域 本發明係關於一種使用Ad.5/3-CTV 與促進毒性自體吞噬及/或細胞凋亡之的治療劑之組合來治療神經母細胞瘤的方法。在一個實施例中,治療劑係聚肌胞苷酸-聚乙烯亞胺 (poly[IC]-PEI)、阿黴素(doxorubicin)、或任何其他促進毒性自體吞噬及/或細胞凋亡的藥劑。在一個實施例中,本發明提供一種抑制神經母細胞瘤細胞生長、抑制神經母細胞瘤腫瘤生長及/或誘導神經母細胞瘤細胞發生細胞凋亡及/或毒性自體吞噬的方法。在另一實施例中,本發明提供一種使接受治療後的個體維持神經母細胞瘤緩解的方法。FIELD OF THE INVENTION The present invention relates to a method of treating neuroblastoma using a combination of Ad.5/3- CTV and a therapeutic agent that promotes toxic autophagy and/or apoptosis. In one embodiment, the therapeutic agent is polyinosin-polyethylenimine (poly[IC]-PEI), doxorubicin, or any other toxic autophagy and/or apoptosis that promotes toxicity. Pharmacy. In one embodiment, the invention provides a method of inhibiting growth of a neuroblastoma cell, inhibiting growth of a neuroblastoma tumor, and/or inducing apoptosis and/or toxic autophagy of a neuroblastoma cell. In another embodiment, the invention provides a method of maintaining a neuroblastoma remission in a subject after treatment.
發明背景 神經母細胞瘤係五歲以下兒童中最頻繁發生的顱外實體腫瘤,每7000名兒童中便有1名受其影響。據推測,此等腫瘤的發展係神經母細胞在胎兒生長期間快速增殖的結果(1)。神經母細胞瘤出現在交感神經系統以及源自交感神經的神經脊細胞的腎上腺髓質(2)。其在臨床上與生物學上均代表異質腫塊。當存在於嬰兒中時,神經母細胞瘤在大部分個案中可能不可預見地復發,而在年長患者中,此等腫瘤頻繁地以良性神經節細胞瘤(2)續存。診斷時,約一半的患者由於遠端轉移而假設處於高風險。神經母細胞瘤可以依四個分期分類。在I期以及II期,疾病侷限於原發病灶。III期以及IV期的特徵係出現超出原發病灶範圍的疾病。一旦神經母細胞瘤達到晚期(III或IV),則其持續擴增,即使經歷過嚴格的多模式療法(1, 3)。由於腫瘤常於晚期才呈現而且缺乏手術選項, 患者預後的情況非常不佳。雖然使用強化的多模式療法提高少許神經母細胞瘤的總體治癒率,但此等療法促成了顯著的短期以及長期毒性(1, 3, 4)。僅約2%III或IV期神經母細胞瘤患者在完成化療之後維持無疾病的情況,並在化療後不久便復發,表明此等藥劑的長期影響可以被忽略(5)。抗藥性被認為是導致治療失敗的原因,此強調需要更小毒性以及更有效的治療策略(6)。因此,全面瞭解控制增殖、分化以及細胞死亡的機制可以擴展對神經母細胞瘤之分子發病機制的瞭解,從而可以找出毒性減弱且功效最大的基於生物學之新穎療法。BACKGROUND OF THE INVENTION Neuroblastoma is the most frequently occurring extracranial solid tumor in children under five years of age, and one out of every 7,000 children is affected. It is speculated that the development of these tumors is the result of rapid proliferation of neuroblasts during fetal growth (1). Neuroblastoma occurs in the sympathetic nervous system and the adrenal medulla of sympathetic nerve ridge cells (2). It represents both heterogeneous masses both clinically and biologically. When present in infants, neuroblastoma may recurably recur in most cases, whereas in older patients these tumors frequently recur with benign ganglioneuroma (2). At the time of diagnosis, approximately half of the patients were assumed to be at high risk due to distal metastases. Neuroblastoma can be classified by four stages. In stage I and stage II, the disease is limited to the primary lesion. The characteristics of stage III and stage IV are diseases that are beyond the scope of the primary lesion. Once the neuroblastoma reaches advanced stage (III or IV), it continues to expand, even after undergoing strict multimodal therapy (1, 3). Because tumors are often presented in the late stages and lack of surgical options, the patient's prognosis is very poor. Although enhanced multimodal therapy has been used to increase the overall cure rate for a small number of neuroblastomas, these therapies have contributed to significant short-term and long-term toxicity (1, 3, 4). Only about 2% of patients with stage III or IV neuroblastoma remain disease-free after completion of chemotherapy and relapse shortly after chemotherapy, indicating that the long-term effects of these agents can be ignored (5). Drug resistance is thought to be the cause of treatment failure, which emphasizes the need for less toxic and more effective treatment strategies (6). Therefore, a comprehensive understanding of the mechanisms controlling proliferation, differentiation, and cell death can extend the understanding of the molecular pathogenesis of neuroblastoma, so that new biologically-based therapies with reduced toxicity and maximum efficacy can be identified.
黑色素瘤分化相關基因-7/介白素-24 (mda -7 /IL -24 )係IL-10相關細胞介素基因家族的獨特成員(7),其在多種癌症中顯示不傷害正常細胞或組織的廣譜抗腫瘤活性(8, 9)。mda -7 /IL -24 最初係使用減除雜交與誘導癌細胞終末分化之組合來選殖(10)。mda -7 /IL -24 強制表現於癌細胞中促成直接的癌症毒性(經由誘導細胞凋亡或毒性自體吞噬)(11)以及間接的抗腫瘤作用(經由抑制血管生成)(8, 12)、促進抗腫瘤免疫反應(8)、使癌細胞對輻射以及化學療法誘導的殺死作用敏感(13),以及經由自分泌/旁分泌型分泌來促進強效'抗腫瘤旁觀者活性'(14))。mda -7 /IL -24 在幾乎每種癌症背景中顯示近乎通用的活體外以及活體內抗腫瘤特性(15, 16),從而成功地進入臨床試驗(17, 18)。mda - 7/IL-24之此等特性使得其成為治療神經母細胞瘤的潛在候選基因,其中腺病毒投與單一人類神經母細胞瘤細胞株(SH-SY5Y)均對活體外以及活體內異種移植物生長產生抑制作用(19)。為了增強mda -7 /IL -24 作為癌症基因療法的效用,使用攜有mda -7 /IL -24 的條件性複製勝任型Ad (20)。在該癌症終止子病毒(CTV ) (21)中,腺病毒複製受癌症選擇性嚙齒動物基因、促進展基因-3 (PEG -3 )的啟動子控制(22)。為了甚至進一步增強CTV 之效用,已經對腺病毒進行工程改造以更有效地感染癌細胞,從而產生針對趨向性修飾的嵌合CTV (23)。Melanoma differentiation-related gene-7/interleukin-24 ( mda -7 /IL -24 ) is a unique member of the IL-10-associated interleukin gene family (7), which does not harm normal cells in a variety of cancers or The broad spectrum of antitumor activity of tissues (8, 9). Mda -7 /IL -24 was originally selected for use in a combination of subtractive hybridization and induction of terminal differentiation of cancer cells (10). Mda -7 /IL -24 is forced to manifest in direct cancer toxicity in cancer cells (autologous phagocytosis via induction of apoptosis or toxicity) (11) and indirect anti-tumor effects (via inhibition of angiogenesis) (8, 12) Promotes anti-tumor immune responses (8), sensitizes cancer cells to radiation and chemotherapy-induced killing (13), and promotes potent 'anti-tumor bystander activity' via autocrine/paracrine secretion (14 )). Mda -7 /IL -24 has shown near-universal in vivo and in vivo anti-tumor properties in almost every cancer background (15, 16), thus successfully entering clinical trials (17, 18). These properties of mda - 7/IL-24 make it a potential candidate gene for the treatment of neuroblastoma, in which adenovirus is administered to a single human neuroblastoma cell line (SH-SY5Y) for both in vitro and in vivo xenogeneic Graft growth produces inhibition (19). To enhance the utility of mda -7 /IL -24 as a cancer gene therapy, a conditional replication competent Ad (20) carrying mda -7 /IL -24 was used. In the cancer terminator virus ( CTV ) (21), adenoviral replication is controlled by a cancer-selective rodent gene, promoter-promoting gene-3 ( PEG -3 ) promoter (22). In order to even further enhance the utility of CTV , adenoviruses have been engineered to more efficiently infect cancer cells, resulting in chimeric CTV against directional modifications (23).
腺病毒(Ads)係使用CAR (柯沙奇腺病毒受體(Coxsackie-Adenovirus Receptors))感染正常細胞以及癌細胞,然而癌細胞在其細胞表面上表現CAR的量不同。為了提高Ad感染腫瘤細胞的低效率,已經開發出「趨向性修飾」方法(23)。與野生型Ad.5相比,其中一種此類Ad.5/3載體顯示相等的功效,藉此擴大了在CAR低表現細胞與CAR高表現細胞中Ad.5/3的效用範圍(23, 24)。因此之故,經修飾的Ad.5/3-CTV (Ad.5/3-PEG - E1A-mda -7 ) 被用來評估對人類神經母細胞瘤細胞的治療應用。Adenovirus (Ads) uses CAR (Coxsackie-Adenovirus Receptors) to infect normal cells as well as cancer cells, whereas cancer cells express different amounts of CAR on their cell surface. In order to improve the inefficiency of Ad-infected tumor cells, a "trendative modification" method has been developed (23). One of these Ad.5/3 vectors showed equal efficacy compared to wild-type Ad.5, thereby expanding the range of utility of Ad.5/3 in CAR low-expression cells and CAR-high-expression cells (23, twenty four). For this reason, modified Ad.5/3- CTV (Ad.5/3- PEG - E1A- mda -7 ) was used to evaluate therapeutic applications in human neuroblastoma cells.
最近描述了一種先前未識別的路徑,其涉及mda -7 /IL -24 介導神經母細胞瘤細胞發生卡斯蛋白酶(caspase)非依賴性誘導細胞凋亡的誘導。A previously unrecognized pathway has been described which involves mda -7 /IL -24- mediated induction of caspase-independent induction of apoptosis in neuroblastoma cells.
該路徑涉及細胞凋亡誘導因子(AIF)表現的調節以及易位至神經母細胞瘤細胞核中,該易位經由共濟失調毛細血管擴張症突變因子(ATM)之誘導、隨後磷酸化以及組蛋白γ-H2AX易位至核中之核易位來介導。此等發現為瞭解幾乎普遍存在之癌症遏制基因的作用機制提供了新的證據,支持其作為神經母細胞瘤潛在療法的應用。This pathway involves the regulation of expression of apoptosis-inducing factor (AIF) and translocation into the nucleus of neuroblastoma cells, which is induced by ataxia telangiectasia mutated factor (ATM), subsequent phosphorylation, and histones. The γ-H2AX translocation is mediated by nuclear translocations in the nucleus. These findings provide new evidence for understanding the mechanisms of action of the almost universal cancer suppressor genes and support their use as potential therapies for neuroblastoma.
本發明證明神經母細胞瘤存在新的細胞死亡路徑,該路徑由mda -7 /IL -24 經由ATM介導之H2AX以及AIF活化來觸發,從而產生卡斯蛋白酶非依賴性細胞凋亡。該路徑係神經母細胞瘤細胞所特有的,原因係該效應在人類乳癌或黑色素瘤細胞中不明顯。The present invention demonstrates the existence of a novel cell death pathway in neuroblastoma that is triggered by mda -7 /IL -24 via ATM-mediated H2AX and AIF activation, resulting in caspase-independent apoptosis. This pathway is unique to neuroblastoma cells because the effect is not apparent in human breast cancer or melanoma cells.
為了進一步增強Ad.5/3-CTV 針對神經母細胞瘤的治療潛力,本發明進一步開發出針對神經母細胞瘤之組合療法,該組合療法使用mda-7/IL-24 以及其他治療劑,包括聚肌胞苷酸-聚乙烯亞胺 (poly[IC]-PEI) 以及阿黴素。聚肌苷-聚胞苷酸,(簡稱聚肌胞苷酸, Poly[IC])係一種合成雙鏈RNA(dsRNA),其直接活化樹突狀細胞且觸發天然殺手(NK)細胞殺死腫瘤細胞,從而建立其免疫調節功能(59, 60)。其通常視為抗病毒劑,其已經由模擬真實病毒RNA之效應來顯示抗病毒活性。抗病毒作用主要歸因於干擾素(IFN)I型以及下游刺激基因的誘導(60)。Poly[IC]作為合成dsRNA模擬物以IFN依賴性方式增強免疫系統已被使用超過四十年(51)。裸poly[IC]當在極高濃度下使用時可誘導神經母細胞瘤發生細胞死亡(52, 53)。可是,使用裸poly[IC]的臨床試驗顯示poly[IC]的穩定性不佳以及干擾素(IFN)誘導,以及偵測不到的抗腫瘤效應(51)。To further enhance the therapeutic potential of Ad.5/3- CTV against neuroblastoma, the present invention further develops a combination therapy for neuroblastoma using mda-7/IL-24 and other therapeutic agents, including Polymyosine-polyethyleneimine (poly[IC]-PEI) and doxorubicin. Polyinosine-polycytidine, abbreviated as poly-cytosine, Poly[IC], is a synthetic double-stranded RNA (dsRNA) that directly activates dendritic cells and triggers natural killer (NK) cells to kill tumors. Cells that establish their immune regulation functions (59, 60). It is generally considered an antiviral agent that has been shown to exhibit antiviral activity by mimicking the effects of real viral RNA. The antiviral effect is mainly due to the induction of interferon (IFN) type I and downstream stimulatory genes (60). Poly[IC] has been used as a synthetic dsRNA mimetic to enhance the immune system in an IFN-dependent manner for more than four decades (51). Naked poly[IC] induces cell death in neuroblastoma when used at very high concentrations (52, 53). However, clinical trials using naked poly[IC] have shown poor stability of poly[IC] and interferon (IFN) induction, as well as undetectable antitumor effects (51).
如何遞送聚肌胞苷酸係定義其功能的關鍵。聚肌胞苷酸以與聚乙烯亞胺(PEI)之複合物,聚肌胞苷酸-PEI(poly[(IC)-PEI)形式進行細胞質遞送對癌細胞生長影響重大,導致其細胞凋亡和毒性自體吞噬,以及加強免疫調節活性(61-63)。當裸poly[IC]與聚乙烯亞胺(PEI)組合,其允許poly[IC]的細胞質遞送,該poly[IC]-PEI組合誘導的治療反應比裸poly[IC]更有效(51, 50)。誘導細胞凋亡與毒性自體吞噬作為終點表型在特定癌症中的分子機制有共同與不同的路徑。然而,在不同癌症中,視遞送而定,poly[IC]-PEI促進不同群集的基因表現變化來誘導細胞凋亡以及毒性自體吞噬的終點表型。舉例來說,在黑色素瘤中,poly[IC]-PEI涉及ATG-5之募集,誘導MDA-5連接以誘導毒性自體吞噬(61, 62)。在乳癌中,經由MDA-5之調節,poly[IC]-PEI促進細胞凋亡之誘導(62)。在胰臟癌中,poly[IC]-PEI藉由誘導MDA-5、RIG-I以及NOXA來抑制XIAP以及存活素表現且活化免疫反應(63)。舉上述研究為例,已經確定了不同癌症類型中存在誘導細胞凋亡以及毒性自體吞噬的獨特分子機制。的確,與poly[IC]-PEI介導性抗癌作用相關的機制有一些重疊,細胞凋亡/毒性自體吞噬的效應至少在一些情況下部分依賴於MDA-5的誘導。How to deliver polyinosinic acid is the key to defining its function. Cytoplasmic delivery of polyinosinic acid with polyethyleneimine (PEI) and poly-cytosine-PEI (poly[(IC)-PEI) form has a significant effect on cancer cell growth, leading to apoptosis And toxic autophagy, as well as enhanced immunomodulatory activity (61-63). When naked poly[IC] is combined with polyethyleneimine (PEI), which allows cytoplasmic delivery of poly[IC], the poly[IC]-PEI combination induces a therapeutic response that is more effective than naked poly[IC] (51, 50) ). Induction of Apoptosis and Toxicity Autophagy has a common and distinct pathway as the molecular mechanism of the endpoint phenotype in specific cancers. However, in different cancers, depending on the delivery, poly[IC]-PEI promotes changes in gene expression in different clusters to induce apoptosis and a terminal phenotype of toxic autophagy. For example, in melanoma, poly[IC]-PEI is involved in the recruitment of ATG-5, inducing MDA-5 linkage to induce toxic autophagy (61, 62). In breast cancer, poly[IC]-PEI promotes induction of apoptosis via regulation of MDA-5 (62). In pancreatic cancer, poly[IC]-PEI inhibits XIAP and survivin expression and activates immune responses by inducing MDA-5, RIG-I, and NOXA (63). Taking the above studies as an example, a unique molecular mechanism for inducing apoptosis and toxic autophagy has been identified in different cancer types. Indeed, there is some overlap in the mechanisms associated with poly[IC]-PEI-mediated anticancer effects, and the effects of apoptosis/toxic autophagy are, at least in part, dependent on the induction of MDA-5.
順鉑(Cisplatin)與阿黴素通常作為組合治療方案之一部分用於神經母細胞瘤患者(54-56)。阿黴素誘導不同的細胞凋亡路徑,在某些特定癌細胞中, 該等路徑包括AIF,而非MDA-5。Cisplatin and doxorubicin are commonly used as part of a combination therapy regimen for neuroblastoma patients (54-56). Doxorubicin induces different apoptotic pathways, and in certain cancer cells, these pathways include AIF, not MDA-5.
MDA-7/IL-24係一種獨特基因,其對廣譜腫瘤呈現癌症選擇性細胞凋亡誘導能力(64)。 MDA-7/IL-24之細胞內遞送可經由多種途徑達成,包括病毒介導的基因遞送、給予重組蛋白質或直接引入表現質體。病毒介導的mda -7 /IL -24 基因表現產生穩定的表現,從而引發自分泌/旁分泌迴路且調節其自身轉錄以及轉譯。 MDA-7/IL-24活化多種信號傳導路徑,促進細胞凋亡(以及毒性自體吞噬)之誘導(64)。此等路徑涉及逆境蛋白質之表現、誘導反應性氧物質、針對毒性自體吞噬的切換式保護等。當前沒有報告表明MDA-7/IL-24對MDA-5的直接誘導可誘導細胞凋亡。另外,當前沒有報告指可以對MDA-7/IL-24經由直接誘導NOXA、XIAP來誘導細胞凋亡作出任何先驗預測。在神經母細胞瘤中,MDA-7/IL-24介導的細胞凋亡係獨特的,至少在吾人當前瞭解該細胞介素在多種癌細胞中如何藉由誘導AIF、ATM以及γ-H2AX來促進細胞凋亡/毒性自體吞噬這一境況下(67)。MDA-7/IL-24 is a unique gene that exhibits cancer-selective apoptosis-inducing ability in a broad spectrum of tumors (64). Intracellular delivery of MDA-7/IL-24 can be achieved via a variety of pathways, including viral-mediated gene delivery, administration of recombinant proteins, or direct introduction of expression plasmids. Viral-mediated expression of the mda- 7 /IL -24 gene produces a stable expression that triggers an autocrine/paracrine loop and regulates its own transcription and translation. MDA-7/IL-24 activates a variety of signaling pathways that promote the induction of apoptosis (and toxic autophagy) (64). These pathways involve the expression of stress proteins, the induction of reactive oxygen species, and the switching protection against toxic autophagy. There are currently no reports that direct induction of MDA-7 by MDA-7/IL-24 induces apoptosis. In addition, there is currently no report that any a priori prediction can be made for MDA-7/IL-24 to induce apoptosis via direct induction of NOXA, XIAP. In neuroblastoma, MDA-7/IL-24-mediated apoptosis is unique, at least in our current understanding of how this interleukin induces AIF, ATM, and γ-H2AX in a variety of cancer cells. Promote apoptosis/toxicity in autophagy (67).
當藥劑被組合使用時並產生大於預期的相加效應時,可以說是出現協同作用(此可以使用吾人之研究中所用的Chou以及Talalay方法所述的方法來量測(57))。當兩種分子經由重疊的分子機制運作時,協同作用或會發生-該兩種分子機制是不同的但當組合使用時可產生擴增的效應。當一種分子激發另一種分子正使用的信號傳導路徑時,可以觀測到協同作用。因此,當兩種分子 a) (在分子層面)呈現相似的作用模式、 b) 經由重疊的路徑發揮作用或 c) 促進兩種不同路徑、但一種路徑激發另一種化合物之作用時,該兩種分子之間在理論上可以出現協同作用。根據文獻,MDA-7/IL-24與poly[IC]-PEI在介導不同癌細胞發生細胞凋亡或毒性自體吞噬方面呈現兩種不同路徑。於是,MDA-7/IL-24與poly(IC)-PEI針對神經母細胞瘤的協同作用不可能被先驗預測。根據所提出的作用模式,吾人假設Ad.5/3-CTV (編碼mda-7/IL-24)以及poly[IC]-PEI存在潛在的相加效應,但反而觀測到兩者的協同作用。When the agents are used in combination and produce a greater than expected additive effect, it can be said that synergy occurs (this can be measured using the method described in the Chou and Talalay methods used in our study (57)). Synergism may occur when two molecules operate via overlapping molecular mechanisms - the two molecular mechanisms are different but can produce an amplification effect when used in combination. Synergism can be observed when one molecule excites a signaling pathway that is being used by another molecule. Thus, when two molecules a) (at the molecular level) exhibit a similar mode of action, b) act through overlapping paths, or c) promote two different paths, but one path stimulates the action of another compound, There can be synergistic effects between molecules in theory. According to the literature, MDA-7/IL-24 and poly[IC]-PEI present two different pathways in mediating apoptosis or toxic autophagy in different cancer cells. Thus, the synergistic effect of MDA-7/IL-24 and poly(IC)-PEI on neuroblastoma cannot be predicted a priori. According to the proposed mode of action, we assume that Ad.5/3- CTV (encoding mda-7/IL-24) and poly[IC]-PEI have potential additive effects, but instead observe the synergy between the two.
另外,MDA-7/IL-24與第二種化合物組合的協同作用並非普遍現象。此可以在本發明針對神經母細胞瘤的實驗中引證,其中實驗對三種化合物與MDA-7IL-24的組合進行測試。MDA-7/IL-24僅與poly[IC]-PEI以及阿黴素發生協同作用,但與順鉑不發生協同作用。數學模型(使用Chou及Talalay的方法)亦表明,兩種測試化合物(poly[IC]-PEI以及阿黴素)之間的協同作用不同。Poly[IC]-PEI係迄今所測試之與MDA-7/IL-24具有最強協同作用的分子。因此,本發明在總體上不僅具新穎性,而且就呈現增強的抗神經母細胞瘤活性而言具有重要作用,其在原則上可以用於最大化治療神經母細胞瘤患者的臨床結果。In addition, the synergy of the combination of MDA-7/IL-24 with the second compound is not universal. This can be cited in the experiments of the present invention against neuroblastoma, in which the combination of three compounds with MDA-7IL-24 was tested. MDA-7/IL-24 only synergizes with poly[IC]-PEI and doxorubicin, but does not synergize with cisplatin. The mathematical model (using Chou and Talalay's method) also showed a synergistic effect between the two test compounds (poly[IC]-PEI and doxorubicin). Poly[IC]-PEI is a molecule that has been tested to date with the strongest synergy with MDA-7/IL-24. Thus, the present invention is not only novel in general, but also plays an important role in exhibiting enhanced anti-neuroblastoma activity, which in principle can be used to maximize the clinical outcome of treating patients with neuroblastoma.
總之,本發明提供借助具癌症選擇性及條件性複製勝任型的毒性腺病毒表現mda -7 /IL -24 來靶向神經母細胞瘤細胞以生長抑制其生長以及引起其細胞凋亡的選擇性新穎方法。本發明進一步提供針對神經母細胞瘤之新穎組合療法,該療法使用mda -7 /IL -24 以及促進毒性自體吞噬及/或細胞凋亡的其他治療劑,包括poly[IC]-PEI,以及阿黴素。In summary, the present invention provides for the targeting of neuroblastoma cells by means of a cancer-selective and conditionally replicating competent toxic adenovirus expressing mda -7 /IL -24 to inhibit growth and induce apoptosis. Novel approach. The present invention further provides novel combination therapies for neuroblastoma using mda -7 /IL -24 and other therapeutic agents that promote toxic autophagy and/or apoptosis, including poly[IC]-PEI, and Adriamycin.
發明概要 本發明揭示使用Ad.5/3-CTV 與促進毒性自體吞噬及/或細胞凋亡之其他治療劑之組合來治療神經母細胞瘤的方法。SUMMARY OF THE INVENTION The present invention discloses methods of treating neuroblastoma using a combination of Ad.5/3- CTV and other therapeutic agents that promote toxic autophagy and/or apoptosis.
在一個實施例中,本發明提供使用Ad.5/3-CTV 治療個體之神經母細胞瘤的方法。在另一實施例中,本發明提供使用Ad.5/3-CTV 抑制神經母細胞瘤腫瘤生長的方法。In one embodiment, the invention provides a method of treating a neuroblastoma in an individual using Ad.5/3- CTV . In another embodiment, the invention provides a method of inhibiting the growth of a neuroblastoma tumor using Ad.5/3- CTV .
在一個實施例中,本發明提供使用Ad.5/3-CTV 抑制神經母細胞瘤細胞生長的方法。在另一實施例中,本發明提供使用Ad.5/3-CTV 誘導神經母細胞瘤細胞發生細胞凋亡的方法。在另一實施例中,本發明提供使用Ad.5/3-CTV 誘導癌細胞發生毒性自體吞噬的方法。In one embodiment, the invention provides a method of inhibiting the growth of neuroblastoma cells using Ad.5/3- CTV . In another embodiment, the invention provides a method of inducing apoptosis in neuroblastoma cells using Ad.5/3- CTV . In another embodiment, the invention provides a method of inducing toxic autophagy in cancer cells using Ad.5/3- CTV .
在一個實施例中,本發明提供在已接受神經母細胞瘤治療之個體中維持神經母細胞瘤緩解的方法。In one embodiment, the invention provides a method of maintaining neuroblastoma remission in an individual who has been treated with neuroblastoma.
在一個實施例中,本文所述方法進一步包含向個體或細胞施用選自poly[IC]-PEI或阿黴素此等治療劑的步驟。In one embodiment, the methods described herein further comprise the step of administering to the individual or cell a therapeutic agent selected from the group consisting of poly[IC]-PEI or doxorubicin.
較佳實施例之詳細說明 本發明係關於使用Ad.5/3-CTV 與促進毒性自體吞噬及/或細胞凋亡之其他治療劑之組合來治療神經母細胞瘤的方法。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a method of treating neuroblastoma using a combination of Ad.5/3- CTV and other therapeutic agents that promote toxic autophagy and/or apoptosis.
晚期神經母細胞瘤(嬰兒以及兒童中樞神經系統之最常見顱外惡性實體腫瘤)難以治療。在臨床前動物模型中以及在晚期癌症(包括黑色素瘤以及各種癌瘤)患者之I期臨床試驗中,黑色素瘤分化相關基因-7/介白素-24 (mda -7 /IL -24 )之異位表現促進活體外、活體內的廣譜抗腫瘤活性,而不傷害正常細胞。mda -7 /IL -24 藉由促進內質網(ER)壓力以及調節多種信號轉導路徑而施加癌症特異性毒性(細胞凋亡或毒性自體吞噬),從而調節癌細胞生長、侵入、轉移、存活以及血管生成。為了增強mda -7 /IL -24 之癌症選擇性表現以及靶向抗癌活性,構建一個經向性修飾的癌症終止子病毒( Ad.5/3-CTV ) ,其選擇性地在mda -7 /IL -24 表現穩定的癌細胞中複製。已發現Ad.5/3-CTV 在腫瘤異種移植模型中以卡斯蛋白酶3/9非依賴性方式活體外與活體內誘導顯著的神經母細胞瘤抗增殖活性以及細胞凋亡。 Ad.5/3-CTV 經由涉及細胞凋亡誘導因子(AIF)易位至細胞核的獨特路徑促進此等效應。抑制AIF可拯救神經母細胞瘤細胞免於Ad.5/3-CTV 誘導的細胞死亡,泛卡斯蛋白酶抑制則未能促進存活。 Ad.5/3-CTV 感染神經母細胞瘤細胞增強了ATM磷酸化,刺激細胞核易位以及增加γ-H2AX,觸發細胞核易位以及增強AIF表現。此等結果進一步使用兩種ATM小分子抑制劑來驗證,該等抑制劑藉由抑制γ-H2AX來減弱PARP裂解,減弱PARP裂解又抑制Ad.5/3-CTV 所感染的神經母細胞瘤細胞出現AIF變化。綜合而言,在本發明中,已闡明mda -7 /IL -24 誘導神經母細胞瘤細胞發生卡斯蛋白酶非依賴性細胞凋亡的新穎路徑,該等神經母細胞瘤細胞經由AIF、ATM以及γ-H2AX之調節來介導。亦開發出使用mda -7 /IL -24 治療神經母細胞瘤的新穎方法。Advanced neuroblastoma (the most common extracranial malignant solid tumor in infants and children's central nervous system) is difficult to treat. Melanoma differentiation-related gene-7/interleukin-24 ( mda -7 /IL -24 ) in preclinical animal models and in phase I clinical trials in patients with advanced cancer (including melanoma and various cancers) Ectopic performance promotes broad-spectrum anti-tumor activity in vitro and in vivo without harming normal cells. Mda -7 /IL -24 regulates cancer cell growth, invasion, metastasis by promoting endoplasmic reticulum (ER) stress and regulating multiple signal transduction pathways to exert cancer-specific toxicity (apoptosis or toxic autophagy) Survival and angiogenesis. To enhance the selective expression of mda -7 /IL -24 and to target anticancer activity, a directional modified cancer terminator virus ( Ad.5/3- CTV ) was constructed , which is selectively in mda -7 /IL -24 replicates in stable cancer cells. Ad.5/3- CTV has been found to induce significant neuroblastoma antiproliferative activity and apoptosis in vitro and in vivo in a caspase 3/9 independent manner in a tumor xenograft model. Ad.5/3- CTV promotes these effects via a unique pathway involving translocation of apoptosis-inducing factor (AIF) to the nucleus. Inhibition of AIF rescued neuroblastoma cells from Ad.5/3- CTV- induced cell death, and pan-Kassin inhibition failed to promote survival. Ad.5/3- CTV- infected neuroblastoma cells enhance ATM phosphorylation, stimulate nuclear translocation and increase γ-H2AX, trigger nuclear translocation and enhance AIF performance. These results were further validated using two ATM small molecule inhibitors that attenuated PARP cleavage by inhibiting γ-H2AX, attenuating PARP cleavage and inhibiting Ad.5/3- CTV- infected neuroblastoma cells AIF changes have occurred. In summary, in the present invention, it has been elucidated that mda -7 /IL -24 induces novel pathways for caspase-independent apoptosis in neuroblastoma cells via AIF, ATM, and Modulation by γ-H2AX is mediated. Novel methods for treating neuroblastoma using mda -7 /IL -24 have also been developed.
神經母細胞瘤係異質臨床實體,其可以係具有良好預後及高自發性消退概率之亞群, 亦包括已接受侵襲性療法但呈現非常不良之預後之亞群(1, 25)。考慮到此難題以及晚期神經母細胞瘤(III以及IV期) 之高復發率(4, 6),需優先確定適用於治療此癌症(尤其晚期)的策略。目前,已針對神經母細胞瘤細胞對使用向性修飾之嵌合癌症終止子病毒(Ad.5/3-CTV )(23, 43)遞送的廣譜抗腫瘤蛋白質MDA-7/IL-24 進行評估(11, 12, 16)。Ad.5/3-CTV 降低神經母細胞瘤細胞的生長且增加活體外細胞凋亡以及降低活體內腫瘤的生長,這些支持其於此癌症治療之潛在應用。機制研究揭露了mda -7 /IL -24 藉以可以促進癌細胞發生細胞凋亡的新路徑,亦即,經由誘導以及使AIF易位至細胞核中。Neuroblastoma is a heterogeneous clinical entity that can be a subgroup with a good prognosis and a high probability of spontaneous regression, as well as a subgroup that has undergone invasive therapy but presents a very poor prognosis (1, 25). Given this difficulty and the high recurrence rate of advanced neuroblastoma (stages III and IV) (4, 6), strategies for the treatment of this cancer, especially in advanced stages, need to be prioritized. Currently, a broad-spectrum anti-tumor protein MDA-7/IL-24 delivered using a directional modified chimeric cancer terminator virus (Ad.5/3- CTV ) (23, 43) has been targeted against neuroblastoma cells. Evaluation (11, 12, 16). Ad.5/3- CTV reduces the growth of neuroblastoma cells and increases in vitro apoptosis and reduces tumor growth in vivo, which supports its potential applications in cancer therapy. Mechanistic studies have revealed a new pathway by which mda -7 /IL -24 can promote apoptosis in cancer cells, ie, via induction and translocation of AIF into the nucleus.
mda -7 /IL -24 繪示了在多種癌症中經由多個路徑介導之的強抗腫瘤活性(7, 16)。mda -7 /IL -24 的毒性機制包括藉由抑制抗細胞凋亡Bcl-2家族成員而引起的ER壓力以及腫瘤細胞的細胞凋亡(26, 44),以上在本發明亦被證實。先前已表明MDA-7/IL-24療法可增加許多癌症類型中的反應性氧物質(ROS)之產生(18, 27)。ROS產生與早期階段的細胞凋亡以及粒線體功能異常緊密相關在本領域是已熟知的(28)。早期報導表明ROS產生以及粒線體釋放Cyt C促進了細胞死亡(29, 30)。這使粒線體外膜滲透率增加、跨膜電位降低,以及AIF活化(45),並最終誘導卡斯蛋白酶非依賴性的細胞凋亡(31)。 Ad.5/3-CTV 遞送mda -7 /IL -24 至神經母細胞瘤細胞增加了AIF水平。與先前公開的實驗數據一致,本發明結果表明,在過度表現mda -7 /IL -24 之神經母細胞瘤細胞中, AIF易位至細胞核中,並誘導卡斯蛋白酶非依賴性的細胞死亡。此結果經AIF以及泛卡斯蛋白酶抑制劑作進一步證實。AIF小分子抑制劑減弱了PARP裂解,從而在Ad.5/3-CTV 處理後,抑制神經母細胞瘤細胞發生細胞死亡。另外,施用泛卡斯蛋白酶抑制劑並未改變mda -7 /IL -24 誘導的PARP裂解;從而進一步驗證了此細胞介素誘導神經母細胞瘤細胞發生卡斯蛋白酶非依賴性細胞死亡。 Mda -7 /IL -24 depicts strong anti-tumor activity mediated through multiple pathways in a variety of cancers (7, 16). The toxicity mechanism of mda -7 /IL -24 includes ER stress caused by inhibition of anti-apoptotic Bcl-2 family members and apoptosis of tumor cells (26, 44), which was also confirmed in the present invention. MDA-7/IL-24 therapy has previously been shown to increase the production of reactive oxygen species (ROS) in many cancer types (18, 27). The close association of ROS production with early stage apoptosis and mitochondrial dysfunction is well known in the art (28). Early reports indicate that ROS production and mitochondrial release of Cyt C promote cell death (29, 30). This results in increased mitochondrial membrane permeability, decreased transmembrane potential, and AIF activation (45), and ultimately induces caspase-independent apoptosis (31). Ad.5/3- CTV delivery of mda -7 /IL -24 to neuroblastoma cells increased AIF levels. Consistent with previously published experimental data, the results of the present invention indicate that in neuroblastoma cells overexpressing mda -7 /IL -24 , AIF translocates into the nucleus and induces caspase-independent cell death. This result was further confirmed by AIF and a pancacine inhibitor. AIF small molecule inhibitors attenuated PARP cleavage, thereby inhibiting cell death in neuroblastoma cells following Ad.5/3- CTV treatment. In addition, administration of a pancacine inhibitor did not alter mda -7 /IL -24 induced PARP cleavage; thus further confirming that this interleukin induces caspase-independent cell death in neuroblastoma cells.
細胞對DNA損傷的反應係使H2A蛋白質家族的變異體H2AX發生磷酸化(32)。 H2AX藉由向下游修復因子提供結合位點來協助染色質促進DNA修復(33)。 AIF係位於粒線體膜間空間中且在介導卡斯蛋白酶非依賴性細胞死亡方面起主要作用的黃素蛋白(34, 35)。接受細胞死亡刺激後,AIF在粒線體內被鈣蛋白酶以及組織蛋白酶裂解(36),可能經由粒線體滲透性轉換孔隙釋放至胞溶質中,且易位至細胞核中,在細胞核中其經由與H2AX以及親環蛋白A形成的複合物來誘導染色質縮合以及DNA片段化(37)。已記載可誘導AIF粒線體至細胞核易位的多種細胞凋亡刺激包括DNA損傷劑、低氧/缺血、氧化應激以及興奮性神經毒素(諸如麩胺酸鹽)(38)。然而,引起AIF細胞核易位的信號傳導路徑尚未完全闡明。就此而言,研究Ad.5/3-CTV 對關鍵細胞凋亡蛋白、AIF以及聚(ADP-核糖)聚合酶-1 (PARP1)的影響,此在MDA-7/IL-24療法中構成相對新穎、然又關鍵的卡斯蛋白酶非依賴性細胞凋亡路徑。The response of cells to DNA damage phosphorylates the variant H2AX of the H2A protein family (32). H2AX assists chromatin in promoting DNA repair by providing binding sites to downstream repair factors (33). AIF is a flavoprotein that plays a major role in mediating caspase-independent cell death in the intergranular space of the mitochondria (34, 35). After stimulation with cell death, AIF is cleaved by calpain and cathepsin in the mitochondria (36), possibly released into the cytosol via the mitochondrial permeability transition pore, and translocated into the nucleus where it is passed through the nucleus. A complex formed by H2AX and cyclophilin A to induce chromatin condensation and DNA fragmentation (37). A variety of apoptotic stimuli that have been shown to induce AIF mitochondria to nuclear translocation include DNA damaging agents, hypoxia/ischemia, oxidative stress, and excitatory neurotoxins (such as glutamate) (38). However, the signaling pathways that cause nuclear translocation of AIF cells have not been fully elucidated. In this regard, the effect of Ad.5/3- CTV on key apoptotic proteins, AIF, and poly(ADP-ribose) polymerase-1 (PARP1) was studied, which constitutes a relative in MDA-7/IL-24 therapy. A novel, yet critical, caspase-independent pathway of apoptosis.
H2AX (組蛋白H2A家族成員)的特徵係其C末端尾中之可磷酸化SQE基元(39, 45)。亦已確定DNA片段化誘導H2AX組蛋白在絲胺酸139處發生磷酸化(40)。儘管H2AX主要與DNA損傷修復以及DNA封裝相關,但其亦為漸進式細胞死亡之關鍵調節因子(41, 45)。為了了解MDA-7/IL-24引起AIF細胞核易位的機制,評估經Ad.5/3-CTV 處理之細胞中之γ-H2AX含量,且發現H2AX之活化程度增加。已知ATM為涉及H2AX磷酸化的主要激酶且亦已知ATM為在針對雙股斷裂產生的細胞反應中最早被活化的激酶之一。 Ad.5/3-CTV 處理之後,發現ATM、H2AX以及AIF易位被活化,且此等細胞修飾藉由ATM以及AIF之藥理學抑制來證實。經由此等研究獲得的資料表明,ATM活化的重要作用在於觸發H2AX磷酸化以及AIF活化,從而引起經Ad.5/3-CTV 處理之神經母細胞瘤細胞發生卡斯蛋白酶非依賴性細胞死亡。與神經母細胞瘤細胞相比,Ad.5/3-CTV 感染人類乳癌細胞(MDA-MB-231以及ZR-751)以及黑色素瘤細胞(C8161以及SK-Mel)不能增強AIF表現(圖15)。 ATM在MDA-7/IL-24介導神經母細胞瘤細胞發生之細胞凋亡中如何準確地被活化係需要進一步實驗的關鍵問題。近期由Baritaud等人進行的一項研究揭露了ATM以及DNA-PK在AIF介導的卡斯蛋白酶非依賴性壞死性凋亡中、在調節γ- H2AX方面的顯著性(45)。詳言之,其表明ATM抑制阻止了在添加MNNG之後所觀測到的H2AX磷酸化且隨後阻斷AIF介導的細胞死亡。此與本發明觀測結果一致之處在於,ATM小分子抑制劑減弱了Ad.5/3-CTV 誘導之PARP裂解以及H2AX磷酸化,且抑制神經母細胞瘤細胞中之AIF變化(圖5C)。反之,AIF小分子抑制劑減少了Ad.5/3-CTV 誘導神經母細胞瘤細胞發生的ATM磷酸化以及細胞死亡(圖4D以及5D)。綜合而言,本發明結果表明,在正反饋迴路中,ATM與AIF在功能上相關,其中在Ad.5/3-CTV感染之後,其在神經母細胞瘤細胞中彼此調節(圖7)。近期的另一項研究報導,用促氧化劑治療引起ATM-null原發慢性淋巴性白血病(CLL)腫瘤發生卡斯蛋白酶非依賴性、AIF依賴性細胞凋亡(42)。所有結果表明,ATM與AIF可獨立地或一起發揮作用,以誘導卡斯蛋白酶非依賴性細胞死亡。H2AX (histone H2A family member) is characterized by a phosphorylated SQE motif in its C-terminal tail (39, 45). It has also been determined that DNA fragmentation induces phosphorylation of H2AX histones at serine 139 (40). Although H2AX is primarily involved in DNA damage repair and DNA packaging, it is also a key regulator of progressive cell death (41, 45). In order to understand the mechanism by which MDA-7/IL-24 causes nuclear translocation of AIF cells, the content of γ-H2AX in cells treated with Ad.5/3- CTV was evaluated, and the degree of activation of H2AX was found to be increased. ATM is known to be a major kinase involved in H2AX phosphorylation and ATM is also known to be one of the first activated kinases in cellular responses to double-strand breaks. After Ad.5/3- CTV treatment, ATM, H2AX, and AIF translocations were found to be activated, and these cell modifications were confirmed by pharmacological inhibition of ATM and AIF. The data obtained from such studies indicate that the important role of ATM activation is to trigger H2AX phosphorylation and AIF activation, thereby causing caspase-independent cell death in Ad.5/3- CTV- treated neuroblastoma cells. Ad.5/3- CTV- infected human breast cancer cells (MDA-MB-231 and ZR-751) and melanoma cells (C8161 and SK-Mel) did not enhance AIF performance compared with neuroblastoma cells (Fig. 15). . The key question of how ATM is accurately activated in MDA-7/IL-24-mediated apoptosis in neuroblastoma cells requires further experimentation. A recent study by Baritaud et al. revealed the significance of ATM and DNA-PK in AIF-mediated caspase-independent necrotic apoptosis in regulating γ- H2AX (45). In particular, it was shown that ATM inhibition prevented H2AX phosphorylation observed after the addition of MNNG and subsequently blocked AIF-mediated cell death. This is consistent with the observations of the present invention in that ATM small molecule inhibitors attenuate Ad.5/3- CTV- induced PARP cleavage and H2AX phosphorylation and inhibit AIF changes in neuroblastoma cells (Fig. 5C). In contrast, AIF small molecule inhibitors reduced ATM phosphorylation and cell death in Ad.5/3- CTV- induced neuroblastoma cells (Fig. 4D and 5D). Taken together, the results of the present invention indicate that ATM is functionally related to AIF in a positive feedback loop where it is modulated in each other in neuroblastoma cells following Ad.5/3-CTV infection (Figure 7). Another recent study reported that treatment with pro-oxidants caused tumor-associated, AIF-dependent apoptosis in ATM-null primary chronic lymphocytic leukemia (CLL) tumors (42). All results indicate that ATM and AIF can function independently or together to induce caspase-independent cell death.
總而言之,新的細胞死亡路徑已首次得到證明,此路徑藉由mda -7 /IL -24 觸發, 隨後經由ATM介導活化H2AX以及AIF、,從而引起卡斯蛋白酶非依賴性細胞凋亡(圖7),這路徑似乎係神經母細胞瘤細胞所特有的,原因在於此效應在人類乳癌或黑色素瘤細胞中不明顯(圖15)。對此結論的支持源自三條實驗證據:(1)使用AIF抑制劑抑制AIF減少MDA-7/IL-24介導的細胞凋亡;(2)使用泛卡斯蛋白酶抑制劑抑制卡斯蛋白酶不能阻斷MDA-7/IL-24誘導的細胞死亡;及(3)抑制ATM改變AIF水平,從而抑制過度表現MDA-7/IL-24之神經母細胞瘤細胞發生細胞死亡。於是,使用Ad.5/3-CTV (呈現癌症特異性病毒複製與穩定的MDA-7/IL-24產生及分泌)選擇性誘導神經母細胞瘤細胞發生細胞溶解可成為針對此侵襲性癌症的潛在可行治療選項。In summary, a new cell death pathway has been demonstrated for the first time, triggered by mda -7 /IL -24 , followed by ATM-mediated activation of H2AX and AIF, causing caspase-independent apoptosis (Figure 7 This pathway appears to be unique to neuroblastoma cells because the effect is not apparent in human breast cancer or melanoma cells (Figure 15). Support for this conclusion stems from three experimental evidences: (1) inhibition of AIF by AIF inhibitors reduces MDA-7/IL-24-mediated apoptosis; (2) inhibition of caspase by pan-kas protease inhibitors Blocking MDA-7/IL-24-induced cell death; and (3) inhibiting ATM to alter AIF levels, thereby inhibiting cell death in neuroblastoma cells overexpressing MDA-7/IL-24. Thus, the selective induction of cytolysis of neuroblastoma cells using Ad.5/3- CTV (presenting cancer-specific viral replication and stable MDA-7/IL-24 production and secretion) can be targeted at this invasive cancer. Potentially feasible treatment options.
本發明進一步提供一種組合療法,該療法使用Ad.5/3-CTV 以及其他治療劑,包括poly[IC]-PEI、阿黴素、以及促進毒性自體吞噬及/或細胞凋亡的任何其他治療劑。此可包括輻射、反應性氧物質誘導劑以及特定的DNA損傷化學治療劑。結果指出,使用Ad.5/3-CTV 與poly[IC]-PEI的組合療法使神經母細胞瘤細胞生長受到協同性抑制(圖16-20)且生長抑制可能由細胞凋亡引起(圖21)。關於兩種藥劑組合使用的報導在本發明時尚不存在,且本文中所觀測到的協同作用顯著且出乎意外,原因在於Ad.5/3-CTV 與poly[IC]-PEI涉及不同的細胞凋亡路徑(Ad.5/3-CTV 經由AIF與ATM誘導神經母細胞瘤細胞發生細胞凋亡,而聚肌胞苷酸(poly[I:C])經由XIAP、MDA-5、NOXA及/或RIG-I誘導不同癌細胞發生細胞凋亡)。對於阿黴素而言,結果表明,使用Ad.5/3-CTV 與阿黴素的組合療法誘導神經母細胞瘤細胞生長受到較強的相加性抑制(圖22-26)且生長抑制可能由細胞凋亡引起(圖27)。對於順鉑而言,觀測到Ad.5/3-CTV 與順鉑的組合使用在測試劑量範圍內不能對神經母細胞瘤細胞生長產生任何可觀測的協同或相加性抑制作用(圖28-33)。因此,並非所有的化學治療劑均能夠提供協同作用,且據本發明人充分瞭解,其中的組合以及治療方法係首次報導。The invention further provides a combination therapy using Ad.5/3- CTV and other therapeutic agents, including poly[IC]-PEI, doxorubicin, and any other that promotes toxic autophagy and/or apoptosis. Therapeutic agent. This may include radiation, reactive oxygen species inducers, and specific DNA damage chemotherapeutic agents. The results indicate that the combination of Ad.5/3- CTV and poly[IC]-PEI synergistically inhibits the growth of neuroblastoma cells (Figures 16-20) and that growth inhibition may be caused by apoptosis (Figure 21). ). Reports on the combined use of the two agents are not present in the present invention, and the synergistic effects observed herein are significant and unexpected, as Ad.5/3- CTV and poly[IC]-PEI involve different cells. Apoptotic pathway (Ad.5/3- CTV induces apoptosis in neuroblastoma cells via AIF and ATM, whereas polyinosinic acid (poly[I:C]) via XIAP, MDA-5, NOXA and / Or RIG-I induces apoptosis in different cancer cells). For doxorubicin, the results indicate that combination therapy with Ad.5/3- CTV and doxorubicin induces strong additive inhibition of neuroblastoma cell growth (Figures 22-26) and growth inhibition Caused by apoptosis (Figure 27). For cisplatin, it was observed that the combination of Ad.5/3- CTV and cisplatin did not produce any observable synergistic or additive inhibition of neuroblastoma cell growth over the test dose range (Figure 28- 33). Therefore, not all chemotherapeutic agents are capable of providing synergistic effects, and it is well understood by the inventors that combinations and treatments are reported for the first time.
Poly(IC)-PEI允許poly[IC]的細胞質遞送。Ad.5/3-CTV (經由病毒複製之表現以及mda-7/IL-24之表現)與毒性自體吞噬以及細胞凋亡誘導劑poly(IC)-PEI的獨特組合用於治療神經母細胞瘤。該兩種藥劑的作用機制係不同的,但它們所誘導路徑引起神經母細胞瘤發生毒性自體吞噬以及細胞凋亡。雖然阿黴素與mda -7 /IL -24 的組合已表明可增強針對結腸癌以及肝癌的細胞凋亡誘導,但尚無報導指出Ad.5/3-CTV-阿黴素組合促進神經母細胞瘤的細胞凋亡。Poly(IC)-PEI allows cytoplasmic delivery of poly[IC]. A unique combination of Ad.5/3-CTV (through viral replication and mda-7/IL-24 expression) with toxic autophagy and the apoptosis inducer poly(IC)-PEI for the treatment of neuroblasts tumor. The mechanisms of action of the two agents are different, but the pathways they induce cause toxic autophagy and apoptosis in neuroblastoma. Although the combination of doxorubicin and mda -7 /IL -24 has been shown to enhance apoptosis induction in colon cancer and liver cancer, it has not been reported that the Ad.5/3-CTV-doxorubicin combination promotes neuroblasts. Tumor apoptosis.
在此介紹的組合治療方法可以作為主要療法或作為次要療法並對治療患有神經母細胞瘤的兒童具顯著臨床價值。每年約700名兒童經診斷患有神經母細胞瘤,神經母細胞瘤被視為兒童期早期最常見之實體腫瘤之一(通常存在於嬰兒或1-2歲幼兒)。最有效的治療選項包括輻射、化學療法以及手術。然而,儘管存在此等方法,但高危患者(或IV期)的五年存活率僅為40-50%。另外,當前治療方法可能具有持久的負面影響,包括心血管、較慢生長、心智功能變化伴學習問題,以及產生第二種癌症(諸如白血病)的潛在性。因此,本發明組合療法可以顯著降低藥物量並有益於長期治療。組合療法亦適用於達成神經母細胞瘤的長期緩解。舉例來說,患有神經母細胞瘤的個體最初可以用Ad.5/3-CTV 與poly[IC]-PEI之組合、隨後用單獨的poly[IC]-PEI治療,以便維持緩解。另外,由於預期本發明組合療法不僧產生抗藥性,因此患者在必要時可以接受組合療法超過一次。The combination therapy described herein can be used as a primary therapy or as a secondary therapy and has significant clinical value in treating children with neuroblastoma. About 700 children are diagnosed with neuroblastoma each year, and neuroblastoma is considered to be one of the most common solid tumors in early childhood (usually in infants or 1-2 years old). The most effective treatment options include radiation, chemotherapy, and surgery. However, despite these methods, the five-year survival rate for high-risk patients (or stage IV) is only 40-50%. In addition, current treatments may have long-lasting negative effects, including cardiovascular, slower growth, changes in mental function with learning problems, and the potential to produce a second cancer, such as leukemia. Thus, the combination therapies of the invention can significantly reduce the amount of drug and benefit long-term treatment. Combination therapy is also suitable for achieving long-term relief of neuroblastoma. For example, an individual with a neuroblastoma can initially be treated with a combination of Ad.5/3- CTV and poly[IC]-PEI followed by a poly[IC]-PEI alone to maintain remission. In addition, since it is expected that the combination therapy of the present invention does not produce drug resistance, the patient can receive the combination therapy more than once if necessary.
在一個實施例中,本發明提供一種治療個體之神經母細胞瘤的方法,該方法包含向個體施用有效量核酸Ad.5/3-CTV 的步驟, 該核酸Ad.5/3-CTV 包含腺病毒載體Ad.5/3與表現MDA-7/IL-24之核酸。在一個實施例中,治療劑選自poly[IC]-PEI以及阿黴素。In one embodiment, the present invention provides a method of treating a subject of neuroblastoma, the method comprising the steps of a nucleic acid Ad.5 / 3- CTV administering to the subject an effective amount of the nucleic acid Ad.5 / 3- CTV gland comprising Viral vector Ad.5/3 and nucleic acid expressing MDA-7/IL-24. In one embodiment, the therapeutic agent is selected from the group consisting of poly[IC]-PEI and doxorubicin.
在一個實施例中,本發明的Ad.5/3-CTV 係含有腺病毒載體Ad.5/3以及如Dash (20)中所述之mda -7 /IL -24 基因的核酸分子。在另一實施例中,本發明的Ad.5/3-CTV 係含有腺病毒載體Ad.5/3以及如WO2014093270中所述之mda -7 /IL -24 基因的核酸分子,該文獻之全部內容在此以引用之方式併入本申請案中。在另一實施例中,本發明的Ad.5/3-CTV 包含SEQ ID NO.1-3中的一或多個序列。In one embodiment, the Ad.5/3- CTV of the invention comprises an adenoviral vector Ad.5/3 and a nucleic acid molecule of the mda -7 /IL -24 gene as described in Dash (20). In another embodiment, the Ad.5/3- CTV of the invention comprises an adenoviral vector Ad.5/3 and a nucleic acid molecule of the mda -7 /IL -24 gene as described in WO2014093270, the entire disclosure of which The contents are hereby incorporated by reference into this application. In another embodiment, the Ad.5/3- CTV of the invention comprises one or more of the sequences of SEQ ID NO.
在一個實施例中,本發明提供一種抑制個體之神經母細胞瘤腫瘤生長的方法,該方法包含向個體施用有效量之Ad.5/3-CTV 的步驟, 該Ad.5/3-CTV 包含腺病毒載體Ad.5/3之以及表現MDA-7/IL-24之核酸。In one embodiment, the invention provides a method of inhibiting growth of a neuroblastoma tumor in an individual, the method comprising the step of administering to the individual an effective amount of Ad.5/3- CTV , the Ad.5/3- CTV comprising Adenoviral vector Ad.5/3 and nucleic acid expressing MDA-7/IL-24.
在一個實施例中,本發明提供一種誘導神經母細胞瘤細胞發生細胞凋亡或毒性自體吞噬的方法,該方法包含向該細胞施用有效量之Ad.5/3-CTV 或使該細胞與有效量之Ad.5/3-CTV 接觸的步驟,該Ad.5/3-CTV 包含腺病毒載體Ad.5/3以及表現MDA-7/IL-24之核酸。在一個實施例中,本發明提供一種誘導癌細胞發生細胞凋亡以及毒性自體吞噬的方法,該方法包含向該細胞施用有效量之Ad.5/3-CTV 或使該細胞與有效量之Ad.5/3-CTV 接觸的步驟,該Ad.5/3-CTV 包含腺病毒載體Ad.5/3以及表現MDA-7/IL-24之核酸。In one embodiment, the invention provides a method of inducing apoptosis or toxic autophagy of a neuroblastoma cell, the method comprising administering to the cell an effective amount of Ad.5/3- CTV or causing the cell to An effective amount of Ad.5/3- CTV contacting, the Ad.5/3- CTV comprises an adenoviral vector Ad.5/3 and a nucleic acid expressing MDA-7/IL-24. In one embodiment, the invention provides a method of inducing apoptosis and toxic autophagy in cancer cells, the method comprising administering to the cell an effective amount of Ad.5/3- CTV or subjecting the cell to an effective amount Ad.5/3- CTV contact step, the Ad.5/3- CTV comprises adenoviral vector Ad.5/3 and nucleic acid expressing MDA-7/IL-24.
在一個實施例中,本發明提供一種抑制神經母細胞瘤細胞生長的方法,該方法包含向該細胞施用有效量之Ad.5/3-CTV 或使該細胞與有效量之Ad.5/3-CTV 接觸的步驟,該Ad.5/3-CTV 包含腺病毒載體Ad.5/3以及表現MDA-7/IL-24之核酸。In one embodiment, the invention provides a method of inhibiting the growth of a neuroblastoma cell, the method comprising administering to the cell an effective amount of Ad.5/3- CTV or the cell with an effective amount of Ad.5/3 a step of CTV contacting, the Ad.5/3- CTV comprises an adenoviral vector Ad.5/3 and a nucleic acid expressing MDA-7/IL-24.
在本發明的一個實施例中,MDA-7/IL-24之表現經由AIF、ATM以及γ-H2AX之調節來誘導神經母細胞瘤細胞發生細胞凋亡。In one embodiment of the invention, the expression of MDA-7/IL-24 is via AIF, ATM, and modulation of γ-H2AX to induce apoptosis in neuroblastoma cells.
在一個實施例中,本文所述之方法進一步包含施用有效量的poly[IC]-PEI或阿黴素的步驟。In one embodiment, the methods described herein further comprise the step of administering an effective amount of poly[IC]-PEI or doxorubicin.
在一個實施例中,本發明提供一種治療個體之神經母細胞瘤的方法,該方法包含向個體施用有效量之Ad.5/3-CTV 與選自:poly[IC]-PEI或阿黴素之分子的步驟。In one embodiment, the invention provides a method of treating a neuroblastoma in a subject, the method comprising administering to the individual an effective amount of Ad.5/3- CTV and selected from the group consisting of: poly[IC]-PEI or doxorubicin The molecular steps.
在一個實施例中,本發明提供一種抑制神經母細胞瘤細胞生長的方法,該方法包含向該細胞施用有效量之Ad.5/3-CTV 與選自:poly[IC]-PEI或阿黴素, 或使該細胞與有效量之Ad.5/3-CTV 與選自:poly[IC]-PEI或阿黴素之分子接觸的步驟。在另一實施例中,神經母細胞瘤細胞生長的抑制顯著高於單獨使用Ad.5/3-CTV 或該分子之治療所引起的抑制。In one embodiment, the invention provides a method of inhibiting growth of a neuroblastoma cell, the method comprising administering to the cell an effective amount of Ad.5/3- CTV and selected from the group consisting of: poly[IC]-PEI or A. Or a step of contacting the cell with an effective amount of Ad.5/3- CTV in contact with a molecule selected from the group consisting of poly[IC]-PEI or doxorubicin. In another embodiment, inhibition of growth of neuroblastoma cells is significantly higher than inhibition by treatment with Ad.5/3- CTV alone or with the molecule.
在一個實施例中,本發明提供一種使已用Ad.5/3-CTV 與poly[IC]-PEI或用Ad.5/3-CTV 以及poly[IC]-PEI治療之個體之神經母細胞瘤維持緩解的方法,該方法包含向個體施用有效量之poly[IC]-PEI或阿黴素以維持神經母細胞瘤緩解的步驟。In one embodiment, the invention provides a neuron cell for an individual who has been treated with Ad.5/3- CTV and poly[IC]-PEI or with Ad.5/3- CTV and poly[IC]-PEI A method of maintaining tumor remission, the method comprising the step of administering to a subject an effective amount of poly[IC]-PEI or doxorubicin to maintain neuroblastoma remission.
在一個實施例中,本文所述之方法係作為主要療法或次要療法用於治療患有神經母細胞瘤的個體。In one embodiment, the methods described herein are used as primary or secondary therapies for treating an individual having a neuroblastoma.
在一個實施例中,poly[IC]-PEI之施用濃度在0.05 µg/ml至5 µg/ml範圍內。在另一實施例中,poly[IC]-PEI的濃度在0.2至2.5 µg/ml範圍內。在又另一實施例中,poly[IC]-PEI的濃度在1 ng/ml至100 µg/ml範圍內。在一個實施例中,poly[IC]-PEI的濃度在每劑量1 ng至100 µg範圍內。在又另一實施例中,poly[IC]-PEI的濃度在每公斤體重1 ng至100 µg範圍內。In one embodiment, the poly[IC]-PEI is applied at a concentration ranging from 0.05 μg/ml to 5 μg/ml. In another embodiment, the concentration of poly[IC]-PEI is in the range of 0.2 to 2.5 μg/ml. In yet another embodiment, the concentration of poly[IC]-PEI is in the range of 1 ng/ml to 100 μg/ml. In one embodiment, the concentration of poly[IC]-PEI ranges from 1 ng to 100 μg per dose. In yet another embodiment, the concentration of poly[IC]-PEI ranges from 1 ng to 100 μg per kilogram of body weight.
在一個實施例中,阿黴素的施用濃度在1至20 µM範圍內。在另一實施例中,阿黴素的投與濃度在5至10 µM範圍內。在另一實施例中,阿黴素的濃度在每公斤體重0.1 mg至20 mg範圍內。在又另一實施例中,阿黴素的濃度在每劑量1 mg至500 mg範圍內。In one embodiment, the doxorubicin is administered at a concentration ranging from 1 to 20 μM. In another embodiment, the doxorubicin is administered at a concentration ranging from 5 to 10 μM. In another embodiment, the concentration of doxorubicin ranges from 0.1 mg to 20 mg per kg of body weight. In yet another embodiment, the concentration of doxorubicin ranges from 1 mg to 500 mg per dose.
在一個實施例中,Ad.5/3-CTV 與poly[IC]-PEI或阿黴素同時施用。在另一實施例中,poly[IC]-PEI或阿黴素係在Ad.5/3-CTV 施用之後的12-96小時施用。在另一實施例中,poly[IC]-PEI或阿黴素係在Ad.5/3-CTV 施用之後的24-96小時施用。In one embodiment, Ad.5/3- CTV is administered concurrently with poly[IC]-PEI or doxorubicin. In another embodiment, the poly[IC]-PEI or doxorubicin is administered 12-96 hours after Ad.5/3- CTV administration. In another embodiment, the poly[IC]-PEI or doxorubicin is administered 24-96 hours after Ad.5/3- CTV administration.
在本文所述方法的一個實施例中,Ad.5/3-CTV 的劑量在1至500個溶菌斑形成單位(plaque-forming unit,pfu)範圍內。在另一實施例中,Ad.5/3-CTV 的劑量係在6.25 pfu至50 pfu範圍內。在另一實施例中,Ad.5/3-CTV 的劑量係5、10、25、30、40、50或75 pfu。在本文所述方法的另一實施例中,Ad.5/3-CTV 的劑量在每毫升或每劑量1x102 至1x1015 pfu範圍內。在另一實施例中,Ad.5/3-CTV 的劑量在每毫升或每劑量1x104 至1x106 pfu範圍內。在一個實施例中,Ad.5/3-CTV 的劑量在每公斤體重1x106 至1x1010 pfu範圍內。在另一實施例中,Ad.5/3-CTV 的劑量低於LD50 (殺死50%個體之Ad.5/3-CTV 最小劑量)。In one embodiment of the methods described herein, the dose of Ad.5/3- CTV is in the range of from 1 to 500 plaque-forming units (pfu). In another embodiment, the dosage of Ad.5/3- CTV is in the range of 6.25 pfu to 50 pfu. In another embodiment, the dosage of Ad.5/3- CTV is 5, 10, 25, 30, 40, 50 or 75 pfu. In another embodiment of the methods described herein, the dose of Ad.5/3- CTV is in the range of 1 x 10 2 to 1 x 10 15 pfu per ml or dose. In another embodiment, the dose of Ad.5/3- CTV is in the range of 1 x 10 4 to 1 x 10 6 pfu per ml or dose. In one embodiment, Ad.5 / 3- CTV dose within 1x10 6 to 1x10 10 pfu per kilogram of body weight range. In another embodiment, the dosage Ad.5 / 3- CTV is lower than the LD 50 (50% killing of individual Ad.5 / 3- CTV minimum dose).
在本文所述方法的一個實施例中,Ad.5/3-CTV 的劑量在0.1個國際單位(international unit,IU)至100 IU範圍內。在另一實施例中,Ad.5/3-CTV 的劑量在2.5 IU至50 IU範圍內。在另一實施例中,Ad.5/3-CTV 的劑量係5、7.5、10、12.5或25 IU。在本文所述方法的另一實施例中,Ad.5/3-CTV 的劑量在每毫升或每劑量1x101 至1x106 範圍內。在又另一實施例中,Ad.5/3-CTV 的劑量在以體重計1x101 至1x106 範圍內。在另一實施例中,Ad.5/3-CTV 的劑量低於LD50 (殺死50%個體之Ad.5/3-CTV 最小劑量)。In one embodiment of the methods described herein, the dose of Ad.5/3- CTV is in the range of 0.1 international units (IU) to 100 IU. In another embodiment, the dose of Ad.5/3- CTV is in the range of 2.5 IU to 50 IU. In another embodiment, the dosage of Ad.5/3- CTV is 5, 7.5, 10, 12.5 or 25 IU. In another embodiment of the methods described herein, the dose of Ad.5/3- CTV is in the range of 1 x 10 1 to 1 x 10 6 per ml or dose. In yet another embodiment, the dose of Ad.5/3- CTV is in the range of 1 x 10 1 to 1 x 10 6 by weight. In another embodiment, the dosage Ad.5 / 3- CTV is lower than the LD 50 (50% killing of individual Ad.5 / 3- CTV minimum dose).
在本文所述方法的一個實施例中,神經母細胞瘤細胞選自由SK-N-AS、SK-N-SH以及NB1691組成之群。In one embodiment of the methods described herein, the neuroblastoma cells are selected from the group consisting of SK-N-AS, SK-N-SH, and NB1691.
在一個實施例中,本發明提供Ad.5/3-CTV 與藥劑之組合,其用於治療個體癌症之方法中,其中該Ad.5/3-CTV 與該藥劑產生協同作用以誘導癌細胞生長抑制、毒性自體吞噬以及細胞凋亡。在一個實施例中,該Ad.5/3-CTV 包含腺病毒載體Ad.5/3以及表現MDA-7/IL-24之核酸。在另一實施例中,該藥劑選自以下:poly[IC]-PEI、阿黴素、以及能夠促進毒性自體吞噬及/或細胞凋亡的其他藥劑。In one embodiment, the invention provides a combination of Ad.5/3- CTV and a medicament for use in a method of treating cancer in a subject, wherein the Ad.5/3- CTV synergizes with the agent to induce cancer cells Growth inhibition, toxic autophagy, and apoptosis. In one embodiment, the Ad.5/3- CTV comprises an adenoviral vector Ad.5/3 and a nucleic acid that exhibits MDA-7/IL-24. In another embodiment, the agent is selected from the group consisting of poly[IC]-PEI, doxorubicin, and other agents capable of promoting toxic autophagy and/or apoptosis.
在該組合的一個實施例中,MDA-7/IL-24之表現經由AIF、ATM以及γ-H2AX之調節來誘導癌細胞發生細胞凋亡。In one embodiment of this combination, the expression of MDA-7/IL-24 is via AIF, ATM, and modulation of γ-H2AX to induce apoptosis in cancer cells.
在該組合的一個實施例中,Ad.5/3-CTV 與藥劑同時施用。在又另一實施例中,藥劑係在Ad.5/3-CTV 投與之後的12-96小時施用。In one embodiment of this combination, the Ad.5/3- CTV is administered concurrently with the agent. In yet another embodiment, the agent is administered 12-96 hours after administration of Ad.5/3- CTV .
在該組合的一個實施例中,癌症係神經母細胞瘤。在又另一實施例中,癌症係黑色素瘤、神經膠母細胞瘤、前列腺癌、乳癌、結腸直腸癌、肺癌或胰臟癌。In one embodiment of the combination, the cancer is a neuroblastoma. In yet another embodiment, the cancer is melanoma, glioblastoma, prostate cancer, breast cancer, colorectal cancer, lung cancer, or pancreatic cancer.
在該組合的一個實施例中,藥劑係poly[IC]-PEI。在又另一實施例中,藥劑係阿黴素。In one embodiment of the combination, the agent is poly[IC]-PEI. In yet another embodiment, the agent is doxorubicin.
在該組合的一個實施例中,藥劑誘導MDA-5、NOXA以及RIG-I中之一或多者。In one embodiment of the combination, the agent induces one or more of MDA-5, NOXA, and RIG-I.
在一個實施例中,本發明提供一種治療個體之癌症的方法,該方法包含向個體施用有效量之Ad.5/3-CTV 以及藥劑,其中該Ad.5/3-CTV 與該藥劑產生協同作用以誘導癌細胞生長抑制以及細胞凋亡。在一個實施例中,Ad.5/3-CTV 包含腺病毒載體Ad.5/3以及表現MDA-7/IL-24之核酸。在另一實施例中,藥劑選自以下:poly[IC]-PEI、阿黴素、以及能夠促進毒性自體吞噬及/或細胞凋亡的其他藥劑。在該方法的一個實施例中,MDA-7/IL-24之表現經由AIF、ATM以及γ-H2AX之調節來誘導癌細胞發生細胞凋亡。In one embodiment, the invention provides a method of treating cancer in an individual, the method comprising administering to the individual an effective amount of Ad.5/3- CTV and an agent, wherein the Ad.5/3- CTV synergizes with the agent Role to induce cancer cell growth inhibition and apoptosis. In one embodiment, Ad.5/3- CTV comprises adenoviral vector Ad.5/3 and a nucleic acid that expresses MDA-7/IL-24. In another embodiment, the agent is selected from the group consisting of poly[IC]-PEI, doxorubicin, and other agents that promote toxic autophagy and/or apoptosis. In one embodiment of the method, the expression of MDA-7/IL-24 is via AIF, ATM, and modulation of γ-H2AX to induce apoptosis in cancer cells.
在該方法的一個實施例中,Ad.5/3-CTV 與藥劑同時施用。在另一實施例中,藥劑係在Ad.5/3-CTV 施用之後的12-96小時施用。In one embodiment of the method, the Ad.5/3- CTV is administered concurrently with the agent. In another embodiment, the agent is administered 12-96 hours after Ad.5/3- CTV administration.
在該方法的一個實施例中,癌症係神經母細胞瘤。在又另一實施例中,癌症係黑色素瘤、神經膠母細胞瘤、前列腺癌、乳癌、結腸直腸癌、肺癌或胰臟癌。In one embodiment of the method, the cancer is a neuroblastoma. In yet another embodiment, the cancer is melanoma, glioblastoma, prostate cancer, breast cancer, colorectal cancer, lung cancer, or pancreatic cancer.
在該方法的一個實施例中,藥劑係poly[IC]-PEI。在另一實施例中,藥劑係阿黴素。在該方法的一個實施例中,藥劑誘導MDA-5、NOXA以及RIG-I中的一或多者。In one embodiment of the method, the agent is poly[IC]-PEI. In another embodiment, the agent is doxorubicin. In one embodiment of the method, the agent induces one or more of MDA-5, NOXA, and RIG-I.
本發明參考以下實例將得到更充分的瞭解。然而,熟習此項技術者容易瞭解,所提供的實例僅用於說明之目的且不希望限制本發明的範圍,本發明的範圍係由其後的申請專利範圍限定。The invention will be more fully understood with reference to the following examples. However, it will be readily understood by those skilled in the art that the examples are provided for illustrative purposes only and are not intended to limit the scope of the invention, which is defined by the scope of the appended claims.
在本申請案中,應注意過渡術語「包含」與「包括」、「含有」或「特徵為」同義,係包括性或開放式的,且不排除未敍述的其他元件或方法步驟。結果 表現mda -7 /IL -24 之CTV 活體外抑制神經母細胞瘤細胞增殖 In this application, it should be noted that the term "comprising" is synonymous with "including", "containing" or "characterized" and is intended to be inclusive or open-ended and does not exclude other elements or method steps that are not described. Results showed that mda -7 /IL -24 CTV inhibited proliferation of neuroblastoma cells in vitro
為了檢查活體外以及活體內生長之神經母細胞瘤腫瘤上之mda -7 /IL -24 過度表現,將基因方法用於針對向性修飾的癌症終止子病毒(Ad.5/3-CTV )(23, 26),亦即,異位表現mda -7 /IL -24 的條件性複製腺病毒。腺病毒進入與細胞表面受體有關,因此對此研究中所用之神經母細胞瘤三種細胞株SK-N-AS、NB1691以及SK-N-SH的CAR (針對Ad.5)、橋粒黏蛋白以及CD46 (針對Ad.3)受體狀況進行確定。 CAR表現係可變的,其中SK-N-AS與NB1691細胞中具有相似的較低量且SK-N-SH細胞中的量較高(圖8A以及8B)。所有三種細胞株中的CD46表現量類似且橋粒黏蛋白含量與CAR遵循相似的模式,SK-N-SH細胞中的表現最高。當Ad.5/3-CTV 感染之後監測轉殖基因表現(MDA-7/IL-24以及E1A)時,與模擬物以及Ad.5/3-Null感染的細胞相比,所有三種神經母細胞瘤細胞株均表現預期的轉殖基因(圖1A)。相較於對照組,發現經Ad.5/3-CTV 感染之細胞中之MDA-7/IL-24蛋白質含量出現劑量依賴性增加。為了證實MDA-7/IL-24蛋白質含量增加代表了mda - 7 /IL -24 mRNA轉錄上調,評估經Ad.5/3-CTV 處理之細胞中的mRNA轉錄物含量。相較於經模擬物、Ad.5/3-null或Ad.5/3-E1A 處理之細胞,經Ad.5/3-CTV 處理之神經母細胞瘤細胞顯示mda -7 /IL -24 mRNA含量大幅增加(數據未示出)。接著,使用MTT分析來評估Ad.5/3-CTV 對神經母細胞瘤細胞生長的影響。雖然Ad.5/3-E1A 經由其溶瘤活性而在一定程度上抑制細胞增殖,但相較於其他療法,使用Ad.5/3-CTV 強制mda -7 /IL -24 表現最能把細胞增殖的劑量依賴性降低(圖1B)。Ad .5 /3 -CTV 誘導神經母細胞瘤細胞發生細胞死亡 In order to examine the overexpression of mda -7 /IL -24 on in vitro and in vivo growth of neuroblastoma tumors, genetic methods were applied to the targeted modified cancer terminator virus (Ad.5/3- CTV ) ( 23, 26), that is, an ectopically expressed conditional replication adenovirus of mda -7 /IL -24 . Adenovirus entry is associated with cell surface receptors, so the three cell lines of neuroblastoma SK-N-AS, NB1691 and SK-N-SH used in this study (for Ad.5), desmoglein And the status of CD46 (for Ad.3) receptors was determined. The CAR profile was variable, with SK-N-AS having similarly lower amounts in NB1691 cells and higher amounts in SK-N-SH cells (Figures 8A and 8B). The CD46 expression was similar in all three cell lines and the desmoglein content was similar to that of CAR, with the highest performance in SK-N-SH cells. When the transgene expression (MDA-7/IL-24 and E1A) was monitored after Ad.5/3- CTV infection, all three neuroblasts were compared to mock and Ad.5/3-Null infected cells. The tumor cell lines all showed the expected transgenic genes (Fig. 1A). A dose-dependent increase in MDA-7/IL-24 protein content in cells infected with Ad.5/3- CTV was found compared to the control group. To confirm that the increase in MDA-7/IL-24 protein content represents up - regulation of mda - 7 /IL -24 mRNA transcription, mRNA transcript levels in cells treated with Ad.5/3- CTV were assessed. Neuroblastoma cells treated with Ad.5/3- CTV showed mda -7 /IL -24 mRNA compared to cells treated with mock, Ad.5/3-null or Ad.5/3- E1A The content increased significantly (data not shown). Next, MTT assay was used to assess the effect of Ad.5/3- CTV on the growth of neuroblastoma cells. Although Ad.5/3- E1A inhibits cell proliferation to a certain extent via its oncolytic activity, the use of Ad.5/3- CTV forcing mda -7 /IL -24 is the most potent cell compared to other therapies. The dose-dependent decrease in proliferation (Fig. 1B). Ad .5 /3 - CTV induces cell death in neuroblastoma cells
mda -7 /IL -24 之異位表現誘導多種癌症類型發生細胞凋亡(16)。相較於經模擬物、Ad.5/3-Null或Ad.5/3-E1A 處理物處理之細胞,神經母細胞瘤細胞株過度表現mda -7 /IL -24 使得TUNEL陽性細胞增加(圖2A)。誘導細胞凋亡的進一步證明係藉由FACS分析表明,其中經Ad.5/3-CTV 感染之細胞中的亞G1群(DNA含量)增加。 DNA頻率分佈直方圖(其中亞G1區域對應於細胞凋亡細胞)表明,Ad.5/3-CTV 使SK-N-AS的細胞凋亡細胞數目增加至40-50%、使SK-N-SH的細胞凋亡細胞數目增加至35-50%且使NB1691細胞的細胞凋亡細胞增加至40-50%,相比之下,經Ad.5/3-Null感染的對照組為5%或經Ad.5/3-E1A 感染之細胞為約20% (圖2B)。根據西方墨點法分析,明顯可見PARP裂解主要存在於經Ad.5/3-CTV 感染之神經母細胞瘤細胞中(圖2C)。用Ad.5/3-CTV 感染神經母細胞瘤細胞之後,亦分析mda -7 /IL -24 下游分子以及涉及細胞死亡之信號的表現。在許多癌症中,已知mda -7 /IL -24 在Bcl-2蛋白家族中可增強促細胞凋亡基因以及減弱抗細胞凋亡基因(44)。 Ad.5/3-CTV 感染之後,發現神經母細胞瘤細胞中存在相似的表現特徵,亦即,BAX以及P-JNK (促細胞凋亡蛋白)增強且BCL-2以及BCL-xL (抗細胞凋亡蛋白)之表現減少(圖9)。值得注意地,此等變化僅在Ad.5/3-CTV 感染神經母細胞瘤細胞之後顯而易見,而在Ad.5/3-null或Ad.5/3-E1A 感染神經母細胞瘤細胞之後不明顯。 mda -7 /IL -24 活體外誘導神經母細胞瘤細胞發生卡斯蛋白酶非依賴性細胞凋亡 Ectopic manifestations of mda -7 /IL -24 induce apoptosis in a variety of cancer types (16). Excessive expression of mda -7 /IL -24 in neuroblastoma cell lines resulted in an increase in TUNEL-positive cells compared to cells treated with mock, Ad.5/3-Null or Ad.5/3- E1A treatments (Fig. 2A). Further proof of induction of apoptosis was confirmed by FACS analysis, in which the sub-G1 population (DNA content) in cells infected with Ad.5/3- CTV was increased. The DNA frequency distribution histogram (where the sub-G1 region corresponds to apoptotic cells) indicates that Ad.5/3- CTV increases the number of apoptotic cells of SK-N-AS to 40-50%, making SK-N- The number of apoptotic cells in SH increased to 35-50% and the apoptotic cells of NB1691 cells increased to 40-50%, compared with 5% of the control group infected with Ad.5/3-Null or The cells infected with Ad.5/3- E1A were approximately 20% (Fig. 2B). According to Western blot analysis, it is apparent that PARP cleavage is mainly present in neuroblastoma cells infected with Ad.5/3- CTV (Fig. 2C). After infection of neuroblastoma cells with Ad.5/3- CTV , the expression of mda -7 /IL -24 downstream molecules and signals involved in cell death was also analyzed. In many cancers, mda -7 /IL -24 is known to enhance pro-apoptotic genes and attenuate anti-apoptotic genes in the Bcl-2 protein family (44). After Ad.5/3- CTV infection, similar expression characteristics were found in neuroblastoma cells, ie, BAX and P-JNK (pro-apoptotic proteins) were enhanced and BCL-2 and BCL-xL (anti-cells) The expression of apoptotic proteins was reduced (Figure 9). Notably, these changes were only apparent after Ad.5/3- CTV infection of neuroblastoma cells, but not after Ad.5/3-null or Ad.5/3- E1A infection of neuroblastoma cells obvious. Mda -7 /IL -24 induces caspase-independent apoptosis in neuroblastoma cells in vitro
雖然已充分確定mda -7 /IL-24對於廣譜人類癌細胞具有腫瘤抑制以及細胞凋亡促進特性,但mda -7 /IL -24 藉以誘導細胞凋亡的分子機制非常發散且視乎腫瘤類型而涉及不同路徑(44)。卡斯蛋白酶依賴性細胞凋亡係漸進式細胞死亡之共同模式(46),因此本實驗旨在確定mda -7 /IL -24 誘導神經母細胞瘤之細胞死亡是否具有卡斯蛋白酶依賴性。藉由西方墨點法分析或使用基於發光之分析法分析時,用Ad.5/3-CTV處理神經母細胞瘤細胞不能誘導卡斯蛋白酶-3或卡斯蛋白酶-9活化(圖3A以及3B)。為了確定潛在涉及外源性細胞凋亡路徑,在Ad.5/3-CTV 感染之後,監測卡斯蛋白酶8的表現,且發現此等細胞株中不存在活化(圖10)。在另一項驗證研究中,神經母細胞瘤細胞在Ad.5/3-CTV 感染之前用z-vad fmk (一種泛卡斯蛋白酶抑制劑)處理且再培養48小時。接著經由西方墨點法分析細胞中的PARP裂解,證明在Ad.5/3-CTV 感染之前,在泛卡斯蛋白酶抑制劑處理或不處理的情況下存在類似的PARP裂解(圖3C)。此結果進一步支持在MDA-7/IL-24異位表現於神經母細胞瘤細胞中之後,存在卡斯蛋白酶非依賴性細胞死亡機制。 mda -7 /IL -24 介 導神經母細胞瘤發生的細胞凋亡涉及AIF 活化以及細胞核易位 Although it has been well established that mda -7 /IL-24 has tumor suppressor and apoptosis-promoting properties for a broad spectrum of human cancer cells, the molecular mechanism by which mda -7 /IL -24 induces apoptosis is very divergent and depends on the tumor type. And involves different paths (44). Caspase-dependent apoptosis is a common pattern of progressive cell death (46), so this experiment was designed to determine whether mda -7 /IL -24 induces cell death in neuroblastoma whether it is caspase-dependent. Treatment of neuroblastoma cells with Ad.5/3-CTV did not induce activation of caspase-3 or caspase-9 by Western blot analysis or by luminescence-based assays (Figures 3A and 3B) ). To determine potential pathways involved in exogenous apoptosis, the performance of caspase 8 was monitored after Ad.5/3- CTV infection and no activation was found in these cell lines (Figure 10). In another validation study, neuroblastoma cells were treated with z-vad fmk (a pancacine inhibitor) prior to Ad.5/3- CTV infection and incubated for an additional 48 hours. The PARP cleavage in the cells was then analyzed by Western blotting, demonstrating the presence of similar PARP cleavage with or without treatment with the pancacine inhibitor prior to Ad.5/3- CTV infection (Fig. 3C). This result further supports the presence of a caspase-independent cell death mechanism following MDA-7/IL-24 ectopic expression in neuroblastoma cells. Mda -7 /IL -24 mediates apoptosis in neuroblastoma, involving AIF activation and nuclear translocation
腫瘤抑制因子p53在藉由誘導基因組穩定性、細胞週期停滯或細胞凋亡而遏制腫瘤發生方面起重要作用(47)。細胞凋亡誘導因子(AIF)係粒線體蛋白質,其當易位至細胞核時,引起細胞凋亡,主要在卡斯蛋白酶非依賴性背景下、經由誘導染色體縮合以及DNA片段化來引起細胞凋亡(48)。 p53在卡斯蛋白酶非依賴性細胞死亡中係已確定的AIF調節因子且AIF可以促進p53介導的細胞死亡(49)。與經模擬物或Ad.5/3-Null感染的細胞相比,Ad.5/3-CTV 感染之後,p53含量以劑量依賴性方式適度增加(圖11)。經Ad.5/3-CTV 感染之神經母細胞瘤細胞中的AIF含量以劑量依賴性方式增加(圖4A),表明AIF潛在地涉及卡斯蛋白酶非依賴性細胞死亡。The tumor suppressor p53 plays an important role in suppressing tumorigenesis by inducing genomic stability, cell cycle arrest or apoptosis (47). Apoptosis-inducing factor (AIF) is a mitochondrial protein that causes apoptosis when translocated to the nucleus, causing cell death mainly through induced chromosome condensation and DNA fragmentation in a caspase-independent context. Dead (48). P53 is a defined regulator of AIF in caspase-independent cell death and AIF promotes p53-mediated cell death (49). After Ad.5/3- CTV infection, p53 content was moderately increased in a dose-dependent manner compared to mock- or Ad.5/3-Null-infected cells (Figure 11). AIF content in Ad.5/3- CTV- infected neuroblastoma cells increased in a dose-dependent manner (Fig. 4A), indicating that AIF potentially involves caspase-independent cell death.
先前研究表明,BCL-2蛋白促進BAK或BAX插入粒線體膜中以形成功能性寡聚物,從而使粒線體內膜去極化且隨後發生AIF細胞核易位,促進卡斯蛋白酶非依賴性細胞凋亡(50)。為了確定mda -7 /IL -24 對AIF細胞核易位是否施加類似影響,使用免疫染色法以及細胞分級分離方法。 AIF在未處理對照組細胞之粒線體中呈現粒狀圖案,而用Ad.5/3-CTV 處理後,在細胞核中偵測到AIF(圖4B)。利用細胞分級分離法證實此結果,其清楚地顯示在Ad.5/3-CTV 感染之後,AIF積聚於細胞核溶解物中且在細胞質部分中之含量同時降低(圖4C)。Previous studies have shown that BCL-2 protein promotes the insertion of BAK or BAX into the mitochondrial membrane to form functional oligomers, thereby depolarizing the mitochondrial inner membrane and subsequent AIF nuclear translocation, promoting caspase-independent Apoptosis (50). To determine if mda- 7 /IL -24 exerts a similar effect on nuclear translocation of AIF cells, immunostaining and cell fractionation methods were used. AIF showed a granular pattern in the mitochondria of untreated control cells, whereas after treatment with Ad.5/3- CTV , AIF was detected in the nucleus (Fig. 4B). This result was confirmed by cell fractionation, which clearly showed that after Ad.5/3- CTV infection, AIF accumulated in the nucleus lysate and the content in the cytoplasm fraction was simultaneously decreased (Fig. 4C).
使用AIF抑制劑N-苯基順丁烯二醯亞胺證實Ad.5/3-CTV 誘導、AIF介導神經母細胞瘤細胞發生的細胞死亡。用濃度為50 μM/L的AIF抑制劑處理1小時,隨後用Ad.5/3-CTV 處理48小時,使得細胞死亡減少,如藉由FACS分析所監測(數據未示出)。此現象藉由針對PARP裂解的西方墨點法分析進一步證實。用AIF抑制劑處理,隨後用Ad.5/3-CTV 感染,引起PARP裂解減少(圖4D)。總體而言,此等結果表明Ad.5/3-CTV 誘導神經母細胞瘤細胞發生卡斯蛋白酶非依賴性AIF介導性細胞凋亡。ATM -γ -H2AX 軸介導神經母細胞瘤細胞發生AIF 誘導性細胞死亡 The AIF inhibitor N-phenyl maleimide was used to confirm Ad.5/3- CTV- induced, AIF-mediated cell death in neuroblastoma cells. Treatment with AIF inhibitor at a concentration of 50 μM/L for 1 hour followed by treatment with Ad.5/3- CTV for 48 hours reduced cell death as monitored by FACS analysis (data not shown). This phenomenon was further confirmed by Western blot analysis for PARP cleavage. Treatment with an AIF inhibitor followed by infection with Ad.5/3- CTV caused a reduction in PARP cleavage (Fig. 4D). Collectively, these results indicate that Ad.5/3- CTV induces caspase-independent AIF-mediated apoptosis in neuroblastoma cells. ATM -γ- H2AX axis mediates AIF- induced cell death in neuroblastoma cells
調節AIF誘導以及細胞核易位、引起卡斯蛋白酶非依賴性細胞凋亡功能的機制尚未充分瞭解。先前研究表明γ-H2AX在MEF中由AIF介導的壞死性凋亡方面起關鍵作用(45)。為了驗證此假設,檢查Ad.5/3-CTV 對SK-N-AS以及NB1691神經母細胞瘤細胞中之H2AX之表現以及活化的影響。相較於經對照物、Ad.5/3-Null或Ad.5/3-E1A 感染之細胞,Ad.5/3-CTV 感染使得H2AX含量以及H2AX磷酸化(γ-H2AX)增加(圖5A以及圖12)。為了對H2AX磷酸化的分子機制進一步解密,評估經Ad.5/3-CTV 處理之SK-N-AS、SK-N-SH以及NB1691神經母細胞瘤細胞中之ATM含量以及活化。相較於經對照物、Ad.5/3-Null或Ad.5/3-E1A 處理之細胞,ATM含量以及ATM磷酸化增加(圖5B以及圖13)。總之,此等結果表明,在經Ad.5/3-CTV 處理之神經母細胞瘤細胞中, AIF介導的卡斯蛋白酶非依賴性細胞凋亡需要ATM誘導組蛋白H2AX磷酸化。The mechanisms regulating AIF induction as well as nuclear translocation and causing caspase-independent apoptosis are not fully understood. Previous studies have shown that γ-H2AX plays a key role in AIF-mediated necrotic apoptosis in MEF (45). To test this hypothesis, the effect of Ad.5/3- CTV on the expression and activation of H2AX in SK-N-AS and NB1691 neuroblastoma cells was examined. Ad.5/3- CTV infection increased H2AX content and H2AX phosphorylation (γ-H2AX) compared to cells infected with control, Ad.5/3-Null or Ad.5/3- E1A (Fig. 5A) And Figure 12). To further decipher the molecular mechanism of H2AX phosphorylation, ATM content and activation in Ad.5/3- CTV treated SK-N-AS, SK-N-SH, and NB1691 neuroblastoma cells were evaluated. ATM content and ATM phosphorylation were increased compared to cells treated with control, Ad.5/3-Null or Ad.5/3- E1A (Fig. 5B and Fig. 13). Taken together, these results indicate that AIF-mediated caspase-independent apoptosis is required for ATM-induced histone H2AX phosphorylation in Ad.5/3- CTV- treated neuroblastoma cells.
為了進一步證實在經Ad.5/3-CTV 處理之神經母細胞瘤細胞中ATM作為涉及H2AX以及AIF介導之細胞死亡的上游調節因子,使用阻斷ATM激酶的小分子ATM抑制劑KU-60019以及KU-55933。 ATM使多種蛋白質在特定位置發生磷酸化,包括H2AX在S139 (γ-H2AX)。神經母細胞瘤細胞在Ad.5/3-CTV 感染之前,用KU-60019 (3 μM)或KU-55933 (5 μM,圖14)處理隔夜。 KU60019處理、隨後的Ad.5/3-CTV 感染抑制了ATM磷酸化,藉此抑制SK-N-AS以及NB1691細胞中之γ-H2AX(圖5C)。此亦引起PARP裂解減少,反映出細胞凋亡減少,此藉由TUNEL分析證實(圖5D以及圖14)。綜合而言,此等結果表明ATM充當H2AX磷酸化之上游調節因子,從而在Ad.5/3-CTV 處理之後,引起神經母細胞瘤細胞發生AIF介導的細胞死亡。 mda - 7 / IL - 24 活體內抑制神經母細胞瘤腫瘤生長 To further demonstrate that ATM is an upstream regulator of H2AX and AIF-mediated cell death in Ad.5/3- CTV- treated neuroblastoma cells, a small molecule ATM inhibitor KU-60019 that blocks ATM kinase is used. And KU-55933. ATM phosphorylates a variety of proteins at specific locations, including H2AX at S139 (γ-H2AX). Neuroblastoma cells were treated overnight with KU-60019 (3 μM) or KU-55933 (5 μM, Figure 14) prior to Ad.5/3- CTV infection. Treatment with KU60019 followed by Ad.5/3- CTV infection inhibited ATM phosphorylation, thereby inhibiting γ-H2AX in SK-N-AS and NB1691 cells (Fig. 5C). This also caused a decrease in PARP cleavage, reflecting a decrease in apoptosis, as confirmed by TUNEL analysis (Fig. 5D and Fig. 14). Taken together, these results indicate that ATM acts as an upstream regulator of H2AX phosphorylation, resulting in AIF-mediated cell death in neuroblastoma cells following Ad.5/3- CTV treatment. Mda - 7 / IL - 24 inhibits tumor growth in neuroblastoma in vivo
為了直接評估Ad.5/3-CTV 所遞送的mda -7 /IL -24 對活體內腫瘤生長的影響,將NB1691細胞皮下植入裸小鼠的兩側。左側腹上的腫瘤用Ad.5/3-Null、Ad.5/3-E1A 或Ad.5/3-CTV (mda -7 /IL -24 轉導病毒) 之瘤內注射劑刺激。 藉由游標測徑規每隔一天量測腫瘤來監測小鼠的腫瘤生長。與經Ad.5/3-Null或Ad.5/3-E1A 處理的小鼠相比,經Ad.5/3-CTV 處理之小鼠的腫瘤體積存在顯著降低(圖6A)。雖然Ad.5/3-E1A 使所注射之左側上的腫瘤生長在一定程度上減少,但明顯地,只有在左側腫瘤經Ad.5/3-CTV 處理之動物中才觀測到未注射之右側腫瘤出現「旁觀者活性」(圖6)。此等結果證實先前公開之數據,其中MDA-7/IL-24展現強抗腫瘤「旁觀者活性」。為了確定MDA-7/IL-24是否引起AIF介導的活體內細胞凋亡,對腫瘤切片中的MDA-7/IL-24、pATM、γ-H2AX以及AIF進行免疫分析。藉由TUNEL分析測定細胞凋亡含量。與本發明活體外觀測結果一致,來自經Ad.5/3-CTV處理之小鼠的腫瘤切片顯示針對MDA-7/IL-24、pATM、γ-H2AX以及AIF之染色增加(圖6C)。另外,藉由TUNEL染色陽性細胞數目定量的腫瘤細胞之細胞凋亡指數在Ad.5/3-CTV 處理的情況下增加(圖6B)。Ad .5 /3 -CTV 與 poly [IC ]-PEI 的 組合誘導神經母細胞瘤 (NB ) 細胞生長受到協同性抑制 To directly assess the effect of mda -7 /IL -24 delivered by Ad.5/3- CTV on tumor growth in vivo, NB1691 cells were subcutaneously implanted on both sides of nude mice. Tumors on the left abdomen were stimulated with an intratumoral injection of Ad.5/3-Null, Ad.5/3- E1A or Ad.5/3- CTV (mda -7 /IL -24 transduced virus ) . Tumor growth in mice was monitored by measuring the tumor every other day with a vernier caliper. There was a significant decrease in tumor volume in mice treated with Ad.5/3- CTV compared to mice treated with Ad.5/3-Null or Ad.5/3- E1A (Fig. 6A). Although Ad.5/3- E1A reduced the growth of the tumor on the left side of the injection to a certain extent, it was apparent that the uninjected right side was observed only in the animals treated with Ad.5/3- CTV on the left side of the tumor. Tumors have "bystander activity" (Figure 6). These results confirm previously published data in which MDA-7/IL-24 exhibits strong anti-tumor "bystander activity". To determine whether MDA-7/IL-24 caused AIF-mediated apoptosis in vivo, immunoassays were performed on MDA-7/IL-24, pATM, γ-H2AX, and AIF in tumor sections. Apoptotic content was determined by TUNEL analysis. Consistent with the in vitro observations of the present invention, tumor sections from mice treated with Ad.5/3-CTV showed increased staining for MDA-7/IL-24, pATM, γ-H2AX, and AIF (Fig. 6C). In addition, the apoptosis index of tumor cells quantified by the number of TUNEL staining positive cells was increased in the case of Ad.5/3- CTV treatment (Fig. 6B). Ad .5 / 3 -CTV neuroblastoma (NB) a combination of poly [IC] -PEI the synergistic induction of cell growth inhibition
NB細胞株(SK-N-AS以及SK-N-SH)用Ad.5/3 E1A (12.5 IU)或Ad.5/3-CTV (12.5 IU)感染且培養24小時。接著,此等細胞用各種劑量的poly[IC]-PEI再處理24小時。使用MTT分析來測定細胞增殖且繪圖(圖16-19)。單獨使用Ad.5/3-CTV 引起兩種測試細胞株出現30-40%的生長抑制。單獨使用poly[IC]-PEI引起20-40%的細胞生長抑制。有趣地,不同濃度之poly[IC]-PEI與固定的低濃度之Ad.5/3-CTV之組合在組合指數(CI)為(0.15-0.40)的情況下對細胞增殖產生強大的協同性抑制作用(圖20)。CI係使用Chou以及Talalay方法確定(57)。Ad.5/3-CTV 與poly[IC]-PEI組合處理對細胞生長的抑制作用可能由誘導細胞凋亡引起,這可從組合處理組中之PARP裂解相較於單一處理組而言增加來證明(圖21)。Ad .5 /3 -CTV 與阿黴素 的 組合誘導神經母細胞瘤 (NB ) 細胞生長受到較強的相加性抑制 NB cell lines (SK-N-AS and SK-N-SH) were infected with Ad.5/3 E1A (12.5 IU) or Ad.5/3- CTV (12.5 IU) and cultured for 24 hours. These cells were then retreated with various doses of poly[IC]-PEI for 24 hours. MTT assay was used to determine cell proliferation and plot (Figures 16-19). The use of Ad.5/3- CTV alone caused 30-40% growth inhibition in both test cell lines. The use of poly[IC]-PEI alone caused 20-40% inhibition of cell growth. Interestingly, the combination of different concentrations of poly[IC]-PEI and fixed low concentrations of Ad.5/3-CTV produced strong synergy in cell proliferation with a combination index (CI) of (0.15-0.40). Inhibition (Figure 20). The CI system was determined using the Chou and Talalay methods (57). The inhibition of cell growth by Ad.5/3- CTV in combination with poly[IC]-PEI may be caused by induction of apoptosis, which may be increased from the PARP lysis phase in the combination treatment group compared to the single treatment group. Proof (Figure 21). Ad .5 / 3 -CTV combination of doxorubicin and neuroblastoma (NB) cell growth was induced by adding a strong inhibition
NB細胞株(SK-N-AS以及SK-N-SH)用Ad.5/3 E1A (12.5 IU)或Ad.5/3-CTV (12.5 IU)感染且培養24小時。接著,此等細胞用各種劑量的阿黴素再處理24小時。使用MTT分析來測定細胞增殖且繪圖(圖22-25)。單獨使用Ad.5/3-CTV 感染引起兩種測試細胞株出現30-40%的生長抑制。單獨使用阿黴素引起40-50%的細胞生長抑制。有趣地,不同濃度之阿黴素與固定低濃度之Ad.5/3-CTV 之組合在CI指數為(0.52-0.59)的情況下對細胞增殖產生較強的相加性/協同性抑制作用(圖26)。組合指數係使用Chou以及Talalay方法確定(57)。 Ad.5/3-CTV 與阿黴素組合處理對細胞生長的抑制作用可能由誘導細胞凋亡引起,這可從組合處理組中之PARP裂解相較於單一處理組而言增加來證明(圖27)。Ad .5 /3 -CTV 與順鉑的組合不能增強單獨任一藥劑對神經母細胞瘤 (NB ) 細胞的治療功效 NB cell lines (SK-N-AS and SK-N-SH) were infected with Ad.5/3 E1A (12.5 IU) or Ad.5/3-CTV (12.5 IU) and cultured for 24 hours. These cells were then treated with various doses of doxorubicin for an additional 24 hours. MTT assay was used to determine cell proliferation and plot (Figures 22-25). Infection with Ad.5/3- CTV alone caused 30-40% growth inhibition in both test cell lines. Doxorubicin alone causes 40-50% inhibition of cell growth. Interestingly, the combination of different concentrations of doxorubicin and fixed low concentrations of Ad.5/3- CTV has a strong additive/synergy-inhibiting effect on cell proliferation with a CI index of (0.52-0.59). (Figure 26). The combination index was determined using the Chou and Talalay methods (57). The inhibition of cell growth by Ad.5/3- CTV in combination with doxorubicin may be caused by induction of apoptosis, as evidenced by the increase in PARP cleavage in the combination treatment group compared to the single treatment group (Fig. 27). The combination of Ad .5 /3 -CTV and cisplatin does not enhance the therapeutic efficacy of either agent alone on neuroblastoma (NB ) cells
NB細胞株(SK-N-AS以及SK-N-SH)用Ad.5/3 E1A (12.5 IU)或Ad.5/3-CTV (12.5 IU)感染且培養24小時。接著,此等細胞用各種劑量的順鉑再處理24小時。使用MTT分析來測定細胞增殖且繪圖(圖28-31)。單獨使用Ad.5/3-CTV 感染引起兩種測試細胞株出現30-40%的生長抑制。單獨使用順鉑引起10-30%的細胞生長抑制。然而,不同濃度之順鉑與固定低濃度之Ad.5/3-CTV 之組合不能增強單獨任一藥劑的治療功效。另外,使用Chou以及Talalay方法(57)確定的CI表明此CI在CI值範圍為0.9-1.4的情況下具有拮抗性(圖32)。此外,圖33中所示的針對PARP裂解之西方墨點分析(細胞凋亡誘導標記)不能表明當Ad.5/3-CTV添加至順鉑中時,PARP裂解出現任何進一步的增加。NB cell lines (SK-N-AS and SK-N-SH) were infected with Ad.5/3 E1A (12.5 IU) or Ad.5/3- CTV (12.5 IU) and cultured for 24 hours. These cells were then retreated with various doses of cisplatin for 24 hours. MTT assay was used to determine cell proliferation and plot (Figures 28-31). Infection with Ad.5/3- CTV alone caused 30-40% growth inhibition in both test cell lines. The use of cisplatin alone caused 10-30% inhibition of cell growth. However, the combination of different concentrations of cisplatin with a fixed low concentration of Ad.5/3- CTV does not enhance the therapeutic efficacy of either agent alone. In addition, the CI determined using Chou and the Talalay method (57) indicates that this CI is antagonistic in the case of CI values ranging from 0.9 to 1.4 (Fig. 32). Furthermore, the Western blot analysis (apoptosis-inducing marker) for PARP cleavage shown in Figure 33 does not indicate any further increase in PARP cleavage when Ad.5/3-CTV is added to cisplatin.
總之,上述研究提出一種新穎的病毒-化學組合方法,其可以提供針對早期以及晚期神經母細胞瘤的增強治療選項。mda -7 /IL -24 之免疫刺激特性表明,該組合方法當活體內使用時,甚至可以經加強對抗腫瘤細胞的免疫反應來進一步增強活性(12, 59)。材料以及方法 細胞以及試劑 In summary, the above study proposes a novel viral-chemical combinatorial approach that can provide enhanced therapeutic options for early and advanced neuroblastoma. The immunostimulatory properties of mda -7 /IL -24 indicate that this combination method can even enhance the activity by enhancing the immune response against tumor cells when used in vivo (12, 59). Materials and methods cells and reagents
人類神經母細胞瘤癌細胞株SK-N-AS以及SK-N-SH獲自ATCC (Manassas, VA)且NB1691細胞獲自St. Jude兒童研究醫院(Memphis, TN)的Alan Houghton博士。使用研究動物診斷實驗室(Research Animal Diagnostic Laboratory)提供的「細胞檢查(CellCheck)」服務鑑別NB1691細胞株且與collaborator (IDEXX BioResearch)所產生的初始STR圖譜進行比較。回收之後,細胞(SK-N-SH以及SK-N-AS)的累積培養時長小於6個月。所有實驗均使用早期繼代細胞。所有細胞株均使用Sigma的黴漿菌偵測套組頻繁地測試黴漿菌污染。 SK-N-AS細胞在含有非必需胺基酸的DMEM中培養,SK-N-SH細胞用RPMI 1640培養且NB1691細胞用補充有10%胎牛血清(FBS)、50個單位/毫升青黴素以及50 μg/mL鏈黴素(Life Technologies Inc., Frederick, MD)的DMEM (Invitrogen, Carlsbad, CA)培養。細胞在37℃、在增濕之5%CO2氛圍中培育。此研究中使用特異性針對以下之抗體:AIF (#4642)、ATM (#2873)、pATM (ser 1981, #13050)、BCL-2 (#2876)、BAX (2772)、PARP (#9542)、卡斯蛋白酶3 (#9662)、卡斯蛋白酶8(#9746)、H2AX (#7631)以及γ-H2AX (ser 139, #9718)(Cell signaling Technology, Boston, MA);MDA-7/IL-24 (#K101, GenHunter, Nashville, TN)、HRP結合的二級抗體(Dako, Carpinteria, CA)、β-肌動蛋白(#NB600-501, Novus Biologicals, Inc., Littleton, CO)。此研究中所用的其他材料係Transcriptor第一股cDNA合成套組、原位細胞死亡偵測套組、螢光素(#11684795910, Roche Applied Science, Indianapolis, IN)、MTT細胞生長分析套組(#CT02, Millipore Corporation, Billerica, MA)、 KU60019 (#SML1416)以及KU-55933 (#SML-1109)(Sigma, St Louis, MO)。用質體轉染 Human neuroblastoma cell lines SK-N-AS and SK-N-SH were obtained from ATCC (Manassas, VA) and NB1691 cells were obtained from Dr. Alan Houghton of St. Jude Children's Research Hospital (Memphis, TN). The NB1691 cell line was identified using the "CellCheck" service provided by the Research Animal Diagnostic Laboratory and compared to the initial STR map generated by the collaborator (IDEXX BioResearch). After recovery, the cumulative culture duration of the cells (SK-N-SH and SK-N-AS) was less than 6 months. Early passage cells were used in all experiments. All cell lines were tested for mycoplasma contamination frequently using the Sigma Mycobacterium detection kit. SK-N-AS cells were cultured in DMEM containing non-essential amino acids, SK-N-SH cells were cultured with RPMI 1640 and NB1691 cells were supplemented with 10% fetal bovine serum (FBS), 50 units/ml penicillin and Incubate with 50 μg/mL streptomycin (Life Technologies Inc., Frederick, MD) in DMEM (Invitrogen, Carlsbad, CA). The cells were incubated at 37 ° C in a humidified 5% CO 2 atmosphere. Antibodies specific for the following antibodies were used in this study: AIF (#4642), ATM (#2873), pATM (ser 1981, #13050), BCL-2 (#2876), BAX (2772), PARP (#9542) , Caspase 3 (#9662), Caspase 8 (#9746), H2AX (#7631), and γ-H2AX (ser 139, #9718) (Cell signaling Technology, Boston, MA); MDA-7/IL -24 (#K101, GenHunter, Nashville, TN), HRP-conjugated secondary antibody (Dako, Carpinteria, CA), β-actin (#NB600-501, Novus Biologicals, Inc., Littleton, CO). The other materials used in this study were Transcriptor's first cDNA synthesis kit, in situ cell death detection kit, luciferin (#11684795910, Roche Applied Science, Indianapolis, IN), MTT cell growth assay kit (# CT02, Millipore Corporation, Billerica, MA), KU60019 (#SML1416) and KU-55933 (#SML-1109) (Sigma, St Louis, MO). Transfection with plastid
所有轉染實驗均使用FuGene HD轉染試劑、根據製造商方案(Roche, Indianapolis, IN)進行。簡言之,在500 µL無血清培養基中將質體/siRNA與FuGene HD試劑混合(1:3比率)且擱置30分鐘以便形成複合物。接著將複合物添加至具有2.5 mL無血清培養基(每毫升培養基2 µg質體)的100 mm盤中。轉染6小時之後,添加完全培養基,且細胞再培養24小時(1)。細胞增殖分析 (MTT 分析 ) All transfection experiments were performed using FuGene HD transfection reagent according to the manufacturer's protocol (Roche, Indianapolis, IN). Briefly, plastid/siRNA was mixed with FuGene HD reagent (1:3 ratio) in 500 μL of serum-free medium and left for 30 minutes to form a complex. The complex was then added to a 100 mm dish with 2.5 mL serum-free medium (2 μg plastid per ml medium). After 6 hours of transfection, complete medium was added and the cells were cultured for a further 24 hours (1). Cell proliferation assay (MTT analysis )
使用經修改的3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑鎓溴化物(MTT)分析作為粒線體代謝活性的量測手段來測定細胞生長速率,如早先所述(8)。細胞用模擬物、Ad.5/3-Null、Ad.5/3-E1A 或指定劑量的Ad.5/3-CTV 處理且在37℃培育。 0-96小時之後,添加MTT試劑,且在37℃培育細胞4小時。移除培養基之後,將甲臢晶體溶解於DMSO中,使用微定量盤式光譜儀讀取550 nm吸光度且結果以圖形方式表示。末端去氧基核苷酸基轉移酶介導的缺口標記 (TUNEL ) 分析 Determination of cells using a modified 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as a measure of mitochondrial metabolic activity Growth rate, as described earlier (8). Cells were treated with mock, Ad.5/3-Null, Ad.5/3- E1A or the indicated dose of Ad.5/3- CTV and incubated at 37 °C. After 0-96 hours, the MTT reagent was added and the cells were incubated for 4 hours at 37 °C. After the medium was removed, the formazan crystals were dissolved in DMSO, and the absorbance at 550 nm was read using a micro-quantitative disc spectrometer and the results are graphically represented. Terminal deoxynucleotidyl transferase-mediated gap labeling (TUNEL ) analysis
使用TUNEL酶試劑,依循製造商說明書且如先前所述(50),評估神經母細胞瘤癌細胞以及經模擬物、Ad.5/3-Null、Ad.5/3-E1A 或Ad.5/3-CTV 處理之小鼠之異種移植腫瘤組織切片中之細胞凋亡的誘導。簡言之,培養5×103 個神經母細胞瘤癌細胞且用模擬物、Ad.5/3-Null、Ad.5/3-E1A 或Ad.5/3-CTV 處理72小時,在配製於PBS中的4%多聚甲醛中於室溫(RT)下固定1小時,以及在冰上用配製於PBS中的0.1%檸檬酸鈉所配製的0.1% Triton-X 100透化(permeabilize)2分鐘(對於細胞而言)或10分鐘(對於組織切片而言)。樣品在TUNEL反應混合物中、在增濕氛圍中、在37℃、在黑暗中培育1小時。使用附接至CCD相機的Olympus研究螢光顯微鏡捕捉影像且對細胞計數。自5個顯微鏡場對每次處理來自3個動物的每個腫瘤組織中之陽性染色細胞凋亡細胞進行計數。西方墨點法 Neuroblastoma cells and mocks, Ad.5/3-Null, Ad.5/3- E1A or Ad.5/ were evaluated using the TUNEL enzyme reagent following the manufacturer's instructions and as previously described (50). Induction of apoptosis in xenograft tumor tissue sections of 3- CTV- treated mice. Briefly, 5×10 3 neuroblastoma cells were cultured and treated with the mimic, Ad.5/3-Null, Ad.5/3- E1A or Ad.5/3- CTV for 72 hours. Immobilized in 4% paraformaldehyde in PBS for 1 hour at room temperature (RT) and permeabilized on ice with 0.1% Triton-X 100 formulated with 0.1% sodium citrate formulated in PBS. 2 minutes (for cells) or 10 minutes (for tissue sections). The samples were incubated for 1 hour in the TUNEL reaction mixture in a humidified atmosphere at 37 ° C in the dark. Images were captured and counted using an Olympus Research Fluorescence Microscope attached to a CCD camera. Positively stained apoptotic cells in each of the tumor tissues from 3 animals were counted from 5 microscope fields. Western ink point method
如先前所述(50)進行西方墨點法分析。簡言之,將經模擬物、Ad.5/3-Null、Ad.5/3-E1A 或Ad.5/3-CTV 處理的神經母細胞瘤癌細胞溶解於放射免疫沈澱分析(RIPA)溶解緩衝液中,該溶解緩衝液含有1 mM原釩酸鈉、0.5 mM PMSF、10 μg/mL抑肽酶以及10 μg/mL抗纖維蛋白溶酶肽。藉由SDS-PAGE解析溶解物中之等量總蛋白質部分且轉移至PVDF膜上。用5%脫脂乳粉/5% BSA阻斷墨點且用一級抗體、隨後用HRP結合的二級抗體探測隔夜。使用ECL系統偵測化學發光信號。所有墨點用β-肌動蛋白抗體再探測以證實相等負載量。活體內研究 Western blot analysis was performed as previously described (50). Briefly, neuroblastoma cells treated with mock, Ad.5/3-Null, Ad.5/3- E1A or Ad.5/3- CTV were dissolved in radioimmunoprecipitation assay (RIPA) to dissolve In the buffer, the lysis buffer contained 1 mM sodium orthovanadate, 0.5 mM PMSF, 10 μg/mL aprotinin, and 10 μg/mL anti-plasmin peptide. An equal amount of total protein fraction in the lysate was resolved by SDS-PAGE and transferred to a PVDF membrane. The dots were blocked with 5% skim milk powder / 5% BSA and probed overnight with primary antibody followed by HRP-conjugated secondary antibody. The chemiluminescent signal is detected using an ECL system. All blots were re-examined with beta-actin antibody to confirm equal loading. In vivo study
為了直接評估模擬物、Ad.5/3-Null、Ad.5/3-E1A 或Ad.5/3-CTV 對活體內腫瘤生長的影響,將5×106 個NB1691細胞皮下植入4至6週齡無胸腺裸小鼠之兩個側腹中。腫瘤細胞植入後7天之後,當腫瘤達到可觸知的尺寸時,左側腹腫瘤用8次瘤內注射模擬物、Ad.5/3-Null、Ad.5/3-E1A 或Ad.5/3-CTV 刺激三週(2週各注射3次且最後一週注射2次)。每隔一天藉由測徑規量測各側腹腫瘤尺寸來監測小鼠中的腫瘤生長直至實驗完成。各處理組具有兩群動物。一群在最後處理劑量之後第2天處死(各組1隻小鼠)且另一群(N=5)追蹤直至腫瘤對照組達到其需要處死之點(根據IACUC方案)。完成實驗之後,固定腫瘤且使用切片進行免疫組織化學分析。統計學分析 To directly assess the effect of the mimic, Ad.5/3-Null, Ad.5/3- E1A or Ad.5/3- CTV on tumor growth in vivo, 5×10 6 NB1691 cells were subcutaneously implanted into 4 Two flank of 6 week old athymic nude mice. Seven days after tumor cell implantation, when the tumor reached a palpable size, the left abdomen tumor was injected with 8 intratumoral injections, Ad.5/3-Null, Ad.5/3- E1A or Ad.5. /3- CTV stimulation for three weeks (3 injections per 2 weeks and 2 injections in the last week). Tumor growth in mice was monitored every other day by measuring the size of each flank tumor by caliper until the experiment was completed. Each treatment group has two groups of animals. One group was sacrificed on the 2nd day after the last dose was administered (1 mouse per group) and the other group (N=5) was followed until the tumor control group reached its point of need to be sacrificed (according to the IACUC protocol). After the experiment was completed, the tumor was fixed and sections were used for immunohistochemical analysis. Statistical analysis
所有資料均以至少三個獨立實驗(各重複至少三次)的平均值±標準差(S.D.)呈現。使用單因子變異數分析(ANOVA)與Tukey事後檢驗手段的組合來進行多個比較。統計差異係以p<0.05、p<0.01以及p<0.001之概率水準呈現。Ad .5 /3 -CTV 與 其他治療劑之組合研究 All data were presented as mean ± standard deviation (SD) of at least three independent experiments (at least three times each). Multiple comparisons were made using a combination of single factor variance analysis (ANOVA) and Tukey post hoc testing. Statistical differences were presented at a probability level of p < 0.05, p < 0.01, and p < 0.001. Ad .5 /3 - Combination study of CTV and other therapeutic agents
神經母細胞瘤細胞株(SK-N-AS以及SK-N-SH)用Ad.5/3 E1A (12.5 IU)或Ad.5/3-CTV (12.5 IU)感染且培養24小時。接著,此等細胞用各種劑量的poly[IC]-PEI、阿黴素或順鉑再處理24小時。利用MTT分析測定細胞增殖且繪圖。使用Chou以及Talalay方法確定各種組合處理的組合指數(CI)(57)。進行西方墨點法分析以對組合處理組與單一處理組之間的PARP裂解進行比較。 除本發明研究的poly[IC]-PEI以及阿黴素之外,已知可影響神經母細胞瘤細胞的其他治療劑可以與Ad.5/3-CTV 組合使用。與本發明組合使用的潛在治療劑或治療手段包括(但不限於)以下:輻射;反應性氧誘導化合物;GD2結合抗體(諸如迪奴圖單抗/優尼圖辛(dinutuximab/Unituxin));粒細胞-巨噬細胞群落刺激因子(GM-CSF);介白素-2 (IL-2);13-順-視黃酸(RA);免疫療法;檢查點抑制劑、環磷醯胺或異環磷醯胺、卡鉑、長春新鹼、阿黴素、依託泊苷、拓朴替康、白消安以及美法侖;mcl-1抑制劑;熱休克蛋白-90抑制劑;蛋白酶體抑制劑(諸如MG132),或對神經母細胞瘤或其他癌症潛在有效的其他藥劑。參考文獻 1. Bhoopathi P, Gorantla B, Sailaja GS, Gondi CS, Gujrati M, Klopfenstein JD, et al. SPARC overexpression inhibits cell proliferation in neuroblastoma and is partly mediated by tumor suppressor protein PTEN and AKT. PloS one 2012;7(5):e36093. 2. Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P, et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer research 2002;62(22):6462-6. 3. Rosen EM CJ, Frantz CN, Kretschmar C, Levey R, Vawter G, Sallan SE. Improved survival in neuroblastoma using multimodality therapy. Radiother Oncol 1984;2(3):189-200. 4. Saulnier Sholler GL, Bond JP, Bergendahl G, Dutta A, Dragon J, Neville K, et al. Feasibility of implementing molecular-guided therapy for the treatment of patients with relapsed or refractory neuroblastoma. Cancer medicine 2015;4(6):871-86. 5. Sahu U, Sidhar H, Ghate PS, Advirao GM, Raghavan SC, Giri RK. A Novel Anticancer Agent, 8- Methoxypyrimido[4',5':4,5]thieno(2,3-) Quinoline-4(3H)-One Induces Neuro 2a Neuroblastoma Cell Death through p53-Dependent, Caspase-Dependent and -Independent Apoptotic Pathways. PloS one 2013;8(6):e66430. 6. Masui K, Gini B, Wykosky J, Zanca C, Mischel PS, Furnari FB, et al. A tale of two approaches: complementary mechanisms of cytotoxic and targeted therapy resistance may inform next- generation cancer treatments. Carcinogenesis 2013;34(4):725-38. 7. Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB. Interleukin-10 and related cytokines and receptors. Annual review of immunology 2004;22:929-79. 8. Dash R, Bhoopathi P, Das SK, Sarkar S, Emdad L, Dasgupta S, et al. Novel mechanism of MDA-7/IL- 24 cancer-specific apoptosis through SARI induction. Cancer research 2014;74(2):563-74. 9. Bhutia SK, Dash R, Das SK, Azab B, Su ZZ, Lee SG, et al. Mechanism of autophagy to apoptosis switch triggered in prostate cancer cells by antitumor cytokine melanoma differentiation-associated gene 7/interleukin-24. Cancer research 2010;70(9):3667-76. 10. Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 1995;11(12):2477-86. 11. Dash R, Bhutia SK, Azab B, Su ZZ, Quinn BA, Kegelmen TP, et al. mda-7/IL-24: a unique member of the IL-10 gene family promoting cancer-targeted toxicity. Cytokine & growth factor reviews 2010;21(5):381-91. 12. Menezes ME, Bhatia S, Bhoopathi P, Das SK, Emdad L, Dasgupta S, et al. MDA-7/IL-24: multifunctional cancer killing cytokine. Advances in experimental medicine and biology 2014;818:127-53. 13. Emdad L, Sarkar D, Lebedeva IV, Su ZZ, Gupta P, Mahasreshti PJ, et al. Ionizing radiation enhances adenoviral vector expressing mda-7/IL-24-mediated apoptosis in human ovarian cancer. Journal of cellular physiology 2006;208(2):298-306. 14. Sarkar S, Quinn BA, Shen X, Dent P, Das SK, Emdad L, et al. Reversing translational suppression and induction of toxicity in pancreatic cancer cells using a chemoprevention gene therapy approach. Molecular pharmacology 2015;87(2):286-95. 15. Sarkar D, Lebedeva IV, Gupta P, Emdad L, Sauane M, Dent P, et al. Melanoma differentiation associated gene-7 (mda-7)/IL-24: a 'magic bullet' for cancer therapy? Expert opinion on biological therapy 2007;7(5):577-86. 16. Fisher PB. Is mda-7/IL-24 a "magic bullet" for cancer? Cancer research 2005;65(22):10128-38. 17. Emdad L, Lebedeva IV, Su ZZ, Gupta P, Sauane M, Dash R, et al. Historical perspective and recent insights into our understanding of the molecular and biochemical basis of the antitumor properties of mda-7/IL-24. Cancer biology & therapy 2009;8(5):391-400. 18. Lebedeva IV, Sauane M, Gopalkrishnan RV, Sarkar D, Su ZZ, Gupta P, et al. mda-7/IL-24: exploiting cancer's Achilles' heel. Molecular therapy : the journal of the American Society of Gene Therapy 2005;11(1):4-18. 19. Zhuo B, Wang R, Yin Y, Zhang H, Ma T, Liu F, et al. Adenovirus arming human IL-24 inhibits neuroblastoma cell proliferation in vitro and xenograft tumor growth in vivo. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2013;34(4):2419-26. 20. Dash R, Dmitriev I, Su ZZ, Bhutia SK, Azab B, Vozhilla N, et al. Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad.5/3) improves therapeutic efficacy in low CAR prostate cancer cells. Cancer gene therapy 2010;17(7):447-56. 21. Sarkar D, Su ZZ, Vozhilla N, Park ES, Gupta P, Fisher PB. Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice. Proceedings of the National Academy of Sciences of the United States of America 2005;102(39):14034-9. 22. Su ZZ, Sarkar D, Emdad L, Duigou GJ, Young CS, Ware J, et al. Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter. Proceedings of the National Academy of Sciences of the United States of America 2005;102(4):1059-64. 23. Azab BM, Dash R, Das SK, Bhutia SK, Sarkar S, Shen XN, et al. Enhanced prostate cancer gene transfer and therapy using a novel serotype chimera cancer terminator virus (Ad.5/3-CTV). Journal of cellular physiology 2014;229(1):34-43. 24. Park MA, Hamed HA, Mitchell C, Cruickshanks N, Dash R, Allegood J, et al. A serotype 5/3 adenovirus expressing MDA-7/IL-24 infects renal carcinoma cells and promotes toxicity of agents that increase ROS and ceramide levels. Molecular pharmacology 2011;79(3):368-80. 25. Kitanaka C, Kato K, Ijiri R, Sakurada K, Tomiyama A, Noguchi K, et al. Increased Ras expression and caspase-independent neuroblastoma cell death: possible mechanism of spontaneous neuroblastoma regression. Journal of the National Cancer Institute 2002;94(5):358-68. 26. Su Z, Emdad L, Sauane M, Lebedeva IV, Sarkar D, Gupta P, et al. Unique aspects of mda-7/IL-24 antitumor bystander activity: establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene 2005;24(51):7552-66. 27. Lebedeva IV, Su ZZ, Sarkar D, Kitada S, Dent P, Waxman S, et al. Melanoma differentiation associated gene-7, mda-7/interleukin-24, induces apoptosis in prostate cancer cells by promoting mitochondrial dysfunction and inducing reactive oxygen species. Cancer research 2003;63(23):8138-44. 28. Chen Q, Chai YC, Mazumder S, Jiang C, Macklis RM, Chisolm GM, et al. The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell death and differentiation 2003;10(3):323- 34. 29. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release from mitochondria proceeds by a two-step process. Proceedings of the National Academy of Sciences of the United States of America 2002;99(3):1259-63. 30. Shen K, Xie J, Wang H, Zhang H, Yu M, Lu F, et al. Cambogin Induces Caspase-Independent Apoptosis through the ROS/JNK Pathway and Epigenetic Regulation in Breast Cancer Cells. Molecular cancer therapeutics 2015;14(7):1738-49. 31. Cande C, Vahsen N, Garrido C, Kroemer G. Apoptosis-inducing factor (AIF): caspase-independent after all. Cell death and differentiation 2004;11(6):591-5. 32. Podhorecka M, Skladanowski A, Bozko P. H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy. Journal of nucleic acids 2010;2010. 33. Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double- strand breaks in the context of chromatin. Nucleic acids research 2008;36(17):5678-94. 34. Cregan SP, Dawson VL, Slack RS. Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 2004;23(16):2785-96. 35. Cabon L, Galan-Malo P, Bouharrour A, Delavallee L, Brunelle-Navas MN, Lorenzo HK, et al. BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation. Cell death and differentiation 2012;19(2):245-56. 36. Delettre C, Yuste VJ, Moubarak RS, Bras M, Robert N, Susin SA. Identification and characterization of AIFsh2, a mitochondrial apoptosis-inducing factor (AIF) isoform with NADH oxidase activity. The Journal of biological chemistry 2006;281(27):18507-18. 37. Artus C, Boujrad H, Bouharrour A, Brunelle MN, Hoos S, Yuste VJ, et al. AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX. The EMBO journal 2010;29(9):1585-99. 38. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2000;14(5):729-39. 39. Li A, Yu Y, Lee SC, Ishibashi T, Lees-Miller SP, Ausio J. Phosphorylation of histone H2A.X by DNA- dependent protein kinase is not affected by core histone acetylation, but it alters nucleosome stability and histone H1 binding. The Journal of biological chemistry 2010;285(23):17778-88. 40. Wen W, Zhu F, Zhang J, Keum YS, Zykova T, Yao K, et al. MST1 promotes apoptosis through phosphorylation of histone H2AX. The Journal of biological chemistry 2010;285(50):39108-16. 41. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. The Journal of biological chemistry 2000;275(13):9390-5. 42. Agathanggelou A, Weston VJ, Perry T, Davies NJ, Skowronska A, Payne DT, et al. Targeting the Ataxia Telangiectasia Mutated-null phenotype in chronic lymphocytic leukemia with pro-oxidants. Haematologica 2015;100(8):1076-85. 43. Das SK, Sarkar S, Dash R, Dent P, Wang XY, Sarkar D, et al. Cancer terminator viruses and approaches for enhancing therapeutic outcomes. Advances in cancer research 2012;115:1-38. 44. Dash R, Richards JE, Su ZZ, Bhutia SK, Azab B, Rahmani M, et al. Mechanism by which Mcl-1 regulates cancer-specific apoptosis triggered by mda-7/IL-24, an IL-10-related cytokine. Cancer research 2010;70(12):5034-45. 45. Baritaud M, Cabon L, Delavallee L, Galan-Malo P, Gilles ME, Brunelle-Navas MN, et al. AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation. Cell death & disease 2012;3:e390. 46. Broker LE, Kruyt FA, Giaccone G. Cell death independent of caspases: a review. Clinical cancer research : an official journal of the American Association for Cancer Research 2005;11(9):3155- 62. 47. Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nature reviews Molecular cell biology 2015;16(7):393-405. 48. Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer biology & therapy 2005;4(2):139-63. 49. Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW, et al. Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. The Journal of cell biology 2002;158(3):507-17. 50. Bhoopathi P, Quinn BA, Gui Q, Shen XN, Grossman SR, Das SK, et al. Pancreatic cancer-specific cell death induced in vivo by cytoplasmic-delivered polyinosine-polycytidylic acid. Cancer research 2014;74(21):6224-35. 51. Tormo D, Checińska A, Alonso-Curbelo D, Pérez-Guijarro E, Cañón E, Riveiro-Falkenbach E, Calvo TG, Larribere L, Megías D, Mulero F, Piris MA, Dash R, Barral PM, Rodríguez-Peralto JL, Ortiz-Romero P, Tüting T, Fisher PB, Soengas MS. Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. Cancer Cell. 2009 Aug 4;16(2):103-14. 52. Chuang JH, Lin TK, Tai MH, Liou CW, Huang ST, Wu CL, Lin HY, Wang PW. Preferential involvement of mitochondria in Toll-like receptor 3 agonist-induced neuroblastoma cell apoptosis, but not in inhibition of cell growth. Apoptosis. 2012 Apr;17(4):335-48. 53. Chuang JH, Chuang HC, Huang CC, Wu CL, Du YY, Kung ML, Chen CH, Chen SC, Tai MH. Differential toll-like receptor 3 (TLR3) expression and apoptotic response to TLR3 agonist in human neuroblastoma cells. J Biomed Sci. 2011 Aug 23;18:65. 54. American Cancer Society. Chemotherapy for Neuroblastoma. https://www.cancer.org/cancer/neuroblastoma/treating/chemotherapy.html 55. Hopkins-Donaldson S, Yan P, Bourloud KB, Muhlethaler A, Bodmer JL, Gross N. Doxorubicin-induced death in neuroblastoma does not involve death receptors in S-type cells and is caspase-independent in N-type cells. Oncogene. 2002 Sep 5;21(39):6132-7. 56. Cece R, Barajon I, Tredici G. Cisplatin induces apoptosis in SH-SY5Y human neuroblastoma cell line. Anticancer Res. 1995 May-Jun;15(3):777-82. 57. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010 Jan 15;70(2):440-6. 58. Menezes ME, Shen XN, Das SK, Emdad L, Guo C, Yuan F, Li YJ, Archer MC, Zacksenhaus E, Windle JJ, Subler MA, Ben-David Y, Sarkar D, Wang XY, Fisher PB. MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic mouse models of breast cancer. Oncotarget. 2015 Nov 10;6(35):36928-42. 59. Perrot I, et al. TLR3 and Rig-Like Receptor on Myeloid Dendritic Cells and Rig-Like Receptor on Human NK Cells Are Both Mandatory for Production of IFN-gamma in Response to Double-Stranded RNA.J Immunol 185 , 2080-2088 (2010). 60. Gnjatic S, Sawhney NB, Bhardwaj N. Toll-Like Receptor Agonists Are They Good Adjuvants?Cancer J 16 , 382-391 (2010). 61. Tormo D, et al. Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells.Cancer Cell 16 , 103-114 (2009). 62. Inao T, et al. Antitumor effects of cytoplasmic delivery of an innate adjuvant receptor ligand, poly(I:C), on human breast cancer.Breast Cancer Res Treat 134 , 89-100 (2012). 63. Bhoopathi P, et al. Pancreatic cancer-specific cell death induced in vivo by cytoplasmic-delivered polyinosine-polycytidylic acid.Cancer Res 74 , 6224-6235 (2014). 64. Menezes ME, et al. MDA-7/IL-24: multifunctional cancer killing cytokine.Adv Exp Med Biol 818 , 127-153 (2014). 65. Bhoopathi P, et al. mda-7/IL-24 Induces Cell Death in Neuroblastoma through a Novel Mechanism Involving AIF and ATM.Cancer Research 76 , 3572-3582 (2016).Neuroblastoma cell lines (SK-N-AS and SK-N-SH) were infected with Ad.5/3 E1A (12.5 IU) or Ad.5/3- CTV (12.5 IU) and cultured for 24 hours. These cells were then retreated with various doses of poly[IC]-PEI, doxorubicin or cisplatin for 24 hours. Cell proliferation was determined and plotted using MTT assay. The combination index (CI) of various combination treatments was determined using the Chou and Talalay methods (57). Western blot analysis was performed to compare PARP cleavage between the combination treatment group and the single treatment group. In addition to poly[IC]-PEI and doxorubicin studied in the present invention, other therapeutic agents known to affect neuroblastoma cells can be used in combination with Ad.5/3- CTV . Potential therapeutic or therapeutic means for use in combination with the present invention include, but are not limited to, the following: radiation; reactive oxygen inducing compounds; GD2 binding antibodies (such as dinutuzumab/unituxin); Granulocyte-macrophage community stimulating factor (GM-CSF); interleukin-2 (IL-2); 13-cis retinoic acid (RA); immunotherapy; checkpoint inhibitor, cyclophosphamide or Isocyclophosphamide, carboplatin, vincristine, doxorubicin, etoposide, topotecan, busulfan and melphalan; mcl-1 inhibitor; heat shock protein-90 inhibitor; proteasome Inhibitors (such as MG132), or other agents that are potentially effective against neuroblastoma or other cancers. References 1. Bhoopathi P, Gorantla B, Sailaja GS, Gondi CS, Gujrati M, Klopfenstein JD, et al. SPARC overexpression inhibits cell proliferation in neuroblastoma and is partly mediated by tumor suppressor protein PTEN and AKT. PloS one 2012;7( 5): e36093. 2. Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P, et al. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer research 2002;62(22):6462-6. 3. Rosen EM CJ, Frantz CN, Kretschmar C, Levey R, Vawter G, Sallan SE. Improved survival in neuroblastoma using multimodality therapy. Radiother Oncol 1984; 2(3): 189-200. 4. Saulnier Sholler GL, Bond JP , Bergendahl G, Dutta A, Dragon J, Neville K, et al. Feasibility of implementing molecular-guided therapy for the treatment of patients with relapsed or refractory neuroblastoma. Cancer medicine 2015;4(6):871-86. 5. Sahu U, Sidhar H, Ghate PS, Advirao GM, Raghavan SC, Giri RK. A Novel Anticancer Agent, 8- Methoxypyrimido[4', 5':4,5]thieno(2,3-) Quinoline-4(3H)- One Induces N Euro 2a Neuroblastoma Cell Death through p53-Dependent, Caspase-Dependent and -Independent Apoptotic Pathways. PloS one 2013;8(6):e66430. 6. Masui K, Gini B, Wykosky J, Zanca C, Mischel PS, Furnari FB, Et al. A tale of two approaches: complementary mechanisms of cytotoxic and targeted therapy resistance may inform next-generation cancer treatments. Carcinogenesis 2013;34(4):725-38. 7. Pestka S, Krause CD, Sarkar D, Walter MR , Shi Y, Fisher PB. Interleukin-10 and related cytokines and receptors. Annual review of immunology 2004;22:929-79. 8. Dash R, Bhoopathi P, Das SK, Sarkar S, Emdad L, Dasgupta S, et al Novel mechanism of MDA-7/IL-24 cancer-specific apoptosis through SADI induction. Cancer research 2014;74(2):563-74. 9. Bhutia SK, Dash R, Das SK, Azab B, Su ZZ, Lee SG, et al. Mechanism of autophagy to apoptosis switch in prostate cancer cells by antitumor cytokine melanoma differentiation-associated gene 7/interleukin-24. Cancer research 2010;70(9):3667-76. 10. Jiang H, Lin JJ, Su ZZ, Goldstein NI, Fisher PB. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 1995;11(12):2477-86. Dash R, Bhutia SK, Azab B, Su ZZ, Quinn BA, Kegelmen TP, et al. mda-7/IL-24: a unique member of the IL-10 gene family promoting cancer-targeted toxicity. Cytokine & growth factor reviews 2010;21(5):381-91. 12. Menezes ME, Bhatia S, Bhoopathi P, Das SK, Emdad L, Dasgupta S, et al. MDA-7/IL-24: multifunctional cancer killing cytokine. Advances in experimental Medicine and biology 2014;818:127-53. 13. Emdad L, Sarkar D, Lebedeva IV, Su ZZ, Gupta P, Mahasreshti PJ, et al. Ionizing radiation enhances adenoviral vector expressing mda-7/IL-24-mediated apoptosis In human ovarian cancer. Journal of cellular physiology 2006;208(2):298-306. 14. Sarkar S, Quinn BA, Shen X, Dent P, Das SK, Emdad L, et al. Reversing translational suppression and induction of toxi City in pancreatic cancer cells using a chemoprevention gene therapy approach. Molecular pharmacology 2015;87(2):286-95. 15. Sarkar D, Lebedeva IV, Gupta P, Emdad L, Sauane M, Dent P, et al. Melanoma differentiation Associated gene-7 (mda-7)/IL-24: a 'magic bullet' for cancer therapy? Expert opinion on biological therapy 2007;7(5):577-86. 16. Fisher PB. Is mda-7/IL -24 a "magic bullet" for cancer? Cancer research 2005;65(22):10128-38. 17. Emdad L, Lebedeva IV, Su ZZ, Gupta P, Sauane M, Dash R, et al. Historical perspective and recent Insights into our understanding of the molecular and biochemical basis of the antitumor properties of mda-7/IL-24. Cancer biology & therapy 2009;8(5):391-400. 18. Lebedeva IV, Sauane M, Gopalkrishnan RV, Sarkar D, Su ZZ, Gupta P, et al. mda-7/IL-24: exploiting cancer's Achilles' heel. Molecular therapy : the journal of the American Society of Gene Therapy 2005;11(1):4-18. Zhuo B, Wang R, Yin Y, Zhang H, Ma T, Liu F, et al. Adenovirus arming human IL-24 Tumor biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2013;34(4):2419-26. 20. Dash R, Dmitriev I, Su ZZ, Bhutia SK, Azab B, Vozhilla N, et al. Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad.5/3) improves therapeutic efficacy in low CAR prostate cancer cells. Cancer gene therapy 2010;17( 7): 447-56. 21. Sarkar D, Su ZZ, Vozhilla N, Park ES, Gupta P, Fisher PB. Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice. Proceedings of the National Academy of Sciences Of the United States of America 2005;102(39):14034-9. 22. Su ZZ, Sarkar D, Emdad L, Duigou GJ, Young CS, Ware J, et al. Targeting gene expression selectively in cancer cells by using the Progress-elevated gene-3 promoter. Proceedings of the National Academy of Sciences of the United States of America 2005;102(4):1059-64. 23. Aza b BM, Dash R, Das SK, Bhutia SK, Sarkar S, Shen XN, et al. Enhanced prostate cancer gene transfer and therapy using a novel serotype chimera cancer terminator virus (Ad.5/3-CTV). Journal of cellular physiology 2014;229(1):34-43. 24. Park MA, Hamed HA, Mitchell C, Cruickshanks N, Dash R, Allegood J, et al. A serotype 5/3 adenovirus expressing MDA-7/IL-24 infects renal Cancer cells and promotes toxicity of agents that increase ROS and ceramide levels. Molecular pharmacology 2011;79(3):368-80. 25. Kitanaka C, Kato K, Ijiri R, Sakurada K, Tomiyama A, Noguchi K, et al. Increased Ras expression and caspase-independent neuroblastoma cell death: possible mechanism of spontaneous neuroblastoma regression. Journal of the National Cancer Institute 2002;94(5):358-68. 26. Su Z, Emdad L, Sauane M, Lebedeva IV, Sarkar D, Gupta P, et al. Unique aspects of mda-7/IL-24 antitumor bystander activity: establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene 2005;24(51):7552- 66. 27. Lebedeva IV, Su ZZ, Sarkar D, Kitada S, Dent P, Waxman S, et al. Melanoma differentiation associated gene-7, mda-7/interleukin-24, induces apoptosis in prostate cancer cells by promoting mitochondrial dysfunction and inducing Responsive oxygen species. Cancer research 2003;63(23):8138-44. 28. Chen Q, Chai YC, Mazumder S, Jiang C, Macklis RM, Chisolm GM, et al. The late increase in intracellular free radical oxygen species during Apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell death and differentiation 2003;10(3):323- 34. 29. Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S. Cytochrome c release From mitochondria proceeds by a two-step process. Proceedings of the National Academy of Sciences of the United States of America 2002;99(3):1259-63. 30. Shen K, Xie J, Wang H, Zhang H, Yu M , Lu F, et al. Cambogin Induces Caspase-Independent Apoptosis through the ROS/JNK Pathway and Epigenetic Regulation in Breast Cancer Cel Ls. Molecular cancer therapeutics 2015;14(7):1738-49. 31. Cande C, Vahsen N, Garrido C, Kroemer G. Apoptosis-inducing factor (AIF): caspase-independent after all. Cell death and differentiation 2004; 11(6):591-5. 32. Podhorecka M, Skladanowski A, Bozko P. H2AX Phosphorylation: Its Role in DNA Damage Response and Cancer Therapy. Journal of nucleic acids 2010;2010. 33. Kinner A, Wu W, Staudt C, Iliakis G. Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic acids research 2008;36(17):5678-94. 34. Cregan SP, Dawson VL, Slack RS. Of AIF in caspase-dependent and caspase-independent cell death. Oncogene 2004;23(16):2785-96. 35. Cabon L, Galan-Malo P, Bouharrour A, Delavallee L, Brunelle-Navas MN, Lorenzo HK, et Al. BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation. Cell death and differentiation 2012;19(2):245-56. 36. Delettre C, Yuste VJ, Moubarak RS, Bras M, Robert N, Susin SA Identification and Characterization of AIFsh2, a mitochondrial apoptosis-inducing factor (AIF) isoform with NADH oxidase activity. The Journal of biological chemistry 2006;281(27):18507-18. 37. Artus C, Boujrad H, Bouharrour A, Brunelle MN, Hoos S, Yuste VJ, et al. AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX. The EMBO journal 2010;29(9):1585-99. 38. Daugas E, Susin SA, Zamzami N, Ferri KF , Irinopoulou T, Larochette N, et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2000;14(5):729-39. 39. Li A , Yu Y, Lee SC, Ishibashi T, Lees-Miller SP, Ausio J. Phosphorylation of histone H2A.X by DNA-dependent protein kinase is not affected by core histone acetylation, but it alters nucleosome stability and histone H1 binding. Of biological chemistry 2010;285(23):17778-88. 40. Wen W, Zhu F, Zhang J, Keum YS, Zykova T, Y Ao K, et al. MST1 promotes apoptosis through phosphorylation of histone H2AX. The Journal of biological chemistry 2010;285(50):39108-16. 41. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. The Journal of biological chemistry 2000;275(13):9390-5. 42. Agathanggelou A, Weston VJ, Perry T, Davies NJ, Skowronska A, Payne DT , et al. Targeting the Ataxia Telangiectasia Mutated-null phenotype in chronic lymphocytic leukemia with pro-oxidants. Haematologica 2015;100(8):1076-85. 43. Das SK, Sarkar S, Dash R, Dent P, Wang XY, Sarkar D, et al. Cancer terminator viruses and approaches for enhancing thermoplastic outcomes. Advances in cancer research 2012;115:1-38. 44. Dash R, Richards JE, Su ZZ, Bhutia SK, Azab B, Rahmani M, et al Mechanism by which Mcl-1 regulates cancer-specific apoptosis triggered by mda-7/IL-24, an IL-10-related cytokine. Cancer research 2010;70(12):5034-45. 45. Bari Taud M, Cabon L, Delavallee L, Galan-Malo P, Gilles ME, Brunelle-Navas MN, et al. AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation. Cell death & disease 2012 ;3:e390. 46. Broker LE, Kruyt FA, Giaccone G. Cell death independent of caspases: a review. Clinical cancer research : an official journal of the American Association for Cancer Research 2005;11(9):3155- 62. 47. Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nature reviews Molecular cell biology 2015;16(7):393-405. 48. Jin Z, El -Deiry WS. Overview of cell death signaling pathways. Cancer biology & therapy 2005;4(2):139-63. 49. Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW, et al. Apoptosis -inducing factor is involved in the regulation of caspase-independent neuronal cell death. The Journal of cell biology 2002;158(3):507-17. 50. Bhoopathi P, Quinn BA, Gui Q, Shen XN, Grossman SR, Das SK, et al. Pancreatic cancer-specific cell death induced in vivo by cytoplasmic-delivered polyinosine-polycytidylic acid. Cancer research 2014;74(21):6224-35. 51. Tormo D, Checińska A, Alonso-Curbelo D, Pérez-Guijarro E, Cañón E, Riveiro-Falkenbach E, Calvo TG, Larribere L, Megías D, Mulero F, Piris MA, Dash R, Barral PM, Rodríguez-Peralto JL, Ortiz-Romero P, Tüting T, Fisher PB, Soengas MS. Targeted activation of innate immunity for sterilization induction of autophagy and apoptosis in melanoma cells. Cancer Cell. 2009 Aug 4;16(2):103-14. 52. Chuang JH, Lin TK, Tai MH, Liou CW P. Preferential involvement of mitochondria in Toll-like receptor 3 agonist-induced neuroblastoma cell apoptosis, but not in inhibition of cell growth. Apoptosis. 2012 Apr;17(4):335- 48. 53. Chuang JH, Chuang HC, Huang CC, Wu CL, Du YY, Kung ML, Chen CH, Chen SC, Tai MH. Differential toll-like receptor 3 (TLR3) expression and apoptotic response to TLR3 agonist in huma n neuroblastoma cells. J Biomed Sci. 2011 Aug 23;18:65. 54. American Cancer Society. Chemotherapy for Neuroblastoma. https://www.cancer.org/cancer/neuroblastoma/treating/chemotherapy.html 55. Hopkins-Donaldson S, Yan P, Bourloud KB, Muhlethaler A, Bodmer JL, Gross N. Doxorubicin-induced death in neuroblastoma does not engage death receptors in S-type cells and is caspase-independent in N-type cells. Oncogene. 2002 Sep 5; 21(39):6132-7. 56. Cece R, Barajon I, Tredici G. Cisplatin induces apoptosis in SH-SY5Y human neuroblastoma cell line. Anticancer Res. 1995 May-Jun; 15(3): 777-82. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010 Jan 15;70(2):440-6. 58. Menezes ME, Shen XN, Das SK, Emdad L, Guo C , Yuan F, Li YJ, Archer MC, Zacksenhaus E, Windle JJ, Subler MA, Ben-David Y, Sarkar D, Wang XY, Fisher PB. MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic Mouse models of breast cancer. Oncotarget. 2015 Nov 10;6(35):36928-42. 59. Perrot I , et al. TLR3 and Rig-Like Receptor on Myeloid Dendritic Cells and Rig-Like Receptor on Human NK Cells Are Both Mandatory for Production of IFN-gamma in Response To Double-Stranded RNA. J Immunol 185 , 2080-2088 (2010). 60. Gnjatic S, Sawhney NB, Bhardwaj N. Toll-Like Receptor Agonists Are They Good Adjuvants? Cancer J 16 , 382-391 (2010). Tormo D , et al. Targeted activation of innate immunity for metabolism induction of autophagy and apoptosis in melanoma cells. Cancer Cell 16 , 103-114 (2009). 62. Inao T , et al. Antitumor effects of cytoplasmic delivery of an innate Breast cancer Res Treat 134 , 89-100 (2012). 63. Bhoopathi P , et al. Pancreatic cancer-specific cell death induced in vivo by cytoplasmic-delivered Polyenosine-polycytidylic acid. Cancer Res 74 , 6224-6235 (2014). 64. Menezes ME , et al. MDA-7/IL-24: multifunctional cancer killing cytokine. Adv Exp Med Biol 818 , 127-1 53 (2014). 65. Bhoopathi P , et al. mda-7/IL-24 Induces Cell Death in Neuroblastoma through a Novel Mechanism Involving AIF and ATM. Cancer Research 76 , 3572-3582 (2016).
圖1A 以及圖1B 繪示Ad.5/3-CTV 對神經母細胞瘤細胞生長的抑制作用。在圖 1A 中,神經母細胞瘤細胞被Ad.5/3-Null (25 pfu)、Ad.5/3-E1A (25 pfu)或Ad.5/3-CTV (12.5或25 pfu)感染72小時且使用特異性抗體、藉由西方墨點法評估細胞溶胞物中的E1A以及MDA-7/IL-24蛋白。在圖 1B 中,神經母細胞瘤細胞一式四份塗鋪於96孔盤中且如上用病毒感染指定的時間。使用MTT分析來量測細胞生長且以相對增殖速率(與對照細胞相比)表示。*, p<0.01相對於對照。 Figure 1A and Figure 1B show the inhibitory effect of Ad.5/3- CTV on the growth of neuroblastoma cells. In Figure 1A , neuroblastoma cells were infected with Ad.5/3-Null (25 pfu), Ad.5/3- E1A (25 pfu) or Ad.5/3- CTV (12.5 or 25 pfu). The E1A and MDA-7/IL-24 proteins in the cell lysate were evaluated by Western blotting using an antibody at specific hours. In Figure IB , neuroblastoma cells were plated in quadruplicate in 96-well plates and infected with virus as above for the indicated time. MTT assays were used to measure cell growth and expressed as relative proliferation rates (compared to control cells). *, p < 0.01 vs. control.
圖2A -2C 繪示Ad.5/3-CTV 誘導神經母細胞瘤細胞發生細胞凋亡。在圖 2A 中,神經母細胞瘤細胞係在8孔室載片中培養且用25 pfu的 Ad.5/3-Null或Ad.5/3-E1A 或指定劑量的Ad.5/3-CTV 處理72小時。固定細胞且進行TUNEL分析。數據以某一顯微鏡場中TUNEL陽性細胞來表示(與未處理的對照細胞相比)。在圖 2B 中,神經母細胞瘤細胞如上所述感染72小時且收集且進行FACS分析,其中DNA內容物使用碘化丙錠染色,且數據來自三個獨立實驗,以圖形方式呈現。柱形圖:三組重複實驗之平均值。條形圖:S.D.,*,p<0.001,相對於對照組。在圖 2C 中,神經母細胞瘤細胞如上所述處理72小時。收集細胞且使用特異性抗體以及β-肌動蛋白充當內參考物,針對PARP進行西方墨點分析。 2A- 2C show that Ad.5/3- CTV induces apoptosis in neuroblastoma cells. In Figure 2A , the neuroblastoma cell line was cultured in 8-well chamber slides with 25 pfu of Ad.5/3-Null or Ad.5/3- E1A or the indicated dose of Ad.5/3- CTV Handle for 72 hours. Cells were fixed and subjected to TUNEL analysis. Data are presented as TUNEL positive cells in a microscope field (compared to untreated control cells). In Figure 2B , neuroblastoma cells were infected for 72 hours as described above and collected and subjected to FACS analysis, where the DNA content was stained with propidium iodide and the data was presented from three independent experiments, presented graphically. Column chart: The average of three replicates. Bar graph: SD, *, p < 0.001 vs. control group. In Figure 2C , neuroblastoma cells were treated as described above for 72 hours. Cells were harvested and Western blot analysis was performed on PARP using specific antibodies and β-actin as internal references.
圖3A -3C 繪示Ad.5/3-CTV 誘導神經母細胞瘤細胞發生卡斯蛋白酶非依賴性細胞死亡。在圖 3A 中,神經母細胞瘤細胞用25 pfu之Ad.5/3-Null或Ad.5/3-E1A 或指定劑量之Ad.5/3-CTV 感染72小時。收集細胞且使用特異性抗體以及β-肌動蛋白充當內參考物,針對卡斯蛋白酶-3以及卡斯蛋白酶-9進行西方墨點分析。星形孢菌素(Staurosporine)充當卡斯蛋白酶3活化的陽性對照物。在圖 3B 中,神經母細胞瘤細胞如上處理72小時,收集且根據製造商方案進行卡斯蛋白酶-3活化分析。星形孢菌素充當陽性對照物。結果代表三個獨立實驗,以圖形方式顯示。柱形圖:三組重複實驗之平均值;條形圖,S.D.。(C)神經母細胞瘤細胞用20 μM 的Z-VAD-FMK預處理且如上所述感染72小時。收集細胞且使用特異性抗體以及β-肌動蛋白充當內參考物,針對PARP進行西方墨點法分析。結果代表三個獨立實驗。 Figures 3A- 3C show that Ad.5/3- CTV induces caspase-independent cell death in neuroblastoma cells. In Figure 3A , neuroblastoma cells were infected with 25 pfu of Ad.5/3-Null or Ad.5/3- E1A or the indicated dose of Ad.5/3- CTV for 72 hours. Cells were harvested and Western blot analysis was performed against caspase-3 and caspase-9 using specific antibodies and β-actin as internal references. Staurosporine acts as a positive control for caspase 3 activation. In Figure 3B , neuroblastoma cells were treated as above for 72 hours, collected and assayed for caspase-3 activation according to the manufacturer's protocol. Staurosporine served as a positive control. The results represent three independent experiments, displayed graphically. Column chart: average of three replicates; bar chart, SD. (C) Neuroblastoma cells were pretreated with 20 μM Z-VAD-FMK and infected for 72 hours as described above. Cells were harvested and Western blot analysis was performed on PARP using specific antibodies and β-actin as internal references. The results represent three independent experiments.
圖4A -4D 繪示Ad.5/3-CTV 促進神經母細胞瘤細胞發生AIF介導性細胞死亡。在圖 4A 中,神經母細胞瘤細胞用25 pfu之Ad.5/3-Null或Ad.5/3-E1A 或指定劑量的Ad.5/3-CTV 感染72小時。收集細胞且使用特異性抗體以及β-肌動蛋白充當內參考物,針對AIF進行西方墨點法分析。結果代表三個獨立實驗。在圖 4B 中,神經母細胞瘤細胞在8孔室載片中培養且如上文在圖 4A 中所述處理72小時。接著使用抗AIF抗體以及Alexa Flour-594二級抗體(紅色螢光),對此等細胞進行AIF之免疫螢光分析。細胞核用DAPI (藍色螢光)染色。目測螢光細胞且自10個不同場攝影且繪示代表性影像。在圖 4C 中,使用西方墨點分析來測定AIF之亞細胞分佈。神經母細胞瘤細胞用25 pfu之Ad.5/3-E1A 或指定劑量的Ad.5/3-CTV 感染72小時。分離出細胞質以及細胞核部分且使用特異性抗體、藉由西方墨點法檢查AIF。 HDAC3充當細胞核萃取物的內參考物且β-肌動蛋白充當細胞質萃取物的內參考物。在圖 4D 中,神經母細胞瘤細胞用AIF抑制劑預處理且用25 pfu之Ad.5/3-E1A 或指定劑量之Ad.5/3-CTV 感染48小時。收集細胞且使用特異性抗體以及β-肌動蛋白充當內參考物,針對AIF以及PARP進行西方墨點法分析。結果代表三個獨立實驗。 FIG. 4A -4D shows Ad.5 / 3- CTV promote neuroblastoma cells cell death mediated by AIF. In Figure 4A , neuroblastoma cells were infected with 25 pfu of Ad.5/3-Null or Ad.5/3- E1A or the indicated dose of Ad.5/3- CTV for 72 hours. Cells were harvested and Western blot analysis was performed on AIF using specific antibodies and β-actin as internal references. The results represent three independent experiments. In Figure 4B , neuroblastoma cells were cultured in 8-well chamber slides and treated as described above in Figure 4A for 72 hours. These cells were then subjected to immunofluorescence analysis of AIF using anti-AIF antibodies and Alexa Flour-594 secondary antibody (red fluorescence). The nuclei were stained with DAPI (blue fluorescence). Fluorescent cells were visually inspected and photographed from 10 different fields and representative images were drawn. In Figure 4C , Western blot analysis was used to determine the subcellular distribution of AIF. Neuroblastoma cells were infected with 25 pfu of Ad.5/3- E1A or the indicated dose of Ad.5/3- CTV for 72 hours. The cytoplasm and nuclear fraction were isolated and AIF was examined by Western blotting using specific antibodies. HDAC3 acts as an internal reference for nuclear extracts and β-actin acts as an internal reference for cytoplasmic extracts. In Figure 4D , neuroblastoma cells were pretreated with AIF inhibitor and infected with 25 pfu of Ad.5/3- E1A or the indicated dose of Ad.5/3- CTV for 48 hours. Cells were harvested and Western blot analysis was performed for AIF and PARP using specific antibodies and β-actin as internal references. The results represent three independent experiments.
圖5A -5E 表明Ad.5/3-CTV 誘導AIF介導細胞死亡需要ATM以及γ-H2AX磷酸化。神經母細胞瘤細胞用25 pfu之Ad.5/3-Null或Ad.5/3-E1A 或指定劑量的Ad.5/3-CTV 感染72小時。在圖 5A 中,收集細胞且使用特異性抗體以及β-肌動蛋白充當內參考物,針對γ-H2AX以及H2AX進行西方墨點法。在圖 5B 中,使用特異性抗體以及β-肌動蛋白充當內參考物來進行西方墨點法以便測定pATM以及ATM蛋白含量。在圖 5C 中,神經母細胞瘤細胞未經處理或用KU-60019 (3 μM) 隔夜處理且用25 pfu Ad.5/3-E1A 或指定劑量的Ad.5/3-CTV 感染48小時。收集細胞且使用特異性抗體以及β-肌動蛋白充當內參考物,針對MDA-7/IL-24、pATM、γ-H2AX、AIF以及PARP進行西方墨點法。結果代表三個獨立實驗。在圖 5D 中,神經母細胞瘤細胞用AIF抑制劑預處理且用25 pfu之Ad.5/3-E1A 或指定劑量的Ad.5/3-CTV 感染48小時。收集細胞且使用特異性抗體以及β-肌動蛋白充當內參考物,針對pATM進行西方墨點法分析。結果代表三個獨立實驗。在圖 5E 中,神經母細胞瘤細胞未經處理或用KU-60019 (3 μM) 隔夜處理且用25 pfu之 Ad.5/3-Null或Ad.5/3-E1A 或指定劑量的Ad.5/3-CTV 感染48小時。固定細胞且進行TUNEL分析。對TUNEL陽性細胞計數且按照每個顯微鏡場下的TUNEL陽性細胞並以圖形方式呈現數據,柱形圖:每5個不同顯微鏡場下的TUNEL陽性細胞平均數;條形圖,S.D.,*,p<0.001相對於對照;@,p<0.01相對於相應劑量的單獨Ad.5/3-CTV 。 Figures 5A- 5E show that Ad.5/3- CTV requires ATM and gamma-H2AX phosphorylation to induce AIF-mediated cell death. Neuroblastoma cells were infected with 25 pfu of Ad.5/3-Null or Ad.5/3- E1A or the indicated dose of Ad.5/3- CTV for 72 hours. In Figure 5A , cells were harvested and specific antibodies were used and β-actin was used as an internal reference, and Western blotting was performed for γ-H2AX and H2AX. In Figure 5B , Western blotting was performed using specific antibodies and β-actin as internal references to determine pATM and ATM protein content. In Figure 5C , neuroblastoma cells were either untreated or treated overnight with KU-60019 (3 μM) and infected with 25 pfu Ad.5/3- E1A or the indicated dose of Ad.5/3- CTV for 48 hours. Cells were harvested and Western blotting was performed against MDA-7/IL-24, pATM, γ-H2AX, AIF, and PARP using specific antibodies and β-actin as internal references. The results represent three independent experiments. In Figure 5D , neuroblastoma cells were pretreated with AIF inhibitor and infected with 25 pfu of Ad.5/3- E1A or the indicated dose of Ad.5/3- CTV for 48 hours. Cells were harvested and Western blot analysis was performed on pATM using specific antibodies and β-actin as internal references. The results represent three independent experiments. In Figure 5E , neuroblastoma cells were either untreated or treated overnight with KU-60019 (3 μM) and with 25 pfu of Ad.5/3-Null or Ad.5/3- E1A or the indicated dose of Ad. 5/3- CTV infection for 48 hours. Cells were fixed and subjected to TUNEL analysis. TUNEL positive cells were counted and presented graphically according to TUNEL positive cells in each microscope field, bar graph: average number of TUNEL positive cells per 5 different microscope fields; bar graph, SD, *, p <0.001 vs. control; @, p<0.01 vs. the corresponding dose of Ad.5/3- CTV alone.
圖6A -6C 表明瘤內注射Ad.5/3-CTV 誘導AIF介導細胞死亡且抑制人類神經母細胞瘤異種移植物腫瘤生長。如下文材料及方法中所述, 將NB1691人類神經母細胞瘤細胞皮下植入裸小鼠之兩側腹中且左側腫瘤用8次瘤內注射劑處理,包括模擬劑(溶劑)、Ad.5/3-E1A 或Ad.5/3-CTV 。各組研究動物總共6個。一旦對照動物之腫瘤達到可允許的最大限值,則收集腫瘤固定於福馬林中且包埋於石蠟中。在圖 6A 中,對左側腹以及右側腹的腫瘤體積進行定量且結果以圖形方式呈現。直線代表各組在指定時間點之所有腫瘤體積的平均值;條形圖,S.D. ,*,p<0.05相對於對照;**,p<0.001相對於對照。在圖 6B 中,經福馬林固定、經石蠟包埋的組織切片根據標準方法針對H&E以及TUNEL染色;繪示了指定處理組的代表性影像。在圖 6C 中,如下文材料及方法中所述,對腫瘤切片中的MDA-7/IL-24、AIF、γ-H2AX以及pATM進行免疫組織化學分析。繪示了代表性切片。 FIG 6A -6C shows that intratumoral injection Ad.5 / 3- CTV-induced cell death mediated by AIF and inhibits human xenografts neuroblastoma tumor growth. NB1691 human neuroblastoma cells were subcutaneously implanted into the bilateral abdomen of nude mice and the left tumor was treated with 8 intratumoral injections, including the mimetic (solvent), Ad.5/, as described in the materials and methods below. 3- E1A or Ad.5/3- CTV . A total of 6 study animals in each group. Once the tumor of the control animal reached the maximum allowable limit, the collected tumor was fixed in the formalin and embedded in paraffin. In Figure 6A , tumor volumes of the left abdomen and right abdomen were quantified and the results presented graphically. The line represents the mean of all tumor volumes for each group at the indicated time points; bar graph, SD, *, p < 0.05 vs. control; **, p < 0.001 vs. control. In Figure 6B , the formalin-fixed, paraffin-embedded tissue sections were stained for H&E and TUNEL according to standard methods; representative images of the designated treatment groups are depicted. In Figure 6C , immunohistochemical analysis of MDA-7/IL-24, AIF, γ-H2AX, and pATM in tumor sections was performed as described in Materials and Methods below. Representative sections are shown.
圖7 表明ATM以及γ-H2AX磷酸化誘導經Ad.5/3-CTV 處理之神經母細胞瘤細胞發生AIF介導的細胞死亡。 Ad.5/3-CTV 誘導神經母細胞瘤細胞發生細胞死亡的示意圖。 Figure 7 shows that ATM and γ-H2AX phosphorylation induce AIF-mediated cell death in Ad.5/3- CTV- treated neuroblastoma cells. Ad.5/3- CTV induces cell death in neuroblastoma cells.
圖8A -8B 繪示神經母細胞瘤細胞表現腺病毒受體的情況。在圖 8A 中,將神經母細胞瘤細胞培養至60-70%匯合且收集細胞且使用FACS分析,針對CAR、CD46以及橋粒黏蛋白表面受體進行染色。結果以陽性細胞佔總細胞群的百分比呈現。柱形圖代表3個獨立實驗;條形圖代表S.D.。在圖 8B 中,60-70%匯合時收集細胞且使用特異性抗體針對CAR、CD46以及橋粒黏蛋白進行西方墨點法。 Figures 8A- 8B illustrate the situation in which neuroblastoma cells express adenoviral receptors. In Figure 8A , neuroblastoma cells were cultured to 60-70% confluence and cells were harvested and stained for CAR, CD46, and desmoglein surface receptors using FACS analysis. The results are presented as a percentage of positive cells in the total cell population. The bar chart represents 3 independent experiments; the bar chart represents SD. In Figure 8B , cells were harvested at 60-70% confluence and Western blotting was performed on CAR, CD46, and desmoglein using specific antibodies.
圖9 表明Ad.5/3-CTV 誘導促細胞凋亡分子且下調抗細胞凋亡分子。神經母細胞瘤細胞用Ad.5/3-Null (25 pfu)、Ad.5/3-E1A (25 pfu)或Ad.5/3-CTV (12.5或25)感染72小時,收集細胞且使用特異性抗體以及β-肌動蛋白充當內參考物,針對pJNK、JNK、BCL-2、BAX以及BCL-xL進行西方墨點法分析。結果代表三個獨立實驗。 Figure 9 shows that Ad.5/3- CTV induces pro-apoptotic molecules and down-regulates anti-apoptotic molecules. Neuroblastoma cells were infected with Ad.5/3-Null (25 pfu), Ad.5/3- E1A (25 pfu) or Ad.5/3- CTV (12.5 or 25) for 72 hours, and cells were harvested and used. Specific antibodies and β-actin served as internal references, and Western blot analysis was performed for pJNK, JNK, BCL-2, BAX, and BCL-xL. The results represent three independent experiments.
圖10 表明Ad.5/3-CTV 誘導神經母細胞瘤細胞發生卡斯蛋白酶非依賴性細胞死亡。神經母細胞瘤細胞用Ad.5/3-Null (50 pfu)、Ad.5/3-E1A (50 pfu)或Ad.5/3-CTV (25或50 pfu)感染72小時。製備細胞溶胞物且使用特異性抗體針對卡斯蛋白酶-8進行西方墨點法分析。β-肌動蛋白充當內參考物。 Figure 10 shows that Ad.5/3- CTV induces caspase-independent cell death in neuroblastoma cells. Neuroblastoma cells were infected with Ad.5/3-Null (50 pfu), Ad.5/3- E1A (50 pfu) or Ad.5/3- CTV (25 or 50 pfu) for 72 hours. Cell lysates were prepared and Western blot analysis was performed on caspase-8 using specific antibodies. --actin acts as an internal reference.
圖 11 表明Ad.5/3-CTV 增加神經母細胞瘤細胞中的p53含量。神經母細胞瘤細胞用Ad.5/3-Null (25 pfu)、Ad.5/3-E1A (25 pfu)或Ad.5/3-CTV (12.5 pfu、25 pfu或50 pfu)感染72小時。收集細胞且使用特異性抗體以及β-肌動蛋白充當內參考物,針對p53進行西方墨點法。結果代表三個獨立實驗。 Figure 11 shows that Ad.5/3- CTV increases p53 levels in neuroblastoma cells. Neuroblastoma cells were infected with Ad.5/3-Null (25 pfu), Ad.5/3- E1A (25 pfu) or Ad.5/3- CTV (12.5 pfu, 25 pfu or 50 pfu) for 72 hours. . Cells were harvested and Western blotting was performed on p53 using specific antibodies and β-actin as internal references. The results represent three independent experiments.
圖 12 繪示γ-H2AX在經Ad.5/3-CTV 處理之神經母細胞瘤細胞中的核易位。神經母細胞瘤細胞在8孔室載片中培養且用Ad.5/3-Null (25 pfu)、Ad.5/3-E1A (25 pfu)或Ad.5/3-CTV (25或50 pfu)處理72小時。此等細胞接著使用抗γ-H2AX抗體以及Alexa Fluor-594二級抗體(紅色螢光)進行γ-H2AX分佈之免疫螢光分析。細胞核用DAPI (藍色螢光)染色。目測螢光細胞且自10個不同場攝影且此圖中繪示了代表性影像。 Figure 12 depicts nuclear translocation of gamma-H2AX in Ad.5/3- CTV treated neuroblastoma cells. Neuroblastoma cells were cultured in 8-well chamber slides with Ad.5/3-Null (25 pfu), Ad.5/3- E1A (25 pfu) or Ad.5/3- CTV (25 or 50) Pfu) was treated for 72 hours. These cells were then subjected to immunofluorescence analysis of the γ-H2AX distribution using an anti-γ-H2AX antibody and an Alexa Fluor-594 secondary antibody (red fluorescence). The nuclei were stained with DAPI (blue fluorescence). Fluorescent cells were visually visualized and photographed from 10 different fields and representative images are depicted in this figure.
圖 13 表明Ad.5/3-CTV 感染神經母細胞瘤細胞促進pATM發生核易位。神經母細胞瘤細胞在8孔室載片中培養且用Ad.5/3-Null (25 pfu)、Ad.5/3-E1A (25 pfu)或Ad.5/3-CTV (25或50 pfu)處理72小時。此等細胞接著使用抗pATM抗體以及Alexa Fluor-594二級抗體(紅色螢光)進行pATM分佈之免疫螢光分析。細胞核用DAPI (藍色螢光)染色。目測螢光細胞且自10個不同場攝影且此圖中繪示了代表性影像。 Figure 13 shows that Ad.5/3- CTV- infected neuroblastoma cells promote nuclear translocation of pATM. Neuroblastoma cells were cultured in 8-well chamber slides with Ad.5/3-Null (25 pfu), Ad.5/3- E1A (25 pfu) or Ad.5/3- CTV (25 or 50) Pfu) was treated for 72 hours. These cells were then subjected to immunofluorescence analysis of pATM distribution using anti-pATM antibodies and Alexa Fluor-594 secondary antibody (red fluorescence). The nuclei were stained with DAPI (blue fluorescence). Fluorescent cells were visually visualized and photographed from 10 different fields and representative images are depicted in this figure.
圖14 表明ATM抑制劑拯救神經母細胞瘤細胞免於Ad.5/3-CTV 誘導的細胞死亡。神經母細胞瘤細胞未經處理或用KU-55933 (5 μM) 隔夜處理且用Ad.5/3-Null (25 pfu)、Ad.5/3-E1A (25 pfu)或Ad.5/3-CTV (25或50 pfu)感染48小時,固定細胞且進行TUNEL分析。對每個顯微鏡場下的TUNEL陽性細胞計數且按照TUNEL陽性細胞、以圖形方式呈現數據,柱形圖:每5個不同顯微鏡場下的TUNEL陽性細胞平均數;條形圖,S.D.。*,p<0.001相對於對照;@,p<0.01相對於相應劑量的單獨Ad.5/3-CTV 。 Figure 14 shows that ATM inhibitors rescue neuroblastoma cells from Ad.5/3- CTV- induced cell death. Neuroblastoma cells were either untreated or treated overnight with KU-55933 (5 μM) and used Ad.5/3-Null (25 pfu), Ad.5/3- E1A (25 pfu) or Ad.5/3 - CTV (25 or 50 pfu) was infected for 48 hours, cells were fixed and subjected to TUNEL analysis. TUNEL positive cells under each microscope field were counted and presented graphically according to TUNEL positive cells, bar graph: mean number of TUNEL positive cells per 5 different microscope fields; bar graph, SD. *, p < 0.001 vs. control; @, p < 0.01 vs. the corresponding dose of Ad.5/3- CTV alone.
圖15 繪示Ad.5/3-CTV 對乳癌以及黑色素瘤細胞中之MDA-7/IL-24以及AIF表現的影響。乳癌(MDA-MB-231以及ZR-751)或黑色素瘤(C8161以及SK-Mel)細胞未經處理(對照)或用Ad.5/3-E1A (25 pfu)或Ad.5/3-CTV (12.5或25 pfu)感染72小時且藉由西方墨點法分析來評估細胞溶胞物中的MDA-7/IL-24或AIF表現。β-肌動蛋白充當內參考物。 Figure 15 depicts the effect of Ad.5/3- CTV on breast cancer and MDA-7/IL-24 and AIF expression in melanoma cells. Breast cancer (MDA-MB-231 and ZR-751) or melanoma (C8161 and SK-Mel) cells were untreated (control) or with Ad.5/3- E1A (25 pfu) or Ad.5/3- CTV (12.5 or 25 pfu) infection for 72 hours and assessment of MDA-7/IL-24 or AIF expression in cell lysates by Western blot analysis. --actin acts as an internal reference.
圖 16 繪示MTT分析中在不同處理條件下測定的吸光度。 SK-N-AS細胞培養24小時(60-70%匯合),接著對細胞進行胰蛋白酶處理且在96孔盤的各孔中塗鋪約5,000個細胞。使用8個孔對每個處理進行MTT分析。一旦細胞附著孔盤,使用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用指定劑量的poly[IC]-PEI進一步處理24小時。接著根據標準方法進行MTT分析。 Figure 16 depicts the absorbance measured under different processing conditions in an MTT assay. SK-N-AS cells were cultured for 24 hours (60-70% confluence), then the cells were trypsinized and approximately 5,000 cells were plated in each well of a 96-well plate. MTT analysis was performed for each treatment using 8 wells. Once the cells were attached to the wells, cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU) for 24 hours and then further treated with the indicated dose of poly[IC]-PEI for 24 hours. . The MTT analysis was then performed according to standard methods.
圖17 繪示不同處理條件下的細胞增殖%。 SK-N-AS細胞培養24小時(60-70%匯合),接著對細胞進行胰蛋白酶處理且在96孔盤的各孔中塗鋪約5,000個細胞。使用8個孔對每個處理進行MTT分析。一旦細胞附著孔盤,使用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用指定劑量的poly[IC]-PEI進一步處理24小時。接著根據標準方法進行MTT分析。使用100%作為對照值且相應地計算其他值。 Figure 17 depicts the % cell proliferation under different treatment conditions. SK-N-AS cells were cultured for 24 hours (60-70% confluence), then the cells were trypsinized and approximately 5,000 cells were plated in each well of a 96-well plate. MTT analysis was performed for each treatment using 8 wells. Once the cells were attached to the wells, cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU) for 24 hours and then further treated with the indicated dose of poly[IC]-PEI for 24 hours. . The MTT analysis was then performed according to standard methods. Use 100% as a control value and calculate other values accordingly.
圖18 繪示MTT分析中在不同處理條件下測定的吸光度。 SK-N-SH細胞培養24小時(60-70%匯合),接著對細胞進行胰蛋白酶處理且在96孔盤的各孔中塗鋪約5,000個細胞。使用8個孔對每個處理進行MTT分析。一旦細胞附著孔盤,使用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用指定劑量的poly[IC]-PEI進一步處理24小時。接著根據標準方法進行MTT分析。 Figure 18 depicts the absorbance measured under different processing conditions in an MTT assay. SK-N-SH cells were cultured for 24 hours (60-70% confluence), then the cells were trypsinized and approximately 5,000 cells were plated in each well of a 96-well plate. MTT analysis was performed for each treatment using 8 wells. Once the cells were attached to the wells, cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU) for 24 hours and then further treated with the indicated dose of poly[IC]-PEI for 24 hours. . The MTT analysis was then performed according to standard methods.
圖19 繪示不同處理條件下的細胞增殖%。 SK-N-SH細胞培養24小時(60-70%匯合),接著對細胞進行胰蛋白酶處理且在96孔盤的各孔中塗鋪約5,000個細胞。使用8個孔對每個處理進行MTT分析。一旦細胞附著孔盤,則用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用指定劑量的poly[IC]-PEI進一步處理24小時。接著根據標準方法進行MTT分析。使用100%作為對照值且相應地計算其他值。 Figure 19 depicts % cell proliferation under different treatment conditions. SK-N-SH cells were cultured for 24 hours (60-70% confluence), then the cells were trypsinized and approximately 5,000 cells were plated in each well of a 96-well plate. MTT analysis was performed for each treatment using 8 wells. Once the cells were attached to the wells, the cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU) for 24 hours and then further treated with the indicated dose of poly[IC]-PEI. hour. The MTT analysis was then performed according to standard methods. Use 100% as a control value and calculate other values accordingly.
圖20 繪示Ad.5/3 CTV-poly[IC]-PEI之組合指數。 Figure 20 depicts the combination index of Ad.5/3 CTV-poly[IC]-PEI.
圖21 繪示針對Ad.5/3 CTV-poly[IC]-PEI進行的西方墨點分析。將約2X106 個神經母細胞瘤細胞(SK-N-AS或SK-N-SH)細胞培養24小時。一旦細胞附著孔盤,使用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用poly[IC]-PEI (0.5 ug/ml)進一步處理24小時。接著收集細胞,溶解分離蛋白質且用於西方墨點分析。 Figure 21 depicts Western blot analysis for Ad.5/3 CTV-poly[IC]-PEI. About 2 ×10 6 neuroblastoma cells (SK-N-AS or SK-N-SH) cells were cultured for 24 hours. Once the cells were attached to the wells, cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU) for 24 hours and then further with poly[IC]-PEI (0.5 ug/ml). Handle for 24 hours. Cells were then harvested, the proteins isolated were lysed and used for Western blot analysis.
圖 22 繪示MTT分析中在不同處理條件下測定的吸光度。 SK-N-AS細胞培養24小時(60-70%匯合),接著對細胞進行胰蛋白酶處理且在96孔盤的各孔中塗鋪約5,000個細胞。使用8個孔對每個處理進行MTT分析。一旦細胞附著孔盤,使用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用指定劑量的阿黴素進一步處理24小時。接著根據標準方法進行MTT分析。 Figure 22 depicts the absorbance measured under different processing conditions in an MTT assay. SK-N-AS cells were cultured for 24 hours (60-70% confluence), then the cells were trypsinized and approximately 5,000 cells were plated in each well of a 96-well plate. MTT analysis was performed for each treatment using 8 wells. Once the cells were attached to the wells, cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU), cultured for 24 hours and then further treated with the indicated dose of doxorubicin for 24 hours. The MTT analysis was then performed according to standard methods.
圖23 繪示不同處理條件下的細胞增殖%。 SK-N-AS細胞培養24小時(60-70%匯合),接著對細胞進行胰蛋白酶處理且在96孔盤的各孔中塗鋪約5,000個細胞。使用8個孔對每個處理進行MTT分析。一旦細胞附著孔盤,使用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用指定劑量的阿黴素進一步處理24小時。接著根據標準方法進行MTT分析。使用100%作為對照值且相應地計算其他值。 Figure 23 depicts % cell proliferation under different treatment conditions. SK-N-AS cells were cultured for 24 hours (60-70% confluence), then the cells were trypsinized and approximately 5,000 cells were plated in each well of a 96-well plate. MTT analysis was performed for each treatment using 8 wells. Once the cells were attached to the wells, cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU), cultured for 24 hours and then further treated with the indicated dose of doxorubicin for 24 hours. The MTT analysis was then performed according to standard methods. Use 100% as a control value and calculate other values accordingly.
圖24 繪示MTT分析中在不同處理條件下測定的吸光度。 SK-N-SH細胞培養24小時(60-70%匯合),接著對細胞進行胰蛋白酶處理且在96孔盤的各孔中塗鋪約5,000個細胞。使用8個孔對每個處理進行MTT分析。一旦細胞附著孔盤,使用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用指定劑量的阿黴素進一步處理24小時。接著根據標準方法進行MTT分析。 Figure 24 depicts the absorbance measured under different processing conditions in an MTT assay. SK-N-SH cells were cultured for 24 hours (60-70% confluence), then the cells were trypsinized and approximately 5,000 cells were plated in each well of a 96-well plate. MTT analysis was performed for each treatment using 8 wells. Once the cells were attached to the wells, cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU), cultured for 24 hours and then further treated with the indicated dose of doxorubicin for 24 hours. The MTT analysis was then performed according to standard methods.
圖25 繪示不同處理條件下的細胞增殖%。 SK-N-SH細胞培養24小時(60-70%匯合),接著對細胞進行胰蛋白酶處理且在96孔盤的各孔中塗鋪約5,000個細胞。使用8個孔對每個處理進行MTT分析。一旦細胞附著孔盤,使用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用指定劑量的阿黴素進一步處理24小時。接著根據標準方法進行MTT分析。使用100%作為對照值且相應地計算其他值。 Figure 25 depicts the % cell proliferation under different treatment conditions. SK-N-SH cells were cultured for 24 hours (60-70% confluence), then the cells were trypsinized and approximately 5,000 cells were plated in each well of a 96-well plate. MTT analysis was performed for each treatment using 8 wells. Once the cells were attached to the wells, cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU), cultured for 24 hours and then further treated with the indicated dose of doxorubicin for 24 hours. The MTT analysis was then performed according to standard methods. Use 100% as a control value and calculate other values accordingly.
圖26 繪示Ad.5/3 CTV-阿黴素之組合指數。 Figure 26 depicts the combination index of Ad.5/3 CTV-Doxorubicin.
圖27 繪示針對Ad.5/3 CTV-阿黴素進行的西方墨點分析。將約2X106 個神經母細胞瘤細胞(SK-N-AS或SK-N-SH)培養24小時。一旦細胞附著孔盤,使用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用阿黴素(5 uM)進一步處理24小時。接著收集細胞,溶解分離蛋白質且用於西方墨點分析。 Figure 27 depicts Western blot analysis for Ad.5/3 CTV-Doxorubicin. About 2 ×10 6 neuroblastoma cells (SK-N-AS or SK-N-SH) were cultured for 24 hours. Once the cells were attached to the wells, cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU), cultured for 24 hours and then further treated with doxorubicin (5 uM) for 24 hours. Cells were then harvested, the proteins isolated were lysed and used for Western blot analysis.
圖28 繪示MTT分析中在不同處理條件下測定的吸光度。 SK-N-AS細胞培養24小時(60-70%匯合),接著對細胞進行胰蛋白酶處理且在96孔盤的各孔中塗鋪約5,000個細胞。使用8個孔對每個處理進行MTT分析。一旦細胞附著孔盤,使用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用指定劑量的順鉑進一步處理24小時。接著根據標準方法進行MTT分析。 Figure 28 depicts the absorbance measured under different processing conditions in an MTT assay. SK-N-AS cells were cultured for 24 hours (60-70% confluence), then the cells were trypsinized and approximately 5,000 cells were plated in each well of a 96-well plate. MTT analysis was performed for each treatment using 8 wells. Once the cells were attached to the wells, cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU), cultured for 24 hours and then further treated with the indicated dose of cisplatin for 24 hours. The MTT analysis was then performed according to standard methods.
圖29 繪示不同處理條件下的細胞增殖%。 SK-N-AS細胞培養24小時(60-70%匯合),接著對細胞進行胰蛋白酶處理且在96孔盤的各孔中塗鋪約5,000個細胞。使用8個孔對每個處理進行MTT分析。一旦細胞附著孔盤,使用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用指定劑量的順鉑進一步處理24小時。接著根據標準方法進行MTT分析。使用100%作為對照值且相應地計算其他值。 Figure 29 depicts % cell proliferation under different treatment conditions. SK-N-AS cells were cultured for 24 hours (60-70% confluence), then the cells were trypsinized and approximately 5,000 cells were plated in each well of a 96-well plate. MTT analysis was performed for each treatment using 8 wells. Once the cells were attached to the wells, cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU), cultured for 24 hours and then further treated with the indicated dose of cisplatin for 24 hours. The MTT analysis was then performed according to standard methods. Use 100% as a control value and calculate other values accordingly.
圖30 繪示MTT分析中在不同處理條件下測定的吸光度。 SK-N-SH細胞培養24小時(60-70%匯合),接著對細胞進行胰蛋白酶處理且在96孔盤的各孔中塗鋪約5,000個細胞。使用8個孔對每個處理進行MTT分析。一旦細胞附著孔盤,使用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用指定劑量的順鉑進一步處理24小時。接著根據標準方法進行MTT分析。 Figure 30 depicts the absorbance measured under different processing conditions in an MTT assay. SK-N-SH cells were cultured for 24 hours (60-70% confluence), then the cells were trypsinized and approximately 5,000 cells were plated in each well of a 96-well plate. MTT analysis was performed for each treatment using 8 wells. Once the cells were attached to the wells, cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU), cultured for 24 hours and then further treated with the indicated dose of cisplatin for 24 hours. The MTT analysis was then performed according to standard methods.
圖31 繪示不同處理條件下的細胞增殖%。 SK-N-SH細胞培養24小時(60-70%匯合),接著對細胞進行胰蛋白酶處理且在96孔盤的各孔中塗鋪約5,000個細胞。使用8個孔對每個處理進行MTT分析。一旦細胞附著孔盤,使用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用指定劑量的順鉑進一步處理24小時。接著根據標準方法進行MTT分析。使用100%作為對照值且相應地計算其他值。 Figure 31 depicts % cell proliferation under different treatment conditions. SK-N-SH cells were cultured for 24 hours (60-70% confluence), then the cells were trypsinized and approximately 5,000 cells were plated in each well of a 96-well plate. MTT analysis was performed for each treatment using 8 wells. Once the cells were attached to the wells, cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU), cultured for 24 hours and then further treated with the indicated dose of cisplatin for 24 hours. The MTT analysis was then performed according to standard methods. Use 100% as a control value and calculate other values accordingly.
圖32 繪示Ad.5/3 CTV-順鉑之組合指數。 Figure 32 depicts the combination index of Ad.5/3 CTV-cisplatin.
圖33 繪示針對Ad.5/3 CTV-順鉑進行的西方墨點分析。將約2X106 個神經母細胞瘤細胞(SK-N-AS或SK-N-SH)培養24小時。一旦細胞附著孔盤,使用Ad.5/3 E1A (12.5 IU)或Ad.5/3 CTV (12.5 IU)處理細胞,培養24小時且接著用順鉑(7.5 ug)進一步處理24小時。接著收集細胞,溶解分離蛋白質且用於西方墨點分析。 Figure 33 depicts Western blot analysis for Ad.5/3 CTV-cisplatin. About 2 ×10 6 neuroblastoma cells (SK-N-AS or SK-N-SH) were cultured for 24 hours. Once the cells were attached to the wells, cells were treated with Ad.5/3 E1A (12.5 IU) or Ad.5/3 CTV (12.5 IU), cultured for 24 hours and then further treated with cisplatin (7.5 ug) for 24 hours. Cells were then harvested, the proteins isolated were lysed and used for Western blot analysis.
<110> 維吉尼亞聯邦大學<120> 使用MDA-7/IL-24與治療劑之神經母細胞瘤的組合治療<130> 2207-A-TW<150> US 62/315,126<151> 2016-03-30<160> 3 <170> PatentIn version 3.5<210> 1<211> 961<212> DNA<213> 人工序列<220><223> 人工序列之說明:合成聚核苷酸<400> 1catcatcaat aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt 60ttgtgacgtg gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt 120gatgttgcaa gtgtggcgga acacatgtaa gcgacggatg tggcaaaagt gacgtttttg 180gtgtgcgccg gtgtacacag gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag 240taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga 300agtgaaatct gaataatttt gtgttactca tagcgcgtaa tatttgtcta gggagatctc 360agagaggaga gagaaagaga aagagaatgg gacagcatgt gactgcctga tgaagttggc 420gtgcttgctc aaaagttctg cgagattgac ggctctctgg atttgagcca aggacacgcc 480tgggaagcca cggtgacctc acaaggcccg gaatctccgc gagaatttca gtgttgtttt 540cctctctcca cctttctcag ggacttccga aactccgcct ctccggtgac gtcagcatag 600cgctgcgtcg gtacccacga gtggccatcg attcgacgtg tatttatacc cggtgagttc 660ctcaagaggc cactcttgag tgccagcgag tagagttttc tcctccgagc cgctccgaca 720ccgggactga aaatgagaca tattatctgc cacggaggtg ttattaccga agaaatggcc 780gccagtcttt tggaccagct gatcgaagag gtactggctg ataatcttcc acctcctagc 840cattttgaac cacctaccct tcacgaactg tatgatttag acgtgacggc ccccgaagat 900cccaacgagg aggcggtttc gcagattttt cccgactctg taatgttggc ggtgcaggaa 960g 961 <210> 2<211> 2156<212> DNA<213> 人工序列<220><223> 人工序列之說明:合成聚核苷酸<400> 2ccacatggtg gcagatgctg cattcgaaaa cgtttgaatt gataattatt atcatttgcg 60ggtcctttcc ggcgatccgc cttgttacgg ggcggcgacc tcgcgggttt tcgctattta 120tgaaaatttt ccggtttaag gcgtttccgt tcttcttcgt cataacttaa tgtttttatt 180taaaataccc tctgaaaaga aaggaaacga caggatcttc tagacccggg agcggccgct 240gtcgacattg attattgact agttattaat agtaatcaat tacggggtca ttagttcata 300gcccatatat ggagttccgc gttacataac ttacggtaaa tggcccgcct ggctgaccgc 360ccaacgaccc ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag 420ggactttcca ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagtac 480atcaagtgta tcatatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg 540cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg 600tattagtcat cgctattacc atggtgatgc ggttttggca gtacatcaat gggcgtggat 660agcggtttga ctcacgggga tttccaagtc tccaccccat tgacgtcaat gggagtttgt 720tttggcacca aaatcaacgg gactttccaa aatgtcgtaa caactccgcc ccattgacgc 780aaatgggcgg taggcgtgta cggtgggagg tctatataag cagagctctc tggctaacta 840gagaacccac tgcttactgg cttatccaaa ttaatacgac tcactatagg gagacccaag 900ctggctagcg tttaaactta agcttggtac cgagctcgga tccactagta acggccgcca 960gtgtgctgga actcggctta caagacatga ctgtgatgag gagctgcttt cgccaattta 1020acaccaagaa gaattgaggc tgcttgggag gaaggccagg aggaacacga gactgagaga 1080tgaattttca acagaggctg caaagcctgt ggactttagc cagacccttc tgccctcctt 1140tgctggcgac agcctctcaa atgcagatgg ttgtgctccc ttgcctgggt tttaccctgc 1200ttctctggag ccaggtatca ggggcccagg gccaagaatt ccactttggg ccctgccaag 1260tgaagggggt tgttccccag aaactgtggg aagccttctg ggctgtgaaa gacactatgc 1320aagctcagga taacatcacg agtgcccggc tgctgcagca ggaggttctg cagaacgtct 1380cggatgctga gagctgttac cttgtccaca ccctgctgga gttctacttg aaaactgttt 1440tcaaaaacta ccacaataga acagttgaag tcaggactct gaagtcattc tctactctgg 1500ccaacaactt tgttctcatc gtgtcacaac tgcaacccag tcaagaaaat gagatgtttt 1560ccatcagaga cagtgcacac aggcggttcc tgctattccg gagagcattt aaacagttgg 1620acgtagaagc agctctgacc aaagcccttg gggaagtgga cattcttctg acctggatgc 1680agaaactcta caagctctga atgtctagac caggacctcc ctccccctgg cactggtttg 1740ttccctgtgt catttcaaac agtctaagcc gaattctgca gatatccatc acactggcgg 1800ccgctcgagt ctagagggcc cgtttaaacc cgctgatcag cctcgactgt gccttctagt 1860tgccagccat ctgttgtttg cccctccccc gtgccttcct tgaccctgga aggtgccact 1920cccactgtcc tttcctaata aaatgaggaa attgcatcgc attgtctgag taggtgtcat 1980tctattctgg ggggtggggt ggggcaggac agcaaggggg aggattggga agacaatagc 2040aggcatgctg gggatgcggt gggctctatg gcttcgcggc cgcaatcact agtgaattcg 2100cggccgcctg caggtcggat ccgaattcga tatcactagt ggtacccacc cagtgg 2156 <210> 3<211> 2356<212> DNA<213> 人工序列<220><223> 人工序列之說明:合成聚核苷酸<400> 3tggaatgtca gtttcctcct gttcctgtcc atccgcaccc actatcttca tgttgttgca 60gatgaagcgc gcaagaccgt ctgaagatac cttcaacccc gtgtatccat atgacacgga 120aaccggtcct ccaactgtgc cttttcttac tcctcccttt gtatccccca atgggtttca 180agagagtccc cctggggtac tctctttgcg cctatccgaa cctctagtta cctccaatgg 240catgcttgcg ctcaaaatgg gcaacggcct ctctctggac gaggccggca accttacctc 300ccaaaatgta accactgtga gcccacctct caaaaaaacc aagtcaaaca taaacctgga 360aatatctgca cccctcacag ttacctcaga agccctaact gtggctgccg ccgcacctct 420aatggtcgcg ggcaacacac tcaccatgca atcacaggcc ccgctaaccg tgcacgactc 480caaacttagc attgccaccc aaggacccct cacagtgtca gaaggaaagc tagccctgca 540aacatcaggc cccctcacca ccaccgatag cagtaccctt actatcactg cctcaccccc 600tctaactact gccactggta gcttgggcat tgacttgaaa gagcccattt atacacaaaa 660tggaaaacta ggactaaagt acggggctcc tttgcatgta acagacgacc taaacacttt 720gaccgtagca actggtccag gtgtgactat taataatact tccttgcaaa ctaaagttac 780tggagccttg ggctttgatt cacaaggcaa tatgcaactt aatgtagcag gaggactaag 840gattgattct caaaacagac gccttatact tgatgttagt tatccgtttg atgctcaaaa 900ccaactaaat ctaagactag gacagggccc tctttttata aactcagccc acaacttgga 960tattaactac aacaaaggcc tttacttgtt tacagcttca aacaattcca aaaagcttga 1020ggttaaccta agcactgcca aggggttgat gtttgacgct acagccatag ccattaatgc 1080aggagatggg cttgaatttg gttcacctaa tgcaccaaac acaaatcccc tcaaaacaaa 1140aattggccat ggcctagaat ttgattcaaa caaggctatg gttcctaaac taggaactgg 1200ccttagtttt gacagcacag gtgccattac agtaggaaac aaaaataatg ataagctaac 1260cctatggaca gctccaaaac cagaagccaa ctgcataatt gaatacggga aacaaaaccc 1320agatagcaaa ctaactttaa tccttgtaaa aaatggagga attgttaatg gatatgtaac 1380gctaatggga gcctcagact acgttaacac cttatttaaa aacaaaaatg tctccattaa 1440tgtagaacta tactttgatg ccactggtca tatattacca gactcatctt ctcttaaaac 1500agatctagaa ctaaaataca agcaaaccgc tgactttagt gcaagaggtt ttatgccaag 1560tactacagcg tatccatttg tccttcctaa tgcgggaaca cataatgaaa attatatttt 1620tggtcaatgc tactacaaag caagcgatgg tgcccttttt ccgttggaag ttactgttat 1680gcttaataaa cgcctgccag atagtcgcac atcctatgtt atgacttttt tattggtcct 1740tgaatgctgg tctagctcca gaaactactc aggcaaccct cataacctcc ccatttacct 1800tttcctatat tagagaagat gactaataaa ctctaaagaa tcgtttgtgt tatgtttcaa 1860cgtgtttatt tttcaattgc agaaaatttc aagtcatttt tcattcagta gtatagcccc 1920accaccacat agcttataca gatcaccgta ccttaatcaa actcacagaa ccctagtatt 1980caacctgcca cctccctccc aacacacaga gtacacagtc ctttctcccc ggctggcctt 2040aaaaagcatc atatcatggg taacagacat attcttaggt gttatattcc acacggtttc 2100ctgtcgagcc aaacgctcat cagtgatatt aataaactcc ccgggcagct cacttaagtt 2160catgtcgctg tccagctgct gagccacagg ctgctgtcca acttgcggtt gcttaacggg 2220cggcgaagga gaagtccacg cctacatggg ggtagagtca taatcgtgca tcaggatagg 2280ggtggtgctg cagcagcgcg cgaataaact gcttgcggcc gcggctccgt cctgcaggaa 2340tacaacatgg cagtgg 2356<110> Virginia Commonwealth University <120> Combination therapy with MDA-7/IL-24 and neuroblastoma for therapeutic agents <130> 2207-A-TW<150> US 62/315,126<151> 2016 -03-30<160> 3 <170> PatentIn version 3.5<210> 1<211> 961<212> DNA<213> Artificial sequence<220><223> Description of artificial sequence: synthetic polynucleotide<400> 1catcatcaat aatatacctt attttggatt gaagccaata tgataatgag ggggtggagt 60ttgtgacgtg gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt 120gatgttgcaa gtgtggcgga acacatgtaa gcgacggatg tggcaaaagt gacgtttttg 180gtgtgcgccg gtgtacacag gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag 240taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga 300agtgaaatct gaataatttt gtgttactca tagcgcgtaa tatttgtcta gggagatctc 360agagaggaga gagaaagaga aagagaatgg gacagcatgt gactgcctga tgaagttggc 420gtgcttgctc aaaagttctg cgagattgac ggctctctgg atttgagcca aggacacgcc 480tgggaagcca cggtgacctc Acaaggcccg gaatctccgc gagaatttca gtgttgtttt 540cctctctcca cctttctcag ggacttccga aactccgcct ctccggtgac gtcagcatag 600cgctgcgtcg gtacccacga g tggccatcg attcgacgtg tatttatacc cggtgagttc 660ctcaagaggc cactcttgag tgccagcgag tagagttttc tcctccgagc cgctccgaca 720ccgggactga aaatgagaca tattatctgc cacggaggtg ttattaccga agaaatggcc 780gccagtcttt tggaccagct gatcgaagag gtactggctg ataatcttcc acctcctagc 840cattttgaac cacctaccct tcacgaactg tatgatttag acgtgacggc ccccgaagat 900cccaacgagg aggcggtttc gcagattttt cccgactctg taatgttggc ggtgcaggaa 960g 961 <210> 2 <211> 2156 <212> DNA <213 > artificial sequence <220> <223> Description of artificial sequence: synthetic polynucleotide <400> 2ccacatggtg gcagatgctg cattcgaaaa cgtttgaatt gataattatt atcatttgcg 60ggtcctttcc ggcgatccgc cttgttacgg ggcggcgacc tcgcgggttt tcgctattta 120tgaaaatttt ccggtttaag gcgtttccgt tcttcttcgt cataacttaa tgtttttatt 180taaaataccc tctgaaaaga aaggaaacga caggatcttc tagacccggg agcggccgct 240gtcgacattg attattgact agttattaat agtaatcaat Tacggggtca ttagttcata 300gcccatatat ggagttccgc gttacataac ttacggtaaa tggcccgcct ggctgaccgc 360ccaacgaccc ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag 420ggactttcca ttgacg tcaa tgggtggagt atttacggta aactgcccac ttggcagtac 480atcaagtgta tcatatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg 540cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg 600tattagtcat cgctattacc atggtgatgc ggttttggca gtacatcaat gggcgtggat 660agcggtttga ctcacgggga tttccaagtc tccaccccat tgacgtcaat gggagtttgt 720tttggcacca aaatcaacgg gactttccaa aatgtcgtaa caactccgcc ccattgacgc 780aaatgggcgg taggcgtgta cggtgggagg tctatataag cagagctctc tggctaacta 840gagaacccac tgcttactgg cttatccaaa ttaatacgac tcactatagg gagacccaag 900ctggctagcg tttaaactta agcttggtac cgagctcgga tccactagta acggccgcca 960gtgtgctgga actcggctta caagacatga ctgtgatgag gagctgcttt cgccaattta 1020acaccaagaa gaattgaggc tgcttgggag gaaggccagg aggaacacga gactgagaga 1080tgaattttca acagaggctg caaagcctgt ggactttagc cagacccttc tgccctcctt 1140tgctggcgac agcctctcaa atgcagatgg ttgtgctccc ttgcctgggt tttaccctgc 1200ttctctggag ccaggtatca ggggcccagg gccaagaatt ccactttggg ccctgccaag 1260tgaagggggt tgttccccag aaactgtggg aagccttctg gg ctgtgaaa gacactatgc 1320aagctcagga taacatcacg agtgcccggc tgctgcagca ggaggttctg cagaacgtct 1380cggatgctga gagctgttac cttgtccaca ccctgctgga gttctacttg aaaactgttt 1440tcaaaaacta ccacaataga acagttgaag tcaggactct gaagtcattc tctactctgg 1500ccaacaactt tgttctcatc gtgtcacaac tgcaacccag tcaagaaaat gagatgtttt 1560ccatcagaga cagtgcacac aggcggttcc tgctattccg gagagcattt aaacagttgg 1620acgtagaagc agctctgacc aaagcccttg gggaagtgga cattcttctg acctggatgc 1680agaaactcta caagctctga atgtctagac caggacctcc ctccccctgg cactggtttg 1740ttccctgtgt catttcaaac agtctaagcc gaattctgca gatatccatc acactggcgg 1800ccgctcgagt ctagagggcc cgtttaaacc cgctgatcag cctcgactgt gccttctagt 1860tgccagccat ctgttgtttg cccctccccc gtgccttcct tgaccctgga aggtgccact 1920cccactgtcc tttcctaata aaatgaggaa attgcatcgc attgtctgag taggtgtcat 1980tctattctgg ggggtggggt ggggcaggac agcaaggggg aggattggga agacaatagc 2040aggcatgctg gggatgcggt gggctctatg gcttcgcggc cgcaatcact agtgaattcg 2100cggccgcctg caggtcggat ccgaattcga tatcactagt ggtacccacc cagtgg 2156 <210> 3<211> 2356<212> DNA<213> Artificial sequence <220><223> Description of artificial sequence: synthetic polynucleotide<400> 3tggaatgtca gtttcctcct gttcctgtcc atccgcaccc actatcttca tgttgttgca 60gatgaagcgc gcaagaccgt ctgaagatac cttcaacccc gtgtatccat atgacacgga 120aaccggtcct ccaactgtgc cttttcttac tcctcccttt gtatccccca atgggtttca 180agagagtccc cctggggtac tctctttgcg cctatccgaa cctctagtta cctccaatgg 240catgcttgcg ctcaaaatgg gcaacggcct ctctctggac gaggccggca accttacctc 300ccaaaatgta accactgtga gcccacctct caaaaaaacc aagtcaaaca taaacctgga 360aatatctgca cccctcacag ttacctcaga agccctaact gtggctgccg ccgcacctct 420aatggtcgcg ggcaacacac tcaccatgca atcacaggcc ccgctaaccg tgcacgactc 480caaacttagc attgccaccc aaggacccct cacagtgtca gaaggaaagc tagccctgca 540aacatcaggc cccctcacca ccaccgatag cagtaccctt actatcactg cctcaccccc 600tctaactact gccactggta gcttgggcat tgacttgaaa Gagcccattt atacacaaaa 660tggaaaacta ggactaaagt acggggctcc tttgcatgta acagacgacc taaacacttt 720gaccgtagca actggtccag gtgtgactat taataatact tccttgcaaa ctaaagttac 78 0tggagccttg ggctttgatt cacaaggcaa tatgcaactt aatgtagcag gaggactaag 840gattgattct caaaacagac gccttatact tgatgttagt tatccgtttg atgctcaaaa 900ccaactaaat ctaagactag gacagggccc tctttttata aactcagccc acaacttgga 960tattaactac aacaaaggcc tttacttgtt tacagcttca aacaattcca aaaagcttga 1020ggttaaccta agcactgcca aggggttgat gtttgacgct acagccatag ccattaatgc 1080aggagatggg cttgaatttg gttcacctaa tgcaccaaac acaaatcccc tcaaaacaaa 1140aattggccat ggcctagaat ttgattcaaa caaggctatg gttcctaaac taggaactgg 1200ccttagtttt gacagcacag gtgccattac agtaggaaac aaaaataatg ataagctaac 1260cctatggaca gctccaaaac cagaagccaa ctgcataatt gaatacggga aacaaaaccc 1320agatagcaaa ctaactttaa tccttgtaaa aaatggagga attgttaatg gatatgtaac 1380gctaatggga gcctcagact acgttaacac cttatttaaa aacaaaaatg tctccattaa 1440tgtagaacta tactttgatg ccactggtca tatattacca gactcatctt ctcttaaaac 1500agatctagaa ctaaaataca agcaaaccgc tgactttagt gcaagaggtt ttatgccaag 1560tactacagcg tatccatttg tccttcctaa tgcgggaaca cataatgaaa attatatttt 1620tggtcaatgc tactacaaag caagcgatgg tgcccttttt ccgttggaag ttactgttat 1680gcttaataaa acacggtttc 2100ctgtcgagcc aaacgctcat cgcctgccag atagtcgcac atcctatgtt atgacttttt tattggtcct 1740tgaatgctgg tctagctcca gaaactactc aggcaaccct cataacctcc ccatttacct 1800tttcctatat tagagaagat gactaataaa ctctaaagaa tcgtttgtgt tatgtttcaa 1860cgtgtttatt tttcaattgc agaaaatttc aagtcatttt tcattcagta gtatagcccc 1920accaccacat agcttataca gatcaccgta ccttaatcaa actcacagaa ccctagtatt 1980caacctgcca cctccctccc aacacacaga gtacacagtc ctttctcccc ggctggcctt 2040aaaaagcatc atatcatggg taacagacat attcttaggt gttatattcc cagtgatatt aataaactcc Ccgggcagct cacttaagtt 2160catgtcgctg tccagctgct gagccacagg ctgctgtcca acttgcggtt gcttaacggg 2220cggcgaagga gaagtccacg cctacatggg ggtagagtca taatcgtgca tcaggatagg 2280ggtggtgctg cagcagcgcg cgaataaact gcttgcggcc gcggctccgt cctgcaggaa 2340tacaacatgg cagtgg 2356
(無)(no)
Claims (22)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662315126P | 2016-03-30 | 2016-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201737924A true TW201737924A (en) | 2017-11-01 |
Family
ID=59966447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106110923A TW201737924A (en) | 2016-03-30 | 2017-03-30 | Combination therapy for neuroblastoma using MDA-7/IL-24 with therapeutic agents |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201737924A (en) |
WO (1) | WO2017173101A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3114299A1 (en) * | 2018-11-01 | 2020-05-07 | Alpha Tau Medical Ltd. | Intratumoral alpha-emitter radiation and activation of cytoplasmatic sensors for intracellular pathogen |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008112470A1 (en) * | 2007-03-09 | 2008-09-18 | The Trustees Of Columbia University In The City Of New York | Increased effectiveness of mda-7 with mdr-1 over-expression |
EP2708236A1 (en) * | 2012-09-12 | 2014-03-19 | Medizinische Universität Wien | Tumor treatment |
WO2014093270A1 (en) * | 2012-12-10 | 2014-06-19 | Virginia Commonwealth University | Tropism modified cancer terminator virus (ad.5/3 ctv;ad.5/3-ctv-m7) |
US9951114B2 (en) * | 2013-06-04 | 2018-04-24 | Virginia Commonwealth University | Recombinant cancer therapeutic cytokine |
-
2017
- 2017-03-30 WO PCT/US2017/025056 patent/WO2017173101A1/en active Application Filing
- 2017-03-30 TW TW106110923A patent/TW201737924A/en unknown
Also Published As
Publication number | Publication date |
---|---|
WO2017173101A1 (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Miao et al. | The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury | |
JP6956159B2 (en) | Treatment of brain cancer with oncolytic adenovirus | |
Lu et al. | Targeting p53 for enhanced radio-and chemo-sensitivity | |
US5976800A (en) | Enhancement of cancer cell death | |
US10160972B2 (en) | Methods and materials for treating cancer | |
CN110194787B (en) | Polypeptide for targeted inhibition of Wnt/beta-catenin signal activity and application thereof | |
EP3419643A1 (en) | Smc combination therapy for the treatment of cancer | |
CA3144985A1 (en) | Hdac6-activated macrophages, compositions, and uses thereof | |
US9657077B2 (en) | Carcinoma homing peptide (CHP), its analogs, and methods of using | |
US20240342211A1 (en) | Short-term activated dc1s and methods for their production and use | |
Xu et al. | The role of stromal components in pancreatic cancer progression | |
JP7193590B2 (en) | Therapeutic Agents, Methods, and Uses of B1SP Fusion Proteins | |
US11590203B2 (en) | Method of treatment ovarian cancer | |
Jian et al. | Biomimetic Nanoplatform for Dual‐Targeted Clearance of Activated and Senescent Cancer‐Associated Fibroblasts to Improve Radiation Resistance in Breast Cancer | |
TW201737924A (en) | Combination therapy for neuroblastoma using MDA-7/IL-24 with therapeutic agents | |
Cao et al. | MDA7 combined with targeted attenuated Salmonella vector SL7207/pBud-VP3 inhibited growth of gastric cancer cells | |
US20070297984A1 (en) | Inhibition of HIF-1 activation for anti-tumor and anti-inflammatory responses | |
KR20230012596A (en) | Methods for treating pancreatitis and preventing pancreatic cancer | |
CA3144874C (en) | Composition and method for inhibiting tau protein accumulation, aggregation, and tangle formation | |
JP7492687B2 (en) | Drug Therapy to Inhibit DNA-PKCS | |
Scuderi | Involvement of TBK1 and PREP signalling pathways in Glioblastoma Multiforme progression: novel therapeutic perspectives | |
Niu et al. | Metformin promotes the normalization of abnormal blood vessels after radiofrequency ablation deficiency in hepatocellular carcinoma by microRNA-302b-3p targeting thioredoxin-interacting protein | |
Wagner | Investigation of a novel small molecule TRAIL inducer, ONC201: pre-clinical anti-cancer efficacy, anti-metastasis effects, tumor immunity; and the structure-activity relationships (SAR) and mechanism of action of potential analogues | |
Jin et al. | Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge | |
Park et al. | Car Receptor |