TW201731231A - Robustness enhancements of efficient HARQ feedback - Google Patents

Robustness enhancements of efficient HARQ feedback Download PDF

Info

Publication number
TW201731231A
TW201731231A TW105143320A TW105143320A TW201731231A TW 201731231 A TW201731231 A TW 201731231A TW 105143320 A TW105143320 A TW 105143320A TW 105143320 A TW105143320 A TW 105143320A TW 201731231 A TW201731231 A TW 201731231A
Authority
TW
Taiwan
Prior art keywords
harq feedback
wireless device
downlink
buffer
harq
Prior art date
Application number
TW105143320A
Other languages
Chinese (zh)
Other versions
TWI628921B (en
Inventor
安卓斯 柏格史東
瑪蒂亞 費尼
馬丁 海瑟勒
喬漢 卡倫道
尼可斯 威伯格
Original Assignee
Lm艾瑞克生(Publ)電話公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/SE2016/050515 external-priority patent/WO2017138854A1/en
Application filed by Lm艾瑞克生(Publ)電話公司 filed Critical Lm艾瑞克生(Publ)電話公司
Publication of TW201731231A publication Critical patent/TW201731231A/en
Application granted granted Critical
Publication of TWI628921B publication Critical patent/TWI628921B/en

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

Systems and methods are disclosed for providing efficient downlink Hybrid Automatic Request (HARQ) feedback. In some embodiments, a method of operation of a wireless device in a cellular communications system comprises receiving a downlink control information message comprising a HARQ feedback buffer index and storing a downlink HARQ feedback flag in a position within a HARQ feedback buffer that corresponds to the HARQ feedback buffer index. In this manner, multiple downlink HARQ feedback flags can be stored in the HARQ feedback buffer and subsequently transmitted to a network node in an efficient manner.

Description

有效率的混合式自動重送請求(HARQ)回授之可靠性的強化Enhanced reliability of efficient hybrid automatic repeat request (HARQ) feedback

本發明係關於一蜂巢式通信網路中之下行鏈路混合式自動重送請求(HARQ)回授。The present invention relates to downlink hybrid automatic repeat request (HARQ) feedback in a cellular communication network.

先進天線系統(AAS)係其中技術近年來已顯著進步且其中預見未來幾年中之一快速技術發展之一領域。因此,假定一般而言AAS及特定言之大量多輸入多輸出(MIMO)傳輸及接收將係一未來第五代(5G)蜂巢式通信系統中之一基石係自然的。 波束成形已變得日益流行且有能力,且因此不僅將波束成形用於資料之傳輸而且用於控制資訊之傳輸係自然的。此係稱為增強實體下行鏈路控制頻道(ePDCCH)之長期演進(LTE)中之(相對)新控制頻道後之一個動機。當波束成形用於控制頻道時,可歸因於由額外天線增益提供之經增加鏈路預算而減少傳輸附加項控制資訊之成本。此亦係5G所期望之一良好性質,可能至甚至大於當前LTE標準中所可能之一程度。 針對當今LTE中之下行鏈路混合式自動重送請求(HARQ)傳輸,取決於是否將使用者設備裝置(UE)排程進行上行鏈路PUSCH傳輸,在實體上行鏈路控制頻道(PUCCH)或實體上行鏈路共用頻道(PUSCH)上將HARQ回授自UE發送至網路。隨後,網路可在一個別HARQ程序基礎上得出針對該程序之最後HARQ接收是否成功(應答/否定應答(ACK/NACK))或甚至下行鏈路指派接收是否失效(不連續傳輸(DTX))之結論。 LTE中之經傳輸HARQ回授之時序係使得針對分頻雙工(FDD),在上行鏈路中於副訊框n+4中接收來自一個HARQ接收程序之回授,前提是針對該HARQ接收程序之對應下行鏈路傳輸在副訊框n中。因此,下行鏈路傳輸與對應HARQ回授之間之延遲係總共4毫秒(ms)。針對分時雙工(TDD),自下行鏈路資料傳輸至上行鏈路回授接收之延遲可大於4 ms(或相等地4個副訊框)以適應半雙工下行鏈路-上行鏈路分離。 針對5G,HARQ回授欲作為上行鏈路控制資訊(UCI)之部分在xPUCCH上傳輸。如本文中使用,「xPUCCH」係用於指在一下一代蜂巢式通信網路(例如,5G)中之實體上行鏈路控制頻道。 可在一個正交分頻多工(OFDM)符號上傳輸上行鏈路控制頻道(xPUCCH)。此頻道將藉由以下任一者提供有限數目個位元(即,(例如) 1至4個資訊位元):具有若干固定格式(類似於LTE PUCCH格式1/1a/1b)或具有一個單一格式而仍容許靈活數目個資訊位元。關於針對靈活數目個資訊位元使用一單一格式,可能可運用較少使用之資訊位元改良效能,此係因為此容許將未使用之資訊位元用作一短訓練序列。此外,假定將存在自下行鏈路控制資訊(DCI)控制頻道元素(CCE)至UCI CCE之一隱含映射(類似於針對LTE)。 現有HARQ技術非100%可靠,不靈活且消耗大量資源。因而,需要經改良之HARQ技術,尤其適合於下一代蜂巢式通信網路(諸如(例如)一5G蜂巢式通信網路)之HARQ技術。The Advanced Antenna System (AAS) is one of the areas in which technology has progressed significantly in recent years and one of the areas of rapid technological development in the next few years is foreseen. Therefore, it is assumed that AAS and, in particular, a large number of multiple-input multiple-output (MIMO) transmissions and receptions will be one of the cornerstones of a future fifth-generation (5G) cellular communication system. Beamforming has become increasingly popular and capable, and therefore not only beamforming is used for the transmission of data but also for the transmission of control information. This is referred to as an incentive to enhance the (relative) new control channel in Long Term Evolution (LTE) of the Entity Downlink Control Channel (ePDCCH). When beamforming is used to control the channel, the cost of transmitting additional item control information can be reduced due to the increased link budget provided by the additional antenna gain. This is also a good property that 5G expects, and may be even greater than one of the current LTE standards. For today's downlink Hybrid Automatic Repeat Request (HARQ) transmission in LTE, depending on whether the User Equipment Equipment (UE) schedules uplink PUSCH transmission, on the Physical Uplink Control Channel (PUCCH) or The HARQ feedback is sent from the UE to the network on the Physical Uplink Shared Channel (PUSCH). Subsequently, the network can derive whether the last HARQ reception for the procedure is successful (ACK/NACK) or even downlink assignment reception on a basis of a different HARQ procedure (discontinuous transmission (DTX)) ) Conclusion. The timing of the transmitted HARQ feedback in LTE is such that for frequency division duplexing (FDD), feedback from a HARQ receiving procedure is received in the subframe n+4 in the uplink, provided that the HARQ reception is for the HARQ reception The corresponding downlink transmission of the procedure is in subframe n. Therefore, the delay between the downlink transmission and the corresponding HARQ feedback is a total of 4 milliseconds (ms). For Time Division Duplex (TDD), the delay from downlink data transmission to uplink feedback reception can be greater than 4 ms (or equivalently 4 subframes) to accommodate half-duplex downlink-uplink Separation. For 5G, the HARQ feedback is transmitted on the xPUCCH as part of the Uplink Control Information (UCI). As used herein, "xPUCCH" is used to refer to a physical uplink control channel in a next generation cellular communication network (e.g., 5G). The uplink control channel (xPUCCH) can be transmitted on one orthogonal frequency division multiplexing (OFDM) symbol. This channel will provide a limited number of bits (ie, for example, 1 to 4 information bits) by either: having several fixed formats (similar to LTE PUCCH format 1/1a/1b) or having a single The format still allows for a flexible number of information bits. With regard to the use of a single format for a flexible number of information bits, it may be possible to use less useful information bits to improve performance, since this allows unused information bits to be used as a short training sequence. Furthermore, it is assumed that there will be an implicit mapping from the Downlink Control Information (DCI) Control Channel Element (CCE) to the UCI CCE (similar to for LTE). The existing HARQ technology is not 100% reliable, inflexible and consumes a lot of resources. Thus, there is a need for improved HARQ technology, particularly for HARQ technology in next generation cellular communication networks such as, for example, a 5G cellular communication network.

本發明揭示用於提供有效率的下行鏈路混合式自動請求(HARQ)回授之系統及方法。在一些實施例中,一種在一蜂巢式通信系統中操作一無線裝置之方法包括:接收包括一HARQ回授緩衝器索引之一下行鏈路控制資訊(DCI)訊息且將一下行鏈路HARQ回授旗標儲存於一HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之一位置中。以此方式,多個下行鏈路HARQ回授旗標可儲存於該HARQ回授緩衝器中且隨後以一有效率的方式傳輸至一網路節點。在一些實施例中,HARQ回授解決方案針對下行鏈路以及上行鏈路中之控制頻道誤差係可靠的。此外,在一些實施例中,HARQ回授解決方案確保以一些額外HARQ重新傳輸為代價減輕昂貴的誤差。又進一步,在一些實施例中,HARQ回授解決方案儘可能快地解譯HARQ回授之缺少,因此提供最短可能HARQ往返時間(RTT)。 在一些實施例中,該方法進一步包括接收包括各自HARQ回授緩衝器索引之一或多個額外DCI訊息。該方法進一步包括針對該一或多個額外DCI訊息之各額外DCI訊息,將一各自下行鏈路HARQ回授旗標儲存於該HARQ回授緩衝器內對應於該各自DCI訊息中包括之該HARQ回授緩衝器索引之一位置中。 在一些實施例中,該方法進一步包括自一網路節點接收一輪詢請求且在接收該輪詢請求之後將下行鏈路HARQ回授傳輸至該網路節點。該下行鏈路HARQ回授係基於儲存於該HARQ回授緩衝器中之該等下行鏈路HARQ回授旗標。 在一些實施例中,該方法進一步包括產生包括表示儲存於該下行鏈路HARQ回授緩衝器中之該等下行鏈路HARQ回授旗標之資訊之一上行鏈路控制訊息。傳輸該下行鏈路HARQ回授包括傳輸該上行鏈路控制訊息。此外,在一些實施例中,產生該上行鏈路控制訊息包括將該等下行鏈路HARQ回授旗標聯合編碼為針對該上行鏈路控制訊息之一碼字。在其他實施例中,產生該上行鏈路控制訊息包括將該HARQ回授緩衝器中之各下行鏈路HARQ回授旗標映射至一上行鏈路控制頻道內之一各自實體資源。 在一些實施例中,傳輸該下行鏈路HARQ回授包括在一副訊框T+K中傳輸該下行鏈路HARQ回授,其中副訊框T係其中接收該輪詢請求之該副訊框且K係一HARQ時序偏移。在一些實施例中,接收該輪詢請求包括在該副訊框T中接收DCI,其中該DCI包括該輪詢請求及該HARQ時序偏移K之一指示。在一些實施例中,該HARQ時序偏移K之該指示係該HARQ時序偏移K之一值。在其他實施例中,該HARQ時序偏移K之該指示係一值S,其中該HARQ時序偏移K=N+S,其中N係一預定義值。在其他實施例中,該HARQ時序偏移K之該指示係一值S,其中該HARQ時序偏移K=N+S,其中N係一預組態值。在其他實施例中,該HARQ時序偏移K之該指示係一值S,其中該HARQ時序偏移K=N+S,其中N係該無線裝置之一預定最小HARQ時序偏移。在其他實施例中,該HARQ時序偏移K之該指示係一值X,其中該HARQ時序偏移K係依據該值X。 在一些實施例中,該HARQ回授緩衝器中之各下行鏈路HARQ回授旗標係包括表示一應答(ACK)之一第一位元序列、表示一否定應答(NACK)之一第二位元序列及表示一DCI失效之一第三位元序列之一碼空間中之複數個碼點之一者。 在一些實施例中,儲存該下行鏈路HARQ回授旗標包括若該無線裝置成功接收對應下行鏈路資料,則將一ACK之一指示儲存於該HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之該位置中,且若該無線裝置未成功接收對應下行鏈路資料,則將一NACK之一指示儲存於該HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之該位置中。此外,在一些實施例中,在儲存該下行鏈路HARQ回授旗標之前,將一預設值儲存於該HARQ回授緩衝器內之該位置中,其中該預設值係一DCI誤差之一指示。在一些其他實施例中,在儲存該下行鏈路HARQ回授旗標之前,將一預設值儲存於該HARQ回授緩衝器內之該位置中,其中該預設值係一NACK之一指示。 在一些實施例中,儲存該下行鏈路HARQ回授旗標包括判定針對一當前副訊框之資料之接收是否成功,其中該當前副訊框係其中接收該DCI訊息之該副訊框。儲存該下行鏈路HARQ回授旗標進一步包括判定一NACK旗標是否儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處。儲存該下行鏈路HARQ回授旗標進一步包括在判定針對該當前副訊框之該資料之接收成功且判定一NACK旗標儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處之後,即使針對該當前副訊框之資料之該接收成功,仍將一NACK旗標維持於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處。 此外,在一些實施例中,儲存該下行鏈路HARQ回授旗標進一步包括在判定針對該當前副訊框之資料之接收成功且判定一NACK旗標未儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處之後,在該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處儲存一ACK旗標。 在一些實施例中,儲存該下行鏈路HARQ回授旗標進一步包括在判定針對該當前副訊框之資料之接收不成功之後,在該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處儲存一NACK旗標。 在一些實施例中,該方法進一步包括判定一或多個先前副訊框中是否出現一DCI誤差,該一或多個先前副訊框係在該當前副訊框之前之一或多個副訊框。該方法進一步包括在判定該一或多個先前副訊框中出現一DCI誤差之後,將指示一或多個DCI誤差之一或多個旗標儲存於該HARQ回授緩衝器中對應於緊接在該DCI訊息中包括之該HARQ回授緩衝器索引之前之一或多個HARQ回授緩衝器索引之一或多個位置處。 亦揭示一種用於一蜂巢式通信系統之無線裝置之實施例。在一些實施例中,一無線裝置經調適以:接收包括一HARQ回授緩衝器索引之一DCI訊息且將一下行鏈路HARQ回授旗標儲存於一HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之一位置中。此外,在一些實施例中,該無線裝置進一步經調適以根據本文中描述之任何實施例之一無線裝置之操作方法操作。 在一些實施例中,用於一蜂巢式通信系統之一無線裝置包括一收發器、至少一個處理器及儲存指令之記憶體,該等指令可由該至少一個處理器執行,藉此該無線裝置可操作以經由該收發器接收包括一HARQ回授緩衝器索引之一DCI訊息且將一下行鏈路HARQ回授旗標儲存於一HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之一位置中。 在一些實施例中,藉由該至少一個處理器執行該等指令,該無線裝置可進一步操作以經由該收發器接收包括各自HARQ回授緩衝器索引之一或多個額外DCI訊息,且針對該一或多個額外DCI訊息之各額外DCI訊息,將一各自下行鏈路HARQ回授旗標儲存於該HARQ回授緩衝器內對應於該各自DCI訊息中包括之該HARQ回授緩衝器索引之一位置中。 在一些實施例中,藉由由該至少一個處理器執行該等指令,該無線裝置可進一步操作以經由該收發器接收來自一網路節點之一輪詢請求且經由該收發器在接收該輪詢請求之後將HARQ回授傳輸至一網路節點,其中該HARQ回授係基於儲存於該HARQ回授緩衝器中之該等下行鏈路HARQ回授旗標。 在一些實施例中,為了儲存該下行鏈路HARQ回授旗標,該無線裝置可進一步操作以:判定針對一當前副訊框之資料之接收是否成功,其中該當前副訊框係其中接收該DCI訊息之該副訊框;判定一NACK旗標是否儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處;且在判定針對該當前副訊框之資料之接收成功且判定一NACK旗標儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處之後,即使針對該當前副訊框之資料之該接收成功,仍將一NACK旗標維持於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處。 在一些實施例中,為了儲存該下行鏈路HARQ回授旗標,該無線裝置可進一步操作以在判定針對該當前副訊框之資料之接收成功且判定一NACK旗標未儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處之後,將一ACK旗標儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處。 在一些實施例中,為了儲存該下行鏈路HARQ回授旗標,該無線裝置可進一步操作以在判定針對該當前副訊框之資料之接收不成功之後,將一NACK旗標儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處。 在一些實施例中,藉由由該至少一個處理器執行該等指令,該無線裝置可進一步操作以:判定一或多個先前副訊框中是否出現一DCI誤差,該一或多個先前副訊框係在該當前副訊框之前之一或多個副訊框;且在判定該一或多個先前副訊框中出現一DCI誤差之後,將指示一或多個DCI誤差之一或多個旗標儲存於該HARQ回授緩衝器中對應於緊接在該DCI訊息中包括之該HARQ回授緩衝器索引之前之一或多個HARQ回授緩衝器索引之一或多個位置處。 在一些實施例中,一種經啟用以在一蜂巢式通信系統中操作之無線裝置包括用於接收包括一HARQ回授緩衝器索引之一DCI訊息之構件及用於將一下行鏈路HARQ回授旗標儲存於一HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之一位置中之構件。 在一些實施例中,一種經啟用以在一蜂巢式通信系統中操作之無線裝置包括:一接收模組,其可操作以接收包括一HARQ回授緩衝器索引之一DCI訊息;及一儲存模組,其可操作以將一下行鏈路HARQ回授旗標儲存於一HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之一位置中。 亦揭示一種操作一蜂巢式通信系統之一網路節點之方法之實施例。在一些實施例中,一網路節點之操作方法包括判定是否在一副訊框中對一無線裝置排程。該方法進一步包括在判定在該副訊框中對該無線裝置排程之後,使在該副訊框中傳輸至該無線裝置之一HARQ程序與一緩衝器索引相關聯。該方法進一步包括在於該副訊框中傳輸至該無線裝置之DCI中包含該緩衝器索引。 在一些實施例中,該方法進一步包括在判定是否在該副訊框中對該無線裝置排程之前,將該緩衝器索引(BI)設定為一初始值。 在一些實施例中,該方法進一步包括判定該BI是否等於一預定義最大值。該方法進一步包括在判定該BI不等於該預定義最大值之後,使該BI遞增。該方法進一步包括在判定該BI等於該預定義最大值之後,在於該副訊框中傳輸至該無線裝置之該DCI中設定一輪詢旗標。 此外,在一些實施例中,該方法進一步包括回應於在於該副訊框中傳輸至該無線裝置之該DCI中設定該輪詢旗標而自該無線裝置接收下行鏈路HARQ回授。 在一些實施例中,該方法進一步包括判定在其上接收該下行鏈路HARQ回授之一上行鏈路控制頻道之一信號對干擾加雜訊比(SINR)是否大於或等於一第一預定義臨限值。該方法進一步包括若該上行鏈路控制頻道之該SINR大於或等於該第一預定義臨限值,則判定應信任該下行鏈路HARQ回授且處理該下行鏈路HARQ回授。 在一些實施例中,該方法進一步包括判定該上行鏈路控制頻道之該SINR是否小於該第一預定義臨限值但大於或等於一第二預定義臨限值。該方法進一步包括若該上行鏈路控制頻道之該SINR小於該第一預定義臨限值但大於或等於該第二預定義臨限值,則判定不應信任該下行鏈路HARQ回授,將該下行鏈路HARQ回授設定為全部NACK,且處理該等NACK。 亦揭示一種用於一蜂巢式通信系統之網路節點之實施例。在一些實施例中,一網路節點經調適以判定是否在一副訊框中對一無線裝置排程。該網路節點進一步經調適以在判定在該副訊框中對該無線裝置排程之後,使在該副訊框中傳輸至該無線裝置之一HARQ程序與一BI相關聯。該無線裝置進一步經調適以在於該副訊框中傳輸至該無線裝置之DCI中包含該BI。在一些實施例中,該網路節點進一步經調適以根據根據本文中描述之任何實施例之一網路節點之操作方法操作。 在一些實施例中,一種用於一蜂巢式通信系統之網路節點包括至少一個處理器及儲存指令之記憶體,該等指令可由該至少一個處理器執行,藉此該網路節點可操作以:判定是否在一副訊框中對一無線裝置排程;在判定在該副訊框中對該無線裝置排程之後,使在該副訊框中傳輸至該無線裝置之一HARQ程序與一BI相關聯;且在於該副訊框中傳輸至該無線裝置之DCI中包含該BI。 在一些實施例中,經由藉由該至少一個處理器執行該等指令,該網路節點可進一步操作以在判定是否在該副訊框中對該無線裝置排程之前,將該BI設定為一初始值。 在一些實施例中,經由藉由該至少一個處理器執行該等指令,該網路節點可進一步操作以:判定該BI是否等於一預定義最大值;在判定該BI不等於該預定義最大值之後,使該BI遞增;且在判定該BI等於該預定義最大值之後,在於該副訊框中傳輸至該無線裝置之該DCI中設定一輪詢旗標。 在一些實施例中,經由藉由該至少一個處理器執行該等指令,該網路節點可進一步操作以回應於在於該副訊框中傳輸至該無線裝置之該DCI中設定輪詢旗標而自該無線裝置接收下行鏈路HARQ回授。 在一些實施例中,經由藉由該至少一個處理器執行該等指令,該網路節點可進一步操作以:判定在其上接收該下行鏈路HARQ回授之一上行鏈路控制頻道之一SINR是否大於或等於一第一預定義臨限值,且若該上行鏈路控制頻道之該SINR大於或等於該第一預定義臨限值,則判定應信任該下行鏈路HARQ回授且處理該下行鏈路HARQ回授。此外,在一些實施例中,經由藉由該至少一個處理器執行該等指令,該網路節點可進一步操作以:判定該上行鏈路控制頻道之該SINR是否小於該第一預定義臨限值但大於或等於一第二預定義臨限值,且若該上行鏈路控制頻道之該SINR小於該第一預定義臨限值但大於或等於該第二預定義臨限值,則判定不應信任該下行鏈路HARQ回授,將該下行鏈路HARQ回授設定為全部NACK,且處理該等NACK。 在一些實施例中,一種經啟用以在一蜂巢式通信系統中操作之網路節點包括:用於判定是否在一副訊框中對一無線裝置排程之構件;用於在判定在該副訊框中對該無線裝置排程之後,使在該副訊框中傳輸至該無線裝置之一HARQ程序與一BI相關聯之構件;及用於在於該副訊框中傳輸至該無線裝置之DCI中包含該BI之構件。 在一些實施例中,一種經啟用以在一蜂巢式通信系統中操作之網路節點包括:一判定模組,其可操作以判定是否在一副訊框中對一無線裝置排程;一關聯模組,其可操作以在該判定模組判定在該副訊框中對該無線裝置排程之後,使在該副訊框中傳輸至該無線裝置之一HARQ程序與一BI相關聯;及一傳輸模組,其可操作以在於該副訊框中傳輸至該無線裝置之DCI中包含該BI。 熟習此項技術者在閱讀與隨附圖式相關聯之實施例之以下詳細描述之後將瞭解本發明之範疇且認知其之額外態樣。Systems and methods for providing efficient downlink hybrid automatic request (HARQ) feedback are disclosed. In some embodiments, a method of operating a wireless device in a cellular communication system includes receiving a downlink control information (DCI) message including a HARQ feedback buffer index and returning a downlink HARQ back The flag is stored in a HARQ feedback buffer corresponding to one of the HARQ feedback buffer indices. In this manner, multiple downlink HARQ feedback flags can be stored in the HARQ feedback buffer and then transmitted to a network node in an efficient manner. In some embodiments, the HARQ feedback solution is reliable for control channel errors in the downlink as well as in the uplink. Moreover, in some embodiments, the HARQ feedback solution ensures that costly errors are mitigated at the expense of some additional HARQ retransmissions. Still further, in some embodiments, the HARQ feedback solution interprets the lack of HARQ feedback as quickly as possible, thus providing the shortest possible HARQ round trip time (RTT). In some embodiments, the method further includes receiving one or more additional DCI messages including respective HARQ feedback buffer indices. The method further includes storing, for each additional DCI message of the one or more additional DCI messages, a respective downlink HARQ feedback flag in the HARQ feedback buffer corresponding to the HARQ included in the respective DCI message The feedback buffer is indexed in one of the locations. In some embodiments, the method further includes receiving a polling request from a network node and transmitting a downlink HARQ feedback to the network node after receiving the polling request. The downlink HARQ feedback is based on the downlink HARQ feedback flags stored in the HARQ feedback buffer. In some embodiments, the method further includes generating an uplink control message including one of the information indicative of the downlink HARQ feedback flags stored in the downlink HARQ feedback buffer. Transmitting the downlink HARQ feedback includes transmitting the uplink control message. Moreover, in some embodiments, generating the uplink control message includes jointly encoding the downlink HARQ feedback flags as one of the code words for the uplink control message. In other embodiments, generating the uplink control message includes mapping each downlink HARQ feedback flag in the HARQ feedback buffer to a respective one of an uplink control channel. In some embodiments, transmitting the downlink HARQ feedback includes transmitting the downlink HARQ feedback in a subframe T+K, wherein the subframe T is the subframe in which the polling request is received And K is a HARQ timing offset. In some embodiments, receiving the polling request includes receiving a DCI in the subframe T, wherein the DCI includes the polling request and one of the HARQ timing offsets K. In some embodiments, the indication of the HARQ timing offset K is one of the values of the HARQ timing offset K. In other embodiments, the indication of the HARQ timing offset K is a value S, wherein the HARQ timing offset is K=N+S, where N is a predefined value. In other embodiments, the indication of the HARQ timing offset K is a value S, wherein the HARQ timing offset is K=N+S, where N is a pre-configured value. In other embodiments, the indication of the HARQ timing offset K is a value S, wherein the HARQ timing offset is K=N+S, where N is one of the predetermined minimum HARQ timing offsets for the wireless device. In other embodiments, the indication of the HARQ timing offset K is a value X, wherein the HARQ timing offset K is based on the value X. In some embodiments, each of the downlink HARQ feedback flags in the HARQ feedback buffer includes a first bit sequence representing an acknowledgement (ACK) and one of a negative acknowledgement (NACK). A bit sequence and one of a plurality of code points in a code space representing one of the third bit sequences of a DCI failure. In some embodiments, storing the downlink HARQ feedback flag includes storing an indication of an ACK in the HARQ feedback buffer corresponding to the HARQ back if the wireless device successfully receives the corresponding downlink data. In the location of the buffer index, and if the wireless device does not successfully receive the corresponding downlink data, storing one of the NACK indications in the HARQ feedback buffer corresponding to the HARQ feedback buffer index In the location. In addition, in some embodiments, before storing the downlink HARQ feedback flag, a preset value is stored in the location in the HARQ feedback buffer, where the preset value is a DCI error. An indication. In some other embodiments, before storing the downlink HARQ feedback flag, a preset value is stored in the location in the HARQ feedback buffer, wherein the preset value is one of a NACK indication. . In some embodiments, storing the downlink HARQ feedback flag includes determining whether the receipt of data for a current subframe is successful, wherein the current subframe is the subframe in which the DCI message is received. Storing the downlink HARQ feedback flag further includes determining whether a NACK flag is stored at the location in the HARQ feedback buffer corresponding to the HARQ feedback buffer index. The storing the downlink HARQ feedback flag further includes determining that the receiving of the data for the current subframe is successful and determining that a NACK flag is stored in the HARQ feedback buffer corresponding to the HARQ feedback buffer index After the location, even if the reception of the data for the current subframe is successful, a NACK flag is maintained at the location in the HARQ feedback buffer corresponding to the HARQ feedback buffer index. In addition, in some embodiments, storing the downlink HARQ feedback flag further includes determining that the receiving of the data for the current subframe is successful and determining that a NACK flag is not stored in the HARQ feedback buffer. After the location of the HARQ feedback buffer index, an ACK flag is stored at the location corresponding to the HARQ feedback buffer index in the HARQ feedback buffer. In some embodiments, storing the downlink HARQ feedback flag further includes, after determining that the reception of the data for the current subframe is unsuccessful, corresponding to the HARQ feedback buffer in the HARQ feedback buffer A NACK flag is stored at this location of the index. In some embodiments, the method further comprises determining whether a DCI error occurs in one or more of the previous subframes, the one or more previous subframes being one or more of the sub-messages prior to the current subframe frame. The method further includes, after determining that a DCI error occurs in the one or more previous subframes, storing one or more flags indicating one or more DCI errors in the HARQ feedback buffer corresponding to immediately following One or more locations of one or more HARQ feedback buffer indices before the HARQ feedback buffer index included in the DCI message. An embodiment of a wireless device for a cellular communication system is also disclosed. In some embodiments, a wireless device is adapted to: receive a DCI message including a HARQ feedback buffer index and store a downlink HARQ feedback flag in a HARQ feedback buffer corresponding to the HARQ The feedback buffer is indexed in one of the locations. Moreover, in some embodiments, the wireless device is further adapted to operate in accordance with a method of operation of a wireless device in accordance with any of the embodiments described herein. In some embodiments, a wireless device for a cellular communication system includes a transceiver, at least one processor, and memory for storing instructions, the instructions being executable by the at least one processor, whereby the wireless device can Operation to receive, via the transceiver, a DCI message including a HARQ feedback buffer index and store a downlink HARQ feedback flag in a HARQ feedback buffer corresponding to one of the HARQ feedback buffer indices In the location. In some embodiments, by the at least one processor executing the instructions, the wireless device is further operative to receive, via the transceiver, one or more additional DCI messages including respective HARQ feedback buffer indices, and for Each additional DCI message of one or more additional DCI messages, storing a respective downlink HARQ feedback flag in the HARQ feedback buffer corresponding to the HARQ feedback buffer index included in the respective DCI message In a position. In some embodiments, by the at least one processor executing the instructions, the wireless device is further operative to receive a polling request from a network node via the transceiver and receive the polling via the transceiver The HARQ feedback is transmitted to a network node after the request, wherein the HARQ feedback is based on the downlink HARQ feedback flags stored in the HARQ feedback buffer. In some embodiments, to store the downlink HARQ feedback flag, the wireless device is further operable to: determine whether the reception of data for a current subframe is successful, wherein the current subframe is receiving the The subframe of the DCI message; determining whether a NACK flag is stored in the HARQ feedback buffer at the location corresponding to the HARQ feedback buffer index; and determining the receipt of the data for the current subframe After successfully determining that a NACK flag is stored in the HARQ feedback buffer corresponding to the location of the HARQ feedback buffer index, even if the reception of the data for the current subframe is successful, a NACK flag will be The flag is maintained at the location in the HARQ feedback buffer corresponding to the HARQ feedback buffer index. In some embodiments, to store the downlink HARQ feedback flag, the wireless device is further operative to determine that the receipt of the data for the current subframe is successful and to determine that a NACK flag is not stored in the HARQ back After the location of the buffer corresponding to the HARQ feedback buffer index, an ACK flag is stored in the HARQ feedback buffer at the location corresponding to the HARQ feedback buffer index. In some embodiments, to store the downlink HARQ feedback flag, the wireless device is further operative to store a NACK flag in the HARQ after determining that the reception of the data for the current subframe is unsuccessful. The feedback buffer corresponds to the location of the HARQ feedback buffer index. In some embodiments, by executing the instructions by the at least one processor, the wireless device is further operative to: determine whether a DCI error occurs in one or more previous subframes, the one or more previous pairs The frame is in one or more subframes before the current subframe; and after determining a DCI error in the one or more previous subframes, one or more DCI errors are indicated. The flags are stored in the HARQ feedback buffer at one or more locations corresponding to one or more of the HARQ feedback buffer indices immediately preceding the HARQ feedback buffer index included in the DCI message. In some embodiments, a wireless device enabled to operate in a cellular communication system includes means for receiving a DCI message including a HARQ feedback buffer index and for returning a downlink HARQ feedback The flag is stored in a HARQ feedback buffer corresponding to a component in one of the HARQ feedback buffer indices. In some embodiments, a wireless device enabled to operate in a cellular communication system includes: a receiving module operative to receive a DCI message including a HARQ feedback buffer index; and a storage module A group operable to store a downlink HARQ feedback flag in a HARQ feedback buffer corresponding to one of the HARQ feedback buffer indices. An embodiment of a method of operating a network node of a cellular communication system is also disclosed. In some embodiments, a method of operating a network node includes determining whether to schedule a wireless device in a subframe. The method further includes, after determining that the wireless device is scheduled in the subframe, causing a HARQ program transmitted to the wireless device in the subframe to be associated with a buffer index. The method further includes including the buffer index in a DCI transmitted to the wireless device in the subframe. In some embodiments, the method further includes setting the buffer index (BI) to an initial value prior to determining whether to schedule the wireless device in the subframe. In some embodiments, the method further includes determining if the BI is equal to a predefined maximum. The method further includes incrementing the BI after determining that the BI is not equal to the predefined maximum. The method further includes, after determining that the BI is equal to the predefined maximum value, setting a polling flag in the DCI transmitted to the wireless device in the subframe. Moreover, in some embodiments, the method further comprises receiving a downlink HARQ feedback from the wireless device in response to setting the polling flag in the DCI transmitted to the wireless device in the subframe. In some embodiments, the method further comprises determining whether a signal-to-interference plus noise ratio (SINR) of one of the uplink control channels on which the downlink HARQ feedback is received is greater than or equal to a first predefined Threshold. The method further includes determining that the downlink HARQ feedback should be trusted and processing the downlink HARQ feedback if the SINR of the uplink control channel is greater than or equal to the first predefined threshold. In some embodiments, the method further comprises determining whether the SINR of the uplink control channel is less than the first predefined threshold but greater than or equal to a second predefined threshold. The method further includes determining that the downlink HARQ feedback should not be trusted if the SINR of the uplink control channel is less than the first predefined threshold but greater than or equal to the second predefined threshold The downlink HARQ feedback is set to all NACKs and the NACKs are processed. An embodiment of a network node for a cellular communication system is also disclosed. In some embodiments, a network node is adapted to determine whether to schedule a wireless device in a secondary frame. The network node is further adapted to associate a HARQ program transmitted to the wireless device in the secondary frame with a BI after determining to schedule the wireless device in the secondary frame. The wireless device is further adapted to include the BI in a DCI transmitted to the wireless device in the subframe. In some embodiments, the network node is further adapted to operate in accordance with an operational method of a network node in accordance with any of the embodiments described herein. In some embodiments, a network node for a cellular communication system includes at least one processor and memory for storing instructions, the instructions being executable by the at least one processor, whereby the network node is operable to Determining whether to schedule a wireless device in a subframe; after determining to schedule the wireless device in the subframe, causing the HARQ program to be transmitted to the wireless device in the subframe BI is associated; and the BI is included in the DCI transmitted to the wireless device in the subframe. In some embodiments, the network node is further operative to set the BI to one before deciding whether to schedule the wireless device in the subframe by executing the instructions by the at least one processor. Initial value. In some embodiments, the network node is further operable to determine whether the BI is equal to a predefined maximum value by executing the instructions by the at least one processor; determining that the BI is not equal to the predefined maximum value Thereafter, the BI is incremented; and after determining that the BI is equal to the predefined maximum value, a polling flag is set in the DCI transmitted to the wireless device in the subframe. In some embodiments, the network node is further operable to set a polling flag in the DCI transmitted to the wireless device in the subframe by executing the instructions by the at least one processor. A downlink HARQ feedback is received from the wireless device. In some embodiments, via the at least one processor executing the instructions, the network node is further operable to: determine one of the uplink control channels on which the downlink HARQ feedback is received, SINR Whether it is greater than or equal to a first predefined threshold, and if the SINR of the uplink control channel is greater than or equal to the first predefined threshold, determining that the downlink HARQ feedback should be trusted and processing the Downlink HARQ feedback. Moreover, in some embodiments, the network node is further operable to determine whether the SINR of the uplink control channel is less than the first predefined threshold by executing the instructions by the at least one processor But greater than or equal to a second predefined threshold, and if the SINR of the uplink control channel is less than the first predefined threshold but greater than or equal to the second predefined threshold, then the decision should not The downlink HARQ feedback is trusted, the downlink HARQ feedback is set to all NACKs, and the NACKs are processed. In some embodiments, a network node enabled to operate in a cellular communication system includes: means for determining whether to schedule a wireless device in a secondary frame; for determining at the secondary After the frame is scheduled for the wireless device, the HARQ program transmitted to the wireless device in the subframe is associated with a BI; and is used for transmission to the wireless device in the subframe The components of the BI are included in the DCI. In some embodiments, a network node enabled to operate in a cellular communication system includes: a decision module operable to determine whether to schedule a wireless device in a subframe; an association a module operable to cause a HARQ program transmitted to the wireless device in the subframe to be associated with a BI after the determining module determines to schedule the wireless device in the subframe; and A transmission module operable to include the BI in a DCI transmitted to the wireless device in the subframe. Those skilled in the art will understand the scope of the present invention and recognize additional aspects thereof after reading the following detailed description of the embodiments of the invention.

相關申請案 本申請案主張2016年2月9日申請之臨時專利申請案第62/293,148號及2016年2月16日申請之臨時專利申請案第62/295,722號之權利,該等案之揭示內容全文以引用的方式併入本文中。 下文闡述之實施例表示使熟習此項技術者能夠實踐實施例且繪示實踐實施例之最佳模式之資訊。在根據隨附圖式閱讀以下描述之後,熟習此項技術者將理解本發明之概念且將認知本文中未具體討論之此等概念之應用。應理解,此等概念及應用落在本發明及隨附申請專利範圍之範疇內。 無線電節點:如本文中使用,一「無線電節點」係一無線電存取節點或一無線裝置。 無線電存取節點:如本文中使用,一「無線電存取節點」係操作以無線傳輸及/或接收信號之一蜂巢式通信網路之一無線電存取網路中之任何節點。一無線電存取節點之一些實例包含(但不限於):一基地台,諸如(例如)一第三代合作夥伴計劃(3GPP)長期演進(LTE)網路中之一增強或演進節點B (eNB);一高功率或大基地台;一低功率基地台,諸如(例如)一小型基地台、一微型基地台、一本籍eNB或類似者;及一中繼節點。 無線裝置:如本文中使用,一「無線裝置」係藉由來往於一(若干)無線電存取節點無線傳輸及/或接收信號而存取一蜂巢式通信網路(即,由一蜂巢式通信網路伺服)之任何類型之裝置。一無線裝置之一些實例包含(但不限於)一3GPP LTE網路中之一使用者設備裝置(UE)及一機器類型通信(MTC)裝置。 網路節點:如本文中使用,一「網路節點」係作為一蜂巢式通信網路/系統之無線電存取網路或核心網路之部分之任何節點。 應注意,本文中給出之描述關注於一3GPP蜂巢式通信系統且因而,通常使用3GPP LTE術語或類似於3GPP LTE術語之術語。然而,本文中揭示之概念不限於一3GPP系統。 應注意,在本文中之描述中,可能提及術語「小區」,然而,尤其相對於第五代(5G)概念,可使用波束代替小區且因而,重要的係應注意,本文中描述之概念可相等地應用至小區及波束兩者。 在論述本發明之實施例之前,與現有混合式自動重送請求(HARQ)解決方案相關聯之一些問題之一論述係有利的。LTE之當前HARQ協定非100%可靠,因此,LTE亦使用較高層無線電鏈路控制(RLC)應答模式(AM)以確保可靠性。又,當前HARQ協定係基於許多嚴格時序關係,諸如(例如)每同步HARQ時序操作,其非常不靈活且在(例如)使用預期針對5G非常常見之動態分時雙工(TDD)操作時引起若干問題。 此外,期望針對5G之HARQ回授協定非常快且尤其遠快於LTE兩者,但仍未過度使用x實體上行鏈路控制頻道(xPUCCH)資源。因此,期望的是一種HARQ回授機制,其可取決於(例如)使用者平面資料服務之可靠性及/或延遲要求以一相當動態的方式在回授延遲對xPUCCH資源消耗方面進行調適。 本發明提供與尤其適合於(但不限於)下一代蜂巢式通信網路(例如,5G網路)之下行鏈路HARQ回授相關之系統及方法。在一些實施例中,將來自若干下行鏈路HARQ傳輸之回授旗標綑綁為一單一HARQ回授傳輸。在一些實施例中,網路使用下行鏈路控制資訊(DCI)以指示UE應將哪些回授旗標組合為一HARQ回授傳輸以及應何時及如何傳輸。 本發明提出針對(例如) 5G xPUCCH之一快速且有效率的下行鏈路HARQ回授機制。在一些實施例中,機制容許在一個HARQ回授傳輸中包含可變數目個HARQ回授旗標(應答/否定應答(ACK/NACK))。呈現兩個不同變化形式: Ÿ  直接排程,其中各DCI將在xPUCCH上對ACK/NACK之一個上行鏈路回授直接排程。 Ÿ藉由輪詢,其中將在由網路請求之後報告之接收結果儲存於一回授緩衝器中。接收結果係(例如) ACK、NACK或在一些實施例中係不連續傳輸(DTX)。 兩個變化形式進一步容許DTX偵測,即,未聽到DCI時之情況,如下文論述。 本發明之實施例提供針對(例如)5G xPUCCH之一快速且有效率的下行鏈路HARQ回授機制。其調節每一UE使用之xPUCCH資源之量,而容許一非常快速的回授。又,本文中揭示之下行鏈路HARQ回授機制之實施例可由網路完全排程,使得可取決於使用者平面服務要求在資源消耗對回授延遲方面進行動態調適。本文中揭示之下行鏈路HARQ回授機制之實施例容許DTX偵測。 本發明之實施例實施於一蜂巢式通信系統或網路中。在圖1中繪示一蜂巢式通信系統10之一個非限制性實例。如所繪示,蜂巢式通信系統10包含一無線電存取網路(RAN) 12,該無線電存取網路(RAN) 12包含在本繪示實例中作為基地台14之若干無線電存取節點。基地台14有時在本文中更一般地稱為無線電存取節點14。在3GPP中,基地台14可係(例如) eNB或低功率基地台(例如,微型、小型、超微型或本籍基地台)。基地台14提供對基地台14之對應小區16中之無線裝置18 (諸如(例如) UE)之無線電存取。應注意,雖然在圖1之實例中展示小區16,但在其他實施例中,基地台14可在多個波束上傳輸。在此實例中,基地台14經由一X2連接或更一般地一基地台至基地台連接通信。另外,基地台14經連接至一核心網路20,該核心網路20包含各種核心網路節點,諸如(例如)一或多個行動性管理實體(MME) 22、一或多個伺服閘道(S-GW) 24及一或多個封包資料網路閘道(P-GW) 26。直接排程之 HARQ 回授 在一些實施例中,鑑於一經包含副訊框偏移K,各DCI對欲在一隨後時刻傳輸之回授排程。接著,在副訊框T處經排程之一DCI將在副訊框T+K處呈現回授。 在一些相關實施例中,K之組態可(例如)部分藉由例如經由(例如)較高層傳訊傳輸之一查找表提供及/或在規範中硬編碼。舉例而言,假定最小可能K係N (其係無線裝置18之反應時間),則代替發送K=N、K=N+1、K=N+2等,網路可代替性地在DCI中傳訊S=0、S=1、S=2等且接著單獨傳訊值N,此後無線裝置18將K計算為K=S+N。應注意,至少在一些實施例中,N之值僅可(例如)藉由較高層傳訊而傳訊一次或可係無線裝置18之一性質,網路已自(例如)一先前執行之RRC連接程序瞭解該性質。可變動S之值。舉例而言,可藉由在各各自DCI訊息中包含S之值而變動S之值,其中S之值可自一個DCI訊息至另一DCI訊息變動。 圖2繪示根據(例如)上文之實施例操作之一無線裝置18及一無線電存取節點14或其他網路節點之操作。如所繪示,無線電存取節點14或某個其他網路節點視情況至少部分組態一偏移K,該偏移K待用於判定無線裝置18在接收一DCI訊息之後傳輸HARQ回授之時間(T+K) (步驟100)。再次,T係副訊框或更一般地係接收DCI訊息之時間,且T+K係副訊框或更一般地係傳輸HARQ回授之時間。因此,有時在本文中將T稱為當前副訊框,且在本文中將K稱為HARQ時序偏移K或簡稱偏移K。如上文陳述,偏移K之此組態可包含(例如)待由無線裝置18使用以(例如)自一對應DCI訊息中傳輸之一索引判定K之值之一查找表之傳訊。作為上文論述之另一實例,此組態可係待用於(例如)根據K=N+S判定偏移K之一值S之一組態,其中S包含於對應DCI訊息中且N係一預定值(諸如(例如)無線裝置18之一預定反應時間)。 在某個點,無線裝置18自無電線存取節點14接收一DCI訊息,其中DCI訊息包含偏移K之一指示(步驟102)。偏移K之指示可係K之值或(例如)可由無線裝置18使用以判定K之值之某個值(即,K可依據由指示傳達之一值X)。舉例而言,偏移K之指示可係一值S,其中偏移K=N+S,其中N可(例如)按標準預定義或由網路組態(例如,在步驟100之組態中提供)。 在一些實施例中,無線裝置18接收一單一DCI訊息且導致在下文之步驟106中傳輸包含一單一HARQ旗標之HARQ回授。然而,在其他實施例中,無線裝置18接收包含步驟102之DCI訊息及潛在地在先前副訊框中之額外DCI訊息之多個DCI訊息。因此,若存在多個DCI訊息,則此等DCI訊息可具有導致在相同副訊框中傳輸之各自HARQ回授之各自HARQ時序偏移K。因此,在一些實施例中,無線裝置18組合多個HARQ回授旗標以提供待由無線裝置在副訊框T+K處傳輸之HARQ回授(步驟104)。然而,應注意,步驟104係選用的。如下文論述,其中無線裝置18組合多個回授旗標之方式可取決於特定實施例/實施方案而變動。舉例而言,無線裝置18可串接表示多個HARQ回授旗標之位元型樣或將多個HARQ回授旗標聯合編碼為一單一碼字。作為組合HARQ回授旗標之一個例示性替代例,無線裝置18可在單獨上行鏈路控制資訊(UCI)訊息中傳輸HARQ回授旗標。 無線裝置18在副訊框T+K處傳輸下行鏈路HARQ回授(步驟106)。如本文中描述,在一些實施例中,HARQ回授係針對由DCI訊息在副訊框T中排程之一單一下行鏈路資料傳輸之一下行鏈路HARQ旗標。在此情況中,若由DCI訊息排程之下行鏈路資料由無線裝置18在副訊框T中成功接收,則下行鏈路HARQ旗標係一ACK或若由DCI訊息排程之下行鏈路資料未由無線裝置18在副訊框T中成功接收,則下行鏈路HARQ旗標係一NACK。 在一些其他實施例中,HARQ回授包含針對多個下行鏈路傳輸之下行鏈路HARQ回授。舉例而言,多個下行鏈路傳輸可由在副訊框T1 、T2 、…、TM 中接收之各自DCI訊息排程,其中各自HARQ時序偏移K1 、K2 、…、KM 係使得針對全部此等下行鏈路傳輸之HARQ回授在相同副訊框中出現(即,T1 +K1 =T2 +K2 =…=TM +KM )。接著,HARQ回授可包含(例如)映射至xPUCCH中(例如,單獨UCI訊息中)之單獨實體資源(例如,資源元素(RE))之多個下行鏈路HARQ旗標。替代地,HARQ回授可包含由步驟104提供之聯合表示多個下行鏈路HARQ旗標(即,作為將多個下行鏈路HARQ旗標聯合編碼為單一碼字之結果或串接表示多個HARQ旗標之多個位元型樣之結果)之一單一經組合回授。在一些實施例中,取決於無線裝置18是否成功接收各自下行鏈路資料傳輸(例如,實體下行鏈路共用頻道(PDSCH)上之資料傳輸),下行鏈路HARQ旗標包含ACK及NACK。另外,在一些實施例中,若各自DCI訊息未由無線裝置18成功接收,則下行鏈路HARQ旗標包含DTX (即,表示DCI接收之一誤差或失效之旗標)。 無線電存取節點14接收HARQ回授且根據任何所要HARQ回授處理方案處理HARQ回授(步驟108)。舉例而言,若接收一NACK,則無線電存取節點14重新傳輸下行鏈路資料。 在一些實施例中,無線電存取節點14能夠基於HARQ回授偵測DCI誤差或失效。本文中將此稱為DTX或一DCI失效/誤差。在一些實施例中,可藉由以下任一者達成DTX偵測(即,一DCI失效): Ÿ具有各經接收DCI至xPUCCH上之一組給定實體資源/RE之一相異(明確)映射。換言之,使用相異資源但同時發送若干單獨UCI訊息。若網路在一個特定資源/資源元素處未接收任何訊息,則可將此解譯為無線裝置18未能解碼對應DCI。 Ÿ將DTX明確編碼為回授中之一單獨碼點,例如,使00=ACK、01=DTX、11=NACK、…。 Ÿ聯合編碼多個HARQ回授。在此情況中,當無線裝置18準備xPUCCH傳輸時,無線裝置18將待傳輸之回授旗標組合為一單一碼點,該單一碼點經映射至在xPUCCH上傳輸之一碼字。舉例而言,若在HARQ回授傳輸中可包含高達四個回授旗標,則可將碼點計算為f1 +3f2 +9f3 +27f4 ,其中f1…f4係編碼為ACK=1、NACK=2及DTX=0之回授旗標。DTX意謂未針對該旗標偵測到傳輸。應注意,可在無聯合編碼之情況下以一類似方式組合多個HARQ回授,例如,各回授由一HARQ傳輸中之若干位元(例如,如在先前項目符號點中之實例中之兩個位元)表示。 在圖3A及圖3B中展示圖2之程序之一例證。在圖3A中繪示之第一實例中,針對副訊框T、T+1、T+2及T+3成功解碼DCI訊息及下行鏈路資料兩者,且在副訊框P中傳輸分別係ACK、ACK、ACK及ACK之HARQ回授旗標。此四個回授旗標可經聯合編碼或另外組合為一單一回授/位元型樣或可在單獨實體資源(例如,在單獨UCI訊息中)傳輸。在圖3A中繪示之第二實例中,成功解碼針對副訊框T、T+1、T+2及T+3之DCI訊息,成功解碼針對副訊框T、T+2及T+3之下行鏈路資料,且未成功解碼針對副訊框T+1之下行鏈路資料(即,存在一PDSCH誤差)。由無線裝置18在副訊框P中傳輸適當HARQ回授旗標(ACK、NACK、ACK、ACK)。再次,此四個回授旗標可經聯合編碼或以其他方式組合為一單一回授/位元型樣或可在單獨實體資源中(例如,在單獨UCI訊息中)傳輸。 在圖3B中繪示之第三實例中,成功解碼針對副訊框T、T+2及T+3之DCI訊息,未成功解碼針對副訊框T+1之一DCI訊息(即,副訊框T+1中存在一DCI誤差),且成功解碼針對副訊框T、T+2及T+3之下行鏈路資料。由無線裝置18在副訊框P中傳輸適當HARQ回授旗標(ACK、DTX、ACK、ACK)。再次,此四個回授旗標可經聯合編碼或以其他方式組合為一單一回授/位元型樣或可在單獨實體資源中(例如,在單獨UCI訊息中)傳輸。最後,在圖3B中繪示之第四實例中,案例與實例1中相同,惟未在副訊框T+1中對無線裝置18排程除外。在此實例中,由UE在副訊框P中傳輸適當HARQ回授旗標(ACK、DTX、ACK、ACK)。再次,此四個旗標可經聯合編碼或以其他方式組合為一單一回授/位元型樣或可在單獨實體資源中(例如,在單獨UCI訊息中)傳輸。藉由輪詢之 HARQ 回授 在一些實施例中,各DCI訊息含有至一HARQ回授緩衝器之一索引,在該HARQ回授緩衝器中儲存索引接收之接收狀態(ACK (A)/NACK (N)或至少在一些實施例中,DTX或DCI誤差(D))。 在一些相關實施例中,網路將明確輪詢HARQ回授緩衝器之狀態報告,其亦將清空HARQ回授緩衝器之狀態。假定無線裝置18之一HARQ回授延遲係d個副訊框,則在副訊框T處接收之一輪詢將在副訊框T+d處呈現回授。在一些實施例中,HARQ回授延遲d可係一靜態延遲(例如,四個副訊框)。在其他實施例中,HARQ回授延遲d可係一可組態延遲。特定言之,在一些實施例中,上文提及之輪詢亦可含有關於何時以類似於針對上文描述之HARQ時序偏移K之組態描述之一方式傳輸回授之明確細節。即,在一些實施例中,d=K,其中K係上文描述之HARQ時序偏移K。 在一些又進一步相關實施例中,可藉由以下任一者達成DTX偵測(即,一DCI失效): Ÿ具有各HARQ回授緩衝器項目至一組給定實體資源/資源元素之一相異映射。若網路在一特定資源/資源元素處未接收任何訊息,則可將此解譯為無線裝置18未能解碼對應DCI。 Ÿ將DTX明確編碼為回授中之一單獨碼點。 ○實例1:單獨使00=ACK、01=DTX、11=NACK… ○實例2:聯合編碼全部區塊。DTX僅需要包含於前三個項目中,此係因為若DTX在最後的項目上,則將不發送報告。因此,此將需要3*3*3*2=54個碼點,該等碼點可(例如)由至少6個位元之一適當區塊碼編碼(即,2^6=64>54)。 在圖4中繪示上文描述之輪詢程序之一個實例。如所繪示,在一副訊框T1 中,在下行鏈路控制頻道(此處稱為x實體下行鏈路控制頻道(xPDCCH))上,一無線電存取節點14傳輸一第一DCI訊息且無線裝置18接收該第一DCI訊息(步驟200)。第一DCI訊息包含指示在副訊框T1 中將下行鏈路資料傳輸至無線裝置18之一下行鏈路授權。另外,第一DCI訊息包含至HARQ回授緩衝器中待儲存一各自下行鏈路HARQ旗標(例如,ACK、NACK或DTX)之一位置之一索引。無線電存取節點14亦根據第一DCI訊息中包含之下行鏈路授權在副訊框T1 中將第一下行鏈路資料傳輸至無線裝置18 (步驟202)。無線裝置18在HARQ回授緩衝器中由第一DCI訊息中包含之索引定義之位置處儲存一下行鏈路HARQ旗標(在本文中亦稱為一接收狀態) (步驟204)。在一些實施例中,若在副訊框T1 中無線裝置18成功接收/解碼下行鏈路資料,則經儲存下行鏈路HARQ旗標係一ACK或若在副訊框T1 中無線裝置18未成功接收/解碼下行鏈路資料,則經儲存下行鏈路HARQ旗標係一NACK。然而,在一些實施例中,可修改此儲存方案,如下文描述。在一些實施例中,在全部位置處將HARQ回授緩衝器初始化為DTX。因而,若無線裝置18未能接收第一DCI訊息,則將一DTX旗標維持於HARQ回授緩衝器中之各自位置中。 以相同方式,在一副訊框T2 中,在下行鏈路控制頻道(此處稱為xPDCCH)上,無線電存取節點14傳輸一第二DCI訊息且無線裝置18接收該第二DCI訊息(步驟206)。第二DCI訊息包含指示在副訊框T2 中將下行鏈路資料傳輸至無線裝置18之一下行鏈路授權。另外,第二DCI訊息包含至HARQ回授緩衝器中待儲存一各自下行鏈路HARQ旗標(例如,ACK、NACK或DTX)之一位置之一索引。無線電存取節點14亦根據第二DCI訊息中包含之下行鏈路授權在副訊框T2 中將第二下行鏈路資料傳輸至無線裝置18 (步驟208)。無線裝置18將一下行鏈路HARQ旗標(在本文中亦稱為一接收狀態)儲存於HARQ回授緩衝器中由第二DCI訊息中包含之索引定義之位置處(步驟210)。在一些實施例中,若無線裝置18在副訊框T2 中成功接收/解碼下行鏈路資料,則經儲存下行鏈路HARQ旗標係一ACK或若無線裝置18未在副訊框T2 中成功接收/解碼下行鏈路資料,則經儲存下行鏈路HARQ旗標係一NACK。然而,在一些實施例中,可修改此儲存方案,如下文描述。在一些實施例中,在全部位置處將HARQ回授緩衝器初始化為DTX。因而,若無線裝置18未能接收第二DCI訊息,則將一DTX旗標維持於HARQ回授緩衝器中之各自位置中。 程序以此方式繼續直至無線電存取節點14在副訊框TM 中傳輸且無線裝置18在副訊框TM 中接收含有一輪詢指示符之一DCI訊息(步驟212)。在此實例中,此DCI訊息亦包含針對副訊框TM 之一下行鏈路授權及針對對應下行鏈路HARQ旗標之一HARQ緩衝器索引。因而,無線電存取節點14根據副訊框TM 中傳輸之DCI訊息中包含之下行鏈路授權在副訊框TM 中將下行鏈路資料傳輸至無線裝置18 (步驟214)。無線裝置18將一下行鏈路HARQ旗標(本文中亦稱為一接收狀態)儲存於HARQ回授緩衝器中由副訊框TM 中傳輸之DCI訊息中包含之索引定義之位置處(步驟216)。在一些實施例中,若無線裝置18在副訊框TM 中成功接收/解碼下行鏈路資料,則經儲存下行鏈路HARQ旗標係一ACK或若無線裝置18未在副訊框TM 中成功接收/解碼下行鏈路資料,則經儲存下行鏈路HARQ旗標係一NACK。然而,在一些實施例中,可修改此儲存方案,如下文描述。在一些實施例中,在全部位置處將HARQ回授緩衝器初始化為DTX。因而,若無線裝置18未能在副訊框TM 中接收DCI訊息,則將一DTX旗標維持於HARQ回授緩衝器中之各自位置中。 在接收輪詢指示符之後,無線裝置18 (例如)在xPUCCH上傳輸表示儲存於HARQ回授緩衝器中之HARQ回授旗標之HARQ回授(步驟218)。在副訊框TM +d中傳輸HARQ回授,其中延遲d可係一靜態延遲或一可組態延遲,例如,在一些實施例中為可組態HARQ時序偏移K。在一些實施例中,可在單獨實體資源中(例如,在單獨UCI訊息中)傳輸HARQ回授緩衝器中之多個HARQ回授旗標。在其他實施例中,組合多個HARQ回授旗標以提供一經組合HARQ回授用於傳輸。經組合HARQ回授可係表示多個HARQ旗標之位元型樣之一串接。舉例而言,若HARQ旗標係ACK=00及NACK=01且在HARQ回授緩衝器中存在四個位置,則經組合HARQ回授可係00000001。作為另一實例,經組合HARQ回授可係源自聯合編碼多個HARQ旗標之一碼字。 無線電存取節點14偵測HARQ回授(步驟220)且解譯HARQ回授(222)。一旦偵測且解譯HARQ回授,無線電存取節點14便採取一(若干)適當行動(例如,重新傳輸資料)。 在圖5A及圖5B中展示此程序之一例證,其中一對應流程圖繪示圖6中之無線裝置18之操作。應注意,在圖5A及圖5B中,單獨編碼DCI中之索引及輪詢。當然,可將其等聯合編碼為(例如): Ÿ00=儲存具有索引0之回授 Ÿ01=儲存具有索引1之回授 Ÿ10=儲存具有索引2之回授 Ÿ11=儲存具有索引3之回授且在N個副訊框後傳輸回授/清空緩衝器 如圖5A中展示,在第一實例中,無線裝置18接收具有緩衝器索引00之一DCI訊息且因而,將各自HARQ回授旗標儲存於HARQ回授緩衝器中對應於索引00之緩衝器位置處。在下一副訊框中,無線裝置18接收具有輪詢緩衝器索引01之一DCI訊息且因而,將各自HARQ回授旗標儲存於HARQ回授緩衝器中對應於索引01之緩衝器位置處。隨後,無線裝置18在副訊框中接收分別具有輪詢緩衝器索引02及13之另一DCI訊息且因而,將各自HARQ回授旗標儲存於HARQ回授緩衝器中對應於索引02及13之緩衝器位置處。網路(例如,無線電存取節點14)針對HARQ回授輪詢無線裝置18。回應於由網路輪詢,無線裝置18在副訊框T+d中傳輸儲存於HARQ回授緩衝器中之HARQ回授,在此實例中,其中在(例如)副訊框T中輪詢無線裝置18且值d可係一靜態值或由網路組態之一可組態值(例如,HARQ時序偏移K),如上文描述。圖5A及圖5B之實例2及3類似於第一實例但其中在第二副訊框中存在一PDSCH誤差(實例2)且在第二副訊框中存在一DCI誤差(實例3)。 圖6係繪示根據本發明之一些實施例之一無線裝置18之操作之一流程圖。應注意,在一些實施例中,初始化HARQ回授緩衝器,使得將全部位置設定為某個預設值(在本文中描述之例示性實施例中為DTX)。應注意,虛線框表示選用步驟。如所繪示,無線裝置18首先等待接收一DCI訊息(步驟300及302)。在接收一DCI訊息之後,無線裝置18針對一給定索引將適當HARQ旗標(ACK或NACK)儲存於HARQ回授緩衝器中,其中索引(例如)提供於DCI訊息中(步驟304)。程序返回至步驟300且可經重複直至無線裝置18由網路輪詢(步驟306,是)。應注意,在一些實施例中,步驟306係選用的,其中(例如)無線裝置18可在到達HARQ回授緩衝器中之最後位置之後自動發送回授。可將此視為一隱含輪詢。 在經輪詢之後,無線裝置18基於HARQ回授緩衝器之狀態產生一xPUCCH訊息(步驟308)。舉例而言,在一些實施例中,無線裝置18組合儲存於HARQ回授緩衝器中之下行鏈路HARQ旗標以提供一經組合HARQ回授(即,一經組合下行鏈路HARQ回授訊息)。經組合HARQ回授可係(例如)針對各下行鏈路HARQ旗標之位元型樣/序列之一串接或作為另一實例,源自聯合編碼儲存於HARQ回授緩衝器中之HARQ旗標之一單一碼字。xPUCCH訊息包含(例如)呈一經編碼形式之儲存於HARQ回授緩衝器中之HARQ回授旗標。無線裝置18清空HARQ回授緩衝器(例如,將全部項目設定為DTX) (步驟310)。無線裝置18等待d個副訊框(步驟312)且接著在xPUCCH上傳輸經產生xPUCCH訊息(步驟314)。應注意,值d (即,HARQ回授延遲)可係一預定義值(例如,按一標準定義之一靜態值)或由網路(例如)以類似於HARQ時序偏移K之組態之一方式組態之一經組態值。 在一些實施例中,HARQ回授延遲d係(例如)由無線裝置18之一處理延遲定義之一裝置特定值。在此情況中,不同無線裝置18可具有自無線裝置18接收一DCI訊息之時直至無線裝置18傳輸一UCI (或更一般地,HARQ回授)之時之不同裝置特定延遲,一個以上無線裝置18可同時(即,在相同副訊框中)傳輸UCI訊息。此呈現UCI訊息之同時傳輸衝突之一問題。此問題可由以下之任何者解決: Ÿ使用明確傳訊以指示針對無線裝置18之UCI資源而非隱含DCI至UCI映射。此明確傳訊可係待由無線裝置18使用之d之值之一指示之傳訊(例如,傳訊HARQ偏移時序K),如上文描述。 Ÿ將具有不同處理延遲之無線裝置18指派至不同頻率資源。 Ÿ在不同DCI控制頻道元素(CCE)上對具有不同處理延遲之無線裝置18排程。 避免對將傳輸將與將由已經排程之另一無線裝置18傳輸之一UCI衝突之一UCI之一新無線裝置18排程。先進 HARQ 回授 針對如上所述之5G中之xPUCCH之HARQ回授解決方案在歸因於下行鏈路上之DCI誤差及/或歸因於上行鏈路上之xPUCCH誤差而未接收(例如)呈HARQ回授報告之形式之HARQ回授時可經歷問題。 如在圖7A及圖7B以及圖8中繪示,在此等情況中,網路無法得出關於待由未經接收之報告涵蓋之PUSCH傳輸之成功及/或不成功接收之任何結論。另外,網路可甚至依據相信未經接收之傳輸經ACK化(例如,NACKàACK誤差)得出錯誤結論,此將引起昂貴的較高層重新傳輸。 具體言之,圖7A及圖7B繪示稱為問題A及問題B之兩個問題。在問題A中,一DCI誤差引起無線裝置18未在副訊框SF #(J)中接收輪詢請求/指示符。由於未接收輪詢指示符,因此未清除HARQ回授緩衝器,即,未將HARQ回授緩衝器中之全部位置重設為DTX,且無線裝置18未在副訊框SF #(J+2)中將HARQ回授傳輸至網路。因而,在此實例中,在副訊框SF #(J+1)中,將一NACK儲存於HARQ回授緩衝器中之第一位置中,其中NACK覆寫/隱藏HARQ回授緩衝器中由於副訊框SF #(J)中之DCI誤差而未傳輸至網路之ACK。在副訊框SF #(J+2)中,將一NACK儲存於HARQ回授緩衝器中之第二位置中,其中NACK覆寫/隱藏HARQ回授緩衝器中由於副訊框SF #(J)中之DCI誤差而未傳輸至網路之ACK。在副訊框SF #(J+3)中,將一ACK儲存於HARQ回授緩衝器中之第三位置中,其中ACK覆寫/隱藏HARQ回授緩衝器中由於副訊框SF #(J)中之DCI誤差而未傳輸至網路之一NACK。在副訊框SF #(J+4)中,將一ACK儲存於HARQ回授緩衝器中之第四位置中,其中ACK覆寫/隱藏HARQ回授緩衝器中由於副訊框SF #(J)中之DCI誤差而未傳輸至網路之一DTX。在問題B中,在上行鏈路中丟失xPUCCH回授,使得未在副訊框SF #(J+2)中接收xPUCCH。 應注意,網路不知道如何區分問題A及問題B。在問題A及B兩者中,在副訊框SF #(J+2)處,網路將不在副訊框SF #(J-3)、SF #(J-2)、SF #(J-1)及SF #(J)中未接收針對下行鏈路傳輸之任何HARQ回授,且網路無法得出關於此等下行鏈路傳輸之任何結論。在副訊框SF #(J+7)處,網路將重新傳輸經NACK化之全部HARQ程序(即,具有緩衝器索引0及1之HARQ程序),其等對應於副訊框SF #(J+1)及SF #(J+2)之下行鏈路傳輸。網路將類似地假定副訊框SF #(J+3)及SF #(J+4)之下行鏈路傳輸經ACK化。此全部正確,但網路不知道副訊框SF #(J-3)、SF #(J-2)、SF #(J-1)及SF #(J)之接收狀態,此係因為對應狀態旗標已由新狀態旗標覆寫。 圖8繪示導致其中存在多個連續DCI誤差之一案例之一問題(問題C)。除了圖7A之問題A之問題之外,針對問題C,在副訊框SF #(J+1)處之DCI誤差將引起HARQ回授緩衝器中具有一索引0之項目不更新。此繼而將引起網路在副訊框SF #(J+7)處錯誤地假定對應下行鏈路傳輸已經ACK化,而事實上,應將其指示為DTX。 本發明之實施例強化如上文描述之針對5G中之xPUCCH之HARQ回授解決方案。應注意,本文中使用術語xPUCCH來指代(尤其)一5G網路中之上行鏈路控制頻道。然而,名稱xPUCCH僅為了清楚及容易論述起見而使用且5G中之實際上行鏈路控制頻道可被給定一不同名稱。在下文描述之圖9中概述本發明之一概要。最重要地,本發明之實施例: Ÿ確保無線裝置18非簡單使用新狀態而是使用一較複雜程序(見圖11及下文對應描述)替換一先前接收之舊狀態(ACK/NACK/DTX);且 Ÿ確保網路正確解譯缺少回授(DCI誤差或xPUCCH誤差)且回應於此而採取適當行動(見圖12及下文對應描述)。 使用本文中揭示之強化,使上文描述之HARQ回授解決方案針對下行鏈路中之控制頻道誤差(即,DCI誤差)以及上行鏈路中之控制頻道誤差(即,xPUCCH誤差)更可靠。其確保以不昂貴的一些額外HARQ重新傳輸為代價減輕將觸發較高層重新傳輸之昂貴的DTX/NACKàACK誤差。作為一額外紅利,其儘可能快地隱含解譯HARQ回授之缺少,因此提供最短可能HARQ往返時間(RTT)。 強化HARQ回授解決方案之實施例之細節在一大程度上由圖9至圖13之流程圖提供。此段落之以下部分提供此等圖之一些更多詳細闡述及可能實施例。此外,在圖14A至圖14C、圖15A至圖15C、圖16A及圖16B、圖17A及圖17B以及圖18A及圖18B之實例中展示在使用中之本發明之圖解。 應注意,以下論述關注於經輪詢HARQ回授解決方案,此係因為此係最複雜的;然而,強化亦可應用至直接排程之HARQ回授解決方案,如下文中提及。 圖9繪示針對整體HARQ回授程序之一概要/演算法剖析。特定言之,圖9繪示圖10至圖13、圖14A至圖14C、圖15A至圖15C以及圖16A及圖16B之個別程序如何一起工作。如所繪示,網路(例如,無線電存取節點14)在控制頻道(稱為xPDCCH)上傳輸DCI訊息且亦在下行鏈路共用頻道(稱為xPDSCH)上傳輸下行鏈路資料。在UE/無線裝置18處,無線裝置18執行導致HARQ回授至網路之傳輸之一UE側回授程序。在網路側,每一HARQ程序執行一個網路側HARQ回授解譯程序以解譯來自無線裝置18之HARQ回授且採取(若干)適當行動。 圖10係繪示根據本發明之一些實施例之一網路側輪詢程序之一流程圖。在一些實施例中,網路側輪詢程序由無線電存取節點14執行。網路將確保針對各xPDSCH傳輸,經排程HARQ程序與亦在DCI中指示之一局部唯一緩衝器索引(BI)相關聯。BI係針對無線裝置18處之HARQ回授緩衝器之索引,該索引定義HARQ回授緩衝器內待儲存對應HARQ旗標之位置。在執行BIMAX 此等傳輸之後,在DCI中設定輪詢位元。此處,BIMAX 對應於無線裝置18處之HARQ回授緩衝器之大小。應注意,為了清楚且容易論述起見,在本文中使用xPDSCH作為一5G網路中之PDSCH之名稱。然而,一5G網路中之下行鏈路共用頻道之實際名稱可經給定另一名稱。在一些實施例中,BIMAX 由(例如)相關規範給定一預定值,而在其他實施例中,其可由(例如)較高層傳訊靜態或半靜態組態。在又其他實施例中,其可在DCI中動態設定。應注意,針對上文描述之「直接排程」情況,顯然可省略輪詢部分。 特定言之,如所繪示,程序在步驟400處開始,且將BI設定為0 (步驟402)。無線電存取節點14判定對於當前副訊框,是否針對無線裝置18 (稱為使用者)排程一下行鏈路資料傳輸(步驟404)。若未排程,則無線電存取節點14等待直至下一副訊框(步驟406)且接著程序返回至步驟404。若針對無線裝置18排程一下行鏈路資料傳輸(步驟404;是),則無線電存取節點14使待傳輸之各自HARQ程序與當前BI相關聯(步驟408)且將BI包含在使用下行鏈路授權傳輸至無線裝置18之各自DCI訊息中(步驟410)。無線電存取節點14判定BI是否等於BIMAX (步驟412)。若不等於,則使BI遞增(步驟414)且程序進行至步驟406。一旦BI達到BIMAX (步驟412;是),無線電存取節點14便在待傳輸至無線裝置18之DCI訊息中設定輪詢旗標/指示符(步驟416)且程序接著返回至步驟402。 圖11繪示根據本發明之一些實施例之一UE側或無線裝置側回授程序。此程序與圖6之程序相同,但提供儲存步驟304之強化。一般言之,回授程序係關於無線裝置18何時成功至少解碼指示xPDSCH傳輸之DCI訊息(及可能亦xPDSCH傳輸自身)。如先前提及,DCI訊息包含一BI以及一輪詢指示符(其可呈(例如)一輪詢位元之形式)。無線裝置18維持其中儲存接收狀態(ACK/NACK/DTX)之一HARQ回授緩衝器。通常清空HARQ回授緩衝器,即,在各輪詢之後將全部項目重設為DTX。使用先前描述之BI對HARQ回授緩衝器中之各項目進行索引。 在此實施例中,取代簡單使用當前接收之接收狀態替換HARQ回授緩衝器中之一先前接收之舊接收狀態(本文中亦稱為HARQ旗標),無線裝置18代替性地使用將容許網路在接收HARQ回授時隨後進行HARQ回授之更佳且更啟發性解譯之一強化儲存程序。此在具有DCI誤差之情況中係重要的,其中未自輪詢清空HARQ回授緩衝器,此係因為未接收輪詢指示符。 在一些實施例中,HARQ回授緩衝器之一個項目中之一已儲存NACK即使在對應於此緩衝器項目(即,相同BI)之當前接收成功且因此將指示一ACK之情況中仍被保持。然而,為了可靠起見,一經儲存ACK在對應於此緩衝器項目(即,相同BI)之當前接收不成功之情況下將始終由一NACK覆寫。在圖16B之實例8中給出使用之一實例。 在一些其他實施例中,先前緩衝器項目之經儲存值(其之緩衝器索引由表達式(BI-1 )%(BIMAX +1 )給定)在先前DCI中未指示該緩衝器索引之情況中由DTX替換。此可在當存在針對該傳輸之一DCI誤差之情況中發生。此隱含DTX標記將(例如)防止有關(最重要地)NACKàACK誤差之誤差傳播。在圖17A及圖17BB之實例9中給出使用之一實例。 再次,應注意,針對上文描述之經直接排程HARQ回授解決方案,顯然可省略輪詢部分,否則應應用剩餘部分。 如圖11中繪示,強化儲存程序如下。在接收一DCI訊息(步驟302,是)之後,無線裝置18判定是否已成功接收各自下行鏈路資料(步驟500)。若成功接收,則無線裝置18判定HARQ回授緩衝器中針對包含於DCI訊息中之BI之項目是否係一NACK (步驟502)。若非NACK,則無線裝置18將一ACK儲存於HARQ回授緩衝器中由包含於經接收DCI訊息中之BI指示之位置/項目中(步驟504)。相反地,若HARQ回授緩衝器中針對包含於經接收DCI訊息中之BI之項目係一NACK,則無線裝置18將一NACK儲存於或以其他方式將NACK維持於HARQ回授緩衝器中針對包含於經接收DCI訊息中之BI之項目中(步驟506)。以此方式,先前NACK未被一ACK隱藏或覆寫。返回至步驟500,若下行鏈路資料未由無線裝置18成功接收,則無線裝置18將一NACK儲存於HARQ回授緩衝器中由包含於DCI訊息中之BI指示之位置/項目處(步驟506)。 視情況,程序可繼續以偵測一先前DCI誤差。在此方面,無論是自步驟504或步驟506進行,無線裝置18設定BIPREV =BI (步驟508)且接著設定BIPREV =(BIPREV –1)%(BIMAX +1) (步驟510)。步驟510將索引BIPREV 設定為可能BI值之序列{0, 1, …, BIMAX }中之先前索引。又,應注意,步驟510中給定之方程式假定BI係一無符號整數。若使用一帶正負號整數,則方程式變為BIPREV =(BIPREV +BIMAX )%(BIMAX +1)。無線裝置18接著比較BIPREV 與BILAST ,其中BILAST 係包含於最新先前成功接收之DCI訊息中之BI。因此,若BIPREV 不等於BILAST ,則此意謂存在一先前DCI誤差。因此,若BIPREV 不等於BILAST ,則無線裝置18將DTX儲存於HARQ回授緩衝器中由BIPREV 定義之位置處 (步驟514)且程序返回至步驟510。應注意,若存在多個連續DCI誤差,則此程序將偵測該等DCI誤差且將DTX儲存於各自HARQ回授緩衝器位置中。一旦BIPREV =BILAST (意謂不再存在DCI誤差),無線裝置18便將BILAST 設定為BI (步驟516)。接著,程序進行至步驟306,如上文關於圖6描述。 圖12係繪示根據本發明之一些實施例之網路側xPUCCH偵測程序之一流程圖。此程序由一網路節點(例如,無線電存取節點14)執行。此處,網路(例如,無線電存取節點14)預期給定副訊框期間xPUCCH上之HARQ回授(步驟600)。針對BI=0、…、BIMAX ,將HARQ回授表示為{FB(BI)} (步驟602)。在一些實施例中,若針對xPUCCH接收之信號對干擾加雜訊比(SINR)高於一給定臨限值THIGH (其可係由(例如)較高層設定之一參數) (步驟604,是),則將HARQ回授視為值得信任的(步驟606)。為了圖解起見,見圖14A至圖14C、圖15A至圖15C、圖16A及圖16B、圖17A及圖17B以及圖18A及圖18B之任何實例。 在一些實施例中,當針對xPUCCH接收之SINR低於臨限值THIGH 但高於另一臨限值TLOW (其亦可係由(例如)較高層設定之一參數) (步驟608,是)時,則將經接收之HARQ回授視為不值得信任的(步驟610)。此此等情況中,全部經考量傳輸經NACK化(步驟612),即,將針對此報告中之全部BI之HARQ回授設定為NACK。此將實際上耗費一些額外HARQ重新傳輸,但將避免源自由於一NACK/DTXàACK誤差之經考量HARQ程序之一過早釋放之較昂貴的較高層重新傳輸。為了此之圖解起見,分別見圖18A中之實例10及圖18B中之實例11。 針對兩個上文實施例,網路設定BI=0 (步驟614),且網路將接著針對由報告涵蓋之各BI (即,BI=0…BIMAX )繼續針對與該特定BI相關聯之各HARQ程序處理該BI之HARQ回授(步驟616至630)。特定言之,使{HP(BI}為與BI相關聯之全部HARQ程序(步驟616)。使HP(BI)為{HP(BI)}之第一元素且自{HP(BI)}移除此元素(步驟618)。網路移除HARQ程序HP(BI)與BI之間之關聯(步驟620)。接著,網路處理HARQ程序HP(BI)之HARQ回授FB(BI) (步驟622)。在圖12中詳述此HARQ回授處理。網路判定{HP(BI)}是否為空(步驟624)。若非空,則程序返回至步驟618。一旦{HP(BI)}為空,便使BI遞增(步驟626)。此刻,若BI大於BIMAX (步驟628),則程序結束(步驟630);否則,程序返回至步驟616且針對此新BI重複。 返回至步驟608,在又一些其他實施例中,當針對xPUCCH接收之SINR低於臨限值TLOW (步驟608,否)時,網路將斷定無線裝置18未嘗試傳輸任何xPUCCH回授且因此,在對應輪詢中存在一DCI誤差(步驟632)。網路將接著隱含假定針對相關xPDSCH傳輸之HARQ回授為DTX (其中BI=BIMAX ),此係因為此無法由無線裝置18接收(步驟634)。接著,網路設定BI=BIMAX (步驟636)且程序進行至步驟616以立即處理此隱含DTX回授。為了此之圖解起見,見圖16A中之實例7、圖16B中之圖8以及圖17A及圖17B中之圖9。 圖13係繪示根據本發明之一些實施例之一網路側HARQ回授解譯程序之一流程圖。此程序由一網路節點(諸如(例如)無線電存取節點14)執行。此處,針對相關HARQ程序給定一特定BI之HARQ回授。取決於經指示回授(ACK/NACK/DTX),將相應地更新(NACK)或不更新(DTX)待由HARQ程序使用之冗餘版本(RV)。特定HARQ程序將隨後(朝向排程器)經指示為有資格進行重新傳輸(NACK或DTX)或自由(ACK)。在ACK之情況中,將清除HARQ程序且將切換一新資料指示符(NDI)。 特定言之,如圖13中繪示,程序在(例如,在圖12之步驟622中)待處理針對一HARQ程序HP之HARQ回授FB(BI)時開始(步驟700)。若HARQ回授(FB)係DTX (步驟702;是),則網路將HARQ程序HP標誌/標記為需要重新傳輸(步驟704)。否則,若HARQ回授(FB)係NACK (步驟706;是),則網路更新HARQ程序HP之RV (步驟708)且將HARQ程序HP標誌/標記為需要重新傳輸(步驟704)。否則,若HARQ回授(FB)係ACK (步驟710;是),則網路清除HARQ程序HP且切換其之新資料指示符(NDI) (其係LTE中之一現有指示符),藉此指示HARQ程序清空HARQ緩衝器(此係因為此傳輸與一先前傳輸不相關而係一新傳輸) (步驟712)且將HARQ程序HP標誌/標記為自由/準備用於新資料(步驟714)。應注意,步驟710非必要係因為若HARQ回授非DTX且非NACK,則在此實例中,其必須係ACK。因此,程序可自步驟706之「否」分支直接進行至步驟712。 圖14A至圖14C、圖15A至圖15C、圖16A及圖16B、圖17A及圖17B以及圖18A及圖18B繪示若干實例,該等實例繪示上文描述之強化HARQ回授解決方案之特定實施例之各種態樣。將此等實例稱為實例1至11。實例1繪示其中全部DCI訊息及下行鏈路資料由無線裝置18成功接收且HARQ回授之上行鏈路傳輸由網路成功接收之一案例。 實例2繪示具有導致副訊框SF #(J-1)之一NACK之一PDSCH誤差之一案例。回應於NACK,網路將使用一新RV自副訊框SF #(J-1)重新傳輸HARQ程序。 實例3繪示具有多個PDSCH誤差之一案例。回應於副訊框SF #(J-2)及SF #(J-1)之NACK,網路將使用新RV自副訊框SF #(J-2)及SF #(J-1)重新傳輸HARQ程序。 實例4繪示具有針對一非輪詢DCI訊息之一DCI誤差之一案例。此處,網路將在不更新RV之情況下自副訊框SF #(J-1)重新傳輸HARQ程序。 實例5繪示具有非輪詢DCI訊息上之多個DCI誤差之一案例。此處,網路將在不更新RV之情況下自副訊框SF #(J-2)及SF #(J-1)重新傳輸HARQ程序。 實例6繪示具有非輪詢DCI訊息上之混合DCI誤差之一案例。此處,網路將自副訊框SF #(J-3)、SF #(J-2)及SF #(J-1)重新傳輸HARQ程序,其中使用一新RV重新傳輸第一HARQ程序但在不更新RV之情況下重新傳輸後兩個HARQ程序。 實例7繪示具有一輪詢DCI訊息上之一DCI誤差之一案例。在副訊框SF #(J+2) (即,其中網路預期HARQ回授之傳輸之副訊框)處,網路將注意到HARQ回授之缺少且意識到在副訊框SF #(J)處存在一DCI誤差,隨後將使用相同RV重新傳輸該副訊框SF #(J)。在副訊框SF #(J+7)處,網路將不進行任何操作,此係因為HARQ回授包含全部ACK。 實例8繪示具有一輪詢DCI訊息上之一DCI誤差加上額外PDSCH誤差之一案例。應注意,比較此實例與圖7A之問題A將係有用的。在副訊框SF #(J+2)處,網路將注意到HARQ回授之缺少且意識到在副訊框SF #(J)處存在一DCI誤差。此將隱含DTX化在副訊框SF #(J)處傳輸之HARQ程序,隨後使用相同RV重新傳輸該副訊框SF #(J)。在副訊框SF #(J+7)處,網路將重新傳輸經NACK化之全部HARQ程序。 Ÿ針對BI=0:重新傳輸副訊框SF #(J-3)及SF #(J+1)之HARQ程序 Ÿ針對BI=1:重新傳輸副訊框SF #(J-2)及SF #(J+2)之HARQ程序 Ÿ針對BI=1:重新傳輸副訊框SF #(J-1)及SF #(J+3)之HARQ程序 可注意到,副訊框SF #(J-3)、SF #(J-2)及SF #(J+3)之重新傳輸「不必要」,此係因為此等全部經成功接收。鑑於DCI之低誤差率(~1%),相較於PDSCH誤差之量,此等「不必要」重新傳輸之影響將係小的。 實例9A繪示其中存在多個DCI誤差之一案例。比較此實例與圖8之問題C將係有利的。在副訊框SF #(J+2)處,網路將注意到HARQ回授之缺少且意識到在副訊框SF #(J)處存在一DCI誤差。此將隱含DTX化在副訊框SF #(J)處傳輸之HARQ程序,因此,將重新傳輸副訊框SF #(J)之HARQ程序。網路亦偵測BI序列中之一「跳躍」 (即,BI=1之前為BI=2而非BI=0),且因此斷定可能丟失BI=0。換言之,網路在對應於丟失BI=0之副訊框之一DCI誤差中偵測到一DCI誤差。因此,將HARQ回授緩衝器中之該項目設定為DTX。此外,在副訊框SF #(J+7)處,網路將來自副訊框SF #(J+1)之「新」傳輸以及來自副訊框SF #(J-3)之「舊」傳輸標記為DTX且因而,將重新傳輸此兩者。將ACK化副訊框SF #(J+2)、SF #(J+3)及SF #(J+4)處之其他「新」傳輸,且亦將ACK化來自副訊框SF #(J-2)及SF #(J-1)之舊傳輸。 實例9B繪示具有多個DCI誤差之另一案例。在副訊框SF #(J+2)處,網路將注意到HARQ回授之缺少且意識到副訊框SF #(J)處存在一DCI誤差。此將隱含DTX化在副訊框SF #(J)處傳輸之HARQ程序,因此,將重新傳輸副訊框SF #(J)之HARQ程序。網路亦偵測BI序列中之一「跳躍」 (即,BI=1及BI=2之前為BI=2而非BI=0),且因此斷定可能丟失BI=0及BI=1。換言之,網路偵測針對對應於丟失BI=0及BI=1之副訊框之一DCI誤差中之一DCI誤差。因此,將HARQ回授緩衝器中之該等項目設定為DTX。此外,在副訊框SF #(J+7)處,網路將來自副訊框SF #(J+1)及SF #(J+2)之「新」傳輸以及來自副訊框SF #(J-3)及SF #(J-2)之「舊」傳輸標記為DTX且因而,將重新傳輸此兩者。將ACK化副訊框SF #(J+3)及SF #(J+4)處之其他「新」傳輸,且亦將ACK化來自副訊框SF #(J-1)之舊傳輸。 實例10繪示其中成功接收全部下行鏈路資料但存在一xPUCCH誤差(即,xPUCCH傳輸丟失或換言之,未由網路接收)之一案例。在副訊框SF #(J+2)處,網路將注意到HARQ回授之缺少且意識到存在一xPUCCH誤差。此將隱含NACK化預期被報告之全部HARQ程序(即,來自副訊框SF #(J-3)、SF #(J-2)、SF #(J-1)及SF #(J)之HARQ程序)。在副訊框SF #(J+7)處,網路將不進行任何操作,此係因為全部下行鏈路傳輸經ACK化。 實例11繪示其中丟失xPUCCH回授加上存在額外PDSCH誤差之一案例。比較此實例與圖7B之問題B將係有利的。在副訊框SF #(J+2)處,網路將注意到HARQ回授之缺少且意識到存在一xPUCCH誤差。此將隱含NACK化預期被報告之全部HARQ程序(即,來自副訊框SF #(J-3)、SF #(J-2)、SF #(J-1)及SF #(J)之HARQ程序)。可注意到,副訊框SF #(J-3)及SF #(J-2)之重新傳輸「不必要」,此係因為此等下行鏈路傳輸被成功接收。因此,將xPUCCH誤差保持為相當低係重要的。此外,在副訊框SF #(J+7)處,網路將重新傳輸經NACK化之全部HARQ程序。 Ÿ針對BI=0:重新傳輸副訊框SF #(J+1)之HARQ程序(副訊框SF #(J-3)已經NACK化)。 Ÿ針對BI=1:重新傳輸副訊框SF #(J+2)之HARQ程序(副訊框SF #(J-2)已經NACK化)。例示性無線裝置及無線電存取節點實施方案 圖19係根據本發明之一些實施例之無線裝置18 (例如,一UE)之一示意性方塊圖。如所繪示,無線裝置18包含一或多個處理器28 (例如,中央處理單元(CPU)、特定應用積體電路(ASIC)、場可程式化閘陣列(FPGA)及/或類似者)、記憶體30及耦合至一或多個天線38之一或多個收發器32,該一或多個收發器32各包含一或多個傳輸器34及一或多個接收器36。在一些實施例中,上文描述之無線裝置18之功能性可完全或部分在軟體中實施,該軟體(例如)儲存於記憶體30中且由(若干)處理器18執行。 在一些實施例中,提供包含指令之一電腦程式,該等指令在由至少一個處理器執行時引起至少一個處理器根據本文中描述之任何實施例實行無線裝置18之功能性。在一些實施例中,提供含有前述電腦程式產品之一載體。載體係一電子信號、一光學信號、一無線電信號或一電腦可讀儲存媒體(例如,一非暫時性電腦可讀媒體,諸如記憶體)之一者。 圖20係根據本發明之一些其他實施例之無線裝置18之一示意性方塊圖。無線裝置18包含一或多個模組40,該一或多個模組40之各者在軟體中實施。(若干)模組40提供本文中描述之無線裝置18之功能性。舉例而言,(若干)模組40可包含可操作以自網路接收DCI訊息之一接收模組40-1,其中取決於實施例,DCI訊息可包含一HARQ時序偏移K之一指示、一HARQ回授緩衝器索引及/或一輪詢指示符,如上文關於本發明之各種實施例所描述。作為另一實例,(若干)模組40可包含根據本文中描述之任何實施例之可操作以傳輸HARQ回授之一傳輸模組40-2。作為又一實例,(若干)模組40可包含可操作以將HARQ回授儲存於一HARQ回授緩衝器中之一儲存模組40-3,如上文關於本發明之一些實施例描述。 圖21係根據本發明之一些實施例之基地台14 (或更一般地,無線電存取節點14)之一示意性方塊圖。此論述可相等地應用至其他類型之無線電存取節點。此外,其他類型之網路節點可具有類似架構(尤其關於包含(若干)處理器、記憶體及一網路介面)。如所繪示,基地台14包含:一基頻帶單元42,其包含一或多個處理器44 (例如,CPU、ASIC、FPGA及/或類似者)、記憶體46及一網路介面48;以及耦合至一或多個天線56之一或多個無線電單元50,該一或多個無線電單元50各包含一個傳輸器52及一或多個接收器54。在一些實施例中,上文描述之基地台14之功能性(或更一般地,一無線電存取節點之功能性或更一般地,一網路節點之功能性)可完全或部分在軟體中實施,該軟體(例如)儲存於記憶體46中且由(若干)處理器44執行。 圖22係繪示根據本發明之一些實施例之基地台14之一虛擬化實施例之一示意性方塊圖。此論述可相等地應用至其他類型之無線電存取節點。此外,其他類型之網路節點可具有類似虛擬化架構。 如本文中使用,一「虛擬化」網路節點(例如,一虛擬化基地台或一虛擬化無線電存取節點)係其中(例如)經由在一(若干)網路中之一(若干)實體處理節點上執行之一(若干)虛擬機器將網路之功能性之至少一部分實施為一虛擬組件之網路節點之一實施方案。如所繪示,在此實例中,基地台14包含:基頻帶單元42,其包含一或多個處理器48 (例如,CPU、ASIC、FPGA及/或類似者)、記憶體46及網路介面48;以及耦合至一或多個天線56之一或多個無線電單元50,該一或多個無線電單元50各包含一或多個傳輸器52及一或多個接收器54,如上文描述。基頻帶單元42經由(例如)一光學電纜或類似者而連接至(若干)無線電單元50。基頻帶單元42經由網路介面48而連接至一或多個處理節點58,該一或多個處理節點58耦合至一(若干)網路60或包含為一(若干)網路60之部分。各處理節點58包含一或多個處理器62 (例如,CPU、ASIC、FPGA及/或類似者)、記憶體64及一網路介面66。 在此實例中,本文中描述之基地台14之功能68在一或多個處理節點58處實施或以任何所要方式跨基頻帶單元42及一或多個處理節點58分佈。在一些特定實施例中,將本文中描述之基地台14之一些或全部功能68實施為由在由(若干)處理節點58託管之一(若干)虛擬環境中實施之一或多個虛擬機器執行之虛擬組件。如一般技術者將瞭解,使用(若干)處理節點58與基頻帶單元42之間之額外傳訊或通信以實行至少一些所要功能68。顯然,在一些實施例中,可不包含基頻帶單元42,在此情況中(若干)無線電單元50經由一(若干)適當網路介面與(若干)處理節點58直接通信。 因此,關於直接排程實施例,在一些實施例中,(若干)程序節點58可操作以指示或以其他方式引起包含HARQ回授時序偏移K之指示之DCI經由(若干)無線電單元50至無線裝置18之傳輸。作為另一實例,圖10之一些或全部網路側輪詢程序可由(若干)處理節點58執行及/或圖12之一些或全部網路側xPUCCH偵測程序可由(若干)處理節點58基於經由(若干)無線電單元50自無線裝置18接收之下行鏈路HARQ回授執行。 在一些實施例中,提供包含指令之一電腦程式,該等指令在由至少一個處理器執行時引起該至少一個處理器根據本文中描述之任何實施例實行網路(例如,呈一網路節點或一無線電存取節點之形式)之功能性。在一些實施例中,提供含有前述電腦程式產品之一載體。載體係一電子信號、一光學信號、一無線電信號或一電腦可讀儲存媒體(例如,一非暫時性電腦可讀媒體,諸如記憶體)之一者。 圖23係根據本發明之一些其他實施例之基地台14 (或更一般地無線電存取節點14)之一示意性方塊圖。基地台14包含一或多個模組70,該一或多個模組70之各者在軟體中實施。(若干)模組70提供本文中描述之基地台14之功能性。(若干)模組70可包含(例如)可操作以根據本文中描述之任何實施例傳輸DCI訊息及下行鏈路資料之一傳輸模組70-1及可操作以根據本文中描述之任何實施例接收且處理HARQ回授之一接收模組70-2。應注意,其他類型之無線電存取節點可係如圖23中針對基地台14展示之類似架構。例示性實施例 雖然不限於任何特定實施例,但在下文描述本發明之一些例示性實施例。 Ÿ實施例1:一種在一蜂巢式通信系統(10)中操作一無線裝置(18)之方法,其包括: ○在一第一副訊框T中接收(102)下行鏈路控制資訊,其中該下行鏈路控制資訊包括一混合式自動重送請求HARQ時序偏移K之一指示;及 ○在一副訊框T+K中傳輸(106) HARQ回授。 Ÿ實施例2:如實施例1之方法,其中傳輸(106)該HARQ回授包括: ○將複數個下行鏈路HARQ回授旗標組合為一單一下行鏈路HARQ傳輸;及 ○在該副訊框T+K中傳輸該單一下行鏈路HARQ傳輸。 Ÿ實施例3:如實施例2之方法,其中組合該複數個HARQ回授旗標包括將該複數個HARQ回授旗標聯合編碼為針對該單一下行鏈路HARQ傳輸之一碼字。 Ÿ實施例4:如實施例2或實施例3之方法,其中該下行鏈路控制資訊進一步包括指示將哪些回授旗標組合為該單一下行鏈路HARQ傳輸之資訊。 Ÿ實施例5:如實施例1至4中任一項之方法,其中該HARQ時序偏移K之該指示係該HARQ時序偏移K之一值。 Ÿ實施例6:如實施例1至4中任一項之方法,其中該HARQ時序偏移K之該指示係一值S,其中該HARQ時序偏移K=N+S,其中N係一預定義或預組態值。 Ÿ實施例7:如實施例1至6中任一項之方法,其進一步包括偵測一下行鏈路控制資訊失效。 Ÿ實施例8:一種經調適以根據實施例1至7中任一項操作之無線裝置(18)。 Ÿ實施例9:一種經啟用以在一蜂巢式通信系統(10)中操作之無線裝置(18),該無線裝置(18)包括: ○一收發器(32); ○至少一個處理器(28);及 ○記憶體(30),其儲存指令,該等指令可由該至少一個處理器(28)執行,藉此該無線裝置(18)可操作以: §經由該收發器(32)在一第一副訊框T中接收下行鏈路控制資訊,其中該下行鏈路控制資訊包括一混合式自動重送請求HARQ時序偏移K之一指示;且 §經由該收發器在一副訊框T+K中傳輸HARQ回授。 Ÿ實施例10:如實施例9之無線裝置(18),為了傳輸該HARQ回授,該無線裝置(18)可進一步操作以: ○將複數個下行鏈路HARQ回授旗標組合為一單一下行鏈路HARQ傳輸;且 ○在該副訊框T+K中傳輸該單一下行鏈路HARQ傳輸。 Ÿ實施例11:如實施例10之無線裝置(18),其中為了組合該複數個HARQ回授旗標,該無線裝置(18)可進一步操作以將該複數個HARQ回授旗標聯合編碼為針對該單一下行鏈路HARQ傳輸之一碼字。 Ÿ實施例12:如實施例10或實施例11之無線裝置(18),其中該下行鏈路控制資訊進一步包括指示將哪些回授旗標組合為該單一下行鏈路HARQ傳輸之資訊。 Ÿ實施例13:如實施例9至12中任一項之無線裝置(18),其中該HARQ時序偏移K之該指示係該HARQ時序偏移K之一值。 Ÿ實施例14:如實施例9至12中任一項之無線裝置(18),其中該HARQ時序偏移K之該指示係一值S,其中該HARQ時序偏移K=N+S,其中N係一預定義或預組態值。 Ÿ實施例15:一種經啟用以在一蜂巢式通信系統(10)中操作之無線裝置(18),該無線裝置(18)包括: ○用於在一第一副訊框T中接收下行鏈路控制資訊之構件,其中該下行鏈路控制資訊包括一混合式自動重送請求HARQ時序偏移K之一指示;及 ○用於在一副訊框T+K中傳輸HARQ回授之構件。 Ÿ實施例16:一種經啟用以在一蜂巢式通信系統(10)中操作之無線裝置(18),該無線裝置(18)包括: ○一接收模組(40-1),其可操作以在一第一副訊框T中接收下行鏈路控制資訊,其中該下行鏈路控制資訊包括一混合式自動重送請求HARQ時序偏移K之一指示;及 ○一傳輸模組(40-2),其可操作以在一副訊框T+K中傳輸HARQ回授。 Ÿ實施例17:一種在一蜂巢式通信系統(10)中操作一無線裝置(18)之方法,其包括: ○接收(302)包括一混合式自動重送請求HARQ回授緩衝器索引之一下行鏈路控制資訊訊息;及 ○將一下行鏈路HARQ回授旗標儲存(304)於該HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之位置中。 Ÿ實施例18:如實施例17之方法,其進一步包括針對一或多個額外下行鏈路控制資訊訊息重複接收(302)及儲存(304)之該等步驟。 Ÿ實施例19:如實施例18之方法,其進一步包括: ○接收(306,是)來自一網路節點之一輪詢請求;及 ○在接收該輪詢請求之後: §產生(308)包括儲存於該下行鏈路HARQ回授緩衝器中之該等下行鏈路HARQ回授旗標之一上行鏈路控制訊息;且 §傳輸(314)該上行鏈路控制訊息。 Ÿ實施例20:如實施例19之方法,其中產生該上行鏈路控制訊息包括將該等下行鏈路HARQ回授旗標聯合編碼為針對該上行鏈路控制訊息之一碼字。 Ÿ實施例21:如實施例19或20之方法,其中傳輸該上行鏈路控制訊息包括在一副訊框T+N中傳輸該上行鏈路控制訊息,其中副訊框T係其中接收該輪詢請求之該副訊框且N係一HARQ回授偏移。 Ÿ實施例22:如實施例21之方法,其中該HARQ回授偏移N經預定義或預組態。 Ÿ實施例23:如實施例21之方法,其中該HARQ回授偏移N依據在副訊框T中接收之該輪詢請求或一下行鏈路控制資訊訊息中接收之一索引。 Ÿ實施例24:如實施例17至23中任一項之方法,其進一步包括偵測一下行鏈路控制資訊失效。 Ÿ實施例25:一種經調適以根據實施例17至24中任一項操作之無線裝置(18)。 Ÿ實施例26:一種經啟用以在一蜂巢式通信系統(10)中操作之無線裝置(18),該無線裝置(18)包括: ○一收發器(32); ○至少一個處理器(28);及 ○記憶體(30),其儲存指令,該等指令可由該至少一個處理器(28)執行,藉此該無線裝置(18)可操作以: §經由該收發器(32)接收包括一混合式自動重送請求HARQ回授緩衝器索引之一下行鏈路控制資訊訊息;及 §將一下行鏈路HARQ回授旗標儲存於該HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之位置中。 Ÿ實施例27:如實施例26之無線裝置(18),其中該無線裝置(18)可進一步操作以針對一或多個額外下行鏈路控制資訊訊息重複接收及儲存之該等步驟。 Ÿ實施例28:如實施例27之無線裝置(18),其中該無線裝置(18)可進一步操作以: ○經由該收發器(32)接收來自一網路節點之一輪詢請求;且 ○在接收該輪詢請求之後: §產生包括儲存於該下行鏈路HARQ回授緩衝器中之該等下行鏈路HARQ回授旗標之一上行鏈路控制訊息;且 §傳輸該上行鏈路控制訊息。 Ÿ實施例29:如實施例28之無線裝置(18),其中為了產生該上行鏈路控制訊息,該無線裝置(18)可進一步操作以將該等下行鏈路HARQ回授旗標聯合編碼為針對該上行鏈路控制訊息之一碼字。 Ÿ實施例30:如實施例28或29之無線裝置(18),其中該無線裝置(18)可進一步操作以在副訊框T+N中傳輸該上行鏈路控制訊息,其中副訊框T係其中接收該輪詢請求之該副訊框且N係一HARQ回授偏移。 Ÿ實施例31:如實施例30之無線裝置(18),其中該HARQ回授偏移N經預定義或預組態。 Ÿ實施例31:如實施例30之無線裝置(18),其中該HARQ回授偏移N依據在副訊框T中接收之該輪詢請求或一下行鏈路控制資訊訊息中接收之一索引。 Ÿ實施例32:如實施例26至31中任一項之無線裝置(18),其中該無線裝置(18)可進一步操作以偵測一下行鏈路控制資訊失效。 Ÿ實施例33:一種經啟用以在一蜂巢式通信系統(10)中操作之無線裝置(18),該無線裝置(18)包括: ○用於接收包括一混合式自動重送請求HARQ回授緩衝器索引之一下行鏈路控制資訊訊息之構件;及 ○用於將一下行鏈路HARQ回授旗標儲存於該HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之位置中之構件。 Ÿ實施例34:一種經啟用以在一蜂巢式通信系統(10)中操作之無線裝置(18),該無線裝置(18)包括: ○一接收模組(40-1),其可操作以接收包括一混合式自動重送請求HARQ回授緩衝器索引之一下行鏈路控制資訊訊息;及 ○一儲存模組(40-3),其可操作以將一下行鏈路HARQ回授旗標儲存於該HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之位置中。 Ÿ實施例35a:一種在一蜂巢式通信系統(10)中操作一無線裝置(18)之方法,其包括: ○接收包括一混合式自動重送請求HARQ回授緩衝器索引之一訊息; ○判定針對一當前副訊框之資料之接收成功,其中該當前副訊框係其中接收該訊息之該副訊框; ○判定一否定應答NACK旗標儲存於該無線裝置(18)之一HARQ回授緩衝器中對應於該訊息中包括之該HARQ回授緩衝器索引之一緩衝器位置處;及 ○在判定一NACK旗標儲存於該無線裝置(18)之該HARQ回授緩衝器中對應於該訊息中包括之該HARQ回授緩衝器索引之該緩衝器位置處之後,即使針對該當前副訊框之資料之該接收成功,仍將一NACK旗標維持於該無線裝置(18)之該回授緩衝器中對應於該訊息中包括之該HARQ回授緩衝器索引之該緩衝器位置處。 Ÿ實施例35:一種在一蜂巢式通信系統(10)中操作一無線裝置(18)之方法,其包括: ○接收包括一混合式自動重送請求HARQ回授緩衝器索引之一下行鏈路控制資訊DCI訊息; ○判定針對一當前副訊框之資料之接收成功,其中該當前副訊框係其中接收該DCI訊息之該副訊框; ○判定一否定應答NACK旗標儲存於該無線裝置(18)之一HARQ回授緩衝器中對應於該DCI訊息中包括之該HARQ回授緩衝器索引之一緩衝器位置處;及 ○在判定一NACK旗標儲存於該無線裝置(18)之該HARQ回授緩衝器中對應於該DCI訊息中包括之該HARQ回授緩衝器索引之該緩衝器位置處之後,即使針對該當前副訊框之資料之該接收成功,仍將一NACK旗標維持於該無線裝置(18)之該回授緩衝器中對應於該DCI訊息中包括之該HARQ回授緩衝器索引之該緩衝器位置處。 Ÿ實施例36:如實施例35之方法,其進一步包括將儲存於該HARQ回授緩衝器中之HARQ回授發送至一網路節點。 Ÿ實施例37:如實施例35之方法,其進一步包括針對該當前副訊框,判定是否已在該當前副訊框之前之多個連續副訊框中出現多個DCI誤差。 Ÿ實施例38:如實施例37之方法,其進一步包括在判定已在多個連續副訊框中出現多個DCI誤差之後,將一不連續傳輸DTX旗標儲存於該HARQ回授緩衝器中對應於緊接在該DCI訊息中包括之該HARQ回授緩衝器索引之前之一HARQ回授緩衝器索引之一位置處。 Ÿ實施例39:一種包括指令之電腦程式產品,該等指令當在至少一個處理器上執行時,引起該至少一個處理器實行根據實施例35至39中任一項之方法。 Ÿ實施例40:一種載體,其含有如實施例39之電腦程式,其中該載體係一電子信號、一光學信號、一無線電信號或一電腦可讀儲存媒體之一者。 Ÿ實施例41:一種經啟用以在一蜂巢式通信系統(10)中操作之無線裝置(18),該無線裝置(18)包括: ○一收發器(32); ○至少一個處理器(28);及 ○記憶體(30),其儲存指令,該等指令可由該至少一個處理器(28)執行,藉此該無線裝置(18)可操作以: §經由該收發器(32)接收包括一混合式自動重送請求HARQ回授緩衝器索引之一下行鏈路控制資訊DCI訊息; §判定針對一當前副訊框之資料之接收成功,其中該當前副訊框係其中接收該DCI訊息之該副訊框; §判定一否定應答NACK旗標儲存於該無線裝置(18)之一HARQ回授緩衝器中對應於該DCI訊息中包括之該HARQ回授緩衝器索引之一緩衝器位置處;及 §在判定一NACK旗標儲存於該無線裝置(18)之該HARQ回授緩衝器中對應於該DCI訊息中包括之該HARQ回授緩衝器索引之該緩衝器位置處之後,即使針對該當前副訊框之資料之該接收成功,仍將一NACK旗標維持於該無線裝置(18)之該回授緩衝器中對應於該DCI訊息中包括之該HARQ回授緩衝器索引之該緩衝器位置處。 Ÿ實施例42:如實施例41之無線裝置(18),其中該無線裝置(18)可進一步操作以將儲存於該HARQ回授緩衝器中之HARQ回授發送至一網路節點。 Ÿ實施例43:如實施例41之無線裝置(18),其中該無線裝置(18)可進一步操作以針對該當前副訊框,判定是否已在該當前副訊框之前之多個連續副訊框中出現多個DCI誤差。 Ÿ實施例44:如實施例41之無線裝置(18),其中該無線裝置(18)可進一步操作以在判定已在多個連續副訊框中出現多個DCI誤差之後,將一不連續傳輸DTX旗標儲存於該HARQ回授緩衝器中對應於緊接在該DCI訊息中包括之該HARQ回授緩衝器索引之前之一HARQ回授緩衝器索引之一位置處。 Ÿ實施例45:一種經啟用以在一蜂巢式通信系統(10)中操作之無線裝置(18),該無線裝置(18)包括: ○用於接收包括一混合式自動重送請求HARQ回授緩衝器索引之一下行鏈路控制資訊DCI訊息之構件; ○用於判定針對一當前副訊框之資料之接收成功之構件,其中該當前副訊框係其中接收該DCI訊息之該副訊框; ○用於判定一否定應答NACK旗標儲存於該無線裝置(18)之一HARQ回授緩衝器中對應於該DCI訊息中包括之該HARQ回授緩衝器索引之一緩衝器位置處之構件;及 ○用於在判定一NACK旗標儲存於該無線裝置(18)之該HARQ回授緩衝器中對應於該DCI訊息中包括之該HARQ回授緩衝器索引之該緩衝器位置處之後,即使針對該當前副訊框之資料之該接收成功,仍將一NACK旗標維持於該無線裝置(18)之該回授緩衝器中對應於該DCI訊息中包括之該HARQ回授緩衝器索引之該緩衝器位置處之構件。 Ÿ實施例46:一種經啟用以在一蜂巢式通信系統(10)中操作之無線裝置(18),該無線裝置(18)包括: ○一接收模組(40-1),其可操作以接收包括一混合式自動重送請求HARQ回授緩衝器索引之一下行鏈路控制資訊DCI訊息;及 ○一第一判定模組(40),其可操作以判定針對一當前副訊框之資料之接收成功,其中該當前副訊框係其中接收該DCI訊息之該副訊框; ○一第二判定模組(40),其可操作以判定一否定應答NACK旗標儲存於該無線裝置(18)之一HARQ回授緩衝器中對應於該DCI訊息中包括之該HARQ回授緩衝器索引之一緩衝器位置處;及 ○一旗標儲存模組(40-3),其可操作以在判定一NACK旗標儲存於該無線裝置(18)之該HARQ回授緩衝器中對應於該DCI訊息中包括之該HARQ回授緩衝器索引之該緩衝器位置處之後,即使針對該當前副訊框之資料之該接收成功,仍將一NACK旗標維持於該無線裝置(18)之該回授緩衝器中對應於該DCI訊息中包括之該HARQ回授緩衝器索引之該緩衝器位置處。 Ÿ實施例47a:一種在一蜂巢式通信系統(10)中操作一無線電存取節點(14)之方法,其包括: ○判定自一無線裝置(18)至該無線電存取節點(14)之一上行鏈路控制頻道之一品質是否小於上臨限值但大於下臨限值;及 ○在判定該上行鏈路控制頻道之該品質小於該上臨限值但大於該下臨限值之後,將複數個旗標之各者設定為一否定應答NACK旗標,其中已自該無線裝置(18)接收該等旗標。 Ÿ實施例47:一種在一蜂巢式通信系統(10)中操作一無線電存取節點(14)之方法,其包括: ○判定自一無線裝置(18)至該無線電存取節點(14)之一上行鏈路控制頻道之一品質是否小於一預定義上臨限值但大於一預定義下臨限值;及 ○在判定該上行鏈路控制頻道之該品質小於該預定義上臨限值但大於該預定義下臨限值之後,將已經由該上行鏈路控制頻道自該無線裝置(18)接收之複數個綑綁HARQ回授旗標之各者設定為一否定應答NACK旗標。 Ÿ實施例48:如實施例47之方法,其中該複數個綑綁HARQ回授旗標具有對應索引BI={1, …, BIMAX },其中BIMAX 係大於1之一預定義值,且該方法進一步包括: ○判定自該無線裝置(18)至該無線電存取節點(14)之該上行鏈路控制頻道之該品質是否小於該預定義下臨限值;及 ○在判定該上行鏈路控制頻道之該品質小於該預定義下臨限值之後,將欲經由該上行鏈路控制頻道自該無線裝置(18)接收且對應於索引BIMAX 之該複數個綑綁HARQ回授旗標之一者設定為指示一DCI誤差之一不連續傳輸DTX旗標。 Ÿ實施例49:一種包括指令之電腦程式產品,該等指令當在至少一個處理器上執行時,引起該至少一個處理器實行根據實施例47至48中任一項之方法。 Ÿ實施例50:一種載體,其含有如實施例49之電腦程式,其中該載體係一電子信號、一光學信號、一無線電信號或一電腦可讀儲存媒體之一者。 Ÿ實施例51:一種用於一蜂巢式通信系統(10)之無線電存取節點(14),該無線電存取節點(14)包括: ○一無線電單元(50); ○至少一個處理器(44);及 ○記憶體(46),其儲存指令,該等指令可由該至少一個處理器(44)執行,藉此該無線電存取節點(14)可操作以: §判定自一無線裝置(18)至該無線電存取節點(14)之一上行鏈路控制頻道之一品質是否小於一預定義上臨限值但大於一預定義下臨限值;及 §在判定該上行鏈路控制頻道之該品質小於該預定義上臨限值但大於該預定義下臨限值之後,將已經由該上行鏈路控制頻道自該無線裝置(18)接收之複數個綑綁混合式自動重送請求HARQ回授旗標之各者設定為一否定應答NACK旗標。 Ÿ實施例52:如實施例51之無線電存取節點(14),其中該複數個綑綁HARQ回授旗標具有對應索引BI={1, …, BIMAX },其中BIMAX 係大於1之一預定義值,且該無線電存取節點(14)可進一步操作以: ○判定自該無線裝置(18)至該無線電存取節點(14)之該上行鏈路控制頻道之該品質是否小於該預定義下臨限值;且 ○在判定該上行鏈路控制頻道之該品質小於該預定義下臨限值之後,將欲經由該上行鏈路控制頻道自該無線裝置(18)接收且對應於索引BIMAX 之該複數個綑綁HARQ回授旗標之一者設定為指示一DCI誤差之一不連續傳輸DTX旗標。 Ÿ實施例53:一種用於一蜂巢式通信系統(10)之無線電存取節點(14),該無線電存取節點(14)包括: ○用於判定自一無線裝置(18)至該無線電存取節點(14)之一上行鏈路控制頻道之一品質是否小於一預定義上臨限值但大於一預定義下臨限值之構件;及 ○用於在判定該上行鏈路控制頻道之該品質小於該預定義上臨限值但大於該預定義下臨限值之後,將已經由該上行鏈路控制頻道自該無線裝置(18)接收之複數個綑綁混合式自動重送請求HARQ回授旗標之各者設定為一否定應答NACK旗標之構件。 Ÿ實施例54:一種用於一蜂巢式通信系統(10)之無線電存取節點(14),該無線電存取節點(14)包括: ○一判定模組,其可操作以判定自一無線裝置(18)至該無線電存取節點(14)之一上行鏈路控制頻道之一品質是否小於一預定義上臨限值但大於一預定義下臨限值;及 ○一旗標設定模組,其可操作以在判定該上行鏈路控制頻道之該品質小於該預定義上臨限值但大於該預定義下臨限值之後,將已經由該上行鏈路控制頻道自該無線裝置(18)接收之複數個綑綁混合式自動重送請求HARQ回授旗標之各者設定為一否定應答NACK旗標。 貫穿本發明使用以下縮寫字。 Ÿ3GPP         第三代合作夥伴計劃 Ÿ5G             第五代 ŸAAS          先進天線系統 ŸACK          應答 ŸAM           應答模式 ŸASIC         特定應用積體電路 ŸBI             緩衝器索引 ŸCCE               控制頻道元素 ŸCPU           中央處理單元 ŸDCI           下行鏈路控制資訊 ŸDTX          不連續傳輸 ŸeNB           增強或演進節點B ŸePDCCH     增強實體下行鏈路控制頻道 ŸFDD          分頻雙工 ŸFPGA         場可程式化閘陣列 ŸHARQ        混合式自動重送請求 ŸLTE           長期演進 ŸMIMO        多輸入多輸出 ŸMME         行動性管理實體 Ÿms             毫秒 ŸMTC          機器類型通信 ŸNACK        否定應答 ŸNDI           新資料指示符 ŸOFDM        正交分頻多工 ŸPDCCH      實體下行鏈路控制頻道 ŸPDSCH      實體下行鏈路共用頻道 ŸP-GW        封包資料網路閘道 ŸPUCCH      實體上行鏈路控制頻道 ŸPUSCH      實體上行鏈路共用頻道 ŸRAN          無線電存取網路 ŸRLC           無線電鏈路控制 ŸRTT           往返時間 ŸRV            冗餘版本 ŸS-GW        伺服閘道 ŸSINR         信號對干擾加雜訊比 ŸTB            測試台 ŸTDD          分時雙工 ŸUCI           上行鏈路控制資訊 ŸUE            使用者設備 熟習此項技術者將認知對本發明之實施例之改良及修改。將全部此等改良及修改視為在本文中揭示之概念及以下申請專利範圍之範疇內。 Related application The present application claims the benefit of the Provisional Patent Application No. 62/293, 148, filed on Feb. 9, 2016, and the Provisional Patent Application No. 62/295,722, filed on Feb. 16, 2016. The manner of reference is incorporated herein. The embodiments set forth below represent information that enables those skilled in the art to practice the embodiments and the best mode of the embodiments. Those skilled in the art will understand the concept of the present invention and will appreciate the application of such concepts not specifically discussed herein. It should be understood that these concepts and applications fall within the scope of the invention and the scope of the appended claims. Radio Node: As used herein, a "radio node" is a radio access node or a wireless device. Radio Access Node: As used herein, a "radio access node" is any node in a radio access network operating in one of the cellular communication networks that wirelessly transmits and/or receives signals. Some examples of a radio access node include, but are not limited to: a base station, such as, for example, one of a 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) network, enhanced or evolved Node B (eNB) a high power or large base station; a low power base station such as, for example, a small base station, a micro base station, a home eNB or the like; and a relay node. Wireless device: As used herein, a "wireless device" accesses a cellular communication network by wirelessly transmitting and/or receiving signals to and from one (several) of the radio access nodes (ie, by a cellular communication) Any type of device for network servoing. Some examples of a wireless device include, but are not limited to, a User Equipment Device (UE) and a Machine Type Communication (MTC) device in a 3GPP LTE network. Network Node: As used herein, a "network node" is any node that is part of a cellular access network/system radio access network or core network. It should be noted that the description given herein focuses on a 3GPP cellular communication system and thus, generally uses 3GPP LTE terminology or terms similar to 3GPP LTE terminology. However, the concepts disclosed herein are not limited to a 3GPP system. It should be noted that in the description herein, the term "cell" may be mentioned, however, especially with respect to the fifth generation (5G) concept, a beam may be used instead of a cell and thus, important systems should note that the concepts described herein It can be equally applied to both the cell and the beam. Prior to discussing embodiments of the present invention, one of the issues associated with existing hybrid automatic repeat request (HARQ) solutions is discussed. The current HARQ protocol for LTE is not 100% reliable, so LTE also uses higher layer Radio Link Control (RLC) Answer Mode (AM) to ensure reliability. Also, current HARQ protocols are based on a number of strict timing relationships, such as, for example, per-synchronous HARQ timing operations, which are very inflexible and cause several, for example, when using dynamic time division duplex (TDD) operations that are expected to be very common for 5G. problem. Furthermore, it is expected that the HARQ feedback protocol for 5G is very fast and especially far faster than both LTE, but the x-physical uplink control channel (xPUCCH) resources are still not overused. Therefore, what is desired is a HARQ feedback mechanism that can adapt the xPUCCH resource consumption in feedback latency in a fairly dynamic manner depending on, for example, the reliability and/or latency requirements of the user plane data service. The present invention provides systems and methods related to uplink HARQ feedback that is particularly suitable for, but not limited to, next generation cellular communication networks (e.g., 5G networks). In some embodiments, the feedback flag from several downlink HARQ transmissions is bundled into a single HARQ feedback transmission. In some embodiments, the network uses Downlink Control Information (DCI) to indicate which feedback flags the UE should combine into a HARQ feedback transmission and when and how it should be transmitted. The present invention proposes a fast and efficient downlink HARQ feedback mechanism for, for example, 5G x PUCCH. In some embodiments, the mechanism allows for a variable number of HARQ feedback flags (ACK/NACK) to be included in one HARQ feedback transmission. Two different variations are presented: Ÿ Direct scheduling, where each DCI will directly schedule an uplink of ACK/NACK on the xPUCCH. By polling, the received result reported after the request by the network is stored in a feedback buffer. The reception result is, for example, an ACK, a NACK or, in some embodiments, a discontinuous transmission (DTX). Two variations further allow DTX detection, ie, when DCI is not heard, as discussed below. Embodiments of the present invention provide a fast and efficient downlink HARQ feedback mechanism for, for example, 5G x PUCCH. It regulates the amount of xPUCCH resources used by each UE, allowing for a very fast feedback. Moreover, embodiments of the downlink HARQ feedback mechanism disclosed herein may be fully scheduled by the network such that resource consumption may be dynamically adapted to feedback delays depending on user plane service requirements. Embodiments of the downlink HARQ feedback mechanism disclosed herein allow for DTX detection. Embodiments of the invention are implemented in a cellular communication system or network. One non-limiting example of a cellular communication system 10 is illustrated in FIG. As illustrated, cellular communication system 10 includes a radio access network (RAN) 12 that includes a number of radio access nodes as base station 14 in the illustrated example. Base station 14 is sometimes referred to more generally herein as radio access node 14. In 3GPP, base station 14 can be, for example, an eNB or a low power base station (e.g., a mini, small, subminiature, or home base station). The base station 14 provides radio access to wireless devices 18 (such as, for example, UEs) in the corresponding cells 16 of the base station 14. It should be noted that although cell 16 is shown in the example of FIG. 1, in other embodiments, base station 14 can transmit over multiple beams. In this example, base station 14 communicates via an X2 connection or, more generally, a base station to base station connection. In addition, base station 14 is coupled to a core network 20 that includes various core network nodes, such as, for example, one or more mobility management entities (MMEs) 22, one or more servo gateways. (S-GW) 24 and one or more packet data network gateways (P-GW) 26.Direct scheduling HARQ Feedback In some embodiments, each DCI is directed to a feedback schedule to be transmitted at a subsequent time, in view of the inclusion of the subframe offset K. Next, one of the scheduled DCIs at the sub-frame T will present a feedback at the sub-frame T+K. In some related embodiments, the configuration of K may be provided, for example, in part by, for example, via one of a higher level communication transmission lookup table and/or hard coded in the specification. For example, assuming the smallest possible K-series N (which is the response time of the wireless device 18), instead of transmitting K=N, K=N+1, K=N+2, etc., the network may alternatively be in the DCI. The communication S = 0, S = 1, S = 2, etc. and then separately signals the value N, after which the wireless device 18 calculates K as K = S + N. It should be noted that, in at least some embodiments, the value of N can only be communicated once, for example, by higher layer messaging or can be one of the properties of the wireless device 18, the network has been, for example, from a previously executed RRC connection procedure. Understand this nature. The value of S can be changed. For example, the value of S can be varied by including the value of S in each respective DCI message, wherein the value of S can vary from one DCI message to another DCI message. 2 illustrates the operation of one of the wireless devices 18 and a radio access node 14 or other network node in accordance with, for example, the above embodiments. As illustrated, the radio access node 14 or some other network node optionally configures, at least in part, an offset K to be used to determine that the wireless device 18 transmits the HARQ feedback after receiving a DCI message. Time (T+K) (step 100). Again, the T-system subframe or more generally the time at which the DCI message is received, and the T+K subframe or more generally the time at which the HARQ feedback is transmitted. Therefore, T is sometimes referred to herein as the current subframe, and K is referred to herein as HARQ timing offset K or simply offset K. As stated above, this configuration of the offset K can include, for example, a communication to be used by the wireless device 18 to, for example, look up a lookup table from one of the values of one of the indexed decisions K in a corresponding DCI message. As a further example of the above discussion, this configuration may be configured for, for example, configured according to one of K = N + S decision offset K one of the values S, where S is included in the corresponding DCI message and the N system A predetermined value (such as, for example, a predetermined reaction time of one of the wireless devices 18). At some point, the wireless device 18 receives a DCI message from the cordless access node 14, wherein the DCI message includes an indication of the offset K (step 102). The indication of offset K may be a value of K or, for example, may be used by wireless device 18 to determine a value of K (i.e., K may convey a value X according to the indication). For example, the indication of the offset K can be a value S, where the offset K = N + S, where N can be predefined, for example, by standard or configured by the network (eg, in the configuration of step 100) provide). In some embodiments, the wireless device 18 receives a single DCI message and causes a HARQ feedback containing a single HARQ flag to be transmitted in step 106 below. However, in other embodiments, the wireless device 18 receives a plurality of DCI messages including the DCI message of step 102 and potentially additional DCI messages in the previous subframe. Thus, if there are multiple DCI messages, then these DCI messages may have respective HARQ timing offsets K that result in respective HARQ feedbacks transmitted in the same subframe. Thus, in some embodiments, the wireless device 18 combines multiple HARQ feedback flags to provide HARQ feedback to be transmitted by the wireless device at the subframe T+K (step 104). However, it should be noted that step 104 is optional. As discussed below, the manner in which the wireless device 18 combines multiple feedback flags may vary depending on the particular embodiment/embodiment. For example, the wireless device 18 may concatenate the bit patterns representing the plurality of HARQ feedback flags or jointly encode the plurality of HARQ feedback flags into a single code word. As an illustrative alternative to a combined HARQ feedback flag, wireless device 18 may transmit a HARQ feedback flag in a separate uplink control information (UCI) message. The wireless device 18 transmits a downlink HARQ feedback at the subframe T+K (step 106). As described herein, in some embodiments, the HARQ feedback is directed to one of the downlink HARQ flags for one of the single downlink data transmissions scheduled in the subframe T by the DCI message. In this case, if the downlink data under the DCI message schedule is successfully received by the wireless device 18 in the subframe T, the downlink HARQ flag is an ACK or if the downlink is scheduled by the DCI message. The data is not successfully received by the wireless device 18 in the subframe T, and the downlink HARQ flag is a NACK. In some other embodiments, HARQ feedback includes downlink HARQ feedback for multiple downlink transmissions. For example, multiple downlink transmissions may be in the subframe T1 , T2 ,...,TM The respective DCI message schedules received, in which the respective HARQ timing offsets K1 , K2 ,...,KM So that HARQ feedback for all such downlink transmissions occurs in the same subframe (ie, T1 +K1 =T2 +K2 =...=TM +KM ). The HARQ feedback may then include, for example, a plurality of downlink HARQ flags mapped to separate physical resources (eg, resource elements (REs)) in the xPUCCH (eg, in a separate UCI message). Alternatively, HARQ feedback may include a plurality of downlink HARQ flags represented by the joint provided by step 104 (ie, as a result of jointly encoding multiple downlink HARQ flags into a single codeword or concatenated to represent multiple One of the results of the multiple bit patterns of the HARQ flag) is a single combined feedback. In some embodiments, the downlink HARQ flag includes ACK and NACK depending on whether the wireless device 18 successfully receives the respective downlink data transmission (eg, data transmission on the Physical Downlink Shared Channel (PDSCH)). Additionally, in some embodiments, if the respective DCI message is not successfully received by the wireless device 18, the downlink HARQ flag includes DTX (i.e., a flag indicating that the DCI received one of the errors or failures). The radio access node 14 receives the HARQ feedback and processes the HARQ feedback in accordance with any desired HARQ feedback processing scheme (step 108). For example, if a NACK is received, the radio access node 14 retransmits the downlink data. In some embodiments, the radio access node 14 is capable of detecting DCI errors or failures based on HARQ feedback. This is referred to herein as DTX or a DCI failure/error. In some embodiments, DTX detection (ie, a DCI failure) can be achieved by: Ÿ having each received DCI to xPUCCH a group of given entity resources/RE different (clear) Mapping. In other words, different resources are used but several separate UCI messages are sent simultaneously. If the network does not receive any message at a particular resource/resource element, then this can be interpreted as the wireless device 18 failing to decode the corresponding DCI.明确 The DTX is explicitly coded as one of the individual code points in the feedback, for example, so that 00=ACK, 01=DTX, 11=NACK, . Ÿ Jointly encode multiple HARQ feedbacks. In this case, when the wireless device 18 is ready for xPUCCH transmission, the wireless device 18 combines the feedback flags to be transmitted into a single code point that is mapped to transmit one of the codewords on the xPUCCH. For example, if up to four feedback flags can be included in a HARQ feedback transmission, the code point can be calculated as f1 +3f2 +9f3 +27f4 , where f1...f4 are coded as feedback flags of ACK=1, NACK=2, and DTX=0. DTX means that no transmission is detected for this flag. It should be noted that multiple HARQ feedbacks may be combined in a similar manner without joint coding, for example, each feedback is sent by a number of bits in a HARQ transmission (eg, as in the example of the previous bullet point) One bit). An illustration of one of the procedures of Figure 2 is shown in Figures 3A and 3B. In the first example illustrated in FIG. 3A, both the DCI message and the downlink data are successfully decoded for the subframes T, T+1, T+2, and T+3, and transmitted in the subframe P, respectively. It is a HARQ feedback flag of ACK, ACK, ACK and ACK. The four feedback flags may be jointly encoded or otherwise combined into a single feedback/bit pattern or may be transmitted in separate entity resources (eg, in separate UCI messages). In the second example illustrated in FIG. 3A, the DCI messages for the subframes T, T+1, T+2, and T+3 are successfully decoded, and the decoding is successfully performed for the subframes T, T+2, and T+3. The downlink data is not successfully decoded for the downlink data of the sub-frame T+1 (ie, there is a PDSCH error). The appropriate HARQ feedback flag (ACK, NACK, ACK, ACK) is transmitted by the wireless device 18 in the subframe P. Again, the four feedback flags can be jointly encoded or otherwise combined into a single feedback/bit pattern or can be transmitted in a separate entity resource (eg, in a separate UCI message). In the third example illustrated in FIG. 3B, the DCI messages for the subframes T, T+2, and T+3 are successfully decoded, and the DCI message for the subframe T+1 is not successfully decoded (ie, the secondary message There is a DCI error in block T+1), and the downlink data for the sub-frames T, T+2 and T+3 is successfully decoded. The appropriate HARQ feedback flag (ACK, DTX, ACK, ACK) is transmitted by the wireless device 18 in the subframe P. Again, the four feedback flags can be jointly encoded or otherwise combined into a single feedback/bit pattern or can be transmitted in a separate entity resource (eg, in a separate UCI message). Finally, in the fourth example illustrated in FIG. 3B, the case is the same as in Example 1, except that the wireless device 18 is not scheduled in the subframe T+1. In this example, the appropriate HARQ feedback flag (ACK, DTX, ACK, ACK) is transmitted by the UE in the subframe P. Again, the four flags may be jointly encoded or otherwise combined into a single feedback/bit pattern or may be transmitted in a separate entity resource (eg, in a separate UCI message).By polling HARQ Feedback In some embodiments, each DCI message contains an index to one of the HARQ feedback buffers in which the reception status of the index reception (ACK (A) / NACK (N) or at least some implementations is stored. In the example, DTX or DCI error (D)). In some related embodiments, the network will explicitly poll the status report of the HARQ feedback buffer, which will also clear the state of the HARQ feedback buffer. Assuming that one of the HARQ feedback delays of the wireless device 18 is d subframes, one of the polls received at the subframe T will present a feedback at the subframe T+d. In some embodiments, the HARQ feedback delay d can be a static delay (eg, four subframes). In other embodiments, the HARQ feedback delay d can be a configurable delay. In particular, in some embodiments, the polling mentioned above may also contain explicit details as to when to transmit feedback in a manner similar to the configuration description for the HARQ timing offset K described above. That is, in some embodiments, d = K, where K is the HARQ timing offset K described above. In some further related embodiments, DTX detection (ie, a DCI failure) can be achieved by: Ÿ having each HARQ feedback buffer item to one of a given set of physical resource/resource elements Different mapping. If the network does not receive any message at a particular resource/resource element, then this can be interpreted as the wireless device 18 failing to decode the corresponding DCI.明确 The DTX is explicitly coded as one of the individual code points in the feedback. o Example 1: 00=ACK, 01=DTX, 11=NACK... ○ Example 2: Joint coding of all blocks. DTX only needs to be included in the first three projects, because if DTX is on the last project, no report will be sent. Therefore, this would require 3*3*3*2=54 code points, which can be encoded, for example, by an appropriate block code of at least 6 bits (ie, 2^6=64>54) . An example of the polling procedure described above is illustrated in FIG. As shown, in a subframe T1 In the downlink control channel (herein referred to as the x-sub-subordinate control channel (xPDCCH)), a radio access node 14 transmits a first DCI message and the wireless device 18 receives the first DCI message (step 200). The first DCI message contains an indication in the subframe T1 The downlink data is transmitted to one of the wireless devices 18 for downlink grant. Additionally, the first DCI message includes an index into one of the HARQ feedback buffers to store one of the respective downlink HARQ flags (eg, ACK, NACK, or DTX). The radio access node 14 also includes the downlink grant in the subframe 12 according to the first DCI message.1 The first downlink data is transmitted to the wireless device 18 (step 202). The wireless device 18 stores a downlink HARQ flag (also referred to herein as a reception state) at a location defined by the index contained in the first DCI message in the HARQ feedback buffer (step 204). In some embodiments, if in the subframe T1 If the wireless device 18 successfully receives/decodes the downlink data, it stores an ACK of the downlink HARQ flag or if it is in the subframe T.1 If the medium wireless device 18 does not successfully receive/decode the downlink data, then the downlink HARQ flag is stored as a NACK. However, in some embodiments, this storage scheme can be modified as described below. In some embodiments, the HARQ feedback buffer is initialized to DTX at all locations. Thus, if the wireless device 18 fails to receive the first DCI message, then a DTX flag is maintained in its respective location in the HARQ feedback buffer. In the same way, in a subframe T2 In the downlink control channel (herein referred to as xPDCCH), the radio access node 14 transmits a second DCI message and the wireless device 18 receives the second DCI message (step 206). The second DCI message contains an indication in the subframe T2 The downlink data is transmitted to one of the wireless devices 18 for downlink grant. Additionally, the second DCI message includes an index into one of the locations of the HARQ feedback buffer to be stored for a respective downlink HARQ flag (eg, ACK, NACK, or DTX). The radio access node 14 also includes the downlink grant in the secondary frame T according to the second DCI message.2 The second downlink data is transmitted to the wireless device 18 (step 208). The wireless device 18 stores the downlink HARQ flag (also referred to herein as a reception state) in the HARQ feedback buffer at the location defined by the index contained in the second DCI message (step 210). In some embodiments, if the wireless device 18 is in the subframe T2 If the downlink data is successfully received/decoded, the downlink HARQ flag is stored as an ACK or if the wireless device 18 is not in the subframe T2 If the downlink data is successfully received/decoded, the downlink HARQ flag is stored as a NACK. However, in some embodiments, this storage scheme can be modified as described below. In some embodiments, the HARQ feedback buffer is initialized to DTX at all locations. Thus, if the wireless device 18 fails to receive the second DCI message, then a DTX flag is maintained in its respective location in the HARQ feedback buffer. The program continues in this manner until the radio access node 14 is in the subframe TM Medium transmission and wireless device 18 in subframe TM A DCI message containing one of the polling indicators is received (step 212). In this example, the DCI message also includes a subframe T.M One of the downlink grants and one of the HARQ buffer indices for the corresponding downlink HARQ flag. Thus, the radio access node 14 is based on the sub-frame TM The DCI message transmitted in the middle contains the downlink authorization in the subframe TM The downlink data is transmitted to the wireless device 18 (step 214). The wireless device 18 stores the downlink HARQ flag (also referred to herein as a reception state) in the HARQ feedback buffer by the subframe T.M The location of the index definition included in the transmitted DCI message (step 216). In some embodiments, if the wireless device 18 is in the subframe TM If the downlink data is successfully received/decoded, the downlink HARQ flag is stored as an ACK or if the wireless device 18 is not in the subframe TM If the downlink data is successfully received/decoded, the downlink HARQ flag is stored as a NACK. However, in some embodiments, this storage scheme can be modified as described below. In some embodiments, the HARQ feedback buffer is initialized to DTX at all locations. Thus, if the wireless device 18 fails to be in the subframe TM In the case of receiving the DCI message, a DTX flag is maintained in the respective positions in the HARQ feedback buffer. After receiving the polling indicator, the wireless device 18 transmits, for example, a HARQ feedback indicating the HARQ feedback flag stored in the HARQ feedback buffer on the xPUCCH (step 218). In the sub-frame TM The HARQ feedback is transmitted in +d, where the delay d can be a static delay or a configurable delay, for example, in some embodiments a configurable HARQ timing offset K. In some embodiments, multiple HARQ feedback flags in the HARQ feedback buffer may be transmitted in separate physical resources (eg, in separate UCI messages). In other embodiments, multiple HARQ feedback flags are combined to provide a combined HARQ feedback for transmission. The combined HARQ feedback may be one of a series of bit patterns representing a plurality of HARQ flags. For example, if the HARQ flag is ACK=00 and NACK=01 and there are four locations in the HARQ feedback buffer, the combined HARQ feedback may be 00000001. As another example, the combined HARQ feedback may be derived from jointly coding one of a plurality of HARQ flags. The radio access node 14 detects the HARQ feedback (step 220) and interprets the HARQ feedback (222). Once the HARQ feedback is detected and interpreted, the radio access node 14 takes one (several) appropriate action (e.g., retransmits the data). An illustration of one such procedure is shown in Figures 5A and 5B, one of which corresponds to the operation of the wireless device 18 of Figure 6. It should be noted that in FIGS. 5A and 5B, the index and polling in the DCI are separately encoded. Of course, they can be jointly coded as (for example): Ÿ 00 = store the feedback with index 0 Ÿ 01 = store the feedback with index 1 Ÿ 10 = store the feedback with index 2 Ÿ 11 = store with index 3 The feedback and clearing of the feedback/empty buffer after N subframes is shown in Figure 5A. In the first example, the wireless device 18 receives a DCI message with a buffer index of 00 and thus, the respective HARQ back The flag is stored in the HARQ feedback buffer at the buffer location corresponding to index 00. In the next subframe, the wireless device 18 receives the DCI message with one of the polling buffer indices 01 and thus stores the respective HARQ feedback flag in the buffer location corresponding to index 01 in the HARQ feedback buffer. Subsequently, the wireless device 18 receives another DCI message having the polling buffer indices 02 and 13 in the subframe, and thus stores the respective HARQ feedback flags in the HARQ feedback buffer corresponding to the indexes 02 and 13 At the buffer location. The network (e.g., radio access node 14) polls the wireless device 18 for HARQ feedback. In response to the network polling, the wireless device 18 transmits the HARQ feedback stored in the HARQ feedback buffer in the subframe T+d, in this example, where, for example, the subframe T is polled. The wireless device 18 and the value d can be a static value or a configurable value (e.g., HARQ timing offset K) configured by the network, as described above. Examples 2 and 3 of Figures 5A and 5B are similar to the first example but with a PDSCH error in the second subframe (Example 2) and a DCI error in the second subframe (Example 3). 6 is a flow chart showing the operation of a wireless device 18 in accordance with some embodiments of the present invention. It should be noted that in some embodiments, the HARQ feedback buffer is initialized such that all locations are set to some predetermined value (DTX in the exemplary embodiment described herein). It should be noted that the dashed box indicates the selection step. As depicted, the wireless device 18 first waits to receive a DCI message (steps 300 and 302). After receiving a DCI message, the wireless device 18 stores the appropriate HARQ flag (ACK or NACK) in the HARQ feedback buffer for a given index, where the index is, for example, provided in the DCI message (step 304). The process returns to step 300 and may be repeated until the wireless device 18 is polled by the network (step 306, YES). It should be noted that in some embodiments, step 306 is optional, wherein, for example, wireless device 18 may automatically send a feedback after reaching the last location in the HARQ feedback buffer. Think of this as an implicit poll. After polling, the wireless device 18 generates an xPUCCH message based on the status of the HARQ feedback buffer (step 308). For example, in some embodiments, wireless device 18 combines the downlink HARQ flag stored in the HARQ feedback buffer to provide a combined HARQ feedback (ie, a combined downlink HARQ feedback message). The combined HARQ feedback may be, for example, concatenated for one of the bit pattern/sequences of each downlink HARQ flag or as another example, derived from the HARQ flag stored in the HARQ feedback buffer by the joint encoding. One of the single codewords. The xPUCCH message contains, for example, a HARQ feedback flag stored in an HARQ feedback buffer in an encoded form. The wireless device 18 clears the HARQ feedback buffer (e.g., sets all items to DTX) (step 310). The wireless device 18 waits for d subframes (step 312) and then transmits the generated xPUCCH message on the xPUCCH (step 314). It should be noted that the value d (ie, the HARQ feedback delay) may be a predefined value (eg, one of the static values defined by a standard) or configured by the network (for example) to be similar to the HARQ timing offset K. One way to configure one of the configured values. In some embodiments, the HARQ feedback delay d is, for example, one of the wireless devices 18 processing one of the delay definition device specific values. In this case, different wireless devices 18 may have different device-specific delays from the time the wireless device 18 receives a DCI message until the wireless device 18 transmits a UCI (or more generally, HARQ feedback), more than one wireless device. 18 can transmit UCI messages simultaneously (ie, in the same subframe). This presents one of the problems of simultaneous transmission of UCI messages. This problem can be resolved by any of the following: 明确 Use explicit messaging to indicate UCI resources for wireless device 18 rather than implicit DCI to UCI mapping. This explicit communication may be subject to a communication (e.g., a communication HARQ offset timing K) indicated by one of the values of d used by the wireless device 18, as described above. Wireless devices 18 with different processing delays are assigned to different frequency resources.排 Scheduling wireless devices 18 with different processing delays on different DCI Control Channel Elements (CCEs). A new wireless device 18 scheduling is avoided for one of the UCIs that will transmit one of the UCI collisions that will be transmitted by another wireless device 18 that has already scheduled.advanced HARQ Feedback The HARQ feedback solution for xPUCCH in 5G as described above is not received, for example, in the form of a HARQ feedback report due to DCI errors on the downlink and/or due to xPUCCH errors on the uplink. The HARQ feedback can go through problems. As depicted in Figures 7A and 7B and Figure 8, in such cases, the network is unable to draw any conclusions regarding the success and/or unsuccessful reception of PUSCH transmissions to be covered by the unreceived report. In addition, the network can even draw erroneous conclusions based on ACKs (e.g., NACK ACK errors) that believe that unreceived transmissions will result in expensive higher layer retransmissions. Specifically, FIGS. 7A and 7B illustrate two problems called problem A and question B. In question A, a DCI error causes wireless device 18 not to receive a polling request/indicator in subframe SF#(J). Since the polling indicator is not received, the HARQ feedback buffer is not cleared, ie, all locations in the HARQ feedback buffer are not reset to DTX, and the wireless device 18 is not in the subframe SF #(J+2) The lieutenant transmits the HARQ feedback to the network. Thus, in this example, in the subframe SF #(J+1), a NACK is stored in the first location in the HARQ feedback buffer, where the NACK overwrites/hides the HARQ feedback buffer due to The DCI error in the sub-frame SF #(J) is not transmitted to the ACK of the network. In the subframe SF #(J+2), a NACK is stored in the second position in the HARQ feedback buffer, wherein the NACK overwrites/hides the HARQ feedback buffer due to the subframe SF #(J The DCI error in the transmission is not transmitted to the ACK of the network. In the subframe SF #(J+3), an ACK is stored in the third position in the HARQ feedback buffer, wherein the ACK overwrites/hides the HARQ feedback buffer due to the subframe SF #(J The DCI error in the ) is not transmitted to one of the NACKs of the network. In the subframe SF #(J+4), an ACK is stored in the fourth position in the HARQ feedback buffer, wherein the ACK overwrites/hides the HARQ feedback buffer due to the subframe SF #(J The DCI error in the ) is not transmitted to one of the networks DTX. In question B, the xPUCCH feedback is lost in the uplink such that the xPUCCH is not received in the subframe SF #(J+2). It should be noted that the network does not know how to distinguish between problem A and question B. In both questions A and B, at the sub-frame SF #(J+2), the network will not be in the sub-frames SF #(J-3), SF #(J-2), SF #(J- 1) and SF #(J) does not receive any HARQ feedback for downlink transmissions, and the network is unable to draw any conclusions about such downlink transmissions. At the sub-frame SF #(J+7), the network will retransmit all NACK-enabled HARQ programs (ie, HARQ programs with buffer indices 0 and 1), which correspond to the sub-frame SF #( J+1) and SF #(J+2) downlink transmission. The network will similarly assume that the downlink transmissions of the sub-frames SF #(J+3) and SF #(J+4) are ACKed. This is all correct, but the network does not know the receiving status of the sub-frames SF #(J-3), SF #(J-2), SF #(J-1), and SF #(J), because the corresponding status The flag has been overwritten by the new status flag. Figure 8 illustrates one of the cases (question C) that led to one of a number of consecutive DCI errors. In addition to the problem of problem A of FIG. 7A, for problem C, the DCI error at the sub-frame SF #(J+1) will cause the item having an index 0 in the HARQ feedback buffer not to be updated. This in turn will cause the network to erroneously assume that the corresponding downlink transmission has been ACKed at the subframe SF #(J+7), and in fact, should indicate it as DTX. Embodiments of the present invention reinforce the HARQ feedback solution for xPUCCH in 5G as described above. It should be noted that the term xPUCCH is used herein to refer to (especially) an uplink control channel in a 5G network. However, the name xPUCCH is used only for clarity and ease of discussion and the actual line control channel in 5G can be given a different name. An overview of the invention is outlined in Figure 9 described below. Most importantly, embodiments of the present invention: Ÿ ensure that the wireless device 18 does not simply use the new state but replaces a previously received old state (ACK/NACK/DTX) using a more complex procedure (see Figure 11 and corresponding description below). And ensure that the network correctly interprets the lack of feedback (DCI error or xPUCCH error) and responds accordingly to take appropriate action (see Figure 12 and the corresponding description below). Using the enhancements disclosed herein, the HARQ feedback solution described above is more reliable for control channel errors (i.e., DCI errors) in the downlink and control channel errors (i.e., xPUCCH errors) in the uplink. It ensures that the expensive DTX/NACK ACK errors that would trigger higher layer retransmissions are mitigated at the expense of some additional HARQ retransmissions that are not expensive. As an additional bonus, it implicitly interprets the lack of HARQ feedback as quickly as possible, thus providing the shortest possible HARQ round trip time (RTT). The details of an embodiment of the enhanced HARQ feedback solution are provided to a large extent by the flow charts of Figures 9-13. The following sections of this paragraph provide some more detailed explanations and possible embodiments of these figures. Further, an illustration of the present invention in use is shown in the examples of FIGS. 14A-14C, 15A-15C, 16A and 16B, 17A and 17B, and 18A and 18B. It should be noted that the following discussion focuses on polling HARQ feedback solutions, as this is the most complex; however, enhancements can also be applied to direct scheduling HARQ feedback solutions, as mentioned below. Figure 9 depicts a summary/algorithm analysis for one of the overall HARQ feedback procedures. In particular, FIG. 9 illustrates how the individual programs of FIGS. 10-13, 14A-14C, 15A-15C, and 16A and 16B work together. As depicted, the network (e.g., radio access node 14) transmits DCI messages on a control channel (referred to as xPDCCH) and also transmits downlink data on a downlink shared channel (referred to as xPDSCH). At the UE/wireless device 18, the wireless device 18 performs one of the UE side feedback procedures that causes the HARQ feedback to the network. On the network side, each HARQ program performs a network side HARQ feedback interpretation procedure to interpret HARQ feedback from the wireless device 18 and take (several) appropriate actions. 10 is a flow chart showing one of the network side polling procedures in accordance with some embodiments of the present invention. In some embodiments, the network side polling procedure is performed by the radio access node 14. The network will ensure that for each xPDSCH transmission, the scheduled HARQ procedure is associated with one of the locally unique buffer indices (BI) also indicated in the DCI. The BI is directed to the index of the HARQ feedback buffer at the wireless device 18, which defines the location of the corresponding HARQ flag to be stored in the HARQ feedback buffer. Executing BIMAX After these transfers, the polling bits are set in the DCI. Here, BIMAX Corresponds to the size of the HARQ feedback buffer at the wireless device 18. It should be noted that xPDSCH is used herein as the name of the PDSCH in a 5G network for clarity and ease of discussion. However, the actual name of the downlink shared channel in a 5G network may be given another name. In some embodiments, BIMAX A predetermined value is given by, for example, a related specification, while in other embodiments it can be statically or semi-statically configured by, for example, higher layers. In still other embodiments, it can be dynamically set in the DCI. It should be noted that for the "direct scheduling" case described above, it is obvious that the polling portion can be omitted. Specifically, as depicted, the program begins at step 400 and sets BI to zero (step 402). The radio access node 14 determines whether for the current subframe, the downlink data transmission is scheduled for the wireless device 18 (referred to as the user) (step 404). If not scheduled, the radio access node 14 waits until the next subframe (step 406) and then the program returns to step 404. If the downlink data transmission is scheduled for the wireless device 18 (step 404; YES), the radio access node 14 associates the respective HARQ program to be transmitted with the current BI (step 408) and includes the BI in the use downlink. The way authorization is transmitted to the respective DCI messages of the wireless device 18 (step 410). The radio access node 14 determines whether BI is equal to BIMAX (Step 412). If not, the BI is incremented (step 414) and the process proceeds to step 406. Once BI reaches BIMAX (Step 412; YES), the radio access node 14 sets the polling flag/indicator in the DCI message to be transmitted to the wireless device 18 (step 416) and the process then returns to step 402. 11 illustrates a UE side or wireless device side feedback procedure in accordance with some embodiments of the present invention. This procedure is the same as the procedure of Figure 6, but provides an enhancement of the storage step 304. In general, the feedback procedure is about when the wireless device 18 successfully decodes at least the DCI message indicating the xPDSCH transmission (and possibly also the xPDSCH transmission itself). As mentioned previously, the DCI message includes a BI and a polling indicator (which may be in the form of, for example, a polling bit). The wireless device 18 maintains one of the HARQ feedback buffers in which the reception status (ACK/NACK/DTX) is stored. The HARQ feedback buffer is typically cleared, ie, all items are reset to DTX after each poll. Each item in the HARQ feedback buffer is indexed using the previously described BI. In this embodiment, instead of simply replacing the previously received old receive state (also referred to herein as a HARQ flag) in one of the HARQ feedback buffers using the currently received receive state, the wireless device 18 instead uses the allowable network. The road is enhanced by a better and more instructive interpretation of HARQ feedback when receiving HARQ feedback. This is important in the case of DCI errors where the HARQ feedback buffer is not flushed from polling because the polling indicator is not received. In some embodiments, one of the items of the HARQ feedback buffer has stored a NACK even if the current reception corresponding to the buffer entry (ie, the same BI) is successful and thus will indicate an ACK. . However, for the sake of reliability, a stored ACK will always be overwritten by a NACK if the current reception corresponding to this buffer entry (ie, the same BI) is unsuccessful. An example of use is given in Example 8 of Figure 16B. In some other embodiments, the stored value of the previous buffer item (the buffer index thereof is represented by an expression (BI-1 )%(BI MAX +1 ) given) replaced by DTX in the case where the buffer index is not indicated in the previous DCI. This can occur when there is a DCI error for one of the transmissions. This implicit DTX flag will, for example, prevent error propagation of the (most importantly) NACK ACK error. An example of use is given in Example 9 of Figures 17A and 17BB. Again, it should be noted that for the directly scheduled HARQ feedback solution described above, it is obvious that the polling portion may be omitted, otherwise the remainder should be applied. As shown in Figure 11, the enhanced storage procedure is as follows. After receiving a DCI message (step 302, YES), the wireless device 18 determines whether the respective downlink data has been successfully received (step 500). If successful, the wireless device 18 determines whether the entry in the HARQ feedback buffer for the BI included in the DCI message is a NACK (step 502). If not NACK, the wireless device 18 stores an ACK in the location/item of the BI indication contained in the received DCI message in the HARQ feedback buffer (step 504). Conversely, if the HARQ feedback buffer is a NACK for the item of BI included in the received DCI message, the wireless device 18 stores or otherwise maintains a NACK in the HARQ feedback buffer for Included in the BI of the received DCI message (step 506). In this way, the previous NACK is not hidden or overwritten by an ACK. Returning to step 500, if the downlink data is not successfully received by the wireless device 18, the wireless device 18 stores a NACK in the HARQ feedback buffer at the location/item of the BI indication included in the DCI message (step 506). ). Depending on the situation, the program can continue to detect a previous DCI error. In this regard, the wireless device 18 sets BI either from step 504 or step 506.PREV =BI (step 508) and then set BIPREV =(BIPREV –1)%(BIMAX +1) (step 510). Step 510 will index BIPREV Set to a sequence of possible BI values {0, 1, ..., BIMAX Previous index in }. Again, it should be noted that the equation given in step 510 assumes that BI is an unsigned integer. If you use a signed integer, the equation becomes BIPREV =(BIPREV +BIMAX )%(BIMAX +1). Wireless device 18 then compares BIPREV And BILAST , where BILAST Contains the BI in the latest previously successfully received DCI message. So if BIPREV Not equal to BILAST This means that there is a previous DCI error. So if BIPREV Not equal to BILAST The wireless device 18 stores the DTX in the HARQ feedback buffer by BI.PREV At the defined location (step 514) and the program returns to step 510. It should be noted that if there are multiple consecutive DCI errors, the program will detect the DCI errors and store the DTX in the respective HARQ feedback buffer locations. Once BIPREV =BILAST (meaning that there is no longer a DCI error), the wireless device 18 will BILAST Set to BI (step 516). Next, the program proceeds to step 306 as described above with respect to FIG. 12 is a flow chart showing one of network side xPUCCH detection procedures in accordance with some embodiments of the present invention. This procedure is performed by a network node (e.g., radio access node 14). Here, the network (e.g., radio access node 14) expects HARQ feedback on xPUCCH during a given subframe period (step 600). For BI=0,...,BIMAX The HARQ feedback is expressed as {FB(BI)} (step 602). In some embodiments, if the signal-to-interference plus noise ratio (SINR) received for the xPUCCH is above a given threshold THIGH (It may be set by, for example, one of the higher layer settings) (step 604, YES), then the HARQ feedback is considered trustworthy (step 606). For the sake of illustration, any of the examples of FIGS. 14A-14C, 15A-15C, 16A and 16B, 17A and 17B, and 18A and 18B are shown. In some embodiments, when the SINR received for the xPUCCH is below the threshold THIGH But higher than another threshold TLOW (When it is also possible to set one of the parameters, for example, by a higher layer) (step 608, YES), the received HARQ feedback is considered untrustworthy (step 610). In this case, all of the considered transmissions are NACKed (step 612), i.e., the HARQ feedback for all BIs in this report is set to NACK. This would actually consume some additional HARQ retransmissions, but would avoid the more expensive higher layer retransmissions originating from the premature release of one of the considered HARQ procedures due to a NACK/DTX ACK error. For purposes of this illustration, see Example 10 in Figure 18A and Example 11 in Figure 18B, respectively. For both of the above embodiments, the network sets BI=0 (step 614), and the network will then target each BI covered by the report (ie, BI=0...BI)MAX The HARQ feedback of the BI continues to be processed for each HARQ procedure associated with the particular BI (steps 616-630). In particular, {HP(BI} is the full HARQ program associated with BI (step 616). HP (BI) is the first element of {HP(BI)} and is removed from {HP(BI)} This element (step 618). The network removes the association between the HARQ program HP (BI) and BI (step 620). Next, the network processes the HARQ program HP (BI) HARQ feedback FB (BI) (step 622). This HARQ feedback process is detailed in Figure 12. The network determines if {HP(BI)} is empty (step 624). If not, the program returns to step 618. Once {HP(BI)} is empty , then incrementing BI (step 626). At this moment, if BI is greater than BIMAX (Step 628), the program ends (step 630); otherwise, the program returns to step 616 and repeats for this new BI. Returning to step 608, in still other embodiments, when the SINR received for the xPUCCH is below the threshold TLOW (Step 608, No), the network will conclude that the wireless device 18 has not attempted to transmit any xPUCCH feedback and therefore there is a DCI error in the corresponding poll (step 632). The network will then implicitly assume that the HARQ feedback for the associated xPDSCH transmission is DTX (where BI=BIMAX This is because this cannot be received by the wireless device 18 (step 634). Next, the network settings BI=BIMAX (Step 636) and the process proceeds to step 616 to immediately process the implicit DTX feedback. For the sake of illustration, see Figure 7 in Figure 16A, Figure 8 in Figure 16B, and Figure 9 in Figure 17A and Figure 17B. FIG. 13 is a flow chart showing one of network side HARQ feedback interpretation procedures according to some embodiments of the present invention. This procedure is performed by a network node such as, for example, the radio access node 14. Here, a specific BI HARQ feedback is given for the relevant HARQ program. Depending on the indicated feedback (ACK/NACK/DTX), the redundancy version (RV) to be used by the HARQ program will be updated (NACK) or not (DTX) accordingly. The particular HARQ procedure will then be indicated (towards the scheduler) as being eligible for retransmission (NACK or DTX) or free (ACK). In the case of ACK, the HARQ program will be cleared and a new data indicator (NDI) will be switched. In particular, as illustrated in Figure 13, the program begins (e.g., in step 622 of Figure 12) when a HARQ feedback FB (BI) for a HARQ program HP is to be processed (step 700). If the HARQ feedback (FB) is DTX (step 702; YES), the network marks the HARQ program HP flag/required to be retransmitted (step 704). Otherwise, if the HARQ feedback (FB) is NACK (step 706; YES), the network updates the RV of the HARQ program HP (step 708) and marks the HARQ program HP flag/repeated as requiring retransmission (step 704). Otherwise, if the HARQ feedback (FB) is ACK (step 710; YES), the network clears the HARQ program HP and switches its new data indicator (NDI), which is one of the existing indicators in LTE, thereby The HARQ program is instructed to clear the HARQ buffer (this is because the transmission is unrelated to a previous transmission and is a new transmission) (step 712) and the HARQ program HP flag/mark is marked as free/prepared for new material (step 714). It should be noted that step 710 is not necessary because if the HARQ feedback is non-DTX and non-NACK, then in this example it must be ACK. Therefore, the program can proceed directly to step 712 from the "NO" branch of step 706. 14A to 14C, 15A to 15C, 16A and 16B, 17A and 17B, and 18A and 18B illustrate several examples, which illustrate the enhanced HARQ feedback solution described above. Various aspects of particular embodiments. These examples are referred to as Examples 1 through 11. Example 1 illustrates an example in which all DCI messages and downlink data are successfully received by the wireless device 18 and the uplink transmission of the HARQ feedback is successfully received by the network. Example 2 illustrates an example of a PDSCH error that results in one of the NACKs of one of the sub-frames SF #(J-1). In response to the NACK, the network will retransmit the HARQ program from the secondary frame SF #(J-1) using a new RV. Example 3 illustrates one of the cases with multiple PDSCH errors. In response to the NACK of the sub-frames SF #(J-2) and SF #(J-1), the network will retransmit from the sub-frames SF #(J-2) and SF #(J-1) using the new RV. HARQ program. Example 4 illustrates a case with one of the DCI errors for a non-polled DCI message. Here, the network will retransmit the HARQ program from the subframe SF #(J-1) without updating the RV. Example 5 illustrates one of a number of DCI errors on a non-polled DCI message. Here, the network will retransmit the HARQ program from the subframes SF #(J-2) and SF #(J-1) without updating the RV. Example 6 illustrates one example of a mixed DCI error on a non-polled DCI message. Here, the network will retransmit the HARQ program from the sub-frames SF #(J-3), SF #(J-2), and SF #(J-1), where the first HARQ program is retransmitted using a new RV but The latter two HARQ programs are retransmitted without updating the RV. Example 7 illustrates a case of one of the DCI errors on a polled DCI message. At the sub-frame SF #(J+2) (ie, the sub-frame where the network expects the transmission of the HARQ feedback), the network will notice the lack of HARQ feedback and be aware of the sub-frame SF #( There is a DCI error at J), and the subframe SF #(J) will be retransmitted using the same RV. At the sub-frame SF #(J+7), the network will not perform any operation because the HARQ feedback contains all ACKs. Example 8 illustrates one of the cases of DCI error plus one additional PDSCH error on a polled DCI message. It should be noted that comparing this example to Problem A of Figure 7A would be useful. At the sub-frame SF #(J+2), the network will notice the lack of HARQ feedback and realize that there is a DCI error at the sub-frame SF #(J). This will implicitly DTX the HARQ program transmitted at the sub-frame SF #(J) and then retransmit the sub-frame SF #(J) using the same RV. At the sub-frame SF #(J+7), the network will retransmit all NACK-completed HARQ procedures. Ÿ For BI=0: Retransmit the HARQ program of the sub-frames SF #(J-3) and SF #(J+1)Ÿ for BI=1: Retransmit the sub-frame SF #(J-2) and SF # (J+2) HARQ program Ÿ for BI=1: Retransmission of the HARQ program of the sub-frames SF #(J-1) and SF #(J+3) can be noted, the sub-frame SF #(J-3 ), SF #(J-2) and SF #(J+3) retransmission "unnecessary", because all of these have been successfully received. Given the low error rate of DCI (~1%), the impact of such "unnecessary" retransmissions will be small compared to the amount of PDSCH error. Example 9A illustrates one of the cases in which multiple DCI errors exist. Comparing this example to Problem C of Figure 8 would be advantageous. At the sub-frame SF #(J+2), the network will notice the lack of HARQ feedback and realize that there is a DCI error at the sub-frame SF #(J). This will implicitly DTX the HARQ program transmitted at the sub-frame SF #(J), and therefore, the HARQ program of the sub-frame SF #(J) will be retransmitted. The network also detects one of the BI sequences "jumping" (ie, BI = 2 before BI = 1 instead of BI = 0), and therefore concludes that BI = 0 may be lost. In other words, the network detects a DCI error in a DCI error corresponding to one of the subframes missing BI=0. Therefore, the item in the HARQ feedback buffer is set to DTX. In addition, at the sub-frame SF #(J+7), the network will receive the "new" transmission from the sub-frame SF #(J+1) and the "old" from the sub-frame SF #(J-3). The transmission is marked as DTX and thus both will be retransmitted. The other "new" transmissions at the ACK subframes SF #(J+2), SF #(J+3) and SF #(J+4) are also ACKed from the sub-frame SF #(J -2) and old transmission of SF #(J-1). Example 9B illustrates another case with multiple DCI errors. At the sub-frame SF #(J+2), the network will notice the lack of HARQ feedback and realize that there is a DCI error at the sub-frame SF #(J). This will implicitly DTX the HARQ program transmitted at the sub-frame SF #(J), and therefore, the HARQ program of the sub-frame SF #(J) will be retransmitted. The network also detects one of the BI sequences "jumping" (ie, BI = 2 and BI = 0 before BI = 1 and BI = 2), and therefore concludes that BI = 0 and BI = 1 may be lost. In other words, the network detection is for one of the DCI errors corresponding to one of the DCI errors of the subframes with missing BI=0 and BI=1. Therefore, the items in the HARQ feedback buffer are set to DTX. In addition, at the sub-frame SF #(J+7), the network will receive "new" transmissions from the sub-frames SF #(J+1) and SF #(J+2) and from the sub-frame SF #( The "old" transmissions of J-3) and SF #(J-2) are marked as DTX and, therefore, both will be retransmitted. The other "new" transmissions at the ACK subframes SF #(J+3) and SF #(J+4) will also be ACKed to the old transmission from the subframe SF #(J-1). Example 10 illustrates one example of a successful reception of all downlink data but the presence of an x PUCCH error (ie, xPUCCH transmission lost or, in other words, not received by the network). At the sub-frame SF #(J+2), the network will notice the lack of HARQ feedback and realize that there is an xPUCCH error. This will implicitly NACK all of the HARQ procedures that are expected to be reported (ie, from the sub-frames SF #(J-3), SF #(J-2), SF #(J-1), and SF #(J) HARQ program). At the sub-frame SF #(J+7), the network will not perform any operation because all downlink transmissions are ACKed. Example 11 illustrates one of the cases in which xPUCCH feedback is lost plus the presence of additional PDSCH errors. Comparing this example to Problem B of Figure 7B would be advantageous. At the sub-frame SF #(J+2), the network will notice the lack of HARQ feedback and realize that there is an xPUCCH error. This will implicitly NACK all of the HARQ procedures that are expected to be reported (ie, from the sub-frames SF #(J-3), SF #(J-2), SF #(J-1), and SF #(J) HARQ program). It may be noted that the retransmission of the subframes SF #(J-3) and SF #(J-2) is "unnecessary" because these downlink transmissions are successfully received. Therefore, it is important to keep the xPUCCH error to be relatively low. In addition, at the sub-frame SF #(J+7), the network will retransmit all NACK-completed HARQ procedures. Ÿ For BI=0: Retransmit the HARQ program of the sub-frame SF #(J+1) (the sub-frame SF #(J-3) has been NACKed). Ÿ For BI=1: Retransmit the HARQ program of the sub-frame SF #(J+2) (the sub-frame SF #(J-2) has been NACKed).Exemplary wireless device and radio access node implementation 19 is a schematic block diagram of a wireless device 18 (e.g., a UE) in accordance with some embodiments of the present invention. As illustrated, the wireless device 18 includes one or more processors 28 (eg, a central processing unit (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), and/or the like) The memory 30 is coupled to one or more transceivers 32 of one or more antennas 38, each of which includes one or more transmitters 34 and one or more receivers 36. In some embodiments, the functionality of the wireless device 18 described above may be implemented in whole or in part in software that is stored, for example, in memory 30 and executed by processor(s) 18. In some embodiments, a computer program is provided that includes instructions that, when executed by at least one processor, cause at least one processor to perform the functionality of the wireless device 18 in accordance with any of the embodiments described herein. In some embodiments, a carrier containing one of the aforementioned computer program products is provided. The carrier is one of an electronic signal, an optical signal, a radio signal, or a computer readable storage medium (eg, a non-transitory computer readable medium, such as a memory). 20 is a schematic block diagram of a wireless device 18 in accordance with some other embodiments of the present invention. The wireless device 18 includes one or more modules 40, each of which is implemented in a software. The module(s) 40 provide the functionality of the wireless device 18 described herein. For example, the module(s) 40 can include a receiving module 40-1 operable to receive DCI messages from the network, wherein the DCI message can include an indication of one of the HARQ timing offsets K, depending on the embodiment, A HARQ feedback buffer index and/or a polling indicator is as described above with respect to various embodiments of the present invention. As another example, the module(s) 40 can include a transmission module 40-2 that is operable to transmit HARQ feedback in accordance with any of the embodiments described herein. As yet another example, the module(s) 40 can include a storage module 40-3 operable to store HARQ feedback in a HARQ feedback buffer, as described above with respect to some embodiments of the present invention. 21 is a schematic block diagram of a base station 14 (or more generally, a radio access node 14) in accordance with some embodiments of the present invention. This discussion can be equally applied to other types of radio access nodes. In addition, other types of network nodes may have similar architectures (especially with respect to including (several) processors, memory, and a network interface). As shown, the base station 14 includes: a baseband unit 42 that includes one or more processors 44 (eg, CPU, ASIC, FPGA, and/or the like), memory 46, and a network interface 48; And coupled to one or more of the one or more antennas 56, the one or more radio units 50 each include a transmitter 52 and one or more receivers 54. In some embodiments, the functionality of the base station 14 described above (or more generally, the functionality of a radio access node or, more generally, the functionality of a network node) may be wholly or partially in software. Implemented, the software is stored, for example, in memory 46 and executed by processor(s) 44. 22 is a schematic block diagram of a virtualization embodiment of a base station 14 in accordance with some embodiments of the present invention. This discussion can be equally applied to other types of radio access nodes. In addition, other types of network nodes may have similar virtualization architectures. As used herein, a "virtualized" network node (eg, a virtualized base station or a virtualized radio access node) is, for example, one (several) of entities in one (several) network The execution of one (several) of the virtual machines on the processing node implements at least a portion of the functionality of the network as one of the network nodes of a virtual component. As shown, in this example, base station 14 includes a baseband unit 42 that includes one or more processors 48 (eg, CPU, ASIC, FPGA, and/or the like), memory 46, and network Interface 48; and one or more radio units 50 coupled to one or more antennas 56, each of the one or more radio units 50 including one or more transmitters 52 and one or more receivers 54 as described above . The baseband unit 42 is connected to the radio unit(s) 50 via, for example, an optical cable or the like. Baseband unit 42 is coupled to one or more processing nodes 58 via network interface 48, which is coupled to one or more network(s) 60 or is included as part of one (several) network 60. Each processing node 58 includes one or more processors 62 (e.g., CPU, ASIC, FPGA, and/or the like), memory 64, and a network interface 66. In this example, the functionality 68 of the base station 14 described herein is implemented at one or more processing nodes 58 or distributed across the baseband unit 42 and one or more processing nodes 58 in any desired manner. In some particular embodiments, some or all of the functions 68 of the base station 14 described herein are implemented to be implemented by one or more virtual machines implemented in one (several) virtual environments hosted by the (s) processing node 58 The virtual component. As will be appreciated by those of ordinary skill, additional communication or communication between processing node 58 and baseband unit 42 is used to perform at least some of the desired functions 68. It will be apparent that in some embodiments, the baseband unit 42 may not be included, in which case the radio unit(s) 50 are in direct communication with the processing node(s) 58 via one (several) suitable network interface. Thus, with respect to the direct scheduling embodiment, in some embodiments, the program node(s) 58 are operable to indicate or otherwise cause the DCI including the indication of the HARQ feedback timing offset K to be via the radio unit(s) 50 to Transmission by the wireless device 18. As another example, some or all of the network side polling procedures of FIG. 10 may be performed by (several) processing nodes 58 and/or some or all of the network side xPUCCH detection procedures of FIG. 12 may be based on (s) processing node 58 via (several The radio unit 50 receives downlink HARQ feedback execution from the wireless device 18. In some embodiments, a computer program is provided that includes instructions that, when executed by at least one processor, cause the at least one processor to perform a network (eg, as a network node in accordance with any of the embodiments described herein) The functionality of a form or a radio access node. In some embodiments, a carrier containing one of the aforementioned computer program products is provided. The carrier is one of an electronic signal, an optical signal, a radio signal, or a computer readable storage medium (eg, a non-transitory computer readable medium, such as a memory). 23 is a schematic block diagram of a base station 14 (or more generally, a radio access node 14) in accordance with some other embodiments of the present invention. The base station 14 includes one or more modules 70, each of which is implemented in a software. The module(s) 70 provide the functionality of the base station 14 described herein. The (several) module 70 can include, for example, a transmission module 70-1 operable to transmit DCI messages and downlink data in accordance with any of the embodiments described herein and operative to operate in accordance with any of the embodiments described herein One of the HARQ feedback receiving modules 70-2 is received and processed. It should be noted that other types of radio access nodes may be similar architectures as shown for base station 14 in FIG.Illustrative embodiment Although not limited to any particular embodiment, some illustrative embodiments of the invention are described below. Embodiment 1: A method of operating a wireless device (18) in a cellular communication system (10), comprising: ○ receiving (102) downlink control information in a first subframe T, wherein The downlink control information includes an indication of a hybrid automatic repeat request HARQ timing offset K; and ○ transmitting (106) HARQ feedback in a subframe T+K. Embodiment 2: The method of Embodiment 1, wherein transmitting (106) the HARQ feedback comprises: o combining a plurality of downlink HARQ feedback flags into a single downlink HARQ transmission; and ○ at the secondary The single downlink HARQ transmission is transmitted in frame T+K. The method of embodiment 2, wherein combining the plurality of HARQ feedback flags comprises jointly encoding the plurality of HARQ feedback flags into one codeword for the single downlink HARQ transmission. The method of embodiment 2 or embodiment 3, wherein the downlink control information further comprises information indicating which of the feedback flags are combined into the single downlink HARQ transmission. The method of any one of embodiments 1 to 4, wherein the indication of the HARQ timing offset K is one of the HARQ timing offsets K. The method of any one of embodiments 1 to 4, wherein the indication of the HARQ timing offset K is a value S, wherein the HARQ timing offset is K=N+S, wherein the N is a pre- Define or pre-configure values. The method of any one of embodiments 1 to 6, further comprising detecting a link control information failure. Ÿ Embodiment 8: A wireless device (18) adapted to operate in accordance with any of embodiments 1-7. Embodiment 9: A wireless device (18) enabled to operate in a cellular communication system (10), the wireless device (18) comprising: a transceiver (32); ○ at least one processor (28) And a memory (30) storing instructions executable by the at least one processor (28) whereby the wireless device (18) is operable to: § via the transceiver (32) Receiving downlink control information in the first subframe T, wherein the downlink control information includes an indication of a hybrid automatic repeat request HARQ timing offset K; and § via the transceiver in a subframe T Transfer HARQ feedback in +K. Embodiment 10: The wireless device (18) of Embodiment 9, in order to transmit the HARQ feedback, the wireless device (18) is further operable to: ○ combine a plurality of downlink HARQ feedback flags into a single Downlink HARQ transmission; and ○ transmitting the single downlink HARQ transmission in the subframe T+K. Embodiment 11: The wireless device (18) of embodiment 10, wherein, in order to combine the plurality of HARQ feedback flags, the wireless device (18) is further operative to jointly encode the plurality of HARQ feedback flags as One codeword for this single downlink HARQ transmission. Embodiment 12: The wireless device (18) of Embodiment 10 or Embodiment 11, wherein the downlink control information further comprises information indicating which of the feedback flags are combined into the single downlink HARQ transmission. The wireless device (18) of any one of embodiments 9 to 12, wherein the indication of the HARQ timing offset K is a value of the HARQ timing offset K. The wireless device (18) of any one of embodiments 9 to 12, wherein the indication of the HARQ timing offset K is a value S, wherein the HARQ timing offset is K=N+S, wherein N is a predefined or pre-configured value. Embodiment 15: A wireless device (18) enabled to operate in a cellular communication system (10), the wireless device (18) comprising: ○ for receiving a downlink in a first subframe T And a component of the road control information, wherein the downlink control information includes an indication of a hybrid automatic repeat request HARQ timing offset K; and ○ a component for transmitting the HARQ feedback in a subframe T+K. Embodiment 16: A wireless device (18) enabled to operate in a cellular communication system (10), the wireless device (18) comprising: a receiving module (40-1) operable Receiving downlink control information in a first subframe T, wherein the downlink control information includes an indication of a hybrid automatic repeat request HARQ timing offset K; and a transmission module (40-2) ), it is operable to transmit HARQ feedback in a sub-frame T+K. Embodiment 17: A method of operating a wireless device (18) in a cellular communication system (10), comprising: ○ receiving (302) including a hybrid automatic repeat request under one of HARQ feedback buffer indices The downlink control information message is stored; and ○ the downlink HARQ feedback flag is stored (304) in a location in the HARQ feedback buffer corresponding to the HARQ feedback buffer index. Embodiment 18: The method of embodiment 17, further comprising the step of repeatedly receiving (302) and storing (304) for one or more additional downlink control information messages. The method of embodiment 18, further comprising: ○ receiving (306, YES) a polling request from a network node; and ○ after receiving the polling request: § generating (308) including storing One of the downlink HARQ feedback flags in the downlink HARQ feedback buffer is an uplink control message; and § transmits (314) the uplink control message. The method of embodiment 19, wherein the generating the uplink control message comprises jointly encoding the downlink HARQ feedback flags into one of the code words for the uplink control message. The method of embodiment 19 or 20, wherein transmitting the uplink control message comprises transmitting the uplink control message in a subframe T+N, wherein the subframe T receives the round The sub-frame of the request is requested and N is a HARQ feedback offset. Embodiment 22: The method of Embodiment 21, wherein the HARQ feedback offset N is predefined or pre-configured. Embodiment 23: The method of Embodiment 21, wherein the HARQ feedback offset N is received according to one of the polling request received in the subframe T or the downlink control information message. The method of any one of embodiments 17 to 23, further comprising detecting a link control information failure. Embodiment 25: A wireless device (18) adapted to operate in accordance with any of embodiments 17-24. Embodiment 26: A wireless device (18) enabled to operate in a cellular communication system (10), the wireless device (18) comprising: a transceiver (32); ○ at least one processor (28) And a memory (30) storing instructions executable by the at least one processor (28) whereby the wireless device (18) is operable to: s receive via the transceiver (32) including a hybrid automatic repeat request HARQ feedback buffer index one downlink control information message; and § storing a downlink HARQ feedback flag in the HARQ feedback buffer corresponding to the HARQ feedback buffer In the position of the index. Embodiment 27. The wireless device (18) of embodiment 26, wherein the wireless device (18) is further operative to repeatedly receive and store the one or more additional downlink control information messages. Embodiment 28: The wireless device (18) of Embodiment 27, wherein the wireless device (18) is further operable to: ○ receive, via the transceiver (32), a polling request from a network node; and ○ After receiving the polling request: § generating an uplink control message including one of the downlink HARQ feedback flags stored in the downlink HARQ feedback buffer; and § transmitting the uplink control message . Embodiment 29: The wireless device (18) of embodiment 28, wherein, in order to generate the uplink control message, the wireless device (18) is further operative to jointly encode the downlink HARQ feedback flag as A codeword for one of the uplink control messages. Embodiment 30: The wireless device (18) of embodiment 28 or 29, wherein the wireless device (18) is further operative to transmit the uplink control message in the subframe T+N, wherein the subframe T The subframe in which the polling request is received and the N is a HARQ feedback offset. Embodiment 31: The wireless device (18) of Embodiment 30, wherein the HARQ feedback offset N is pre-defined or pre-configured. Embodiment 31: The wireless device (18) of Embodiment 30, wherein the HARQ feedback offset N is received according to the polling request received in the subframe T or an index received in the downlink control information message . The wireless device (18) of any one of embodiments 26 to 31, wherein the wireless device (18) is further operative to detect a downlink control information failure. Embodiment 33: A wireless device (18) enabled to operate in a cellular communication system (10), the wireless device (18) comprising: ○ for receiving a hybrid automatic repeat request HARQ feedback One of a buffer index is a component of a downlink control information message; and ○ is configured to store a downlink HARQ feedback flag in a location in the HARQ feedback buffer corresponding to the HARQ feedback buffer index member. Embodiment 34: A wireless device (18) enabled to operate in a cellular communication system (10), the wireless device (18) comprising: a receiving module (40-1) operable Receiving a downlink control information message including a hybrid automatic repeat request HARQ feedback buffer index; and a storage module (40-3) operable to return a downlink HARQ feedback flag Stored in the HARQ feedback buffer in a location corresponding to the HARQ feedback buffer index. Embodiment 35a: A method of operating a wireless device (18) in a cellular communication system (10), comprising: ○ receiving a message including a hybrid automatic repeat request HARQ feedback buffer index; Determining that the data for a current subframe is successfully received, wherein the current subframe is the subframe in which the message is received; ○ determining that a negative acknowledgement NACK flag is stored in one of the wireless devices (18) HARQ back Retrieving a buffer corresponding to one of the HARQ feedback buffer indices included in the message; and ○ determining that a NACK flag is stored in the HARQ feedback buffer of the wireless device (18) After the buffer location of the HARQ feedback buffer index included in the message, even if the receiving of the data of the current subframe is successful, a NACK flag is maintained on the wireless device (18). The feedback buffer corresponds to the buffer location of the HARQ feedback buffer index included in the message. Embodiment 35: A method of operating a wireless device (18) in a cellular communication system (10), comprising: o receiving a downlink including a hybrid automatic repeat request HARQ feedback buffer index Controlling the information DCI message; ○ determining the success of receiving the data for a current subframe, wherein the current subframe is the subframe in which the DCI message is received; ○ determining that a negative acknowledgement NACK flag is stored in the wireless device (18) one of the HARQ feedback buffers corresponding to one of the HARQ feedback buffer indices included in the DCI message; and ○ determining that a NACK flag is stored in the wireless device (18) After the buffer location corresponding to the HARQ feedback buffer index included in the DCI message in the HARQ feedback buffer, even if the reception of the data for the current subframe is successful, a NACK flag is still used. The buffer location maintained in the feedback buffer of the wireless device (18) corresponds to the HARQ feedback buffer index included in the DCI message. The method of embodiment 35, further comprising transmitting the HARQ feedback stored in the HARQ feedback buffer to a network node. The method of embodiment 35, further comprising determining, for the current subframe, whether a plurality of DCI errors have occurred in a plurality of consecutive subframes preceding the current subframe. The method of embodiment 37, further comprising: after determining that a plurality of DCI errors have occurred in the plurality of consecutive sub-frames, storing a discontinuous transmission DTX flag in the HARQ feedback buffer Corresponding to one of the HARQ feedback buffer indexes immediately before the HARQ feedback buffer index included in the DCI message. Embodiment 39: A computer program product comprising instructions that, when executed on at least one processor, cause the at least one processor to perform the method of any one of embodiments 35 to 39. Embodiment 40: A carrier comprising the computer program of embodiment 39, wherein the carrier is one of an electronic signal, an optical signal, a radio signal, or a computer readable storage medium. Embodiment 41: A wireless device (18) enabled to operate in a cellular communication system (10), the wireless device (18) comprising: a transceiver (32); ○ at least one processor (28) And a memory (30) storing instructions executable by the at least one processor (28) whereby the wireless device (18) is operable to: s receive via the transceiver (32) including a hybrid automatic repeat request HARQ feedback buffer index one downlink control information DCI message; § determining success of receiving data for a current subframe, wherein the current subframe is receiving the DCI message The sub-frame; determining a negative acknowledgement NACK flag stored in one of the HARQ feedback buffers of the wireless device (18) corresponding to one of the HARQ feedback buffer indices included in the DCI message And § after determining that a NACK flag is stored in the HARQ feedback buffer of the wireless device (18) corresponding to the buffer location of the HARQ feedback buffer index included in the DCI message, even if The receipt of the information of the current sub-frame will be successful. A NACK flag is maintained at the buffer location of the feedback buffer of the wireless device (18) corresponding to the HARQ feedback buffer index included in the DCI message. Embodiment 42: The wireless device (18) of Embodiment 41, wherein the wireless device (18) is further operative to transmit the HARQ feedback stored in the HARQ feedback buffer to a network node. Embodiment 43: The wireless device (18) of Embodiment 41, wherein the wireless device (18) is further operable to determine, for the current subframe, whether the plurality of consecutive sub-messages before the current sub-frame Multiple DCI errors appear in the box. Embodiment 44: The wireless device (18) of Embodiment 41, wherein the wireless device (18) is further operative to transmit a discontinuous transmission after determining that a plurality of DCI errors have occurred in the plurality of consecutive subframes The DTX flag is stored in the HARQ feedback buffer at a position corresponding to one of the HARQ feedback buffer indices immediately before the HARQ feedback buffer index included in the DCI message. Embodiment 45: A wireless device (18) enabled to operate in a cellular communication system (10), the wireless device (18) comprising: ○ for receiving a hybrid automatic repeat request HARQ feedback One of the buffer indexes is a component of the downlink control information DCI message; ○ a means for determining success of receiving data for a current subframe, wherein the current subframe is the subframe in which the DCI message is received o for determining that a negative acknowledgement NACK flag is stored in a HARQ feedback buffer of one of the wireless devices (18) corresponding to a buffer location of the HARQ feedback buffer index included in the DCI message. And ○ after determining that a NACK flag is stored in the HARQ feedback buffer of the wireless device (18) corresponding to the buffer location of the HARQ feedback buffer index included in the DCI message, Even if the receiving of the data of the current subframe is successful, maintaining a NACK flag in the feedback buffer of the wireless device (18) corresponds to the HARQ feedback buffer index included in the DCI message. The location of the buffer . Embodiment 46: A wireless device (18) enabled to operate in a cellular communication system (10), the wireless device (18) comprising: a receiving module (40-1) operable Receiving a downlink control information DCI message including a hybrid automatic repeat request HARQ feedback buffer index; and a first decision module (40) operable to determine data for a current subframe Receiving success, wherein the current subframe is the subframe in which the DCI message is received; ○ a second decision module (40) operable to determine that a negative acknowledgement NACK flag is stored in the wireless device ( 18) one of the HARQ feedback buffers corresponding to one of the HARQ feedback buffer indices included in the DCI message; and a flag storage module (40-3) operable After determining that a NACK flag is stored in the HARQ feedback buffer of the wireless device (18) corresponding to the buffer location of the HARQ feedback buffer index included in the DCI message, even for the current secondary The receipt of the information of the frame is successful, and a NACK flag is still maintained in the wireless device. (18) of the feedback buffer corresponding to the DCI message includes feedback of the HARQ buffer position at which the buffer index. Embodiment 47a: A method of operating a radio access node (14) in a cellular communication system (10), comprising: ○ determining from a wireless device (18) to the radio access node (14) Whether the quality of one of the uplink control channels is less than the upper threshold but greater than the lower threshold; and ○ after determining that the quality of the uplink control channel is less than the upper threshold but greater than the lower threshold, Each of the plurality of flags is set to a negative acknowledgement NACK flag, wherein the flags have been received from the wireless device (18). Embodiment 47: A method of operating a radio access node (14) in a cellular communication system (10), comprising: ○ determining from a wireless device (18) to the radio access node (14) Whether the quality of one of the uplink control channels is less than a predefined upper threshold but greater than a predefined lower threshold; and ○ determining that the quality of the uplink control channel is less than the predefined upper threshold but After being greater than the predefined lower threshold, each of the plurality of bundled HARQ feedback flags that have been received by the uplink control channel from the wireless device (18) is set to a negative acknowledgement NACK flag. The method of embodiment 47, wherein the plurality of bundled HARQ feedback flags have corresponding indexes BI={1, ..., BIMAX }, where BIMAX Is greater than one of the predefined values, and the method further comprises: o determining whether the quality of the uplink control channel from the wireless device (18) to the radio access node (14) is less than the predefined a limit value; and ○ after determining that the quality of the uplink control channel is less than the predefined lower threshold, is to be received from the wireless device (18) via the uplink control channel and corresponds to the index BIMAX One of the plurality of bundled HARQ feedback flags is set to indicate that one of the DCI errors is discontinuously transmitted by the DTX flag. [Embodiment 49] A computer program product comprising instructions which, when executed on at least one processor, cause the at least one processor to perform the method of any one of embodiments 47 to 48. Embodiment 50: A carrier comprising the computer program of embodiment 49, wherein the carrier is one of an electronic signal, an optical signal, a radio signal, or a computer readable storage medium. Ÿ Embodiment 51: A radio access node (14) for a cellular communication system (10), the radio access node (14) comprising: ○ a radio unit (50); ○ at least one processor (44) And a memory (46) storing instructions executable by the at least one processor (44) whereby the radio access node (14) is operable to: § determine from a wireless device (18) Whether the quality of one of the uplink control channels to one of the radio access nodes (14) is less than a predefined upper threshold but greater than a predefined lower threshold; and § in determining the uplink control channel The bundled hybrid automatic repeat request HARQ back that has been received by the uplink control channel from the wireless device (18) after the quality is less than the predefined upper threshold but greater than the predefined lower threshold Each of the flags is set to a negative acknowledgement NACK flag. Embodiment 52: The radio access node (14) of Embodiment 51, wherein the plurality of bundled HARQ feedback flags have corresponding indexes BI={1, ..., BIMAX }, where BIMAX Is greater than one of the predefined values, and the radio access node (14) is further operable to: ○ determine the uplink control channel from the wireless device (18) to the radio access node (14) Whether the quality is less than the predefined lower threshold; and ○ after determining that the quality of the uplink control channel is less than the predefined lower threshold, the channel is to be controlled from the wireless device via the uplink (18) Receive and correspond to index BIMAX One of the plurality of bundled HARQ feedback flags is set to indicate that one of the DCI errors is discontinuously transmitted by the DTX flag. Ÿ Embodiment 53: A radio access node (14) for a cellular communication system (10), the radio access node (14) comprising: ○ for determining from a wireless device (18) to the radio storage Taking a component of one of the uplink control channels of one of the nodes (14) for less than a predefined upper threshold but greater than a predefined lower threshold; and ○ for determining the uplink control channel After the quality is less than the predefined upper threshold but greater than the predefined lower threshold, the plurality of bundled hybrid automatic repeat request HARQ feedbacks that have been received by the uplink control channel from the wireless device (18) Each of the flags is set as a component of a negative acknowledgement NACK flag. Embodiment 54: A radio access node (14) for a cellular communication system (10), the radio access node (14) comprising: a decision module operable to determine from a wireless device (18) whether the quality of one of the uplink control channels of one of the radio access nodes (14) is less than a predefined upper threshold but greater than a predefined lower threshold; and ○ a flag setting module, It is operable to, after determining that the quality of the uplink control channel is less than the predefined upper threshold but greater than the predefined lower threshold, the channel has been controlled by the uplink from the wireless device (18) Each of the plurality of bundled hybrid automatic repeat request HARQ feedback flags received is set to a negative acknowledgement NACK flag. The following abbreviations are used throughout the invention. Ÿ 3GPP 3rd Generation Partnership Project Ÿ 5G 5th Generation Ÿ AAS Advanced Antenna System Ÿ ACK Response Ÿ AM Response Mode Ÿ ASIC Application-Specific Integrated Circuit Ÿ BI Buffer Index Ÿ CCE Control Channel Element Ÿ CPU Central Processing Unit Ÿ DCI Down Link Control Information Ÿ DTX Discontinuous Transmission Ÿ eNB Enhanced or Evolved Node B Ÿ ePDCCH Enhanced Entity Downlink Control Channel Ÿ FDD Divided Duplex Ÿ FPGA Field Programmable Gate Array Ÿ HARQ Hybrid Automatic Repeat Request Ÿ LTE Long Evolution Ÿ MIMO Multiple Input Multiple Output MME Mobility Management Entity Ÿ ms millisecond Ÿ MTC Machine Type Communication Ÿ NACK Negative Response Ÿ NDI New Data Indicator Ÿ OFDM Orthogonal Multiplex Ÿ PDCCH Physical Downlink Control Channel Ÿ PDSCH Physical Downlink Shared Channel Ÿ P-GW Packet Data Network Gateway Ÿ PUCCH Physical Uplink Control Channel Ÿ PUSCH Physical Uplink Shared Channel Ÿ RAN Radio Access Network Roller RLC Radio Link Control ŸRTT Round Trip Time ŸRV Redundancy VersionŸS-GW Servo GatewayŸSINR Signal to Interference plus Noise Ratio ŸTB Test Bench ŸTDD Time Division Duplex ŸUCI Uplink Control InformationŸ Improvements and Modifications to Embodiments of the Invention will be apparent to those skilled in the art. All such improvements and modifications are considered to be within the scope of the concepts disclosed herein and the scope of the following claims.

10‧‧‧蜂巢式通信系統
12‧‧‧無線電存取網路(RAN)
14‧‧‧基地台/無線電存取節點
16‧‧‧對應小區
18‧‧‧無線裝置
20‧‧‧核心網路
22‧‧‧行動性管理實體(MME)
24‧‧‧伺服閘道(S-GW)
26‧‧‧封包資料網路閘道(P-GW)
28‧‧‧處理器
30‧‧‧記憶體
32‧‧‧收發器
34‧‧‧傳輸器
36‧‧‧接收器
38‧‧‧天線
40‧‧‧模組
40-1‧‧‧接收模組
40-2‧‧‧傳輸模組
40-3‧‧‧儲存模組
42‧‧‧基頻帶單元
44‧‧‧處理器
46‧‧‧記憶體
48‧‧‧網路介面
50‧‧‧無線電單元
52‧‧‧傳輸器
54‧‧‧接收器
56‧‧‧天線
58‧‧‧處理節點
60‧‧‧網路
62‧‧‧處理器
64‧‧‧記憶體
66‧‧‧網路介面
68‧‧‧功能
70‧‧‧模組
70-1‧‧‧傳輸模組
70-2‧‧‧接收模組
100‧‧‧步驟
102‧‧‧步驟
104‧‧‧步驟
106‧‧‧步驟
108‧‧‧步驟
200‧‧‧步驟
202‧‧‧步驟
204‧‧‧步驟
206‧‧‧步驟
208‧‧‧步驟
210‧‧‧步驟
212‧‧‧步驟
214‧‧‧步驟
216‧‧‧步驟
218‧‧‧步驟
220‧‧‧步驟
222‧‧‧步驟
300‧‧‧步驟
302‧‧‧步驟
304‧‧‧步驟
306‧‧‧步驟
308‧‧‧步驟
310‧‧‧步驟
312‧‧‧步驟
314‧‧‧步驟
400‧‧‧步驟
402‧‧‧步驟
404‧‧‧步驟
406‧‧‧步驟
408‧‧‧步驟
410‧‧‧步驟
412‧‧‧步驟
414‧‧‧步驟
416‧‧‧步驟
500‧‧‧步驟
502‧‧‧步驟
504‧‧‧步驟
506‧‧‧步驟
508‧‧‧步驟
510‧‧‧步驟
512‧‧‧步驟
514‧‧‧步驟
516‧‧‧步驟
600‧‧‧步驟
602‧‧‧步驟
604‧‧‧步驟
606‧‧‧步驟
608‧‧‧步驟
610‧‧‧步驟
612‧‧‧步驟
614‧‧‧步驟
616‧‧‧步驟
618‧‧‧步驟
620‧‧‧步驟
622‧‧‧步驟
624‧‧‧步驟
626‧‧‧步驟
628‧‧‧步驟
630‧‧‧步驟
632‧‧‧步驟
634‧‧‧步驟
636‧‧‧步驟
700‧‧‧步驟
702‧‧‧步驟
704‧‧‧步驟
706‧‧‧步驟
708‧‧‧步驟
710‧‧‧步驟
712‧‧‧步驟
714‧‧‧步驟
10‧‧‧Hive Communication System
12‧‧‧Radio Access Network (RAN)
14‧‧‧Base station/radio access node
16‧‧‧Corresponding community
18‧‧‧Wireless devices
20‧‧‧core network
22‧‧‧Action Management Entity (MME)
24‧‧‧Servo Gateway (S-GW)
26‧‧‧ Packet Information Network Gateway (P-GW)
28‧‧‧Processor
30‧‧‧ memory
32‧‧‧ transceiver
34‧‧‧Transporter
36‧‧‧ Receiver
38‧‧‧Antenna
40‧‧‧ modules
40-1‧‧‧ receiving module
40-2‧‧‧Transmission module
40-3‧‧‧ Storage Module
42‧‧‧baseband unit
44‧‧‧ processor
46‧‧‧ memory
48‧‧‧Internet interface
50‧‧‧ radio unit
52‧‧‧Transporter
54‧‧‧ Receiver
56‧‧‧Antenna
58‧‧‧ Processing node
60‧‧‧Network
62‧‧‧Processor
64‧‧‧ memory
66‧‧‧Network interface
68‧‧‧ function
70‧‧‧ modules
70-1‧‧‧Transmission module
70-2‧‧‧ receiving module
100‧‧‧ steps
102‧‧‧Steps
104‧‧‧Steps
106‧‧‧Steps
108‧‧‧Steps
200‧‧‧ steps
202‧‧‧Steps
204‧‧‧Steps
206‧‧‧Steps
208‧‧‧Steps
210‧‧‧Steps
212‧‧‧Steps
214‧‧‧ steps
216‧‧‧Steps
218‧‧ steps
220‧‧‧Steps
222‧‧‧Steps
300‧‧‧Steps
302‧‧‧Steps
304‧‧‧Steps
306‧‧‧Steps
308‧‧‧Steps
310‧‧‧Steps
312‧‧ steps
314‧‧‧Steps
400‧‧‧ steps
402‧‧‧Steps
404‧‧‧Steps
406‧‧‧Steps
408‧‧‧Steps
410‧‧‧Steps
412‧‧‧Steps
414‧‧‧Steps
416‧‧‧Steps
500‧‧‧ steps
502‧‧‧Steps
504‧‧‧Steps
506‧‧‧Steps
508‧‧‧Steps
510‧‧ steps
512‧‧‧Steps
514‧‧‧Steps
516‧‧‧Steps
600‧‧‧ steps
602‧‧ steps
604‧‧‧Steps
606‧‧‧Steps
608‧‧‧Steps
610‧‧‧Steps
612‧‧ steps
614‧‧‧Steps
616‧‧‧Steps
618‧‧ steps
620‧‧‧Steps
622‧‧‧Steps
624‧‧‧Steps
626‧‧‧Steps
628‧‧‧Steps
630‧‧ steps
632‧‧‧Steps
634‧‧‧Steps
636‧‧‧Steps
700‧‧‧ steps
702‧‧‧Steps
704‧‧‧Steps
706‧‧‧Steps
708‧‧ steps
710‧‧ steps
712‧‧‧Steps
714‧‧‧Steps

併入本說明書中且形成本說明書之一部分之隨附圖式繪示本發明之若干態樣,且連同描述用於解釋本發明之原理。 圖1繪示根據本發明之一項實施例之一蜂巢式通信系統; 圖2繪示根據本發明之一項實施例之一無線裝置(例如,一使用者設備裝置(UE))及一無線電存取節點(或其他網路節點)之操作; 圖3A及圖3B繪示本發明之實施例之一例證; 圖4繪示根據本發明之另一實施例之一無線裝置及一無線電存取節點(或其他網路節點)之操作; 圖5A及圖5B繪示本發明之一些其他實施例之一例證; 圖6係繪示根據本發明之一些實施例之一無線裝置之操作之一流程圖; 圖7A及圖7B以及圖8繪示與一蜂巢式通信系統中之經綑綁混合式自動重送請求(HARQ)回授相關之問題; 圖9繪示根據本發明之一些實施例之一無線裝置及一網路節點之操作; 圖10係繪示根據本發明之一些實施例之由一網路節點執行之一輪詢程序之一流程圖; 圖11係繪示根據本發明之一些實施例之一UE側回授程序之一流程圖; 圖12係繪示根據本發明之一些實施例之一網路側x實體上行鏈路控制頻道(xPUCCH)偵測程序之一流程圖; 圖13係繪示根據本發明之一些實施例之一網路側HARQ回授解譯程序之一流程圖; 圖14A至圖14C、圖15A至圖15C、圖16A及圖16B、圖17A及圖17B以及圖18A及圖18B繪示根據本發明之各項實施例之實例; 圖19及圖20係根據本發明之一些實施例之一無線裝置之例示性實施例之方塊圖;及 圖21至圖23係根據本發明之一些實施例之一基地台之例示性實施例之方塊圖。The accompanying drawings, which are incorporated in FIG 1 illustrates a cellular communication system in accordance with an embodiment of the present invention; FIG. 2 illustrates a wireless device (e.g., a user equipment device (UE)) and a radio in accordance with an embodiment of the present invention. FIG. 3A and FIG. 3B are diagrams showing an embodiment of the present invention; FIG. 4 is a diagram showing a wireless device and a radio access according to another embodiment of the present invention; 5A and 5B illustrate an example of some other embodiments of the present invention; FIG. 6 illustrates a flow of operation of a wireless device in accordance with some embodiments of the present invention. FIG. 7A and FIG. 7B and FIG. 8 illustrate a problem associated with bundled hybrid automatic repeat request (HARQ) feedback in a cellular communication system; FIG. 9 illustrates one embodiment of the present invention. Operation of a wireless device and a network node; FIG. 10 is a flow chart showing one of the polling procedures performed by a network node in accordance with some embodiments of the present invention; FIG. 11 is a diagram illustrating some embodiments in accordance with the present invention. One of the flow charts of one of the UE side feedback procedures; 12 is a flow chart showing one of the network side x entity uplink control channel (xPUCCH) detection procedures according to some embodiments of the present invention; FIG. 13 is a diagram showing a network side HARQ according to some embodiments of the present invention. FIG. 14A to FIG. 14C, FIGS. 15A to 15C, FIGS. 16A and 16B, FIGS. 17A and 17B, and FIGS. 18A and 18B illustrate various embodiments of the present invention. 19 and FIG. 20 are block diagrams of an exemplary embodiment of a wireless device in accordance with some embodiments of the present invention; and FIGS. 21-23 are exemplary implementations of a base station in accordance with some embodiments of the present invention. Example block diagram.

300‧‧‧步驟 300‧‧‧Steps

302‧‧‧步驟 302‧‧‧Steps

304‧‧‧步驟 304‧‧‧Steps

306‧‧‧步驟 306‧‧‧Steps

308‧‧‧步驟 308‧‧‧Steps

310‧‧‧步驟 310‧‧‧Steps

312‧‧‧步驟 312‧‧ steps

314‧‧‧步驟 314‧‧‧Steps

Claims (48)

一種在一蜂巢式通信系統(10)中操作一無線裝置(18)之方法,其包括: 接收(302)包括一混合式自動重送請求HARQ回授緩衝器索引之一下行鏈路控制資訊訊息;及 將一下行鏈路HARQ回授旗標儲存(304)於一HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之一位置中。A method of operating a wireless device (18) in a cellular communication system (10), comprising: receiving (302) a downlink control information message including a hybrid automatic repeat request HARQ feedback buffer index And storing the downlink HARQ feedback flag (304) in a HARQ feedback buffer corresponding to one of the HARQ feedback buffer indices. 如請求項1之方法,其進一步包括: 接收(302)包括各自HARQ回授緩衝器索引之一或多個額外下行鏈路控制資訊訊息;及 針對該一或多個額外下行鏈路控制資訊訊息之各額外下行鏈路控制資訊訊息,將一各自下行鏈路HARQ回授旗標儲存(304)於該HARQ回授緩衝器內對應於該各自下行鏈路控制資訊訊息中包括之該HARQ回授緩衝器索引之一位置中。The method of claim 1, further comprising: receiving (302) one or more additional downlink control information messages including respective HARQ feedback buffer indices; and controlling the one or more additional downlink control information messages Each additional downlink control information message stores (304) a respective downlink HARQ feedback flag in the HARQ feedback buffer corresponding to the HARQ feedback included in the respective downlink control information message. The buffer index is in one of the locations. 如請求項1或2之方法,其進一步包括: 接收(306;是)來自一網路節點(14)之一輪詢請求;及 在接收該輪詢請求之後將下行鏈路HARQ回授傳輸(314)至該網路節點(14),該下行鏈路HARQ回授係基於儲存於該HARQ回授緩衝器中之該等下行鏈路HARQ回授旗標。The method of claim 1 or 2, further comprising: receiving (306; yes) a polling request from a network node (14); and transmitting a downlink HARQ feedback transmission after receiving the polling request (314 To the network node (14), the downlink HARQ feedback is based on the downlink HARQ feedback flags stored in the HARQ feedback buffer. 如請求項3之方法,其進一步包括: 產生(308)包括表示儲存於該下行鏈路HARQ回授緩衝器中之該等下行鏈路HARQ回授旗標之資訊之一上行鏈路控制訊息; 其中傳輸(314)該下行鏈路HARQ回授包括傳輸(314)該上行鏈路控制訊息。The method of claim 3, further comprising: generating (308) an uplink control message including one of the information indicating the downlink HARQ feedback flags stored in the downlink HARQ feedback buffer; Transmitting (314) the downlink HARQ feedback includes transmitting (314) the uplink control message. 如請求項4之方法,其中產生(308)該上行鏈路控制訊息包括將該等下行鏈路HARQ回授旗標聯合編碼(308)為針對該上行鏈路控制訊息之一碼字。The method of claim 4, wherein generating (308) the uplink control message comprises jointly encoding (308) the downlink HARQ feedback flag as one of the code words for the uplink control message. 如請求項4之方法,其中產生(308)該上行鏈路控制訊息包括將該HARQ回授緩衝器中之各下行鏈路HARQ回授旗標映射(308)至一上行鏈路控制頻道內之一各自實體資源。The method of claim 4, wherein generating (308) the uplink control message comprises mapping (308) each downlink HARQ feedback flag in the HARQ feedback buffer to an uplink control channel A separate entity resource. 如請求項4之方法,其中傳輸(314)該下行鏈路HARQ回授包括在一副訊框T+K中傳輸該下行鏈路HARQ回授,其中副訊框T係其中接收該輪詢請求之該副訊框且K係一HARQ時序偏移。The method of claim 4, wherein transmitting (314) the downlink HARQ feedback comprises transmitting the downlink HARQ feedback in a subframe T+K, wherein the subframe T receives the polling request therein The sub-frame and K are a HARQ timing offset. 如請求項7之方法,其中接收(306;是)該輪詢請求包括在該副訊框T中接收(306;是)下行鏈路控制資訊,其中該下行鏈路控制資訊包括該輪詢請求及該HARQ時序偏移K之一指示。The method of claim 7, wherein receiving (306; yes) the polling request comprises receiving (306; YES) downlink control information in the subframe T, wherein the downlink control information includes the polling request And one of the HARQ timing offsets K is indicated. 如請求項8之方法,其中該HARQ時序偏移K之該指示係該HARQ時序偏移K之一值。The method of claim 8, wherein the indication of the HARQ timing offset K is one of the HARQ timing offsets K. 如請求項8之方法,其中該HARQ時序偏移K之該指示係一值S,其中該HARQ時序偏移K=N+S,其中N係一預定義值。The method of claim 8, wherein the indication of the HARQ timing offset K is a value S, wherein the HARQ timing offset is K=N+S, where N is a predefined value. 如請求項8之方法,其中該HARQ時序偏移K之該指示係一值S,其中該HARQ時序偏移K=N+S,其中N係一預組態值。The method of claim 8, wherein the indication of the HARQ timing offset K is a value S, wherein the HARQ timing offset is K=N+S, where N is a pre-configured value. 如請求項8之方法,其中該HARQ時序偏移K之該指示係一值S,其中該HARQ時序偏移K=N+S,其中N係該無線裝置(18)之一預定最小HARQ時序偏移。The method of claim 8, wherein the indication of the HARQ timing offset K is a value S, wherein the HARQ timing offset is K=N+S, wherein N is a predetermined minimum HARQ timing offset of one of the wireless devices (18) shift. 如請求項8之方法,其中該HARQ時序偏移K之該指示係一值X,其中該HARQ時序偏移K係依據該值X。The method of claim 8, wherein the indication of the HARQ timing offset K is a value X, wherein the HARQ timing offset K is based on the value X. 如請求項1或2之方法,其中該HARQ回授緩衝器中之各下行鏈路HARQ回授旗標係包括表示一應答ACK之一第一位元序列、表示一否定應答NACK之一第二位元序列及表示一下行鏈路控制資訊失效之一第三位元序列之一碼空間中之複數個碼點之一者。The method of claim 1 or 2, wherein each of the downlink HARQ feedback flags in the HARQ feedback buffer includes a first bit sequence indicating a response ACK, and a second representation indicating a negative acknowledgement NACK The bit sequence and one of a plurality of code points in one code space representing one of the third bit sequence of the downlink control information failure. 如請求項1或2之方法,其中儲存(304)該下行鏈路HARQ回授旗標包括: 若該無線裝置(18)成功接收對應下行鏈路資料,則將一ACK之一指示儲存於該HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之該位置中;及 若該無線裝置(18)未成功接收對應下行鏈路資料,則將一NACK之一指示儲存於該HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之該位置中。The method of claim 1 or 2, wherein storing (304) the downlink HARQ feedback flag comprises: if the wireless device (18) successfully receives the corresponding downlink data, storing an indication of an ACK in the The HARQ feedback buffer corresponds to the location of the HARQ feedback buffer index; and if the wireless device (18) fails to receive the corresponding downlink data, storing one of the NACK indications in the HARQ feedback The buffer corresponds to the location of the HARQ feedback buffer index. 如請求項15之方法,其中在儲存(304)該下行鏈路HARQ回授旗標之前,將一預設值儲存於該HARQ回授緩衝器內之該位置中,其中該預設值係一下行鏈路控制資訊誤差之一指示。The method of claim 15, wherein before storing (304) the downlink HARQ feedback flag, a preset value is stored in the location in the HARQ feedback buffer, wherein the preset value is One of the line link control information errors is indicated. 如請求項15之方法,其中在儲存(304)該下行鏈路HARQ回授旗標之前,將一預設值儲存於該HARQ回授緩衝器內之該位置中,其中該預設值係一NACK之一指示。The method of claim 15, wherein before storing (304) the downlink HARQ feedback flag, a preset value is stored in the location in the HARQ feedback buffer, wherein the preset value is one One of the NACK indications. 如請求項1或2之方法,其中儲存(304)該下行鏈路HARQ回授旗標包括: 判定(500)針對一當前副訊框之資料之接收是否成功,其中該當前副訊框係其中接收該下行鏈路控制資訊訊息之該副訊框; 判定(502)一NACK旗標是否儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處;及 在判定針對該當前副訊框之該資料之接收成功且判定一NACK旗標儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處之後,即使針對該當前副訊框之資料之該接收成功,仍將一NACK旗標維持(506)於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處。The method of claim 1 or 2, wherein storing (304) the downlink HARQ feedback flag comprises: determining (500) whether the reception of data for a current subframe is successful, wherein the current subframe is Receiving the subframe of the downlink control information message; determining (502) whether a NACK flag is stored in the HARQ feedback buffer at the location corresponding to the HARQ feedback buffer index; After the receiving of the data of the current subframe is successful and determining that a NACK flag is stored in the HARQ feedback buffer at the location corresponding to the HARQ feedback buffer index, even if the data is for the current subframe The reception is successful, and a NACK flag is still maintained (506) at the location in the HARQ feedback buffer corresponding to the HARQ feedback buffer index. 如請求項18之方法,其中儲存(304)該下行鏈路HARQ回授旗標進一步包括在判定針對該當前副訊框之資料之接收成功且判定一NACK旗標未儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處之後,將一ACK旗標儲存(504)於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處。The method of claim 18, wherein storing (304) the downlink HARQ feedback flag further comprises determining that the receiving of the data for the current subframe is successful and determining that a NACK flag is not stored in the HARQ feedback buffer After the location in the device corresponding to the HARQ feedback buffer index, an ACK flag is stored (504) at the location in the HARQ feedback buffer corresponding to the HARQ feedback buffer index. 如請求項18之方法,其中儲存(304)該下行鏈路HARQ回授旗標進一步包括在判定針對該當前副訊框之資料之接收不成功之後,將一NACK旗標儲存(506)於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處。The method of claim 18, wherein storing (304) the downlink HARQ feedback flag further comprises storing (506) a NACK flag after determining that the receiving of the data for the current subframe is unsuccessful The HARQ feedback buffer corresponds to the location of the HARQ feedback buffer index. 如請求項18之方法,其進一步包括: 判定(508至512)一或多個先前副訊框中是否出現一下行鏈路控制資訊誤差,該一或多個先前副訊框係在該當前副訊框之前之一或多個副訊框;及 在判定該一或多個先前副訊框中出現一下行鏈路控制資訊誤差之後,將指示一或多個下行鏈路控制資訊誤差之一或多個旗標儲存(514)於該HARQ回授緩衝器中對應於緊接在該下行鏈路控制資訊訊息中包括之該HARQ回授緩衝器索引之前之一或多個HARQ回授緩衝器索引之一或多個位置處。The method of claim 18, further comprising: determining (508 to 512) whether a downlink control information error occurs in one or more previous subframes, the one or more previous subframes being in the current pair One or more subframes before the frame; and after determining that the downlink control information error occurs in the one or more previous subframes, one or more downlink control information errors are indicated or The plurality of flags are stored (514) in the HARQ feedback buffer corresponding to one or more HARQ feedback buffer indexes immediately before the HARQ feedback buffer index included in the downlink control information message One or more locations. 一種用於一蜂巢式通信系統(10)之無線裝置(18),該無線裝置(18)經調適以: 接收包括一混合式自動重送請求HARQ回授緩衝器索引之一下行鏈路控制資訊訊息;且 將一下行鏈路HARQ回授旗標儲存於一HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之一位置中。A wireless device (18) for a cellular communication system (10), the wireless device (18) adapted to: receive one of a hybrid automatic repeat request HARQ feedback buffer index downlink control information And storing the downlink HARQ feedback flag in a HARQ feedback buffer corresponding to one of the HARQ feedback buffer indices. 如請求項22之無線裝置(18),其進一步經調適以根據如請求項2至21中任一項之方法操作。The wireless device (18) of claim 22, which is further adapted to operate according to the method of any one of claims 2 to 21. 一種用於一蜂巢式通信系統(10)之無線裝置(18),其包括: 一收發器(32); 至少一個處理器(28);及 記憶體(30),其儲存指令,該等指令可由該至少一個處理器(28)執行,藉此該無線裝置(18)可操作以: 經由該收發器(32)接收包括一混合式自動重送請求HARQ回授緩衝器索引之一下行鏈路控制資訊訊息;及 將一下行鏈路HARQ回授旗標儲存於一HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之一位置中。A wireless device (18) for a cellular communication system (10), comprising: a transceiver (32); at least one processor (28); and a memory (30) storing instructions, the instructions Executable by the at least one processor (28), whereby the wireless device (18) is operable to: receive, via the transceiver (32), one of a downlink including a hybrid automatic repeat request HARQ feedback buffer index Controlling the information message; and storing the downlink HARQ feedback flag in a HARQ feedback buffer corresponding to one of the HARQ feedback buffer indices. 如請求項24之無線裝置(18),其中藉由由該至少一個處理器(28)執行該等指令,該無線裝置(18)可進一步操作以: 經由該收發器(32)接收包括各自HARQ回授緩衝器索引之一或多個額外下行鏈路控制資訊訊息;且 針對該一或多個額外下行鏈路控制資訊訊息之各額外下行鏈路控制資訊訊息,將一各自下行鏈路HARQ回授旗標儲存於該HARQ回授緩衝器內對應於該各自下行鏈路控制資訊訊息中包括之該HARQ回授緩衝器索引之一位置中。The wireless device (18) of claim 24, wherein the wireless device (18) is further operable to: receive, via the transceiver (32), a respective HARQ, by the at least one processor (28) executing the instructions Retrieving one or more additional downlink control information messages of the buffer index; and for each additional downlink control information message of the one or more additional downlink control information messages, a respective downlink HARQ back The flag is stored in the HARQ feedback buffer in a location corresponding to one of the HARQ feedback buffer indices included in the respective downlink control information message. 如請求項25之無線裝置(18),其中藉由由該至少一個處理器(28)執行該等指令,該無線裝置(18)可進一步操作以: 經由該收發器(32)接收(306;是)來自一網路節點(14)之一輪詢請求; 經由該收發器(32)在接收該輪詢請求之後將HARQ回授傳輸至一網路節點(14),該HARQ回授係基於儲存於該HARQ回授緩衝器中之該等下行鏈路HARQ回授旗標。The wireless device (18) of claim 25, wherein the wireless device (18) is further operable to: receive via the transceiver (32) by executing the instructions by the at least one processor (28) (306; Yes) a polling request from one of the network nodes (14); transmitting, via the transceiver (32), the HARQ feedback to a network node (14) after receiving the polling request, the HARQ feedback system is based on storage The downlink HARQ feedback flags in the HARQ feedback buffer. 如請求項24至26中任一項之無線裝置(18),其中為了儲存該下行鏈路HARQ回授旗標,該無線裝置(18)可進一步操作以: 判定針對一當前副訊框之資料之接收是否成功,其中該當前副訊框係其中接收該下行鏈路控制資訊訊息之該副訊框; 判定一否定應答NACK旗標是否儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處;且 在判定針對該當前副訊框之資料之接收成功且判定一NACK旗標儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處之後,即使針對該當前副訊框之資料之該接收成功,仍將一NACK旗標維持於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處。The wireless device (18) of any one of claims 24 to 26, wherein the wireless device (18) is further operable to: determine data for a current subframe for storing the downlink HARQ feedback flag Whether the receiving is successful, wherein the current subframe is the subframe in which the downlink control information message is received; determining whether a negative acknowledgement NACK flag is stored in the HARQ feedback buffer corresponds to the HARQ feedback At the location of the buffer index; and determining that the receipt of the data for the current subframe is successful and determining that a NACK flag is stored in the HARQ feedback buffer at the location corresponding to the HARQ feedback buffer index Thereafter, even if the reception of the data for the current subframe is successful, a NACK flag is maintained at the location of the HARQ feedback buffer corresponding to the HARQ feedback buffer index. 如請求項27之無線裝置(18),其中為了儲存該下行鏈路HARQ回授旗標,該無線裝置(18)可進一步操作以在判定針對該當前副訊框之資料之接收成功且判定一NACK旗標未儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處之後,將一應答ACK旗標儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處。The wireless device (18) of claim 27, wherein in order to store the downlink HARQ feedback flag, the wireless device (18) is further operative to determine that the reception of the data for the current subframe is successful and determine a After the NACK flag is not stored in the HARQ feedback buffer at the location corresponding to the HARQ feedback buffer index, storing a response ACK flag in the HARQ feedback buffer corresponding to the HARQ feedback buffer At this position of the index. 如請求項27之無線裝置(18),其中為了儲存該下行鏈路HARQ回授旗標,該無線裝置(18)可進一步操作以在判定針對該當前副訊框之資料之接收不成功之後,將一NACK旗標儲存於該HARQ回授緩衝器中對應於該HARQ回授緩衝器索引之該位置處。The wireless device (18) of claim 27, wherein the wireless device (18) is further operative to determine that the receipt of the data for the current subframe is unsuccessful in order to store the downlink HARQ feedback flag, A NACK flag is stored in the HARQ feedback buffer at the location corresponding to the HARQ feedback buffer index. 如請求項27之無線裝置(18),其中藉由由該至少一個處理器(28)執行該等指令,該無線裝置(18)可進一步操作以: 判定一或多個先前副訊框中是否出現一下行鏈路控制資訊誤差,該一或多個先前副訊框係在該當前副訊框之前之一或多個副訊框;且 在判定該一或多個先前副訊框中出現一下行鏈路控制資訊誤差之後,將指示一或多個下行鏈路控制資訊誤差之一或多個旗標儲存於該HARQ回授緩衝器中對應於緊接在該下行鏈路控制資訊訊息中包括之該HARQ回授緩衝器索引之前之一或多個HARQ回授緩衝器索引之一或多個位置處。The wireless device (18) of claim 27, wherein the wireless device (18) is further operable to: determine whether one or more of the previous subframes are present by executing the instructions by the at least one processor (28) A downlink control information error occurs, the one or more previous sub-frames being in one or more sub-frames before the current sub-frame; and determining that the one or more previous sub-frames appear After the link control information error, indicating that one or more of the one or more downlink control information errors are stored in the HARQ feedback buffer corresponds to being included in the downlink control information message The HARQ feedback buffer is indexed at one or more of the one or more HARQ feedback buffer indices. 一種經啟用以在一蜂巢式通信系統(10)中操作之無線裝置(18),該無線裝置(18)包括: 用於接收包括一混合式自動重送請求HARQ回授緩衝器索引之一下行鏈路控制資訊訊息之構件;及 用於將一下行鏈路HARQ回授旗標儲存於一HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之一位置中之構件。A wireless device (18) enabled to operate in a cellular communication system (10), the wireless device (18) comprising: for receiving a downlink including a hybrid automatic repeat request HARQ feedback buffer index a component of the link control information message; and means for storing the downlink HARQ feedback flag in a HARQ feedback buffer corresponding to one of the HARQ feedback buffer indices. 一種經啟用以在一蜂巢式通信系統(10)中操作之無線裝置(18),該無線裝置(18)包括: 一接收模組(40-1),其可操作以接收包括一混合式自動重送請求HARQ回授緩衝器索引之一下行鏈路控制資訊訊息;及 一儲存模組(40-3),其可操作以將一下行鏈路HARQ回授旗標儲存於一HARQ回授緩衝器內對應於該HARQ回授緩衝器索引之一位置中。A wireless device (18) enabled to operate in a cellular communication system (10), the wireless device (18) comprising: a receiving module (40-1) operable to receive a hybrid automatic Retransmitting a downlink control information message requesting one of the HARQ feedback buffer indexes; and a storage module (40-3) operable to store the downlink HARQ feedback flag in a HARQ feedback buffer The device corresponds to one of the locations of the HARQ feedback buffer index. 一種操作一蜂巢式通信系統(10)之一網路節點(14)之方法,其包括: 判定(404)是否在一副訊框中對一無線裝置(18)排程; 在判定在該副訊框中對該無線裝置(18)排程之後,使在該副訊框中傳輸至該無線裝置(18)之一混合式自動重送請求HARQ程序與一緩衝器索引相關聯(408);及 在於該副訊框中傳輸至該無線裝置(18)之下行鏈路控制資訊中包含(410)該緩衝器索引。A method of operating a network node (14) of a cellular communication system (10), comprising: determining (404) whether to schedule a wireless device (18) in a subframe; determining at the secondary After the frame is scheduled for the wireless device (18), the hybrid automatic repeat request HARQ program transmitted to the wireless device (18) in the subframe is associated with a buffer index (408); And the buffer index is included (410) in the downlink control information transmitted to the wireless device (18) in the subframe. 如請求項33之方法,其進一步包括在判定(404)是否在該副訊框中對該無線裝置(18)排程之前,將該緩衝器索引設定(402)為一初始值。The method of claim 33, further comprising setting (402) the buffer index to an initial value prior to determining (404) whether to schedule the wireless device (18) in the subframe. 如請求項34之方法,其進一步包括: 判定(412)該緩衝器索引是否等於一預定義最大值; 在判定該緩衝器索引不等於該預定義最大值之後,使該緩衝器索引遞增(414);及 在判定該緩衝器索引等於該預定義最大值之後,在於該副訊框中傳輸至該無線裝置(18)之該下行鏈路控制資訊中設定(416)一輪詢旗標。The method of claim 34, further comprising: determining (412) whether the buffer index is equal to a predefined maximum value; incrementing the buffer index after determining that the buffer index is not equal to the predefined maximum value (414) After determining that the buffer index is equal to the predefined maximum value, a polling flag is set (416) in the downlink control information transmitted to the wireless device (18) in the subframe. 如請求項35之方法,其進一步包括: 回應於在於該副訊框中傳輸至該無線裝置(18)之該下行鏈路控制資訊中設定(416)該輪詢旗標而自該無線裝置(18)接收下行鏈路HARQ回授。The method of claim 35, further comprising: setting (416) the polling flag from the wireless device in response to the downlink control information transmitted to the wireless device (18) in the subframe 18) Receive downlink HARQ feedback. 如請求項36之方法,其進一步包括: 判定(604)在其上接收該下行鏈路HARQ回授之一上行鏈路控制頻道之一信號對干擾加雜訊比SINR是否大於或等於一第一預定義臨限值;及 若該上行鏈路控制頻道之該SINR大於或等於該第一預定義臨限值,則: 判定(606)應信任該下行鏈路HARQ回授;且 處理(614至628)該下行鏈路HARQ回授。The method of claim 36, further comprising: determining (604) whether the signal to interference plus noise ratio SINR of one of the uplink control channels on which the downlink HARQ feedback is received is greater than or equal to a first a predefined threshold; and if the SINR of the uplink control channel is greater than or equal to the first predefined threshold, then: determining (606) that the downlink HARQ feedback should be trusted; and processing (614 to 628) The downlink HARQ feedback. 如請求項37之方法,其進一步包括: 判定(608)該上行鏈路控制頻道之該SINR是否小於該第一預定義臨限值但大於或等於一第二預定義臨限值;及 若該上行鏈路控制頻道之該SINR小於該第一預定義臨限值但大於或等於該第二預定義臨限值,則: 判定(610)不應信任該下行鏈路HARQ回授; 將該下行鏈路HARQ回授設定(612)為全部NACK;且 處理(614至628)該等NACK。The method of claim 37, further comprising: determining (608) whether the SINR of the uplink control channel is less than the first predefined threshold but greater than or equal to a second predefined threshold; and if If the SINR of the uplink control channel is less than the first predefined threshold but greater than or equal to the second predefined threshold, then: determining (610) that the downlink HARQ feedback should not be trusted; The link HARQ feedback settings (612) are all NACKs; and the NACKs are processed (614 to 628). 一種用於一蜂巢式通信系統(10)之網路節點(14),該網路節點(14)經調適以: 判定是否在一副訊框中對一無線裝置(18)排程; 在判定在該副訊框中對該無線裝置(18)排程之後,使在該副訊框中傳輸至該無線裝置(18)之一混合式自動重送請求HARQ程序與一緩衝器索引相關聯;且 在於該副訊框中傳輸至該無線裝置(18)之下行鏈路控制資訊中包含該緩衝器索引。A network node (14) for a cellular communication system (10), the network node (14) being adapted to: determine whether to schedule a wireless device (18) in a subframe; After scheduling the wireless device (18) in the subframe, causing a hybrid automatic repeat request HARQ program transmitted to the wireless device (18) in the subframe to be associated with a buffer index; And the buffer index is included in the downlink control information transmitted to the wireless device (18) in the subframe. 如請求項39之網路節點(14),其進一步經調適以根據如請求項34至38中任一項之方法操作。The network node (14) of claim 39, which is further adapted to operate according to the method of any one of claims 34 to 38. 一種用於一蜂巢式通信系統(10)之網路節點(14、58),其包括: 至少一個處理器(44、62);及 記憶體(46、64),其儲存指令,該等指令可由該至少一個處理器(44、62)執行,藉此該網路節點(14、58)可操作以: 判定是否在一副訊框中對一無線裝置(18)排程; 在判定在該副訊框中對該無線裝置(18)排程之後,使在該副訊框中傳輸至該無線裝置(18)之一混合式自動重送請求HARQ程序與一緩衝器索引相關聯;且 在於該副訊框中傳輸至該無線裝置(18)之下行鏈路控制資訊中包含該緩衝器索引。A network node (14, 58) for a cellular communication system (10), comprising: at least one processor (44, 62); and a memory (46, 64) storing instructions, the instructions Executable by the at least one processor (44, 62), whereby the network node (14, 58) is operable to: determine whether to schedule a wireless device (18) in a subframe; After the secondary device schedules the wireless device (18), the hybrid automatic repeat request HARQ program transmitted to the wireless device (18) in the secondary frame is associated with a buffer index; The buffer index is included in the downlink control information transmitted to the wireless device (18) in the subframe. 如請求項41之網路節點(14、58),其中經由藉由該至少一個處理器(44、62)執行該等指令,該網路節點(14、58)可進一步操作以在判定是否在該副訊框中對該無線裝置(18)排程之前,將該緩衝器索引設定為一初始值。The network node (14, 58) of claim 41, wherein the network node (14, 58) is further operative to determine whether it is at least by executing the instructions by the at least one processor (44, 62) The buffer index is set to an initial value before the subframe is scheduled for the wireless device (18). 如請求項42之網路節點(14、58),其中經由藉由該至少一個處理器(44、62)執行該等指令,該網路節點(14、58)可進一步操作以: 判定該緩衝器索引是否等於一預定義最大值; 在判定該緩衝器索引不等於該預定義最大值之後,使該緩衝器索引遞增;且 在判定該緩衝器索引等於該預定義最大值之後,在於該副訊框中傳輸至該無線裝置(18)之該下行鏈路控制資訊中設定一輪詢旗標。As the network node (14, 58) of claim 42, wherein the network node (14, 58) is further operable to: determine the buffer via the at least one processor (44, 62) executing the instructions Whether the index is equal to a predefined maximum value; after determining that the buffer index is not equal to the predefined maximum value, incrementing the buffer index; and after determining that the buffer index is equal to the predefined maximum value, A polling flag is set in the downlink control information transmitted to the wireless device (18) in the frame. 如請求項43之網路節點(14、58),其中經由藉由該至少一個處理器(44、62)執行該等指令,該網路節點(14、58)可進一步操作以: 回應於在於該副訊框中傳輸至該無線裝置(18)之該下行鏈路控制資訊中設定(416)該輪詢旗標而自該無線裝置(18)接收下行鏈路HARQ回授。The network node (14, 58) of claim 43, wherein the network node (14, 58) is further operable to: responsive to the execution of the instructions by the at least one processor (44, 62) The downlink control information transmitted to the wireless device (18) in the secondary frame sets (416) the polling flag and receives downlink HARQ feedback from the wireless device (18). 如請求項44之網路節點(14、58),其中經由藉由該至少一個處理器(44、62)執行該等指令,該網路節點(14、58)可進一步操作以: 判定在其上接收該下行鏈路HARQ回授之一上行鏈路控制頻道之一信號對干擾加雜訊比SINR是否大於或等於一第一預定義臨限值;且 若該上行鏈路控制頻道之該SINR大於或等於該第一預定義臨限值,則: 判定應信任該下行鏈路HARQ回授;且 處理該下行鏈路HARQ回授。As the network node (14, 58) of claim 44, wherein the network node (14, 58) is further operable to: execute the instructions via the at least one processor (44, 62) to: And receiving, on the downlink HARQ feedback, one of the uplink control channels, the signal-to-interference plus noise ratio SINR is greater than or equal to a first predefined threshold; and if the SINR of the uplink control channel Greater than or equal to the first predefined threshold, then: determining that the downlink HARQ feedback should be trusted; and processing the downlink HARQ feedback. 如請求項45之網路節點(14、58),其中經由藉由該至少一個處理器(44、62)執行該等指令,該網路節點(14、58)可進一步操作以: 判定該上行鏈路控制頻道之該SINR是否小於該第一預定義臨限值但大於或等於一第二預定義臨限值;且 若該上行鏈路控制頻道之該SINR小於該第一預定義臨限值但大於或等於該第二預定義臨限值,則: 判定不應信任該下行鏈路HARQ回授; 將該下行鏈路HARQ回授設定為全部NACK;且 處理該等NACK。The network node (14, 58) of claim 45, wherein the network node (14, 58) is further operable to: determine the uplink by executing the instructions by the at least one processor (44, 62) Whether the SINR of the link control channel is less than the first predefined threshold but greater than or equal to a second predefined threshold; and if the SINR of the uplink control channel is less than the first predefined threshold But greater than or equal to the second predefined threshold, then: determining that the downlink HARQ feedback should not be trusted; setting the downlink HARQ feedback to all NACKs; and processing the NACKs. 一種經啟用以在一蜂巢式通信系統(10)中操作之網路節點(14、58),該網路節點(14、58)包括: 用於判定是否在一副訊框中對一無線裝置(18)排程之構件; 用於在判定在該副訊框中對該無線裝置(18)排程之後,使在該副訊框中傳輸至該無線裝置(18)之一混合式自動重送請求HARQ程序與一緩衝器索引相關聯之構件;及 用於在於該副訊框中傳輸至該無線裝置(18)之下行鏈路控制資訊中包含該緩衝器索引之構件。A network node (14, 58) enabled to operate in a cellular communication system (10), the network node (14, 58) comprising: for determining whether a wireless device is in a subframe (18) a component of the schedule; configured to, after determining to schedule the wireless device (18) in the subframe, to transmit the hybrid automatic weight to the wireless device (18) in the subframe And means for transmitting a request for the HARQ program to be associated with a buffer index; and means for transmitting the buffer index in the downlink control information transmitted to the wireless device (18) in the subframe. 一種經啟用以在一蜂巢式通信系統(10)中操作之網路節點(14、58),該網路節點(14、58)包括: 一判定模組(70),其可操作以判定是否在一副訊框中對一無線裝置(18)排程; 一關聯模組(70),其可操作以在該判定模組(70)判定在該副訊框中對該無線裝置(18)排程之後,使在該副訊框中傳輸至該無線裝置(18)之一混合式自動重送請求HARQ程序與一緩衝器索引相關聯;及 一傳輸模組(70-1),其可操作以在於該副訊框中傳輸至該無線裝置(18)之下行鏈路控制資訊中包含該緩衝器索引。A network node (14, 58) enabled to operate in a cellular communication system (10), the network node (14, 58) comprising: a decision module (70) operable to determine whether Arranging a wireless device (18) in a subframe; an association module (70) operable to determine, in the subframe, the wireless device (18) in the subframe After scheduling, a hybrid automatic repeat request HARQ program transmitted to the wireless device (18) in the subframe is associated with a buffer index; and a transmission module (70-1) The operation is such that the buffer index is included in the downlink control information transmitted to the wireless device (18) in the subframe.
TW105143320A 2016-02-16 2016-12-27 Robustness enhancements of efficient harq feedback TWI628921B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662295722P 2016-02-16 2016-02-16
US62/295,722 2016-02-16
PCT/SE2016/050515 WO2017138854A1 (en) 2016-02-09 2016-06-01 Robustness enhancements of efficient harq feedback
??PCT/SE2016/050515 2016-06-01

Publications (2)

Publication Number Publication Date
TW201731231A true TW201731231A (en) 2017-09-01
TWI628921B TWI628921B (en) 2018-07-01

Family

ID=60479759

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105143320A TWI628921B (en) 2016-02-16 2016-12-27 Robustness enhancements of efficient harq feedback

Country Status (1)

Country Link
TW (1) TWI628921B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5457464B2 (en) * 2008-12-30 2014-04-02 インターデイジタル パテント ホールディングス インコーポレイテッド Control channel feedback for multiple downlink carrier operation
US9912504B2 (en) * 2014-07-31 2018-03-06 Futurewei Technologies, Inc. System and method for multiple carrier transmission

Also Published As

Publication number Publication date
TWI628921B (en) 2018-07-01

Similar Documents

Publication Publication Date Title
US10727988B2 (en) Efficient HARQ feedback
USRE49490E1 (en) HARQ-ACK handling for unintended downlink sub-frames
US20180316396A1 (en) Method and apparatus in a wireless communication system
CN114097293A (en) Apparatus and method for single HARQ-ACK codebook determination
TWI628921B (en) Robustness enhancements of efficient harq feedback

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees