TW201736439A - Liquid crystal display element, liquid crystal optical element, and composition for liquid crystal structure-stabilizing film - Google Patents

Liquid crystal display element, liquid crystal optical element, and composition for liquid crystal structure-stabilizing film Download PDF

Info

Publication number
TW201736439A
TW201736439A TW105142748A TW105142748A TW201736439A TW 201736439 A TW201736439 A TW 201736439A TW 105142748 A TW105142748 A TW 105142748A TW 105142748 A TW105142748 A TW 105142748A TW 201736439 A TW201736439 A TW 201736439A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
group
atom
film
crystal structure
Prior art date
Application number
TW105142748A
Other languages
Chinese (zh)
Other versions
TWI747863B (en
Inventor
野田尚宏
後藤耕平
筒井皇晶
Original Assignee
日產化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日產化學工業股份有限公司 filed Critical 日產化學工業股份有限公司
Publication of TW201736439A publication Critical patent/TW201736439A/en
Application granted granted Critical
Publication of TWI747863B publication Critical patent/TWI747863B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polarising Elements (AREA)

Abstract

Provided is a liquid crystal structure-stabilizing film by which even ULH alignment is obtained without application of physical stress, in other words, a liquid crystal structure-stabilizing film having good initial ULH alignment. A ULH-mode liquid crystal display element obtained using cholesteric liquid crystal and a liquid crystal structure-stabilizing film in which a polymer for expressing anisotropy by polarized UV irradiation is used.

Description

液晶顯示元件、液晶光學元件及液晶構造體安定化膜用組成物 Liquid crystal display element, liquid crystal optical element, and liquid crystal structure stabilization film composition

本發明係關於應用反應速度非常快、對外加電壓線性地進行光學反應的液晶配向模式的液晶顯示元件、及其製造所必要的液晶晶胞、基板、使液晶構造體安定化用之膜、用以形成如此之膜的組成物等者。 The present invention relates to a liquid crystal display device using a liquid crystal alignment mode in which a reaction rate is extremely fast and an optical reaction is linearly applied to a voltage, and a liquid crystal cell, a substrate, and a film for stabilizing the liquid crystal structure, which are necessary for the production of the liquid crystal structure. To form a composition of such a film or the like.

現在一般普及的液晶顯示元件方面,可舉例如TN(Twisted Nematic)模式或IPS(In Plane Switching)模式、VA(Vertical Alignment)模式等,但任一驅動方式中皆有液晶的On/Off所花費時間、即反應速度慢的課題或因觀看角度而所見改變、即視野角依賴性等課題。 In terms of liquid crystal display elements that are generally popular, for example, TN (Twisted Nematic) mode, IPS (In Plane Switching) mode, VA (Vertical Alignment) mode, etc., but in any of the driving methods, the On/Off of the liquid crystal is spent. The time, that is, the problem of slow reaction rate or the change seen from the viewing angle, that is, the viewpoint of the viewing angle dependence.

另一方面雖未至實用化,作為反應速度非常快、無視野角依賴性的液晶驅動方式之Blue Phase或ULH(Uniform Lying Helix)等作為次世代的液晶驅動方式受到注目。尤其ULH中因為除了非常快的反應速度,亦具有驅動電壓比較低、對外加電壓顯示線性的光學反應的特徵,而期待在種種顯示媒體之應用。 On the other hand, although it has not been put to practical use, it is attracting attention as a next-generation liquid crystal drive method, such as a blue phase or ULH (Uniform Lying Helix) which is a liquid crystal driving method which has a very fast reaction speed and no viewing angle dependence. In particular, in ULH, in addition to a very fast reaction speed, it also has a feature that the driving voltage is relatively low and the applied voltage exhibits a linear optical reaction, and is expected to be applied to various display media.

ULH為使用膽固醇狀液晶的液晶驅動方式之一種。藉由以具備透明電極的基板挾持膽固醇狀液晶,且給予物理性剪斷應力或電的刺激等,可對基板平面均勻地形成螺旋。將該配向狀態稱為ULH,但藉由對其施以電場,螺旋的光學軸進行In Plane Switching,藉此可得到線性的光學反應。 ULH is one of liquid crystal driving methods using cholesteric liquid crystal. By holding a cholesteric liquid crystal on a substrate having a transparent electrode and imparting physical shear stress or electrical stimulation or the like, a spiral can be uniformly formed on the substrate plane. This alignment state is referred to as ULH, but by applying an electric field thereto, the optical axis of the spiral is subjected to In Plane Switching, whereby a linear optical reaction can be obtained.

另一方面,ULH配向非常難得到均勻的配向狀態,且置於電場下則有ULH的配向狀態進行不可逆的變化等之技術的課題。對於該課題,採用使用於膽固醇狀液晶添加聚合性液晶的液晶,藉由ULH形成後的UV照射,形成聚合物網狀結構,謀求ULH配向的安定化之方法(專利文獻1)、進而使用可邊施加剪斷應力邊進行液晶注入的裝置而形成ULH之手法(非專利文獻1)或使具有周期性構造的配向層藉由光微影術而形成,使ULH配向之手法(非專利文獻2)等。 On the other hand, in the ULH alignment, it is very difficult to obtain a uniform alignment state, and when placed under an electric field, there is a problem in that the alignment state of the ULH is irreversibly changed. In this case, a liquid crystal structure in which a liquid crystal is added to a condensed liquid crystal, and a polymer network structure is formed by UV irradiation after ULH formation, thereby achieving a stabilization of ULH alignment (Patent Document 1), and further A method of forming a ULH by applying a liquid crystal injection while applying a shear stress (Non-Patent Document 1) or forming an alignment layer having a periodic structure by photolithography to make the ULH alignment method (Non-Patent Document 2) )Wait.

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

[專利文獻1]US 7,038,743 B2 [Patent Document 1] US 7,038,743 B2

[非專利文獻] [Non-patent literature]

[非專利文獻1]Liquid Crystals, 24:3, 329-334, 1998 [Non-Patent Document 1] Liquid Crystals, 24:3, 329-334, 1998

[非專利文獻2]Mol. Cryst. Liq. Cryst. Vol. 544:pp. 37/[1025] - 49/[1037], 2011 [Non-Patent Document 2] Mol. Cryst. Liq. Cryst. Vol. 544: pp. 37/[1025] - 49/[1037], 2011

在ULH的配向安定化或配向均勻性的提升等中採用種種手法,但實際在液晶顯示器的製作步驟中,邊施加剪斷應力邊注入液晶並進行配向處理極為困難,進而在聚合性化合物所致之安定化中亦必須以得到均等ULH配向狀態的狀態實施,ULH的配向均勻性的提升在技術上亦為極大課題。因此,本發明之目的在於提供不施以物理應力而可得到均等且良好的的ULH配向之液晶構造體安定化膜、及具備該液晶構造體安定化膜的ULH液晶顯示元件。 Various methods are used in the alignment stabilization of ULH or the improvement of alignment uniformity. However, in the production process of a liquid crystal display, it is extremely difficult to inject liquid crystal and perform alignment treatment while applying shear stress, and further, it is caused by a polymerizable compound. In the stabilization process, it is also necessary to implement the state of equal ULH alignment, and the improvement of the alignment uniformity of the ULH is also a technically significant problem. Therefore, an object of the present invention is to provide a liquid crystal structure stabilized film which can obtain an equal and excellent ULH alignment without applying physical stress, and a ULH liquid crystal display element including the liquid crystal structure stabilized film.

為了達成上述目的,進行努力研究的結果,發現為了得到均等且良好的ULH配向,存在有與由膽固醇狀液晶所構成的螺旋狀構造體相接,且使其安定存在的膜(以下、亦稱液晶構造體安定化膜)可有效達成課題、而且液晶構造體安定化膜表面的凹凸小及與液晶之相互作用小係為必要,而完成本發明。 In order to achieve the above-mentioned object, it has been found that in order to obtain an equal and good ULH alignment, there is a film which is in contact with a helical structure composed of cholesteric liquid crystal and which is stabilized (hereinafter, also referred to as The liquid crystal structure stabilized film) is effective in achieving the problem, and it is necessary to make the surface of the liquid crystal structure stabilized film small and small and the interaction with the liquid crystal is small, and the present invention has been completed.

即本發明包含以下。 That is, the present invention encompasses the following.

[1]一種用以形成使液晶構造體安定化之膜的組成物(與上述「液晶構造體安定化劑」同義),含有選自聚醯亞胺前驅物、聚醯亞胺、聚醯胺、聚丙烯酸 酯、聚甲基丙烯酸酯、聚N取代馬來醯亞胺、聚苯乙烯、聚衣康酸酯、及聚有機矽氧烷所構成的群,且經偏光紫外線照射而表現各向異性的至少1種之聚合物。 [1] A composition for forming a film for stabilizing a liquid crystal structure (synonymous with the above-mentioned "liquid crystal structure stabilizer"), comprising a polyimine precursor selected from the group consisting of polyimine, polyamine, and polyamine ,Polyacrylic acid a group of esters, polymethacrylates, poly-N-substituted maleimine, polystyrene, polyitaconate, and polyorganosiloxane, and exhibiting anisotropy by polarized ultraviolet radiation 1 kind of polymer.

[2]前述至少1種之聚合物為主鏈中具有下述式(1)~(5): [2] At least one of the aforementioned polymers has the following formulas (1) to (5) in the main chain:

[式中,Z1~Z4各自獨立,為氫原子、甲基、及苯環所成群組中選出的至少1種,R1為氫原子、甲基、乙基、丙基、異丙基、異丁基、及t-丁基所構成群中選出的有機基,R2為氫原子、氟原子、或下述式: [wherein, Z 1 to Z 4 are each independently and are at least one selected from the group consisting of a hydrogen atom, a methyl group, and a benzene ring, and R 1 is a hydrogen atom, a methyl group, an ethyl group, a propyl group, or an isopropyl group. An organic group selected from the group consisting of a group, an isobutyl group, and a t-butyl group, and R 2 is a hydrogen atom, a fluorine atom, or the following formula:

(式中,R3為氫原子或碳數1~18的烷基鏈,m為1~3的整數,黑點為鍵結部位。)所表示之有機基,黑點為與另外有機基之鍵結。]所表示之任一構造的聚醯亞胺前驅物、或聚醯亞胺之[1]記載之組成物。 (wherein R 3 is a hydrogen atom or an alkyl chain having 1 to 18 carbon atoms, m is an integer of 1 to 3, and a black dot is a bonding site.) The organic group represented by a black dot and another organic group Bonding. The composition described in [1] of the polyimine precursor of any of the structures represented by the polyimine.

[3]前述至少1種之聚合物為主鏈中具有下述式(6)~(10): [3] The at least one polymer described above has the following formulas (6) to (10) in the main chain:

(式中,X1、X2各自獨立,為碳原子、或氮原子,Y1、Y2各自獨立,為氫原子、甲基、氰基、氟原子、或氯原子,X3為氧原子、或硫原子,X4為單鍵、碳原子、氧原子、或硫原子,R4、R5各自獨立,為氫原子、甲基、甲氧基、二甲基胺基、氟原子、或氯原子,p為1~4的整數,q為1~3的整數,虛線為與另外有機基之鍵結。) (wherein X 1 and X 2 are each independently a carbon atom or a nitrogen atom, and Y 1 and Y 2 are each independently a hydrogen atom, a methyl group, a cyano group, a fluorine atom or a chlorine atom, and X 3 is an oxygen atom. Or a sulfur atom, X 4 is a single bond, a carbon atom, an oxygen atom, or a sulfur atom, and R 4 and R 5 are each independently a hydrogen atom, a methyl group, a methoxy group, a dimethylamino group, a fluorine atom, or Chlorine atom, p is an integer from 1 to 4, q is an integer from 1 to 3, and the dotted line is a bond with another organic group.)

所表示之任一構造的聚醯亞胺前驅物、或聚醯亞胺之[1]記載之組成物。 The composition described in [1] of the polyimine precursor of any of the structures represented by the present invention or the polyimine.

[4]前述至少1種之聚合物為具有下述式(6)~(8)或(11): [4] The at least one polymer described above has the following formula (6) to (8) or (11):

(式中,X1、X2各自獨立,為碳原子、或氮原子,Y1、Y2各自獨立,為氫原子、甲基、氰基、氟原子、或氯原子,X3為氧原子、或硫原子,X4為單鍵、碳原子、氧原子、或硫原子,R4、R5各自獨立,為氫原子、甲基、甲氧基、二甲基胺基、氟原子、或氯原子,Ar為2,5-伸呋喃基、噻吩-2,5-二基、嘧啶-2,5-二基、吡啶-2,5-二基、伸苯基、1,4-或2,6-伸萘基、2,5-或者2,6-苯並伸呋喃基、或2,5-或者2,6-苯並硫代伸苯基,鍵結於此等之芳香環的氫原子之一部分可被甲基、甲氧基、二甲基胺基、氟原子、或氯原子取代,p為1~4的整數,黑點為氫原子或與另外有機基之鍵結。)所表示之構造作為側鏈之一部分的聚合物之[1]記載之組成物。 (wherein X 1 and X 2 are each independently a carbon atom or a nitrogen atom, and Y 1 and Y 2 are each independently a hydrogen atom, a methyl group, a cyano group, a fluorine atom or a chlorine atom, and X 3 is an oxygen atom. Or a sulfur atom, X 4 is a single bond, a carbon atom, an oxygen atom, or a sulfur atom, and R 4 and R 5 are each independently a hydrogen atom, a methyl group, a methoxy group, a dimethylamino group, a fluorine atom, or Chlorine atom, Ar is 2,5-extended furyl, thiophene-2,5-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, phenyl, 1,4- or 2 , 6-strandyl, 2,5- or 2,6-benzofuranyl, or 2,5- or 2,6-benzothiophenyl, a hydrogen bonded to the aromatic ring One part of the atom may be substituted by a methyl group, a methoxy group, a dimethylamino group, a fluorine atom, or a chlorine atom, p is an integer of 1 to 4, and a black point is a hydrogen atom or a bond with another organic group. A composition described in [1] which is a polymer which is a part of a side chain.

[5]前述至少1種之聚合物為具有下述一般式: [5] The aforementioned at least one polymer has the following general formula:

(式中,虛線為與另外有機基之鍵結。) (In the formula, the dotted line is a bond with another organic group.)

所表示之構造(12)、或(13)與前述一般式(6)~(11)的構造作為側鏈之一部分的聚丙烯酸酯、聚甲基丙烯酸酯、聚N取代馬來醯亞胺、聚苯乙烯、聚衣康酸酯、或聚矽氧烷之[1]記載之組成物。 The structure (12) or (13) and the structures of the above general formulas (6) to (11) are represented as polyacrylate, polymethacrylate, poly N substituted maleimide, or a part of the side chain. The composition described in [1] of polystyrene, polyitaconate or polyoxyalkylene.

[6]用以形成使膽固醇狀液晶進行ULH配向用之膜 的組成物之[1]乃至[5]中任一項記載之組成物。 [6] A film for forming a ULH alignment for cholesteric liquid crystal The composition according to any one of [1] to [5].

[7]包含將請求項1乃至5中任一項記載之組成物製膜的步驟、及對得到的膜照射偏光紫外線而表現各向異性的步驟的使液晶構造體安定化用之膜(以下、亦稱「液晶構造體安定化膜」)之製造方法。 [7] A film for forming a film of the composition according to any one of claims 1 to 5, and a film for activating the liquid crystal structure in which the obtained film is irradiated with polarized ultraviolet rays to exhibit anisotropy (hereinafter) The manufacturing method of "liquid crystal structure stabilized film").

[8]前述偏光紫外線照射步驟中,各向異性係藉由分解、異構化或交聯而表現之[7]記載之方法。 [8] In the polarized ultraviolet ray irradiation step, the anisotropy is represented by the method described in [7] by decomposition, isomerization or crosslinking.

[9]前述偏光紫外線照射步驟中,各向異性係藉由使偏光紫外線對膜面從垂直方向照射而表現之[7]或[8]記載之方法。 [9] In the polarized ultraviolet ray irradiation step, the anisotropy is expressed by the method of [7] or [8] in which the polarized ultraviolet ray is irradiated to the film surface from the vertical direction.

[10]前述偏光紫外線照射步驟包含照射紫外線的照射波長為250nm~400nm的偏光紫外線,至少照射能量以2mJ以上進行照射,進而照射後在80~300℃進行5分鐘以上加熱的步驟之[7]乃至[9]中任一項記載之方法。 [10] The polarized ultraviolet ray irradiation step includes a polarized ultraviolet ray having an irradiation wavelength of 250 nm to 400 nm irradiated with ultraviolet rays, a step of irradiating at least 2 mJ or more of the irradiation energy, and further heating at 80 to 300 ° C for 5 minutes or more after the irradiation [7]. Or the method described in any one of [9].

[11]含有聚醯亞胺前驅物、聚醯亞胺、聚醯胺、聚丙烯酸酯、聚甲基丙烯酸酯、聚N取代馬來醯亞胺、聚苯乙烯、聚衣康酸酯、及聚有機矽氧烷所構成群中選出的至少1種之聚合物,且具有使膽固醇狀液晶進行ULH配向的各向異性的使液晶構造體安定化用之膜。 [11] comprising a polyimide precursor, polyimine, polyamine, polyacrylate, polymethacrylate, poly-N-substituted maleimide, polystyrene, polyitaconate, and At least one polymer selected from the group consisting of a polyorganosiloxane and a film for stabilizing the liquid crystal structure by anisotropic ULH alignment of the cholesteric liquid crystal.

[12]具有[11]記載之膜之附有液晶構造體安定化膜的基板。 [12] A substrate having a liquid crystal structure stabilization film attached to the film according to [11].

[13]在以各液晶構造體安定化膜對向之方式配置的[12]記載之附有液晶構造體安定化膜的基板之間含有膽固醇狀液晶之液晶晶胞。 [13] A liquid crystal cell in which a liquid crystal structure liquid crystal cell is contained between the substrates having the liquid crystal structure stabilization film described in [12] in which the liquid crystal structure is stabilized.

[14]前述膽固醇狀液晶為含有下述一般式所表示之液晶性化合物而成的膽固醇狀液晶之[13]記載之液晶晶胞。 [14] The cholesteric liquid crystal is a liquid crystal cell described in [13] of a cholesteric liquid crystal containing a liquid crystal compound represented by the following general formula.

(式中,X1、X2各自獨立,為單鍵、酯鍵、醚鍵所選出的鍵結基,L為6~20所表示之整數,R8為碳數4~10的烷基。) (wherein, X 1 and X 2 are each independently a bond group selected by a single bond, an ester bond or an ether bond, L is an integer represented by 6 to 20, and R 8 is an alkyl group having 4 to 10 carbon atoms. )

[15]具備偏光板、及[13]或[14]記載之液晶晶胞之液晶顯示元件。 [15] A liquid crystal display element comprising a polarizing plate and a liquid crystal cell according to [13] or [14].

根據本發明,藉由使用經偏光紫外線照射而表現各向異性的液晶構造體安定化膜,即使不施加外部應力等亦可得到良好的ULH配向。 According to the present invention, by using a liquid crystal structure stabilized film which exhibits anisotropy by polarized ultraviolet light irradiation, good ULH alignment can be obtained without applying external stress or the like.

為何本發明可得到具有上述優異特性的液晶顯示元件之機轉雖不一定明確,但可推測如下。即取代以往技術所使用的物理性剪斷應力或電的刺激,為了決定由膽固醇狀液晶所構成的螺旋狀構造體的方向性且使其安定存在,必 須有使液晶構造體安定化膜產生一定各向異性之處理(以下、亦稱配向處理)。作為該配向處理,在使用向列型液晶的液晶顯示元件領域一般進行的摩擦法,在配向處理時容易產生膜之削切或來自布的塵埃之附著等、因滾筒的振動或毛羽的影響等而膜之延伸易變得不均勻。因為ULH配向為非常精細的配向狀態,故認為若存在下層之凹凸等,變得無法得到良好的配向,但因為光配向為非接觸式,故不產生來自摩擦的削切或塵埃的附著,且以分子程度進行控制,故可形成非常均勻的配向狀態。又,光所致之配向處理,一般與摩擦所致之配向處理比較,有液晶的配向控制力(亦稱與液晶之相互作用的強度)小之傾向。由以上,認為本發明之構成中,為可得到良好的ULH液晶顯示元件者。 The reason why the liquid crystal display element having the above-described excellent characteristics can be obtained by the present invention is not necessarily clear, but it can be presumed as follows. In other words, in order to determine the directionality of the spiral structure composed of cholesteric liquid crystal and to stabilize it, in place of the physical shear stress or electrical stimulation used in the prior art, A treatment for causing a certain anisotropy of the liquid crystal structure stabilization film (hereinafter, also referred to as alignment treatment) is required. As the alignment treatment, a rubbing method generally performed in the field of liquid crystal display elements using nematic liquid crystals tends to cause film cutting or adhesion of dust from cloth during the alignment treatment, and the influence of vibration or hairiness of the drum. The extension of the film tends to become uneven. Since the ULH alignment is in a very fine alignment state, it is considered that if there is unevenness in the lower layer or the like, a good alignment cannot be obtained, but since the light alignment is non-contact type, the cutting from the friction or the adhesion of the dust does not occur, and Controlled by molecular degree, a very uniform alignment state can be formed. Further, the alignment treatment by light generally tends to be smaller than the alignment treatment by friction, and the alignment control force of the liquid crystal (also referred to as the strength of interaction with the liquid crystal) is small. From the above, it is considered that in the constitution of the present invention, a good ULH liquid crystal display element can be obtained.

[圖1]評估形成於基板的膜所致之膽固醇狀液晶的ULH配向性用的晶胞的模式圖。 Fig. 1 is a schematic view showing a unit cell for ULH alignment of a cholesteric liquid crystal obtained by a film formed on a substrate.

[圖2]初期配向的評估結果、ULH配向性為良好的場合之圖。 Fig. 2 is a view showing an evaluation result of initial alignment and a case where ULH alignment is good.

[圖3]初期配向的評估結果、ULH配向性為不良的場合之圖。 Fig. 3 is a view showing an evaluation result of initial alignment and a case where ULH alignment is poor.

以下、詳述本發明之各構成要件。 Hereinafter, each constituent element of the present invention will be described in detail.

1.液晶構造體安定化膜 1. Liquid crystal structure stabilized film

本發明之液晶顯示元件具備經偏光紫外線照射而表現各向異性的液晶構造體安定化膜。 The liquid crystal display device of the present invention comprises a liquid crystal structure stabilized film which exhibits anisotropy by polarized ultraviolet light irradiation.

如此之液晶構造體安定化膜係對使感光性的聚合物材料溶於有機溶劑的液晶構造體安定化劑塗佈於基板等而得到的膜,藉由照射紫外線等之放射線,而表現各向異性的機能膜。 In the liquid crystal structure stabilization film, a film obtained by applying a liquid crystal structure stabilizer which dissolves a photosensitive polymer material in an organic solvent to a substrate or the like is irradiated with radiation such as ultraviolet rays to express various directions. A functional film of the opposite sex.

本發明所使用的液晶構造體安定化膜中,作為經偏光紫外線照射而表現各向異性的機構方面,可舉例如1)經紫外線照射而一定方向的聚合物分解,表現各向異性者、2)經偏光紫外線照射而在一定方向的聚合物部位產生反應(異構化或二聚化等),表現各向異性者、3)藉由設定角度照射紫外線,在特定方向的側鏈產生反應(異構化或二聚化等)而產生各向異性者等,但不限其種類皆可得到良好的ULH配向。 In the liquid crystal structure stabilized film used in the present invention, as a mechanism for exhibiting anisotropy by polarized ultraviolet light irradiation, for example, 1) decomposition of a polymer in a predetermined direction by ultraviolet irradiation, and anisotropic expression, 2 A reaction occurs in a polymer site in a certain direction by polarized ultraviolet light irradiation (isomerization or dimerization), and anisotropic is exhibited, and 3) ultraviolet rays are irradiated at a set angle to generate a reaction in a side chain in a specific direction ( Isomerization or dimerization, etc., produces anisotropic, etc., but is not limited to a good ULH alignment.

2.液晶構造體安定化劑 2. Liquid crystal structure stabilizer

本發明之用以形成經偏光紫外線照射而表現各向異性的液晶構造體安定化膜的組成物(液晶構造體安定化劑)係以使藉由照射紫外線等之放射線而可得到液晶配向性的聚合物於有機溶劑溶解的形態含有。液晶構造體安定化劑中含有前述聚合物為1~15質量%、更佳為2~10質量%、 再佳為2~8質量%。 The composition (liquid crystal structure stabilizer) for forming a liquid crystal structure stabilization film which exhibits anisotropy by irradiation with polarized ultraviolet rays is obtained by irradiating radiation such as ultraviolet rays to obtain liquid crystal alignment property. The polymer is contained in a form in which the organic solvent is dissolved. The liquid crystal structure stabilizer contains 1 to 15% by mass, more preferably 2 to 10% by mass, based on the polymer. It is preferably 2 to 8 mass%.

此等之材料系方面,主要可舉例如聚醯亞胺前驅物、聚醯亞胺、聚醯胺、聚丙烯酸酯、聚甲基丙烯酸酯、聚N取代馬來醯亞胺、聚苯乙烯、聚衣康酸酯、聚矽氧烷等,但不限於此等。在液晶顯示器應用中,使用環境變得嚴苛,由顯示元件之信賴性的觀點,聚醯亞胺前驅物或聚醯亞胺等之耐熱性樹脂非常佳、由以低溫燒成製造顯示元件之觀點或單體.聚合物的合成難易度觀點,以聚丙烯酸酯系材料或聚甲基丙烯酸酯等為佳。 Examples of such materials are, for example, polyimine precursors, polyimine, polyamine, polyacrylate, polymethacrylate, poly-N-substituted maleimide, polystyrene, Polyacetate, polyoxyalkylene, etc., but are not limited thereto. In the liquid crystal display application, the use environment becomes severe, and from the viewpoint of the reliability of the display element, a heat-resistant resin such as a polyimide or a polyimide is excellent, and a display element is produced by firing at a low temperature. Opinion or unity. From the viewpoint of the ease of synthesis of the polymer, a polyacrylate-based material or a polymethacrylate is preferred.

2.1.聚合物 2.1. Polymer 2.1.1.聚合物(I)聚醯亞胺前驅物、或聚醯亞胺 2.1.1. Polymer (I) Polyimine Precursor, or Polyimine

聚醯亞胺前驅物為聚醯胺酸及聚醯胺酸酯。聚醯胺酸為可使二胺成分與四羧酸成分進行反應而得,聚醯胺酸酯可藉由使四羧酸的二酯體與二胺進行縮合聚合而得到。聚醯亞胺可藉由使此等之聚醯亞胺前驅物進行加熱脫水反應、進行使用酸或鹼等之觸媒的脫水縮合而得到。 The polyimine precursors are poly-proline and polyphthalate. The polyglycolic acid is obtained by reacting a diamine component with a tetracarboxylic acid component, and the polyglycolic acid ester can be obtained by condensation polymerization of a diester body of a tetracarboxylic acid and a diamine. The polyimine can be obtained by subjecting the polyimine precursor to a heat dehydration reaction and dehydration condensation using a catalyst such as an acid or a base.

聚醯亞胺前驅物具有下述式[A]所示之構造。 The polyimine precursor has a structure represented by the following formula [A].

(式中,R1為4價有機基。R2為2價有機基。A1及 A2各自獨立,為氫原子或碳數1~4的烷基。A3及A4各自獨立,為氫原子、碳數1~5的烷基或乙醯基。n為正整數。) (wherein R 1 is a tetravalent organic group. R 2 is a divalent organic group. A 1 and A 2 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. A 3 and A 4 are each independently A hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an ethylene group. n is a positive integer.)

聚醯亞胺系聚合物方面,由於藉由以下述式[B]所示之四羧酸二酐與下述式[C]所示之二胺作為原料,可較簡便得到之理由,以由下述式[D]所示之重複單位的構造式所構成的聚醯胺酸或將該聚醯胺酸醯亞胺化而成的聚醯亞胺為佳。 In the case of a polyimine-based polymer, a tetracarboxylic dianhydride represented by the following formula [B] and a diamine represented by the following formula [C] can be used as a raw material, which can be easily obtained. Polyammonic acid composed of a structural formula of a repeating unit represented by the following formula [D] or a polyiminoid obtained by imidating the polyphosphonium amide.

(式中,R1及R2與式[A]定義者同義。) (wherein R 1 and R 2 are synonymous with the definition of the formula [A].)

(式中,R1及R2與式[A]定義者同義。) (wherein R 1 and R 2 are synonymous with the definition of the formula [A].)

2.1.1.1.二胺 2.1.1.1. Diamine

二胺成分為分子內具有2個1級或2級胺基的二胺,四羧酸成分方面,可舉例如四羧酸、四羧酸二酐、四羧酸 二鹵化物等,四羧酸二酯體方面,可舉例如四羧酸二烷基酯或四羧酸二烷基酯二鹵化物。 The diamine component is a diamine having two first- or second-order amine groups in the molecule, and examples of the tetracarboxylic acid component include tetracarboxylic acid, tetracarboxylic dianhydride, and tetracarboxylic acid. Examples of the dihalide or the like and the tetracarboxylic acid diester include dialkyl tetracarboxylate or dialkyl tetracarboxylate dihalide.

本發明之液晶構造體安定化劑所含有的聚醯亞胺系聚合物所使用的二胺不特別限制,在不損及得到的ULH液晶顯示元件之特性的範圍中,可使用R2為具有下述構造之二胺。又,式中的點為直接鍵結於胺基的部分。 The diamine used in the polyimine-based polymer contained in the liquid crystal structure stabilizer of the present invention is not particularly limited, and R 2 may be used in a range that does not impair the characteristics of the obtained ULH liquid crystal display device. A diamine of the following construction. Further, the point in the formula is a moiety directly bonded to an amine group.

本發明中,此等之二胺構造在摩擦耐性提升中扮演非常重要的角色,故以積極導入為佳、尤以Y-82或Y-94~Y-108為特佳。 In the present invention, these diamine structures play a very important role in the improvement of friction resistance, so that it is preferable to actively introduce them, especially Y-82 or Y-94 to Y-108.

2.1.1.2.四羧酸二酐 2.1.1.2. Tetracarboxylic dianhydride

四羧酸二酐可以下述一般式(TC)表示。 The tetracarboxylic dianhydride can be represented by the following general formula (TC).

X為4價有機基,其構造不特別限定。 X is a tetravalent organic group, and its structure is not particularly limited.

本發明所使用的四羧酸二酐的種類無特別限制,因應作成液晶構造體安定化膜時的電壓保持特性、累積電荷等之特性,可為1種類或2種類以上併用。 The type of the tetracarboxylic dianhydride used in the present invention is not particularly limited, and may be used in combination of one type or two types or more depending on the characteristics of the voltage holding property and the accumulated electric charge when the liquid crystal structure stabilized film is formed.

具體的X之例如以下所示,但不限於此等的構造。 The specific X is, for example, the following, but is not limited to such a configuration.

調製可溶性聚醯亞胺之場合中,對溶劑的溶解性成為重要的物性,故在溶解性的觀點,以X-1~26所示般脂環式的四羧酸酐為佳、以X-2、X-3、X-4、X-6、X-9、X-10、X-11、X-12、X-13、X-14、X-15、X-16、X-17、X-18、X-19、X-20、X-21、X-22、X-23、X-24、X-25、X-26為佳。另一方面,在配向性的觀點,以X27~46般芳香族四羧酸二酐為佳、尤以X-27、X-28、X-33、X-34、X-35、X-40、X-41、X-42、X-43、X-44、X-45、X-46為佳。 In the case of preparing a soluble polyimine, the solubility in a solvent is an important physical property. Therefore, from the viewpoint of solubility, an alicyclic tetracarboxylic anhydride represented by X-1 to 26 is preferred, and X-2 is preferable. , X-3, X-4, X-6, X-9, X-10, X-11, X-12, X-13, X-14, X-15, X-16, X-17, X -18, X-19, X-20, X-21, X-22, X-23, X-24, X-25, X-26 are preferred. On the other hand, in terms of orientation, X27~46-like aromatic tetracarboxylic dianhydride is preferred, especially X-27, X-28, X-33, X-34, X-35, X-40. X-41, X-42, X-43, X-44, X-45, X-46 are preferred.

尤佳為具有適當配向性與溶解性的X-1、X-2、X-18~22、X-25、X-26。 It is especially preferred to have X-1, X-2, X-18~22, X-25, X-26 with appropriate orientation and solubility.

2.1.1.3.較佳聚醯亞胺前驅物、或聚醯亞胺(1) 2.1.1.3. Preferred Polyimine Precursor, or Polyimine (1)

作為本發明重要之形成經偏光紫外線照射而表現各向異性的液晶構造體安定化膜用的組成物(液晶構造體安定化劑)所含有的聚醯亞胺前驅物、或聚醯亞胺的種類的例子方面,可舉例如主鏈構造中含有下述構造(1)~(5)者。 A polyimine precursor or a polyimine contained in a composition (liquid crystal structure stabilizer) for forming a liquid crystal structure stabilization film which exhibits anisotropy by polarized ultraviolet light irradiation, which is important in the present invention. Examples of the type include those having the following structures (1) to (5) in the main chain structure.

(式中,Z1~Z4各自獨立,為氫原子、甲基、及苯環所成群組中選出的至少1種,R1為氫原子、甲基、乙基、丙基、異丙基、異丁基、及t-丁基所構成群中選出的有機基,R2為氫原子、氟原子、或下述式所表示的有機基。黑點為與另外有機基之鍵結。) (wherein Z 1 to Z 4 are each independently, and at least one selected from the group consisting of a hydrogen atom, a methyl group, and a benzene ring, and R 1 is a hydrogen atom, a methyl group, an ethyl group, a propyl group, or an isopropyl group. The organic group selected from the group consisting of a group, an isobutyl group, and a t-butyl group, and R 2 is a hydrogen atom, a fluorine atom, or an organic group represented by the following formula: The black dots are bonded to another organic group. )

(式中,R3為氫原子或碳數1~18的烷基鏈,m為1~3的整數。黑點為鍵結部位。) (In the formula, R 3 is a hydrogen atom or an alkyl chain having 1 to 18 carbon atoms, and m is an integer of 1 to 3. The black point is a bonding site.)

(1)、(4)的構造表示聚醯亞胺前驅物的構造,藉由將具有此等構造的材料以高溫燒成,可衍生為(5)的構造。有聚醯亞胺前驅物的一部分進行部分醯亞胺化的情 形或因應用途而刻意使醯亞胺化轉變成有溶劑溶解性的聚醯亞胺(亦稱可溶性聚醯亞胺)之情形,該場合,成為(1)~(5)的構造混合存在的形式。 The structure of (1) and (4) indicates the structure of the polyimide precursor, and the structure of (5) can be derived by firing a material having such a structure at a high temperature. Partially ruthenium imidization of a part of the polyimide precursor In the case where the yttrium imide is converted into a solvent-soluble polyimine (also known as soluble polyimine) in the form of a shape or a purpose, in which case the structure of (1) to (5) is mixed. form.

本發明中(5)所表示之構造係重要的,藉由將含有聚醯亞胺前驅物的塗漆或含有可溶性聚醯亞胺的塗漆(總稱為液晶構造體安定化劑)塗佈於基板,進行加熱燒成,衍生為(5)。此時的燒成溫度多在200℃~250℃間進行,溫度過低,則醯亞胺化耗時,溫度過高,則亦併發分解反應,故較佳為210℃~240℃。 The structure represented by (5) in the present invention is important by applying a paint containing a polyimide precursor or a paint containing soluble polyimine (collectively referred to as a liquid crystal structure stabilizer). The substrate is heated and fired and derivatized as (5). The calcination temperature at this time is often between 200 ° C and 250 ° C. When the temperature is too low, the imidization time is too high, and if the temperature is too high, the decomposition reaction is also carried out. Therefore, it is preferably 210 ° C to 240 ° C.

又,在通常的合成手法,亦可於上述所得到的式[D]之聚合物導入式[A]所示之A1及A2的碳數1~8的烷基、及式[A]所示之A3及A4的碳數1~5的烷基或乙醯基。 Further, in the usual synthesis method, the alkyl group having 1 to 8 carbon atoms of A 1 and A 2 represented by the formula [A] and the formula [A] may be introduced into the polymer of the formula [D] obtained above. The alkyl group or the ethylidene group having 1 to 5 carbon atoms of A 3 and A 4 shown.

利用所使用的聚合物[5]中的環丁烷環經紫外線照射而分解,對含有聚合物[5]之膜照射偏光紫外線,藉由在膜表面製作分解部與非分解部,可形成具有遲延亦即單軸配向性的膜。 The cyclobutane ring in the polymer [5] used is decomposed by ultraviolet irradiation, and the film containing the polymer [5] is irradiated with polarized ultraviolet rays, and a decomposition portion and a non-decomposition portion are formed on the surface of the film to form The delay is also a uniaxially oriented film.

照射紫外線時,雖然產生分解物,但該分解物可經加熱處理或溶劑之洗淨等除去,藉由進行此等處理,亦可更促進聚合物鏈之再配向等,故可使液晶的配向品質更提升。進行加熱處理時,加熱溫度以在150℃~250℃間進行者為佳,但溫度低則無法充分促進分解物的昇華或蒸發,過高,則有亦併發聚合物鏈之分解的可能性,故更較佳為200℃~230℃。加熱時間雖不特別限定,過短則分解物無法充分被除去,故較佳為5~30分鐘。 When the ultraviolet ray is irradiated, the decomposed product is generated, but the decomposed product can be removed by heat treatment or solvent washing, and by performing such treatment, the reorientation of the polymer chain can be further promoted, so that the alignment of the liquid crystal can be achieved. The quality is improved. When the heat treatment is performed, the heating temperature is preferably between 150 ° C and 250 ° C. However, if the temperature is low, the sublimation or evaporation of the decomposed product cannot be sufficiently promoted. If the temperature is too high, the decomposition of the polymer chain may occur. Therefore, it is more preferably 200 ° C ~ 230 ° C. Although the heating time is not particularly limited, if the decomposition product is too short, the decomposition product is not sufficiently removed, so it is preferably 5 to 30 minutes.

又,進行膜洗淨之場合,以使用溶解分解物即雙馬來醯亞胺的溶劑者為佳。為溶解雙馬來醯亞胺的溶劑則不特別限制,但有機溶劑單獨則有聚合物本身亦溶出的可能性,亦有因此而使配向性降低的情形,故較佳為以水、或水與有機溶劑之混合溶劑進行接觸處理為佳。 Further, in the case of performing film cleaning, it is preferred to use a solvent which dissolves a decomposition product, that is, bismaleimide. The solvent for dissolving the bismaleimide is not particularly limited, but the organic solvent alone may have a possibility that the polymer itself is also eluted, and thus the alignment property is lowered. Therefore, it is preferably water or water. It is preferred to carry out contact treatment with a mixed solvent of an organic solvent.

水與有機溶劑之混合溶劑方面,水與有機溶劑之質量比較佳為20/80~80/20、更佳為40/60~60/40。有機溶劑方面,可舉例如2-丙醇、甲醇、乙醇、1-甲氧基-2-丙醇、乳酸乙基酯、二丙酮醇、3-甲氧基丙酸甲基酯、或3-乙氧基丙酸乙基酯。其中以2-丙醇、甲醇、或乙醇為佳、尤其2-丙醇為佳。 In terms of a mixed solvent of water and an organic solvent, the quality of the water and the organic solvent is preferably 20/80 to 80/20, more preferably 40/60 to 60/40. The organic solvent may, for example, be 2-propanol, methanol, ethanol, 1-methoxy-2-propanol, ethyl lactate, diacetone alcohol, methyl 3-methoxypropionate, or 3- Ethyl ethoxypropionate. Among them, 2-propanol, methanol, or ethanol is preferred, and 2-propanol is preferred.

上述接觸處理後,以除去使用的有機溶劑為目的,可進行以水、2-丙醇、丙酮等之低沸點溶劑之洗淨(洗滌)或乾燥之任一、或兩者。 After the contact treatment, one or both of washing (washing) or drying with a low boiling point solvent such as water, 2-propanol or acetone may be carried out for the purpose of removing the organic solvent to be used.

液晶構造體安定化膜之接觸處理方面,以浸漬處理、噴霧(spray)處理等之膜與液充分接觸之處理為佳。接觸處理方面,以於水、或水與有機溶劑之混合溶劑所構成的水性液使膜進行較佳為10秒~1小時、更佳為1分鐘~30分鐘之浸漬處理的方法為佳。接觸處理可為常溫亦可加溫,但較佳在10~80℃、更佳在20~50℃實施。又,因應必要可施以超音波等之提高接觸之手段。 In the contact treatment of the liquid crystal structure stabilized film, it is preferred that the film such as the immersion treatment or the spray treatment is sufficiently contacted with the liquid. In the contact treatment, it is preferred that the film be subjected to an immersion treatment of preferably from 10 seconds to 1 hour, more preferably from 1 minute to 30 minutes, with water or an aqueous liquid composed of a mixed solvent of water and an organic solvent. The contact treatment may be normal temperature or heating, but is preferably carried out at 10 to 80 ° C, more preferably at 20 to 50 ° C. In addition, it is possible to apply means such as ultrasonic waves to increase contact.

2.1.1.4.較佳聚醯亞胺前驅物、或聚醯亞胺(2) 2.1.1.4. Preferred Polyimine Precursor, or Polyimine (2)

一般式[A]中,於R2具有以下的(6)~(10)所示之構造 的聚醯亞胺前驅物或聚醯亞胺亦可含於本發明之液晶構造體安定化劑。 In the general formula [A], the polyimine precursor or the polyimine having the structure represented by the following (6) to (10) in R 2 may be contained in the liquid crystal structure stabilizer of the present invention.

(式中,X1、X2各自獨立,為碳原子、或氮原子,Y1、Y2各自獨立,為氫原子、甲基、氰基、氟原子、或氯原子,X3為氧原子、或硫原子,X4為單鍵、碳原子、氧原子、或硫原子,R4、R5各自獨立,為氫原子、甲基、甲氧基、二甲基胺基、氟原子、或氯原子,p為1~4的整數,q為1~3的整數,虛線為與另外有機基之鍵結。) (wherein X 1 and X 2 are each independently a carbon atom or a nitrogen atom, and Y 1 and Y 2 are each independently a hydrogen atom, a methyl group, a cyano group, a fluorine atom or a chlorine atom, and X 3 is an oxygen atom. Or a sulfur atom, X 4 is a single bond, a carbon atom, an oxygen atom, or a sulfur atom, and R 4 and R 5 are each independently a hydrogen atom, a methyl group, a methoxy group, a dimethylamino group, a fluorine atom, or Chlorine atom, p is an integer from 1 to 4, q is an integer from 1 to 3, and the dotted line is a bond with another organic group.)

一般式(6)~(10)所示之構造因紫外線照射等而產生異構化或2聚化、分解等,故利用其,藉由對含此等構造的聚醯亞胺膜照射偏光紫外線,在未成為構造變化部分的部分可賦予遲延及單軸配向性。尤其較佳為具有以下構造的聚醯亞胺前驅物或聚醯亞胺。 The structure represented by the general formulae (6) to (10) is isomerized, dimerized, decomposed, or the like by ultraviolet irradiation or the like, and thus the polyimine film having such a structure is irradiated with polarized ultraviolet rays. Delay and uniaxial alignment can be imparted in the portion that does not become a structural change portion. Particularly preferred is a polyimine precursor or polyimine having the following structure.

在使用含此等構造的聚醯亞胺前驅物或聚醯亞胺的液晶構造體安定化中,藉由在高溫燒成而醯亞胺化者、或以可溶性聚醯亞胺般狀態成膜並照射偏光紫外線、進而加熱之方法、或以聚醯胺酸膜之狀態照射偏光紫外線之後燒成而醯亞胺化,更促進聚合物鏈之再配向,而可使遲延提高。燒成溫度以180℃~250℃間為佳、由醯亞胺化反應之觀點或再配向的觀點來看,更較佳溫度為200℃~230℃。 In the stabilization of a liquid crystal structure using a polyimine precursor or a polyimide having such a structure, the film is formed by yttrium imidation or in a soluble polyimine state by firing at a high temperature. By irradiating the polarized ultraviolet ray, heating it, or irradiating the polarized ultraviolet ray in the state of a poly lysine film, it is baked and imidated, and the realignment of a polymer chain is accelerated, and the delay can be improved. The firing temperature is preferably from 180 ° C to 250 ° C, and more preferably from 200 ° C to 230 ° C from the viewpoint of the imidization reaction or re-alignment.

因應必要可以純水或溶劑等進行洗淨。 Wash with pure water or solvent as necessary.

2.1.2.聚合物(II)具有特定側鏈的聚合物(1) 2.1.2. Polymer (II) Polymer with specific side chain (1)

於本發明之液晶構造體安定化劑亦可含所使用的聚合物為具有下述式(6)~(8)或(11)所表示之構造作為側鏈之一部分的聚合物。 The liquid crystal structure stabilizer of the present invention may contain a polymer which is a polymer having a structure represented by the following formula (6) to (8) or (11) as a part of a side chain.

(式中,X1、X2各自獨立,為碳原子、或氮原子,Y1、Y2各自獨立,為氫原子、甲基、氰基、氟原子、或氯原子,X3為氧原子、或硫原子,X4為單鍵、碳原子、氧原子、或硫原子,R4、R5各自獨立,為氫原子、甲基、甲氧基、二甲基胺基、氟原子、或氯原子,Ar為2,5-伸呋喃基、噻吩-2,5-二基、嘧啶-2,5-二基、吡啶-2,5-二基、 伸苯基、1,4-或2,6-伸萘基、2,5-或者2,6-苯並伸呋喃基、或2,5-或者2,6-苯並硫代伸苯基,鍵結於此等之芳香環的氫原子之一部分可被甲基、甲氧基、二甲基胺基、氟原子、或氯原子取代。p為1~4的整數,黑點為氫原子或與另外有機基之鍵結。) (wherein X 1 and X 2 are each independently a carbon atom or a nitrogen atom, and Y 1 and Y 2 are each independently a hydrogen atom, a methyl group, a cyano group, a fluorine atom or a chlorine atom, and X 3 is an oxygen atom. Or a sulfur atom, X 4 is a single bond, a carbon atom, an oxygen atom, or a sulfur atom, and R 4 and R 5 are each independently a hydrogen atom, a methyl group, a methoxy group, a dimethylamino group, a fluorine atom, or Chlorine atom, Ar is 2,5-extended furyl, thiophene-2,5-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, phenyl, 1,4- or 2 , 6-strandyl, 2,5- or 2,6-benzofuranyl, or 2,5- or 2,6-benzothiophenyl, a hydrogen bonded to the aromatic ring One part of the atom may be substituted by a methyl group, a methoxy group, a dimethylamino group, a fluorine atom, or a chlorine atom. p is an integer of 1 to 4, and a black point is a hydrogen atom or a bond with another organic group.

一般式(6)~(8)及(11)已知同前述經光照射而引發異構化反應或二聚化反應等,藉由對具有此等作為側鏈的聚合物照射偏光紫外線,在非構造變化部分的部分可賦予遲延及單軸配向性。更具體的構造如以下所示,但不限於此。 The general formulae (6) to (8) and (11) are known to initiate an isomerization reaction or a dimerization reaction by the above-mentioned light irradiation, and the polarized ultraviolet rays are irradiated to the polymer having such a side chain. The portion of the non-structural change portion can impart retardation and uniaxial alignment. A more specific configuration is as follows, but is not limited thereto.

為具有此等側鏈構造的聚合物則不特別限定聚合物主鏈構造,但較佳可舉例如聚醯亞胺前驅物、聚醯亞胺、聚醯胺、聚丙烯酸酯、聚甲基丙烯酸酯、聚N取代馬來醯亞胺、聚苯乙烯、聚衣康酸酯、聚矽氧烷等。 The polymer having such a side chain structure is not particularly limited to a polymer main chain structure, but preferably, for example, a polyimide precursor, a polyimine, a polyamine, a polyacrylate, or a polymethacrylate Ester, poly N substituted maleimide, polystyrene, polyitaconate, polyoxyalkylene, and the like.

將此等聚合物含於本發明之液晶構造體安定化劑來使用之場合,雖然成膜後燒成並照射紫外線者亦可得到良好的特性,但聚合物具有液晶性之場合,藉由在液晶相轉化溫度附近進行加熱,可更促進再配向、可提升液晶配向性。再配向處理的較佳溫度因聚合物的構造而相異故無法限定,但以DSC(示差掃描熱量分析)或POM(附加熱機構之偏光顯微鏡觀察)等預先調查液晶相轉化溫度,而使用在該附近之溫度域者為佳。 When such a polymer is used in the liquid crystal structure stabilizer of the present invention, it can be obtained by firing and irradiating ultraviolet rays after film formation. However, when the polymer has liquid crystallinity, Heating near the liquid crystal phase transition temperature can promote realignment and improve liquid crystal alignment. The preferred temperature for the re-alignment treatment cannot be limited depending on the structure of the polymer, but the liquid crystal phase transition temperature is previously investigated by DSC (differential scanning calorimetry) or POM (observation of a polarizing microscope with an additional thermal mechanism), and is used in advance. The nearby temperature domain is preferred.

2.1.3.聚合物(III)具有特定側鏈的聚合物(2) 2.1.3. Polymer (III) polymer with specific side chain (2)

亦可使用具有下述一般式所表示之構造作為側鏈之一部分的聚丙烯酸酯、聚甲基丙烯酸酯、聚N取代馬來醯亞胺、聚苯乙烯、聚衣康酸酯、聚矽氧烷在光配向。 Polyacrylates, polymethacrylates, poly-N-substituted maleimides, polystyrene, polyitanic acid esters, polyfluorene oxides having a configuration represented by the following general formula as a part of the side chain may also be used. The alkane is in the optical alignment.

(式中,虛線為與另外有機基之鍵結。) (In the formula, the dotted line is a bond with another organic group.)

已知式(12)及(13)的構造藉由自身的氫鍵會合而表現液晶性,具有此等為側鏈的前述聚合物多為具有液晶性 者,尤其前述式(6)~(11)藉由紫外線照射而引起異構化或交聯反應,故含有式(6)~(11)及式(12)(13)之聚合物為具有光反應性的液晶性聚合物。對該氫鍵性的液晶性聚合物照射偏光紫外線,藉由加熱引起自組織化、可得到遲延,結果可用作為液晶構造體安定化膜。光反應性側鏈的具體例如下述式(8-4)乃至(8-11)、(10-1)及(11-1),液晶性表現側鏈的具體例如下述式(12-1)乃至(12-3)、(13-1)及(13-2)所示,但不限於此等。 It is known that the structures of the formulae (12) and (13) exhibit liquid crystallinity by their own hydrogen bonding, and the above-mentioned polymers having side chains are mostly liquid crystallinity. In particular, the above formulae (6) to (11) cause isomerization or crosslinking reaction by ultraviolet irradiation, so that the polymer containing the formulae (6) to (11) and (12) (13) has light. Reactive liquid crystalline polymer. The hydrogen-bonding liquid crystal polymer is irradiated with polarized ultraviolet light, and self-organization is caused by heating, and retardation can be obtained. As a result, it can be used as a liquid crystal structure stabilized film. Specific examples of the photoreactive side chain are, for example, the following formulas (8-4) to (8-11), (10-1), and (11-1), and the specificity of the liquid crystal side chain is, for example, the following formula (12-1). ) is even shown in (12-3), (13-1), and (13-2), but is not limited thereto.

式中,A、B、D各自獨立,為單鍵、-O-、-CH2-、-COO-、-OCO-、-CONH-、-NH-CO-、-CH=CH-CO-O-、或-O-CO-CH=CH-;Y1為1價苯環、萘環、聯苯環、呋喃環、吡咯環及碳數5~8的脂環式烴所選出的環、或為由彼等取代基所選出的相同或相異的2~6個環透過鍵結基B鍵結而成的基,且鍵結於彼等的氫原子各自獨立,可被-COOR0(式中,R0為氫原子或碳數1~5的烷基)、-NO2、-CN、-CH=C(CN)2、-CH=CH-CN、鹵素基、碳數1~5的 烷基、或碳數1~5的烷基氧基取代;X為單鍵、-COO-、-OCO-、-N=N-、-CH=CH-、-C≡C-、-CH=CH-CO-O-、或-O-CO-CH=CH-,X的數為2時,X彼此可為相同或相異;i為1~12的整數,l為0~12的整數,m為1~3的整數,n為0~2的整數(但n=0時B為單鍵)。 Wherein A, B, and D are each independently a single bond, -O-, -CH 2 -, -COO-, -OCO-, -CONH-, -NH-CO-, -CH=CH-CO-O -, or -O-CO-CH=CH-; Y 1 is a ring selected from a monovalent benzene ring, a naphthalene ring, a biphenyl ring, a furan ring, a pyrrole ring, and an alicyclic hydrocarbon having 5 to 8 carbon atoms, or The same or different 2~6 rings selected by the substituents are bonded through the bonding group B, and the hydrogen atoms bonded to each other are independent of each other, and can be -COOR 0 (formula) Wherein R 0 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, -NO 2 , -CN, -CH=C(CN) 2 , -CH=CH-CN, a halogen group, and a carbon number of 1 to 5. An alkyl group or an alkyloxy group having 1 to 5 carbon atoms; X is a single bond, -COO-, -OCO-, -N=N-, -CH=CH-, -C≡C-, -CH= CH-CO-O-, or -O-CO-CH=CH-, when the number of X is 2, X may be the same or different from each other; i is an integer from 1 to 12, and l is an integer from 0 to 12, m is an integer from 1 to 3, and n is an integer from 0 to 2 (but B is a single bond when n=0).

使用此等聚合物作為光配向膜時,成膜後照射偏光紫外線,在液晶相轉化溫度附近進行加熱,可更促進再配向、可提升液晶配向性。再配向處理的較佳溫度因聚合物的構造而相異故無法限定,但以DSC(示差掃描熱量分析)或POM(附加熱機構之偏光顯微鏡觀察)等預先調查液晶相轉化溫度,而使用該液晶溫度域者為佳。 When such a polymer is used as the photo-alignment film, the polarized ultraviolet ray is irradiated after the film formation, and heating is performed in the vicinity of the liquid crystal phase transformation temperature, whereby the re-alignment can be further promoted, and the liquid crystal alignment property can be improved. The preferred temperature for the re-alignment treatment is not limited by the structure of the polymer, but the liquid crystal phase transition temperature is previously investigated by DSC (differential scanning calorimetry) or POM (observation by a polarizing microscope with an additional thermal mechanism). The liquid crystal temperature domain is better.

2.1.4.聚合物(IV)其他的聚合物 2.1.4. Polymer (IV) Other polymers

關於本發明之液晶構造體安定化劑,可僅為上述形成經偏光紫外線照射而表現各向異性的液晶構造體安定化膜用的聚合物成分,在不損及該特性範圍,由其他特性觀點,可混合使用上述以外的聚合物成分。 The liquid crystal structure stabilizer of the present invention can be used only for the polymer component for forming a liquid crystal structure stabilized film which exhibits anisotropy by polarized ultraviolet light irradiation, and does not impair the range of properties, and has other characteristics. A polymer component other than the above may be used in combination.

作為上述以外的聚合物之較佳材料例,可舉例如聚醯胺酸、可溶性聚醯亞胺、聚醯胺酸酯等。 Examples of preferred materials for the polymer other than the above include polyacrylic acid, soluble polyimine, polyphthalate, and the like.

例如液晶構造體安定化劑中,非感光性聚醯胺酸、聚醯亞胺,相對經偏光紫外線照射而表現各向異性的聚合物100質量份,較佳為可含有10~1000質量份、更佳為含有10~800質量份。 For example, in the liquid crystal structure stabilizer, 100 parts by mass of the polymer exhibiting anisotropy with respect to the polarized ultraviolet light, preferably 10 to 1000 parts by mass, of the non-photosensitive polyamine and the polyimide. More preferably, it contains 10 to 800 parts by mass.

2.2.添加劑 2.2. Additives

本發明之液晶構造體安定化劑,可含有上述聚合物成分以外的成分。其例子方面,為使塗佈液晶構造體安定化劑時的膜厚均勻性或表面平滑性提升之溶劑或化合物、使液晶構造體安定化膜與基板之密著性提升之化合物等。 The liquid crystal structure stabilizer of the present invention may contain components other than the above polymer component. In an example, a solvent or a compound which improves film thickness uniformity or surface smoothness when a liquid crystal structure stabilizer is applied, a compound which improves the adhesion between the liquid crystal structure stabilized film and the substrate, and the like.

使膜厚的均勻性或表面平滑性提升的溶劑(貧溶劑)的具體例,可舉例如下。 Specific examples of the solvent (lean solvent) which improves the uniformity of the film thickness or the surface smoothness can be exemplified as follows.

例如異丙基醇、甲氧基甲基戊醇、甲基溶纖劑、乙基溶纖劑、丁基溶纖劑、甲基溶纖劑乙酸酯、乙基溶纖劑乙酸酯、丁基卡必醇、乙基卡必醇、乙基卡必醇乙酸酯、乙二醇、乙二醇單乙酸酯、乙二醇單異丙基醚、乙二醇單丁基醚、丙二醇、丙二醇單丁基醚、丙二醇單乙酸酯、丙二醇單甲基醚、丙二醇-tert-丁基醚、二丙二醇單甲基醚、二乙二醇、二乙二醇單乙酸酯、二乙二醇二甲基醚、二丙二醇單乙酸酯單甲基醚、二丙二醇單甲基醚、二丙二醇單乙基醚、二丙二醇單乙酸酯單乙基醚、二丙二醇單丙基醚、二丙二醇單乙酸酯單丙基醚、3-甲基-3-甲氧基丁基乙酸酯、三丙二醇甲基醚、3-甲基-3-甲氧基丁醇、二異丙基醚、乙基異丁基醚、二異丁烯、戊基乙酸酯、丁基丁酯、丁基醚、二異丁基酮、甲基環己烯、丙基醚、二己基醚、1-己醇、n-己烷、n-戊烷、n-辛烷、二乙基醚、乳酸甲基酯、乳酸乙基酯、乙酸甲基酯、乙酸乙基酯、乙酸n-丁基酯、乙酸丙二醇單乙基醚、丙酮酸甲基酯、丙酮酸乙基酯、3-甲氧基丙酸甲基酯、3-乙氧基丙酸甲基乙基酯、3- 甲氧基丙酸乙基酯、3-乙氧基丙酸、3-甲氧基丙酸、3-甲氧基丙酸丙基酯、3-甲氧基丙酸丁基酯、1-甲氧基-2-丙醇、1-乙氧基-2-丙醇、1-丁氧基-2-丙醇、1-苯氧基-2-丙醇、丙二醇單乙酸酯、丙二醇二乙酸酯、丙二醇-1-單甲基醚-2-乙酸酯、丙二醇-1-單乙基醚-2-乙酸酯、二丙二醇、2-(2-乙氧基丙氧基)丙醇、乳酸甲基酯、乳酸乙基酯、乳酸n-丙基酯、乳酸n-丁基酯、乳酸異戊基酯等之具有低表面張力的溶劑等。 For example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl Carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, Propylene glycol monobutyl ether, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol Alcohol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, two Propylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether , ethyl isobutyl ether, diisobutylene, pentyl acetate, butyl butyl ester, butyl ether, diisobutyl ketone, methyl cyclohexene, propyl ether, dihexyl ether, 1-hexanol , n-hexane, n-pentane, n-octane , diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate Ester, 3-methoxypropionic acid methyl ester, 3-ethoxypropionic acid methyl ethyl ester, 3- Ethyl methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, 3-methoxypropionic acid propyl ester, 3-methoxypropionic acid butyl ester, 1-methyl Oxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diethyl Acid ester, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2-(2-ethoxypropoxy)propanol A solvent having a low surface tension such as methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate or isoamyl lactate.

此等之貧溶劑可為1種類亦可複數種類混合使用。使用上述般溶劑的場合,以液晶構造體安定化劑所含之溶劑全體的5~80質量%為佳、更佳為20~60質量%。 These poor solvents may be used in combination of one type or plural types. When the solvent is used, it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total amount of the solvent contained in the liquid crystal structure stabilizer.

使膜厚的均勻性或表面平滑性提升的化合物方面,可舉例如氟系界面活性劑、矽酮系界面活性劑、非離子系界面活性劑等。 Examples of the compound which improves the uniformity of the film thickness or the surface smoothness include a fluorine-based surfactant, an anthrone-based surfactant, and a nonionic surfactant.

更具體上,例如EFTOP EF301、EF303、EF352(Tochem Products.公司製))、MEGAFAC F171、F173、R-30(大日本油墨公司製)、Fluorad FC430、FC431(住友3M公司製)、Asahiguard AG710、Surflon S-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子公司製)等。此等之界面活性劑的使用比例,相對液晶構造體安定化劑所含有的樹脂成分的100質量份,較佳為0.01~2質量份、更佳為0.01~1質量份。 More specifically, for example, EFTOP EF301, EF303, EF352 (manufactured by Tochem Products Co., Ltd.), MEGAFAC F171, F173, R-30 (manufactured by Dainippon Ink Co., Ltd.), Fluorad FC430, FC431 (manufactured by Sumitomo 3M Co., Ltd.), Asahiguard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (made by Asahi Glass Co., Ltd.). The use ratio of the surfactant is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass, per 100 parts by mass of the resin component contained in the liquid crystal structure stabilizer.

使液晶構造體安定化膜與基板之密著性提升之化合物的具體例方面,可舉例如下所示之含官能性矽烷 之化合物或含環氧基之化合物等。 Specific examples of the compound which enhances the adhesion between the liquid crystal structure stabilized film and the substrate include a functional decane as shown below. a compound or an epoxy group-containing compound or the like.

例如3-胺基丙基三甲氧基矽烷、3-胺基丙基三乙氧基矽烷、2-胺基丙基三甲氧基矽烷、2-胺基丙基三乙氧基矽烷、N-(2-胺基乙基)-3-胺基丙基三甲氧基矽烷、N-(2-胺基乙基)-3-胺基丙基甲基二甲氧基矽烷、3-脲基丙基三甲氧基矽烷、3-脲基丙基三乙氧基矽烷、N-乙氧基羰基-3-胺基丙基三甲氧基矽烷、N-乙氧基羰基-3-胺基丙基三乙氧基矽烷、N-三乙氧基矽烷基丙基三伸乙三胺、N-三甲氧基矽烷基丙基三伸乙三胺、10-三甲氧基矽烷基-1,4,7-三氮雜癸烷、10-三乙氧基矽烷基-1,4,7-三氮雜癸烷、9-三甲氧基矽烷基-3,6-二氮雜壬基乙酸酯、9-三乙氧基矽烷基-3,6-二氮雜壬基乙酸酯、N-苄基-3-胺基丙基三甲氧基矽烷、N-苄基-3-胺基丙基三乙氧基矽烷、N-苯基-3-胺基丙基三甲氧基矽烷、N-苯基-3-胺基丙基三乙氧基矽烷、N-雙(氧化乙烯)-3-胺基丙基三甲氧基矽烷、N-雙(氧化乙烯)-3-胺基丙基三乙氧基矽烷、乙二醇二縮水甘油基醚、聚乙二醇二縮水甘油基醚、丙二醇二縮水甘油基醚、三丙二醇二縮水甘油基醚、聚丙二醇二縮水甘油基醚、新戊基二醇二縮水甘油基醚、1,6-己二醇二縮水甘油基醚、甘油二縮水甘油基醚、2,2-二溴新戊基二醇二縮水甘油基醚、1,3,5,6-四縮水甘油基-2,4-己二醇、N,N,N’,N’-四縮水甘油基-m-二甲苯二胺、1,3-雙(N,N-二縮水甘油基胺基甲基)環己烷、N,N,N’,N’-四縮水甘油基-4、4’-二胺基二苯基甲烷等。 For example, 3-aminopropyltrimethoxydecane, 3-aminopropyltriethoxydecane, 2-aminopropyltrimethoxydecane, 2-aminopropyltriethoxydecane, N-( 2-Aminoethyl)-3-aminopropyltrimethoxydecane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxydecane, 3-ureidopropyl Trimethoxydecane, 3-ureidopropyltriethoxydecane, N-ethoxycarbonyl-3-aminopropyltrimethoxydecane, N-ethoxycarbonyl-3-aminopropyltriethyl Oxydecane, N-triethoxydecylpropyltriamine, N-trimethoxydecylpropyltriamine, 10-trimethoxydecyl-1,4,7-tri Azadecane, 10-triethoxydecyl-1,4,7-triazadecane, 9-trimethoxydecyl-3,6-diazaindolyl acetate, 9-three Ethoxy decyl-3,6-diazaindolyl acetate, N-benzyl-3-aminopropyltrimethoxydecane, N-benzyl-3-aminopropyltriethoxy Decane, N-phenyl-3-aminopropyltrimethoxydecane, N-phenyl-3-aminopropyltriethoxydecane, N-bis(ethylene oxide)-3-aminopropyltrimethyl Oxydecane, N-bis(ethylene oxide)-3-aminopropyl Triethoxy decane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, new Butyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerol diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3 ,5,6-tetraglycidyl-2,4-hexanediol, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N- Diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4, 4'-diaminodiphenylmethane, and the like.

進而除基板與膜之密著性提升外,以進一步 防止因背光所致之電特性降低等為目的,可導入以下般酚醛樹脂系添加劑或封閉型異氰酸酯、羥基乙基醯胺系交聯劑等。具體的添加劑如以下所示,但不限於該構造。 Further, in addition to the adhesion between the substrate and the film, further For the purpose of preventing deterioration of electrical characteristics due to backlighting, the following phenolic resin additives, blocked isocyanates, hydroxyethylguanamine crosslinking agents, and the like can be introduced. Specific additives are as follows, but are not limited to this configuration.

本發明之液晶顯示元件使用的液晶構造體安定化劑中,以含有可使摩擦耐性提升的交聯性添加劑為佳。 The liquid crystal structure stabilizer of the liquid crystal display device of the present invention preferably contains a crosslinkable additive which can improve the friction resistance.

交聯性添加劑的例子方面,可舉例如酚醛樹脂系添加劑、胺基塑料系添加劑、環氧系添加劑、丙烯酸系添加劑、矽烷耦合劑、封閉型異氰酸酯系添加劑、噁唑啉系化合物、β-羥基烷基醯胺(Primid)系交聯劑等,但不限於此等。 Examples of the crosslinkable additive include a phenol resin additive, an amine based plastic additive, an epoxy additive, an acrylic additive, a decane coupling agent, a blocked isocyanate additive, an oxazoline compound, and a β-hydroxy group. The alkylmidamide-based crosslinking agent or the like is not limited thereto.

酚醛樹脂系添加劑的具體例如以下所示,但不限於此等。 Specific examples of the phenol resin-based additive are as follows, but are not limited thereto.

胺基塑料系添加劑 Amino based plastic additive

具有由羥基或烷氧基所構成群中選出的至少1種之取代基的交聯性化合物方面,可舉例如具有羥基或烷氧基的胺基樹脂、例如三聚氰胺樹脂、尿素樹脂、胍胺樹脂、甘脲-甲醛樹脂、琥珀醯基醯胺-甲醛樹脂、伸乙基尿素-甲醛樹脂等。 The crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group or an alkoxy group may, for example, be an amine-based resin having a hydroxyl group or an alkoxy group, for example, a melamine resin, a urea resin, or a guanamine resin. , glycoluril-formaldehyde resin, amber-nonylamine-formaldehyde resin, ethyl urea-formaldehyde resin, and the like.

該交聯性化合物,可使用例如胺基的氫原子經羥甲基或烷氧基甲基或其兩者取代的三聚氰胺衍生物、苯並胍胺衍生物或甘脲。該三聚氰胺衍生物及苯並胍胺衍生物亦可以二聚物或三聚物存在。此等以每1個三嗪環,具有平均3個以上6個以下的羥甲基或烷氧基甲基者為佳。 As the crosslinkable compound, for example, a melamine derivative, a benzoguanamine derivative or a glycoluril in which a hydrogen atom of an amine group is substituted with a methylol group or an alkoxymethyl group or both can be used. The melamine derivative and the benzoguanamine derivative may also be present as a dimer or a trimer. It is preferred that each of the triazine rings has an average of three or more and six or less hydroxymethyl groups or alkoxymethyl groups.

如此之三聚氰胺衍生物或苯並胍胺衍生物的例子方面,可舉例如市售品的每1個三嗪環平均取代3.7個甲氧基甲基的MX-750、每1個三嗪環平均取代5.8個甲氧基 甲基的MW-30(以上、SANWA CHEMICAL CO.,LTD.製)或Cymel300、301、303、350、370、771、325、327、703、712等之甲氧基甲基化三聚氰胺、Cymel235、236、238、212、253、254等之甲氧基甲基化丁氧基甲基化三聚氰胺、Cymel506、508等之丁氧基甲基化三聚氰胺、Cymel1141般含羧基之甲氧基甲基化異丁氧基甲基化三聚氰胺、Cymel1123般甲氧基甲基化乙氧基甲基化苯並胍胺、Cymel1123-10般甲氧基甲基化丁氧基甲基化苯並胍胺、Cymel1128般丁氧基甲基化苯並胍胺、Cymel1125-80般含羧基之甲氧基甲基化乙氧基甲基化苯並胍胺(以上、Mitsui-Cyanamid製)。又,作為甘脲之例,可舉例如Cymel1170般丁氧基甲基化甘脲、Cymel1172般羥甲基化甘脲等、POWDER LINK 1174般甲氧基羥甲基化甘脲等。 Examples of such a melamine derivative or a benzoguanamine derivative include, for example, MX-750 in which 3.7 methoxymethyl groups are substituted on average per one triazine ring of a commercially available product, and average per one triazine ring. Replace 5.8 methoxy groups Methoxy MW-30 (above, manufactured by SANWA CHEMICAL CO., LTD.) or Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712, etc. methoxymethylated melamine, Cymel 235, Methoxymethylated butoxymethylated melamine of 236, 238, 212, 253, 254, etc., butoxymethylated melamine of Cymel 506, 508, etc., methoxymethylation of carboxyl group like Cymel1141 Butoxymethylated melamine, Cymel 1123-like methoxymethylated ethoxymethylated benzoguanamine, Cymel 1123-10-like methoxymethylated butoxymethylated benzoguanamine, Cymel 1128 Butoxy-methylated benzoguanamine, Cymel 1125-80 carboxyl-containing methoxymethylated ethoxymethylated benzoguanamine (above, manufactured by Mitsui-Cyanamid). Further, examples of the glycoluril include, for example, Cymel 1170-like butoxymethylated glycoluril, Cymel 1172-like methylolated glycoluril, and POWDER LINK 1174-like methoxymethylolated glycoluril.

環氧系添加劑 Epoxy additive

具有環氧基或異氰酸酯基的交聯性化合物方面,例如雙酚丙酮縮水甘油基醚、酚酚醛清漆環氧樹脂、甲酚酚醛清漆環氧樹脂、三縮水甘油基異氰尿酸酯、四縮水甘油基胺基二伸苯、四縮水甘油基-m-二甲苯二胺、四縮水甘油基-1,3-雙(胺基乙基)環己烷、四苯基縮水甘油基醚乙烷、三苯基縮水甘油基醚乙烷、雙酚六氟乙醯二縮水甘油基醚、1,3-雙(1-(2,3-環氧基丙氧基)-1-三氟甲基-2,2,2-三氟甲基)苯、4,4-雙(2,3-環氧基丙氧基)八氟聯苯、三縮水甘油基-p-胺基酚、四縮水甘油基間二甲苯二胺、2-(4-(2,3- 環氧基丙氧基)苯基)-2-(4-(1,1-雙(4-(2,3-環氧基丙氧基)苯基)乙基)苯基)丙烷、1,3-雙(4-(1-(4-(2,3-環氧基丙氧基)苯基)-1-(4-(1-(4-(2,3-環氧基丙氧基苯基)-1-甲基乙基)苯基)乙基)苯氧基)-2-丙醇等。含有2個以上環氧基的化合物,具體上,可舉例如以下般化合物。 Aspects of a crosslinkable compound having an epoxy group or an isocyanate group, such as bisphenol acetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetrahydration Glycerylamino diphenyl, tetraglycidyl-m-xylylenediamine, tetraglycidyl-1,3-bis(aminoethyl)cyclohexane, tetraphenyl glycidyl etherethane, Triphenyl glycidyl etherethane, bisphenol hexafluoroacetamethylene diglycidyl ether, 1,3-bis(1-(2,3-epoxypropoxy)-1-trifluoromethyl- 2,2,2-trifluoromethyl)benzene, 4,4-bis(2,3-epoxypropoxy)octafluorobiphenyl, triglycidyl-p-aminophenol, tetraglycidyl M-xylenediamine, 2-(4-(2,3- Epoxypropoxy)phenyl)-2-(4-(1,1-bis(4-(2,3-epoxypropoxy)phenyl)ethyl)phenyl)propane, 1, 3-bis(4-(1-(4-(2,3-epoxypropoxy)phenyl)-1-(4-(1-(4-(2,3-epoxypropoxy)oxy) Phenyl)-1-methylethyl)phenyl)ethyl)phenoxy)-2-propanol, etc. The compound containing two or more epoxy groups, specifically, for example, the following compounds.

氧雜環丁烷 Oxetane

具有氧雜環丁烷基的交聯性化合物方面,為至少具有2個下述之式[4]所示之氧雜環丁烷基的交聯性化合物。 The crosslinkable compound having an oxetane group is a crosslinkable compound having at least two oxetanyl groups represented by the following formula [4].

具體上,為下述之式[4a]~式[4k]所示之交聯性化合物。 Specifically, it is a crosslinkable compound represented by the following formula [4a] - formula [4k].

封閉型異氰酸酯系添加劑 Blocked isocyanate additive

含有2個以上封閉型異氰酸酯基的化合物方面,可舉例如具有下述式(5)所表示之封閉型異氰酸酯基的化合物。 The compound containing two or more blocked isocyanate groups may, for example, be a compound having a blocked isocyanate group represented by the following formula (5).

Z各自獨立,為碳數1~3的烷基、羥基或下述式(6)所表示之有機基,Z之至少1個為下述式(6)所表示之有機 基。 Z is independently an alkyl group having 1 to 3 carbon atoms, a hydroxyl group or an organic group represented by the following formula (6), and at least one of Z is an organic compound represented by the following formula (6) base.

具體上,如以下般化合物。 Specifically, the compound is as follows.

含有2個以上的上述式(7)以外的封閉型異氰酸酯基的化合物,例如以下般化合物。 A compound containing two or more blocked isocyanate groups other than the above formula (7), for example, the following compounds.

噁唑啉系化合物 Oxazoline compound

噁唑啉化合物方面,可舉例如2,2’-雙(2-噁唑啉)、1,2,4-參-(2-噁唑啉基-2)-苯、4-呋喃-2-基伸甲基-2-苯基-4H-噁唑-5-酮、1,4-雙(4,5-二氫-2-噁唑基)苯、1,3-雙(4,5-二氫-2-噁唑基)苯、2,3-雙(4-異丙烯基-2-噁唑啉-2-基)丁烷、2,2’-雙-4-苄基-2-噁唑啉、2,6-雙(異丙基-2-噁唑啉-2-基)吡啶、2,2’-異亞丙基雙(4-tert-丁基-2-噁唑啉)、2,2’-異亞丙基雙(4-苯基-2-噁唑啉)、2,2’-伸甲基雙(4-tert-丁基-2-噁唑啉)、及2,2’-伸甲基雙(4-苯基-2-噁唑啉)。此等之外,亦可舉例如Epocros(商品名、股份公司日本觸媒製)般具有噁唑基的聚合物或寡聚物。 Examples of the oxazoline compound include 2,2'-bis(2-oxazoline), 1,2,4-cis-(2-oxazolinyl-2)-benzene, 4-furan-2- Methyl-2-phenyl-4H-oxazol-5-one, 1,4-bis(4,5-dihydro-2-oxazolyl)benzene, 1,3-bis(4,5-di Hydrogen-2-oxazolyl)benzene, 2,3-bis(4-isopropenyl-2-oxazolin-2-yl)butane, 2,2'-bis-4-benzyl-2-oxo Oxazoline, 2,6-bis(isopropyl-2-oxazolin-2-yl)pyridine, 2,2'-isopropylidene bis(4-tert-butyl-2-oxazoline), 2,2'-isopropylidene bis(4-phenyl-2-oxazoline), 2,2'-extended methyl bis(4-tert-butyl-2-oxazoline), and 2, 2'-Extended methyl bis(4-phenyl-2-oxazoline). In addition to these, a polymer or oligomer having an oxazolyl group like Epocros (trade name, manufactured by Nippon Shokubai Co., Ltd.) can be mentioned.

Primid系交聯劑 Primid crosslinker

Primid系交聯劑為具有羥基烷基醯胺基的化合物。(B)成分若具有羥基烷基醯胺基,則其他的構造雖不特別限制,但由取得性等之點來看,較佳例,可舉例如下述式(2)所表示之化合物。 The Primid crosslinking agent is a compound having a hydroxyalkylguanamine group. When the component (B) has a hydroxyalkylguanamine group, the other structure is not particularly limited. From the viewpoint of availability, etc., a compound represented by the following formula (2) is preferable.

X2為碳數1~20的含有脂肪族烴基、或含芳香族烴基的n價有機基。n為2~6的整數。 X 2 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an n-valent organic group containing an aromatic hydrocarbon group. n is an integer from 2 to 6.

R2及R3各自獨立,為氫原子、可具有取代基的碳數1~4的烷基、可具有取代基的碳數2~4的烯基、或可具有取代基的碳數2~4的炔基。又,R2及R3中至少1個為經羥基取代的烴基。 R 2 and R 3 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms which may have a substituent, an alkenyl group having 2 to 4 carbon atoms which may have a substituent, or a carbon number which may have a substituent 2~ 4-alkynyl group. Further, at least one of R 2 and R 3 is a hydrocarbon group substituted with a hydroxyl group.

其中,式(2)的X2中的直接鍵結於羰基的原子為不形成芳香環的碳原子,由液晶配向性的觀點來看為佳。又,式(2)的X2由液晶配向性及溶解性的觀點來看,以脂肪族烴基為佳,以碳數1~10更佳。 Among them, the atom directly bonded to the carbonyl group in X 2 of the formula (2) is a carbon atom which does not form an aromatic ring, and is preferably from the viewpoint of liquid crystal alignment. Further, X 2 of the formula (2) is preferably an aliphatic hydrocarbon group and more preferably 1 to 10 carbon atoms from the viewpoint of liquid crystal alignment and solubility.

式(2)中,n由溶解性的觀點來看,以2~4為佳。 In the formula (2), n is preferably from 2 to 4 from the viewpoint of solubility.

式(2)中,R2及R3中至少1個為下述式(3)所表示之構造,由反應性的觀點來看為佳,以下述式(4)所 表示之構造再更佳。 In the formula (2), at least one of R 2 and R 3 is a structure represented by the following formula (3), and is preferably from the viewpoint of reactivity, and is more preferably a structure represented by the following formula (4). .

式(3)中,R4~R7各自獨立,為氫原子、烴基、或經羥基取代的烴基。 In the formula (3), R 4 to R 7 are each independently a hydrogen atom, a hydrocarbon group or a hydrocarbon group substituted with a hydroxyl group.

(B)成分的較佳具體例方面,可舉例如下述之化合物。 Preferred examples of the component (B) include the following compounds.

此等之交聯性添加劑可添加1種類,但在不損及本發明之特性程度中,可添加複數種。 One type of the crosslinkable additive may be added, but a plurality of types may be added without impairing the characteristics of the present invention.

較佳添加量為0.1重量%~30重量%、更較佳為0.5重量%~10重量%。 The amount of addition is preferably from 0.1% by weight to 30% by weight, more preferably from 0.5% by weight to 10% by weight.

具有聚合性不飽和鍵的交聯性化合物 Crosslinkable compound having a polymerizable unsaturated bond

具有聚合性不飽和鍵的交聯性化合物方面,可舉例如三羥甲基丙烷三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、三(甲基)丙烯醯基氧基乙氧基三羥甲基丙烷、甘油聚縮水甘油基醚聚(甲基)丙烯酸酯等之分子內具有3個聚合性不飽和基的交聯性化合物、進一步乙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、四乙二醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、丙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、丁二醇二(甲基)丙烯酸酯、新戊基二醇二(甲基)丙烯酸酯、環氧乙烷雙酚A型二(甲基)丙烯酸酯、環氧丙烷雙酚型二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、甘油二(甲基)丙烯酸酯、季戊四醇二(甲基)丙烯酸酯、乙二醇二縮水甘油基醚二(甲基)丙烯酸酯、二乙二醇二縮水甘油基醚二(甲基)丙烯酸酯、苯二甲酸二縮水甘油基酯二(甲基)丙烯酸酯、羥基新戊酸新戊基二醇二(甲基)丙烯酸酯等之分子內具有2個聚合性不飽和基的交聯性化合物、更且2-羥基乙基(甲基)丙烯酸酯、2-羥基丙基(甲基)丙烯酸酯、2-羥基丁基(甲基)丙烯酸酯、2-苯氧基-2-羥基丙基(甲基)丙烯酸酯、2-(甲基)丙烯醯基氧基-2-羥基丙基苯二甲酸酯、3-氯-2-羥基丙基(甲基)丙烯酸酯、甘油單(甲基)丙烯酸酯、2-(甲基)丙烯醯基氧基乙基磷酸酯、N-羥甲基(甲基)丙烯醯胺等之分子內具有1個聚合性不飽和基的交聯性化合物。 Examples of the crosslinkable compound having a polymerizable unsaturated bond include trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, and tri (( a crosslinkable compound having three polymerizable unsaturated groups in a molecule such as methyl) acrylonitrile ethoxy ethoxy trimethylolpropane or glycerol polyglycidyl ether poly(meth) acrylate, and further Diol (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (a) Acrylate, polypropylene glycol di(meth)acrylate, butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, ethylene oxide bisphenol A type II Acrylate, propylene oxide bisphenol type di(meth) acrylate, 1,6-hexanediol di(meth) acrylate, glycerol di(meth) acrylate, pentaerythritol di(meth) acrylate Ester, ethylene glycol diglycidyl ether di(meth) acrylate, diethylene glycol diglycidyl ether di(meth) acrylate, benzene a crosslinkable compound having two polymerizable unsaturated groups in a molecule such as diglycidyl dicarboxylate di(meth)acrylate or hydroxypivalic acid neopentyl glycol di(meth)acrylate, And 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (A Acrylate, 2-(methyl)propenyloxy-2-hydroxypropyl phthalate, 3-chloro-2-hydroxypropyl (meth) acrylate, glycerol mono(methyl) A crosslinkable compound having one polymerizable unsaturated group in the molecule such as acrylate, 2-(meth)acryloyloxyethyl phosphate or N-methylol (meth) acrylamide.

此外,亦可使用下述之式[5]所示之化合物。 Further, a compound represented by the following formula [5] can also be used.

(式[5]中,A1為環己基環、雙環己基環、苯環、聯苯環、聯三苯環、萘環、茀環、蒽環、或菲環所選出的基,A2為下述之式[5a]、或式[5b]所選出的基,n為1~4的整數)。 (In the formula [5], A 1 is a group selected from a cyclohexyl ring, a bicyclohexyl ring, a benzene ring, a biphenyl ring, a biphenyl ring, a naphthalene ring, an anthracene ring, an anthracene ring, or a phenanthrene ring, and A 2 is The group selected by the following formula [5a] or the formula [5b], n is an integer of 1 to 4).

上述化合物為交聯性化合物的一例,但不限於此等。又,本發明之液晶配向處理劑所含有的交聯性化合物可為1種類、亦可為2種類以上組合。 The above compound is an example of a crosslinkable compound, but is not limited thereto. In addition, the crosslinkable compound contained in the liquid crystal alignment agent of the present invention may be one type or a combination of two or more types.

硫雜環丙烷化合物 Thiacyclopropane compound

硫雜環丙烷化合物方面,可舉例如將苯基縮水甘油基醚、丁基縮水甘油基醚、3,3,3-三氟甲基環氧丙烷、苯乙烯氧化物、六氟環氧丙烷、環己烯氧化物、N-縮水甘油基苯二甲醯亞胺、(九氟-N-丁基)環氧化物、全氟乙基縮水甘油基醚、表氯醇、表溴醇、N,N-二縮水甘油基苯胺、及3-[2-(全氟己基)乙氧基]-1,2-環氧基丙烷、乙二醇二縮水甘油基醚、聚乙二醇二縮水甘油基醚、丙二醇二縮水甘油基醚、三丙二醇二縮水甘油基醚、聚丙二醇二縮水甘油基 醚、新戊基二醇二縮水甘油基醚、1,6-己二醇二縮水甘油基醚、甘油二縮水甘油基醚、2,2-二溴新戊基二醇二縮水甘油基醚、及3-(N,N-二縮水甘油基)胺基丙基三甲氧基矽烷、1,3,5,6-四縮水甘油基-2,4-己二醇、N,N,N’,N’-四縮水甘油基-m-二甲苯二胺、1,3-雙(N,N-二縮水甘油基胺基甲基)環己烷、N,N,N’,N’-四縮水甘油基-4,4’-二胺基二苯基甲烷、及3-(N-烯丙基-N-縮水甘油基)胺基丙基三甲氧基矽烷中之縮水甘油基的氧,依照例如J.Org.Chem.,28,229(1963)所記載的方法取代為硫,使前述縮水甘油基轉換為環硫乙烷基者。 Examples of the thietane compound include phenyl glycidyl ether, butyl glycidyl ether, 3,3,3-trifluoromethyl propylene oxide, styrene oxide, and hexafluoropropylene oxide. Cyclohexene oxide, N-glycidyl phthalimide, (nonafluoro-N-butyl) epoxide, perfluoroethyl glycidyl ether, epichlorohydrin, epibromohydrin, N, N-diglycidylaniline, and 3-[2-(perfluorohexyl)ethoxy]-1,2-epoxypropane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl Ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl Ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerol diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, And 3-(N,N-diglycidyl)aminopropyltrimethoxydecane, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N,N,N', N'-tetraglycidyl-m-xylenediamine, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetrahydration The glycidyl group of glyceryl-4,4'-diaminodiphenylmethane and 3-(N-allyl-N-glycidyl)aminopropyltrimethoxydecane, according to, for example The method described in J. Org. Chem., 28, 229 (1963) is substituted with sulfur to convert the glycidyl group to an ethylenethio group.

氮丙啶化合物 Aziridine compound

氮丙啶化合物方面,可舉例如2,4,6-參(1’-氮丙啶基)-1,3,5-三嗪、ω-氮丙啶基丙酸-2,2-二羥基甲基-丁醇三酯、2,4,6-參(2-甲基-1-氮丙啶基)-1,3,5-三嗪、2,4,6-參(2-乙基-1-氮丙啶基)-1,3,5-三嗪、4,4’-雙(伸乙基亞胺基羰基胺基)二苯基甲烷、雙(2-乙基-1-氮丙啶基)苯-1,3-二羧酸醯胺、參(2-乙基-1-氮丙啶基)苯-1,3,5-三羧酸醯胺、雙(2-乙基-1-氮丙啶基)癸二酸醯胺、1,6-雙(伸乙基亞胺基羰基胺基)己烷、2,4-二伸乙基脲基甲苯、1,1’-羰基-雙-伸乙基亞胺、聚伸甲基-雙-伸乙基脲(C2~C4)、及N,N’-雙(4,6-二伸乙基亞胺基-1,3,5-三嗪-2-基)-六伸甲基二胺。此等之外,亦可舉例如具有氮丙啶基的寡聚物或聚合物。 The aziridine compound may, for example, be 2,4,6-paran (1'-aziridine)-1,3,5-triazine or ω-aziridinepropionic acid-2,2-dihydroxyl. Methyl-butanol triesters, 2,4,6-gin(2-methyl-1-aziridine)-1,3,5-triazine, 2,4,6-paran (2-ethyl -1-aziridine)-1,3,5-triazine, 4,4'-bis(extended ethyliminocarbonylamino)diphenylmethane, bis(2-ethyl-1-nitrogen Procyridyl) phenyl-1,3-dicarboxylic acid decylamine, ginseng (2-ethyl-1-aziridine)benzene-1,3,5-tricarboxylic acid decylamine, bis(2-ethyl -1- aziridine) decanoic acid decylamine, 1,6-bis(extended ethyliminocarbonylamino)hexane, 2,4-diethylethyltoluene, 1,1'- Carbonyl-bis-extended ethyl imine, polymethyl-bis-extended ethyl urea (C2~C4), and N,N'-bis(4,6-diethylethylamino-1,3 , 5-triazin-2-yl)-hexamethylamine. In addition to these, for example, an oligomer or polymer having an aziridine group can also be mentioned.

環碳酸酯 Cyclic carbonate

使用提升與基板之密著性的化合物之場合,其使用量相對於液晶構造體安定化劑所含有的聚合物成分的100質量份,以0.1~30質量份為佳、更佳為1~20質量份。使用量未達0.1質量份,則無法期待密著性提升效果,比30質量份多,則有液晶配向性變差之情形。 In the case of using a compound which improves the adhesion to the substrate, the amount thereof is preferably 0.1 to 30 parts by mass, more preferably 1 to 20, per 100 parts by mass of the polymer component contained in the liquid crystal structure stabilizer. Parts by mass. When the amount of use is less than 0.1 part by mass, the adhesion improving effect cannot be expected, and if it is more than 30 parts by mass, the liquid crystal alignment property may be deteriorated.

本發明之液晶構造體安定化劑中,上述之外,在不損及本發明之效果範圍,以改變液晶構造體安定化膜之介電常數或導電性等之電特性為目的,可添加介電體或導電物質、進而以提高作成液晶構造體安定化膜時的膜之硬度或緻密度為目的之交聯性化合物。 In the liquid crystal structure stabilizer of the present invention, in addition to the above, the electrical properties of the dielectric constant or the electrical conductivity of the liquid crystal structure stabilized film are not affected, and the dielectric properties of the liquid crystal structure stabilized film can be changed. A crosslinkable compound for the purpose of improving the hardness or density of the film when the liquid crystal structure is stabilized.

2.3.有機溶劑與液晶構造安定化劑的調製 2.3. Modulation of organic solvent and liquid crystal structure stabilizer

本發明之液晶構造體安定化劑中,作為溶解各聚合物使用的有機溶劑,本發明之液晶構造體安定化劑所使用的有機溶劑(溶劑)為使聚合物成分溶解的有機溶劑則不特別限定。其具體例如下。 In the liquid crystal structure stabilizer of the present invention, the organic solvent (solvent) used in the liquid crystal structure stabilizer of the present invention is an organic solvent used for dissolving each polymer, and the organic solvent in which the polymer component is dissolved is not particularly limited. Its specific example is as follows.

可舉例如N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、N-甲基-2-吡咯啶酮、N-甲基己內醯胺、2-吡咯啶酮、N-乙基吡咯啶酮、N-乙烯基吡咯啶酮、二甲基亞碸、四甲基尿素、吡啶、二甲基碸、γ-丁內酯、3-甲氧基-N,N-二甲基丙醯胺、3-乙氧基-N,N-二甲基丙醯胺、3-丁氧基-N,N-二甲基丙醯胺、1,3-二甲基-咪唑啉酮、乙基戊基酮、甲基壬基酮、甲基乙基酮、甲基異戊基酮、甲基異丙基酮、環己酮、碳酸乙烯酯、丙烯碳酸酯、二甘醇二甲醚、4-羥基-4-甲基-2-戊酮等。此等可單獨使用亦可混合使用。 For example, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone , N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl hydrazine, tetramethyl urea, pyridine, dimethyl hydrazine, γ-butyrolactone, 3-methoxy-N, N - dimethylpropanamide, 3-ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, 1,3-dimethyl- Imidazolinone, ethyl amyl ketone, methyl decyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, digan Alcohol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, and the like. These may be used alone or in combination.

液晶構造體安定化劑所含有的有機溶劑較佳為90~99質量%、更佳為93~98質量%。 The organic solvent contained in the liquid crystal structure stabilizer is preferably from 90 to 99% by mass, more preferably from 93 to 98% by mass.

3.液晶構造體安定化膜之形成 3. Formation of liquid crystal structure stabilized film

本發明之液晶構造體安定化劑宜用在以光配向法形成液晶顯示元件使用的液晶構造體安定化膜。 The liquid crystal structure stabilizer of the present invention is preferably used for a liquid crystal structure stabilization film used for forming a liquid crystal display element by a photo-alignment method.

使用本發明之液晶構造體安定化劑形成液晶構造體安定化膜,可藉由於基板上塗佈本發明之液晶構造體安定化劑後形成塗膜,並對該塗膜照射放射線之步驟的方法。 A method of forming a liquid crystal structure stabilized film using the liquid crystal structure stabilizer of the present invention, and forming a coating film by applying the liquid crystal structure stabilizer of the present invention to a substrate, and irradiating the coating film with radiation .

將本發明之液晶構造體安定化劑用於具有TN型或ECB型的液晶晶胞的液晶顯示元件時,以設置有經圖型化的透明導電膜之基板2枚為一對,於其各透明性導電膜形成面上塗佈本發明之液晶構造體安定化劑後形成塗膜。 When the liquid crystal structure stabilizer of the present invention is used for a liquid crystal display element having a TN type or ECB type liquid crystal cell, a pair of substrates provided with a patterned transparent conductive film are used as a pair. A coating film is formed by applying the liquid crystal structure stabilizer of the present invention to the surface of the transparent conductive film.

任一場合,作為上述基板,皆可使用例如浮法玻璃、鈉鈣玻璃般玻璃、由聚對苯二甲酸乙二醇酯、聚對苯二甲酸丁二醇酯、聚醚碸、聚碳酸酯般塑膠所構成的透明基板等。上述透明導電膜方面,可使用例如In2O3-SnO2所構成的ITO膜、SnO2所構成的NESA(註冊商標)膜等。上述金屬膜方面,可使用例如鉻等之金屬所構成的膜。透明導電膜及金屬膜之圖型化,可藉由例如無圖型而於形成透明導電膜後藉由光.蝕刻法、濺鍍法等形成圖型之方法、於形成透明導電膜時使用具有期望的圖型之遮罩之方法等。 In either case, as the substrate, for example, glass such as float glass or soda lime glass, polyethylene terephthalate, polybutylene terephthalate, polyether oxime, or polycarbonate may be used. A transparent substrate made of plastic. For the transparent conductive film, for example, an ITO film made of In 2 O 3 -SnO 2 or a NESA (registered trademark) film made of SnO 2 can be used. As the metal film, a film made of a metal such as chromium can be used. The pattern of the transparent conductive film and the metal film can be formed by the light after forming the transparent conductive film by, for example, no pattern. A method of forming a pattern by an etching method, a sputtering method, or the like, a method of using a mask having a desired pattern, and the like when forming a transparent conductive film.

在基板上塗佈液晶構造體安定化劑時,為了使基板或導電膜乃至電極與塗膜的接著性更良好,可在基板及電極上預先塗佈官能性矽烷化合物、鈦酸酯等。 When the liquid crystal structure stabilizer is applied to the substrate, a functional decane compound, titanate or the like may be applied to the substrate and the electrode in order to improve the adhesion between the substrate, the conductive film or the electrode and the coating film.

在基板上塗佈液晶構造體安定化劑,較佳藉由膠版印刷法、旋轉塗佈法、輥塗佈機法、噴墨印刷法等之適宜塗佈方法進行,接著使塗佈面進行預備加熱(預烘烤),接著 進行燒成(曝光後烘烤)而形成塗膜。預烘烤條件,例如為40~120℃中0.1~5分鐘、曝光後烘烤條件較佳為120~300℃、更佳為150~250℃,較佳為5~200分鐘、更佳為10~100分鐘。曝光後烘烤後的塗膜之膜厚較佳為0.001~1μm、更佳為0.005~0.5μm。 The liquid crystal structure stabilizer is applied onto the substrate, preferably by a suitable coating method such as an offset printing method, a spin coating method, a roll coater method, or an inkjet printing method, and then the coated surface is prepared. Heating (prebaking), then The baking film (baking after exposure) is formed to form a coating film. The prebaking conditions are, for example, 0.1 to 5 minutes at 40 to 120 ° C, and the post-exposure baking condition is preferably 120 to 300 ° C, more preferably 150 to 250 ° C, preferably 5 to 200 minutes, more preferably 10 ~100 minutes. The film thickness of the coating film after the post-exposure baking is preferably 0.001 to 1 μm, more preferably 0.005 to 0.5 μm.

藉由對如此般形成的塗膜,照射直線偏光或者部分偏光的放射線或無偏光的放射線,賦予液晶配向能力。在此,放射線方面,可使用例如包含150~800nm的波長的光之紫外線及可見光線,但以含250~400nm的波長的光之紫外線為佳。使用的放射線為直線偏光或部分偏光的場合,照射可在基板面從垂直的方向進行,為了賦予預傾角亦可從斜方向進行,又,亦可組合此等進行。照射無偏光的放射線之場合,照射的方向需要為斜方向。 By coating the thus formed coating film, linearly polarized light or partially polarized radiation or unpolarized radiation is irradiated to impart alignment ability to the liquid crystal. Here, as the radiation, for example, ultraviolet light and visible light containing light having a wavelength of 150 to 800 nm can be used, but ultraviolet light having a wavelength of 250 to 400 nm is preferable. When the radiation to be used is linearly polarized or partially polarized, the irradiation may be performed from the vertical direction on the substrate surface, or may be performed from the oblique direction in order to impart the pretilt angle, or may be combined. When irradiating unpolarized radiation, the direction of irradiation needs to be oblique.

使用之光源方面,可使用例如低壓水銀燈、高壓水銀燈、氘燈、金鹵燈、氬共振燈、氙氣燈、準分子雷射等。前述較佳波長領域的紫外線,可藉由將前述光源與例如濾光片、衍射光柵等併用之手段等得到。 As the light source to be used, for example, a low pressure mercury lamp, a high pressure mercury lamp, a xenon lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excimer laser or the like can be used. The ultraviolet light in the preferred wavelength range can be obtained by a combination of the above-mentioned light source and, for example, a filter, a diffraction grating, or the like.

放射線的照射量方面,較佳為1J/m2以上未達10,000J/m2、更佳為10~3,000J/m2。又,對以往習知的液晶構造體安定化劑所形成的塗膜,以光配向法賦予液晶配向能力時,需要10,000J/m2以上之放射線照射量。但是若使用本發明之液晶構造體安定化劑,則光配向法時的放射線照射量為3,000J/m2以下,進一步為1,000J/m2以下亦能賦予良好的液晶配向能力,有助於液晶顯示元件之生產性 提升與製造花費削減。 Irradiated amount of radiation aspect, preferably 1J / m 2 or more less than 10,000J / m 2, more preferably 10 ~ 3,000J / m 2. In addition, when the liquid crystal alignment ability is imparted to the coating film formed by the conventional liquid crystal structure stabilizer, a radiation irradiation amount of 10,000 J/m 2 or more is required. However, when the liquid crystal structure stabilizer of the present invention is used, the amount of radiation irradiation in the photo-alignment method is 3,000 J/m 2 or less, and further, it is possible to impart good liquid crystal alignment ability to 1,000 J/m 2 or less. The productivity improvement of the liquid crystal display element and the manufacturing cost are reduced.

4.液晶顯示元件之製造方法 4. Method of manufacturing liquid crystal display element

使用本發明之液晶構造體安定化劑形成的液晶顯示元件,例如可如下製造。 The liquid crystal display element formed using the liquid crystal structure stabilizer of the present invention can be produced, for example, as follows.

4.1.液晶晶胞 4.1. Liquid crystal cell

首先,如上述般,準備形成有液晶構造體安定化膜的一對基板,製造於該一對基板間挾持有液晶的構成之液晶晶胞。製造液晶晶胞,可舉例如以下的2個方法。 First, as described above, a pair of substrates on which a liquid crystal structure stabilization film is formed are prepared, and a liquid crystal cell having a liquid crystal structure between the pair of substrates is manufactured. The following two methods are exemplified to produce a liquid crystal cell.

第一方法為以往習知的方法。首先,以各液晶構造體安定化膜對向之方式介隔間隙(晶胞間隙),將2枚基板對向配置,將2枚基板的周邊部使用密封劑進行貼合,在以基板表面及密封劑區劃的晶胞間隙內注入充填液晶後,藉由將注入孔密封,可製造液晶晶胞。 The first method is a conventional method. First, the liquid crystal structure stabilizes the film to face the gap (cell gap), and the two substrates are opposed to each other, and the peripheral portions of the two substrates are bonded together using a sealant, and the surface of the substrate is bonded to the substrate. After the filling liquid crystal is injected into the cell gap of the sealant region, the liquid crystal cell can be manufactured by sealing the injection hole.

第二方法為稱為ODF(One Drop Fill)方式之手法。在形成液晶構造體安定化膜的2枚基板中之一者的基板上之指定場所,塗佈例如紫外光硬化性的密封劑,進一步於液晶構造體安定化膜面上滴下液晶後,以液晶構造體安定化膜對向之方式貼合另一者的基板,接著藉由於基板全面照射紫外光而將密封劑硬化,可製造液晶晶胞。 The second method is a method called the ODF (One Drop Fill) method. Applying, for example, a UV curable sealant to a designated place on one of the two substrates forming the liquid crystal structure stabilized film, and further dropping the liquid crystal on the liquid crystal structure stabilized film surface, and then liquid crystal The structure stabilized film is bonded to the other substrate in a facing manner, and then the sealing agent is cured by irradiating the entire surface of the substrate with ultraviolet light, whereby a liquid crystal cell can be manufactured.

在利用任一方法之場合,皆以接著藉由將液晶晶胞加熱至使用的液晶取得各向同性相的溫度後、緩冷卻至室溫,而將液晶充填時的流動配向除去為佳。 In the case of using any of the methods, it is preferred to remove the flow alignment during liquid crystal filling by heating the liquid crystal cell to the liquid crystal used to obtain the temperature of the isotropic phase and then slowly cooling to room temperature.

得到晶胞間隙之方法方面,不特別限制,可舉例如將間隔珠(氧化鋁球)等於設置有液晶構造體安定化膜的基板上均勻地散佈後貼合之方法或不散佈而在密封劑中分散間隔珠後,藉由進行塗佈.貼合來設置晶胞間隙之方法、使用設置有預先使用光阻等而成為特定晶胞間隙的構造物的基板等。因為ULH的配向受到異物等之影響強,故以像素內無間隔珠的狀態為佳。因此較佳為將間隔珠分散於密封劑而確保晶胞間隙之方法、使用設置有預先使用光阻等而成為特定晶胞間隙的構造物的基板者為佳。 The method of obtaining the cell gap is not particularly limited, and for example, a method in which a spacer bead (aluminum oxide ball) is uniformly spread on a substrate provided with a liquid crystal structure stabilization film or a method of bonding is performed, or a sealant is not dispersed. After dispersion of the spacer beads, by coating. A method of providing a cell gap by lamination, and a substrate or the like provided with a structure in which a specific cell gap is formed by using a photoresist or the like in advance. Since the alignment of the ULH is strongly influenced by foreign matter or the like, it is preferable that the state of the spacer is not included in the pixel. Therefore, it is preferable to disperse the spacer beads in the sealant to secure the cell gap, and to use a substrate provided with a structure in which a specific cell gap is formed by using a photoresist or the like in advance.

前述密封劑方面,可使用例如含有硬化劑的環氧樹脂等。 As the sealing agent, for example, an epoxy resin containing a curing agent or the like can be used.

4.2.膽固醇狀液晶 4.2. Cholesterol-like liquid crystal

ULH配向模式所使用的液晶為膽固醇狀液晶,但為了得到更安定的ULH配向,需要使用可得到強撓曲電效果之液晶。作為可得到撓曲電效果之液晶,可舉例如以下般雙液晶元型的液晶,藉由使用含有此等構造的膽固醇狀液晶,可得到ULH配向,但不限於此等構造。 The liquid crystal used in the ULH alignment mode is a cholesteric liquid crystal, but in order to obtain a more stable ULH alignment, it is necessary to use a liquid crystal which can obtain a strong flexural effect. The liquid crystal which can obtain the flexoelectric effect is, for example, a liquid crystal of a double liquid crystal cell type, and a ULH alignment can be obtained by using a cholesteric liquid crystal having such a structure, but is not limited to such a structure.

(式中,X1、X2各自獨立,為單鍵、酯鍵、醚鍵所選出的鍵結基,L為6~20所表示之整數。) (wherein, X 1 and X 2 are each independently a bond group selected by a single bond, an ester bond or an ether bond, and L is an integer represented by 6 to 20.)

又,為了使用具有此等構造的液晶而得到短扭曲周期的膽固醇狀液晶性,以使用添加有1~5重量%的強螺旋扭曲功率之手性試劑者為佳,若可得到膽固醇狀液晶性,構造不特別限定,尤佳之手性試劑,可舉例如以下的化合物等。 Further, in order to obtain a cholesteric liquid crystal property having a short twist period using a liquid crystal having such a structure, it is preferable to use a chiral reagent to which a strong helical twist power of 1 to 5% by weight is added, and a cholesteric liquid crystal property can be obtained. The structure is not particularly limited, and a particularly preferred chiral agent may, for example, be the following compounds.

(式中,X1、X2各自獨立,為單鍵、酯鍵、醚鍵所選出的鍵結基,R8為3~10的烷基。) (wherein, X 1 and X 2 are each independently a bond group selected by a single bond, an ester bond or an ether bond, and R 8 is an alkyl group of 3 to 10).

4.3.配向處理 4.3. Orientation processing

藉由將上述膽固醇狀液晶注入設置有上述液晶構造體安定化膜的液晶晶胞中,進行加熱處理同時外加電場,可轉移為ULH配向。例如升溫至使用的液晶成為各向同性相之溫度,確認完全轉變為各向同性相,對液晶晶胞邊外加電壓邊緩緩回復至室溫,藉此可誘導為ULH配向。 The cholesteric liquid crystal is injected into the liquid crystal cell in which the liquid crystal structure stabilized film is provided, and heat treatment is performed while applying an electric field, thereby shifting to ULH alignment. For example, when the temperature rises until the liquid crystal used becomes the temperature of the isotropic phase, it is confirmed that the liquid crystal is completely converted into an isotropic phase, and the liquid crystal cell is gradually returned to room temperature while applying a voltage, whereby the ULH alignment can be induced.

因晶胞間隙或使用的液晶的種類而條件有變,故較佳溫度下降速度或外加電壓的種類或強度無法限定,但從成為各向同性相的溫度之溫度下降速度,較佳為每分鐘1~30℃、更較佳為1~10℃,外加電壓為1~10V/μm、較佳 為2~8/μm左右的電場強度之矩形波交流為佳、頻率為1~1KHz、更佳為10~300Hz。 Since the conditions vary depending on the cell gap or the type of liquid crystal used, the temperature drop rate or the type or intensity of the applied voltage is not limited, but the temperature drop rate from the temperature of the isotropic phase is preferably per minute. 1~30°C, more preferably 1~10°C, the applied voltage is 1~10V/μm, preferably It is preferable that the rectangular wave of the electric field intensity of about 2 to 8 / μm is AC, the frequency is 1 to 1 KHz, and more preferably 10 to 300 Hz.

4.4.偏光板 4.4. Polarizer

而藉由於液晶晶胞之外側表面貼合偏光板,可得到本發明的液晶顯示元件。在此,藉由適當調整形成有液晶構造體安定化膜的2枚基板中之所照射的直線偏光放射線的偏光方向所成的角度及各基板與偏光板的角度,可得到期望的液晶顯示元件。 Further, the liquid crystal display element of the present invention can be obtained by attaching a polarizing plate to the outer surface of the liquid crystal cell. Here, a desired liquid crystal display element can be obtained by appropriately adjusting the angle formed by the polarization direction of the linearly polarized radiation irradiated on the two substrates on which the liquid crystal structure stabilized film is formed and the angle between each substrate and the polarizing plate. .

液晶晶胞的外側所使用的偏光板方面,可舉例如以乙酸纖維素保護膜挾持被稱為“H膜”的偏光膜而成的偏光板或者由H膜其本身所構成的偏光板,而上述“H膜”是一邊使聚乙烯醇延伸配向一邊使其吸收碘而成的偏光膜。 In the case of the polarizing plate used for the outer side of the liquid crystal cell, for example, a polarizing plate in which a polarizing film called "H film" is held by a cellulose acetate protective film or a polarizing plate composed of an H film itself is used. The "H film" is a polarizing film obtained by absorbing iodine while extending the polyvinyl alcohol.

[實施例] [Examples]

以下舉實施例,進一步將本發明具體說明。但是,本發明不限於此等之實施例。 The invention will be further illustrated by the following examples. However, the invention is not limited to the embodiments described herein.

5.液晶構造體安定化劑的調製與評估 5. Modulation and evaluation of liquid crystal structure stabilizer 5.1.縮寫 5.1. Abbreviations

實施例及比較例所使用的化合物的縮寫如下。 The abbreviations of the compounds used in the examples and comparative examples are as follows.

<有機溶劑> <organic solvent>

NMP:N-甲基-2-吡咯啶酮 NMP: N-methyl-2-pyrrolidone

GBL:γ-丁內酯 GBL: γ-butyrolactone

BCS:丁基溶纖劑 BCS: butyl cellosolve

IPA:2-丙醇 IPA: 2-propanol

<四羧酸二酐> <tetracarboxylic dianhydride>

TC-1:1,3-二甲基-1,2,3,4-環丁烷四羧酸二酐 TC-1: 1,3-dimethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride

<二胺> <Diamine>

DA-1:p-苯二胺 DA-1: p-phenylenediamine

DA-2:2-(N-tert-丁氧基羰基胺基甲基)-1,4-苯二胺 DA-2: 2-(N-tert-butoxycarbonylaminomethyl)-1,4-phenylenediamine

DA-3:1,2-雙(4-胺基苯氧基)乙烷 DA-3: 1,2-bis(4-aminophenoxy)ethane

DA-4:N-(tert丁氧基羰基)-N-(4-胺基苄基)-4-苯乙基胺 DA-4: N-(tert-butoxycarbonyl)-N-(4-aminobenzyl)-4-phenylethylamine

DA-5:4-胺基苯基-4-胺基肉桂酸酯 DA-5: 4-aminophenyl-4-aminocinnamate

<添加劑> <additive>

添加劑A:Primid XL552(Ems-Chemie公司製)、下述式(Additive-1)所表示之化合物 Additive A: a compound represented by Primid XL552 (manufactured by Ems-Chemie) and the following formula (Additive-1)

添加劑B:FHB N-α-(9-芴基甲氧基羰基)-N-τ-t-丁氧基羰基-L-組氨酸 Additive B: FHB N-α-(9-fluorenylmethoxycarbonyl)-N-τ-t-butoxycarbonyl-L-histidine

M-1:4-((6-甲基丙烯醯氧基)己基)氧基安息香酸 M-1: 4-((6-Methylacryloxy)hexyl)oxybenzoic acid

M-2:4-((6-甲基丙烯醯氧基)己基)氧基桂皮酸 M-2: 4-((6-Methylacryloxy)hexyl)oxycinnamic acid

M-3:E-4‘-((6-(甲基丙烯醯氧基)己基)氧基)-[1,1’聯苯基]-4-基3-(4-甲氧基苯基)丙烯酸酯 M-3: E -4'-((6-(methacryloxy)hexyl)oxy)-[1,1'biphenyl]-4-yl 3-(4-methoxyphenyl )Acrylate

又,以下的化學式中,Me為甲基、Bu為n- 丁基、Boc為t-丁氧基。 Further, in the following chemical formula, Me is a methyl group and Bu is a n- Butyl and Boc are t-butoxy groups.

5.2.液晶構造體安定化劑的評估方法 5.2. Evaluation method of liquid crystal structure stabilizer

各特性的測定方法如下。 The measurement method of each characteristic is as follows.

[黏度] [viscosity]

聚醯胺酸酯及聚醯胺酸溶液的黏度為使用E型黏度計TVE-22H(東機產業公司製),樣本量1.1mL(毫升)、錐形轉子TE-1(1°34’、R24),在溫度25℃進行測定。 The viscosity of the polyglycolate and the polyaminic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample volume of 1.1 mL (ml), and a conical rotor TE-1 (1° 34', R24), measured at a temperature of 25 °C.

[分子量] [molecular weight]

聚醯胺酸酯及聚醯胺酸的分子量為以GPC(常溫膠體滲透層析法)裝置測定,作為聚乙二醇(聚環氧乙烷)換算值,算出數平均分子量(以下、亦稱Mn)與重量平均分子量(以下、亦稱Mw)。 The molecular weight of the polyglycolate and the poly-proline is measured by a GPC (normal temperature colloidal osmosis chromatography) apparatus, and the number average molecular weight is calculated as a polyethylene glycol (polyethylene oxide) conversion value (hereinafter, also referred to as Mn) and weight average molecular weight (hereinafter, also referred to as Mw).

GPC裝置:Shodex公司製(GPC-101) GPC device: manufactured by Shodex (GPC-101)

管柱:Shodex公司製(KD803、及KD805串聯) Pipe column: made by Shodex (KD803, and KD805 in series)

管柱溫度:50℃ Column temperature: 50 ° C

溶離液:N,N-二甲基甲醯胺(作為添加劑的溴化鋰-水合物(LiBr.H2O)為30mmol/L(公升)、磷酸.無水結晶(o-磷酸)為30mmol/L、四氫呋喃(THF)為10ml/L) Dissolution: N,N-dimethylformamide (lithium bromide-hydrate (LiBr.H 2 O) as an additive is 30 mmol/L (liter), phosphoric acid. Anhydrous crystal (o-phosphoric acid) is 30 mmol/L, Tetrahydrofuran (THF) is 10ml/L)

流速:1.0ml/分 Flow rate: 1.0ml/min

作成檢量線用標準樣本:使用東曹公司製TSK標準聚環氧乙烷(重量平均分子量(Mw)約900,000、150,000、100,000、及30,000)及Polymer Laboratories Ltd.製 聚乙二醇(峰頂分子量(Mp)為約12,000、4,000、及1,000)。測定避開波峰重疊者,故分別實施混合 900,000、100,000、12,000、及1,000的4種類的樣本、以及混合150,000、30,000、及4,000的3種類的樣本的2樣本。 Standard sample for the calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, and 30,000) manufactured by Tosoh Corporation and polyethylene glycol manufactured by Polymer Laboratories Ltd. The molecular weight (Mp) is about 12,000, 4,000, and 1,000). The measurement is avoided by overlapping the peaks, so the mixing is performed separately. Four types of samples of 900,000, 100,000, 12,000, and 1,000, and 2 samples of 3 types of samples of 150,000, 30,000, and 4,000.

[醯亞胺化率的測定] [Determination of sulfhydrylation rate]

聚醯亞胺的醯亞胺化率如下進行測定。將聚醯亞胺粉末20mg置入NMR樣本管(NMR採樣管標準, 5(草野科學公司製)),添加氘化二甲基亞碸(DMSO-d6,0.05質量%TMS(四甲基矽烷)混合品)(0.53mL),施加超音波,使完全溶解。將該溶液以NMR測定機(JNW-ECA500)(JEOL Datum Ltd.製),測定500MHz的質子NMR。 The oxime imidization ratio of polyimine was measured as follows. Put 20 mg of polyimine powder into the NMR sample tube (NMR sampling tube standard, 5 (manufactured by Kusano Scientific Co., Ltd.), adding dimethylated dimethyl hydrazine (DMSO-d6, 0.05% by mass of TMS (tetramethyl decane) mixed product) (0.53 mL), and applying ultrasonic waves to completely dissolve. This solution was subjected to a NMR measuring machine (JNW-ECA500) (manufactured by JEOL Datum Ltd.) to measure a proton NMR of 500 MHz.

醯亞胺化率係以來自在醯亞胺化前後無變化的構造之質子為基準質子決定,使用該質子的波峰累積值與在9.5~10.0ppm附近出現的來自醯胺酸的NH基之質子波峰累積值,並用以下式求出。 The sulfhydrylation rate is determined by protons derived from protons that have not changed before and after imidization, and the peak value of the proton is used and the proton peak of the NH group derived from proline is present in the vicinity of 9.5 to 10.0 ppm. The cumulative value is obtained by the following equation.

醯亞胺化率(%)=(1-α.x/y)×100 醯 imidization rate (%) = (1-α.x/y) × 100

上述式中,x為源自醯胺酸的NH基的質子波峰累積值、y為基準質子的波峰累積值、α為聚醯胺酸(醯亞胺化率為0%)的場合中之相對醯胺酸的NH基質子1個之基準質子的個數比例。 In the above formula, x is the proton peak cumulative value of the NH group derived from proline, y is the peak cumulative value of the reference proton, and α is the relative case of polyproline (the imidization ratio is 0%). The ratio of the number of reference protons of one of the NH protons of proline.

5.3.液晶構造體安定化劑的調製 5.3. Modulation of liquid crystal structure stabilizer 實施例1 Example 1 合成例1 聚合物的聚合及液晶構造體安定化劑AL-1的調 製 Synthesis Example 1 Polymerization of Polymer and Adjustment of Liquid Crystal Structure Stabilizer AL-1 system

在裝設有氮導入管與機械攪拌器的100ml的4口燒瓶中,分別秤取DA-1(1.94g:18.00mmol)與DA-2(0.47g:2.00mmol),加入NMP 85.1g,並在氮環境下進行攪拌,確認完全溶解後,使溶液冷卻至10℃以下,緩緩加入TC-1(9.18g:19.60mmol),再回復至室溫,使進行24小時反應,得到12質量%的聚醯胺酸溶液(以下PAA-1)。藉此得到的PAA-1的重量平均分子量為38600。 In a 100 ml four-necked flask equipped with a nitrogen introduction tube and a mechanical stirrer, DA-1 (1.94 g: 18.00 mmol) and DA-2 (0.47 g: 2.00 mmol) were weighed, and NMP 85.1 g was added thereto. After stirring in a nitrogen atmosphere and confirming complete dissolution, the solution was cooled to 10 ° C or lower, and TC-1 (9.18 g: 19.60 mmol) was gradually added thereto, and the mixture was returned to room temperature to carry out a reaction for 24 hours to obtain 12% by mass. Polylysine solution (PAA-1 below). The weight average molecular weight of PAA-1 thus obtained was 38,600.

將PAA-1於具備攪拌子的三角燒瓶中,秤取80g,加入NMP 112g、BCS、48.0g、FHB 1.15g(相對PAA固形分為12質量%)、Additive-1 0.96g(相對PAA固形分為10質量%),在室溫進行6小時攪拌,得到本發明之液晶構造體安定化劑(以下AL-1)。 PAA-1 was weighed in an Erlenmeyer flask equipped with a stirrer, and 80 g was weighed, and NMP 112g, BCS, 48.0g, FHB 1.15g (12% by mass relative to PAA) and Additive-1 0.96g (relative PAA solids) were added. The mixture was stirred at room temperature for 6 hours to obtain a liquid crystal structure stabilizer (hereinafter referred to as AL-1).

實施例2 Example 2 合成例2 聚合物的聚合及液晶構造體安定化劑AL-2的調製 Synthesis Example 2 Polymerization of Polymer and Modulation of Liquid Crystal Structure Stabilizer AL-2

在裝設有氮導入管與機械攪拌器的200ml的4口燒瓶中,分別秤取DA-3(2.44g:10.00mmol)、DA-4(3.41g:10.00mmol),加入NMP 67.23g,並在氮環境下進行攪拌,使完全溶解。使溶液冷卻至10℃以下,緩緩加入TC-1(8.90g:19.00mmol),回復至室溫,進行24小時攪拌使其反應。反應完畢後、在具備攪拌子的200ml的茄型燒瓶中,秤取前述所得到的聚醯胺酸溶液60.0g,分別加入 NMP 30.0g、乙酸酐(6.53g:64.00mmol)、吡啶(0.84g:10.67mmol),在室溫進行30分鐘攪拌後,55℃進行3小時反應。反應完畢後、將反應溶液邊攪拌邊緩緩注入冷卻至10℃以下的200ml的甲醇,藉由攪拌一段時間使固體析出。以過濾回收固體,進而使回收的固體使用300ml的甲醇,各自進行2次攪拌洗淨,藉由在60℃使其真空乾燥,得到聚醯亞胺粉末(以下SPI-1:9.0g醯亞胺化率:68%、重量平均分子量:32000)。 In a 200-ml four-necked flask equipped with a nitrogen introduction tube and a mechanical stirrer, DA-3 (2.44 g: 10.00 mmol) and DA-4 (3.41 g: 10.00 mmol) were weighed, and 67.23 g of NMP was added thereto. Stirring was carried out under a nitrogen atmosphere to completely dissolve. The solution was cooled to 10 ° C or lower, and TC-1 (8.90 g: 19.00 mmol) was gradually added thereto, and the mixture was returned to room temperature, and the mixture was stirred for 24 hours to cause a reaction. After completion of the reaction, 60.0 g of the polyamic acid solution obtained above was weighed and placed in a 200 ml eggplant type flask equipped with a stir bar, and added separately. NMP 30.0 g, acetic anhydride (6.53 g: 64.00 mmol), and pyridine (0.84 g: 10.67 mmol) were stirred at room temperature for 30 minutes, and then reacted at 55 ° C for 3 hours. After completion of the reaction, the reaction solution was gradually poured into 200 ml of methanol cooled to 10 ° C or lower while stirring, and the solid was precipitated by stirring for a while. The solid was recovered by filtration, and the recovered solid was washed with 300 ml of methanol twice, and dried by vacuuming at 60 ° C to obtain a polyimine powder (hereinafter SPI-1: 9.0 g of imine) Conversion rate: 68%, weight average molecular weight: 32000).

將得到的聚醯亞胺粉末在具備攪拌子的100ml的三角燒瓶中,秤取2.00g,並加入NMP 18.00g,在室溫進行24小時攪拌,確認完全溶解後,加入FHB(0.24g:相對聚醯亞胺固形分為12質量%)、Additive-1(0.20g:相對聚醯亞胺固形分為10質量%)、NMP(3.33g)、BCS(10.00g),在室溫進行24小時攪拌,得到本發明之液晶構造體安定化劑(以下AL-2)。 The obtained polyimine powder was weighed in a 100 ml Erlenmeyer flask equipped with a stirrer, 2.00 g, and NMP 18.00 g, and stirred at room temperature for 24 hours, and after confirming complete dissolution, FHB (0.24 g: relative) was added. Polyimine solid content is divided into 12% by mass), Additive-1 (0.20 g: relative to polyamidiene solid content is 10% by mass), NMP (3.33 g), BCS (10.00 g), and is allowed to stand at room temperature for 24 hours. The liquid crystal structure stabilizer (hereinafter referred to as AL-2) of the present invention was obtained by stirring.

實施例3 Example 3 合成例3 Synthesis Example 3

在裝設有氮導入管與機械攪拌器的200ml的4口燒瓶中,秤取DA-5(1.14g:4.50mmol),加入NMP(5.60g),氮環境下在室溫進行攪拌使完全溶解後,加入TC-2(0.83g:4.20mmol)與NMP(5.6g),在室溫進行10小時反應,得到聚醯胺酸溶液(以下PAA-3)。PA-3的重量平均分子量為35500。 In a 200 ml 4-necked flask equipped with a nitrogen introduction tube and a mechanical stirrer, DA-5 (1.14 g: 4.50 mmol) was weighed, NMP (5.60 g) was added, and the mixture was stirred at room temperature under nitrogen to completely dissolve. Thereafter, TC-2 (0.83 g: 4.20 mmol) and NMP (5.6 g) were added, and the mixture was reacted at room temperature for 10 hours to obtain a polyaminic acid solution (hereinafter PAA-3). The weight average molecular weight of PA-3 was 35,500.

藉由於該聚醯胺酸溶液(10g)中加入NMP(10.0g)及BCS(5.0g),在室溫進行5小時攪拌,得到本發明之液晶構造體安定化劑(以下AL-3)。 By adding NMP (10.0 g) and BCS (5.0 g) to the polyamic acid solution (10 g), the mixture was stirred at room temperature for 5 hours to obtain a liquid crystal structure stabilizer (hereinafter referred to as AL-3).

實施例4 Example 4 合成例4 聚合物的聚合及液晶構造體安定化劑AL-4的調製 Synthesis Example 4 Polymerization of Polymer and Modulation of Liquid Crystal Structure Stabilizer AL-4

在具備三路活塞與攪拌子的100ml分枝茄型燒瓶中,分別秤取M-1(2.99g:9.00mmol)與M-2(1.83g:6.00mmol),加入THF(44.57g)使溶解,以隔膜泵進行數次脫氣及氮取代後,加入AIBN(0.12g:0.5mmol),再進行脫氣及氮取代。之後在50℃進行30小時反應,得到甲基丙烯酸酯之聚合物溶液。將該聚合物溶液滴下至二乙基醚(500ml),過濾得到的沉澱物。將得到的固體以二乙基醚洗淨,在40℃的烤箱中進行減壓乾燥,得到甲基丙烯酸酯聚合物粉末。該聚合物的重量平均分子量為42000。 M-1 (2.99 g: 9.00 mmol) and M-2 (1.83 g: 6.00 mmol) were weighed separately in a 100 ml branched eggplant flask equipped with a three-way piston and a stir bar, and dissolved in THF (44.57 g). After several degassing and nitrogen substitution by a diaphragm pump, AIBN (0.12 g: 0.5 mmol) was added, followed by degassing and nitrogen substitution. Thereafter, the reaction was carried out at 50 ° C for 30 hours to obtain a polymer solution of methacrylate. The polymer solution was added dropwise to diethyl ether (500 ml), and the obtained precipitate was filtered. The obtained solid was washed with diethyl ether, and dried under reduced pressure in an oven at 40 ° C to obtain a methacrylate polymer powder. The polymer had a weight average molecular weight of 42,000.

在得到的粉末2.0g中加入NMP18.0g,在室溫進行3小時攪拌。得到固形分濃度為10.0重量%之甲基丙烯酸酯聚合物溶液(以下PM-1)。攪拌完畢時點聚合物完全溶解。於該PM-1加入NMP(3.33g)、BCS(10.00g),進而在室溫進行6小時攪拌,得到本發明之液晶構造體安定化劑(以下AL-4)。 To 2.0 g of the obtained powder, 18.0 g of NMP was added, and the mixture was stirred at room temperature for 3 hours. A methacrylate polymer solution (PM-1 below) having a solid content concentration of 10.0% by weight was obtained. The polymer was completely dissolved when the stirring was completed. NMP (3.33 g) and BCS (10.00 g) were added to the PM-1, and the mixture was stirred at room temperature for 6 hours to obtain a liquid crystal structure stabilizer (hereinafter referred to as AL-4) of the present invention.

實施例5 Example 5 合成例5 聚合物的聚合及液晶構造體安定化劑AL-5的調製 Synthesis Example 5 Polymerization of Polymer and Modulation of Liquid Crystal Structure Stabilizer AL-5

於具備三路活塞與攪拌子的100ml分枝茄型燒瓶中,將M-3(10.29g、20.0mmol)溶於NMP(94.1g)中,並以隔膜泵進行數次脫氣及氮取代後,加入AIBN(0.164g、1.0mmol),再進行脫氣及氮取代。之後、在50℃使進行24小時反應,得到甲基丙烯酸酯之聚合物溶液。將該聚合物溶液滴下至甲醇(1000ml),過濾得到的沉澱物。使該沉澱物以甲醇洗淨,在40℃的烤箱中進行減壓乾燥,得到甲基丙烯酸酯聚合物粉末(以下PM-2)。該聚合物的重量平均分子量為39000。 In a 100 ml branched eggplant flask equipped with a three-way piston and a stirrer, M-3 (10.29 g, 20.0 mmol) was dissolved in NMP (94.1 g), and after several degassing and nitrogen substitution by a diaphragm pump. AIBN (0.164 g, 1.0 mmol) was added, followed by degassing and nitrogen substitution. Thereafter, the reaction was carried out at 50 ° C for 24 hours to obtain a polymer solution of methacrylate. The polymer solution was dropped to methanol (1000 ml), and the obtained precipitate was filtered. The precipitate was washed with methanol, and dried under reduced pressure in an oven at 40 ° C to obtain a methacrylate polymer powder (hereinafter, PM-2). The polymer had a weight average molecular weight of 39,000.

於得到的PM-2(1.0g)中加入CH2Cl2(99.0g),在室溫進行5小時攪拌使其溶解,得到液晶構造體安定化劑(AL-5)。 CH 2 Cl 2 (99.0 g) was added to the obtained PM-2 (1.0 g), and the mixture was stirred at room temperature for 5 hours to be dissolved to obtain a liquid crystal structure stabilizer (AL-5).

以下表為在上述合成例調製的聚合物的組成及液晶構造體安定化劑的組成。 The following table shows the composition of the polymer prepared in the above synthesis example and the composition of the liquid crystal structure stabilizer.

6.液晶構造體安定化膜之調製與評估 6. Modulation and evaluation of liquid crystal structure stabilized film <ULH評估用晶胞之製作> <Production of cell for ULH evaluation>

使用於30mm×40mmITO(Indium Tin Oxide)以10mm×40mm之圖型化成膜的基板,在其使用以實施例1~5調製的液晶構造體安定化劑,以膜厚成為100nm之方式形成聚合物膜,經各步驟進行配向處理。詳細成膜條件及配向處理條件如以下實施例。 A substrate formed by patterning with a pattern of 10 mm × 40 mm in 30 mm × 40 mm ITO (Indium Tin Oxide), and a liquid crystal structure stabilizer which was prepared in Examples 1 to 5 was used, and polymerization was carried out so as to have a film thickness of 100 nm. The film is subjected to alignment treatment through each step. The detailed film formation conditions and alignment treatment conditions are as follows.

實施例6 Example 6 使用AL-1的聚合物膜之光配向處理 Light alignment treatment using polymer film of AL-1

使用旋轉塗佈法,在ITO玻璃基板上使AL-1進行旋轉塗佈,使用加熱板,在80℃進行1分鐘乾燥,進而使用IR-烤箱,在230℃進行30分鐘加熱燒成,得到聚醯亞 胺膜。對得到的聚醯亞胺膜透過偏光板照射254nm的紫外線600mJ/cm2後,使用IR烤箱,在230℃進行30分鐘加熱,得到附有液晶構造體安定化膜的基板。 AL-1 was spin-coated on an ITO glass substrate by a spin coating method, dried at 80 ° C for 1 minute using a hot plate, and further heated at 230 ° C for 30 minutes using an IR oven to obtain a poly醯 imine film. The obtained polyimide film was irradiated with ultraviolet rays of 254 nm at 600 mJ/cm 2 through a polarizing plate, and then heated at 230 ° C for 30 minutes using an IR oven to obtain a substrate having a liquid crystal structure stabilization film.

實施例7 Example 7 使用AL-2的聚合物膜之光配向處理 Light alignment treatment using polymer film of AL-2

使用旋轉塗佈法,在ITO玻璃基板上使AL-2進行旋轉塗佈,使用加熱板,在80℃進行1分鐘乾燥,進而使用IR-烤箱,在230℃進行15分鐘加熱燒成,得到聚醯亞胺膜。對得到的聚醯亞胺膜透過偏光板照射254nm的紫外線300mJ/cm2後,使用IPA與純水之混合溶劑進行5分鐘超音波洗淨,以氣槍使乾燥後,使用IR烤箱,在230℃進行15分鐘加熱,得到附有液晶構造體安定化膜的基板。 AL-2 was spin-coated on an ITO glass substrate by a spin coating method, dried at 80 ° C for 1 minute using a hot plate, and further fired at 230 ° C for 15 minutes using an IR oven.醯 imine film. The obtained polyimide film was irradiated with a polarizing plate at a wavelength of 300 mJ/cm 2 at 254 nm, and then ultrasonically washed with a mixed solvent of IPA and pure water for 5 minutes, dried with an air gun, and then dried at 230 ° C using an IR oven. The substrate was heated for 15 minutes to obtain a substrate having a liquid crystal structure stabilization film.

實施例8 Example 8 使用AL-3的聚合物膜之光配向處理 Light alignment treatment using polymer film of AL-3

使用旋轉塗佈法,在ITO玻璃基板上使AL-3進行旋轉塗佈,使用加熱板,在80℃進行1分鐘乾燥,進而使用IR烤箱,在200℃進行30分鐘加熱燒成,得到聚醯亞胺膜。使得到的聚醯亞胺膜在加熱板加熱至240℃,透過偏光板照射313nm的紫外線20mJ/cm2得到附液晶構造體安定化膜之基板。 AL-3 was spin-coated on an ITO glass substrate by a spin coating method, dried at 80 ° C for 1 minute using a hot plate, and further heated and baked at 200 ° C for 30 minutes using an IR oven to obtain a polyfluorene. Imine film. The obtained polyimide film was heated to 240 ° C on a hot plate, and irradiated with a polarizing plate of ultraviolet light of 313 nm at 20 mJ/cm 2 to obtain a substrate having a liquid crystal structure stabilized film.

實施例9 Example 9 使用AL-4的聚合物膜之光配向處理 Light alignment treatment using polymer film of AL-4

使用旋轉塗佈法,在ITO玻璃基板上使AL-3進行旋轉塗佈,使用加熱板,在80℃進行1分鐘乾燥,透過偏光板照射313nm的紫外線10mJ/cm2後,使用加熱板,在140℃進行15分鐘加熱,得到附液晶構造體安定化膜之基板。 AL-3 was spin-coated on an ITO glass substrate by a spin coating method, dried at 80 ° C for 1 minute using a hot plate, and irradiated with a polarizing plate to irradiate ultraviolet rays of 313 nm at 10 mJ/cm 2 , and then a hot plate was used. The film was heated at 140 ° C for 15 minutes to obtain a substrate with a liquid crystal structure stabilized film.

實施例10 Example 10 使用AL-5的聚合物膜之光配向處理 Light alignment treatment using AL-5 polymer film

使用旋轉塗佈法,在ITO玻璃基板上使AL-4進行旋轉塗佈,使用加熱板,在80℃進行1分鐘乾燥,透過偏光板照射313nm的紫外線300mJ/cm2後,使用加熱板,在180℃進行15分鐘加熱,得到附液晶構造體安定化膜之基板。 AL-4 was spin-coated on an ITO glass substrate by a spin coating method, dried at 80 ° C for 1 minute using a hot plate, and irradiated with a polarizing plate at 300 mJ/cm 2 of 313 nm ultraviolet light, and then a hot plate was used. The film was heated at 180 ° C for 15 minutes to obtain a substrate with a liquid crystal structure stabilized film.

比較例1 Comparative example 1 使用AL-1的摩擦配向處理 Friction alignment treatment using AL-1

使用旋轉塗佈法,在ITO玻璃基板上使AL-1進行旋轉塗佈,使用加熱板,在80℃進行1分鐘乾燥,進而使用IR-烤箱,在230℃進行30分鐘加熱燒成,得到聚醯亞胺膜。將得到的聚醯亞胺膜之膜面以人造絲布(吉川化工製YA-20R)摩擦(滾筒直徑:120mm、滾筒旋轉數:700rpm、移動速度:50mm/sec、壓入長:0.2mm),進行 配向處理,得到附液晶構造體安定化膜之基板。 AL-1 was spin-coated on an ITO glass substrate by a spin coating method, dried at 80 ° C for 1 minute using a hot plate, and further heated at 230 ° C for 30 minutes using an IR oven to obtain a poly醯 imine film. The film surface of the obtained polyimide film was rubbed with rayon cloth (YA-20R manufactured by Yoshikawa Chemical Co., Ltd.) (roller diameter: 120 mm, number of rotations of the drum: 700 rpm, moving speed: 50 mm/sec, press-in length: 0.2 mm) ,get on The alignment treatment was performed to obtain a substrate with a liquid crystal structure stabilization film.

比較例2 Comparative example 2 使用AL-2的摩擦配向處理 Friction alignment treatment using AL-2

將實施例1的AL-1取代為AL-2,以同樣的操作得到附配向膜之基板。 The AL-1 of Example 1 was replaced with AL-2, and the substrate attached to the film was obtained in the same manner.

<液晶晶胞的製作及ULH配向觀察> <Preparation of liquid crystal cell and observation of ULH alignment>

準備各2枚實施例5~8所作成的附液晶構造體安定化膜之基板,於一者的基板的液晶構造體安定化膜上,將混合6.0μm或4.0μm的間隔珠之密封劑(協立化學製XN-1500T)以點膠機塗佈,接著,將另一者的基板以液晶構造體安定化膜面相對且配向方向成為0°之方式貼合後,使密封劑熱硬化,製作空晶胞。 Two substrates of the liquid crystal structure stabilization film prepared in each of Examples 5 to 8 were prepared, and a sealant of 6.0 μm or 4.0 μm spacer beads was mixed on the liquid crystal structure stabilization film of one of the substrates ( Xenon Chemical Co., Ltd. XN-1500T) is applied by a dispenser, and then the other substrate is bonded to each other such that the liquid crystal structure stabilizes the film surface and the alignment direction becomes 0°, and the sealant is thermally cured. Make an empty cell.

使如前述得到的空晶胞裝載於加熱至80℃的加熱板上,使用默克公司製的ULH模式用液晶,以毛細管注入將液晶注入,將液晶的注入口密封後作成ULH評估用的晶胞。其模式圖如圖1。 The empty unit cell obtained as described above was placed on a hot plate heated to 80° C., liquid crystal was used in ULH mode manufactured by Merck, and liquid crystal was injected by capillary injection, and the liquid crystal injection port was sealed to prepare a crystal for ULH evaluation. Cell. Its mode diagram is shown in Figure 1.

<ULH初期配向的觀察> <Observation of initial alignment of ULH>

使用附設有可加熱冷卻之台的偏光顯微鏡(POM)進行配向性的評估。於加熱冷卻台安裝如前述得到的液晶晶胞,升溫至液晶成為各向同性相的溫度,確認完全成為各向同性相後,以函數信號產生器邊施加14Vp-p(晶胞間隙 4.0μm的場合)或20Vp-p(晶胞間隙6.0μm的場合)的矩形波交流電壓,邊以3℃/分鐘的速度,降溫至50℃,使轉變為ULH。成為ULH的狀態後,停止施加電壓,回復至室溫,使偏光板成為正交尼科耳之狀態,使液晶晶胞旋轉,藉由進行明狀態與暗狀態之確認,進行初期配向的評估。結果如表3、圖2及圖3所示。 The alignment was evaluated using a polarizing microscope (POM) equipped with a table capable of heating and cooling. The liquid crystal cell obtained as described above was mounted on a heating and cooling stage, and the temperature was raised until the temperature of the liquid crystal became an isotropic phase. After confirming that the liquid crystal phase became completely isotropic, 14 Vp-p (cell gap) was applied by the function signal generator. In the case of 4.0 μm or a rectangular wave AC voltage of 20 Vp-p (in the case of a cell gap of 6.0 μm), the temperature was lowered to 50° C. at a rate of 3° C./min to be converted into ULH. After the ULH state was reached, the application of the voltage was stopped, the temperature was returned to room temperature, the polarizing plate was placed in a crossed Nicols state, the liquid crystal cell was rotated, and the initial alignment was evaluated by confirming the bright state and the dark state. The results are shown in Table 3, Figure 2 and Figure 3.

比較實施例5及6與比較例1及2時,以光配向與摩擦之ULH的配向性大幅相異。由該點可知ULH的配向性以光配向者為良好。又在材料系大幅相異的實施例7及8中亦可得到良好的ULH配向,推測若為液晶構造體安定化膜則不限種類而可得到良好的ULH的配向。此係認為在摩擦處理變得易引起配向不均或膜削切、塵埃附著等,但在光配向不引起彼等,故可得到良好的ULH 的配向。實施例之場合,確認如圖2所示可明確觀察到明狀態與暗狀態,且ULH配向為良好。另一方面,比較例之場合,如圖3所示,即使旋轉液晶晶胞亦無法觀測到明狀態與暗狀態,ULH配向性為不良。 When Comparative Examples 5 and 6 and Comparative Examples 1 and 2 were compared, the alignment of the light alignment and the ULH of the friction was largely different. From this point, it is understood that the alignment of the ULH is good for the light alignment. Further, in the examples 7 and 8 in which the materials were significantly different, a good ULH alignment was obtained, and it is estimated that the liquid crystal structure stabilized film is not limited to a specific type, and a good ULH alignment can be obtained. In this case, it is considered that the rubbing treatment tends to cause uneven alignment, film cutting, dust adhesion, etc., but does not cause them in the light alignment, so that a good ULH can be obtained. Orientation. In the case of the examples, it was confirmed that the bright state and the dark state were clearly observed as shown in Fig. 2, and the ULH alignment was good. On the other hand, in the case of the comparative example, as shown in Fig. 3, even if the liquid crystal cell was rotated, the bright state and the dark state could not be observed, and the ULH alignment property was poor.

[產業上的利用性] [industrial use]

因此所製造的本發明之液晶顯示元件為顯示特性、電特性等之諸性能優異者。 Therefore, the liquid crystal display element of the present invention produced is excellent in performances such as display characteristics and electrical characteristics.

Claims (15)

一種用以形成使液晶構造體安定化之膜的組成物,其特徵係含有選自聚醯亞胺前驅物、聚醯亞胺、聚醯胺、聚丙烯酸酯、聚甲基丙烯酸酯、聚N取代馬來醯亞胺、聚苯乙烯、聚衣康酸酯、及聚有機矽氧烷所構成的群,且經偏光紫外線照射而表現各向異性的至少1種之聚合物。 A composition for forming a film for stabilizing a liquid crystal structure, characterized by comprising a polyimine precursor, a polyimine, a polyamine, a polyacrylate, a polymethacrylate, a poly N A polymer comprising at least one of a group consisting of maleic imine, polystyrene, polyitaconate, and polyorganosiloxane, and exhibiting anisotropy by irradiation with polarized ultraviolet rays. 如請求項1記載之組成物,其中,前述至少1種之聚合物為主鏈中具有下述式(1)~(5): [式中,Z1~Z4各自獨立,為氫原子、甲基、及苯環所成群組中選出的至少1種,R1為氫原子、甲基、乙基、丙基、異丙基、異丁基、及t-丁基所構成群中選出的有機 基,R2為氫原子、氟原子、或下述式: (式中,R3為氫原子或碳數1~18的烷基鏈,m為1~3的整數,黑點為鍵結部位)所表示之有機基,黑點為與另外有機基之鍵結]所表示之任一構造的聚醯亞胺前驅物、或聚醯亞胺。 The composition according to claim 1, wherein the at least one of the polymers has the following formulas (1) to (5) in the main chain: [wherein, Z 1 to Z 4 are each independently and are at least one selected from the group consisting of a hydrogen atom, a methyl group, and a benzene ring, and R 1 is a hydrogen atom, a methyl group, an ethyl group, a propyl group, or an isopropyl group. An organic group selected from the group consisting of a group, an isobutyl group, and a t-butyl group, and R 2 is a hydrogen atom, a fluorine atom, or the following formula: (wherein R 3 is an organic group represented by a hydrogen atom or an alkyl chain having 1 to 18 carbon atoms, m is an integer of 1 to 3, and a black dot is a bonding site), and a black dot is a bond with another organic group. A polyimine precursor, or a polyimine, of any of the structures indicated. 如請求項1記載之組成物,其中,前述至少1種之聚合物為主鏈中具有下述式(6)~(10): (式中,X1、X2各自獨立,為碳原子、或氮原子,Y1、Y2各自獨立,為氫原子、甲基、氰基、氟原子、或氯原子,X3為氧原子、或硫原子,X4為單鍵、碳原子、氧原子、或硫原子,R4、R5各自獨立,為氫原子、甲基、甲氧基、二甲基胺基、氟原子、或氯原子,p為1~4的整數,q為1~3的整數,虛線為與另外有機基之鍵結)所表示之任一構造的聚醯亞胺前驅物、或感光性聚醯亞胺。 The composition according to claim 1, wherein the at least one polymer has the following formulas (6) to (10) in the main chain: (wherein X 1 and X 2 are each independently a carbon atom or a nitrogen atom, and Y 1 and Y 2 are each independently a hydrogen atom, a methyl group, a cyano group, a fluorine atom or a chlorine atom, and X 3 is an oxygen atom. Or a sulfur atom, X 4 is a single bond, a carbon atom, an oxygen atom, or a sulfur atom, and R 4 and R 5 are each independently a hydrogen atom, a methyl group, a methoxy group, a dimethylamino group, a fluorine atom, or a chlorine atom, p is an integer of 1 to 4, q is an integer of 1 to 3, and a dotted line is a polyimine precursor of any structure represented by a bond with another organic group, or a photosensitive polyimine . 如請求項1記載之組成物,其中, 前述至少1種之聚合物為具有下述式(6)~(8)或(11): (式中,X1、X2各自獨立,為碳原子、或氮原子,Y1、Y2各自獨立,為氫原子、甲基、氰基、氟原子、或氯原子,X3為氧原子、或硫原子,X4為單鍵、碳原子、氧原子、或硫原子,R4、R5各自獨立,為氫原子、甲基、甲氧基、二甲基胺基、氟原子、或氯原子,Ar為2,5-伸呋喃基、噻吩-2,5-二基、嘧啶-2,5-二基、吡啶-2,5-二基、伸苯基、1,4-或2,6-伸萘基、2,5-或者2,6-苯並伸呋喃基、或2,5-或者2,6-苯並硫代伸苯基,鍵結於此等之芳香環的氫原子之一部分可被甲基、甲氧基、二甲基胺基、氟原子、或氯原子取代,p為1~4的整數,黑點為氫原子或與另外有機基之鍵結)所表示之構造作為側鏈之一部分的聚合物。 The composition according to claim 1, wherein the at least one of the polymers has the following formula (6) to (8) or (11): (wherein X 1 and X 2 are each independently a carbon atom or a nitrogen atom, and Y 1 and Y 2 are each independently a hydrogen atom, a methyl group, a cyano group, a fluorine atom or a chlorine atom, and X 3 is an oxygen atom. Or a sulfur atom, X 4 is a single bond, a carbon atom, an oxygen atom, or a sulfur atom, and R 4 and R 5 are each independently a hydrogen atom, a methyl group, a methoxy group, a dimethylamino group, a fluorine atom, or Chlorine atom, Ar is 2,5-extended furyl, thiophene-2,5-diyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl, phenyl, 1,4- or 2 , 6-strandyl, 2,5- or 2,6-benzofuranyl, or 2,5- or 2,6-benzothiophenyl, a hydrogen bonded to the aromatic ring One part of the atom may be substituted by a methyl group, a methoxy group, a dimethylamino group, a fluorine atom, or a chlorine atom, p is an integer of 1 to 4, and a black point is a hydrogen atom or a bond with another organic group. A polymer that is constructed as part of a side chain. 如請求項1記載之組成物,其中,前述至少1種之聚合物為具有下述一般式: (式中,虛線為與另外有機基之鍵結)所表示之構造(12)、或(13)作為側鏈之一部分的聚丙烯酸酯、聚甲基丙烯酸酯、聚N取代馬來醯亞胺、聚苯乙烯、聚衣康酸酯、或聚矽氧烷。 The composition according to claim 1, wherein the at least one of the polymers has the following general formula: (wherein, the dotted line is a bond with another organic group), the structure (12), or (13) is a part of the side chain of polyacrylate, polymethacrylate, poly N substituted maleimide , polystyrene, polyitanic acid ester, or polyoxyalkylene. 如請求項1乃至5中任一項記載之組成物,其係用以形成使膽固醇狀液晶進行ULH配向用之膜的組成物。 The composition according to any one of claims 1 to 5, which is a composition for forming a film for ULH alignment of a cholesteric liquid crystal. 一種使液晶構造體安定化用之膜之製造方法,其特徵係包含使請求項1乃至5中任一項記載之組成物製膜之步驟、及對得到的膜照射偏光紫外線而表現各向異性的步驟。 A method for producing a film for structuring a liquid crystal structure, comprising the steps of forming a film of the composition according to any one of claims 1 to 5, and irradiating the obtained film with polarized ultraviolet rays to exhibit anisotropy A step of. 如請求項7記載之方法,其中,前述偏光紫外線照射步驟中,各向異性係藉由分解、異構化或交聯而表現。 The method according to claim 7, wherein in the polarized ultraviolet ray irradiation step, the anisotropy is expressed by decomposition, isomerization or crosslinking. 如請求項7或8記載之方法,其中,前述偏光紫外線照射步驟中,各向異性係藉由使偏光紫外線對膜面從垂直方向照射而表現。 The method according to claim 7 or 8, wherein in the polarized ultraviolet ray irradiation step, the anisotropy is expressed by irradiating the film surface with a polarized ultraviolet ray from a vertical direction. 如請求項7乃至9中任一項記載之方法,其中,前述偏光紫外線照射步驟包含照射紫外線的照射波長為250nm~350nm的偏光紫外線,至少照射能量以5mJ以上進行照射,進而照射後在100~300℃進行5分鐘以上加熱的步驟。 The method according to any one of claims 7 to 9, wherein the polarized ultraviolet ray irradiation step includes a polarized ultraviolet ray having an irradiation wavelength of 250 nm to 350 nm irradiated with ultraviolet rays, and at least an irradiation energy is irradiated at 5 mJ or more, and further irradiated at 100 Å. The step of heating at 300 ° C for 5 minutes or more. 一種使液晶構造體安定化用之膜,其特徵係含有聚醯亞胺前驅物、聚醯亞胺、聚醯胺、聚丙烯酸酯、聚甲基丙烯酸酯、聚N取代馬來醯亞胺、聚苯乙烯、聚衣康酸酯、及聚有機矽氧烷所構成群中選出的至少1種之聚合 物,且具有使膽固醇狀液晶進行ULH配向的各向異性。 A film for stabilizing a liquid crystal structure, which comprises a polyimide precursor, a polyimine, a polyamine, a polyacrylate, a polymethacrylate, a poly N-substituted maleimide, Polymerization of at least one selected from the group consisting of polystyrene, polyitaconate, and polyorganosiloxane And an anisotropy that causes the cholesteric liquid crystal to undergo ULH alignment. 一種附有液晶構造體安定化膜的基板,其特徵係具有請求項11記載之膜。 A substrate having a liquid crystal structure stabilized film, which is characterized by having the film of claim 11. 一種液晶晶胞,其特徵係在各液晶構造體安定化膜對向配置的請求項12記載之附有液晶構造體安定化膜的基板之間含有膽固醇狀液晶。 A liquid crystal cell characterized by containing a cholesteric liquid crystal between substrates having a liquid crystal structure stabilization film described in claim 12 in which the liquid crystal structure stabilization film is disposed opposite to each other. 如請求項13記載之液晶晶胞,其中,前述膽固醇狀液晶為含有下述一般式所表示之液晶性化合物而成的膽固醇狀液晶, (式中,X1、X2各自獨立,為單鍵、酯鍵、醚鍵所選出的鍵結基,L為6~20所表示之整數,R8為碳數4~10的烷基)。 The liquid crystal cell according to claim 13, wherein the cholesteric liquid crystal is a cholesteric liquid crystal containing a liquid crystal compound represented by the following general formula. (wherein, X 1 and X 2 are each independently, and are a bond group selected from a single bond, an ester bond or an ether bond, L is an integer represented by 6 to 20, and R 8 is an alkyl group having 4 to 10 carbon atoms) . 一種液晶顯示元件,其特徵係具備偏光板、及請求項13或14記載之液晶晶胞。 A liquid crystal display device comprising a polarizing plate and a liquid crystal cell described in claim 13 or 14.
TW105142748A 2015-12-25 2016-12-22 Liquid crystal display element, liquid crystal optical element and liquid crystal structure stabilized film composition TWI747863B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-255053 2015-12-25
JP2015255053 2015-12-25

Publications (2)

Publication Number Publication Date
TW201736439A true TW201736439A (en) 2017-10-16
TWI747863B TWI747863B (en) 2021-12-01

Family

ID=59089489

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105142748A TWI747863B (en) 2015-12-25 2016-12-22 Liquid crystal display element, liquid crystal optical element and liquid crystal structure stabilized film composition

Country Status (5)

Country Link
JP (1) JP7052355B2 (en)
KR (1) KR20180094100A (en)
CN (1) CN108700776B (en)
TW (1) TWI747863B (en)
WO (1) WO2017110977A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7424318B2 (en) 2019-01-08 2024-01-30 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7445443B2 (en) 2020-01-28 2024-03-07 旭化成株式会社 Negative photosensitive resin composition and method for producing the same, and method for producing a cured relief pattern

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1219651A1 (en) * 2000-12-29 2002-07-03 Rolic AG Photoactive copolymer
US7038743B2 (en) 2004-01-28 2006-05-02 Kent State University Electro-optical devices from polymer-stabilized liquid crystal molecules
GB0414882D0 (en) * 2004-07-02 2004-08-04 Univ Cambridge Tech Liquid crystal device
US7687118B2 (en) * 2004-10-13 2010-03-30 Rolic Ag Photocrosslinkable materials
JP5870487B2 (en) * 2008-12-26 2016-03-01 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6146135B2 (en) * 2012-08-30 2017-06-14 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, method for producing liquid crystal aligning film, and liquid crystal display element
JP2014206715A (en) * 2013-03-19 2014-10-30 日産化学工業株式会社 Method for manufacturing substrate having liquid crystal aligning film for in-plane switching liquid crystal display element
KR102227477B1 (en) * 2014-07-08 2021-03-15 삼성디스플레이 주식회사 Liquid crystal display device and method of manufacturing the same

Also Published As

Publication number Publication date
TWI747863B (en) 2021-12-01
CN108700776B (en) 2021-10-26
JPWO2017110977A1 (en) 2018-11-08
JP7052355B2 (en) 2022-04-12
KR20180094100A (en) 2018-08-22
CN108700776A (en) 2018-10-23
WO2017110977A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6504377B2 (en) Polymer
JP7027890B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6083382B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
TWI620769B (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP5900337B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6052171B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP5874646B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2015227373A (en) Cyclocarbonate group-containing compound
JP7081488B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TWI747863B (en) Liquid crystal display element, liquid crystal optical element and liquid crystal structure stabilized film composition
WO2018043325A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
KR102478693B1 (en) Liquid crystal optical element and manufacturing method of liquid crystal optical element
JP7298156B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6981254B2 (en) Liquid crystal display element, liquid crystal optical element and composition for liquid crystal structure stabilizing film