TW201737428A - Semiconductor package - Google Patents

Semiconductor package Download PDF

Info

Publication number
TW201737428A
TW201737428A TW106109403A TW106109403A TW201737428A TW 201737428 A TW201737428 A TW 201737428A TW 106109403 A TW106109403 A TW 106109403A TW 106109403 A TW106109403 A TW 106109403A TW 201737428 A TW201737428 A TW 201737428A
Authority
TW
Taiwan
Prior art keywords
layer
conductive
insulating layer
semiconductor package
semiconductor
Prior art date
Application number
TW106109403A
Other languages
Chinese (zh)
Inventor
廖文翔
郭豐維
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/076,976 external-priority patent/US10930603B2/en
Priority claimed from US15/431,909 external-priority patent/US10037897B2/en
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201737428A publication Critical patent/TW201737428A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

A semiconductor package includes a first semiconductor element, an insulating layer, and a second semiconductor element. The first semiconductor element includes at least one conductive layer and at least one via layer. The insulating layer is positioned above the first semiconductor device and includes at least one through insulator via (TIV) extending from a first side of the insulating layer to a second side of the insulating layer. The at least one TIV has a conductive core including a copper-containing material. The second semiconductor element is positioned above the insulating layer and includes at least one conductive layer and at least one via layer. The at least one TIV couples the at least one via layer of the first semiconductor element to the at least one via layer of the second semiconductor element.

Description

半導體封裝Semiconductor package

本發明實施例是有關於一種半導體封裝及其製造方法,且特別是是有關於一種具有特定結構的貫穿絕緣層孔(through insulator via,TIV)的半導體封裝及其製造方法。Embodiments of the present invention relate to a semiconductor package and a method of fabricating the same, and, in particular, to a semiconductor package having a specific structure of through insulator via (TIV) and a method of fabricating the same.

積體電路(integrated circuit;IC)被納入許多電子裝置中。積體電路封裝能夠將多個積體電路垂直地堆疊於三維(three-dimensional;3D)封裝中,以節省印刷電路板(printed circuit board;PCB)上的水平面積。替代性封裝技術(被稱作2.5維封裝(2.5D packaging))可使用中介層(interposer)將一個或多個半導體晶粒耦合至印刷電路板。所述中介層可由例如矽等半導體材料形成。可在中介層上安裝多個積體電路或其他半導體晶粒(其可為異構技術(heterogeneous technology))。An integrated circuit (IC) is incorporated into many electronic devices. The integrated circuit package is capable of vertically stacking a plurality of integrated circuits in a three-dimensional (3D) package to save a horizontal area on a printed circuit board (PCB). Alternative packaging techniques (referred to as 2.5D packaging) may use an interposer to couple one or more semiconductor dies to a printed circuit board. The interposer may be formed of a semiconductor material such as germanium. A plurality of integrated circuits or other semiconductor dies (which may be heterogeneous technologies) may be mounted on the interposer.

一個或多個半導體晶粒上的許多裝置可能會造成電雜訊(electrical noise)及/或通過發射電磁發射(EM emission)而產生電磁(electromagnetic;EM)干擾。射頻裝置(RF device)及電感器是會產生電雜訊及電磁干擾的裝置的實例。帶有雜訊的源(例如,射頻裝置)會在導電結構(例如,金屬引線(metal lead))中載送的信號中產生電雜訊。導電引線中的電雜訊可能會影響封裝中的各種其他信號及裝置。帶有雜訊的電信號會在半導體封裝中造成嚴重問題。Many devices on one or more semiconductor dies may cause electrical noise and/or electromagnetic (EM) interference by emitting electromagnetic emissions (EM emission). RF devices and inductors are examples of devices that generate electrical noise and electromagnetic interference. A source with noise (eg, a radio frequency device) can generate electrical noise in a signal carried in a conductive structure (eg, a metal lead). Electrical noise in the conductive leads can affect various other signals and devices in the package. Electrical signals with noise can cause serious problems in semiconductor packaging.

根據本發明的一些實施例,一種半導體封裝包括第一半導體元件、絕緣層及第二半導體元件。第一半導體元件包括至少一個導電層及至少一個通孔層。絕緣層位於第一半導體元件上方且包括從絕緣層的第一側延伸至絕緣層的第二側的至少一個貫穿絕緣層孔(through insulator via;TIV)。至少一個貫穿絕緣層孔具有導電芯,且導電芯包括含銅材料。第二半導體元件位於絕緣層上方且包括至少一個導電層及至少一個通孔層。至少一個貫穿絕緣層孔將第一半導體元件的至少一個通孔層耦合至第二半導體元件的至少一個通孔層。According to some embodiments of the present invention, a semiconductor package includes a first semiconductor component, an insulating layer, and a second semiconductor component. The first semiconductor component includes at least one conductive layer and at least one via layer. An insulating layer is over the first semiconductor element and includes at least one through insulator via (TIV) extending from a first side of the insulating layer to a second side of the insulating layer. At least one of the through-holes has a conductive core, and the conductive core comprises a copper-containing material. The second semiconductor component is over the insulating layer and includes at least one conductive layer and at least one via layer. At least one through-hole of the insulating layer couples at least one via layer of the first semiconductor element to at least one via layer of the second semiconductor element.

以下公開內容提供用於實作所提供主題的不同特徵的許多不同的實施例或實例。以下闡述元件及排列的具體實例以簡化本公開內容。當然,這些僅為實例且不旨在進行限制。例如,以下說明中將第一特徵形成在第二特徵“之上”或第二特徵“上”可包括其中第一特徵及第二特徵被形成為直接接觸的實施例,且也可包括其中第一特徵與第二特徵之間可形成有附加特徵、進而使得所述第一特徵與所述第二特徵可能不直接接觸的實施例。另外,本公開內容可能在各種實例中重複使用參考編號及/或字母。這種重複使用是出於簡潔及清晰的目的,而不是自身表示所論述的各種實施例及/或配置之間的關係。The following disclosure provides many different embodiments or examples for implementing different features of the subject matter provided. Specific examples of elements and arrangements are set forth below to simplify the disclosure. Of course, these are examples only and are not intended to be limiting. For example, in the following description, forming a first feature "above" or "on" a second feature may include embodiments in which the first feature and the second feature are formed in direct contact, and may also include An embodiment may be formed between an feature and a second feature that may provide additional features, such that the first feature may not be in direct contact with the second feature. In addition, the present disclosure may reuse reference numbers and/or letters in various examples. This re-use is for the purpose of brevity and clarity and is not a representation of the various embodiments and/or configurations discussed.

此外,為易於說明,本文中可能使用例如“之下(beneath)”、“下面(below)”、“下部的(lower)”、“上方(above)”、“上部的(upper)”等空間相對性用語來闡述圖中所示的一個元件或特徵與另一(其他)元件或特徵的關係。所述空間相對性用語旨在除圖中所繪示的取向外還囊括裝置在使用或步驟中的不同取向。裝置可具有其他取向(旋轉90度或處於其他取向)且本文中所用的空間相對性描述語可同樣相應地進行解釋。除非另有明確闡述,否則有關貼合、耦合等的用語(例如,“經連接(connected)”及“經內連(interconnected)”)均是指其中各結構通過中間結構直接地或間接地固定至或貼合至彼此的關係、以及可移動的或剛性的貼合或關係。同樣,除非另有明確闡述,否則有關電性耦合等的用語(例如,“經耦合(coupled)”、“經連接”、及“經內連”)均是指其中各結構通過中間結構直接地或間接地彼此相通的關係。In addition, for ease of explanation, space such as "beneath", "below", "lower", "above", "upper" may be used herein. The relative terms are used to describe the relationship of one element or feature to another (other) element or feature. The spatially relative terms are intended to encompass different orientations of the device in use or steps in addition to the orientation illustrated. The device may have other orientations (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may be interpreted accordingly accordingly. Unless specifically stated otherwise, terms relating to fit, coupling, etc. (eg, "connected" and "interconnected") mean that each structure is directly or indirectly secured through an intermediate structure. To or fit to each other's relationship, as well as a movable or rigid fit or relationship. Also, terms relating to electrical coupling, etc. (eg, "coupled", "connected", and "interconnected") mean that each structure is directly through the intermediate structure, unless explicitly stated otherwise. Or indirectly connected to each other.

在各種實施例中,半導體封裝包括對第一金屬層與第二金屬層進行耦合的至少一個貫穿絕緣層孔(through insulator via;TIV)。半導體封裝包括第一半導體封裝元件及第二半導體封裝元件。每一半導體封裝包括多個導電金屬層及對所述多個導電金屬層的每一導電金屬層中的各導電線進行耦合的多個通孔層。在位於第一半導體封裝與第二半導體封裝之間的絕緣層中安置有多個半導體晶粒。多個貫穿絕緣層孔延伸穿過絕緣層並對第一半導體封裝的第一金屬層與第二半導體封裝的第一金屬層進行耦合。在一些實施例中,貫穿絕緣層孔包括內部導電芯、絕緣層及外部導電遮蔽層。所述內部導電芯包括銅及/或銅合金。In various embodiments, the semiconductor package includes at least one through insulator via (TIV) that couples the first metal layer to the second metal layer. The semiconductor package includes a first semiconductor package component and a second semiconductor package component. Each semiconductor package includes a plurality of conductive metal layers and a plurality of via layers that couple respective conductive lines in each of the plurality of conductive metal layers. A plurality of semiconductor dies are disposed in the insulating layer between the first semiconductor package and the second semiconductor package. A plurality of through insulating layer holes extend through the insulating layer and couple the first metal layer of the first semiconductor package with the first metal layer of the second semiconductor package. In some embodiments, the through-holes include an inner conductive core, an insulating layer, and an outer conductive mask. The inner conductive core comprises copper and/or a copper alloy.

圖1繪示根據一些實施例的具有中介層4的半導體封裝2的側視圖。中介層4安置於基板與一個或多個半導體晶粒(被稱為2.5維半導體封裝)之間。在圖1中所示2.5維半導體封裝中,中介層4安置於第一半導體晶粒6及第二半導體晶粒8下方且安置於封裝基板16上方。在一些實施例中,中介層4包括上面形成有一個或多個被動裝置的基礎基板(例如矽)以及多個矽穿孔(through-silicon via;TSV)。中介層4將第一、第二半導體晶粒6、8的電性連接耦合至封裝基板16及/或印刷電路板10。在一些實施例中,中介層4不含有任何主動裝置。在一些實施例中,半導體封裝2可包括集成扇出型晶片級封裝(integrated fan-out wafer level packaging;InFO-WLP)。第一、第二半導體晶粒6、8耦合至中介層4的第一表面12。中介層4的與第一表面12相對的第二表面14直接耦合至封裝基板16。FIG. 1 depicts a side view of a semiconductor package 2 having an interposer 4 in accordance with some embodiments. The interposer 4 is disposed between the substrate and one or more semiconductor dies (referred to as 2.5-dimensional semiconductor packages). In the 2.5-dimensional semiconductor package shown in FIG. 1, the interposer 4 is disposed under the first semiconductor die 6 and the second semiconductor die 8 and disposed above the package substrate 16. In some embodiments, the interposer 4 includes a base substrate (eg, germanium) having one or more passive devices formed thereon and a plurality of through-silicon vias (TSVs). The interposer 4 couples the electrical connections of the first and second semiconductor dies 6, 8 to the package substrate 16 and/or the printed circuit board 10. In some embodiments, the interposer 4 does not contain any active devices. In some embodiments, the semiconductor package 2 can include an integrated fan-out wafer level packaging (InFO-WLP). The first and second semiconductor dies 6, 8 are coupled to the first surface 12 of the interposer 4. The second surface 14 of the interposer 4 opposite the first surface 12 is directly coupled to the package substrate 16.

在一些實施例中,第一、第二半導體晶粒6、8包括一個或多個主動裝置。例如,在一些實施例中,第一、第二半導體晶粒6、8可包括GPS晶粒、GPS基帶晶粒(GPS baseband die)、處理器(例如,進階精簡指令集機器(Advanced RISC machine,ARM)處理器)及/或任何其他適合的主動裝置。封裝基板16可包括任何適合的基板(例如陶瓷材料),並支援位於中介層4與印刷電路板10之間的一個或多個電性連接。印刷電路板10機械地支撐兩個或更多個積體電路封裝(半導體封裝)2並利用一個或多個導電軌道(conductive track)、導電墊、及/或由在非導電基板上形成的導電層所形成的其他特徵對所述兩個或更多個積體電路封裝(半導體封裝)2進行電性內連。In some embodiments, the first and second semiconductor dies 6, 8 comprise one or more active devices. For example, in some embodiments, the first and second semiconductor dies 6, 8 may comprise a GPS die, a GPS baseband die, a processor (eg, an Advanced RISC machine) , ARM) processor) and / or any other suitable active device. Package substrate 16 may comprise any suitable substrate (e.g., ceramic material) and support one or more electrical connections between interposer 4 and printed circuit board 10. The printed circuit board 10 mechanically supports two or more integrated circuit packages (semiconductor packages) 2 and utilizes one or more conductive tracks, conductive pads, and/or conductive layers formed on the non-conductive substrate. The other features formed by the layers electrically interconnect the two or more integrated circuit packages (semiconductor packages) 2.

封裝基板16通過焊料球18而接合至印刷電路板10並通過焊料球20而接合至中介層4。焊料球24將中介層4接合至第一半導體晶粒6及第二半導體晶粒8。焊料球雖被寬泛地稱作「焊料球」,但未必如所說明實施例中一樣完全為「球形的(ball shaped)」。焊料球也被替代性地稱作焊料凸塊並在各種實施例中呈各種形狀。焊料球在實體上將各相應元件接合於一起並將所述相應元件的電子特徵電性耦合於一起。在一些實施例中,中介層4、第一、第二半導體晶粒6、8、印刷電路板10、及/或封裝基板16中的一者或多者包括以下所進一步詳細論述的一個或多個接地遮蔽傳輸路徑(ground shielded transmission path)26。The package substrate 16 is bonded to the printed circuit board 10 by the solder balls 18 and bonded to the interposer 4 by the solder balls 20. The solder balls 24 bond the interposer 4 to the first semiconductor die 6 and the second semiconductor die 8. The solder balls are broadly referred to as "solder balls," but are not necessarily "ball shaped" as in the illustrated embodiment. Solder balls are also alternatively referred to as solder bumps and in various shapes in various embodiments. The solder balls physically join the respective elements together and electrically couple the electronic features of the respective elements together. In some embodiments, one or more of the interposer 4, the first, second, semiconductor dies 6, 8, the printed circuit board 10, and/or the package substrate 16 include one or more of those discussed in further detail below. A ground shielded transmission path 26 is provided.

圖2繪示根據一些實施例的三維(3D)半導體封裝50。在如圖2中所示的三維半導體封裝50中,多個半導體晶粒堆疊於彼此頂上且包括一個或多個矽穿孔(TSV)70以使得一個或多個上部晶粒能夠與一個或多個下部晶粒相通(communicate)。三維半導體封裝50包括多個半導體晶粒,例如中央處理器(CPU)52、緩存記憶體54、動態隨機存取記憶體(Dynamic random-access memory,DRAM)/非揮發性記憶體(Non-volatile memory,NVM)56、類比裝置(analog device)58、射頻裝置(radiofrequency device)60、電源62、一個或多個感測器64、及/或一個或多個輸入/輸出(input/output,I/O)連接66。具有多個貫穿絕緣層孔72的多個貫穿絕緣層孔(TIV)層68a-68e耦合所述多個半導體晶粒。每一半導體晶粒可包括一個或多個基板穿孔(through-substrate via,TSV)74。在一些實施例中,一個或多個基板穿孔74將在半導體晶粒54下形成的第一貫穿絕緣層孔72a耦合至在半導體晶粒54上方形成的第二貫穿絕緣層孔72b。在其他實施例中,半導體晶粒內部的一個或多個金屬層及/或通孔可將第一貫穿絕緣層孔72a耦合至第二貫穿絕緣層孔72b。儘管本文中論述特定三維半導體封裝50,然而應知三維半導體封裝中可包括一個或多個額外的晶粒、一個或多個數目減少的晶粒、一個或多個替代性晶粒、及/或一個或多個2.5維半導體排列或2維半導體排列。在一些實施例中,接地遮蔽傳輸路徑包括延伸穿過一個或多個半導體晶粒的一個或多個貫穿絕緣層孔及/或一個或多個矽穿孔/基板穿孔。FIG. 2 illustrates a three dimensional (3D) semiconductor package 50 in accordance with some embodiments. In the three-dimensional semiconductor package 50 as shown in FIG. 2, a plurality of semiconductor dies are stacked on top of one another and include one or more turns of vias (TSV) 70 to enable one or more upper dies to be associated with one or more The lower grains are communicative. The three-dimensional semiconductor package 50 includes a plurality of semiconductor dies, such as a central processing unit (CPU) 52, a cache memory 54, a dynamic random-access memory (DRAM), and a non-volatile memory (Non-volatile). Memory, NVM) 56, analog device 58, radio frequency device 60, power source 62, one or more sensors 64, and/or one or more inputs/outputs (input/output, I) /O) Connection 66. A plurality of through insulating layer vias (TIV) layers 68a-68e having a plurality of through insulating vias 72 are coupled to the plurality of semiconductor dies. Each semiconductor die may include one or more through-substrate vias (TSVs) 74. In some embodiments, one or more substrate vias 74 couple a first through insulating layer aperture 72a formed under the semiconductor die 54 to a second through insulating via hole 72b formed over the semiconductor die 54. In other embodiments, one or more metal layers and/or vias inside the semiconductor die can couple the first through insulating layer aperture 72a to the second through insulating layer aperture 72b. Although a particular three-dimensional semiconductor package 50 is discussed herein, it is to be understood that one or more additional dies, one or more reduced numbers of dies, one or more alternative dies, and/or One or more 2.5-dimensional semiconductor arrangements or 2-dimensional semiconductor arrangements. In some embodiments, the grounded shield transmission path includes one or more through insulating layer holes and/or one or more turns perforation/substrate vias extending through the one or more semiconductor dies.

圖3繪示根據一些實施例的包括接地遮蔽傳輸路徑102的半導體封裝100。接地遮蔽傳輸路徑102對第一半導體封裝元件101a與第二半導體封裝元件101b進行耦合。第一半導體封裝元件101a包括至少一個金屬層104a、至少一個通孔層106a及頂蓋層130。在一些實施例中,第一半導體封裝元件101a可包含任何適合的材料,例如矽。第二半導體封裝元件101b包括多個金屬層104b-104d、多個通孔層106b-106d及頂蓋層130。例如,在一些實施例中,第二半導體封裝元件101b可為封裝基板,例如結合圖1所論述的封裝基板16。在一些實施例中,第二半導體封裝元件101b與包括主動裝置(主動半導體裝置)128的至少一個半導體晶粒132耦合。在主動裝置128與第一半導體封裝元件101a之間安置有絕緣區126。在一些實施例中,絕緣區126包含矽材料。絕緣區126可為中介層的位於半導體晶粒132與第一半導體封裝元件101a之間的部分及/或絕緣層114(例如,封裝層)的位於半導體晶粒132與第一半導體封裝元件101a之間的部分。FIG. 3 illustrates a semiconductor package 100 including a grounded shield transmission path 102 in accordance with some embodiments. The ground shield transmission path 102 couples the first semiconductor package component 101a and the second semiconductor package component 101b. The first semiconductor package component 101a includes at least one metal layer 104a, at least one via layer 106a, and a cap layer 130. In some embodiments, the first semiconductor package component 101a can comprise any suitable material, such as germanium. The second semiconductor package component 101b includes a plurality of metal layers 104b-104d, a plurality of via layers 106b-106d, and a cap layer 130. For example, in some embodiments, the second semiconductor package component 101b can be a package substrate, such as package substrate 16 discussed in connection with FIG. In some embodiments, the second semiconductor package component 101b is coupled to at least one semiconductor die 132 that includes an active device (active semiconductor device) 128. An insulating region 126 is disposed between the active device 128 and the first semiconductor package component 101a. In some embodiments, the insulating region 126 comprises a germanium material. The insulating region 126 may be a portion of the interposer between the semiconductor die 132 and the first semiconductor package component 101a and/or an insulating layer 114 (eg, an encapsulation layer) located between the semiconductor die 132 and the first semiconductor package component 101a. The part between.

接地遮蔽傳輸路徑102延伸穿過第一半導體封裝元件101a與第二半導體封裝101b之間的絕緣區126。在一些實施例中,接地遮蔽傳輸路徑102例如利用在中介層(圖中未繪示)中形成的TSV而延伸穿過所述中介層。貫穿絕緣層孔(TIV)108延伸穿過絕緣層114並將在第一半導體封裝元件101a的第一通孔層106a中形成的第一通孔140a耦合至在第二半導體封裝元件101b的第二通孔層106b中形成的第二通孔140b。貫穿絕緣層孔108包含用以將信號從第一通孔140a傳輸到第二通孔140b的導電材料。在一些實施例中,貫穿絕緣層孔108具有沿縱向軸線延伸的圓柱形形狀。儘管圖中僅繪示單個貫穿絕緣層孔,然而應知半導體封裝100可包括任何數目的延伸穿過絕緣層114的貫穿絕緣層孔,而皆落於本發明實施例的範圍內。The ground shield transmission path 102 extends through the insulating region 126 between the first semiconductor package component 101a and the second semiconductor package 101b. In some embodiments, the grounded shield transmission path 102 extends through the interposer, for example, using a TSV formed in an interposer (not shown). Through-insulator hole (TIV) 108 extends through insulating layer 114 and couples first via 140a formed in first via layer 106a of first semiconductor package component 101a to second via second semiconductor package component 101b The second through hole 140b formed in the via layer 106b. The through-insulator hole 108 includes a conductive material for transmitting signals from the first via 140a to the second via 140b. In some embodiments, the through-holes 108 have a cylindrical shape that extends along the longitudinal axis. Although only a single through insulating via is shown, it is contemplated that the semiconductor package 100 can include any number of through insulating vias extending through the insulating layer 114, all falling within the scope of embodiments of the present invention.

在一些實施例中,接地遮蔽傳輸路徑102包括絕緣層110,絕緣層110圍繞從第一通孔層106a延伸至第二通孔層106b的貫穿絕緣層孔108的外表面。絕緣層110不在貫穿絕緣層孔108的頂表面或底表面上延伸。絕緣層110包含絕緣材料,例如聚醯亞胺材料。在一些實施例中,絕緣層110以貫穿絕緣層孔108的縱向長度為中心沿圓周延伸。In some embodiments, the ground shield transmission path 102 includes an insulating layer 110 that surrounds an outer surface of the through insulating layer hole 108 that extends from the first via layer 106a to the second via layer 106b. The insulating layer 110 does not extend over the top or bottom surface of the insulating layer hole 108. The insulating layer 110 comprises an insulating material such as a polyimide material. In some embodiments, the insulating layer 110 extends circumferentially about a longitudinal length through the insulating layer apertures 108.

在一些實施例中,接地遮蔽傳輸路徑102包括安置於絕緣層110及貫穿絕緣層孔108上及/或安置於絕緣層110及貫穿絕緣層孔108的外表面周圍、且從第一半導體封裝元件101a延伸至第二半導體封裝元件101b的接地遮蔽層112。接地遮蔽層112包含與接地耦合的導電材料。接地遮蔽層112通過絕緣層110而與貫穿絕緣層孔108電性隔離。接地遮蔽層112將貫穿絕緣層孔108與由一個或多個主動裝置(主動半導體裝置)128產生的輻射信號隔離及/或防止往來於貫穿絕緣層孔108的輻射信號傳輸。例如,當在貫穿絕緣層孔108附近產生輻射信號時,所述輻射信號在到達貫穿絕緣層孔108之前會遇到接地遮蔽層112。接地遮蔽層112將輻射信號驅動至接地,進而發散所述輻射信號中的能量並防止因所述輻射信號而在貫穿絕緣層孔108內誘發信號。通過防止輻射信號傳輸至貫穿絕緣層孔108中,接地遮蔽層112會降低或消除貫穿絕緣層孔108中由輻射誘發的雜訊。相似地,通過防止輻射信號從貫穿絕緣層孔108傳出,接地遮蔽層112會降低或消除由貫穿絕緣層孔108造成的由輻射誘發的雜訊並會在貫穿絕緣層孔108內隔離所傳輸信號。接地遮蔽層112耦合至接地(ground),例如在與半導體封裝100耦合的印刷電路板10中形成的接地。在一些實施例中,絕緣層114使接地遮蔽層112與周邊的封裝元件及/或在絕緣層114中形成的額外的貫穿絕緣層孔絕緣。In some embodiments, the ground shield transmission path 102 includes a first semiconductor package component disposed on the insulating layer 110 and through the insulating layer hole 108 and/or disposed around the insulating layer 110 and the outer surface of the insulating layer hole 108. The 101a extends to the ground shielding layer 112 of the second semiconductor package component 101b. The grounding shield layer 112 includes a conductive material coupled to ground. The grounding shielding layer 112 is electrically isolated from the through insulating layer holes 108 by the insulating layer 110. The ground masking layer 112 isolates the insulating layer apertures 108 from radiation signals generated by one or more active devices (active semiconductor devices) 128 and/or prevents radiation signals from passing through the insulating layer holes 108. For example, when a radiation signal is generated near the insulating layer aperture 108, the radiation signal encounters the grounded shielding layer 112 before reaching the insulating layer aperture 108. The grounded shielding layer 112 drives the radiated signal to ground, thereby diverging the energy in the radiated signal and preventing the signal from being induced throughout the insulating layer aperture 108 due to the radiated signal. The ground shielding layer 112 reduces or eliminates radiation induced noise in the insulating layer holes 108 by preventing the radiation signal from being transmitted into the through insulating layer holes 108. Similarly, by preventing radiation signals from escaping through the insulating layer apertures 108, the grounded shielding layer 112 reduces or eliminates radiation induced noise caused by the through insulating layer apertures 108 and is transmitted through the insulating layer apertures 108. signal. Ground shield layer 112 is coupled to ground, such as ground formed in printed circuit board 10 coupled to semiconductor package 100. In some embodiments, the insulating layer 114 insulates the grounded shielding layer 112 from surrounding package components and/or additional through-insulator layers formed in the insulating layer 114.

在一些實施例中,接地遮蔽層112完全包圍貫穿絕緣層孔108的各個側。在其他實施例中,接地遮蔽層112位於一個或多個金屬層104b-104d上方或下方的層中,以限制金屬層104b-104d之間的輻射傳輸。例如,在所說明實施例中,在第二半導體封裝元件101b中形成有連續的接地遮蔽層120。所述連續的接地遮蔽層120包含導電金屬材料122,導電金屬材料122安置於半導體封裝元件101b的每一通孔層106b-106d及/或金屬層104b-104d中且位於半導體封裝元件101b的每一通孔層106b-106d及/或金屬層104b-104d之間。在一些實施例中,導電金屬材料122在大致垂直的方向上延伸穿過第二半導體封裝元件101b的金屬層104b-104d並在大致水平的方向上延伸穿過通孔層106b-106d,但應知導電金屬材料122可在半導體封裝元件101b的各層中的任一層內在任何方向上延伸。在一些實施例中,除了通孔140b-140d耦合金屬層104b-104d的位置以外,連續的接地遮蔽層120及導電金屬材料122隔離每一金屬層104b-104d。連續的接地遮蔽層120通過一個或多個封裝元件(例如印刷電路板(圖中未繪示))而耦合至接地。連續的接地遮蔽層120防止輻射信號在第二半導體封裝元件101b的金屬層104b-104d之間傳輸。In some embodiments, the grounding shield layer 112 completely surrounds each side of the insulating layer aperture 108. In other embodiments, the ground masking layer 112 is located in a layer above or below the one or more metal layers 104b-104d to limit radiation transfer between the metal layers 104b-104d. For example, in the illustrated embodiment, a continuous grounded shielding layer 120 is formed in the second semiconductor package component 101b. The continuous ground shielding layer 120 includes a conductive metal material 122 disposed in each via layer 106b-106d and/or metal layers 104b-104d of the semiconductor package component 101b and located in each pass of the semiconductor package component 101b. Between the aperture layers 106b-106d and/or the metal layers 104b-104d. In some embodiments, the conductive metal material 122 extends through the metal layers 104b-104d of the second semiconductor package component 101b in a substantially vertical direction and extends through the via layers 106b-106d in a substantially horizontal direction, but should The conductive metal material 122 can extend in any direction in any of the various layers of the semiconductor package component 101b. In some embodiments, in addition to the locations at which the vias 140b-140d couple the metal layers 104b-104d, the continuous ground masking layer 120 and the conductive metal material 122 isolate each of the metal layers 104b-104d. The continuous ground masking layer 120 is coupled to ground through one or more package components, such as a printed circuit board (not shown). The continuous ground shielding layer 120 prevents the radiation signal from being transmitted between the metal layers 104b-104d of the second semiconductor package component 101b.

在一些實施例中,連續的接地遮蔽層120耦合至接地遮蔽傳輸路徑102的接地遮蔽層112及/或耦合至接地遮蔽層112a。連續的接地遮蔽層120及接地遮蔽層112、112a用以使以下元件與由半導體封裝100在半導體封裝100內產生的一個或多個輻射信號(例如,由主動半導體裝置128產生的信號及/或經過信號路徑146a-146d進行的信號傳輸)絕緣:傳輸路徑,例如在金屬層104b-104d中及在貫穿絕緣層孔108中形成的傳輸路徑(信號路徑)146a-146d;主動裝置,例如主動半導體裝置128;及/或半導體封裝100的其他部分。例如,在一些實施例中,在第二半導體封裝元件101b的第二通孔層106b及第三通孔層106c中安置的接地導電金屬材料(導電金屬材料)122會將第一金屬層104b與輻射信號隔離。相似地,在第三通孔層106c及第四通孔層106d中安置的接地導電金屬材料(導電金屬材料)122會將第二金屬層104c與輻射信號隔離。In some embodiments, the continuous grounded shielding layer 120 is coupled to the grounded shielding layer 112 of the grounded shielding transmission path 102 and/or to the grounded shielding layer 112a. The continuous grounding shield layer 120 and the grounding shielding layers 112, 112a are used to cause the following components and one or more of the radiation signals generated by the semiconductor package 100 within the semiconductor package 100 (eg, signals generated by the active semiconductor device 128 and/or Signal transmission via signal paths 146a-146d) insulation: transmission paths, such as transmission paths (signal paths) 146a-146d formed in metal layers 104b-104d and through insulating layer holes 108; active devices, such as active semiconductors Device 128; and/or other portions of semiconductor package 100. For example, in some embodiments, the ground conductive metal material (conductive metal material) 122 disposed in the second via layer 106b and the third via layer 106c of the second semiconductor package component 101b will be the first metal layer 104b and Radiation signal isolation. Similarly, the grounded conductive metal material (conductive metal material) 122 disposed in the third via layer 106c and the fourth via layer 106d isolates the second metal layer 104c from the radiation signal.

在一些實施例中,接地遮蔽層112a以與半導體封裝元件101b耦合的主動半導體裝置128為圓心安置。接地遮蔽層112a會阻隔主動半導體裝置128傳輸及/或接收輻射信號。例如,在一些實施例中,主動半導體裝置128為射頻發射裝置(RF emitting device)。接地遮蔽層112a以射頻發射裝置為圓心安置以防止來自所述裝置的射頻信號傳輸干擾半導體封裝100的其他元件(舉例來說,貫穿絕緣層孔108)。接地遮蔽層112a可通過一個或多個封裝元件(例如印刷電路板(圖中未繪示))而耦合至接地。主動半導體裝置128可包括會產生輻射傳輸及/或對接收輻射傳輸來說靈敏的任何適合的主動半導體裝置。關於一個或多個貫穿絕緣層孔的半導體封裝的其他實施例可參考於2016年3月22日提出申請、序號為15/076,976號且標題為「用於三維積體電路的具有新穎高隔離度的同軸穿孔交叉耦合方法(COAXIAL THROUGH VIA WITH NOVEL HIGH ISOLATION CROSS COUPLING METHOD FOR 3D INTEGRATED CIRCUITS)」的美國專利申請。所述美國專利申請全文併入本文供參考。In some embodiments, the grounded shielding layer 112a is centered with the active semiconductor device 128 coupled to the semiconductor package component 101b. The grounded shielding layer 112a blocks the active semiconductor device 128 from transmitting and/or receiving radiation signals. For example, in some embodiments, active semiconductor device 128 is a RF emitting device. The grounding shield layer 112a is centered at the radio frequency emitting device to prevent radio frequency signal transmission from the device from interfering with other components of the semiconductor package 100 (e.g., through the insulating layer apertures 108). The grounding shield layer 112a can be coupled to ground through one or more package components, such as a printed circuit board (not shown). Active semiconductor device 128 can include any suitable active semiconductor device that can generate radiation transmission and/or be sensitive to received radiation transmission. Other embodiments of the semiconductor package for one or more through-holes can be referred to the novel high-isolation for the three-dimensional integrated circuit, filed on March 22, 2016, Serial No. 15/076,976. US Patent Application for COAXIAL THROUGH VIA WITH NOVEL HIGH ISOLATION CROSS COUPLING METHOD FOR 3D INTEGRATED CIRCUITS. The entire disclosure of the U.S. Patent Application is incorporated herein by reference.

在一些實施例中,貫穿絕緣層孔108包含導電材料,所述導電材料與傳統通孔連接相比具有相對短的內連長度及時間延遲(time delay)。例如,貫穿絕緣層孔108可包含銅(Cu)及/或銅系合金。在一些實施例中,貫穿絕緣層孔108的接地遮蔽層112的一部分是由相同的銅及/或銅系合金形成。In some embodiments, the through-insulation layer apertures 108 comprise a conductive material that has a relatively short interconnect length and time delay compared to conventional via connections. For example, the through-holes 108 may comprise copper (Cu) and/or a copper-based alloy. In some embodiments, a portion of the grounded shielding layer 112 that penetrates the insulating layer apertures 108 is formed from the same copper and/or copper-based alloy.

在一些實施例中,多個焊料凸塊134耦合至在凸塊下金屬(under bump metallurgy;UBM)層156中形成的金屬觸點。在一些實施例中,一個或多個表面安裝裝置(surface mount device;SMD)的觸點耦合至在凸塊下金屬(UMB)層156中形成的金屬觸點(圖中未繪示)。焊料凸塊134及/或表面安裝裝置的觸點用以利用表面安裝技術(surface-mount technology)將半導體封裝100耦合至一個或多個額外的電路元件(例如,電路板)。In some embodiments, a plurality of solder bumps 134 are coupled to metal contacts formed in an under bump metallurgy (UBM) layer 156. In some embodiments, the contacts of one or more surface mount devices (SMDs) are coupled to metal contacts (not shown) formed in the under bump metallurgy (UMB) layer 156. The contacts of the solder bumps 134 and/or surface mount devices are used to couple the semiconductor package 100 to one or more additional circuit components (eg, circuit boards) using surface-mount technology.

圖4繪示根據一些實施例的形成半導體封裝400(圖5至圖24)的方法300的流程圖。圖5至圖23繪示根據一些實施例的半導體封裝400在製作期間的各個剖視圖。在步驟302處,如圖5中所示,在載板404上沉積第一緩衝層402。第一緩衝層402可包含任何適合的材料,例如聚醯亞胺、聚苯并噁唑(PBO)及/或任何其他適合的材料。載板404為用以在形成期間支撐半導體封裝400的剛性材料(rigid material)。例如,在一些實施例中,載板404包含玻璃及/或其他用以在形成期間支撐半導體封裝400但不與半導體封裝400的任何元件相互作用的惰性材料(inert material)。FIG. 4 illustrates a flow diagram of a method 300 of forming a semiconductor package 400 (FIGS. 5-24) in accordance with some embodiments. 5 through 23 illustrate various cross-sectional views of semiconductor package 400 during fabrication, in accordance with some embodiments. At step 302, a first buffer layer 402 is deposited on carrier 404 as shown in FIG. The first buffer layer 402 can comprise any suitable material, such as polyimine, polybenzoxazole (PBO), and/or any other suitable material. The carrier 404 is a rigid material to support the semiconductor package 400 during formation. For example, in some embodiments, carrier 404 includes glass and/or other inert material to support semiconductor package 400 during formation but does not interact with any of the components of semiconductor package 400.

在一些實施例中,在載板404與第一緩衝層402之間形成光熱轉換(LTHC)離型層406。光熱轉換離型層406用以在完全地形成及/或部分地形成半導體封裝400之後將半導體封裝400從載板404離型。例如,在一些實施例中,將雷射及/或其他聚光光源(concentrated light source)施加至光熱轉換離型層406,從而加熱光熱轉換離型層406並將半導體封裝400從載板404分離。In some embodiments, a photothermal conversion (LTHC) release layer 406 is formed between the carrier 404 and the first buffer layer 402. The photothermal conversion release layer 406 is used to release the semiconductor package 400 from the carrier 404 after the semiconductor package 400 is completely formed and/or partially formed. For example, in some embodiments, a laser and/or other concentrated light source is applied to the photothermal conversion release layer 406 to heat the photothermal conversion release layer 406 and separate the semiconductor package 400 from the carrier 404. .

在步驟304處,在第一緩衝層402的至少一部分上形成第一金屬層或銅重佈線層408(Cu RDL,在本文中被稱作第一金屬層)。如圖6中所示,第一金屬層408可包括被一個或多個間隙分隔開的多個金屬走線(traces)408a、408b。例如,在一些實施例中,可通過界定所述一個或多個金屬走線408a、408b的光罩來沉積第一金屬層408,但應知也可將第一金屬層408沉積成固體層並使用一個或多個蝕刻製程及/或一個或多個光罩來移除所述固體層的某些部分。可將第一金屬層408沉積至任何適合的深度(例如5微米、6微米、7微米、8微米、9微米及/或大於9微米或小於5微米的任何其他適合的深度)。在一些實施例中,第一金屬層408為半導體封裝400的後側(backside,B/S)金屬層。後側金屬層用以將半導體封裝400耦合至一個或多個電路元件。At step 304, a first metal layer or copper redistribution layer 408 (Cu RDL, referred to herein as a first metal layer) is formed over at least a portion of the first buffer layer 402. As shown in FIG. 6, the first metal layer 408 can include a plurality of metal traces 408a, 408b separated by one or more gaps. For example, in some embodiments, the first metal layer 408 can be deposited by a reticle that defines the one or more metal traces 408a, 408b, although it is understood that the first metal layer 408 can also be deposited as a solid layer and used. One or more etching processes and/or one or more reticle to remove portions of the solid layer. The first metal layer 408 can be deposited to any suitable depth (eg, any other suitable depth of 5 microns, 6 microns, 7 microns, 8 microns, 9 microns, and/or greater than 9 microns or less than 5 microns). In some embodiments, the first metal layer 408 is a backside (B/S) metal layer of the semiconductor package 400. The backside metal layer is used to couple the semiconductor package 400 to one or more circuit elements.

在步驟306處,如圖7中所示,在第一金屬層408上方沉積貫穿絕緣層通孔光阻圖案化層(TIV hole photoresist patterning layer)410,以界定一個或多個貫穿絕緣層成形孔412a、412b。貫穿絕緣層成形孔412a、412b具有預定直徑及預定深度(例如,將貫穿絕緣層通孔光阻圖案化層410沉積至預定高度)。例如,在一些實施例中,貫穿絕緣層成形孔412a、412b各自具有約120微米的直徑及約200-250微米的深度,但應知貫穿絕緣層成形孔412a、412b也可具有更大的及/或更小的直徑及/或深度。在一些實施例中,通過界定貫穿絕緣層成形孔412a、412b的一個或多個光罩來沉積貫穿絕緣層通孔光阻圖案化層410。At step 306, as shown in FIG. 7, a through-insulation layer via photoresist patterning layer (TIV) is deposited over the first metal layer 408 to define one or more through-insulation layer forming holes 412a, 412b. The through-insulation layer forming holes 412a, 412b have a predetermined diameter and a predetermined depth (for example, depositing the through-insulation via-hole photoresist patterning layer 410 to a predetermined height). For example, in some embodiments, the through-insulation layer forming holes 412a, 412b each have a diameter of about 120 microns and a depth of about 200-250 microns, but it is understood that the through-insulation layer forming holes 412a, 412b can also have a larger / or smaller diameter and / or depth. In some embodiments, the through-silicon via photoresist patterning layer 410 is deposited by defining one or more reticle through the insulating layer forming apertures 412a, 412b.

在步驟308處,在貫穿絕緣層通孔光阻圖案化層410上共形地沉積晶種層414。在一些實施例中,例如圖8中所示實施例,晶種層414包含鈦-銅(Ti-Cu)材料。將晶種層414沉積成足以產生預定導電性的厚度。例如,在一些實施例中,可將Ti/Cu晶種層414沉積成預定厚度(例如1000 Å的Ti厚度及5000 Å的Cu厚度),但應知也可選擇任何其他適合的導電性。At step 308, a seed layer 414 is conformally deposited over the insulating layer via photoresist pattern 410. In some embodiments, such as the embodiment shown in FIG. 8, seed layer 414 comprises a titanium-copper (Ti-Cu) material. The seed layer 414 is deposited to a thickness sufficient to produce a predetermined conductivity. For example, in some embodiments, the Ti/Cu seed layer 414 can be deposited to a predetermined thickness (e.g., a Ti thickness of 1000 Å and a Cu thickness of 5000 Å), although it is understood that any other suitable conductivity can be selected.

在步驟310處,如圖9中所示,在晶種層414上沉積導電金屬層416。在一些實施例中,利用一個或多個電化學鍍敷(electrochemical plating;ECP)製程來沉積導電金屬層416。例如,導電金屬層416可為經電化學鍍敷沉積的銅層。將導電金屬層416沉積成足以填充預先界定的每一貫穿絕緣層成形孔412a、412b的厚度。例如,在一些實施例中,可將導電金屬層416沉積至約120微米的深度。在一些實施例中,導電金屬層416的一部分在貫穿絕緣層成形孔412a、412b上方及在貫穿絕緣層通孔光阻圖案化層410上方延伸。At step 310, a conductive metal layer 416 is deposited over the seed layer 414 as shown in FIG. In some embodiments, the conductive metal layer 416 is deposited using one or more electrochemical plating (ECP) processes. For example, the conductive metal layer 416 can be a copper layer deposited by electrochemical plating. The conductive metal layer 416 is deposited to a thickness sufficient to fill each of the through-insulation layer forming holes 412a, 412b defined in advance. For example, in some embodiments, conductive metal layer 416 can be deposited to a depth of about 120 microns. In some embodiments, a portion of conductive metal layer 416 extends over insulating layer forming apertures 412a, 412b and over insulating layer via photoresist patterning layer 410.

在步驟312處,如圖10中所示,將半導體封裝400平坦化以移除導電金屬層416的在貫穿絕緣層通孔光阻圖案化層410上方延伸的一部分。可利用例如化學機械平坦化(CMP)等任何適合的製程來移除導電金屬層416的所述一部分。在一些實施例中,將半導體封裝400平坦化以暴露出沉積於在貫穿絕緣層通孔光阻圖案化層410中形成的貫穿絕緣層成形孔412a、412b內的導電材料。At step 312, semiconductor package 400 is planarized to remove a portion of conductive metal layer 416 that extends over insulating layer via photoresist pattern 410, as shown in FIG. The portion of conductive metal layer 416 can be removed using any suitable process, such as chemical mechanical planarization (CMP). In some embodiments, the semiconductor package 400 is planarized to expose conductive material deposited within the through insulating layer forming holes 412a, 412b formed through the insulating layer via photoresist patterning layer 410.

在步驟314處,移除貫穿絕緣層通孔光阻圖案化層410。如圖11中所示,移除貫穿絕緣層通孔光阻圖案化層410會留下多個導電柱418a、418b。可利用任何適合的製程(例如臭氧電漿灰化製程(ozone plasma ashing process)、濕酸清洗(wet acid cleaning)、及/或任何其他適合的製程、及/或其組合)來移除貫穿絕緣層通孔光阻圖案化層410。導電柱418a、418b在第一緩衝層402上方延伸預定距離。例如,導電柱418a、418b可在導電層(第一金屬層)408上方延伸約120微米,但應知導電柱418a、418b也可具有更大的及/或更小的高度。在一些實施例中,導電柱418a、418b的高度對應於在貫穿絕緣層通孔光阻圖案化層410中形成的貫穿絕緣層成形孔412a、412b的深度。At step 314, the through-insulation via-resist patterning layer 410 is removed. As shown in FIG. 11, removing the through-via via photoresist pattern 410 leaves a plurality of conductive pillars 418a, 418b. The through insulation may be removed using any suitable process, such as an ozone plasma ashing process, wet acid cleaning, and/or any other suitable process, and/or combinations thereof. Layer via photoresist patterning layer 410. The conductive pillars 418a, 418b extend a predetermined distance above the first buffer layer 402. For example, the conductive pillars 418a, 418b may extend over the conductive layer (first metal layer) 408 by about 120 microns, although it is understood that the conductive pillars 418a, 418b may also have a larger and/or smaller height. In some embodiments, the height of the conductive pillars 418a, 418b corresponds to the depth of the through insulating layer forming holes 412a, 412b formed through the insulating layer via photoresist patterning layer 410.

在步驟316處,如圖12中所示,在部分半導體封裝400上共形地沉積絕緣層420。絕緣層420可為使用任何適合的製程沉積的任何適合的高介電常數絕緣層(high-K insulating layer)420。在各種實施例中,絕緣層420包含以下中的一者或多者:陶瓷材料、介電材料、聚合物材料、任何其他適合的材料、及/或其任何組合。例如,在一些實施例中,沉積低溫(例如,180℃)電漿輔助化學氣相沉積(plasma enhanced chemical vapor deposition;PECVD)介電質。電漿輔助化學氣相沉積介電質可包括但不僅限於矽系介電質(例如,SiNx 、SiO2 、SiOx Ny )及/或任何其他適合的介電質。在其他實施例中,絕緣層420為聚合物絕緣材料,例如環氧樹脂(Epoxy)、聚苯并噁唑、聚醯亞胺(PI)、苯並環丁烯(BCB)及/或任何其他適合的聚合物絕緣材料。At step 316, as shown in FIG. 12, an insulating layer 420 is conformally deposited over portions of the semiconductor package 400. The insulating layer 420 can be any suitable high-k insulating layer 420 deposited using any suitable process. In various embodiments, insulating layer 420 comprises one or more of the following: a ceramic material, a dielectric material, a polymeric material, any other suitable material, and/or any combination thereof. For example, in some embodiments, a low temperature (eg, 180 ° C) plasma enhanced chemical vapor deposition (PECVD) dielectric is deposited. Plasma assisted chemical vapor deposition of dielectrics may include but not limited to silicon-based dielectric (e.g., SiN x, SiO 2, SiO x N y) and / or any other suitable dielectric. In other embodiments, the insulating layer 420 is a polymeric insulating material such as epoxy (Epoxy), polybenzoxazole, polyimine (PI), benzocyclobutene (BCB), and/or any other Suitable polymer insulation material.

在步驟318處,如圖13中所示,在絕緣層420上共形地沉積同軸接地晶種層422。在一些實施例中,可利用任何適合的沉積製程(例如濺鍍(sputtering))來沉積同軸接地晶種層422。同軸接地種晶層422包含導電材料,例如銅(Cu)、銅合金、及/或任何其他適合的導電材料。同軸接地種晶層422可包含任何適合的材料,例如包含具有1/3 KÅ厚度的Ti/Cu的材料。At step 318, a coaxial ground seed layer 422 is conformally deposited over insulating layer 420 as shown in FIG. In some embodiments, the coaxial ground seed layer 422 can be deposited using any suitable deposition process, such as sputtering. The coaxial ground seed layer 422 comprises a conductive material such as copper (Cu), a copper alloy, and/or any other suitable conductive material. The coaxial ground seed layer 422 can comprise any suitable material, such as a material comprising Ti/Cu having a thickness of 1/3 KÅ.

在步驟320處,如圖14中所示,在同軸接地晶種層422的第一部分上沉積光阻層424。光阻層424可包含任何適合的光阻材料,例如聚(甲基丙烯酸甲酯)(Poly(methyl methacrylate),PMMA),聚(甲基戊二醯亞胺)(Poly(methyl glutarimide,PMGI)、酚醛樹脂(phenol formaldehyde resin)、及/或任何其他適合的光阻層424。沉積光阻層424並將光阻層424暴露至光源以使光阻材料凝固或顯影。在一些實施例中,在界定用於一個或多個同軸貫穿絕緣層孔的接地遮蔽的同軸接地晶種層422的某些部分上沉積光阻層424。可利用任何適合的製程塗布或沉積光阻層424。At step 320, as shown in FIG. 14, a photoresist layer 424 is deposited over the first portion of the coaxial ground seed layer 422. The photoresist layer 424 may comprise any suitable photoresist material, such as poly(methyl methacrylate) (PMMA), poly(methyl glutarimide (PMGI)). A phenol formaldehyde resin, and/or any other suitable photoresist layer 424. The photoresist layer 424 is deposited and the photoresist layer 424 is exposed to a light source to solidify or develop the photoresist material. In some embodiments, A photoresist layer 424 is deposited over portions of the coaxial ground seed layer 422 that define ground shields for one or more coaxial through-insulator apertures. The photoresist layer 424 can be coated or deposited using any suitable process.

在步驟322處,如圖15中所示,移除同軸接地晶種層422的未被光阻層424覆蓋的第二部分。可利用任何適合的方法(例如所屬領域中熟知的濕蝕刻劑製程(wet-etchant process))來移除同軸接地晶種層422的所述第二部分。光阻層424在所述濕蝕刻劑製程期間保護同軸接地晶種層422的所述第一部分。At step 322, as shown in FIG. 15, the second portion of the coaxial ground seed layer 422 that is not covered by the photoresist layer 424 is removed. The second portion of the coaxial ground seed layer 422 can be removed using any suitable method, such as a wet-etchant process as is well known in the art. Photoresist layer 424 protects the first portion of coaxial ground seed layer 422 during the wet etchant process.

在步驟324處,如圖16中所示,移除光阻層424。可利用任何適合的製程(例如臭氧電漿灰化製程、濕酸清洗製程、及/或任何其他適合的製程、及/或其組合)來移除光阻層424。在移除光阻層424之後,部分半導體封裝400包括多個同軸連接件426,所述多個同軸連接件426具有內導電層(導電金屬層)416、絕緣層420、及外導電層(同軸接地晶種層)422。在某些實施例中,外導電層(同軸接地晶種層)422包括接地遮蔽層。At step 324, as shown in FIG. 16, the photoresist layer 424 is removed. The photoresist layer 424 can be removed using any suitable process, such as an ozone plasma ashing process, a wet acid cleaning process, and/or any other suitable process, and/or combinations thereof. After removing the photoresist layer 424, a portion of the semiconductor package 400 includes a plurality of coaxial connectors 426 having an inner conductive layer (conductive metal layer) 416, an insulating layer 420, and an outer conductive layer (coaxial Grounded seed layer) 422. In some embodiments, the outer conductive layer (coaxial ground seed layer) 422 includes a grounded shielding layer.

在步驟326處,將多個半導體晶粒(主動半導體晶粒或裝置)428a、428b耦合至部分半導體封裝400。所述半導體晶粒被預形成為含有一個或多個主動半導體元件的半導體晶粒。如圖17中所示,將半導體晶粒428a、428b耦合至或貼合至第一金屬層408。在一些實施例中,半導體晶粒428a、428b各自包括晶粒貼合膜(die attach film;DAF)層430、包含一個或多個主動元件的矽層432、鋁接觸墊434、及金屬通孔436,但應知半導體晶粒428a、428b也可具有任何適合數目的及/或任何適合類型的層。在一些實施例中,每一半導體晶粒428a、428b的上部部分(例如,金屬通孔436)與同軸連接件426的頂部實質上平行,但應知半導體晶粒428a、428b的高度也可延伸至同軸連接件426的頂部上方及/或下方。At step 326, a plurality of semiconductor dies (active semiconductor dies or devices) 428a, 428b are coupled to a portion of semiconductor package 400. The semiconductor die is pre-formed into a semiconductor die containing one or more active semiconductor components. As shown in FIG. 17, semiconductor die 428a, 428b are coupled or bonded to first metal layer 408. In some embodiments, the semiconductor die 428a, 428b each comprise a die attach film (DAF) layer 430, a germanium layer 432 comprising one or more active components, an aluminum contact pad 434, and a metal via 436, however, it is understood that the semiconductor die 428a, 428b can also have any suitable number and/or any suitable type of layer. In some embodiments, the upper portion of each semiconductor die 428a, 428b (eg, metal via 436) is substantially parallel to the top of the coaxial connector 426, although it is understood that the height of the semiconductor die 428a, 428b can also be extended. Up to and/or below the top of the coaxial connector 426.

在步驟328處,如圖18中所示,在部分半導體封裝400上沉積包覆模製(over molding)層438。包覆模製層438用以填充各半導體晶粒428a、428b與各所述多個同軸連接件426之間的一個或多個間隙。在一些實施例中,包覆模製層438包含絕緣(或非導電)材料。例如,在各種實施例中,包覆模製層438可包含絕緣材料,例如聚合物材料。在一些實施例中,將包覆模製層438沉積至足以填充各半導體晶粒428a、428b及/或各同軸連接件426之間的間隙的深度。例如,在一些實施例中,將包覆模製層438沉積成足以在半導體晶粒428a、428b的及/或同軸連接件426的頂部上方延伸約50微米的厚度。At step 328, as shown in FIG. 18, an over molding layer 438 is deposited over portions of the semiconductor package 400. The overmold layer 438 is used to fill one or more gaps between each of the semiconductor die 428a, 428b and each of the plurality of coaxial connectors 426. In some embodiments, the overmold layer 438 comprises an insulating (or non-conductive) material. For example, in various embodiments, overmold layer 438 can comprise an insulating material, such as a polymeric material. In some embodiments, the overmold layer 438 is deposited to a depth sufficient to fill the gap between each of the semiconductor dies 428a, 428b and/or each of the coaxial connectors 426. For example, in some embodiments, overmold layer 438 is deposited to a thickness sufficient to extend over the top of semiconductor die 428a, 428b and/or coaxial connector 426 by about 50 microns.

在步驟330處,如圖19中所示,將部分半導體封裝400平坦化以移除包覆模製層438安置於半導體晶粒428a、428b上方的一部分。可使用任何適合的製程(例如,在化學機械平坦化製程之前進行的研磨製程、及/或任何其他適合的製程)來移除包覆模製層438的所述一部分。在一些實施例中,移除每一同軸連接件426的絕緣層420的上部部分及外導電層(同軸接地晶種層)422的上部部分,以暴露出內導電層(導電金屬層)416。也可移除每一半導體晶粒428a、428b的一部分,例如鋁接觸墊434的一部分。At step 330, as shown in FIG. 19, a portion of the semiconductor package 400 is planarized to remove a portion of the overmold layer 438 disposed over the semiconductor die 428a, 428b. The portion of overmold layer 438 can be removed using any suitable process (eg, a polishing process performed prior to the chemical mechanical planarization process, and/or any other suitable process). In some embodiments, the upper portion of the insulating layer 420 of each of the coaxial connectors 426 and the upper portion of the outer conductive layer (coaxial ground seed layer) 422 are removed to expose the inner conductive layer (conductive metal layer) 416. A portion of each of the semiconductor dies 428a, 428b, such as a portion of the aluminum contact pads 434, may also be removed.

在步驟332處,如圖20中所示,在部分半導體封裝400上沉積通孔絕緣層440。通孔絕緣層440包含用以隔離每一半導體晶粒428a、428b及同軸連接件426的絕緣材料,例如聚醯亞胺、聚苯并噁唑(PBO)、及/或任何其他適合的材料。在通孔絕緣層440中形成多個連線性通孔442以對每一半導體晶粒428a、428b及同軸連接件426提供電性連接點。連線性通孔442可包含任何適合的導電材料,例如銅及/或銅合金。在一些實施例中,通孔絕緣層440包括位於每一同軸連接件426處的懸伸部(overhang)444,以隔離內導電材料(導電金屬層)416及外導電接地遮蔽層(同軸接地晶種層)422。可將通孔絕緣層440沉積至任何適合的深度,例如等於或小於約4.5微米的深度,但應知通孔絕緣層440也可具有大於或小於4.5微米的任何適合的深度。At step 332, a via insulating layer 440 is deposited over portions of the semiconductor package 400 as shown in FIG. The via insulating layer 440 includes an insulating material, such as polyimide, polybenzoxazole (PBO), and/or any other suitable material for isolating each of the semiconductor dies 428a, 428b and the coaxial connector 426. A plurality of linear vias 442 are formed in the via insulating layer 440 to provide electrical connection points for each of the semiconductor dies 428a, 428b and the coaxial connectors 426. The linear vias 442 can comprise any suitable electrically conductive material, such as copper and/or copper alloys. In some embodiments, the via insulating layer 440 includes an overhang 444 at each of the coaxial connectors 426 to isolate the inner conductive material (conductive metal layer) 416 and the outer conductive ground shielding layer (coaxial ground crystal Seed layer) 422. The via insulating layer 440 can be deposited to any suitable depth, such as a depth equal to or less than about 4.5 microns, although it is understood that the via insulating layer 440 can also have any suitable depth greater than or less than 4.5 microns.

在步驟334處,在部分半導體封裝400上形成一個或多個額外的層(例如,一個或多個通孔層及/或導電層)。例如,如圖21及圖22中所示,在通孔絕緣層440上方形成通孔絕緣層446、448及/或導電層450a-450c。額外的通孔絕緣層(聚苯并噁唑層)446包括多個通孔452a-452c,所述多個通孔452a-452c將同軸連接件426及半導體晶粒428a、428b耦合至導電層450a。在一些實施例中,額外的導電層(例如,導電層450a-450c)用以將半導體封裝400的兩個或更多個元件耦合於一起。例如,在圖21中所示實施例中,導電層450a將第一半導體晶粒428a耦合至第二半導體晶粒428b。在一些實施例中,導電層450a-450c用以將半導體封裝400的一個或多個元件耦合至外部連接點。例如,如圖23中所示,通過在多個導電層450a-450c中形成的多個導電線454a-454c將第一半導體晶粒428a及第二半導體晶粒428b耦合至連接墊456。應知,可在部分半導體封裝400上沉積任何數目的通孔層446、448及/或導電層450a-450c。At step 334, one or more additional layers (eg, one or more via layers and/or conductive layers) are formed on portions of semiconductor package 400. For example, as shown in FIGS. 21 and 22, via insulating layers 446, 448 and/or conductive layers 450a-450c are formed over via insulating layer 440. An additional via insulating layer (polybenzoxazole layer) 446 includes a plurality of vias 452a-452c that couple coaxial connector 426 and semiconductor die 428a, 428b to conductive layer 450a . In some embodiments, additional conductive layers (eg, conductive layers 450a-450c) are used to couple two or more elements of semiconductor package 400 together. For example, in the embodiment shown in FIG. 21, conductive layer 450a couples first semiconductor die 428a to second semiconductor die 428b. In some embodiments, conductive layers 450a-450c are used to couple one or more components of semiconductor package 400 to external connection points. For example, as shown in FIG. 23, first semiconductor die 428a and second semiconductor die 428b are coupled to connection pads 456 by a plurality of conductive lines 454a-454c formed in a plurality of conductive layers 450a-450c. It will be appreciated that any number of via layers 446, 448 and/or conductive layers 450a-450c may be deposited on portions of semiconductor package 400.

在步驟336處,如圖21中所示,在半導體封裝的一個或多個連接點處形成焊料球458。例如,在一些實施例中,在連接墊456上形成焊料球。焊料球458可包含任何適合的材料,例如錫(Sn)、銀(Ag)、銅(Cu)、鉛(Pb)及/或其組合。At step 336, as shown in FIG. 21, solder balls 458 are formed at one or more connection points of the semiconductor package. For example, in some embodiments, solder balls are formed on the connection pads 456. Solder balls 458 can comprise any suitable material, such as tin (Sn), silver (Ag), copper (Cu), lead (Pb), and/or combinations thereof.

在步驟338處,將光源施加至光熱轉換離型層406以加熱光熱轉換離型層406,從而使半導體封裝400從載板(玻璃載板)404分離。所述光源可為任何適合的光源,例如雷射或其他定向光源。圖24繪示在從玻璃載板404被移除之後的製作完成的半導體封裝400。At step 338, a light source is applied to the photothermal conversion release layer 406 to heat the photothermal conversion release layer 406, thereby separating the semiconductor package 400 from the carrier (glass carrier) 404. The light source can be any suitable light source, such as a laser or other directional light source. FIG. 24 illustrates the fabricated semiconductor package 400 after being removed from the glass carrier 404.

在各種實施例中,公開一種半導體封裝。所述半導體封裝包括第一半導體元件、絕緣層及第二半導體元件。所述第一半導體元件包括至少一個導電層及至少一個通孔層。所述絕緣層位於所述第一半導體元件上方且包括從所述絕緣層的第一側延伸至所述絕緣層的第二側的至少一個貫穿絕緣層孔(through insulator via,TIV)。所述至少一個貫穿絕緣層孔具有導電芯,且所述導電芯包括含銅材料。所述第二半導體元件位於所述絕緣層上方且包括至少一個導電層及至少一個通孔層。所述至少一個貫穿絕緣層孔將所述第一半導體元件的所述至少一個通孔層耦合至所述第二半導體元件的所述至少一個通孔層。In various embodiments, a semiconductor package is disclosed. The semiconductor package includes a first semiconductor element, an insulating layer, and a second semiconductor element. The first semiconductor component includes at least one conductive layer and at least one via layer. The insulating layer is over the first semiconductor element and includes at least one through insulator via (TIV) extending from a first side of the insulating layer to a second side of the insulating layer. The at least one through insulating layer hole has a conductive core, and the conductive core includes a copper-containing material. The second semiconductor component is above the insulating layer and includes at least one conductive layer and at least one via layer. The at least one through-hole layer couples the at least one via layer of the first semiconductor element to the at least one via layer of the second semiconductor element.

在一些實施例中,所述至少一個貫穿絕緣層孔包括圍繞所述導電芯安置的第一絕緣層及圍繞所述第一絕緣層安置的接地遮蔽層。In some embodiments, the at least one through insulating layer aperture includes a first insulating layer disposed about the conductive core and a grounded shielding layer disposed about the first insulating layer.

在一些實施例中,所述接地遮蔽層包括含銅材料。In some embodiments, the ground shielding layer comprises a copper-containing material.

在一些實施例中,所述絕緣層包含低溫電漿輔助化學氣相沉積(PECVD)介電質。In some embodiments, the insulating layer comprises a low temperature plasma assisted chemical vapor deposition (PECVD) dielectric.

在一些實施例中,所述電漿輔助化學氣相沉積介電質包括矽系介電質。In some embodiments, the plasma assisted chemical vapor deposition dielectric comprises a lanthanide dielectric.

在一些實施例中,所述至少一個貫穿絕緣層孔還包括圍繞所述接地遮蔽層安置的第二絕緣層。In some embodiments, the at least one through insulating layer aperture further includes a second insulating layer disposed about the grounded shielding layer.

在一些實施例中,所述第二絕緣層包含選自由聚苯并噁唑(PBO)、聚醯亞胺(PI)及苯並環丁烯(BCB)組成的群組的聚合物絕緣材料。In some embodiments, the second insulating layer comprises a polymeric insulating material selected from the group consisting of polybenzoxazole (PBO), polyimine (PI), and benzocyclobutene (BCB).

在一些實施例中,所述含銅材料包括鈦/銅(Ti/Cu)材料。In some embodiments, the copper-containing material comprises a titanium/copper (Ti/Cu) material.

在一些實施例中,所述絕緣層包括中介層(interposer),所述中介層包括一個或多個主動半導體裝置。In some embodiments, the insulating layer includes an interposer that includes one or more active semiconductor devices.

在各種實施例中,公開一種半導體封裝的形成方法。所述方法至少包括以下步驟。在基板上形成第一導電層。在所述第一導電層上方形成絕緣層。在所述絕緣層上方形成通孔層。在所述通孔層上方形成第二導電層。所述第一導電層包括至少一個導電走線(trace)。所述絕緣層包括從所述絕緣層的第一側延伸至所述絕緣層的第二側的至少一個貫穿絕緣層孔(through insulator via;TIV)。所述貫穿絕緣層孔具有導電芯,所述導電芯耦合至所述第一導電層的所述至少一個導電走線。所述通孔層包括從所述通孔層的第一側延伸至第二側的至少一個導電通孔,且所述通孔層耦合至所述絕緣層的所述至少一個貫穿絕緣層孔。所述第二導電層包括至少一個導電走線,所述至少一個導電走線耦合至所述通孔層的所述至少一個導電通孔。In various embodiments, a method of forming a semiconductor package is disclosed. The method includes at least the following steps. A first conductive layer is formed on the substrate. An insulating layer is formed over the first conductive layer. A via layer is formed over the insulating layer. A second conductive layer is formed over the via layer. The first conductive layer includes at least one conductive trace. The insulating layer includes at least one through insulator via (TIV) extending from a first side of the insulating layer to a second side of the insulating layer. The through insulating layer aperture has a conductive core coupled to the at least one conductive trace of the first conductive layer. The via layer includes at least one conductive via extending from a first side to a second side of the via layer, and the via layer is coupled to the at least one through insulating via of the insulating layer. The second conductive layer includes at least one conductive trace coupled to the at least one conductive via of the via layer.

在一些實施例中,形成所述絕緣層至少包括以下步驟。在所述第一通孔層上沉積貫穿絕緣層通孔光阻層(TIV hole photoresist layer),其中所述貫穿絕緣層通孔光阻層界定至少一個貫穿絕緣層通孔(TIV hole),所述至少一個貫穿絕緣層通孔至少部分地位於所述第一通孔層的所述至少一個導電通孔上方。在所述貫穿絕緣層通孔光阻層上沉積第一導電含銅材料,其中所述第一導電含銅材料被沉積至足以填充所述至少一個貫穿絕緣層通孔的深度。移除所述貫穿絕緣層通孔光阻層,以使所述第一導電含銅材料的柱界定所述至少一個貫穿絕緣層孔的導電芯。In some embodiments, forming the insulating layer includes at least the following steps. Depositing a through hole insulating photoresist layer (TIV hole photoresist layer) on the first via layer, wherein the through insulating via via photoresist layer defines at least one through via hole (TIV hole), the at least one through The insulating layer via is at least partially over the at least one conductive via of the first via layer. Depositing a first conductive copper-containing material on the through-insulation via-hole photoresist layer, wherein the first conductive copper-containing material is deposited to a depth sufficient to fill the at least one through-via via. The through-insulation via-hole photoresist layer is removed such that the pillars of the first conductive copper-containing material define the at least one conductive core penetrating through the holes of the insulating layer.

在一些實施例中,形成所述絕緣層進一步包括以下步驟。在所述第一導電含銅材料的所述柱上沉積第一絕緣層。在所述第一絕緣層上沉積第二導電含銅材料,其中所述第一導電含銅材料的所述柱、所述第一絕緣層及所述第二導電含銅材料界定所述至少一個貫穿絕緣層孔。In some embodiments, forming the insulating layer further includes the following steps. Depositing a first insulating layer on the pillar of the first conductive copper-containing material. Depositing a second conductive copper-containing material on the first insulating layer, wherein the pillar, the first insulating layer, and the second conductive copper-containing material of the first conductive copper-containing material define the at least one Through the hole of the insulation layer.

在一些實施例中,沉積所述第一絕緣層包括沉積低溫電漿輔助化學氣相沉積(PECVD)介電材料。In some embodiments, depositing the first insulating layer comprises depositing a low temperature plasma assisted chemical vapor deposition (PECVD) dielectric material.

在一些實施例中,形成所述絕緣層包括執行平坦化(planarizing)步驟以暴露出所述導電芯。In some embodiments, forming the insulating layer includes performing a planarizing step to expose the conductive core.

在一些實施例中,還包括在所述至少一個貫穿絕緣層孔上形成第二絕緣層。In some embodiments, further comprising forming a second insulating layer on the at least one through insulating layer via.

在一些實施例中,所述第二絕緣層包含選自由聚苯并噁唑(PBO)、聚醯亞胺(PI)及苯並環丁烯(BCB)組成的群組的材料。In some embodiments, the second insulating layer comprises a material selected from the group consisting of polybenzoxazole (PBO), polyimine (PI), and benzocyclobutene (BCB).

在一些實施例中,還包括將至少一個主動半導體晶粒耦合至所述絕緣層。In some embodiments, further comprising coupling at least one active semiconductor die to the insulating layer.

在一些實施例中,還包括以下步驟。在所述第二導電層上方形成連接墊,其中所述連接墊耦合至在所述第二導電層中形成的所述至少一個導電走線。在所述連接墊上形成焊料球。In some embodiments, the following steps are also included. A connection pad is formed over the second conductive layer, wherein the connection pad is coupled to the at least one conductive trace formed in the second conductive layer. A solder ball is formed on the connection pad.

在各種實施例中,公開一種半導體封裝。所述半導體封裝包括第一半導體元件、絕緣層及第二半導體元件。所述第一半導體元件包括第一導電層及第一通孔層。所述第一導電層具有至少一個導電走線(trace)。所述第一通孔層具有至少一個導電通孔,所述至少一個導電通孔耦合至所述第一導電層的所述至少一個導電走線。所述絕緣層垂直地位於所述第一半導體元件上方且包括主動半導體裝置、貫穿絕緣層孔(through insulator via,TIV)及絕緣材料。所述貫穿絕緣層孔從所述絕緣層的第一側延伸至所述絕緣層的第二側。所述貫穿絕緣層孔包括導電芯、至少部分地圍繞所述導電芯的絕緣層及至少圍繞所述絕緣層的接地遮蔽層。所述導電芯在所述貫穿絕緣層孔的第一端處耦合至所述第一通孔層的所述至少一個導電通孔。所述導電芯及所述接地遮蔽層各自包括含銅材料。所述絕緣材料位於所述主動半導體裝置與所述貫穿絕緣層孔之間。所述第二半導體元件位於所述絕緣層上方且包括第二通孔層及第二導電層。所述第二通孔層包括至少一個導電通孔,所述至少一個導電通孔在所述貫穿絕緣層孔的第二端處耦合至所述貫穿絕緣層孔的所述導電芯。所述第二導電層包括至少一個導電走線(trace),所述至少一個導電走線耦合至所述第二通孔層的所述至少一個導電通孔。In various embodiments, a semiconductor package is disclosed. The semiconductor package includes a first semiconductor element, an insulating layer, and a second semiconductor element. The first semiconductor component includes a first conductive layer and a first via layer. The first conductive layer has at least one conductive trace. The first via layer has at least one conductive via, the at least one conductive via being coupled to the at least one conductive trace of the first conductive layer. The insulating layer is vertically above the first semiconductor element and includes an active semiconductor device, a through insulator via (TIV), and an insulating material. The through insulating layer aperture extends from a first side of the insulating layer to a second side of the insulating layer. The through insulating layer aperture includes a conductive core, an insulating layer at least partially surrounding the conductive core, and a grounded shielding layer surrounding at least the insulating layer. The conductive core is coupled to the at least one conductive via of the first via layer at a first end of the through-insulator hole. The conductive core and the ground shielding layer each comprise a copper-containing material. The insulating material is located between the active semiconductor device and the through insulating layer hole. The second semiconductor component is located above the insulating layer and includes a second via layer and a second conductive layer. The second via layer includes at least one conductive via that is coupled to the conductive core through the insulating via at a second end of the through insulating via. The second conductive layer includes at least one conductive trace coupled to the at least one conductive via of the second via layer.

在一些實施例中,所述第一含銅材料是鈦-銅材料。In some embodiments, the first copper-containing material is a titanium-copper material.

以上概述了若干實施例的特徵,以使所屬領域中的技術人員可更好地理解本發明的各個方面。所屬領域中的技術人員應知,其可容易地使用本發明作為設計或修改其他製程及結構的基礎來施行與本文中所介紹的實施例相同的目的及/或實現與本文中所介紹的實施例相同的優點。所屬領域中的技術人員還應認識到,這些等效構造並不背離本發明的精神及範圍,而且他們可在不背離本發明的精神及範圍的條件下對其作出各種改變、代替、及變更。The features of several embodiments are summarized above so that those skilled in the art can better understand the various aspects of the invention. It will be apparent to those skilled in the art that the present invention can be readily utilized as a basis for designing or modifying other processes and structures to perform the same objectives and/or implementations as those described herein. The same advantages are given. A person skilled in the art will recognize that the equivalents of the present invention are not to be construed as being limited to the spirit and scope of the invention. .

2‧‧‧半導體封裝
4‧‧‧中介層
6‧‧‧第一半導體晶粒
8‧‧‧第二半導體晶粒
10‧‧‧印刷電路板
12‧‧‧第一表面
14‧‧‧第二表面
16‧‧‧封裝基板
18、20、24、458‧‧‧焊料球
26、102‧‧‧接地遮蔽傳輸路徑
50‧‧‧三維半導體封裝
52‧‧‧中央處理單元
54‧‧‧緩存記憶體
56‧‧‧動態隨機存取記憶體/非揮發性記憶體
58‧‧‧類比裝置
60‧‧‧射頻裝置
62‧‧‧電源
64‧‧‧感測器
66‧‧‧輸入/輸出連接
68a、68b、68c、68d、68e‧‧‧貫穿絕緣層孔
70‧‧‧矽穿孔
72‧‧‧貫穿絕緣層孔
72a‧‧‧第一貫穿絕緣層孔
72b‧‧‧第二貫穿絕緣層孔
74‧‧‧基板穿孔
100‧‧‧半導體封裝
101a‧‧‧第一半導體封裝元件
101b‧‧‧第二半導體封裝元件
104a、104d‧‧‧金屬層
104b‧‧‧第一金屬層
104c‧‧‧第二金屬層
106a‧‧‧第一通孔層
106b‧‧‧第二通孔層
106c‧‧‧第三通孔層
106d‧‧‧第四通孔層
108‧‧‧貫穿絕緣層孔
110、114‧‧‧絕緣層
112、112a‧‧‧接地遮蔽層
120‧‧‧連續的接地遮蔽層
122‧‧‧導電金屬材料
126‧‧‧絕緣區
128‧‧‧主動裝置
130‧‧‧頂蓋層
132‧‧‧半導體晶粒
134‧‧‧焊料凸塊
140a‧‧‧第一通孔
140b‧‧‧第二通孔
146a、146b、146c、146d‧‧‧信號路徑
156‧‧‧凸塊下金屬層
300‧‧‧方法
302、304、306、308、310、312、314、316、318、320、322、324、326、328、330、332、334、336‧‧‧步驟
400‧‧‧半導體封裝
402‧‧‧第一緩衝層
404‧‧‧載板
406‧‧‧光熱轉換離型層
408‧‧‧第一金屬層
408a、408b‧‧‧金屬走線
410‧‧‧貫穿絕緣層通孔光阻圖案化層
412a、412b‧‧‧貫穿絕緣層成形孔
414‧‧‧晶種層
416‧‧‧導電金屬層
418a、418b‧‧‧導電柱
420‧‧‧絕緣層
422‧‧‧同軸接地晶種層
424‧‧‧光阻層
426‧‧‧同軸連接件
428a、428b‧‧‧半導體晶粒
430‧‧‧晶粒貼合膜層
432‧‧‧矽層
434‧‧‧鋁接觸墊
436‧‧‧金屬通孔
438‧‧‧包覆模製層
440、446、448‧‧‧通孔絕緣層
442‧‧‧連線性通孔
444‧‧‧懸伸部
450a、450b、450c‧‧‧導電層
452a、452b、452c‧‧‧通孔
454a、454b、454c‧‧‧導電線
456‧‧‧連接墊
2‧‧‧Semiconductor package
4‧‧‧Intermediary
6‧‧‧First semiconductor die
8‧‧‧Second semiconductor die
10‧‧‧Printed circuit board
12‧‧‧ first surface
14‧‧‧ second surface
16‧‧‧Package substrate
18, 20, 24, 458‧‧‧ solder balls
26, 102‧‧‧ Grounding shield transmission path
50‧‧‧Three-dimensional semiconductor package
52‧‧‧Central Processing Unit
54‧‧‧ Cache memory
56‧‧‧Dynamic random access memory/non-volatile memory
58‧‧‧ analog device
60‧‧‧RF devices
62‧‧‧Power supply
64‧‧‧Sensor
66‧‧‧Input/output connections
68a, 68b, 68c, 68d, 68e‧‧‧ through the insulation hole
70‧‧‧矽 piercing
72‧‧‧through insulation hole
72a‧‧‧First through insulation hole
72b‧‧‧Second through insulation hole
74‧‧‧Substrate perforation
100‧‧‧Semiconductor package
101a‧‧‧First semiconductor package components
101b‧‧‧Second semiconductor package components
104a, 104d‧‧‧ metal layer
104b‧‧‧First metal layer
104c‧‧‧Second metal layer
106a‧‧‧First via layer
106b‧‧‧Second via layer
106c‧‧‧ third via layer
106d‧‧‧fourth via layer
108‧‧‧through insulation hole
110, 114‧‧‧ insulation
112, 112a‧‧‧ Grounding shield
120‧‧‧Continuous grounding shield
122‧‧‧ Conductive metal materials
126‧‧‧Insulated area
128‧‧‧Active device
130‧‧‧Top cover
132‧‧‧Semiconductor grains
134‧‧‧ solder bumps
140a‧‧‧first through hole
140b‧‧‧second through hole
146a, 146b, 146c, 146d‧‧‧ signal path
156‧‧‧Under bump metal layer
300‧‧‧ method
302, 304, 306, 308, 310, 312, 314, 316, 318, 320, 322, 324, 326, 328, 330, 332, 334, 336 ‧ ‧ steps
400‧‧‧Semiconductor package
402‧‧‧First buffer layer
404‧‧‧ Carrier Board
406‧‧‧Photothermal conversion release layer
408‧‧‧First metal layer
408a, 408b‧‧‧metal trace
410‧‧‧through insulating layer through-hole photoresist patterned layer
412a, 412b‧‧‧through insulating layer forming holes
414‧‧‧ seed layer
416‧‧‧ Conductive metal layer
418a, 418b‧‧‧ conductive column
420‧‧‧Insulation
422‧‧‧ coaxial grounded seed layer
424‧‧‧Photoresist layer
426‧‧‧ coaxial connector
428a, 428b‧‧‧ semiconductor die
430‧‧‧ die bonding film
432‧‧‧矽
434‧‧‧Aluminum contact pads
436‧‧‧Metal through hole
438‧‧‧ overmolded layer
440, 446, 448‧‧‧ through-hole insulation
442‧‧‧With linear through holes
444‧‧‧Overhanging
450a, 450b, 450c‧‧‧ conductive layer
452a, 452b, 452c‧‧‧through holes
454a, 454b, 454c‧‧‧ conductive lines
456‧‧‧Connecting mat

圖1繪示根據一些實施例的包括中介層的2.5維半導體封裝的側視圖。 圖2繪示根據一些實施例的三維(3D)半導體封裝的側視圖。 圖3繪示根據一些實施例的包括具有接地遮蔽傳輸路徑的中介層的2.5維半導體封裝。 圖4繪示根據一些實施例的形成包括一個或多個貫穿絕緣層孔-銅連接(TIV-Cu connection)的半導體封裝的方法的流程圖。 圖5繪示根據一些實施例的具有在載板上形成的第一緩衝層及光熱轉換(light-to-heat conversion;LTHC)層的部分半導體封裝。 圖6繪示根據一些實施例的上面沉積有第一金屬層的圖5所示部分半導體封裝。 圖7繪示根據一些實施例的上面沉積有貫穿絕緣層通孔光阻圖案化層(TIV hole photoresist patterning layer)的圖6所示部分半導體封裝。 圖8繪示根據一些實施例的上面沉積有鈦/銅(Ti/Cu)晶種層(seed layer)的圖7所示部分半導體封裝。 圖9繪示根據一些實施例的具有在一個或多個貫穿絕緣層通孔(TIV hole)中沉積的銅(Cu)層的圖8所示部分半導體封裝。 圖10繪示根據一些實施例的在化學機械平坦化製程(chemical-mechanical planarization process)之後的圖9所示部分半導體封裝。 圖11繪示根據一些實施例的在光阻移除製程(photoresist removal process)之後的圖10所示部分半導體封裝。 圖12繪示根據一些實施例的上面沉積有絕緣層的圖11所示部分半導體封裝。 圖13繪示根據一些實施例的上面沉積有接地遮蔽層(ground shielding layer)的圖12所示部分半導體封裝。 圖14繪示根據一些實施例的上面沉積有同軸光阻圖案化層(coaxial photoresist patterning layer)的圖13所示部分半導體封裝。 圖15繪示根據一些實施例的在濕蝕刻製程(wet etching process)之後的圖14所示部分半導體封裝。 圖16繪示根據一些實施例的在光阻移除製程之後的圖15所示部分半導體封裝。 圖17繪示根據一些實施例的耦合有第一半導體晶粒及第二半導體晶粒的圖16所示部分半導體封裝。 圖18繪示根據一些實施例的上面沉積有包覆模製層(over molding layer)的圖17所示部分半導體封裝。 圖19繪示根據一些實施例的在化學機械平坦化(chemical-mechanical planarization;CMP)製程之後的圖18所示部分半導體封裝。 圖20繪示根據一些實施例的上面沉積有聚苯并噁唑(PBO)層的圖19所示部分半導體封裝。 圖21繪示根據一些實施例的具有多個導電層及聚苯并噁唑層的圖20所示部分半導體封裝。 圖22繪示根據一些實施例的具有將第一半導體晶粒及第二半導體晶粒耦合至連接墊的多個導電層以及通孔的圖21所示部分半導體封裝。 圖23繪示根據一些實施例的具有在連接墊上形成的焊料凸塊的圖22所示部分半導體封裝。 圖24繪示根據一些實施例的從玻璃載板分離的圖23所示半導體封裝。1 depicts a side view of a 2.5 dimensional semiconductor package including an interposer, in accordance with some embodiments. 2 depicts a side view of a three-dimensional (3D) semiconductor package in accordance with some embodiments. 3 illustrates a 2.5 dimensional semiconductor package including an interposer having a grounded shielded transmission path, in accordance with some embodiments. 4 illustrates a flow chart of a method of forming a semiconductor package including one or more through-silicon via connections (TIV-Cu connections), in accordance with some embodiments. FIG. 5 illustrates a partial semiconductor package having a first buffer layer and a light-to-heat conversion (LTHC) layer formed on a carrier, in accordance with some embodiments. 6 illustrates a portion of a semiconductor package of FIG. 5 with a first metal layer deposited thereon, in accordance with some embodiments. FIG. 7 illustrates a portion of the semiconductor package of FIG. 6 with a through-insulation through-silicon via photoresist patterning layer (TIV hole photoresist patterning layer) deposited thereon, in accordance with some embodiments. 8 illustrates a portion of a semiconductor package of FIG. 7 with a titanium/copper (Ti/Cu) seed layer deposited thereon, in accordance with some embodiments. 9 illustrates a portion of a semiconductor package of FIG. 8 having a copper (Cu) layer deposited in one or more through-insulator vias (TIV holes), in accordance with some embodiments. FIG. 10 illustrates a portion of the semiconductor package of FIG. 9 after a chemical-mechanical planarization process, in accordance with some embodiments. 11 illustrates a portion of a semiconductor package of FIG. 10 after a photoresist removal process, in accordance with some embodiments. Figure 12 illustrates a portion of the semiconductor package of Figure 11 with an insulating layer deposited thereon, in accordance with some embodiments. Figure 13 illustrates a portion of the semiconductor package of Figure 12 with a ground shielding layer deposited thereon, in accordance with some embodiments. 14 illustrates a portion of a semiconductor package of FIG. 13 with a coaxial photoresist patterning layer deposited thereon, in accordance with some embodiments. Figure 15 illustrates a portion of the semiconductor package of Figure 14 after a wet etching process, in accordance with some embodiments. 16 illustrates a portion of the semiconductor package of FIG. 15 after a photoresist removal process, in accordance with some embodiments. 17 illustrates a portion of a semiconductor package of FIG. 16 coupled with a first semiconductor die and a second semiconductor die, in accordance with some embodiments. 18 illustrates a portion of the semiconductor package of FIG. 17 with an over molding layer deposited thereon, in accordance with some embodiments. 19 illustrates a portion of a semiconductor package of FIG. 18 after a chemical-mechanical planarization (CMP) process, in accordance with some embodiments. 20 depicts a portion of the semiconductor package of FIG. 19 with a layer of polybenzoxazole (PBO) deposited thereon, in accordance with some embodiments. 21 illustrates a portion of a semiconductor package of FIG. 20 having a plurality of conductive layers and a polybenzoxazole layer, in accordance with some embodiments. 22 illustrates a portion of a semiconductor package of FIG. 21 having a plurality of conductive layers and vias that couple a first semiconductor die and a second semiconductor die to a connection pad, in accordance with some embodiments. 23 illustrates a portion of a semiconductor package of FIG. 22 having solder bumps formed on a connection pad in accordance with some embodiments. 24 illustrates the semiconductor package of FIG. 23 separated from a glass carrier in accordance with some embodiments.

400‧‧‧半導體封裝 400‧‧‧Semiconductor package

402‧‧‧第一緩衝層 402‧‧‧First buffer layer

408a、408b‧‧‧金屬走線 408a, 408b‧‧‧metal trace

426‧‧‧同軸連接件 426‧‧‧ coaxial connector

428a、428b‧‧‧半導體晶粒 428a, 428b‧‧‧ semiconductor die

440、446、448‧‧‧通孔絕緣層 440, 446, 448‧‧‧ through-hole insulation

442‧‧‧連線性通孔 442‧‧‧With linear through holes

450a、450b、450c‧‧‧導電層 450a, 450b, 450c‧‧‧ conductive layer

452a、452b、452c‧‧‧通孔 452a, 452b, 452c‧‧‧through holes

454a、454b、454c‧‧‧導電線 454a, 454b, 454c‧‧‧ conductive lines

456‧‧‧連接墊 456‧‧‧Connecting mat

458‧‧‧焊料球 458‧‧‧ solder balls

Claims (1)

一種半導體封裝,包括: 第一半導體元件,包括至少一個導電層及至少一個通孔層; 絕緣層,位於所述第一半導體元件上方,所述絕緣層包括從所述絕緣層的第一側延伸至所述絕緣層的第二側的至少一個貫穿絕緣層孔,其中所述貫穿絕緣層孔包括導電芯,所述導電芯包括含銅材料;以及 第二半導體元件,包括至少一個導電層及至少一個通孔層,其中所述第二半導體元件位於所述絕緣層上方,且 其中所述至少一個貫穿絕緣層孔將所述第一半導體元件的所述至少一個通孔層耦合至所述第二半導體元件的所述至少一個通孔層。A semiconductor package comprising: a first semiconductor component comprising at least one conductive layer and at least one via layer; an insulating layer over the first semiconductor component, the insulating layer comprising an extension from a first side of the insulating layer At least one through the insulating layer aperture to the second side of the insulating layer, wherein the through insulating layer aperture comprises a conductive core, the conductive core comprises a copper-containing material; and the second semiconductor component comprises at least one conductive layer and at least a via layer, wherein the second semiconductor component is over the insulating layer, and wherein the at least one through insulating via couples the at least one via layer of the first semiconductor component to the second The at least one via layer of the semiconductor component.
TW106109403A 2016-03-22 2017-03-21 Semiconductor package TW201737428A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/076,976 US10930603B2 (en) 2016-03-22 2016-03-22 Coaxial through via with novel high isolation cross coupling method for 3D integrated circuits
US201662427465P 2016-11-29 2016-11-29
US15/431,909 US10037897B2 (en) 2016-11-29 2017-02-14 Inter-fan-out wafer level packaging with coaxial TIV for 3D IC low-noise packaging

Publications (1)

Publication Number Publication Date
TW201737428A true TW201737428A (en) 2017-10-16

Family

ID=59928318

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106109403A TW201737428A (en) 2016-03-22 2017-03-21 Semiconductor package

Country Status (2)

Country Link
CN (1) CN107221526A (en)
TW (1) TW201737428A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI683406B (en) * 2017-11-30 2020-01-21 南韓商三星電子股份有限公司 Fan-out semiconductor package
TWI688051B (en) * 2018-06-08 2020-03-11 台灣積體電路製造股份有限公司 Semiconductor packages and method forming same
TWI695460B (en) * 2018-07-27 2020-06-01 南韓商三星電子股份有限公司 Fan-out semiconductor package
TWI697085B (en) * 2017-11-15 2020-06-21 台灣積體電路製造股份有限公司 Semiconductor device and method of forming the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10504777B2 (en) * 2018-02-13 2019-12-10 Raytheon Company Method of manufacturing wafer level low melting temperature interconnections
KR102595463B1 (en) * 2018-02-22 2023-10-30 삼성전기주식회사 Electroic components
CN112216671A (en) * 2019-07-11 2021-01-12 中芯集成电路(宁波)有限公司 Switching mechanism, manufacturing method thereof and packaging body
US11031348B2 (en) * 2019-07-24 2021-06-08 Nanya Technology Corporation Semiconductor structure
CN113257782B (en) * 2021-07-14 2021-10-01 北京壁仞科技开发有限公司 Semiconductor packaging structure and packaging method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697085B (en) * 2017-11-15 2020-06-21 台灣積體電路製造股份有限公司 Semiconductor device and method of forming the same
US11031342B2 (en) 2017-11-15 2021-06-08 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package and method
US11948890B2 (en) 2017-11-15 2024-04-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package and method
TWI683406B (en) * 2017-11-30 2020-01-21 南韓商三星電子股份有限公司 Fan-out semiconductor package
US10559540B2 (en) 2017-11-30 2020-02-11 Samsung Electronics Co., Ltd. Fan-out semiconductor package
TWI688051B (en) * 2018-06-08 2020-03-11 台灣積體電路製造股份有限公司 Semiconductor packages and method forming same
US10916519B2 (en) 2018-06-08 2021-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Method for manufacturing semiconductor package with connection structures including via groups
US11532587B2 (en) 2018-06-08 2022-12-20 Taiwan Semiconductor Manufacturing Company, Ltd. Method for manufacturing semiconductor package with connection structures including via groups
TWI695460B (en) * 2018-07-27 2020-06-01 南韓商三星電子股份有限公司 Fan-out semiconductor package
US10886246B2 (en) 2018-07-27 2021-01-05 Samsung Electronics Co., Ltd. Fan-out semiconductor package

Also Published As

Publication number Publication date
CN107221526A (en) 2017-09-29

Similar Documents

Publication Publication Date Title
US11532567B2 (en) Electric magnetic shielding structure in packages
TWI686877B (en) Package method and device same
US10510714B2 (en) Packaged semiconductor devices and packaging methods
TW201737428A (en) Semiconductor package
US11018088B2 (en) Dummy features in redistribution layers (RDLS) and methods of forming same
TWI727463B (en) Package and methods of forming the same
US10290584B2 (en) Conductive vias in semiconductor packages and methods of forming same
US9818698B2 (en) EMI package and method for making same
US10037897B2 (en) Inter-fan-out wafer level packaging with coaxial TIV for 3D IC low-noise packaging
TW201906029A (en) Semiconductor package and method of manufacturing same
US11688693B2 (en) Semiconductor packages and method of manufacture
JP2019096873A (en) Package structure and manufacturing method of package structure
KR102511808B1 (en) Semiconductor devices and methods of manufacture
KR101591570B1 (en) Through-vias and methods of forming the same
US11894312B2 (en) Semiconductor packages and method of manufacture
US11682648B2 (en) Semiconductor device and method of fabricating the same