TW201735414A - RRAM based complementary switch for crosspoint memory applications - Google Patents

RRAM based complementary switch for crosspoint memory applications Download PDF

Info

Publication number
TW201735414A
TW201735414A TW105138911A TW105138911A TW201735414A TW 201735414 A TW201735414 A TW 201735414A TW 105138911 A TW105138911 A TW 105138911A TW 105138911 A TW105138911 A TW 105138911A TW 201735414 A TW201735414 A TW 201735414A
Authority
TW
Taiwan
Prior art keywords
oxide layer
concentration
oxygen vacancies
top electrode
state
Prior art date
Application number
TW105138911A
Other languages
Chinese (zh)
Inventor
拉維 皮拉瑞斯提
艾利潔 卡波夫
普瑞斯韓特 馬吉
烏戴 沙
尼洛依 穆可吉
Original Assignee
英特爾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特爾股份有限公司 filed Critical 英特爾股份有限公司
Publication of TW201735414A publication Critical patent/TW201735414A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

An embodiment includes a resistive random access memory (RRAM) system comprising: a bi-polar complimentary resistive switch (CRS) comprising a top electrode, a bottom electrode, and an oxide layer between the top and bottom electrodes; wherein (a) a first plurality of oxygen vacancies are within the oxide layer and are adjacent the top electrode at a first concentration, (b) a second plurality of oxygen vacancies are within the oxide layer and are adjacent the bottom electrode at a second concentration, and (c) a third plurality of oxygen vacancies are within the oxide layer at a third concentration and between the first and second pluralities of oxygen vacancies. Other embodiments are described herein.

Description

用於交叉點記憶體應用之以電阻式隨機存取記憶體為基礎的互補式開關 Resistive random access memory-based complementary switch for cross-point memory applications

本發明之實施例是屬於半導體裝置的領域,並且特別關於非揮發性記憶體。 Embodiments of the invention are in the field of semiconductor devices, and in particular with respect to non-volatile memory.

電阻性隨機存取記憶體(RRAM或是ReRAM)仰賴的材料種類,是藉由“形成”事件的方式,從開始的絕緣狀態一次性切換到低電阻狀態。在所形成的事件中,裝置會經過“暫時性崩潰(soft breakdown)”的過程,其中區域化的細線形成於位在兩電極之間的介電質層。此種細線將流經細線的電流分流,以形成低電阻狀態。RRAM經過施加不同極性的電壓到電極以切換狀態,藉由消除細線從低電阻狀態切換至高電阻狀態,並且藉由重新形成細線以從高電阻狀態切換至低電阻狀態。於是習知的PRAM可作為記憶體使用。 Resistive random access memory (RRAM or ReRAM) relies on the type of material that switches from the initial insulation state to the low resistance state by "forming" events. In the event that is formed, the device undergoes a "soft breakdown" process in which the thinned lines are formed in a dielectric layer between the two electrodes. Such a thin line divides the current flowing through the thin wire to form a low resistance state. The RRAM switches states by applying voltages of different polarities to the electrodes, by eliminating the thin wires switching from the low resistance state to the high resistance state, and switching from the high resistance state to the low resistance state by re-forming the thin wires. Thus, conventional PRAM can be used as a memory.

100‧‧‧RRAM堆疊 100‧‧‧RRAM stacking

101‧‧‧頂部電極 101‧‧‧Top electrode

101‧‧‧電極 101‧‧‧ electrodes

111‧‧‧氧交換層(OEL) 111‧‧‧Oxygen exchange layer (OEL)

131‧‧‧底部電極 131‧‧‧ bottom electrode

131‧‧‧電極 131‧‧‧electrode

141‧‧‧區域 141‧‧‧Area

142‧‧‧區域 142‧‧‧Area

144‧‧‧氧空位 144‧‧‧Oxygen vacancies

144‧‧‧空位 144‧‧‧ vacancies

200‧‧‧RRAM堆疊 200‧‧‧RRAM stacking

201‧‧‧頂部電極 201‧‧‧ top electrode

221‧‧‧氧化物層 221‧‧‧Oxide layer

223‧‧‧電阻 223‧‧‧resistance

232‧‧‧底部電極 232‧‧‧ bottom electrode

241‧‧‧第一複數個氧空位 241‧‧‧The first plurality of oxygen vacancies

242‧‧‧第二複數個氧空位 242‧‧‧ second plural oxygen vacancies

244‧‧‧氧空位 244‧‧‧Oxygen vacancies

245‧‧‧第三複數個氧空位 245‧‧‧ third plural oxygen vacancies

301‧‧‧頂部電極 301‧‧‧Top electrode

321‧‧‧氧化物 321‧‧‧Oxide

331‧‧‧底部電極 331‧‧‧ bottom electrode

351‧‧‧氧化物電阻 351‧‧‧Oxide resistance

900‧‧‧系統 900‧‧‧ system

905‧‧‧基頻處理器 905‧‧‧Baseband processor

910‧‧‧應用處理 910‧‧‧Application processing

915‧‧‧電源管理積體電路(PMIC) 915‧‧‧Power Management Integrated Circuit (PMIC)

920‧‧‧使用者介面/顯示器 920‧‧‧User Interface/Monitor

925‧‧‧感測器 925‧‧‧ sensor

930‧‧‧快閃記憶體 930‧‧‧Flash memory

932‧‧‧安全部件 932‧‧‧Safety parts

935‧‧‧DRAM 935‧‧‧DRAM

940‧‧‧通用積體電路卡(UICC) 940‧‧‧General Integrated Circuit Card (UICC)

942‧‧‧安全儲存 942‧‧‧Safe storage

945‧‧‧捕獲裝置 945‧‧‧ Capture device

950‧‧‧安全處理器 950‧‧‧Security Processor

960‧‧‧NFC無接觸介面 960‧‧‧NFC contactless interface

965‧‧‧NFC天線 965‧‧‧NFC antenna

970‧‧‧射頻(RF)收發機 970‧‧‧ Radio Frequency (RF) Transceiver

975‧‧‧無線區域網路(WLAN)收發機 975‧‧‧Wireless Local Area Network (WLAN) transceiver

995‧‧‧鑑定裝置 995‧‧‧ Identification device

1300‧‧‧穿戴式模組 1300‧‧‧Wearing module

1310‧‧‧核心 1310‧‧‧ core

1320‧‧‧感測器集線器 1320‧‧‧Sensor Hub

1330‧‧‧電源遞送電路 1330‧‧‧Power delivery circuit

1340‧‧‧非揮發性儲存 1340‧‧‧Non-volatile storage

1350‧‧‧輸入/輸出(IO)介面 1350‧‧‧Input/Output (IO) interface

1390‧‧‧無線收發機 1390‧‧‧Wireless transceiver

本發明實施例的特徵與優點將經由所附的申請專利範圍、以下對一或多個示範實施例的詳細說明、以及對應圖式而彰顯。在適當的情況下,為指出對應或類似的元件,元件符號在不同的圖式會重複使用。 Features and advantages of the embodiments of the invention will be apparent from the description of the appended claims. Where appropriate, component symbols are reused in different drawings to indicate corresponding or similar components.

圖1(a)包括習知RRAM堆疊,圖1(b)包括其對應的電流-電壓特性;圖2(a)包括本發明之實施例的RRAM堆疊,圖2(b)包括其對應的電流-電壓特性;圖3(a)-3(e)包括形成本發明之實施例的RRAM堆疊;圖4是實施例中的記憶體陣列;圖5-6包括系統,其每一者包括RRAM堆疊的實施例。 Figure 1 (a) includes a conventional RRAM stack, Figure 1 (b) includes its corresponding current-voltage characteristics; Figure 2 (a) includes an RRAM stack of an embodiment of the present invention, and Figure 2 (b) includes its corresponding current - voltage characteristics; Figures 3(a)-3(e) include an RRAM stack forming an embodiment of the present invention; Figure 4 is a memory array in an embodiment; Figures 5-6 include systems, each of which includes an RRAM stack An embodiment.

【發明內容及實施方式】 SUMMARY OF THE INVENTION AND EMBODIMENT

以下說明將參考圖式,其中類似的結構將指定為類似的字尾參考。為了更清楚顯示不同實施例的結構,在此包含的圖式是半導體/電路結構的概要表示。因此,所製造出的積體電路結構的實際外觀,例如在顯微照片中顯示的,會有不同的外觀,此種不同仍合併於說明的實施例中所主張的結構內。另外,圖式僅顯示有助於了解所說明實施例的結構。為了維持圖式的清楚,其他在技術領域中已知的結構並不會說明包含在圖式中。例如,沒有必要顯示半導體裝置的每一層。“實施例”、“不同的實施例”以及其 類似者指出所敘述的實施例可能包括特別的特徵、結構或是特性,但不是所有實施例都必須包括特別的特徵、結構或是特性。一些實施例可能具有或是不具有用以敘述其他實施例的一些或是全部特徵。“第一”、“第二”、“第三”以及其類似者敘述共同的物件,並指出類似物件所參照的不同例子。此種形容詞並不意指所敘述的物件不論是時間、空間、等級或是任何其他形式上必須具有給定的次序。“連接(connected)”可以意指彼此直接物理性或是電性的接觸,“耦接(coupled)”可以意指彼此的合作或是互動,但是不意指直接物理性或是電性的接觸。 The following description will refer to the drawings in which similar structures will be designated as similar suffix references. In order to more clearly show the structure of the different embodiments, the drawings contained herein are schematic representations of semiconductor/circuit structures. Thus, the actual appearance of the fabricated integrated circuit structure, such as that shown in the photomicrograph, will have a different appearance, and such differences will still be incorporated into the structures claimed in the illustrated embodiments. In addition, the drawings are only shown to facilitate an understanding of the structure of the illustrated embodiments. In order to maintain the clarity of the drawings, other structures known in the art are not intended to be included in the drawings. For example, it is not necessary to display each layer of the semiconductor device. "Embodiment", "different embodiment" and It is to be understood that the described embodiments may include specific features, structures or characteristics, but not all embodiments must include particular features, structures or characteristics. Some embodiments may or may not have some or all of the features to describe other embodiments. "First", "second", "third", and the like, recite common objects and indicate different examples to which the analogous elements are referred. Such an adjective does not mean that the recited object must have a given order, whether in time, space, grade, or any other form. "Connected" may mean direct physical or electrical contact with each other. "coupled" may mean mutual cooperation or interaction, but does not mean direct physical or electrical contact.

RRAM有時可以包括互補式開關,其包含兩種反序向連接的雙極電阻開關。由Eike Cyrus Linn所著之“互補式電阻式開關”(參照***.publications.rwth-aachen.de/record/210058/files/4365.pdf)中,此種開關可包括在綜衡式(亦參照為“交叉點”)陣列中,其為包括n個字線的矩陣,m位元線以及n.m記憶體單元,其可以單獨存取或列對列存取。陣列可以是主動或是被動式。對於主動式的實施,每一矩陣元素具有其單獨可主動式選擇電晶體(1T),而對於被動式的實施,只有使用兩個終端選擇器裝置,例如二極體。對於電阻式隨機存取記憶體(ReRAM),使用電阻式開關(1R)以及電晶體(1T)(1T1R組態)。每一電阻式開關單元,不論是單極或雙極,都可使用此一方案。和主動式陣列相反,在被動式綜衡陣列中沒有使用電晶體。被動式綜衡陣列僅由位元線和 字線以及每一交點的儲存元件構成,形成4F2的最小特徵尺寸。 RRAMs can sometimes include complementary switches that include two reverse-direction bipolar resistance switches. In the "Complementary Resistive Switch" by Eike Cyrus Linn (see ***.publications.rwth-aachen.de/record/210058/files/4365.pdf), such a switch can be included in the balance type ( Also referred to as an "intersection" array, which is a matrix comprising n word lines, m-bit lines and n. m memory unit, which can be accessed individually or in column-to-column access. The array can be active or passive. For active implementations, each matrix element has its own active selectable transistor (1T), while for passive implementations only two terminal selector devices, such as diodes, are used. For resistive random access memory (ReRAM), a resistive switch (1R) and a transistor (1T) (1T1R configuration) are used. Each of the resistive switching units, whether monopolar or bipolar, can be used. In contrast to active arrays, no transistors are used in passive balance arrays. The passive balance array consists of only the bit lines and word lines and the storage elements of each intersection, forming a minimum feature size of 4F 2 .

圖1(a)包括基於RRAM的互補式開關100。開關100包括頂部電極101,氧交換層(OEL)111,(例如鉿(Hf),鈦(Ti)和其類似者),氧化物121(例如HfOx),以及中間金屬層131。氧空位144在區域141具有較高的濃度,在區域142具有相對較低的濃度。空位集合形成作為記憶體的細線。針對以上所述,“暫時性崩潰”發生在例如,產生退火使得氧被氧交換層111清除因而產生空位144時。因為清除發生在接近氧交換層/氧化物介面(在層111和121之間的介面),所以此種空位群發生在該處。堆疊100進一步包括底部電極101’,氧交換層111’(例如鉿(Hf),鈦(Ti)和其類似者),氧化物121’(例如HfOx)。氧空位144’在區域141’具有較高的濃度,在區域142’具有相對較低的濃度。氧由氧交換層111’所清除因而產生空位144’。空位群接近氧交換層/氧化物介面(在層111’和121’之間的介面)。 FIG. 1(a) includes a RRAM-based complementary switch 100. The switch 100 includes a top electrode 101, an oxygen exchange layer (OEL) 111, (eg, hafnium (Hf), titanium (Ti), and the like), an oxide 121 (eg, HfOx), and an intermediate metal layer 131. Oxygen vacancies 144 have a higher concentration in region 141 and a relatively lower concentration in region 142. The vacancy set forms a thin line as a memory. In response to the above, a "temporary collapse" occurs, for example, when annealing is generated such that oxygen is removed by the oxygen exchange layer 111 to create vacancies 144. Since the scavenging occurs near the oxygen exchange layer/oxide interface (the interface between layers 111 and 121), such a vacancy group occurs there. The stack 100 further includes a bottom electrode 101', an oxygen exchange layer 111' (e.g., hafnium (Hf), titanium (Ti), and the like), an oxide 121' (e.g., HfOx). Oxygen vacancies 144' have a higher concentration in region 141' and a relatively lower concentration in region 142'. Oxygen is removed by the oxygen exchange layer 111' thereby creating vacancies 144'. The vacancy group is adjacent to the oxygen exchange layer/oxide interface (the interface between layers 111' and 121').

具有單一極性的偏壓電極101、101’可以刻意移除在區域143、143’的空位,以解除或是斷裂細絲並建造高電阻狀態(“0”的記憶體狀態)。以相反極性反轉電極101、101’的偏壓可以重新形成在區域143,143’的空位,以重新形成細絲並建造低電阻狀態(“1”記憶體狀態)。圖1(b)顯示堆疊100的範例之電流-電壓特性。當電壓上升到超過第一臨界值時,RRAM1和RRAM2兩者都在低電 壓(點1-設定),當超過第二臨界值時,裝置之一(RRAM1)設定至高電阻(點2-重新設定),造成“高電阻式狀態”或是HRS或是記憶體狀態“0”。當電壓低於另一臨界值時(點3-設定),兩個裝置進入低電阻,最後裝置(RRAM2)之一重新設定至高電阻(點4-重新設定),使裝置進入“低電阻式狀態”或是LRS或是記憶體狀態“1”。 The bias electrodes 101, 101' having a single polarity can intentionally remove the vacancies in the regions 143, 143' to release or break the filaments and construct a high resistance state (a memory state of "0"). The biasing of the electrodes 101, 101' can be reversed with the opposite polarity to re-form the vacancies in the regions 143, 143' to reform the filaments and build a low resistance state ("1" memory state). FIG. 1(b) shows an example of the current-voltage characteristics of the stack 100. When the voltage rises above the first threshold, both RRAM1 and RRAM2 are low. Pressure (point 1 - setting), when the second threshold is exceeded, one of the devices (RRAM1) is set to high resistance (point 2 - reset), resulting in "high resistance state" or HRS or memory state "0 ". When the voltage is lower than another threshold (point 3 - set), the two devices enter a low resistance, and one of the last devices (RRAM2) is reset to a high resistance (point 4 - reset), causing the device to enter a "low resistance state" "Or LRS or memory status "1".

申請人發現到互補式開關100的缺點。例如,開關100需要兩個RRAM開關,其導致處理的複雜度和布局的損失(例如,開關所需要的相對大的面積)。為了解決此種缺點,申請人提供互補式開關的實施例(例如,雙極互補式電阻式開關,在此有時參照為“CRS”),使用僅有一個RRAM堆疊而非兩個堆疊。具有此種使用一個RRAM堆疊的互補式開關實施例,具有數個優於習知互補式RRAM開關的優點。第一,由單一RRAM堆疊組成的互補式開關簡化了處理以及減低布局的損失(例如,較習知的兩個開關裝置節省空間)。第二,根據氧化物電阻的實施例(將在以下詳述)限制開關電流(例如,開關電流<<1mA),增加了使用此種裝置的記憶體的可靠性(亦即針對裝置因為過電流的損壞作保護)。第三,實施例提供對稱的RRAM堆疊(因為沒有呈現氧交換層),其減少處理的複雜度。第四,實施例包括在空位細線中發生在兩個位置的細線重新設定/設定(例如,參見圖2(a)之區域243’與243”)(移除了第二個RRAM開關的需 求)。 Applicants have discovered the disadvantages of the complementary switch 100. For example, switch 100 requires two RRAM switches that result in processing complexity and loss of layout (eg, the relatively large area required for the switch). To address this shortcoming, Applicants provide embodiments of complementary switches (e.g., bipolar complementary resistive switches, sometimes referred to herein as "CRS"), using only one RRAM stack rather than two stacks. Having such a complementary switch embodiment using an RRAM stack has several advantages over conventional complementary RRAM switches. First, a complementary switch consisting of a single RRAM stack simplifies processing and reduces layout losses (eg, saves space compared to the conventional two switching devices). Second, limiting the switching current (eg, switching current <1 mA) according to an embodiment of the oxide resistance (described in more detail below) increases the reliability of the memory using such a device (ie, for the device due to overcurrent) The damage is protected). Third, embodiments provide a symmetric RRAM stack (because no oxygen exchange layer is present), which reduces processing complexity. Fourth, the embodiment includes thin line reset/setting occurring at two positions in the vacant thin line (for example, see areas 243' and 243 of Fig. 2(a)) (removal of the second RRAM switch is required) begging).

圖2(a)包括RRAM堆疊200,其包括頂部電極201,氧化物221(例如,HfOx),以及底部電極232。氧空位244在(當處在低電阻狀態時)區域241、242、243之間分布。空位整體形成作為記憶體的細線。如以上所述,發生“暫時性崩潰(soft breakdown)”以產生空位144。空位群接近於電極/氧化物介面(在層201/221之間和層232/221之間的介面)。圖2(b)類似於圖1(b)之電流-電壓特性圖,顯示儘管沒有氧交換層,堆疊200以HRS狀態運作(當超過Vth2時,記憶體狀態為“1”),以及以LRS狀態操作(當超過Vth4時記憶體狀態為“0”)。 2(a) includes an RRAM stack 200 that includes a top electrode 201, an oxide 221 (eg, HfOx), and a bottom electrode 232. Oxygen vacancies 244 are distributed between regions 241, 242, 243 (when in a low resistance state). The vacancies are integrally formed as thin lines of memory. As described above, a "soft breakdown" occurs to create a gap 144. The vacancy group is close to the electrode/oxide interface (the interface between layers 201/221 and between layers 232/221). 2(b) is similar to the current-voltage characteristic diagram of FIG. 1(b), showing that although there is no oxygen exchange layer, the stack 200 operates in the HRS state (when the voltage exceeds Vth2 , the memory state is "1"), and Operates in the LRS state (the memory state is "0" when V th 4 is exceeded).

回到圖2(a),第一複數個氧空位241以第一濃度鄰近於電極201,第二複數個氧空位242以第二濃度鄰近於(不需要直接鄰近)電極232,第三複數個氧空位245以第三濃度位於第一複數個氧空位241和第二複數個氧空位242之間。在此所使用的“鄰近”或是“直接鄰近”是相對性的用語。因此,空位242鄰近於層232但並未鄰近於層201,空位241鄰近於層201但不鄰近於層232。 Returning to FIG. 2(a), the first plurality of oxygen vacancies 241 are adjacent to the electrode 201 at a first concentration, and the second plurality of oxygen vacancies 242 are adjacent to (not necessarily directly adjacent to) the electrode 232 at a second concentration, the third plurality Oxygen vacancies 245 are located between the first plurality of oxygen vacancies 241 and the second plurality of oxygen vacancies 242 at a third concentration. As used herein, "proximity" or "direct proximity" is a relative term. Thus, the vacancies 242 are adjacent to the layer 232 but not adjacent to the layer 201, and the vacancies 241 are adjacent to the layer 201 but not adjacent to the layer 232.

在實施例中,在電極201和232之間並無氧交換層,從電極201,232分開及遠離也無氧交換層。 In the embodiment, there is no oxygen exchange layer between the electrodes 201 and 232, and the electrodes 201, 232 are separated from and away from the oxygen-free exchange layer.

在實施例中,氧化物層221包括以下至少一者:HfO2,SiO2,Al2O3,TiO2,SrTiO3,Cr-SrTiO3,NiO,CuOx,ZrO2,Nb2O5,MgO,Fe2O3,Ta2O5,ZnO, CoO,CuMnOx,CuMoOx,InZnO,Cr-SrZrO3,PrCaMnO3,SrLaTiO3,LaSrFeO3,(Pr,Ca)MnO3,Nb-SrTiO3,以及LaSrCoO3。實施例頂部電極201包括以下至少一者:鉿(Hf),鈦(Ti),鉭(Ta),鈀(Pd),鎢(W),鉬(Mo),以及鉑(Pt)(例如TiN),並且底部電極231包括以下至少一者:鉿(Hf),鈦(Ti),鉭(Ta),鈀(Pd),鎢(W),鉬(Mo),以及鉑(Pt)(例如TiN)。另外,電極201,231可包括具有不同特質的多層材料。 In an embodiment, the oxide layer 221 includes at least one of the following: HfO 2 , SiO 2 , Al 2 O 3 , TiO 2 , SrTiO 3 , Cr-SrTiO 3 , NiO, CuOx, ZrO 2 , Nb 2 O 5 , MgO , Fe 2 O 3 , Ta 2 O 5 , ZnO, CoO, CuMnOx, CuMoOx, InZnO, Cr-SrZrO 3 , PrCaMnO 3 , SrLaTiO 3 , LaSrFeO 3 , (Pr, Ca) MnO 3 , Nb-SrTiO 3 , and LaSrCoO 3 . EXAMPLES The top electrode 201 includes at least one of: hafnium (Hf), titanium (Ti), tantalum (Ta), palladium (Pd), tungsten (W), molybdenum (Mo), and platinum (Pt) (eg, TiN). And the bottom electrode 231 includes at least one of: hafnium (Hf), titanium (Ti), tantalum (Ta), palladium (Pd), tungsten (W), molybdenum (Mo), and platinum (Pt) (eg, TiN). . Additionally, the electrodes 201, 231 can comprise multiple layers of material having different qualities.

實施例包括電阻233,鄰近於電極其中之一,例如電極232(但是在其他實施例中鄰近於電極201)。在某些實施例中,電阻鄰近於電極兩者。電阻233可以是氧化物或者氮化物,例如,TiON。在製造裝置200期間,例如以氧(或一般的大氣氣體)暴露電極表面(例如,在圖3(b)的電極232的上表面)可以形成此種電阻。 Embodiments include a resistor 233 adjacent one of the electrodes, such as electrode 232 (but in other embodiments adjacent to electrode 201). In some embodiments, the electrical resistance is adjacent to both of the electrodes. The resistor 233 can be an oxide or a nitride, such as TiON. Such resistance may be formed during the fabrication of the device 200 by exposing the electrode surface, for example, with oxygen (or a general atmospheric gas) (eg, on the upper surface of the electrode 232 of FIG. 3(b)).

在實施例中,氧化物層221直接接觸電極201,232(例如,在實施例中沒有呈現電阻233)。在另一實施例中,氧化物層221直接接觸電阻233和電極201。 In an embodiment, the oxide layer 221 directly contacts the electrodes 201, 232 (eg, no resistance 233 is present in the embodiment). In another embodiment, the oxide layer 221 directly contacts the resistor 233 and the electrode 201.

RRAM堆疊200是作為非揮發性記憶體的功能,其中在第一狀態(當能量以第一極性施加至頂部電極並且滿足第一臨界電壓時),第一複數個、第二複數個、第三複數個的氧空位形成第一細線,其具有第一電氣電阻;並且在第二狀態(當能量以第一極性施加到頂部電極並且滿足第二臨界電壓時),第一複數個、第二複數個、第三複數個 的氧空位形成第二細線組態,或是不連續性,因而造成較高的電阻率。 The RRAM stack 200 is a function as a non-volatile memory, wherein in a first state (when energy is applied to the top electrode at a first polarity and the first threshold voltage is satisfied), the first plurality, the second plurality, and the third a plurality of oxygen vacancies forming a first thin line having a first electrical resistance; and in a second state (when energy is applied to the top electrode at a first polarity and satisfying a second threshold voltage), the first plurality and the second plurality Third, plural The oxygen vacancies form a second thin line configuration, or a discontinuity, resulting in a higher resistivity.

例如,在圖2(b),第一狀態可能發生在Vth1,而第二狀態可能發生在Vth2。在第一狀態,在243,243’,243”有連續性的空位,因而形成相對低電阻的細線。在第二狀態下,具有不連續性的空位。例如,在243’具有較低濃度(或是不連續性),因而形成具有相對高電阻的不連續細線(“0”記憶體狀態)。 For example, in Figure 2(b), the first state may occur at Vth1 and the second state may occur at Vth2 . In the first state, there is a continuous vacancy at 243, 243', 243", thus forming a relatively low resistance thin line. In the second state, there is a vacancy with discontinuity. For example, at 243' has a lower concentration ( Or discontinuity), thus forming a discontinuous thin line ("0" memory state) having a relatively high resistance.

在RRAM堆疊200中,在第三狀態(當能量以相反於第一極性的第二極性施加至頂部電極並且滿足第三臨界電壓時),第一複數個、第二複數個、第三複數個的氧空位形成第三細線,其具有相對較低的電氣電阻;並且在第四狀態(當能量以第二極性施加到頂部電極並且滿足第四臨界電壓時),第一複數個、第二複數個、第三複數個的氧空位形成第四細線組態,或是不連續性,因而造成較高的電阻率。 In the RRAM stack 200, in a third state (when energy is applied to the top electrode in a second polarity opposite the first polarity and the third threshold voltage is met), the first plurality, the second plurality, and the third plurality The oxygen vacancies form a third thin line having a relatively low electrical resistance; and in a fourth state (when energy is applied to the top electrode at a second polarity and the fourth threshold voltage is satisfied), the first plurality and the second plurality The third and the plurality of oxygen vacancies form a fourth thin line configuration, or a discontinuity, resulting in a higher resistivity.

例如,在圖2(b)中,第三狀態發生在Vth3而第四狀態發生在Vth4。在第三狀態,在243、243’、243”具有連續性空位,因而形成具有相對低電阻的細線。在第四狀態,具有非連續性空位。例如,在243”具有相對較低的濃度(或不連續性),因而形成具有相對高電阻的不連續性細線(“1”記憶體狀態)。 For example, in Figure 2(b), the third state occurs at Vth3 and the fourth state occurs at Vth4 . In the third state, there are continuous vacancies at 243, 243', 243", thus forming a thin line having a relatively low resistance. In the fourth state, there is a discontinuous vacancy. For example, at 243" has a relatively low concentration ( Or discontinuity), thus forming a discontinuous thin line ("1" memory state) with relatively high resistance.

圖3(a)-3(e)包括形成本發明實施例之RRAM堆疊的方法。在圖3(a)中,形成底部電極331。在圖3 (b)中,氧化物電阻351沉積在底部電極上。其次,在頂部電極301(圖3(d))之後形成氧化物321(圖3(c))。最後,形成圖樣並蝕刻以形成RRAM單元,進行退火以產生由氧空位組成的細線245(圖3(e))。 3(a)-3(e) include methods of forming an RRAM stack in accordance with an embodiment of the present invention. In FIG. 3(a), a bottom electrode 331 is formed. In Figure 3 In (b), an oxide resistor 351 is deposited on the bottom electrode. Next, an oxide 321 is formed after the top electrode 301 (Fig. 3(d)) (Fig. 3(c)). Finally, a pattern is formed and etched to form an RRAM cell, which is annealed to produce a thin line 245 consisting of oxygen vacancies (Fig. 3(e)).

在此所揭示的不同實施例係針對RRAM堆疊。如圖4所示,任何此種RRAM堆疊200可藉由將堆疊的一部分或節點(例如,圖2(a)之頂部電極)耦接至行解碼器,而堆疊之另一節點(例如,圖2(a)之底部電極)耦接至綜衡/交叉點之陣列列解碼器,使用在記憶體單元(以及記憶體陣列)。 The different embodiments disclosed herein are directed to RRAM stacking. As shown in FIG. 4, any such RRAM stack 200 can be stacked by another node (eg, a diagram by coupling a portion or node of the stack (eg, the top electrode of FIG. 2(a)) to the row decoder. The bottom electrode of 2(a) is coupled to the array column decoder of the counterbalance/intersection, and is used in the memory unit (and the memory array).

實施例提供較小且較省電的記憶體單元,其可以縮小規模至例如22nm CD。 Embodiments provide a smaller and more power efficient memory unit that can be scaled down to, for example, a 22 nm CD.

現在參考圖5,顯示可使用實施例的範例系統的方塊圖。可見,系統900可以是智慧電話或其他無線通訊器,或任何其他物聯網(IoT)裝置。基頻處理器905配置以實行由系統所傳送或接收的與通訊信號相關的各種信號處理。依次地,基頻處理器905耦接至應用處理器910,其是系統的主CPU,用以執行作業系統以及其他系統軟體,除了使用者應用程式之外,還有例如許多已為人熟知的社交媒體以及多媒體應用程式。應用程式處理器910可配置以實行針對裝置的各種其他計算操作。 Referring now to Figure 5, a block diagram of an example system in which embodiments may be used is shown. As can be seen, system 900 can be a smart phone or other wireless communicator, or any other Internet of Things (IoT) device. The baseband processor 905 is configured to perform various signal processing associated with the communication signals transmitted or received by the system. In turn, the baseband processor 905 is coupled to the application processor 910, which is the main CPU of the system, for executing the operating system and other system software, in addition to the user application, for example, many are well known. Social media and multimedia applications. Application processor 910 can be configured to perform various other computing operations for the device.

依次地,應用程式處理器910可耦接至使用者介面/顯示器920(例如觸控螢幕顯示器)。此外,應用程式處理器910可耦接至記憶體系統,包括非揮發性記憶體,亦 即快閃記憶體930和系統記憶體,亦即DRAM 935。在某些實施例中,快閃記憶體930可包括安全部件932,秘密以及其他敏感資訊可儲存於其中。之後可以見到,應用程式處理器910也耦接至捕獲裝置945,例如一或多個影像捕獲裝置,其可記錄影像及/或靜止圖像。 In turn, the application processor 910 can be coupled to a user interface/display 920 (eg, a touch screen display). In addition, the application processor 910 can be coupled to a memory system, including non-volatile memory. That is, the flash memory 930 and the system memory, that is, the DRAM 935. In some embodiments, flash memory 930 can include a security component 932 in which secret and other sensitive information can be stored. As can be seen later, the application processor 910 is also coupled to the capture device 945, such as one or more image capture devices, which can record images and/or still images.

通用積體電路卡(UICC)940包括訂閱者識別模組,在某些實施例中包括安全儲存942以儲存安全使用者資訊。系統900可包括安全處理器950(例如,信賴平台模組(Trusted Platform Module,(TPM))其可耦接至應用程式處理器910。複數個感測器925,包括一或多個多軸加速儀,其可耦接至應用程式處理器910以致能各種感測資訊的輸入,例如移動或是其他環境資訊。另外,一或更多鑑定裝置995可用於接收例如,使用者生物資訊輸入以用於鑑定操作。 The Universal Integrated Circuit Card (UICC) 940 includes a subscriber identification module, and in some embodiments includes a secure storage 942 to store secure user information. System 900 can include a security processor 950 (eg, a Trusted Platform Module (TPM)) that can be coupled to application processor 910. A plurality of sensors 925, including one or more multi-axis accelerations The device can be coupled to the application processor 910 to enable input of various sensing information, such as mobile or other environmental information. Additionally, one or more authentication devices 995 can be used to receive, for example, user biometric input for use. For the identification operation.

進一步說明,近場通訊(near field communication,NFC)無接觸介面960以經由NFC天線965提供NFC近場通訊。雖然顯示的是個別天線,可以了解的是在一些實作中,可提供單一天線或是天線的不同組合以致能各種的無線功能。 Further illustrated, a near field communication (NFC) contactless interface 960 provides NFC near field communication via the NFC antenna 965. Although individual antennas are shown, it will be appreciated that in some implementations, a single antenna or different combinations of antennas may be provided to enable various wireless functions.

電源管理積體電路(PMIC)915耦接至應用程式處理器910以實行平台層級的電源管理。為了此一目的,PMIC 915可以進行電源管理要求至應用程式處理器910以進入所希望的特定低電源狀態。另外,根據平台限制,PMIC 915可控制系統900其他組件的電源層級。 A power management integrated circuit (PMIC) 915 is coupled to the application processor 910 to implement platform level power management. For this purpose, the PMIC 915 can perform power management requirements to the application processor 910 to enter the desired particular low power state. Additionally, the PMIC 915 can control the power level of other components of the system 900, depending on platform constraints.

為了致能例如在一或多個物聯網網路中傳送與接收的通訊,不同的電路可在基頻處理器905以及天線990之間耦接。特別是,可以使用射頻(RF)收發機970以及無線區域網路(WLAN)收發機975。一般而言,射頻收發機970可根據例如3G或4G無線通訊協定、分碼多工存取(CDMA),全球行動通訊系統(GSM),長期演進技術(LTE)或其他協定的給定無線通訊協定,用於接收以及傳送無線資料和呼叫。另外GPS感測器980可和提供給安全處理器950的地點資訊一起呈現,以用於在此所敘述的用於配對法的內容資訊。可以提供其他無線通訊,例如無線電信號的接收或傳送(例如AM/FM)以及其他信號。另外,經由WLAN收發機975,也可以實現區域無線通訊,例如根據藍芽(BluetoothTM)或IEEE 802.11的標準。 In order to enable communication, such as transmission and reception in one or more IoT networks, different circuits may be coupled between the baseband processor 905 and the antenna 990. In particular, a radio frequency (RF) transceiver 970 and a wireless local area network (WLAN) transceiver 975 can be used. In general, the radio frequency transceiver 970 can be based on a given wireless communication, such as 3G or 4G wireless communication protocols, code division multiple access (CDMA), Global System for Mobile Communications (GSM), Long Term Evolution (LTE), or other protocols. Agreement for receiving and transmitting wireless data and calls. Additionally, GPS sensor 980 can be presented with location information provided to secure processor 950 for use in the content information described herein for the pairing method. Other wireless communications may be provided, such as the reception or transmission of radio signals (eg, AM/FM) and other signals. Further, via the WLAN transceiver 975, wireless communication area may also be achieved, for example, standard Bluetooth (Bluetooth TM) or according to IEEE 802.11.

系統900可包括上百或上千個上述的記憶體單元/堆疊(例如圖2(a)之堆疊200),並且對於系統900之記憶體功能很關鍵。記憶體935,932,930,942,950以及其他未標記的記憶體可包括在此所述之記憶體堆疊及/或陣列(參見圖4)。 System 900 can include hundreds or thousands of the above described memory cells/stacks (e.g., stack 200 of Figure 2(a)) and is critical to the memory function of system 900. Memory 935, 932, 930, 942, 950 and other unlabeled memory can include the memory stacks and/or arrays described herein (see Figure 4).

實施例可用於物聯網裝置的環境,包括穿戴式裝置或其他小型的物聯網裝置。參考圖6,顯示根據另一實施例的穿戴式模組1300的方塊圖。在特定的實施方式中,模組1300可以是Intel® CurieTM模組,其包括適用於實作為穿戴式裝置的所有或是一部分的單一小型模組內的多個組 件。如圖所示,模組1300包括核心1310(當然在其他實施例中可以顯示更多的核心)。此種核心可以是複雜度相對低的依序核心,例如根據Intel Architecture® QuarkTM的設計。在某些實施例中,核心1310可實施在此所述的TEE。核心1310耦接不同部件,包括感測器集線器1320,其可配置與複數個感測器1380互動,例如一或多個生物、移動環境或其他感測器。呈現具有非揮發性儲存1340(其包括在此所述之RRAM堆疊200及/或其他實施例)的電源遞送電路1330。在實施例中,此電路可包括可重複充電電池以及可重複充電電路,其在實施例中可以無線方式接收充電電源。一或更多個輸入/輸出(IO)介面1350,可呈現為例如與一或更多個USB/SPI/I2C/GPIO協定相匹配的一或更多個介面。此外,無線收發機1390,可以是BluetoothTM低能量或其他短距離的無線收發機,係呈現以致能如本文所述之無線通訊。可以了解的是在不同的實施中穿戴式模組可以是任何其他形式。穿戴式及/或物聯網裝置與通常一般的CPU或GPU相較之下,具有較小型的外觀,較低電源的需求,受限的指令組合,相對低的計算生產量,或是以上任何一者。 Embodiments may be used in the context of an IoT device, including wearable devices or other small IoT devices. Referring to Figure 6, a block diagram of a wearable module 1300 in accordance with another embodiment is shown. In a particular embodiment, the module 1300 may be Intel® Curie TM module, which comprises a suitable solid or all of the plurality of components within a single module is part of a small wearable device. As shown, the module 1300 includes a core 1310 (of course, more cores may be displayed in other embodiments). This core can be a relatively low-order sequential core, such as the Intel Architecture® Quark TM design. In certain embodiments, core 1310 can implement the TEE described herein. The core 1310 is coupled to different components, including a sensor hub 1320 that is configurable to interact with a plurality of sensors 1380, such as one or more biological, mobile environments, or other sensors. A power delivery circuit 1330 having a non-volatile storage 1340 (which includes the RRAM stack 200 and/or other embodiments described herein) is presented. In an embodiment, the circuit can include a rechargeable battery and a rechargeable circuit that can receive the charging power wirelessly in an embodiment. One or more input/output (IO) interfaces 1350 may be presented as, for example, one or more interfaces that match one or more USB/SPI/I2C/GPIO protocols. Further, a wireless transceiver 1390, a wireless transceiver may be a Bluetooth TM or other low-energy short-distance wireless communication system so as to enable presentation of the as described herein. It can be appreciated that the wearable module can be in any other form in different implementations. Wearable and/or IoT devices have a smaller form factor, lower power requirements, limited command combinations, relatively low computational throughput, or any of the above, compared to a typical CPU or GPU. By.

以下範例針對進一步的實施例做說明。 The following examples are illustrative of further embodiments.

範例1包括電阻式隨機存取記憶體(RRAM)系統,其包含雙極互補式電阻式開關(CRS),其包含:頂部電極,底部電極,在頂部電極與底部電極之間的氧化物層;其中(a)第一複數個氧空位以第一濃度位於氧化物層內 並鄰近於頂部電極,(b)第二複數個氧空位以第二濃度位於氧化物層內並鄰近於底部電極,(c)第三複數個氧空位以第三濃度位於氧化物層內,並且在第一與第二複數個氧空位之間,以及(d)CRS並不包括頂部電極和底部電極之間的氧交換層(OEL)。 Example 1 includes a resistive random access memory (RRAM) system including a bipolar complementary resistive switch (CRS) comprising: a top electrode, a bottom electrode, an oxide layer between the top electrode and the bottom electrode; Wherein (a) the first plurality of oxygen vacancies are located in the oxide layer at a first concentration And adjacent to the top electrode, (b) the second plurality of oxygen vacancies are located in the oxide layer at a second concentration adjacent to the bottom electrode, and (c) the third plurality of oxygen vacancies are located in the oxide layer at a third concentration, and Between the first and second plurality of oxygen vacancies, and (d) the CRS does not include an oxygen exchange layer (OEL) between the top electrode and the bottom electrode.

“頂部”和“底部”是相對性的用語,可根據堆疊的方位改變。氧交換層是習知技術者所熟知的用語。氧交換層可參照為“金屬蓋部層”。氧交換層可包括金屬,使得當氧交換層鄰近於或接觸氧源級(例如氧化物層),氧交換層有助於氧源級的“氧交換”。範例1並無此種在頂部電極和底部電極之間的金屬層。 "Top" and "Bottom" are relative terms that can vary depending on the orientation of the stack. The oxygen exchange layer is a term well known to those skilled in the art. The oxygen exchange layer can be referred to as a "metal cover layer". The oxygen exchange layer can include a metal such that when the oxygen exchange layer is adjacent to or in contact with an oxygen source stage (e.g., an oxide layer), the oxygen exchange layer facilitates "oxygen exchange" at the oxygen source level. Example 1 does not have such a metal layer between the top electrode and the bottom electrode.

依照CRS的狀態,“第一濃度”(如同其他上述的濃度)可以是極端低(很少至沒有空位),或是極端高。 Depending on the state of the CRS, the "first concentration" (as with the other concentrations mentioned above) can be extremely low (rare to no vacancies) or extremely high.

範例1的另一個版本,包括電阻式隨機存取記憶體(RRAM)系統,其包括:雙極互補式電阻式開關(CRS),其包括頂部電極,底部電極,在頂部電極以及底部電極之間的氧化物層;其中(a)第一複數個氧空位以第一濃度位於氧化物層內並鄰近於頂部電極,(b)第二複數個氧空位以第二濃度位於氧化物層內並鄰近於底部電極,以及(c)第三複數個氧空位以第三濃度位於氧化物層內,並位於第一與第二複數個氧空位之間。 Another version of Example 1 includes a resistive random access memory (RRAM) system including: a bipolar complementary resistive switch (CRS) including a top electrode, a bottom electrode, between the top electrode and the bottom electrode An oxide layer; wherein (a) the first plurality of oxygen vacancies are located within the oxide layer at a first concentration and adjacent to the top electrode, and (b) the second plurality of oxygen vacancies are located within the oxide layer at a second concentration and adjacent The bottom electrode, and (c) the third plurality of oxygen vacancies are located in the oxide layer at a third concentration and between the first and second plurality of oxygen vacancies.

在範例2中,範例1的主體可選擇性的包括其中氧化物層是單片且直接接觸頂部電極和底部電極兩者。 In Example 2, the body of Example 1 can optionally include wherein the oxide layer is a single piece and directly contacts both the top electrode and the bottom electrode.

直接接觸可排除障蔽層和其類似者。 Direct contact can eliminate the barrier layer and its like.

在範例3中,範例1-2的主體可選擇性的包括具有額外氧化物層的電阻,其中額外氧化物層直接接觸底部電極與氧化物層兩者。 In Example 3, the body of Example 1-2 can optionally include a resistor having an additional oxide layer, wherein the additional oxide layer directly contacts both the bottom electrode and the oxide layer.

在範例4中,範例1-3的主體可選擇性的包括其中(a)CRS在額外氧化物層和頂部電極之間並未包括金屬層,(b)直接接觸較上方的電極的氧化物層,(c)氧化物層是單片的。 In Example 4, the body of Examples 1-3 can optionally include an oxide layer in which (a) the CRS does not include a metal layer between the additional oxide layer and the top electrode, and (b) directly contacts the upper electrode. (c) The oxide layer is monolithic.

在範例5中,範例1-4的主體可選擇性的包括其中:在第一狀態下,當能量以第一極性施加至頂部電極並且滿足第一臨界電壓時,第一複數個、第二複數個、第三複數個的氧空位形成第一細線,其具有第一電氣電阻;並且在第二狀態下,當能量以第一極性施加到頂部電極並且滿足第二臨界電壓時,第一複數個、第二複數個、第三複數個的氧空位形成第二細線,其具有高於第一電氣電阻的第二電氣電阻。 In Example 5, the body of Examples 1-4 may optionally include wherein, in the first state, when energy is applied to the top electrode in a first polarity and the first threshold voltage is satisfied, the first plurality and the second plurality a third plurality of oxygen vacancies forming a first thin line having a first electrical resistance; and in the second state, when energy is applied to the top electrode in a first polarity and satisfying a second threshold voltage, the first plurality The second plurality and the third plurality of oxygen vacancies form a second thin line having a second electrical resistance higher than the first electrical resistance.

第二電阻可以是非常高的,當路徑因為區域243’的空位缺乏而不完整,因此,第二細線可以構成破碎或是不完整的細線。在區域243’可能有某些空位,但只有少數是高電阻。 The second resistance can be very high, and when the path is incomplete due to the lack of vacancies in the region 243', the second thin line can constitute a broken or incomplete thin line. There may be some vacancies in area 243', but only a few are high resistance.

在範例6中,範例1-5的主體可選擇性的包括其中在第二狀態下,第一複數個氧空位以第一濃度,並且在第一狀態下,第一複數個氧空位是額外濃度,其大於第一濃度。 In Example 6, the body of Examples 1-5 can optionally include wherein in the second state, the first plurality of oxygen vacancies are at a first concentration, and in the first state, the first plurality of oxygen vacancies are additional concentrations , which is greater than the first concentration.

在範例7中,範例1-6的主體可選擇性的包括其中在 第二狀態下,第一複數個氧空位是第一濃度,並且第二複數個氧空位是第二濃度,第二濃度大於第一濃度。 In Example 7, the subject of Examples 1-6 can optionally include In the second state, the first plurality of oxygen vacancies is the first concentration, and the second plurality of oxygen vacancies is the second concentration, and the second concentration is greater than the first concentration.

在範例8中,範例1-7的主體可選擇性的包括其中第一與第二臨界電壓兩者都是正向,且第二臨界電壓大於第一臨界電壓。 In Example 8, the body of Examples 1-7 can optionally include wherein both the first and second threshold voltages are positive and the second threshold voltage is greater than the first threshold voltage.

“大於”的意思是,Vth2大於Vth1,而Vth4大於Vth3。 "Greater than" means that V th 2 is greater than V th 1 and V th 4 is greater than V th 3 .

在範例9中,範例1-8的主體可選擇性的包括其中:在第三狀態下,當能量以第二極性(相反於第一極性)施加至頂部電極並且滿足第三臨界電壓時,第一複數個、第二複數個、第三複數個的氧空位形成第三細線,其具有第三電氣電阻;並且在第四狀態下,當能量以第二極性施加到頂部電極並且滿足第四臨界電壓時,第一複數個、第二複數個、第三複數個的氧空位形成第四細線,其具有高於第三電氣電阻的第四電氣電阻。 In Example 9, the body of Examples 1-8 can optionally include wherein, in the third state, when energy is applied to the top electrode with a second polarity (as opposed to the first polarity) and the third threshold voltage is met, a plurality of, a second plurality, and a third plurality of oxygen vacancies forming a third thin line having a third electrical resistance; and in the fourth state, when energy is applied to the top electrode in a second polarity and satisfying the fourth critical At the voltage, the first plurality, the second plurality, and the third plurality of oxygen vacancies form a fourth thin line having a fourth electrical resistance higher than the third electrical resistance.

所謂電阻“大於”另一個電阻是指比另一個電阻具有“更高的阻抗力”。 The so-called resistance "greater than" another resistor means having a "higher resistance" than the other resistor.

在範例10中,範例1-9的主體可選擇性的包括其中在第四狀態下,第一複數個氧空位是以第一濃度,第二複數個氧空位是以第二濃度,並且第二濃度小於第一濃度。 In Example 10, the subject of Examples 1-9 can optionally include wherein in the fourth state, the first plurality of oxygen vacancies is at a first concentration, the second plurality of oxygen vacancies is at a second concentration, and the second The concentration is less than the first concentration.

在範例11中,範例1-10的主體可選擇性的包括其中第三和第四臨界電壓兩者為負向,而第四臨界電壓是大於第三臨界電壓。 In Example 11, the body of Examples 1-10 can optionally include wherein both the third and fourth threshold voltages are negative and the fourth threshold voltage is greater than the third threshold voltage.

“大於”的意思是,Vth2大於Vth1,而Vth4大於 Vth3。 "Greater than" means that V th 2 is greater than V th 1 and V th 4 is greater than V th 3 .

在範例12中,範例1-11的主體可選擇性的包括其中在初始形成狀態下,當能量以第一極性施加至頂部電極時,第一、第二和第三複數個氧空位形成第一細線;其中初始形成狀態發生在第一與第二狀態之前。 In Example 12, the body of Examples 1-11 can optionally include wherein, in an initial formation state, when energy is applied to the top electrode in a first polarity, the first, second, and third plurality of oxygen vacancies form a first a thin line; wherein the initial formation state occurs before the first and second states.

在範例13中,範例1-12的主體可選擇性的包括其中氧化物層包括以下群組中選出的至少一者,此群組包含:HfOx,SiOx,Al2Ox,TiOx,TaOx,GdOx,ErOx,NbOx,WOx,ZnOx,以及InGaZnOx。 In Example 13, the body of Examples 1-12 can optionally include wherein the oxide layer comprises at least one selected from the group consisting of: HfOx, SiOx, Al2Ox, TiOx, TaOx, GdOx, ErOx, NbOx, WOx, ZnOx, and InGaZnOx.

範例13的另一個版本提供CRS,其在頂部電極和底部電極之間並未包括氧交換層(OEL)。 Another version of Example 13 provides a CRS that does not include an oxygen exchange layer (OEL) between the top electrode and the bottom electrode.

在範例14中,範例1-13的主體可選擇性的包括其中頂部電極包括以下群組中選出的至少一者:TiN,TaN,鎢(W),釕(Ru),銥(Ir),鈀(Pd),鉑(Pt),鉬(Mo),TiAlN和TaAlN,底部電極亦包括上述至少一者。 In Example 14, the body of Examples 1-13 can optionally include wherein the top electrode comprises at least one selected from the group consisting of TiN, TaN, tungsten (W), ruthenium (Ru), iridium (Ir), palladium. (Pd), platinum (Pt), molybdenum (Mo), TiAlN and TaAlN, and the bottom electrode also includes at least one of the above.

在範例15中,範例1-14的主體可選擇性的包括記憶體陣列,其包括經由CRS彼此耦接的行解碼器以及列解碼器。 In Example 15, the body of Examples 1-14 can optionally include a memory array that includes a row decoder and a column decoder coupled to each other via a CRS.

範例16包括電阻式隨機存取記憶體(RRAM)系統,其包括:雙極互補式電阻式開關(CRS),其包括頂部電極,底部電極,以及在頂部電極以及底部電極之間的氧化物層;其中在第一狀態下,當能量以第一極性施加至頂部電極並且滿足第一臨界電壓時,在氧化物層的第一複 數個、第二複數個、第三複數個的氧空位形成具有第一電氣電阻的第一路徑;其中在第二狀態下,當能量以第一極性施加到頂部電極並且滿足第二臨界電壓時,第一複數個、第二複數個、第三複數個的氧空位形成在頂部電極和底部電極之間具有第二電氣電阻的第二路徑,第二電氣電阻大於第一電氣電阻;其中在第二狀態:(a)第一氧空位以第一濃度位於較上方的第三個氧化物層內,(b)第二氧空位以第二濃度位於較下方的第三個氧化物層內,第二濃度大於第一濃度,以及(c)第三氧空位以第三濃度位於中間第三個氧化物層內。 Example 16 includes a resistive random access memory (RRAM) system including: a bipolar complementary resistive switch (CRS) including a top electrode, a bottom electrode, and an oxide layer between the top electrode and the bottom electrode Wherein in the first state, when energy is applied to the top electrode in a first polarity and the first threshold voltage is satisfied, the first complex in the oxide layer The plurality, the second plurality, and the third plurality of oxygen vacancies form a first path having a first electrical resistance; wherein in the second state, when energy is applied to the top electrode at the first polarity and the second threshold voltage is satisfied a first plurality, a second plurality, and a third plurality of oxygen vacancies forming a second path having a second electrical resistance between the top electrode and the bottom electrode, the second electrical resistance being greater than the first electrical resistance; wherein Two states: (a) the first oxygen vacancies are located in the third oxide layer above the first concentration, and (b) the second oxygen vacancies are located in the third oxide layer below the second concentration, The two concentrations are greater than the first concentration, and (c) the third oxygen vacancies are located in the intermediate third oxide layer at a third concentration.

第一濃度可能具有少量空位乃至於無空位。 The first concentration may have a small amount of vacancies or even no vacancies.

在範例17中,範例16的主體可選擇性的包括其中CRS並未包括在頂部電極和底部電極之間的氧交換層(OEL)。 In Example 17, the body of Example 16 can optionally include an oxygen exchange layer (OEL) in which the CRS is not included between the top electrode and the bottom electrode.

在範例18中,範例16-17的主體可選擇性的包括電阻,其具有額外氧化物層,其中額外氧化物層直接接觸底部電極和氧化物層兩者。 In Example 18, the body of Examples 16-17 can optionally include a resistor having an additional oxide layer, wherein the additional oxide layer directly contacts both the bottom electrode and the oxide layer.

在範例19中,範例16-18的主體可選擇性的包括其中額外氧化物層包括TiON。 In Example 19, the body of Examples 16-18 can optionally include wherein the additional oxide layer comprises TiON.

範例20包括一方法,其包含:形成底部電極;於底部電極上形成氧化物電阻;在氧化物電阻上形成氧化物層;在氧化物層上形成頂部電極;對氧化物電阻、頂部電極、底部電極和氧化物層產生圖樣,以形成電阻式隨機存取記憶體(RRAM)單元,其包括互補式電阻開關 (CRS);對RRAM單元退火以產生細線,其由在氧化物層的氧空位所組成。 Example 20 includes a method comprising: forming a bottom electrode; forming an oxide resistor on the bottom electrode; forming an oxide layer on the oxide resistor; forming a top electrode on the oxide layer; on the oxide resistor, the top electrode, the bottom The electrode and oxide layers are patterned to form a resistive random access memory (RRAM) cell that includes a complementary resistive switch (CRS); annealing the RRAM cell to produce a thin line consisting of oxygen vacancies in the oxide layer.

在範例21中,範例20的主體可選擇性的包括將RRAM單元耦接至記憶體陣列的列解碼器和行解碼器。 In Example 21, the body of Example 20 can optionally include a column decoder and a row decoder that couple the RRAM cells to the memory array.

本發明實施例的上述敘述已經以說明和敘述的方式呈現。所揭露的形式並不意欲耗盡或是限制本發明,敘述以及所附的申請專利範圍包括用語,例如左、右、上、下、頂部、底部、在上、在下、較上方、較下方、第一、第二等等是僅僅為了用於敘述的目的,而並非用於限制。例如,指定說明相對垂直位置的用語是參照基板或是積體電路的裝置側(或是主要表面)是所述基板的“頂部”表面;基板實際上可以是在任何方位上,使基板的“頂部”側可以是低於參考的標準地面框架之“底部”側,而仍落入用語“頂部”的意義。在此所使用的用語“在...上”(包括申請專利範圍中所述)並非指在第二層“上”的第一層是直接位於第二層上並與第二層直接接觸,除非有特別敘述;在第一層上可能有第三層或是其他結構位於第一層和第二層之間。在此所敘述之裝置或是物件的實施例可以被製造、使用或是以數個位置和方位運送。相關領域之習知技術者可以了解,在以上的教示下許多修改或變異是可能的。本領域之習知技術者將會理解,顯示於圖式中的各種組件可以有不同的等效組合以及代換。因此,本發明之範疇並不由詳細說明所限制,而是由所附申請專利範圍所界定。 The above description of the embodiments of the present invention has been presented by way of illustration and description. The disclosed forms are not intended to be exhaustive or to limit the invention, and the scope of the description and the accompanying claims includes the terms, such as left, right, top, bottom, top, bottom, above, below, above, below, The first, second, etc. are for illustrative purposes only and are not intended to be limiting. For example, the designation indicating the relative vertical position is that the device side (or main surface) of the reference substrate or the integrated circuit is the "top" surface of the substrate; the substrate may actually be in any orientation to make the substrate " The top "side" may be lower than the "bottom" side of the standard ground frame of the reference, while still falling within the meaning of the term "top." The term "on" (including the scope of the patent application) as used herein does not mean that the first layer "on" the second layer is directly on the second layer and is in direct contact with the second layer. Unless otherwise stated; there may be a third layer or other structure on the first layer between the first layer and the second layer. Embodiments of the devices or articles described herein can be manufactured, used, or shipped in a number of positions and orientations. It will be appreciated by those skilled in the relevant art that many modifications or variations are possible in the above teachings. Those skilled in the art will appreciate that the various components shown in the figures can have different equivalent combinations and substitutions. Therefore, the scope of the invention is not limited by the detailed description, but is defined by the scope of the appended claims.

245‧‧‧第三複數個氧空位 245‧‧‧ third plural oxygen vacancies

301‧‧‧頂部電極 301‧‧‧Top electrode

321‧‧‧氧化物 321‧‧‧Oxide

331‧‧‧底部電極 331‧‧‧ bottom electrode

351‧‧‧氧化物電阻 351‧‧‧Oxide resistance

Claims (22)

一種電阻式隨機存取記憶體(RRAM)系統,包含:雙極互補式電阻式開關(CRS),其包含頂部電極,底部電極,在該頂部電極與該底部電極之間的氧化物層;其中(a)第一複數個氧空位以在第一濃度位於該氧化物層內並鄰近於該頂部電極,(b)第二複數個氧空位以第二濃度位於該氧化物層內並鄰近於該底部電極,(c)第三複數個氧空位以第三濃度位於該氧化物層內,並且在該第一與第二複數個氧空位之間。 A resistive random access memory (RRAM) system comprising: a bipolar complementary resistive switch (CRS) comprising a top electrode, a bottom electrode, an oxide layer between the top electrode and the bottom electrode; (a) a first plurality of oxygen vacancies located within the oxide layer at a first concentration adjacent to the top electrode, and (b) a second plurality of oxygen vacancies located within the oxide layer at a second concentration adjacent to and adjacent to the oxide layer a bottom electrode, (c) a third plurality of oxygen vacancies located in the oxide layer at a third concentration and between the first and second plurality of oxygen vacancies. 如請求項1之系統,其中該氧化物層是單片且直接接觸於該頂部電極和該底部電極兩者。 The system of claim 1 wherein the oxide layer is monolithic and is in direct contact with both the top electrode and the bottom electrode. 如請求項1之系統,其包含具有額外氧化物層之電阻,其中該額外氧化物層直接接觸該底部電極和該氧化物層兩者。 A system of claim 1 comprising a resistor having an additional oxide layer, wherein the additional oxide layer directly contacts both the bottom electrode and the oxide layer. 如請求項3之系統,其中(a)該雙極互補式電阻式開關在該額外氧化物層和該頂部電極之間並未包括金屬層,(b)該氧化物層直接接觸較上方的電極,並且(c)該氧化物層是單片的。 The system of claim 3, wherein (a) the bipolar complementary resistive switch does not include a metal layer between the additional oxide layer and the top electrode, (b) the oxide layer directly contacts the upper electrode And (c) the oxide layer is monolithic. 如請求項1之系統,其中:在第一狀態下,當能量以第一極性施加至該頂部電極並且滿足第一臨界電壓時,該第一複數個、該第二複數個、該第三複數個氧空位形成第一細線,其具有第一電氣電阻;並且 在第二狀態下,當能量以該第一極性施加到該頂部電極並且滿足第二臨界電壓時,該第一複數個、該第二複數個、該第三複數個氧空位形成第二細線,其具有高於該第一電氣電阻的第二電氣電阻。 The system of claim 1, wherein: in the first state, when energy is applied to the top electrode in a first polarity and the first threshold voltage is satisfied, the first plurality, the second plurality, and the third plurality The oxygen vacancies form a first thin line having a first electrical resistance; In the second state, when energy is applied to the top electrode at the first polarity and the second threshold voltage is satisfied, the first plurality, the second plurality, and the third plurality of oxygen vacancies form a second thin line. It has a second electrical resistance that is higher than the first electrical resistance. 如請求項5之系統,其中在該第二狀態下,該第一複數個氧空位是該第一濃度,並且在該第一狀態下,該第一複數個氧空位是額外濃度,該額外濃度大於該第一濃度。 The system of claim 5, wherein in the second state, the first plurality of oxygen vacancies is the first concentration, and in the first state, the first plurality of oxygen vacancies is an additional concentration, the additional concentration Greater than the first concentration. 如請求項5之系統,其中在該第二狀態下,該第一複數個氧空位是該第一濃度,並且該第二複數個氧空位是該第二濃度,該第二濃度大於該第一濃度。 The system of claim 5, wherein in the second state, the first plurality of oxygen vacancies is the first concentration, and the second plurality of oxygen vacancies is the second concentration, the second concentration being greater than the first concentration. 如請求項7之系統,其中該第一臨界電壓與該第二臨界電壓兩者都是正向,且該第二臨界電壓大於該第一臨界電壓。 The system of claim 7, wherein the first threshold voltage and the second threshold voltage are both positive, and the second threshold voltage is greater than the first threshold voltage. 如請求項5之系統,其中:在第三狀態下,當能量以相反於該第一極性的第二極性施加至該頂部電極,並且滿足第三臨界電壓時,第一複數個、第二複數個、第三複數個的氧空位形成第三細線,其具有第三電氣電阻;以及在第四狀態下,當能量以該第二極性施加到該頂部電極並且滿足第四臨界電壓時,該第一複數個、該第二複數個、該第三複數個氧空位形成第四細線,其具有高於該第三電氣電阻的第四電氣電阻。 The system of claim 5, wherein: in the third state, when energy is applied to the top electrode in a second polarity opposite to the first polarity, and the third threshold voltage is satisfied, the first plurality and the second plurality a third plurality of oxygen vacancies forming a third thin line having a third electrical resistance; and in the fourth state, when energy is applied to the top electrode at the second polarity and satisfying a fourth threshold voltage, the first A plurality of the second plurality, the third plurality of oxygen vacancies forming a fourth thin line having a fourth electrical resistance higher than the third electrical resistance. 如請求項9之系統,其中在該第四狀態下,該第 一複數個氧空位是該第一濃度,該第二複數個氧空位是該第二濃度,並且該第二濃度小於該第一濃度。 The system of claim 9, wherein in the fourth state, the first A plurality of oxygen vacancies are the first concentration, the second plurality of oxygen vacancies is the second concentration, and the second concentration is less than the first concentration. 如請求項10之系統,其中該第三臨界電壓和該第四臨界電壓兩者為負向,而該第四臨界電壓是大於該第三臨界電壓。 The system of claim 10, wherein the third threshold voltage and the fourth threshold voltage are both negative and the fourth threshold voltage is greater than the third threshold voltage. 如請求項5之系統,其中在初始形成狀態下,當能量以該第一極性施加至該頂部電極時,該第一複數個氧空位、該第二複數個氧空位和該第三複數個氧空位形成該第一細線;其中該初始形成狀態發生在該第一狀態與該第二狀態之前。 The system of claim 5, wherein in the initial formation state, when energy is applied to the top electrode in the first polarity, the first plurality of oxygen vacancies, the second plurality of oxygen vacancies, and the third plurality of oxygen The vacancy forms the first thin line; wherein the initial formation state occurs before the first state and the second state. 如請求項5之系統,其中該雙極互補式電阻式開關在該頂部電極和該底部電極之間並未包括氧交換層(OEL)。 The system of claim 5, wherein the bipolar complementary resistive switch does not include an oxygen exchange layer (OEL) between the top electrode and the bottom electrode. 如請求項1之系統,其中該氧化層包括以下群組中選出的至少一者,該群組包含:HfOx,SiOx,Al2Ox,TiOx,TaOx,GdOx,ErOx,NbOx,WOx,ZnOx,以及InGaZnOx。 The system of claim 1, wherein the oxide layer comprises at least one selected from the group consisting of: HfOx, SiOx, Al 2 Ox, TiOx, TaOx, GdOx, ErOx, NbOx, WOx, ZnOx, and InGaZnOx. 如請求項14之系統,其中該頂部電極包括以下群組中選出的至少一者,該群組包含:TiN,TaN,鎢(W),釕(Ru),銥(Ir),鈀(Pd),鉑(Pt),鉬(Mo),TiAlN和TaAlN,該底部電極亦包括該至少一者。 The system of claim 14, wherein the top electrode comprises at least one selected from the group consisting of: TiN, TaN, tungsten (W), ruthenium (Ru), iridium (Ir), palladium (Pd) Platinum (Pt), molybdenum (Mo), TiAlN and TaAlN, the bottom electrode also includes the at least one. 如請求項1之系統,其包含記憶體陣列,其包括經由該雙極互補式電阻式開關彼此耦接的行解碼器以及列 解碼器。 A system as claimed in claim 1, comprising a memory array comprising row decoders and columns coupled to each other via the bipolar complementary resistive switches decoder. 一種電阻式隨機存取記憶體(RRAM)系統,其包含:雙極互補式電阻式開關(CRS),其包括頂部電極,底部電極,在該頂部電極以及該底部電極之間的氧化物層;其中在第一狀態下,當能量以第一極性施加至該頂部電極並且滿足第一臨界電壓時,在該氧化物層的第一複數個、第二複數個、第三複數個的氧空位形成具有第一電氣電阻的第一路徑;其中在第二狀態下,當能量以該第一極性施加到該頂部電極並且滿足第二臨界電壓時,該第一複數個、該第二複數個、該第三複數個氧空位形成在該頂部電極和該底部電極之間具有第二電氣電阻的第二路徑,該第二電氣電阻大於該第一電氣電阻;其中在該第二狀態:(a)該第一氧空位以第一濃度位於該氧化物層的較上方的第三個內,(b)該第二氧空位以第二濃度位於該氧化物層的較下方的第三個內,該第二濃度大於該第一濃度,以及(c)該第三氧空位以第三濃度位於該氧化物層之中間第三個內。 A resistive random access memory (RRAM) system comprising: a bipolar complementary resistive switch (CRS) comprising a top electrode, a bottom electrode, an oxide layer between the top electrode and the bottom electrode; Wherein in the first state, when energy is applied to the top electrode in a first polarity and the first threshold voltage is satisfied, the first plurality, the second plurality, and the third plurality of oxygen vacancies are formed in the oxide layer a first path having a first electrical resistance; wherein in the second state, when energy is applied to the top electrode at the first polarity and the second threshold voltage is satisfied, the first plurality, the second plurality, the a third plurality of oxygen vacancies forming a second path having a second electrical resistance between the top electrode and the bottom electrode, the second electrical resistance being greater than the first electrical resistance; wherein in the second state: (a) the a first oxygen vacancy at a first concentration in a third upper portion of the oxide layer, (b) a second oxygen vacancy at a second concentration in a third lower portion of the oxide layer, the first Two concentrations greater than the first Concentration, and (c) a third oxygen vacancy concentration is within the middle third of the third oxide layers. 如請求項17之系統,其中該雙極互補式電阻式開關並未包括在該頂部電極和該底部電極之間的氧交換層(OEL)。 The system of claim 17, wherein the bipolar complementary resistive switch does not include an oxygen exchange layer (OEL) between the top electrode and the bottom electrode. 如請求項17之系統,包括電阻,其具有額外氧 化物層,其中該額外氧化物層直接接觸該底部電極和該氧化物層兩者。 The system of claim 17, comprising a resistor having additional oxygen a layer of the oxide wherein the additional oxide layer directly contacts both the bottom electrode and the oxide layer. 如請求項19之系統,其中該額外氧化物層包括TiON。 The system of claim 19, wherein the additional oxide layer comprises TiON. 一種方法,包括:形成底部電極;於該底部電極上形成氧化物電阻;在該氧化物電阻上形成氧化物層;在該氧化物層上形成頂部電極;對該氧化物電阻、該頂部電極、該底部電極和該氧化物層產生圖樣,以形成電阻式隨機存取記憶體(RRAM)單元,其包括互補式電阻開關(CRS);並且對該RRAM單元退火以產生細線,其由在該氧化物層的氧空位所組成。 A method comprising: forming a bottom electrode; forming an oxide resistor on the bottom electrode; forming an oxide layer on the oxide resistor; forming a top electrode on the oxide layer; the oxide resistor, the top electrode, The bottom electrode and the oxide layer are patterned to form a resistive random access memory (RRAM) cell including a complementary resistive switch (CRS); and the RRAM cell is annealed to produce a thin line by which the oxidation The oxygen vacancies of the layer are composed. 如請求項21之方法,包括將該RRAM單元耦接至記憶體陣列的列解碼器和行解碼器。 The method of claim 21, comprising coupling the RRAM unit to a column decoder and a row decoder of the memory array.
TW105138911A 2015-12-26 2016-11-25 RRAM based complementary switch for crosspoint memory applications TW201735414A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/000368 WO2017111812A1 (en) 2015-12-26 2015-12-26 Rram based complimentary switch for crosspoint memory applications

Publications (1)

Publication Number Publication Date
TW201735414A true TW201735414A (en) 2017-10-01

Family

ID=59090926

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105138911A TW201735414A (en) 2015-12-26 2016-11-25 RRAM based complementary switch for crosspoint memory applications

Country Status (2)

Country Link
TW (1) TW201735414A (en)
WO (1) WO2017111812A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659532B (en) * 2017-11-17 2019-05-11 台灣積體電路製造股份有限公司 Semiconductor device structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI717138B (en) 2019-12-09 2021-01-21 華邦電子股份有限公司 Resistive random access memory and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101928414B1 (en) * 2011-12-29 2019-02-27 에스케이하이닉스 주식회사 Resistance variable memory device
US9680091B2 (en) * 2012-06-15 2017-06-13 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for a complimentary resistive switching random access memory for high density application
US8913418B2 (en) * 2013-03-14 2014-12-16 Intermolecular, Inc. Confined defect profiling within resistive random memory access cells
GB2515568B (en) * 2013-06-28 2016-05-18 Ibm Resistive random-access memory cells
US9502468B2 (en) * 2014-03-06 2016-11-22 Infineon Technologies Ag Nonvolatile memory device having a gate coupled to resistors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI659532B (en) * 2017-11-17 2019-05-11 台灣積體電路製造股份有限公司 Semiconductor device structure

Also Published As

Publication number Publication date
WO2017111812A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
US9385311B2 (en) Semiconductor device and electronic device including the same
US9159919B2 (en) Variable resistance memory device and method for fabricating the same
KR20220120666A (en) Ferroelectric capacitor and its patterning method
KR102025290B1 (en) Semiconductor device and electronic device including the same
CN106030801B (en) Techniques for forming non-planar resistive memory cells
US9362340B2 (en) Memory devices having low permittivity layers and methods of fabricating the same
US9343672B2 (en) Nonvolatile memory devices, nonvolatile memory cells and methods of manufacturing nonvolatile memory devices
CN106611767A (en) Electronic device and method for fabricating same
KR20160020890A (en) Resistive memory device and method of manufacturing the same
US10516104B2 (en) High retention resistive random access memory
CN107155371B (en) Resistive memory cells including local filamentary channels, devices including the same, and methods of fabricating the same
US8760920B2 (en) Semiconductor memory device integrating flash memory and resistive/magnetic memory
US10497871B2 (en) High retention resistive random access memory
US9184215B2 (en) RRAM structure at STI with Si-based selector
US10573809B2 (en) Resistive random access memory with deuterium
US10840431B2 (en) Multilayer selector device with low holding voltage
US10411070B2 (en) Semiconductor memory device including a selection element pattern confined to a hole
KR101977271B1 (en) Method for fabricating semiconductor device
CN105914294A (en) Electronic Device
TW201735414A (en) RRAM based complementary switch for crosspoint memory applications
US20190058006A1 (en) Multilayer selector device with low leakage current
WO2017052583A1 (en) Thermally insulated resistive random access memory
KR20140065942A (en) Resistance variable memory device and method for fabricating the same
US9105575B2 (en) Method for fabricating a semiconductor device
JP2022092570A (en) Pillar select transistor for 3-dimensional cross point memory