TW201732345A - Optical device for a lithography apparatus and lithography apparatus - Google Patents

Optical device for a lithography apparatus and lithography apparatus Download PDF

Info

Publication number
TW201732345A
TW201732345A TW105141570A TW105141570A TW201732345A TW 201732345 A TW201732345 A TW 201732345A TW 105141570 A TW105141570 A TW 105141570A TW 105141570 A TW105141570 A TW 105141570A TW 201732345 A TW201732345 A TW 201732345A
Authority
TW
Taiwan
Prior art keywords
magnet
optical
force
optical element
mirror
Prior art date
Application number
TW105141570A
Other languages
Chinese (zh)
Other versions
TWI712831B (en
Inventor
彥彬 關
賈斯柏 衛斯陵
Original Assignee
卡爾蔡司Smt有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卡爾蔡司Smt有限公司 filed Critical 卡爾蔡司Smt有限公司
Publication of TW201732345A publication Critical patent/TW201732345A/en
Application granted granted Critical
Publication of TWI712831B publication Critical patent/TWI712831B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • G03F7/70266Adaptive optics, e.g. deformable optical elements for wavefront control, e.g. for aberration adjustment or correction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

The present invention discloses an optical device (200) for a lithography apparatus (100A, 100B), comprising: an optical element (204) having a positive stiffness (kp) when deformed in at least one direction ([delta]), an actuator (306) for deforming the optical element (204) in the at least one direction ([delta]), and a compensation unit (310) having a negative stiffness (kn) in the at least one direction ([delta]) at least partially compensating the optical element's positive stiffness (kp).

Description

用於微影設備的光學裝置與微影設備 Optical device and lithography device for lithography equipment 【相關專利參照】[Related patent reference]

本申請案主張2015年12月15日申請之德國專利申請案DE 10 2015 225 263.9的優先權,其整體內容以引用的方式併入本文。 The priority of the German Patent Application No. DE 10 2015 225 263.9, filed on Dec. 15, 2015, the entire content of which is hereby incorporated by reference.

本發明關於用於微影設備的一光學裝置及一微影設備。 The present invention relates to an optical device and a lithography apparatus for use in a lithography apparatus.

微影是用於微細加工以圖案化基板主體的薄膜的部分的製程。特別地,微影用於積體電路的製造。微影製程是使用包含照明系統及投射系統的微影設備而進行。使用光將幾何圖案從光罩轉移至基板上稱作光阻的光敏感化學層。光罩由照明系統照明。投射系統將幾何圖案投射至位在投射系統之影像平面的基板上。 The lithography is a process for micromachining to pattern portions of the film of the substrate body. In particular, lithography is used in the fabrication of integrated circuits. The lithography process is performed using a lithography device that includes a lighting system and a projection system. Light is used to transfer the geometric pattern from the reticle to a photo-sensitive chemical layer called a photoresist on the substrate. The reticle is illuminated by an illumination system. The projection system projects the geometric pattern onto a substrate that is positioned on the image plane of the projection system.

受到摩爾定律的驅動及追求更小的結構,特別是在積體電路的製造上,目前正在開發EUV微影設備,其使用波長在5nm至30nm、特別是13.5nm的光。「EUV」表示「極紫外光」。由於多數材料對在此波長的光具有高吸收,因此在這類EUV微影設備中需要使用反射光學元件(即反射鏡)來取代之前的折射光學元件(即透鏡)。 Driven by Moore's Law and pursuing smaller structures, especially in the manufacture of integrated circuits, EUV lithography equipment is currently being developed, using light having a wavelength of 5 nm to 30 nm, particularly 13.5 nm. "EUV" means "extreme ultraviolet light". Since most materials have high absorption of light at this wavelength, it is desirable to use a reflective optical element (ie, a mirror) in place of the previous refractive optical element (ie, a lens) in such EUV lithography apparatus.

EUV微影設備中的反射鏡可例如緊固至所謂的力框(force frame)。每一反射鏡可在高達六個自由度中操縱。這允許反射鏡相對彼此高度準確地定位,例如在pm範圍。在此方式中,光學特性的改變(例如由於熱擾動)可在微影設備的操作期間被補償。 The mirror in the EUV lithography device can for example be fastened to a so-called force frame (force Frame). Each mirror can be manipulated in up to six degrees of freedom. This allows the mirrors to be positioned with high accuracy relative to each other, for example in the pm range. In this manner, changes in optical characteristics (e.g., due to thermal perturbations) can be compensated for during operation of the lithographic apparatus.

最近,已發現可透過在微影設備的操作期間(亦即,即時的)變形光學元件(例如反射鏡)而獲得更先進的光學誤差校正。 More recently, it has been discovered that more advanced optical error correction can be obtained by morphing optical elements (e.g., mirrors) during operation of the lithographic apparatus (i.e., instantaneously).

舉例來說,DE 10151919 A1描述(參考該文件的圖1及圖2)包含四個柱2的反射鏡1。致動器4將相對的柱2拉向反射鏡1的光學軸3、或是將相對的柱2推離光學軸3。因此,光學元件1變形。 For example, DE 10151919 A1 describes (cf. Figs. 1 and 2 of this document) a mirror 1 comprising four columns 2. The actuator 4 pulls the opposite column 2 towards the optical axis 3 of the mirror 1 or pushes the opposite column 2 away from the optical axis 3. Therefore, the optical element 1 is deformed.

JP 2013-106014 A在圖2中描述了可變形的反射鏡22。多個反射鏡柱24配置在反射鏡22的後端面22e。負載供應系統58組態以位移相應反射鏡柱24的尖端,以將負載引入至反射鏡22的後端面22e並因此而變形反射鏡22的反射表面22d。 JP 2013-106014 A describes a deformable mirror 22 in FIG. A plurality of mirror columns 24 are disposed on the rear end surface 22e of the mirror 22. The load supply system 58 is configured to displace the tip of the respective mirror post 24 to introduce a load to the rear end face 22e of the mirror 22 and thereby deform the reflective surface 22d of the mirror 22.

本發明的目的為提供用於微影設備的一改良光學裝置。 It is an object of the present invention to provide an improved optical device for a lithography apparatus.

此目的由包含一光學元件、一致動器、及一補償單元的用於微影設備的一光學裝置來達成。光學元件在至少一方向上變形時具有一正剛性(positive stiffness)。致動器組態用以在至少一方向上變形光學元件。補償單元在至少一方向上具有一負剛性以至少部分地補償光學元件的正剛性。 This object is achieved by an optical device for a lithography apparatus comprising an optical component, an actuator, and a compensation unit. The optical element has a positive stiffness when deformed in at least one direction. The actuator is configured to deform the optical element in at least one direction. The compensation unit has a negative stiffness in at least one direction to at least partially compensate for the positive stiffness of the optical element.

「負剛性」係定義為產生傾向在至少一方向上變形光學元件的力或力矩的剛性,且隨著光學元件在至少一方向上的變形增加而增加(或保持不變)。負剛性因此抵消正剛性,因此降低(或者甚至消除)變形光學元件所需的力。負剛性的另一特徵為其較佳地不需任何外部的能量供應。而是,負剛性依靠儲存於機械系統或磁場中的能量且不依賴任何外部的能量供應。 "Negative stiffness" is defined as the stiffness that produces a force or moment that tends to deform the optical element in at least one direction, and increases (or remains constant) as the deformation of the optical element increases in at least one direction. The negative stiffness thus counteracts the positive stiffness, thus reducing (or even eliminating) the force required to deform the optical element. Another feature of negative stiffness is that it preferably does not require any external energy supply. Rather, the negative stiffness relies on energy stored in a mechanical system or magnetic field and does not depend on any external energy supply.

本發明所基於的一概念包含將變形光學元件所需的力分成兩個分量,即準靜態力(quasi-static force)及動態力。準靜態力為變形光學元件本身所需。需注意,此處的「變形光學元件」是指整個光學元件被變形或其一或多個部分被變形。準靜態力主要取決於光學元件的(正)剛性。剛性由製成光學元件的材料(例如玻璃或陶瓷)的E-模量以及光學元件的幾何形狀所決定。動態力為加速光學元件的質量所需。此力主要取決於光學元件的密度、幾何變形輪廓以及作為時間的函數的變形軌跡。 One concept on which the invention is based involves dividing the force required to deform the optical element into two components, a quasi-static force and a dynamic force. The quasi-static force is required for the anamorphic optical element itself. It should be noted that "deformed optical element" herein means that the entire optical element is deformed or one or more portions thereof are deformed. The quasi-static force is primarily dependent on the (positive) stiffness of the optical component. The rigidity is determined by the E-modulus of the material from which the optical element is made, such as glass or ceramic, and the geometry of the optical element. Dynamic forces are required to accelerate the quality of the optical components. This force is primarily dependent on the density of the optical element, the geometric deformation profile, and the deformation trajectory as a function of time.

因為光學校正所需之光學元件的移動量小(一般範圍在數微米),且同時用於光學校正的時窗(time window)相當大(例如1/30秒),因此所需的動態力為小。另一方面,光學元件的剛性相對大,因此用以變形光學元件的靜態力需遠大於動態力。 Since the amount of movement of the optical elements required for optical correction is small (generally in the range of several micrometers), and the time window for optical correction is relatively large (for example, 1/30 second), the required dynamic force is small. On the other hand, the rigidity of the optical element is relatively large, so the static force used to deform the optical element needs to be much larger than the dynamic force.

以目前所提供的(接近)零的剛性配置,致動器現在僅需傳遞動能以及補償任何摩擦耗損所需的能量。例如在10ms的移動時間內將質量1公斤的反射鏡移動1μm以上需要10mm/s2的加速度。因此,需要10mN的力,其可由例如勞侖茲式致動器(亦稱作音圈致動器)在功率耗損低於1mW下輕易地傳遞。 With the (nearly zero) rigid configuration currently offered, the actuator now only needs to transfer kinetic energy and compensate for the energy required for any frictional losses. For example, an acceleration of 10 mm/s 2 is required to move a mirror of 1 kg mass above 1 μm in a moving time of 10 ms. Therefore, a force of 10 mN is required, which can be easily transmitted by, for example, a Lorentz type actuator (also referred to as a voice coil actuator) with a power loss of less than 1 mW.

用以補償光學元件的正剛性所需的負剛性一般將在105到106N/m的等級。針對1-μm的偏移,將需要1N的力。在此範例中,這對應所需動態力的100倍,因此大得多。 The negative stiffness required to compensate for the positive stiffness of the optical component will typically be on the order of 10 5 to 10 6 N/m. A force of 1 N will be required for an offset of 1-μm. In this example, this corresponds to 100 times the required dynamic force and is therefore much larger.

由於此設計,根據本發明的致動器僅需提供動態力,且就算有的話,則提供小的靜態力。因此,由致動器所提供的總力相較於已知的解決方案明顯較小。 Due to this design, the actuator according to the invention only needs to provide dynamic forces and, if available, provide a small static force. Therefore, the total force provided by the actuator is significantly smaller than known solutions.

一般而言,所有類型的致動器將產生顯著的熱,其無法在不增加干擾的情況下被取出,例如冷卻水振動。然而,由於根據本發明解決方案所需的力係大幅地降低,實質上不需要額外的熱移除。 In general, all types of actuators will produce significant heat that cannot be removed without increasing interference, such as cooling water vibration. However, since the force required for the solution according to the invention is substantially reduced, substantially no additional heat removal is required.

本發明的致動器較佳為勞侖茲致動器(Lorentz actuator)。然 而,在某些應用中,其他類型的致動器(例如壓電致動器或氣動致動器)也是可行的。 The actuator of the present invention is preferably a Lorentz actuator. Of course However, in some applications, other types of actuators, such as piezoelectric actuators or pneumatic actuators, are also possible.

勞侖茲致動器的另一優點為其小的反應時間,其使勞侖茲致動器特別適用於即時的光學誤差校正,例如「晶粒到晶粒(die to die)」或甚至「晶粒內(intra-die)」。「晶粒到晶粒」是指在單一晶圓上的兩個連續晶粒的曝光之間的時窗中變形光學元件。「晶粒內」是指在單一晶粒的掃描期間的時窗中針對光學校正而變形光學元件。 Another advantage of the Lorentz actuator is its small reaction time, which makes the Lorentz actuator particularly suitable for immediate optical error correction, such as "die to die" or even " Intra-die. "Grade to grain" refers to a morphing optical element in a time window between exposures of two continuous dies on a single wafer. "In-grain" means that the optical element is deformed for optical correction in a time window during scanning of a single die.

勞侖茲致動器相較於例如壓電致動器的另一優點為其可操作於開迴路控制系統中,因為其表現出較少或沒有磁滯、漂移或其他不準確性。 Another advantage of a Lorentz actuator over a piezoelectric actuator, for example, is that it can operate in an open loop control system because it exhibits little or no hysteresis, drift or other inaccuracies.

根據一具體實施例,補償單元組態以在至少一方向上於光學元件上產生一第一最大力,且致動器組態以在至少一方向上於光學元件上產生一第二最大力,其中第一最大力比第二最大力大N倍,其中N>5,較佳為N>10,更佳為N>50。 According to a specific embodiment, the compensation unit is configured to generate a first maximum force on the optical element in at least one direction, and the actuator is configured to generate a second maximum force on the optical element in at least one direction, wherein A maximum force is N times greater than the second maximum force, wherein N > 5, preferably N > 10, more preferably N > 50.

「最大力」指在使用光學裝置製造單一晶粒或整個晶圓的循環中所發現的最大力。發現N>5、較佳為>10且更佳為N>50將給出足夠小的致動器力,且同時具有良好的系統穩定度以便於開迴路控制。 "Maximum force" refers to the maximum force found in the cycle of making a single die or an entire wafer using optical devices. It is found that N > 5, preferably > 10 and more preferably N > 50 will give a sufficiently small actuator force while at the same time having good system stability for open loop control.

根據另一具體實施例,補償單元組態以在至少一方向上於光學元件上產生一第一力,且致動器組態以在至少一方向上於光學元件上產生一第二力,其中第一力具有一第一最大時間導數(first maximum time derivative),且第二力具有一第二最大時間導數,其中第二最大時間導數比第一最大時間導數大M倍,其中M>10,較佳為M>100 According to another embodiment, the compensation unit is configured to generate a first force on the optical element in at least one direction, and the actuator is configured to generate a second force on the optical element in at least one direction, wherein the first The force has a first maximum time derivative, and the second force has a second maximum time derivative, wherein the second maximum time derivative is greater than the first maximum time derivative by M times, wherein M > 10, preferably For M>100

「最大時間導數」為在使用光學裝置製造單一晶粒或整個晶圓的循環中所發現的最大導數。發現所給定的數值M將給出高度動態變形,同時使補償單元保持簡單。 The "maximum time derivative" is the maximum derivative found in a cycle in which a single die or an entire wafer is fabricated using an optical device. It is found that the given value M will give a highly dynamic deformation while keeping the compensation unit simple.

根據另一具體實施例,補償單元的負剛性為光學元件的正 剛性的0.9倍至0.99倍。 According to another specific embodiment, the negative stiffness of the compensation unit is positive for the optical component It is 0.9 to 0.99 times rigid.

已發現負剛性對正剛性的此比例給出小的致動器力,同時給出良好的動態穩定度。理想上會希望具有100%的補償,使得負剛性對正剛性的比例應等於1。在此情況中,由於光學元件的彈性所導致的正剛性完全被補償單元的負剛性所補償。然而,這也表示反射鏡在任何變形狀態下係處於力平衡,且將保持在這種變形狀態中。這可能不是所希望的,因為在故障的情況下,會希望使反射鏡回到特定的原始形狀。因此,最好使負剛性補償稍微小於100%,例如在90%到99%之間。 It has been found that this ratio of negative stiffness to positive stiffness gives a small actuator force while giving good dynamic stability. Ideally, it would be desirable to have 100% compensation such that the ratio of negative stiffness to positive stiffness should be equal to one. In this case, the positive stiffness due to the elasticity of the optical element is completely compensated by the negative stiffness of the compensation unit. However, this also means that the mirror is in a force balance in any deformed state and will remain in this deformed state. This may not be desirable because in the event of a fault, it may be desirable to return the mirror to a particular original shape. Therefore, it is preferable to make the negative stiffness compensation slightly less than 100%, for example between 90% and 99%.

根據另一具體實施例,光學元件的正剛性及補償單元的負剛性之間的差異大於零。 According to another specific embodiment, the difference between the positive stiffness of the optical element and the negative stiffness of the compensation unit is greater than zero.

因此,在中性狀態下,即當致動器關閉(無電力)或故障並因此而沒有提供力時,光學元件的狀態、特別是其變形的程度總是被限定。光學元件將總是回到其原始形狀。 Therefore, in the neutral state, that is, when the actuator is turned off (no power) or malfunctioning and thus no force is supplied, the state of the optical element, particularly the degree of its deformation, is always defined. The optical element will always return to its original shape.

根據另一具體實施例,光學元件在至少一方向上的變形係藉由光學元件的平面外彎曲(out-of-plane bending)而獲得。 According to another specific embodiment, the deformation of the optical element in at least one direction is obtained by out-of-plane bending of the optical element.

「平面外彎曲」目前是指對垂直於光學元件之光學軸的一軸彎曲。 "Out-of-plane bending" currently refers to bending about one axis perpendicular to the optical axis of the optical component.

根據另一具體實施例,補償單元包含磁鐵,特別是永久磁鐵、或至少一彈簧。 According to a further embodiment, the compensation unit comprises a magnet, in particular a permanent magnet, or at least one spring.

這類組件也非常適合用以獲得負剛性。彈簧可為機械彈簧,例如片簧或螺旋彈簧。 This type of assembly is also very suitable for obtaining negative rigidity. The spring can be a mechanical spring such as a leaf spring or a coil spring.

根據另一具體實施例,補償單元(特別是至少一彈簧)係組態以在平面內預載(preload)光學元件。 According to another specific embodiment, the compensation unit, in particular at least one spring, is configured to preload the optical element in a plane.

「平面內」是指由補償單元所產生的力作用在平行於光學元件的延伸平面的方向中。因此,使用屈曲效應(buckling effect)而獲得負剛性。 "In-plane" means that the force generated by the compensation unit acts in a direction parallel to the plane of extension of the optical element. Therefore, a negative stiffness is obtained using a buckling effect.

根據另一具體實施例,光學裝置包含一基底,其中磁鐵由緊固至光學元件的第一磁鐵以及分別緊固至基底的第二磁鐵及第三磁鐵所組成,第一磁鐵可在第二磁鐵及第三磁鐵之間移動。 In accordance with another embodiment, an optical device includes a substrate, wherein the magnet is comprised of a first magnet secured to the optical component and a second magnet and a third magnet respectively secured to the substrate, the first magnet being configurable to the second magnet And moving between the third magnets.

此組態也非常適合用以獲得具有零偏移力的負剛性。當第二磁鐵及第三磁鐵為固定,第一磁鐵與光學元件的一部份一起移動以獲得光學元件的所需變形。 This configuration is also very suitable for obtaining a negative stiffness with zero offset force. When the second magnet and the third magnet are fixed, the first magnet moves with a portion of the optical element to obtain the desired deformation of the optical element.

根據另一具體實施例,光學裝置包含一基底,其中磁鐵由緊固至光學元件的第一磁鐵以及緊固至基底的第二磁鐵所組成,其中第一磁鐵或第二磁鐵形成為一環形磁鐵且另一磁鐵可沿環形磁鐵的中心軸移動。 In accordance with another embodiment, an optical device includes a substrate, wherein the magnet is comprised of a first magnet secured to the optical component and a second magnet secured to the substrate, wherein the first magnet or the second magnet is formed as a ring magnet And another magnet can move along the central axis of the ring magnet.

此具體實施例描述磁鐵的另一組態,以獲得具有零偏移力的負剛性。同樣地,第二磁鐵是固定的,且當光學元件變形時,第一磁鐵與光學元件的一部份一起移動。 This particular embodiment describes another configuration of the magnet to achieve a negative stiffness with zero offset force. Likewise, the second magnet is fixed and the first magnet moves with a portion of the optical element as the optical element is deformed.

根據另一具體實施例,光學裝置包含一調整單元,用以調整補償單元的負剛性。 According to another specific embodiment, the optical device includes an adjustment unit for adjusting the negative stiffness of the compensation unit.

因為系統剛性的降低,光學裝置的共振模式(resonance mode)可能劣化。當致動器關閉或由於故障而不能提供適當的力時,這可能導致無法接收的動態性能。然而,這可藉由包含可開啟或關閉負剛性的切換機制來抵消。這在例如光學裝置或包含此一裝置的微影設備的傳輸期間也是有利的。一般在傳輸期間,共振頻率可能對光學裝置造成損害。現在包含調整單元將允許光學元件具有其(正常的)正剛性或至少實質正剛性,其將避免在傳輸等期間損害光學元件。另一方面,調整單元可甚至即時地調整負剛性,以在光學裝置的操作期間將所需的致動器力保持在最小。調整單元可組態以連續地調整負剛性。 The resonance mode of the optical device may deteriorate due to a decrease in system rigidity. This can result in unacceptable dynamic performance when the actuator is turned off or does not provide the proper force due to a fault. However, this can be counteracted by a switching mechanism that includes turning negative stiffness on or off. This is also advantageous during transmission of, for example, an optical device or a lithography device comprising such a device. Generally, the resonant frequency may cause damage to the optical device during transmission. The inclusion of the adjustment unit now will allow the optical element to have its (normal) positive stiffness or at least substantially positive stiffness which will avoid damaging the optical element during transmission or the like. On the other hand, the adjustment unit can adjust the negative stiffness even on the fly to keep the required actuator force to a minimum during operation of the optical device. The adjustment unit can be configured to continuously adjust the negative stiffness.

根據另一具體實施例,調整單元組態用以使用至少一電永磁鐵(electro-permanent magnet)來預載至少一彈簧、調整第一磁鐵、第二磁 鐵及/或第三磁鐵的相對位置、調整在第一磁鐵、第二磁鐵及/或第三磁鐵之間耦合的一磁場、或調整第一磁鐵、第二磁鐵及/或第三磁鐵的磁場。 According to another embodiment, the adjustment unit is configured to preload at least one spring, adjust the first magnet, the second magnet using at least one electro-permanent magnet a relative position of the iron and/or the third magnet, a magnetic field coupled between the first magnet, the second magnet, and/or the third magnet, or a magnetic field of the first magnet, the second magnet, and/or the third magnet .

根據獲得負剛性的機制,調整負剛性的不同方式似乎是合適的。當使用彈簧作為負剛性的來源,可改變作用在彈簧上的預載以調整負剛性。預載可例如透過使用一氣壓缸(pneumatic cylinder)而實施。 Depending on the mechanism by which negative stiffness is obtained, different ways of adjusting the negative stiffness appear to be appropriate. When a spring is used as a source of negative stiffness, the preload applied to the spring can be varied to adjust the negative stiffness. The preload can be carried out, for example, by using a pneumatic cylinder.

當使用磁鐵來獲得負剛性,可藉由調整其相對位置來改變磁鐵之間的排斥及吸引力,從而改變負剛性。為此可使用例如一固定螺絲或類似物。 When a magnet is used to obtain negative rigidity, the negative rigidity can be changed by changing the relative position of the magnet to change the repulsion and attractive force between the magnets. For this purpose, for example, a fixing screw or the like can be used.

此外,當使用磁鐵來獲得負剛性,磁鐵之間的磁場耦合可藉由例如使一動鐵(moving iron)用作為短路電路而改變。舉例來說,可使用馬蹄形動鐵。 Further, when a magnet is used to obtain negative rigidity, magnetic field coupling between magnets can be changed by, for example, using a moving iron as a short circuit. For example, a horseshoe moving iron can be used.

更進一步,當使用磁鐵來獲得負剛性,磁鐵之間的吸引及排斥力可藉由調整相應磁鐵的磁場而改變。為此,可使用電永磁鐵。「電永磁鐵」目前定義為一磁性單元,其包含具有可調整永久磁化的至少一第一磁鐵以及用以調整至少一磁鐵之永久磁化的一裝置。 Further, when a magnet is used to obtain negative rigidity, the attraction and repulsive force between the magnets can be changed by adjusting the magnetic field of the corresponding magnet. For this purpose, an electrically permanent magnet can be used. An "electric permanent magnet" is currently defined as a magnetic unit that includes at least one first magnet having an adjustable permanent magnetization and a means for adjusting the permanent magnetization of at least one of the magnets.

至少一磁鐵可例如由鐵磁或亞鐵磁材料所製成。 The at least one magnet can be made, for example, of a ferromagnetic or ferrimagnetic material.

「永久磁化」是指當用以調整永久磁化的裝置沒有產生磁場時,至少一磁鐵每年失去其磁化(例如以A/m來表示)不會多於5%、較佳為不會多於2%、更佳為不會多於0.5%。 "Permanent magnetization" means that when a device for adjusting permanent magnetization does not generate a magnetic field, at least one magnet loses its magnetization (for example, expressed in A/m) per year, and is not more than 5%, preferably not more than 2 %, more preferably no more than 0.5%.

永久磁化是可調整的。這就是說,舉例而言,用於至少一磁鐵的永久磁化的裝置可在磁化的兩狀態之間切換。這兩個狀態可包含例如一去磁化狀態(磁化為零)以及一磁化狀態。在其他具體實施例中,這就是說用於永久磁化的裝置可在多於兩個、較佳為多於十個磁化狀態之間切換。切換也可連續地執行。用於永久磁化的裝置可形成為一線圈。藉由調整線圈中的電流,可調整用以磁化至少一磁鐵的外部磁場。 Permanent magnetization is adjustable. That is to say, for example, the means for permanent magnetization of at least one magnet can be switched between two states of magnetization. These two states may include, for example, a demagnetization state (magnetization is zero) and a magnetization state. In other embodiments, this means that the means for permanent magnetization can switch between more than two, preferably more than ten, magnetization states. Switching can also be performed continuously. The means for permanent magnetization can be formed as a coil. The external magnetic field used to magnetize the at least one magnet can be adjusted by adjusting the current in the coil.

在一範例中,至少一磁鐵具有中等的矯頑磁場強度 (coercivity field strength)。「矯頑磁場強度」是指在至少一磁鐵的磁性材料的磁飽和之後完全地去磁化該材料所需的場強度。中等矯頑力材料為本領域中已知且例如包含鐵、鋁、鈷、銅及/或鎳。舉例來說,中等矯頑磁場強度對應10到300kA/m、較佳為40到200kA/m、更佳為50到160kA/m的磁場強度。特別地,中等矯頑力的材料為AlNiCo。AlNiCo是指鐵、鋁、鎳、銅和鈷的合金。 In one example, at least one magnet has a medium coercive field strength (coercivity field strength). "Coercive magnetic field strength" means the field strength required to completely demagnetize the material after magnetic saturation of the magnetic material of at least one of the magnets. Medium coercivity materials are known in the art and include, for example, iron, aluminum, cobalt, copper and/or nickel. For example, the medium coercive field strength corresponds to a magnetic field strength of 10 to 300 kA/m, preferably 40 to 200 kA/m, more preferably 50 to 160 kA/m. In particular, the medium coercive material is AlNiCo. AlNiCo refers to an alloy of iron, aluminum, nickel, copper and cobalt.

此外,磁性單元可包含另一磁鐵,其永久磁化不會被用以改變永久磁化的裝置改變。此特徵可藉由使用高矯頑力材料作為另一磁鐵(第二磁鐵)而獲得。第一磁鐵及第二磁鐵可共同產生所需的負剛性。在其他具體實施例中,第一磁鐵獨自產生所需的負剛性。 Furthermore, the magnetic unit may comprise another magnet whose permanent magnetization is not altered by the means for changing the permanent magnetization. This feature can be obtained by using a high coercive material as another magnet (second magnet). The first magnet and the second magnet together can produce the desired negative stiffness. In other embodiments, the first magnet alone produces the desired negative stiffness.

藉由控制用以調整第一磁鐵的永久磁化的裝置,可適當地調整負剛性。 The negative rigidity can be appropriately adjusted by controlling the means for adjusting the permanent magnetization of the first magnet.

根據另一具體實施例,光學元件在第一方向上變形時具有第一正剛性且在第二方向上變形時具有第二正剛性,其中致動器組態以在第一方向及第二方向上變形光學元件,且其中補償單元在第一方向上具有第一負剛性以在第一方向上至少部分地補償光學元件的正剛性,且在第二方向上具有第二負剛性以在第二方向上至少部分地補償光學元件的正剛性。 In accordance with another embodiment, the optical element has a first positive stiffness when deformed in the first direction and a second positive stiffness when deformed in the second direction, wherein the actuator is configured to be in the first direction and the second direction Up deforming the optical element, and wherein the compensation unit has a first negative stiffness in the first direction to at least partially compensate for the positive stiffness of the optical element in the first direction and a second negative stiffness in the second direction to The positive stiffness of the optical element is at least partially compensated in the direction.

在此方式中,本發明的基本原理可應用至多軸系統。這類系統的反應可用一剛性矩陣來描述,其中非對角項描述軸之間的耦合。若系統明顯耦合,則前段所述的局部負剛性將不再足以補償所有的剛性力且需要建立等效的負剛性矩陣來補償正剛性矩陣。亦即,不僅對角(局部)的剛性需要被補償,且鄰近致動器之間的串擾也要被補償。根據幾何形狀,所產生的機械系統通常為稍微帶狀的剛性矩陣,其中鄰近的致動器將具有一些耦合剛性且遠離的致動器將具有(接近)零耦合剛性。以下的方程式1給出一典型的負剛性矩陣,其中kp為局部致動器負剛性且kc為自由度之間的耦 合剛性。δ1...δi給定在相應方向上的變形,且F1...Fi給定相應致動器所產生的負剛性力。 In this manner, the basic principles of the invention are applicable to multi-axis systems. The response of such systems can be described by a rigid matrix in which the non-diagonal terms describe the coupling between the axes. If the system is significantly coupled, the local negative stiffness described in the previous paragraph will no longer be sufficient to compensate for all of the stiffness forces and an equivalent negative stiffness matrix needs to be established to compensate for the positive stiffness matrix. That is, not only the diagonal (local) stiffness needs to be compensated, but the crosstalk between adjacent actuators is also compensated. Depending on the geometry, the resulting mechanical system is typically a slightly ribbon-like rigid matrix in which adjacent actuators will have some coupling rigid and remote actuators that will have (near) zero coupling stiffness. Equation 1 below gives a typical negative rigidity matrix, where k p is a partial negative rigidity of the actuator, and k c is a rigid coupling between the degrees of freedom. δ 1 ... δ i are given deformations in the respective directions, and F 1 ... F i give the negative rigid forces generated by the respective actuators.

舉例來說,具有方程式1中所述特性的負剛性矩陣可使用適當的磁鐵拓樸來獲得。 For example, a negative stiffness matrix having the characteristics described in Equation 1 can be obtained using a suitable magnet topology.

根據另一具體實施例,致動器組態用以針對光學校正而變形光學元件。 According to another specific embodiment, the actuator is configured to deform the optical element for optical correction.

一般來說,光學校正可包含任何類型的影像誤差校正,特別是在重疊(overlay)及/或焦點校正(in focus correction)。 In general, optical correction can include any type of image error correction, particularly in overlay and/or in focus correction.

根據另一具體實施例,光學元件為一反射鏡、一透鏡、一光柵或一λ板(lambda plate)。 According to another specific embodiment, the optical element is a mirror, a lens, a grating or a lambda plate.

λ板也稱作波片或阻片,即改變穿過它的光波的偏振狀態的光學裝置。 The λ plate is also referred to as a wave plate or a dam, that is, an optical device that changes the polarization state of light waves passing therethrough.

反射鏡可為平面或曲面。此外,反射鏡可為包含多個琢面之反射鏡的一琢面。 The mirror can be flat or curved. In addition, the mirror can be a facet of a mirror comprising a plurality of facets.

此外,提供了包含上述光學裝置的微影設備。 Further, a lithography apparatus including the above optical device is provided.

微影設備可為EUV或DUV微影設備。EUV代表「極紫外光」且表示曝光光的波長在0.1nm到30nm之間。DUV代表「深紫外光」且表示曝光光的波長在30nm到250nm之間。 The lithography device can be an EUV or DUV lithography device. EUV stands for "extreme ultraviolet light" and indicates that the wavelength of the exposure light is between 0.1 nm and 30 nm. DUV stands for "deep ultraviolet light" and indicates that the wavelength of the exposure light is between 30 nm and 250 nm.

光學裝置可整合至微影設備的一物鏡。物鏡可在晶圓的曝光期間浸潤於一液體中(浸潤式微影)。 The optical device can be integrated into an objective lens of the lithography apparatus. The objective lens can be immersed in a liquid (immersion lithography) during exposure of the wafer.

將參照附隨的圖式對其他範例具體實施例作更詳細的解釋。 Other exemplary embodiments will be explained in more detail with reference to the accompanying drawings.

100A‧‧‧EUV微影設備 100A‧‧‧EUV lithography equipment

100B‧‧‧DUV微影設備 100B‧‧‧DUV lithography equipment

102‧‧‧照明系統 102‧‧‧Lighting system

104‧‧‧投射系統 104‧‧‧Projection system

106A‧‧‧EUV光源 106A‧‧EUV light source

106B‧‧‧DUV光源 106B‧‧‧DUV light source

108A‧‧‧EUV光 108A‧‧EUV light

108B‧‧‧DUV光 108B‧‧‧DUV light

110‧‧‧反射鏡 110‧‧‧Mirror

112‧‧‧反射鏡 112‧‧‧Mirror

114‧‧‧反射鏡 114‧‧‧Mirror

116‧‧‧反射鏡 116‧‧‧Mirror

118‧‧‧反射鏡 118‧‧‧Mirror

120‧‧‧光罩 120‧‧‧Photomask

122‧‧‧晶圓 122‧‧‧ wafer

124‧‧‧光學軸 124‧‧‧ Optical axis

126‧‧‧反射鏡 126‧‧‧Mirror

132‧‧‧透鏡 132‧‧‧ lens

134‧‧‧反射鏡 134‧‧‧Mirror

136‧‧‧液體介質 136‧‧‧Liquid medium

200‧‧‧光學裝置 200‧‧‧Optical device

202‧‧‧基底 202‧‧‧Base

204‧‧‧反射鏡 204‧‧‧Mirror

206‧‧‧孔 206‧‧‧ hole

208‧‧‧光學軸 208‧‧‧ optical axis

210‧‧‧前端面 210‧‧‧ front face

300‧‧‧支撐物 300‧‧‧Support

302‧‧‧支撐物 302‧‧‧Support

304‧‧‧後端面 304‧‧‧ rear end face

306‧‧‧致動器 306‧‧‧Actuator

308‧‧‧控制器 308‧‧‧ Controller

310‧‧‧補償單元 310‧‧‧Compensation unit

310a-310b‧‧‧補償子單元 310a-310b‧‧‧compensation subunit

500‧‧‧彈簧 500‧‧‧ spring

502‧‧‧氣壓缸 502‧‧‧ pneumatic cylinder

504‧‧‧側面 504‧‧‧ side

600‧‧‧第一磁鐵 600‧‧‧First magnet

600a-600c‧‧‧第一磁鐵 600a-600c‧‧‧first magnet

602‧‧‧連接 602‧‧‧Connect

602a-602c‧‧‧連接器 602a-602c‧‧‧Connector

604‧‧‧第二磁鐵 604‧‧‧second magnet

604a-604c‧‧‧第二磁鐵 604a-604c‧‧‧second magnet

606‧‧‧第三磁鐵 606‧‧‧ Third magnet

606a-606c‧‧‧第三磁鐵 606a-606c‧‧‧3rd magnet

608‧‧‧中心軸 608‧‧‧ center axis

610‧‧‧對稱軸 610‧‧‧Axis of symmetry

700‧‧‧調整單元 700‧‧‧Adjustment unit

702‧‧‧控制器 702‧‧‧ Controller

704‧‧‧感測器 704‧‧‧ sensor

706‧‧‧電永磁鐵 706‧‧‧Electric permanent magnet

708‧‧‧第一電永磁鐵 708‧‧‧First electric permanent magnet

710‧‧‧線圈 710‧‧‧ coil

712‧‧‧第二電永磁鐵 712‧‧‧Second electric permanent magnet

714‧‧‧鐵心 714‧‧‧ iron core

F,F1,F2,F3‧‧‧力 F, F 1 , F 2 , F 3 ‧ ‧ force

Fc‧‧‧預載力 F c ‧‧‧Preload force

FD‧‧‧動態力 F D ‧‧‧ Dynamic force

Fn‧‧‧負剛性力 F n ‧‧‧negative rigidity

Fp‧‧‧正剛性力 F p ‧‧‧正正力力

FQ‧‧‧靜態力 F Q ‧‧‧Static force

Fr‧‧‧合力 F r ‧‧‧heli

kr‧‧‧得到的剛性 k r ‧‧‧acquired rigidity

kn‧‧‧負剛性 k n ‧‧‧negative rigidity

kp‧‧‧正剛性 k p ‧‧‧正 rigidity

M1-M6‧‧‧反射鏡 M1-M6‧‧‧Mirror

δ,δ123‧‧‧方向 δ, δ 1 , δ 2 , δ 3 ‧‧‧ directions

圖1A顯示EUV微影設備的示意圖;圖1B顯示DUV微影設備的示意圖;圖2顯示整合至例如圖1A或1B之微影射設備的光學裝置的透視圖;圖3示意地顯示圖2中的區段III-III;圖3A顯示與圖3相關的力圖;圖4A顯示根據第一具體實施例的一圖式,其描述圖3之光學裝置的力對位移圖;圖4B根據第二具體實施例描述圖3之光學裝置的力對位移圖;圖5A-5C分別以示意側視圖描述使用機械補償系統以獲得負剛性的光學裝置;圖6A以示意側視圖顯示使用磁性補償系統以獲得負剛性的光學裝置;圖6B顯示圖6A之具體實施例的變化形式;圖7A-7D顯示不同的具體實施例,以獲得具有可調整之負剛性的光學裝置;以及圖8以示意側視圖顯示包含沿多個軸之負剛性補償的光學裝置。 1A shows a schematic view of an EUV lithography apparatus; FIG. 1B shows a schematic view of a DUV lithography apparatus; FIG. 2 shows a perspective view of an optical apparatus integrated into a micro-infrared apparatus such as that of FIG. 1A or 1B; FIG. 3 schematically shows the Section III-III; FIG. 3A shows a force diagram associated with FIG. 3; FIG. 4A shows a diagram according to the first embodiment, which depicts a force versus displacement diagram of the optical device of FIG. 3; FIG. 4B is based on a second embodiment. The force versus displacement diagram of the optical device of Figure 3 is depicted; Figures 5A-5C depict, in schematic side views, optical devices using a mechanical compensation system to obtain negative stiffness, respectively; Figure 6A shows in schematic side view the use of a magnetic compensation system to achieve negative stiffness Figure 6B shows a variation of the embodiment of Figure 6A; Figures 7A-7D show different embodiments to obtain an optical device with adjustable negative stiffness; and Figure 8 shows the included side in a schematic side view A negatively rigid compensated optical device for multiple axes.

在圖式中,除非另有說明,類似的元件符號表示類似或功能上等效的元件。 In the drawings, like reference numerals indicate similar or functionally equivalent elements unless otherwise indicated.

圖1A顯示EUV微影設備100A的示意圖,其包含照明系統 102及投射系統104(亦稱作「POB」)。EUV代表「極紫外光」且表示曝光光的波長在0.1nm到30nm之間。照明系統102及投射系統104整合至由抽真空裝置(圖未示)抽空的真空外罩中。真空外罩由一機械室(machinery room)(圖未示)包圍。機械室包含用以定位光學元件的裝置。此外,機械室可包含控制裝置及其他電子設備。 1A shows a schematic diagram of an EUV lithography apparatus 100A that includes a lighting system 102 and projection system 104 (also referred to as "POB"). EUV stands for "extreme ultraviolet light" and indicates that the wavelength of the exposure light is between 0.1 nm and 30 nm. The illumination system 102 and projection system 104 are integrated into a vacuum enclosure that is evacuated by a vacuuming device (not shown). The vacuum enclosure is surrounded by a machine room (not shown). The machine room contains means for positioning the optical elements. In addition, the machine room can contain control devices and other electronic devices.

EUV微影設備100A包含EUV光源106A。EUV光源106A可形成為電漿源或在EUV範圍的同步加速器發射光108A,例如波長在0.1nm到30nm之間的光。EUV光108A聚束於照明系統102內,且期望的操作波長將被濾出。EUV光108A在空氣中具有低透射率,這是照明系統102及投射系統104要抽真空的原因。 The EUV lithography apparatus 100A includes an EUV light source 106A. The EUV light source 106A can be formed as a plasma source or as a synchrotron emitting light 108A in the EUV range, such as light having a wavelength between 0.1 nm and 30 nm. EUV light 108A is concentrated within illumination system 102 and the desired operating wavelength will be filtered out. EUV light 108A has low transmission in air, which is why illumination system 102 and projection system 104 are to be evacuated.

圖1A中所示的照明系統102具有例如五個反射鏡110、112、114、116、118。在通過照明系統102之後,EUV光108A被導引至光罩120。光罩120也組態為反射光學元件且可配置在系統102、104之外。此外,可使用在系統102、104任一者外部的反射鏡126將EUV光108A導向光罩120。光罩120包含一結構,藉由投射系統140將該結構的更小影像投射至晶圓122或類似物。 The illumination system 102 shown in FIG. 1A has, for example, five mirrors 110, 112, 114, 116, 118. After passing through the illumination system 102, the EUV light 108A is directed to the reticle 120. The reticle 120 is also configured as a reflective optical element and can be disposed outside of the systems 102,104. Additionally, EUV light 108A can be directed to reticle 120 using mirrors 126 external to any of systems 102, 104. The reticle 120 includes a structure that projects a smaller image of the structure to the wafer 122 or the like by the projection system 140.

投射系統140可包含例如六個反射鏡M1-M6,用以將結構投射至晶圓122。投射系統104的反射鏡M1-M6的其中一部份可相對投射系統104的光學軸124對稱地配置。當然,EUV微影設備100A的反射鏡的數量並不限於圖1A中所示的數量。此外,反射鏡可為不同形狀,例如某些可形成為曲面反射鏡,而其他可形成為琢面反射鏡。 Projection system 140 can include, for example, six mirrors M1-M6 for projecting structures onto wafer 122. A portion of the mirrors M1-M6 of the projection system 104 can be symmetrically disposed relative to the optical axis 124 of the projection system 104. Of course, the number of mirrors of the EUV lithography apparatus 100A is not limited to the number shown in FIG. 1A. Furthermore, the mirrors can be of different shapes, for example some can be formed as curved mirrors, while others can be formed as facet mirrors.

圖1B顯示DUV微影設備100B的示意圖,其亦包含照明系統102及投射系統104。DUV指「深紫外光(deep ultraviolet)」且表示曝光光的波長在30nm到250nm之間。如參照圖1A所解釋,照明系統102及投射系統104可配置於真空外罩及/或機械室中。 FIG. 1B shows a schematic diagram of DUV lithography apparatus 100B, which also includes illumination system 102 and projection system 104. DUV means "deep ultraviolet" and means that the wavelength of the exposure light is between 30 nm and 250 nm. As explained with reference to FIG. 1A, illumination system 102 and projection system 104 can be disposed in a vacuum enclosure and/or machine room.

DUV微影設備100B包含DUV光源108B。DUV光源108B可 組態為波長在例如為193nm的ArF準分子雷射發射光108B。 The DUV lithography apparatus 100B includes a DUV light source 108B. DUV light source 108B can ArF excimer laser emitting light 108B having a wavelength of, for example, 193 nm is configured.

照明系統102將DUV光108B導引至光罩120上。光罩120組態為透射式光學元件且可分別配置於系統102、104之外。同樣地,光罩120具有一結構,藉由投射系統140將該結構的更小影像投射至晶圓122或類似物。 The illumination system 102 directs the DUV light 108B onto the reticle 120. The reticle 120 is configured as a transmissive optical element and can be disposed separately from the systems 102, 104, respectively. Similarly, reticle 120 has a structure that projects a smaller image of the structure to wafer 122 or the like by projection system 140.

投射系統104可包含多個透鏡132及/或反射鏡134,用以將光罩120的結構投射至晶圓122。透鏡132及/或反射鏡134可相對投射系統104的光學軸124對稱地配置。同樣地,DUV微影設備100B的透鏡或反射鏡的數量並不限於圖1B所示之透鏡及反射鏡的數量。 Projection system 104 can include a plurality of lenses 132 and/or mirrors 134 for projecting the structure of reticle 120 to wafer 122. Lens 132 and/or mirror 134 may be symmetrically disposed relative to optical axis 124 of projection system 104. Likewise, the number of lenses or mirrors of the DUV lithography apparatus 100B is not limited to the number of lenses and mirrors shown in FIG. 1B.

最後的透鏡132及晶圓122之間的空隙可用折射率大於1的液體介質136來取代。舉例來說,可使用高純度的水作為液體介質。此設置稱作浸潤式微影,其特徵在於增強的光學微影解析度。 The gap between the last lens 132 and the wafer 122 may be replaced by a liquid medium 136 having a refractive index greater than one. For example, high purity water can be used as the liquid medium. This setting is called immersion lithography and is characterized by enhanced optical lithography resolution.

圖2以透視圖顯示光學裝置200,其包含支撐光學元件204的基底202,光學元件204可例如形成為一反射鏡。 2 shows the optical device 200 in a perspective view, comprising a substrate 202 supporting an optical element 204, which may be formed, for example, as a mirror.

光學裝置200可整合至圖1A及圖1B中所示之微影設備的其中一者。光學元件204可例如對應至反射鏡M1至M6的其中一者(圖1A)或對應至透鏡或反射鏡132、134的其中一者(圖1B)。在其他具體實施例中(圖未示),光學元件204組態為光柵或λ板。 Optical device 200 can be integrated into one of the lithography devices shown in Figures 1A and 1B. Optical element 204 may, for example, correspond to one of mirrors Ml through M6 (FIG. 1A) or to one of lenses or mirrors 132, 134 (FIG. 1B). In other embodiments (not shown), the optical element 204 is configured as a grating or a λ plate.

基底202可緊固至微影設備100A、100B的一固定結構,例如緊固至一力框(圖未示)。為此,基底202可配備有緊固孔206或類似者。基底202可包含矩形或任何其他適合的形狀。 The substrate 202 can be fastened to a fixed structure of the lithography apparatus 100A, 100B, such as to a force frame (not shown). To this end, the substrate 202 can be equipped with fastening holes 206 or the like. Substrate 202 can comprise a rectangle or any other suitable shape.

反射鏡204(為便於理解,以下將以反射鏡作參考,但這不應解釋為僅限於反射鏡,而是可使用任何其他適合的光學元件)反射入射光108A、108B。反射鏡204的對應光學軸以元件符號208來表示。至少光108A、108B被反射的前端面210、或整個反射鏡204可為彎曲(如圖所示)或直的。 Mirror 204 (for ease of understanding, reference will be made below to the mirror, but this should not be construed as being limited to mirrors, but any other suitable optical element may be used) to reflect incident light 108A, 108B. The corresponding optical axis of mirror 204 is indicated by element symbol 208. At least the front end face 210 where the light 108A, 108B is reflected, or the entire mirror 204 can be curved (as shown) or straight.

圖3顯示圖2中的區段III-III。圖中繪示反射鏡204在未變形狀態(實線)及在變形狀態(點虛線)。反射鏡204顯示為在其未變形狀態下具有平 面形狀。然而,反射鏡204在其未變形狀態下可具有任何形狀,例如彎曲的形狀。 Figure 3 shows section III-III of Figure 2. The mirror 204 is shown in an undeformed state (solid line) and in a deformed state (dotted line). Mirror 204 is shown to be flat in its undeformed state Face shape. However, the mirror 204 may have any shape, such as a curved shape, in its undeformed state.

反射鏡204可例如在兩個位置由例如支撐物300、302所支撐。支撐物300、302可在反射鏡204的後端面304支撐反射鏡204或其部分。在此簡單的支撐組態中,支撐物300可組態為允許反射鏡204的相對旋轉,但仍在垂直於光學軸208的方向中將反射鏡204固定地連接至基底202。另一方面,支撐物302允許反射鏡204的相對旋轉,並允許反射鏡204相對於光軸208的垂直移動。此處所使用的「垂直」可包含與準確垂直的偏差達10°、較佳為達5°、更佳為達1°。 The mirror 204 can be supported, for example, at two locations by, for example, supports 300, 302. The supports 300, 302 can support the mirror 204 or portions thereof at the rear end face 304 of the mirror 204. In this simple support configuration, the support 300 can be configured to allow relative rotation of the mirror 204, but still fixedly connect the mirror 204 to the substrate 202 in a direction perpendicular to the optical axis 208. On the other hand, the support 302 allows relative rotation of the mirror 204 and allows vertical movement of the mirror 204 relative to the optical axis 208. As used herein, "vertical" may include a deviation from an accurate vertical of 10°, preferably 5°, more preferably 1°.

然而,反射鏡204或其部分的任何其他類型的支撐是可能的。舉例來說,反射鏡204可在多於兩個位置處被支撐,例如五個、十個、二十個或更多位置。此外,支撐物可組態以在其連接至反射鏡204的位置處產生力或力矩或兩者。 However, any other type of support of mirror 204 or portions thereof is possible. For example, mirror 204 can be supported at more than two locations, such as five, ten, twenty or more locations. Additionally, the support can be configured to generate a force or moment or both at a location where it is coupled to the mirror 204.

此外,光學裝置200包含致動器306。致動器306組態以在圖3所示的兩狀態之間變形光學元件204(或其部分)。致動器306一方面緊固至反射鏡204,另一方面緊固至基底202或任何其他適當的參考物。致動器306可例如組態為勞侖茲式致動器,亦即包含音圈(圖未示)及磁鐵(圖未示)以在反射鏡204上產生一合力Fr(參考圖3A,其顯示關於圖3的力圖)以變形反射鏡204。力Fr所作用的方向係標示為δ。 Additionally, optical device 200 includes an actuator 306. Actuator 306 is configured to deform optical element 204 (or a portion thereof) between the two states shown in FIG. The actuator 306 is fastened to the mirror 204 on the one hand and to the substrate 202 or any other suitable reference on the other hand. The actuator 306 may be configured as, for example Lorentz actuator, i.e. comprising a voice coil (not shown) and a magnet (not shown) to produce a resultant force F r on the reflecting mirror 204 (refer to FIGS. 3A, It shows the force diagram with respect to Figure 3 to deform the mirror 204. The direction in which the force F r acts is indicated as δ.

原則上,可使用任何其他致動器(例如壓電致動器或氣動致動器)來取代勞侖茲致動器。然而,特別是當用於開迴路控制系統中時,使用勞侖茲致動器可提供可具成本效益的低複雜度系統。 In principle, any other actuator, such as a piezoelectric actuator or a pneumatic actuator, can be used in place of the Lorentz actuator. However, the use of Lorentz actuators, when used in open circuit control systems, can provide a cost effective low complexity system.

當使用勞侖茲致動器時,磁鐵可緊固至反射鏡204(特別是緊固至其後側304),且音圈可緊固至基底202。音圈306緊固至反射鏡204且磁鐵緊固至基底202的其他配置也是可能的。 When a Lorentz actuator is used, the magnet can be fastened to the mirror 204 (especially to its rear side 304) and the voice coil can be fastened to the base 202. Other configurations in which the voice coil 306 is fastened to the mirror 204 and the magnets are fastened to the substrate 202 are also possible.

致動器306可由控制器308控制。控制器308可組態以控制致 動器306,以變形反射鏡204來提供光學校正。亦即,藉由變形反射鏡204,入射光108A、108B的角度將改變。光學校正可包含影像誤差校正,例如重疊或焦點校正。「影像」指投射至晶圓122上的影像(參考圖1A及1B)。 Actuator 306 can be controlled by controller 308. Controller 308 can be configured to control Actuator 306, with anamorphic mirror 204, provides optical correction. That is, by deforming the mirror 204, the angle of the incident light 108A, 108B will change. Optical correction can include image error correction, such as overlap or focus correction. "Image" refers to an image projected onto wafer 122 (see Figures 1A and 1B).

控制器308可組態以即時變形反射鏡204,例如在曝光晶圓122上的兩個不同晶粒之間或甚至在晶粒內(即在晶圓122上的單一晶粒的掃瞄期間)的時窗內。晶圓122上相應晶粒的掃描可例如以30Hz進行。因此,改變反射鏡204的變形的時窗可小於1/30秒。 The controller 308 can be configured to instantly deform the mirror 204, such as between two different dies on the exposed wafer 122 or even within the dies (i.e., during a single granule scan on the wafer 122) Within the time window. Scanning of the respective dies on wafer 122 can be performed, for example, at 30 Hz. Therefore, the time window for changing the deformation of the mirror 204 can be less than 1/30 second.

在圖3的範例中,在方向δ上變形反射鏡204可藉由反射鏡204的平面外彎曲而獲得。這是由於致動器306在平行於光學軸208的方向δ上在兩個支撐物300、302之間的一位置作用在反射鏡204上。「平行」可包含與精確平行偏離達10°、較佳達5°、且更佳達1°。 In the example of FIG. 3, the deformed mirror 204 in the direction δ can be obtained by out-of-plane bending of the mirror 204. This is because the actuator 306 acts on the mirror 204 at a position between the two supports 300, 302 in a direction δ parallel to the optical axis 208. "Parallel" may comprise a deviation of up to 10°, preferably up to 5°, and more preferably up to 1°.

當反射鏡204由在方向δ上作用的一力所變形時,此力一般來說將由兩個分力所組成。首先為變形反射鏡204本身所需的準靜態力FQ(參考圖3A)。此靜態力為反射鏡204的材料的E模量以及其幾何形狀的函數,因此對應反射鏡204的(正)剛性。另一方面,力將由加速反射鏡204的質量所需的動態力FD所形成。此動態力取決於反射鏡204的密度、幾何變形輪廓、及變形軌道(為時間函數)。為了降低致動器306變形反射鏡204所需耗費的合力Fr,反射鏡的正剛性與相應的負剛性成對。為此,光學裝置200包含一補償單元310,其在方向δ上具有負剛性以至少部分地補償反射鏡204的正剛性。 When the mirror 204 is deformed by a force acting in the direction δ, this force will generally consist of two component forces. First, it is the quasi-static force F Q required to deform the mirror 204 itself (refer to FIG. 3A). This static force is a function of the E-modulus of the material of the mirror 204 and its geometry, and thus corresponds to the (positive) stiffness of the mirror 204. On the other hand, the force will be formed by the dynamic force F D required to accelerate the mass of the mirror 204. This dynamic force depends on the density of the mirror 204, the geometric deformation profile, and the deformation trajectory (as a function of time). In order to reduce actuator 306 of the deformable mirror 204 takes the required force F r, n corresponding to the negative rigidity of the rigidity of the mirror pair. To this end, the optical device 200 includes a compensation unit 310 that has a negative stiffness in the direction δ to at least partially compensate for the positive stiffness of the mirror 204.

圖3A顯示在致動器306及補償單元310的位置處作用在反射鏡204上的力的示意圖。當反射鏡204在方向δ上變形時,反射鏡的正剛性kp導致一正力Fp。這也示於圖4A中,其顯示力F對變形δ的圖式。另一方面,當反射鏡在與力Fp相反的方向δ上變形時,補償單元310的負剛性將導致一力Fn。所產生的力為力FQ,其為在方向δ上變形反射鏡204所需的靜態力。除了靜態力FQ之外,致動器306需施加動態力FD於反射鏡204上以將其加速。力 FQ及FD的總和等於由致動器306所施加的合力Fr。由於Fn及Fp遠大於FQ、FD及Fr,其在圖3A中並未依比例繪示而分別以虛線表示。 FIG. 3A shows a schematic diagram of the forces acting on the mirror 204 at the position of the actuator 306 and the compensation unit 310. When the mirror 204 is deformed in the direction δ, the positive stiffness k p of the mirror results in a positive force F p . This is also shown in Figure 4A, which shows a plot of force F versus deformation δ. On the other hand, when the deformation of the mirror δ force F p opposite direction, the compensation unit 310 will result in a negative rigidity a force F n. The force generated is the force F Q , which is the static force required to deform the mirror 204 in the direction δ. In addition to static forces F Q, the actuator 306 needs to exert a dynamic force F D on the mirror 204 to be accelerated. The sum of the forces F Q and F D is equal to the resultant force F r applied by the actuator 306. Since F n and F p are much larger than F Q , F D and F r , they are not shown to scale in FIG. 3A and are respectively indicated by broken lines.

由於反射鏡204在方向δ上的變形量一般為小(例如在微米範圍內),且同時變形的時窗相當大(例如1/30秒)(參考前文中有關掃描軌跡的解釋),所需的動態力FD相較於靜態力FQ為小。此外,藉由適當的系統設計而將合力Fr(=FQ+FD)給定為遠小於由補償單元所產生的力Fn。顯然地,當產生晶粒或晶圓時,力Fp、Fn、FD可隨時間改變。然而,力一般將顯示為在單一晶粒或整體晶圓的製造上是循環的。已發現系統可設計使得當看單一週期時,負剛性力Fn具有一最大值,其比需由致動器306所產生之最大合力Fr大N倍,其中較佳為N>5、更佳為N>10、進一步更佳為N>50。 Since the amount of deformation of the mirror 204 in the direction δ is generally small (for example, in the micrometer range), and the time window of the deformation is relatively large (for example, 1/30 second) (refer to the explanation of the scanning trajectory in the foregoing), The dynamic force F D is smaller than the static force F Q . Furthermore, the resultant force F r (=F Q +F D ) is given by the appropriate system design to be much smaller than the force F n generated by the compensation unit. Obviously, when a die or wafer, the force F p, F n, F D may change over time. However, forces will generally appear to be cyclic in the fabrication of a single die or monolithic wafer. The system may be designed such that it has been found when viewed with a single period, a negative stiffness forces F n having a maximum value, which is greater than the maximum required force F generated by the actuator of 306 r N times, preferably wherein N> 5, more Good for N>10, further better for N>50.

這類型的系統設計使致動器306具有低能量消耗。這轉而使相應的熱耗損為小,因而避免熱膨脹問題及相應的冷卻問題。 This type of system design allows the actuator 306 to have low energy consumption. This in turn causes the corresponding heat loss to be small, thus avoiding thermal expansion problems and corresponding cooling problems.

為了進一步改善系統設計,「大」的力Fp及Fn可設計成與「小」的動態力FD相較變化很小。為此,動態力FD在一循環上的最大時間導數(參考前文的解釋)可比負剛性力Fn的最大時間導數大M倍,其中M較佳為大於1、更佳為大於2、且再更佳為大於10。 To further improve the system design, the "big" force F p and F n can be designed with a dynamic force F D "small" compared to small changes. To this end, the maximum time derivative of the dynamic force F D on a cycle (refer to the foregoing explanation) may be M times greater than the maximum time derivative of the negative stiffness force F n , where M is preferably greater than 1, more preferably greater than 2, and More preferably, it is greater than 10.

為了進一步改善系統的能源效率,致動器306可設計以恢復反射鏡204中的動態能量。換言之,當反射鏡204需要減速,反射鏡204在致動器306上所作的功轉換為電能,其回到電能儲存器。因此,致動器306的熱耗損可進一步的降低。 To further improve the energy efficiency of the system, the actuator 306 can be designed to restore dynamic energy in the mirror 204. In other words, when the mirror 204 needs to be decelerated, the work done by the mirror 204 on the actuator 306 is converted to electrical energy, which is returned to the electrical energy storage. Therefore, the heat loss of the actuator 306 can be further reduced.

現在回到圖4A,可看出正剛性力Fp、負剛性力Fn及合力Fr分別取決於剛性kp(正剛性)、kn(負剛性)、kr(所得到的剛性)以及變形δ。較佳地,所得到的剛性kr以及相應的合力Fr係設計為正且不等於零。舉例來說,負剛性kn可等於正剛性kp的0.9到0.99倍。這將確保當致動器306未產生力時(例如當致動器306關閉(無電源)時,像是在光學裝置200或微影設備100A、100B的傳輸期間)或當存在致動器306的不可預見的故障時,將限定 反射鏡204在方向δ上的變形。藉由將所得到的剛性kr選擇為正,反射鏡204將回到其未變形狀態,而無致動器306的動作(致動器306關閉或故障)。 Returning now to Figure 4A, it can be seen that the positive stiffness force F p , the negative stiffness force F n and the resultant force F r depend on the stiffness k p (positive stiffness), k n (negative stiffness), k r (the resulting stiffness), respectively. And deformation δ. Preferably, the resulting stiffness k r and the corresponding resultant force F r are designed to be positive and not equal to zero. For example, the negative stiffness k n can be equal to 0.9 to 0.99 times the positive stiffness k p . This will ensure that when the actuator 306 is not generating a force (eg, when the actuator 306 is off (no power), such as during transmission of the optical device 200 or the lithography apparatus 100A, 100B) or when the actuator 306 is present In the event of an unforeseen failure, the deformation of the mirror 204 in the direction δ will be limited. By selecting the resulting stiffness k r to be positive, the mirror 204 will return to its undeformed state without the action of the actuator 306 (actuator 306 is off or malfunctioning).

圖4B根據光學裝置200的另一具體實施例顯示力對變形圖。在此具體實施例中,負剛性力Fn可開啟或關閉,如後文中參照圖7A至7D所作的進一步解釋。因此,當關閉負剛性kn,所產生的剛性將對應正剛性kp,其足夠大以避免例如在傳輸期間由於振動或其他移動而損壞反射鏡204。因此,在光學裝置200的正常操作期間(亦即在晶圓的製造期間)所產生的剛性kr可設計為比在圖4A所述之具體實施例中更小(或等於零)。舉例來說,在圖4B的具體實施例中,負剛性kn可設計為正剛性kp的0.99到0.999倍。 FIG. 4B shows a force versus deformation map in accordance with another embodiment of optical device 200. In this particular embodiment, the negative stiffness force Fn can be turned on or off, as explained further below with reference to Figures 7A through 7D. Thus, when closing the negative rigidity k n, corresponding to the rigidity of the resulting positive rigidity k p, which is large enough to avoid, for example, due to vibration or other movement of the mirror 204 from being damaged during transport. Thus, the stiffness kr produced during normal operation of the optical device 200 (i.e., during fabrication of the wafer) can be designed to be smaller (or equal to zero) than in the particular embodiment illustrated in Figure 4A. For example, in the particular embodiment of FIG. 4B, the negative rigidity k n may be designed to positive from 0.99 to 0.999 times the rigidity k p.

範例:若反射鏡質量假設為1kg,在10ms的移動時間內移動超過1μm,則需要10mm/s2的加速度。相應的動態力FD等於10mN,其可由勞倫茲致動器在低於1mW的功率耗損下傳遞。 Example: If the mirror mass is assumed to be 1 kg and moves over 1 μm within 10 ms of movement time, an acceleration of 10 mm/s 2 is required. The corresponding dynamic force F D is equal to 10 mN, which can be transmitted by a Lorentz actuator at a power loss of less than 1 mW.

補償反射鏡正剛性kn所需的負剛性kp在105到106N/m的等級。針對1μm的偏移,這將因此需要1N的負剛性力Fn。這對應100倍的動態力FD。為了與動態力FD有相同的數量級,負剛性力Fn需非常的準確。較佳地,負剛性力可即時地調整,即在光學裝置200的操作期間動態地調整。調整負剛性的方式將在後文中參照圖7A至7D來解釋。 The negative stiffness k p required to compensate for the mirror's positive stiffness k n is on the order of 10 5 to 10 6 N/m. For a 1 μm offset, this would therefore require a negative stiffness force Fn of 1N. This corresponds to a dynamic force F D of 100 times. In order to be of the same order of magnitude as the dynamic force F D , the negative stiffness force F n needs to be very accurate. Preferably, the negative stiffness force is instantly adjustable, i.e., dynamically adjusted during operation of the optical device 200. The manner of adjusting the negative rigidity will be explained later with reference to Figs. 7A to 7D.

現在,將參考圖5A至5C來解釋使用機械補償以獲得所需負剛性kn之光學裝置200的具體實施例。 A specific embodiment of an optical device 200 that uses mechanical compensation to achieve a desired negative stiffness k n will now be explained with reference to Figures 5A through 5C.

圖5A的補償單元310包含例如機械彈簧500(例如片簧或螺旋彈簧)及組態以預載彈簧500的預載單元502(例如氣壓缸)。作用在例如反射鏡204的側面504上的彈簧500較佳組態為相當的長。當反射鏡204變形時,長彈簧500確保約為恆定的一預載力Fc,因此此變形也將造成反射鏡204橫向地移動,即在垂直光學軸208的方向。除了使用氣壓缸502,彈簧500可能在其壓縮狀態附接至基底202,以產生力Fc。在其他具體實施例中,可例如藉由氣壓缸或使用磁鐵直接地(不使用機械彈簧)施加力FcThe compensation unit 310 of FIG. 5A includes, for example, a mechanical spring 500 (eg, a leaf spring or a coil spring) and a preload unit 502 (eg, a pneumatic cylinder) configured to preload the spring 500. The spring 500 acting on, for example, the side 504 of the mirror 204 is preferably configured to be relatively long. When the deformable mirror 204, the spring length of about 500 to ensure a constant preload force F c, so this will also cause deformation of the mirror 204 is moved laterally, i.e. in a direction perpendicular to the optical axis 208. In addition to the use of pneumatic cylinders 502, spring 500 may be attached to the base 202 in its compressed state to produce a force F c. In other embodiments, for example by using a magnet or a pneumatic cylinder directly (without using a mechanical spring) applies a force F c.

圖5A的反射鏡204在平面中(即與光學軸208成直角)以補償力Fc預載。力Fc趨向使反射鏡204彎曲,並因此將反射鏡204彎曲到平面外。此力Fc可例如藉由機械彈簧500施加。 FIG 5A mirror 204 in a plane (i.e., at right angles to the optical axis 208) to compensate for the preload force F c. The force F c tends to bend the mirror 204, the mirror 204 and thus bend out of plane. This force F c can be applied, for example, by a mechanical spring 500.

因為反射鏡204為對稱,反射鏡204的一半可認為是簡單的懸臂,在其端部受到一力,如圖5B所示。 Because the mirror 204 is symmetrical, half of the mirror 204 can be considered a simple cantilever with a force at its end, as shown in Figure 5B.

偏移由下式給出: 其中L對應如圖5A所示之反射鏡204在支撐物300、302之間的寬度、Fp對應克服反射鏡204的正剛性所需的正剛性力、E對應反射鏡204之材料(例如玻璃或陶瓷)的E模量、以及I對應轉動慣量(其取決於反射鏡204的截面的幾何形狀)。 The offset is given by: Wherein L corresponds to the width of the mirror 204 between the supports 300, 302 as shown in FIG. 5A, F p corresponds to the positive rigidity required to overcome the positive rigidity of the mirror 204, and E corresponds to the material of the mirror 204 (for example, glass) The E modulus of the ceramic or I corresponds to the moment of inertia (which depends on the geometry of the cross section of the mirror 204).

因此,反射鏡204的正剛性kp由下式給出: Therefore, the positive stiffness k p of the mirror 204 is given by:

在偏移δ處施加至懸臂的壓縮力Fc(預載)(參考圖5B及5C)將導致大小為Fc.δ的彎曲力矩。此力矩產生偏移δ'使得: Compressive force F c is applied to the cantilever (preload) (refer to FIG. 5B and 5C) will result in an offset size δ of the F c. The bending moment of δ. This moment produces an offset δ' such that:

當δ=δ'(對應零剛性,亦當正剛性kp等於負剛性kn),所需的補償力Fc由下式給出: When δ = δ' (corresponding to zero stiffness, also when positive stiffness k p is equal to negative stiffness k n ), the required compensation force F c is given by:

因此,前文已顯示恆定的預載力Fc適用以提供負或接近負的剛性,其將補償反射鏡204的正剛性。舉例來說,可由預載的一長彈簧500提供接近恆定的補償力FcThus, the display has been previously constant preload force F c is adapted to provide a negative or near negative stiffness, which will compensate for the rigidity of the mirror 204 is positive. For example, a long spring 500 may be preloaded to provide a near constant compensation force F c.

圖6A及6B描述包含磁鐵之補償單元310的第一及第二具體實施例。 6A and 6B depict first and second embodiments of a compensation unit 310 including a magnet.

圖6A的補償單元310包含緊固至反射鏡204的第一磁鐵600以產生負剛性力Fn。第一磁鐵600及反射鏡204之間的連接係標示為602。磁鐵600配置於靜止的第二及第三磁鐵604、606之間。為此,第二及第三磁鐵604、606可緊固至基底202。第一磁鐵600可在方向δ上機械地導引。磁鐵600、604、606可組態為塊磁鐵,且可具有與方向δ相同的極性(由「N」來表示北方、「S」來表示南方)。因此,當第一磁鐵600位於第二及第三磁鐵604、606的中間時,第一磁鐵600在反射鏡204產生上零偏移力。同樣地,當反射鏡204的變形在方向δ上增加時,力Fn也相應地增加。因此,產生負剛性knThe compensation unit 310 of FIG. 6A includes a first magnet 600 that is secured to the mirror 204 to create a negative stiffness force Fn . The connection between the first magnet 600 and the mirror 204 is indicated at 602. The magnet 600 is disposed between the stationary second and third magnets 604, 606. To this end, the second and third magnets 604, 606 can be fastened to the substrate 202. The first magnet 600 can be mechanically guided in the direction δ. The magnets 600, 604, 606 can be configured as block magnets and can have the same polarity as the direction δ (indicated by "N" for the north and "S" for the south). Therefore, when the first magnet 600 is positioned in the middle of the second and third magnets 604, 606, the first magnet 600 produces a zero offset force on the mirror 204. Likewise, as the deformation of the mirror 204 increases in the direction δ, the force Fn also increases accordingly. Therefore, a negative rigidity k n is generated.

在圖6B的範例中,補償單元310包含透過連接602而連接至反射鏡204的第一磁鐵600。此外,補償單元310包含組態為一環形磁鐵的第二磁鐵604。環形磁鐵604具有中心軸608。當反射鏡204在方向δ上變形時,第一磁鐵600例如被機械地導引以沿中心軸608移動。第一磁鐵600及第二磁鐵604沿軸608具有相反的極性。當第一磁鐵600沿軸608配置於第二磁鐵604的對稱軸610上時,第一磁鐵600在反射鏡204上產生零偏移力。隨著反射鏡204的變形在方向δ上增加,第一磁鐵600所產生的負剛性力Fn也將如此,因為第一磁鐵600偏離其在對稱軸610的位置。 In the example of FIG. 6B, the compensation unit 310 includes a first magnet 600 that is coupled to the mirror 204 through a connection 602. Furthermore, the compensation unit 310 comprises a second magnet 604 configured as a ring magnet. The ring magnet 604 has a central axis 608. When the mirror 204 is deformed in the direction δ, the first magnet 600 is, for example, mechanically guided to move along the central axis 608. The first magnet 600 and the second magnet 604 have opposite polarities along the axis 608. When the first magnet 600 is disposed along the axis 608 on the axis of symmetry 610 of the second magnet 604, the first magnet 600 produces a zero offset force on the mirror 204. As the deformation of the mirror 204 increases in the direction δ, the negative stiffness force Fn produced by the first magnet 600 will also be such that the first magnet 600 is offset from its position on the axis of symmetry 610.

圖7A到7D顯示調整單元700的四個不同的具體實施例。 Figures 7A through 7D show four different embodiments of the adjustment unit 700.

在圖7A的範例中,調整單元具有一氣壓缸700,其組態以開啟或關閉。在「關閉」狀態中,氣壓缸700不會產生預載力Fc於彈簧500上。另一方面,控制器702可組態成基於對控制器702的輸入而控制預載力Fc(甚 至連續地)。舉例來說,可設置一感測器704,其感測需要校正的光學誤差。控制器702可接收來自感測器704的相應輸入信號並控制氣壓缸700產生預載力Fc,其將產生導致適當光學校正之反射鏡204的變形。 In the example of Figure 7A, the adjustment unit has a pneumatic cylinder 700 that is configured to open or close. In the "closed" state, the pneumatic cylinder 700 will not preload force F c on the spring 500. On the other hand, the controller 702 can be configured as an input to the controller 702 based on the control of preload force F c (or even continuous). For example, a sensor 704 can be provided that senses the optical error that needs to be corrected. The controller 702 may receive input signals from the respective sensors 704 and controls the pneumatic cylinder 700 generates a preload force F c, which would generate an appropriate optical correction lead to deformation of the mirror 204.

由控制器702設定所需的預載力Fc可藉由在緩慢變形移動期間量測例如(勞侖茲)致動器306的電流來執行。由於這是緩慢的,加速力可忽略不計,且勞侖茲力只是由於殘餘剛性kr。若Fr及δ皆量測,則可決定kr,且相應地調整Fc直到達到所需的kr值。 It can be performed by the controller 702 to set the desired preload force F c in the measured current slow deformation during the movement, for example, (Lorentz) of the actuator 306. Since this is slow, the acceleration is negligible and the Lorentz force is only due to the residual stiffness k r . If both F r and δ are measured, then k r can be determined and F c adjusted accordingly until the desired k r value is reached.

圖7B至7D的具體實施例也可包含控制器702,且根據情況也可包含感測器704。它們僅在調整負剛性力Fn的方式上有所不同。 The particular embodiment of Figures 7B through 7D may also include a controller 702, and may also include a sensor 704 as appropriate. They differ only in the way the negative stiffness force F n is adjusted.

在圖7B的具體實施例中,調整單元700可包含機械裝置(例如固定螺絲)以沿中心軸608將第二磁鐵604從初始位置P1移動到位置P2,其中第一磁鐵600產生一初始偏移力於反射鏡204上。舉例來說,除了固定螺絲或類似物,也可使用電磁裝置來調整第二磁鐵604的位置。 In the particular embodiment of FIG. 7B, adjustment unit 700 can include mechanical means (eg, set screws) to move second magnet 604 from initial position P1 to position P2 along central axis 608, wherein first magnet 600 produces an initial offset Forced on the mirror 204. For example, in addition to a set screw or the like, an electromagnetic device can be used to adjust the position of the second magnet 604.

在圖7C的具體實施例中,調整單元700組態以調整耦合於第一磁鐵600及第二磁鐵604之間的磁場。為此,調整單元700可包含例如U形的移動磁鐵,其垂直於中心軸608移動以改變耦合於磁鐵600、604之間的磁場。在位置P1,磁鐵600、604配置於移動磁鐵700內。因此,在磁鐵600、604之間有一最大場。在位置P2,移動磁鐵700移動到磁鐵600、604配置在移動磁鐵700外部的位置。因此,在磁鐵600、604之間沒有(額外的)場耦合。當磁鐵600隨著反射鏡204變形而沿中心軸608移動時,這改變了在第一磁鐵600及第二磁鐵604之間作用的力。 In the particular embodiment of FIG. 7C, adjustment unit 700 is configured to adjust the magnetic field coupled between first magnet 600 and second magnet 604. To this end, the adjustment unit 700 can include a U-shaped moving magnet that moves perpendicular to the central axis 608 to change the magnetic field coupled between the magnets 600, 604. At the position P1, the magnets 600 and 604 are disposed in the moving magnet 700. Therefore, there is a maximum field between the magnets 600, 604. At the position P2, the moving magnet 700 moves to a position where the magnets 600, 604 are disposed outside the moving magnet 700. Therefore, there is no (extra) field coupling between the magnets 600, 604. This changes the force acting between the first magnet 600 and the second magnet 604 as the magnet 600 moves along the central axis 608 as the mirror 204 deforms.

在圖7D的具體實施例中,調整單元700包含電永磁鐵706。電永磁鐵706包含由中等矯頑力材料所形成的至少一第一磁鐵708以及組態以根據例如從控制器702(參考圖7A)所接收的輸入信號來改變磁鐵708之磁化的線圈710。此外,調整單元700可包含高度矯頑力材料所形成的第二磁鐵712,且可附加地或替代地包含一鐵心714以增加整體的場強度。磁鐵708 及磁鐵712(若有提供的話)形成圖6B所述的第二磁鐵604。藉由調整第一磁鐵708的磁化,可調整第二磁鐵604所產生的磁場,並可因此而調整負剛性FnIn the particular embodiment of FIG. 7D, adjustment unit 700 includes an electrically permanent magnet 706. The electrically permanent magnet 706 includes at least a first magnet 708 formed of a medium coercive material and a coil 710 configured to vary the magnetization of the magnet 708 in accordance with an input signal received, for example, from the controller 702 (refer to FIG. 7A). Additionally, adjustment unit 700 can include a second magnet 712 formed of a high coercivity material, and can additionally or alternatively include a core 714 to increase the overall field strength. Magnet 708 and magnet 712 (if provided) form second magnet 604 as depicted in Figure 6B. By adjusting the magnetization of the first magnet 708, the magnetic field generated by the second magnet 604 can be adjusted, and thus the negative stiffness Fn can be adjusted.

圖8顯示具有多軸δ1、δ2、δ3的光學裝置200,其中變形可沿軸δ1、δ2、δ3而發生。反射鏡204透過例如三個連接器602a、602b、602c分別連接至第一磁鐵600a、600b、600c。第一磁鐵600a、600b、600c相應地配置於第二及第三磁鐵604a、604b、604c及606a、606b、606c之間。關聯於相應連接器602a、602b、602c的每一個第一、第二及第三磁鐵604a...606c形成補償子單元310a、310b、310c。補償子單元310a、310b、310c共同形成了補償單元310。 Figure 8 shows an optical device 200 having multiple axes δ 1 , δ 2 , δ 3 in which deformation can occur along the axes δ 1 , δ 2 , δ 3 . The mirror 204 is connected to the first magnets 600a, 600b, 600c via, for example, three connectors 602a, 602b, 602c. The first magnets 600a, 600b, and 600c are disposed between the second and third magnets 604a, 604b, and 604c and 606a, 606b, and 606c, respectively. Each of the first, second, and third magnets 604a...606c associated with the respective connector 602a, 602b, 602c forms a compensation subunit 310a, 310b, 310c. The compensation subunits 310a, 310b, 310c together form a compensation unit 310.

圖8的補償單元310的負剛性由以下的負剛性矩陣來描述: The negative stiffness of the compensation unit 310 of Figure 8 is described by the following negative stiffness matrix:

剛性矩陣應建立以不僅產生所需的對角(局部)剛性,且需藉由在鄰近磁鐵604a...606c之間產生適當的負串擾(negative crosstalk)來補償反射鏡204的串擾項。 The rigid matrix should be established to not only produce the desired diagonal (local) stiffness, but also to compensate for the crosstalk term of mirror 204 by creating a suitable negative crosstalk between adjacent magnets 604a...606c.

雖然本發明已基於特定具體實施例進行描述,但可能有許多修改及變化且結果仍落入本發明的範疇內。意圖或應推斷沒有關於本文所揭露之特定具體實施例的限制。 Although the present invention has been described in terms of specific embodiments, many modifications and variations are possible and the results are still within the scope of the invention. It is intended or inferred that there are no limitations of the specific embodiments disclosed herein.

202‧‧‧基底 202‧‧‧Base

204‧‧‧反射鏡 204‧‧‧Mirror

208‧‧‧光學軸 208‧‧‧ optical axis

210‧‧‧前端面 210‧‧‧ front face

300‧‧‧支撐物 300‧‧‧Support

302‧‧‧支撐物 302‧‧‧Support

304‧‧‧後端面 304‧‧‧ rear end face

306‧‧‧致動器 306‧‧‧Actuator

308‧‧‧控制器 308‧‧‧ Controller

310‧‧‧補償單元 310‧‧‧Compensation unit

δ‧‧‧方向 Δ‧‧‧ Direction

Claims (15)

一種用於一微影設備的光學裝置,包含:一光學元件,其當在至少一方向上變形時具有一正剛性,一致動器,用以在該至少一方向上變形該光學元件,以及一補償單元,其在該至少一方向上具有一負剛性以至少部分地補償該光學元件的正剛性。 An optical device for a lithography apparatus, comprising: an optical element having a positive stiffness when deformed in at least one direction, an actuator for deforming the optical component in the at least one direction, and a compensation unit It has a negative stiffness in the at least one direction to at least partially compensate for the positive stiffness of the optical element. 如申請專利範圍第1項所述之光學裝置,其中該補償單元組態以在該至少一方向上於該光學元件上產生一第一最大力,且該致動器組態以在該至少一方向上於該光學元件上產生一第二最大力,其中該第一最大力比該第二最大力大N倍,其中N>5,較佳為N>10,更佳為N>50。 The optical device of claim 1, wherein the compensation unit is configured to generate a first maximum force on the optical element in the at least one direction, and the actuator is configured to be in the at least one direction A second maximum force is generated on the optical component, wherein the first maximum force is N times greater than the second maximum force, wherein N>5, preferably N>10, more preferably N>50. 如申請專利範圍第1或2項所述之光學裝置,其中該補償單元組態以在該至少一方向上於該光學元件上產生一第一力,且該致動器組態以在該至少一方向上於該光學元件上產生一第二力,其中該第一力具有一第一最大時間導數,且該第二力具有一第二最大時間導數,其中該第二最大時間導數比該第一最大時間導數大M倍,其中M>10,較佳為M>100。 The optical device of claim 1 or 2, wherein the compensation unit is configured to generate a first force on the optical element in the at least one direction, and the actuator is configured to be in the at least one Generating a second force to the optical element, wherein the first force has a first maximum time derivative, and the second force has a second maximum time derivative, wherein the second maximum time derivative is greater than the first maximum The time derivative is M times, where M > 10, preferably M > 100. 如申請專利範圍第1項至第3項的其中一項所述之光學裝置,其中該補償單元的負剛性為該光學元件的正剛性的0.9倍至0.99倍。 The optical device according to any one of claims 1 to 3, wherein the compensation unit has a negative rigidity of 0.9 to 0.99 times the positive rigidity of the optical element. 如申請專利範圍第1項至第4項的其中一項所述之光學裝置,其中該光學元件的正剛性及該補償單元的負剛性之間的差異大於零。 The optical device according to any one of the preceding claims, wherein the difference between the positive rigidity of the optical element and the negative rigidity of the compensation unit is greater than zero. 如申請專利範圍第1項至第5項的其中一項所述之光學裝置,其中該光學元件在該至少一方向上的變形係藉由該光學元件的平面外彎曲而獲得。 The optical device according to any one of claims 1 to 5, wherein the deformation of the optical element in the at least one direction is obtained by out-of-plane bending of the optical element. 如申請專利範圍第1項至第6項的其中一項所述之光學裝置,其中該補償單元包含磁鐵,特別是永久磁鐵、或至少一彈簧。 The optical device according to any one of claims 1 to 6, wherein the compensation unit comprises a magnet, in particular a permanent magnet, or at least one spring. 如申請專利範圍第1項至第7項的其中一項所述之光學裝置,其中該補償單元,特別是該至少一彈簧,係組態以在平面內預載該光學元件。 The optical device of any one of clauses 1 to 7, wherein the compensating unit, in particular the at least one spring, is configured to preload the optical element in a plane. 如申請專利範圍第1項至第8項的其中一項所述之光學裝置,更包含一基底,其中該磁鐵由緊固至該光學元件的一第一磁鐵以及分別緊固至該基底的一第二磁鐵及一第三磁鐵所組成,該第一磁鐵可在該第二磁鐵及該第三磁鐵之間移動。 The optical device according to any one of claims 1 to 8, further comprising a substrate, wherein the magnet is a first magnet fastened to the optical component and one fastened to the substrate The second magnet and the third magnet are configured to move between the second magnet and the third magnet. 如申請專利範圍第1項至第8項的其中一項所述之光學裝置,更包含一基底,其中該磁鐵由緊固至該光學元件的一第一磁鐵以及緊固至該基底的一第二磁鐵所組成,其中該第一磁鐵或該第二磁鐵形成為一環形磁鐵且另一磁鐵可沿該環形磁鐵的中心軸移動。 The optical device according to any one of claims 1 to 8, further comprising a substrate, wherein the magnet is a first magnet fastened to the optical component and a first one fastened to the substrate The second magnet is composed of a first magnet or a second magnet formed as a ring magnet and the other magnet is movable along a central axis of the ring magnet. 如申請專利範圍第1項至第10項的其中一項所述之光學裝置,更包含一調整單元,用以調整該補償單元的該負剛性。 The optical device according to any one of claims 1 to 10, further comprising an adjusting unit for adjusting the negative rigidity of the compensating unit. 如申請專利範圍第11項所述之光學裝置,其中該調整單元組態用以使用至少一電永磁鐵來改變該至少一彈簧的一預載、調整該第一磁鐵、該第二磁鐵及/或該第三磁鐵的相對位置、調整在該第一磁鐵、該第二磁鐵 及/或該第三磁鐵之間耦合的一磁場、或者調整該第一磁鐵、該第二磁鐵及/或該第三磁鐵的磁場。 The optical device of claim 11, wherein the adjusting unit is configured to change a preload of the at least one spring, adjust the first magnet, the second magnet, and/or using at least one electric permanent magnet. Or the relative position of the third magnet is adjusted to the first magnet and the second magnet And/or a magnetic field coupled between the third magnets or a magnetic field of the first magnet, the second magnet, and/or the third magnet. 如申請專利範圍第1項至第12項的其中一項所述之光學裝置,其中:該光學元件在一第一方向上變形時具有一第一正剛性且在一第二方向上變形時具有一第二正剛性,該致動器組態以在該第一方向及該第二方向上變形該光學元件,以及該補償單元在該第一方向上具有一第一負剛性以在該第一方向上至少部分地補償該光學元件的正剛性,且在該第二方向上具有一第二負剛性以在該第二方向上至少部分地補償該光學元件的正剛性。 The optical device according to any one of claims 1 to 12, wherein the optical element has a first positive rigidity when deformed in a first direction and has a deformation when deformed in a second direction a second positive stiffness, the actuator configured to deform the optical element in the first direction and the second direction, and the compensation unit has a first negative stiffness in the first direction to be at the first The positive stiffness of the optical element is at least partially compensated in the direction and has a second negative stiffness in the second direction to at least partially compensate for the positive stiffness of the optical element in the second direction. 如申請專利範圍第1項至第13項的其中一項所述之光學裝置,其中該致動器組態用以針對光學校正而變形該光學元件,特別是在重疊及/或焦點校正,及/或其中該光學元件為一反射鏡、一透鏡、一光柵或一λ板。 The optical device of any one of clauses 1 to 13, wherein the actuator is configured to deform the optical component for optical correction, particularly in overlay and/or focus correction, and / or wherein the optical component is a mirror, a lens, a grating or a λ plate. 一種微影設備,包含如申請專利範圍第1項至第14項的其中一項所述之一光學裝置。 A lithography apparatus comprising one of the optical devices according to any one of claims 1 to 14.
TW105141570A 2015-12-15 2016-12-15 Optical device for a lithography apparatus and lithography apparatus TWI712831B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015225263.9 2015-12-15
DE102015225263 2015-12-15

Publications (2)

Publication Number Publication Date
TW201732345A true TW201732345A (en) 2017-09-16
TWI712831B TWI712831B (en) 2020-12-11

Family

ID=57758574

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105141570A TWI712831B (en) 2015-12-15 2016-12-15 Optical device for a lithography apparatus and lithography apparatus

Country Status (4)

Country Link
JP (1) JP6980660B2 (en)
KR (1) KR20180094032A (en)
TW (1) TWI712831B (en)
WO (1) WO2017102889A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798263B (en) * 2017-09-18 2023-04-11 德商卡爾蔡司Smt有限公司 Method for producing a mirror as an optical component for an optical system of a projection exposure apparatus for projection lithography

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102548949B1 (en) * 2020-12-14 2023-06-29 한국기계연구원 Z/Tilt stage and control system thereof for aligning mask

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323584A (en) * 2001-02-22 2002-11-08 Nikon Corp Actuator, stage, exposure device, method of manufacturing for device and base-isolating device
US20030155882A1 (en) * 2002-02-19 2003-08-21 Nikon Corporation Anti-gravity mount with air and magnets
EP1403713A1 (en) * 2002-09-30 2004-03-31 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
CN100421024C (en) * 2002-09-30 2008-09-24 Asml荷兰有限公司 Photoetching device and device manufacturing method
JP4817702B2 (en) * 2005-04-14 2011-11-16 キヤノン株式会社 Optical apparatus and exposure apparatus provided with the same
WO2012097163A1 (en) * 2011-01-14 2012-07-19 The Board Of Trustees Of The University Of Illinois Optical component array having adjustable curvature
JP5848052B2 (en) * 2011-07-21 2016-01-27 日本電産サンキョー株式会社 Optical unit with shake correction function
NL2011456A (en) * 2012-10-15 2014-04-16 Asml Netherlands Bv Actuation mechanism, optical apparatus, lithography apparatus and method of manufacturing devices.
US10018238B2 (en) * 2013-11-01 2018-07-10 Sabanci University Variable negative stiffness actuation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798263B (en) * 2017-09-18 2023-04-11 德商卡爾蔡司Smt有限公司 Method for producing a mirror as an optical component for an optical system of a projection exposure apparatus for projection lithography

Also Published As

Publication number Publication date
JP2019500648A (en) 2019-01-10
TWI712831B (en) 2020-12-11
KR20180094032A (en) 2018-08-22
WO2017102889A1 (en) 2017-06-22
JP6980660B2 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
JP5588358B2 (en) Kinematic optical mount
US6765712B2 (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
US5528118A (en) Guideless stage with isolated reaction stage
US7459701B2 (en) Stage apparatus, lithographic apparatus and device manufacturing method
US20080013097A1 (en) Resonant scanning mirror
US10386732B2 (en) Bearing assembly for a lithography system, and lithography system
US7295331B2 (en) Optical element with an optical axis
JP4298547B2 (en) Positioning apparatus and exposure apparatus using the same
TWI712831B (en) Optical device for a lithography apparatus and lithography apparatus
US10095120B2 (en) Vibration-compensated optical system, lithography apparatus and method
US20210389681A1 (en) Actuator device and method for aligning an optical element, optical assembly and projection exposure apparatus
US7034474B2 (en) Auto-calibration of attraction-only type actuator commutations
JP2006339500A (en) Jogging device and optical element adjusting device
US20220236651A1 (en) Thermo-mechanical actuator
JP2020501477A (en) Motor assembly, lithographic apparatus, and device manufacturing method
JP2006319047A (en) Fine adjustment device and optical element adjuster
US20080111977A1 (en) Compensation techniques for fluid and magnetic bearings
US10620552B2 (en) Stage system, lithographic apparatus and device manufacturing method
CN114341736A (en) Field facet system, optical arrangement and lithographic apparatus
CN109416457B (en) Optical device, exposure device, and method for manufacturing article
WO2020043401A1 (en) Electromagnetic actuator, position control system and lithographic apparatus
JP2018066959A (en) Optical device, projection optical system, exposure apparatus and production method of article