TW201727958A - Flash anneal of a spin hall effect switched magnetic tunnel junction device to reduce resistivity of metal interconnects - Google Patents

Flash anneal of a spin hall effect switched magnetic tunnel junction device to reduce resistivity of metal interconnects Download PDF

Info

Publication number
TW201727958A
TW201727958A TW105124631A TW105124631A TW201727958A TW 201727958 A TW201727958 A TW 201727958A TW 105124631 A TW105124631 A TW 105124631A TW 105124631 A TW105124631 A TW 105124631A TW 201727958 A TW201727958 A TW 201727958A
Authority
TW
Taiwan
Prior art keywords
layer
hall effect
spin hall
phase
metal layer
Prior art date
Application number
TW105124631A
Other languages
Chinese (zh)
Inventor
蓋瑞 亞倫
Original Assignee
英特爾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特爾股份有限公司 filed Critical 英特爾股份有限公司
Publication of TW201727958A publication Critical patent/TW201727958A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

Embodiments related to magnetic tunnel junction devices including a spin Hall effect metal layer having a first portion with a first crystallographic phase adjacent to a free magnetic layer and a second portion with a second crystallographic phase having a lower conductivity than the first crystallographic phase extending away from the first portion and the free magnetic layer, systems incorporating such devices, and methods for forming them are discussed.

Description

用以降低金屬互連之電阻率的自旋霍爾效應切換式磁性穿隧接面裝置的快閃退火 Fast flash annealing of a spin Hall effect switched magnetic tunnel junction device for reducing the resistivity of metal interconnects

本發明的實施例一般有關具有降低電阻率之金屬互連的磁性穿隧接面裝置,且尤關於具有自旋霍爾效應金屬層的磁性穿隧接面裝置。自旋霍爾效應金屬層的第一結晶相與自由磁層毗鄰,且第二且具有較低電阻率的結晶相從第一結晶相延伸出來。 Embodiments of the present invention are generally directed to magnetic tunnel junction devices having metal interconnects that reduce resistivity, and more particularly to magnetic tunnel junction devices having spin Hall effect metal layers. The first crystalline phase of the spin Hall effect metal layer is adjacent to the free magnetic layer, and the second crystalline phase having a lower resistivity extends from the first crystalline phase.

在一些實施中,磁性穿隧接面(MTJ)裝置,諸如磁阻式隨機存取記憶體(MRAM)裝置,可包括在固定磁層與自由磁層之間的穿隧障壁層(tunnel barrier layer)。顧名思義,可將固定磁層設成特定磁極性(magnetic polarity)。可改變自由磁層且可偵測諸如電阻的特性以讀取該裝置(例如,讀取該裝置的位元單元)。藉由使電流流經該裝置來感應磁場或使用自旋轉移扭矩(STT)技術可改變自由磁層或寫入自由磁層。舉例 來說,此種自旋轉移扭矩技術可包括提供流經毗鄰該自由磁層的材料之電荷電流,以造成與電荷電流的方向正交的自旋電流。自旋電流可經由自旋轉移扭矩改變自由磁層的磁狀態或極性。 In some implementations, a magnetic tunnel junction (MTJ) device, such as a magnetoresistive random access memory (MRAM) device, can include a tunnel barrier layer between the fixed magnetic layer and the free magnetic layer. ). As the name implies, the fixed magnetic layer can be set to a specific magnetic polarity. The free magnetic layer can be altered and characteristics such as resistance can be detected to read the device (eg, read the bit cell of the device). The free magnetic layer or the free magnetic layer can be altered by inducing a magnetic field by flowing a current through the device or using a spin transfer torque (STT) technique. Example In this regard, such a spin transfer torque technique can include providing a charge current flowing through a material adjacent the free magnetic layer to cause a spin current that is orthogonal to the direction of the charge current. The spin current can change the magnetic state or polarity of the free magnetic layer via the spin transfer torque.

如前論述,自旋轉移扭矩可用來改變或翻轉諸如磁性隨機存取記憶體的磁性穿隧接面裝置的自由磁層之極性。此種自旋轉移扭矩記憶體可提供諸如比傳統磁性隨機存取記憶體更低功耗及較佳可擴充性的優點且比其他傳統記憶體裝置有優勢。然而,在實作此類裝置方面仍需顯著進步。 As previously discussed, the spin transfer torque can be used to change or flip the polarity of the free magnetic layer of a magnetic tunnel junction device such as a magnetic random access memory. Such spin transfer torque memory can provide advantages such as lower power consumption and better expandability than conventional magnetic random access memories and has advantages over other conventional memory devices. However, significant progress is still needed in implementing such devices.

100‧‧‧磁性穿隧接面裝置 100‧‧‧Magnetic tunneling junction device

101‧‧‧基板 101‧‧‧Substrate

102‧‧‧自旋霍爾效應金屬層 102‧‧‧ Spin Hall effect metal layer

103‧‧‧自由磁層 103‧‧‧Free magnetic layer

104‧‧‧絕緣體層 104‧‧‧Insulator layer

105‧‧‧固定磁層 105‧‧‧Fixed magnetic layer

106‧‧‧反鐵磁層 106‧‧‧Antiferromagnetic layer

107‧‧‧接觸層 107‧‧‧Contact layer

108‧‧‧接觸層 108‧‧‧Contact layer

109‧‧‧電荷電流 109‧‧‧Charge current

110‧‧‧自旋電流 110‧‧‧Spin current

111‧‧‧磁極性 111‧‧‧Magnetic polarity

112‧‧‧固定磁極性 112‧‧‧Fixed magnetic polarity

113‧‧‧低電阻部 113‧‧‧Low resistance section

114‧‧‧低電阻部 114‧‧‧Low resistance section

115‧‧‧高電阻部 115‧‧‧High Resistance Department

120‧‧‧材料堆疊 120‧‧‧Material stacking

121‧‧‧相界 121‧‧‧ phase

122‧‧‧相界 122‧‧‧ phase

123‧‧‧磁性穿隧接面 123‧‧‧Magnetic tunneling junction

201‧‧‧相界 201‧‧‧ phase

202‧‧‧相界 202‧‧‧ phase

203‧‧‧角落 203‧‧‧ corner

204‧‧‧角落 204‧‧‧ corner

205‧‧‧位置 205‧‧‧ position

206‧‧‧位置 206‧‧‧Location

207‧‧‧底緣 207‧‧‧ bottom edge

300‧‧‧積體電路 300‧‧‧ integrated circuit

301‧‧‧磁性穿隧接面裝置 301‧‧‧Magnetic tunneling junction device

302‧‧‧自旋霍爾效應金屬層 302‧‧‧ Spin Hall Effect Metal Layer

313‧‧‧低電阻部 313‧‧‧ Low Resistance Section

314‧‧‧低電阻部 314‧‧‧ Low Resistance Section

315‧‧‧高電阻部 315‧‧‧High Resistance Department

320‧‧‧材料堆疊 320‧‧‧Material stacking

331‧‧‧接觸 331‧‧‧Contact

332‧‧‧接觸 332‧‧‧Contact

333‧‧‧接觸 333‧‧‧Contact

334‧‧‧接觸 334‧‧‧Contact

341‧‧‧層間介電質 341‧‧‧Interlayer dielectric

400‧‧‧方法 400‧‧‧ method

401,402,403‧‧‧操作 401,402,403‧‧‧ operations

501‧‧‧磁性穿隧接面裝置結構 501‧‧‧Magnetic tunneling joint device structure

502‧‧‧磁性穿隧接面裝置結構 502‧‧‧Magnetic tunneling junction device structure

503‧‧‧自旋霍爾效應金屬層 503‧‧‧ Spin Hall effect metal layer

504‧‧‧自旋霍爾效應金屬層 504‧‧‧ Spin Hall Effect Metal Layer

505‧‧‧磁性穿隧接面裝置結構 505‧‧‧Magnetic tunneling joint device structure

506‧‧‧塊狀自由磁層 506‧‧‧Block free magnetic layer

507‧‧‧塊狀絕緣體層 507‧‧‧Block insulator layer

508‧‧‧塊狀固定磁層 508‧‧‧Blocked fixed magnetic layer

509‧‧‧塊狀反鐵磁層 509‧‧‧Block antiferromagnetic layer

510‧‧‧塊狀接觸層 510‧‧‧Block contact layer

511‧‧‧塊狀接觸層 511‧‧‧Block contact layer

512‧‧‧磁性穿隧接面裝置結構 512‧‧‧Magnetic tunneling joint device structure

513‧‧‧遮罩 513‧‧‧ mask

514‧‧‧磁性穿隧接面裝置結構 514‧‧‧Magnetic tunneling joint device structure

515‧‧‧磁性穿隧接面選擇電晶體裝置結構 515‧‧‧Magnetic tunneling interface to select the structure of the crystal device

516‧‧‧閃光燈 516‧‧‧flash

600‧‧‧MRAM單元 600‧‧‧MRAM unit

601‧‧‧磁性穿隧接面裝置 601‧‧‧Magnetic tunneling junction device

602‧‧‧參考線 602‧‧‧ reference line

603‧‧‧位元線 603‧‧‧ bit line

604‧‧‧字線 604‧‧‧ word line

605‧‧‧選擇電晶體 605‧‧‧Selecting a crystal

606‧‧‧源極線 606‧‧‧ source line

700‧‧‧行動運算平台 700‧‧‧Mobile Computing Platform

705‧‧‧顯示螢幕 705‧‧‧display screen

710‧‧‧整合系統 710‧‧‧ integrated system

715‧‧‧電池 715‧‧‧Battery

720‧‧‧展開圖 720‧‧‧Expanding

725‧‧‧積體電路RFIC TX/RX 725‧‧‧Integrated Circuit RFIC TX/RX

730‧‧‧電源管理積體電路(PMIC) 730‧‧‧Power Management Integrated Circuit (PMIC)

735‧‧‧控制器 735‧‧‧ Controller

750‧‧‧記憶體/具MTJ裝置的處理器/封裝裝置 750‧‧‧Memory/Processor/Package with MTJ Device

800‧‧‧運算裝置 800‧‧‧ arithmetic device

801‧‧‧處理器 801‧‧‧ processor

802‧‧‧主機板 802‧‧‧ motherboard

803‧‧‧相機 803‧‧‧ camera

804‧‧‧通訊晶片 804‧‧‧Communication chip

805‧‧‧通訊晶片 805‧‧‧Communication chip

806‧‧‧晶片組 806‧‧‧ chipsets

807‧‧‧DRAM 807‧‧‧DRAM

808‧‧‧DRAM 808‧‧‧DRAM

809‧‧‧功率放大器 809‧‧‧Power Amplifier

810‧‧‧ROM 810‧‧‧ROM

811‧‧‧觸控螢幕控制器 811‧‧‧Touch Screen Controller

812‧‧‧圖形CPU 812‧‧‧Graphic CPU

813‧‧‧GPS 813‧‧‧GPS

814‧‧‧羅盤 814‧‧‧ compass

815‧‧‧揚聲器 815‧‧‧Speaker

816‧‧‧天線 816‧‧‧Antenna

817‧‧‧觸控螢幕顯示器 817‧‧‧ touch screen display

818‧‧‧電池 818‧‧‧Battery

此處所述的資料係藉由範例而非藉由附圖中的限制來加以說明。為說明的簡潔與清楚,圖式中繪示的元件未必依比例繪製。舉例來說,為了清楚,某些元件的尺寸可相對其他元件加以誇大。再者,適當之處,圖式之間重覆參考標示用以指出對應或類似元件。在圖式中:圖1是例示性磁性穿隧接面裝置的側視圖。 The information described herein is illustrated by way of example and not by way of limitation in the drawings. For the sake of brevity and clarity of the description, elements illustrated in the drawings are not necessarily drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to the other elements for clarity. Further, where appropriate, the reference numerals are repeated among the drawings to indicate corresponding or similar elements. In the drawings: Figure 1 is a side view of an exemplary magnetic tunneling junction device.

圖2繪示自旋霍爾效應金屬層的高電阻部及低電阻部之間的例示性相界(phase boundaries);圖3是包括磁性穿隧接面裝置的例示性積體電路的側視圖。 2 illustrates exemplary phase boundaries between a high resistance portion and a low resistance portion of a spin Hall effect metal layer; FIG. 3 is a side view of an exemplary integrated circuit including a magnetic tunnel junction device; .

圖4是說明用以形成具有降低電阻率金屬互連之磁性穿隧接面裝置的例示性方法之流程圖; 圖5A、5B、5C、5D、5E、5F及5G是實施特定製造操作之例示性磁性穿隧接面裝置結構的側視圖;圖6說明實施具有降低電阻率金屬互連之磁性穿隧接面裝置的例示性MRAM單元;圖7是採用具有降低電阻率金屬互連之磁性穿隧接面裝置的行動運算平台的示意圖;及圖8是全部根據至少某些本揭露的實施配置的運算裝置的功能方塊圖。 4 is a flow chart illustrating an exemplary method for forming a magnetic tunnel junction device having a reduced resistivity metal interconnect; 5A, 5B, 5C, 5D, 5E, 5F, and 5G are side views of an exemplary magnetic tunnel junction device structure for performing a specific fabrication operation; and FIG. 6 illustrates the implementation of a magnetic tunnel junction having a reduced resistivity metal interconnection. An exemplary MRAM cell of the device; FIG. 7 is a schematic diagram of a mobile computing platform employing a magnetic tunneling junction device having a reduced resistivity metal interconnect; and FIG. 8 is an operational device all configured in accordance with at least some embodiments of the present disclosure Functional block diagram.

【發明內容及實施方式】 SUMMARY OF THE INVENTION AND EMBODIMENT

一或多個實施例或實作現參照所附圖式加以描述。雖然討論特定的組態及配置,吾人應了解此僅是為說明目的。熟於相關技藝的人士會了解到可採用其他的組態及配置而不背離本發明精神及範圍。對於熟於相關技藝的人士而言明顯的是本文描述的技術及/或配置亦可採用於多種有別於本文描述的其他系統及應用中。 One or more embodiments or implementations are now described with reference to the drawings. While discussing specific configurations and configurations, we should understand that this is for illustrative purposes only. Those skilled in the art will appreciate that other configurations and configurations can be employed without departing from the spirit and scope of the invention. It will be apparent to those skilled in the relevant art that the techniques and/or configurations described herein may also be employed in a variety of other systems and applications than those described herein.

參照下述詳細說明中針對部分構成詳細說明的附圖,其中相同數字通篇可指定相同部件以標示出對應或類似的元件。應要體認到為說明簡單及/或清楚之緣故,圖式中繪示的元件未必依比例繪製。舉例來說,為了清楚緣故,部分元件的尺寸可相對於其他元件加以誇大。再者,要了解到可使用其他實施例且可進行結構上及/或邏輯上的改變而不背離所請求標的的範圍。亦應注意到,例如上、下、頂、底、之上、之下等等的方向及參照,可 用來促進圖式及實施例的討論而並不意圖限制所請求標的的應用。因此,不以限制方式看待以下詳細說明,且由所附申請專利範圍及其鈞等物界定所請求標的的範圍。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S) In the following detailed description, reference is made to the accompanying drawings. It should be understood that the elements illustrated in the drawings are not necessarily drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for the sake of clarity. Furthermore, it is understood that other embodiments may be utilized and structural and/or logical changes may be made without departing from the scope of the claimed subject matter. It should also be noted that directions and references such as up, down, top, bottom, top, bottom, etc. may be The discussion of the drawings and the embodiments is not intended to limit the application of the claimed subject matter. Therefore, the following detailed description is not to be taken in a

在以下詳細說明中,雖記載許多細節,但對熟於此技藝之人士明顯的是,可不利用此等特定細節實施本發明。在某些例子中,周知的方法及裝置以方塊圖形式而非詳細顯示,以免阻礙本發明。說明書通篇提及的「實施例」或「一實施例中」意指與實施例有關的特定特徵、結構、功能或特性包括於本發明之至少一實施例中。因此,說明書通篇不同處出現諸如「一實施例」及「實施例」的術語未必全指向本發明之同一個實施例。此外,特定特徵、結構、功能或特性可以任何適合方式結合於一或更多實施例中。舉例來說,第一實施例可結合於不指定為彼此相斥的兩個實施例的第二個實施例中。 In the following detailed description, numerous details are set forth, and it is apparent to those skilled in the art In some instances, well-known methods and devices are shown in block diagrams and not in detail. The "embodiment" or "in an embodiment" referred to throughout the specification means that a specific feature, structure, function or characteristic relating to the embodiment is included in at least one embodiment of the invention. Therefore, terms such as "an embodiment" and "an embodiment" may be used to refer to the same embodiment of the invention. Furthermore, the particular features, structures, functions, or characteristics may be combined in one or more embodiments in any suitable manner. For example, the first embodiment can be incorporated in a second embodiment of two embodiments that are not designated as being mutually exclusive.

術語「耦合」及「連接」以及其衍生詞可於此處用以描述組件之間的結構關係。應要了解,這些術語並不意圖彼此互為同義詞。更確切地說,在特定實施例中,「連接」可用來表明二或多個元件互相直接實體或電性接觸。「耦合」可用來表明二或多個元件互相直接或間接(二者之間有中間元件)實體或電性接觸,且/或該二或多個元件彼此合作或互動(例如如同因果關係)。 The terms "coupled" and "connected" and their derivatives may be used herein to describe the structural relationship between the components. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, "connected" can be used to indicate that two or more elements are in direct physical or electrical contact with each other. "Coupled" may be used to indicate that two or more elements are in direct or indirect (intermediate elements) physical or electrical contact with each other, and/or that the two or more elements cooperate or interact with each other (eg, as a causal relationship).

術語「之上」、「之下」、「之間」、「上」及/或類似者,如此處所使用者,意指一相對於其他層或材料的材料層或組件的相對位置。例如,配置於另 一層之上或之下的一層可以與其他層直接接觸或有一或多個中間層。再者,配置在兩層之間的一層可與兩層直接接觸或有一或多個中間層。相較之下,在第二層「上」的第一層是與該第二層直接接觸。同理,除非在他處有明確陳述,否則配置於兩個特徵之間的一個特徵可與相鄰特徵直接接觸,或者可以有一個以上的中間特徵。 The terms "above", "below", "between", "upper" and/or the like, as used herein, mean the relative position of a material layer or component relative to other layers or materials. For example, configured in another A layer above or below one layer may be in direct contact with other layers or one or more intermediate layers. Furthermore, a layer disposed between the two layers may be in direct contact with the two layers or one or more intermediate layers. In contrast, the first layer "on" the second layer is in direct contact with the second layer. Similarly, a feature disposed between two features can be in direct contact with an adjacent feature, or can have more than one intermediate feature, unless explicitly stated elsewhere.

以下描述有關於具有降低電阻率金屬互連的磁性穿隧接面裝置的磁性穿隧接面裝置、記憶體、積體電路、裝置、運算平台、及方法。 The following describes a magnetic tunnel junction device, a memory, an integrated circuit, a device, a computing platform, and a method for a magnetic tunnel junction device having a reduced resistivity metal interconnect.

如上述,諸如使用自旋轉移扭矩來改變或翻轉自由磁層的磁阻式隨機存取記憶體裝置的磁性穿隧接面裝置可提供優於其他磁阻式隨機存取記憶體裝置的優點。舉例說明,磁性穿隧接面裝置可提供更低功耗及較佳可擴充性的優點。在一實施例中,磁性穿隧接面裝置可包括絕緣體層及自旋霍爾效應金屬層,絕緣體層在固定磁層與自由磁層之間,且自旋霍爾效應金屬層具有與自由磁層毗鄰的第一部及從第一部與自由磁層延伸出來的第二部。舉例來說,第一部可包括自旋霍爾效應金層的第一結晶相,且第二部可包括具有低於第一結晶相的導電性的自旋霍爾效應金屬層的第二結晶相。如此處進一步討論者,自旋霍爾效應金屬層的第一結晶相可以,回應電荷電流,經由自旋轉移扭矩提供自旋電流來轉換自由磁層的極性。自旋霍爾效應金屬層的第二結晶相可能無法提供此種自旋轉移扭矩,但可提供實質上低於第一結晶相的電阻率。 As described above, a magnetic tunnel junction device such as a magnetoresistive random access memory device that uses spin transfer torque to change or flip a free magnetic layer can provide advantages over other magnetoresistive random access memory devices. For example, the magnetic tunnel junction device provides the advantages of lower power consumption and better expandability. In an embodiment, the magnetic tunnel junction device may include an insulator layer and a spin Hall effect metal layer, the insulator layer is between the fixed magnetic layer and the free magnetic layer, and the spin Hall effect metal layer has a free magnetic a first portion adjacent to the layer and a second portion extending from the first portion and the free magnetic layer. For example, the first portion may include a first crystalline phase of the spin Hall effect gold layer, and the second portion may include a second crystal having a spin Hall effect metal layer that is lower than the conductivity of the first crystalline phase. phase. As further discussed herein, the first crystalline phase of the spin Hall effect metal layer can, in response to a charge current, provide a spin current via spin transfer torque to convert the polarity of the free magnetic layer. The second crystalline phase of the spin Hall effect metal layer may not provide such spin transfer torque, but may provide a resistivity substantially lower than the first crystalline phase.

使用任何適當的技術或多種技術可形成此種磁性穿隧接面裝置。在一實施例中,一自由磁層可配置於具有第一結晶相之自旋霍爾效應金屬層的第一部之上,一絕緣體層可配置於自由磁層之上,一固定磁層可配置於絕緣體層之上,以及一接觸層可配置於固定磁層之上,使得自旋霍爾效應金屬層的第二部曝露出來,且自旋霍爾效應金屬層的第二部可從第一結晶相轉換成導電性比第一結晶相還低的第二結晶相。例如,曝露出來的第二部的轉換可包括快閃退火操作。 Such a magnetic tunneling junction device can be formed using any suitable technique or techniques. In an embodiment, a free magnetic layer may be disposed on the first portion of the spin Hall effect metal layer having the first crystal phase, and an insulator layer may be disposed on the free magnetic layer, and a fixed magnetic layer may be disposed. Arranged on the insulator layer, and a contact layer can be disposed on the fixed magnetic layer such that the second portion of the spin Hall effect metal layer is exposed, and the second portion of the spin Hall effect metal layer can be A crystalline phase is converted into a second crystalline phase that is less conductive than the first crystalline phase. For example, the exposure of the exposed second portion can include a flash annealing operation.

自旋霍爾效應金屬層可包括任何適合的一種材料或多種材料。在一些實施例中,自旋霍爾效應金屬層包括或由鉭或鎢所組成。舉例來說,第一結晶相可為beta相(beta phase)鉭,且第二結晶相可為alpha相(alpha phase)鉭;或第一結晶相可為beta相(beta phase)鎢,且第二結晶相可為alpha相(alpha phase)鎢。在一些實施例中,自旋霍爾效應金屬層包括或由鉑組成。 The spin Hall effect metal layer can comprise any suitable material or materials. In some embodiments, the spin Hall effect metal layer comprises or consists of tantalum or tungsten. For example, the first crystalline phase may be a beta phase 钽, and the second crystalline phase may be an alpha phase 钽; or the first crystalline phase may be a beta phase tungsten, and the first The second crystalline phase can be alpha phase tungsten. In some embodiments, the spin Hall effect metal layer comprises or consists of platinum.

此種磁性穿隧接面裝置可透過諸如非揮發性磁阻式隨機存取記憶體電路或系統之類的電路或系統實施。在一實施例中,非揮發性MRAM位元單元可包括選擇電晶體及耦合到該選擇電晶體的磁性穿隧接面裝置,使得磁性穿隧接面裝置包括絕緣體層及自旋霍爾效應金屬層,絕緣體層在固定磁層與自由磁層之間,自旋霍爾效應金屬層具有與自由磁層毗鄰的第一部及從第一部與自由磁層延伸出來的第二部,使得第一部具有自旋霍爾效應金層 的第一結晶相,且第二部具有導電性低於第一結晶相之自旋霍爾效應金屬層的第二結晶相,如上所述。 Such a magnetic tunnel junction device can be implemented by circuitry or systems such as non-volatile magnetoresistive random access memory circuits or systems. In an embodiment, the non-volatile MRAM cell unit can include a selection transistor and a magnetic tunnel junction device coupled to the selection transistor such that the magnetic tunnel junction device includes an insulator layer and a spin Hall effect metal a layer, the insulator layer is between the fixed magnetic layer and the free magnetic layer, and the spin Hall effect metal layer has a first portion adjacent to the free magnetic layer and a second portion extending from the first portion and the free magnetic layer, such that a spin-Hall effect gold layer The first crystalline phase, and the second portion has a second crystalline phase that is less conductive than the spin Hall effect metal layer of the first crystalline phase, as described above.

圖1是依本揭露的至少某些實作來配置的例示性磁性穿隧接面裝置100的側視圖。舉例來說,磁性穿隧接面裝置100可具有降低電阻率互連且因而可有利地供低功率裝置之用。如所示,磁性穿隧接面裝置100可包括基板101、自旋霍爾效應金屬層102、自由磁層103、絕緣體層104(例如,穿隧障壁)、固定磁層105、反鐵磁層106及接觸層107、108。例如,材料堆疊120可包括自旋霍爾效應金屬層102、自由磁層103、絕緣體層巷104、固定磁層105、反鐵磁層106及接觸層107、108的任一者。例如,如此處所討論者,材料堆疊120可包括自由磁層103、絕緣體層104、固定磁層105、反鐵磁層106及接觸層107、108。此外,如所示,自由磁層103、絕緣體層104及固定磁層105可供磁性穿隧接面123之用。 1 is a side view of an exemplary magnetic tunnel junction device 100 configured in accordance with at least some implementations of the present disclosure. For example, the magnetic tunnel junction device 100 can have a reduced resistivity interconnect and thus can advantageously be used for low power devices. As shown, the magnetic tunnel junction device 100 can include a substrate 101, a spin Hall effect metal layer 102, a free magnetic layer 103, an insulator layer 104 (eg, a tunnel barrier), a fixed magnetic layer 105, an antiferromagnetic layer. 106 and contact layers 107, 108. For example, material stack 120 can include any of spin Hall effect metal layer 102, free magnetic layer 103, insulator track 104, fixed magnetic layer 105, antiferromagnetic layer 106, and contact layers 107, 108. For example, as discussed herein, material stack 120 can include free magnetic layer 103, insulator layer 104, fixed magnetic layer 105, antiferromagnetic layer 106, and contact layers 107, 108. Further, as shown, the free magnetic layer 103, the insulator layer 104, and the fixed magnetic layer 105 are available for the magnetic tunnel junction 123.

在運作方面,固定磁層105可具有固定磁極性112。在說明例中,磁極性112是位在自本頁(例如在y方向)延伸出去的方向上;然而可提供諸如延伸進本頁或在垂直方向(例如在z方向)的任何適合的固定磁極性112。此外,如所示,自由磁層103的磁極111可藉由透過自旋霍爾效應金屬層102施加電荷電流109而被翻轉、切換、改變或修改等等。 In operation, the fixed magnetic layer 105 can have a fixed magnetic polarity 112. In the illustrated example, the magnetic polarity 112 is in a direction extending from this page (eg, in the y-direction); however, any suitable fixed magnetic pole, such as extending into the page or in the vertical direction (eg, in the z-direction) may be provided. Sex 112. Further, as shown, the magnetic poles 111 of the free magnetic layer 103 can be flipped, switched, changed or modified, etc. by applying a charge current 109 through the spin Hall effect metal layer 102.

舉例來說,自旋霍爾效應金屬層102可包括低電阻部113、114及高電阻部115。低電阻部113、114 可包括自旋霍爾效應金屬層102的特定結晶相且高電阻部115可包括自旋霍爾效應金屬層102的不同的結晶相。舉例來說,高電阻部115的結晶相提供自旋霍爾效應金屬層102的能力以提供自旋轉移扭矩,用以翻轉或切換自由磁層103之磁極性111,而低電阻部113、114的結晶相可能無法提供此種功能性或可能嚴重限制此種功能性。如所示,在某些實施例中,高電阻部115可與自由磁層103直接接觸。在其他實施例中,中間層或層可設置於高電阻部115與自由磁層103之間只要高電阻部115能提供如此處所述的用以切換自由磁層103。 For example, the spin Hall effect metal layer 102 may include low resistance portions 113, 114 and a high resistance portion 115. Low resistance parts 113, 114 A particular crystalline phase of the spin Hall effect metal layer 102 can be included and the high resistance portion 115 can include a different crystalline phase of the spin Hall effect metal layer 102. For example, the crystalline phase of the high resistance portion 115 provides the ability to spin the Hall effect metal layer 102 to provide spin transfer torque for flipping or switching the magnetic polarity 111 of the free magnetic layer 103, while the low resistance portions 113, 114 The crystalline phase may not provide such functionality or may severely limit such functionality. As shown, in some embodiments, the high resistance portion 115 can be in direct contact with the free magnetic layer 103. In other embodiments, an intermediate layer or layer may be disposed between the high resistance portion 115 and the free magnetic layer 103 as long as the high resistance portion 115 can provide the free magnetic layer 103 as described herein.

如所示,透過自旋霍爾效應金屬層102的高電阻部115,由於自旋霍爾效應(SHE),電荷電流109可提供正交於電荷電流109之方向的自旋電流110。在一實施例中,x方向的電荷電流109可提供y方向的自旋電流110且負x方向的電荷電流109可提供負y方向的自旋電流110。舉例來說,自旋霍爾效應金屬層102的高電阻部115可包括beta相鉭、beta相鎢、或是beta相鉑,其可提供自旋霍爾效應以產生自旋電流110。自旋電流110可透過自旋轉移扭矩(STT)翻轉、切換、改變或修改磁極性111。藉由切換電荷電流109的方向,可產生相反方向自旋電流110且可提供磁極性111的相反極性。磁極性111的極性方面的差異可經由通過磁性穿隧接面裝置100之類的電阻方面的變化加以偵測,使得可以提供記憶體單元(例如,記憶體單元可經由改變磁極性111的極性而寫 入,且經由電阻或之類的偵測而讀取)。 As shown, through the high resistance portion 115 of the spin Hall effect metal layer 102, the charge current 109 can provide a spin current 110 that is orthogonal to the direction of the charge current 109 due to the spin Hall effect (SHE). In an embodiment, the charge current 109 in the x direction can provide a spin current 110 in the y direction and the charge current 109 in the negative x direction can provide a spin current 110 in the negative y direction. For example, the high resistance portion 115 of the spin Hall effect metal layer 102 can include beta phase germanium, beta phase tungsten, or beta phase platinum, which can provide a spin Hall effect to generate a spin current 110. The spin current 110 can flip, switch, change, or modify the magnetic polarity 111 through a spin transfer torque (STT). By switching the direction of the charge current 109, a spin current 110 in the opposite direction can be generated and the opposite polarity of the magnetic polarity 111 can be provided. The difference in polarity of the magnetic polarity 111 can be detected via a change in resistance through the magnetic tunnel junction device 100 such that a memory cell can be provided (eg, the memory cell can change the polarity of the magnetic polarity 111) write In, and read by resistance or the like).

舉例來說,所討論的特定材料的結晶相(例如,beta相鉭、鎢或鉑)可提供基於自旋霍爾效應切換磁性穿隧接面裝置100的狀態的能力。然而,如前論述,此種結晶相可提供高電阻(例如,此類的相位可為高電阻率相位),其可使他們成為不良互連。然而,低電阻部113、114可有利地提供較低電阻,以及因此作為自旋霍爾效應金屬層102的互連部的較佳特性。舉例來說,低電阻部113、114對於高電阻部115而言可以是不同的結晶相。在一實施例中,自旋霍爾效應金屬層102可包括或全部由鉭所組成,高電阻部115可為beta相鉭而低電阻部113、114可為alpha相鉭。在另一實施例中,自旋霍爾效應金屬層102可包括或全部由鎢所組成,高電阻部115可為beta相鎢而低電阻部113、114可為alpha相鎢。再又一實施例中,自旋霍爾效應金屬層102可包括或全部由鉑所組成,高電阻部115可為beta相鉑而低電阻部113、114可為alpha相鉑。 For example, the crystalline phase of the particular material in question (eg, beta phase tantalum, tungsten, or platinum) can provide the ability to switch the state of the magnetic tunnel junction device 100 based on the spin Hall effect. However, as previously discussed, such crystalline phases can provide high resistance (e.g., such phases can be high resistivity phases), which can make them poor interconnects. However, the low resistance portions 113, 114 can advantageously provide lower resistance, and thus better characteristics of the interconnects of the spin Hall effect metal layer 102. For example, the low resistance portions 113, 114 may be different crystal phases for the high resistance portion 115. In one embodiment, the spin Hall effect metal layer 102 may comprise or consist entirely of germanium, the high resistance portion 115 may be beta phase and the low resistance portions 113, 114 may be alpha phase. In another embodiment, the spin Hall effect metal layer 102 may comprise or consist entirely of tungsten, the high resistance portion 115 may be beta phase tungsten and the low resistance portions 113, 114 may be alpha phase tungsten. In still another embodiment, the spin Hall effect metal layer 102 may comprise or consist entirely of platinum, the high resistance portion 115 may be beta phase platinum and the low resistance portions 113, 114 may be alpha phase platinum.

此種低電阻結晶相可以,如前論述,提供作為互連的較佳特性;然而,該些特性可能無法提供自旋電流110。因此,自旋霍爾效應金屬層102可包括高電阻部115以提供上述自旋霍爾效應,以及包括低電阻部113、114以提供較低電阻。舉例來說,低電阻部113、114可自高電阻部115及自由磁層103延伸,且如所述,可包括具有導電性比高電阻部115的結晶相的導電性還低的結晶 相。在一些實施例中,高電阻部115特徵可在於自旋霍爾效應部、高電阻結晶相部、自旋霍爾效應結晶相部或類似者,而低電阻部113、114特徵可在於互連部、低電阻結晶相部、互連結晶相部或類似者。在一些實施例中,高電阻部115之電阻可比低電阻部113、114約大5至10倍。舉例來說,beta相鉭及鎢的電阻率比alpha相鉭及鎢的電阻率約大10倍。 Such low resistance crystalline phases may, as previously discussed, provide preferred characteristics as interconnects; however, such characteristics may not provide spin current 110. Therefore, the spin Hall effect metal layer 102 may include the high resistance portion 115 to provide the spin Hall effect described above, and include the low resistance portions 113, 114 to provide a lower resistance. For example, the low resistance portions 113, 114 may extend from the high resistance portion 115 and the free magnetic layer 103, and as described, may include crystals having conductivity lower than that of the crystalline phase of the high resistance portion 115. phase. In some embodiments, the high resistance portion 115 may be characterized by a spin Hall effect portion, a high resistance crystalline phase portion, a spin Hall effect crystal phase portion or the like, and the low resistance portions 113, 114 may be characterized by interconnection Part, low resistance crystalline phase, interconnected crystalline phase or the like. In some embodiments, the resistance of the high resistance portion 115 may be approximately 5 to 10 times larger than the low resistance portions 113, 114. For example, the resistivity of beta phase tantalum and tungsten is about 10 times greater than that of alpha phase tantalum and tungsten.

此外,圖1繪示二低電阻部113、114,其各沿著基板101自高電阻部115及自由磁層103延伸。然而,磁性穿隧接面裝置100可包括任何數量的低電阻部113、114,諸如一低電阻部或三或更多低電阻部。低電阻部113、114如所示可沿著基板101的頂部延伸出來,或者低電阻部113、114可在諸如形成於基板101中的通道或類似者的基板101以內延伸。 In addition, FIG. 1 illustrates two low resistance portions 113 and 114 each extending from the high resistance portion 115 and the free magnetic layer 103 along the substrate 101. However, the magnetic tunnel junction device 100 can include any number of low resistance portions 113, 114, such as a low resistance portion or three or more low resistance portions. The low resistance portions 113, 114 may extend along the top of the substrate 101 as shown, or the low resistance portions 113, 114 may extend within a substrate 101 such as a channel formed in the substrate 101 or the like.

如所述,自旋霍爾效應金屬層102可包括高電阻部115及自高電阻部115延伸出來的一或多個低電阻部113、114。高電阻部115及低電阻部113、114可在具有任何適合形狀的相界相接,諸如在高電阻部115與低電阻部113之間的相界121以及在高電阻部115與低電阻部113之間的相界122。在圖1的實施例中,相界121、122從自由磁層103的角落大致垂直向下延伸至自旋霍爾效應金屬層102的邊緣。然而,如所述,相界121、122可具有任何適合形狀。 As described, the spin Hall effect metal layer 102 can include a high resistance portion 115 and one or more low resistance portions 113, 114 extending from the high resistance portion 115. The high resistance portion 115 and the low resistance portions 113, 114 may be connected at a phase boundary having any suitable shape, such as a phase boundary 121 between the high resistance portion 115 and the low resistance portion 113 and a high resistance portion 115 and a low resistance portion. The phase boundary 122 between 113. In the embodiment of FIG. 1, the phase boundaries 121, 122 extend substantially vertically downward from the corners of the free magnetic layer 103 to the edges of the spin Hall effect metal layer 102. However, as noted, the phase boundaries 121, 122 can have any suitable shape.

圖2繪示根據本揭露之至少某些實作配置之 在自旋霍爾效應金屬層102之高電阻部115與低電阻部113、114之間的例示性相界201、202。如所示,在一些實施例中,在高電阻部115與低電阻部113、114之間的相界201、202可具有從自由磁層103的角落203、204延伸出來至自旋霍爾效應金屬層102的邊緣的輪廓。舉例來說,相界201可從自由磁層103的角落203延伸出來至在位置205處的自旋霍爾效應金屬層102的底緣207,位置205是在自由磁層103的外面,而相界202可從自由磁層103的角落204延伸出來至在位置206處的自旋霍爾效應金屬層103的底緣207,位置206是在自由磁層103的外面。在繪示的範例中,相界201、202具有凹的曲線輪廓。然而,相界201、202可具有諸如線性輪廓的任何適合的形狀。 2 illustrates at least some implementation configurations in accordance with the present disclosure Exemplary phase boundaries 201, 202 between the high resistance portion 115 and the low resistance portions 113, 114 of the spin Hall effect metal layer 102. As shown, in some embodiments, the phase boundaries 201, 202 between the high resistance portion 115 and the low resistance portions 113, 114 may have extensions from the corners 203, 204 of the free magnetic layer 103 to the spin Hall effect. The outline of the edge of the metal layer 102. For example, the phase boundary 201 can extend from the corner 203 of the free magnetic layer 103 to the bottom edge 207 of the spin Hall effect metal layer 102 at the location 205, the location 205 being outside of the free magnetic layer 103, and the phase Boundary 202 may extend from a corner 204 of free magnetic layer 103 to a bottom edge 207 of spin Hall effect metal layer 103 at location 206, which is outside of free magnetic layer 103. In the illustrated example, the phase boundaries 201, 202 have a concave curved profile. However, the phase boundaries 201, 202 can have any suitable shape such as a linear profile.

回到圖1,如所述,磁性穿隧接面裝置100可包括基板101。基板101可包括任何適合的一種材料、多種材料、及裝置。在一實施例中。基板101可包括半導體材料,諸如單晶矽(Si)、鍺(Ge)、矽鍺(SiGe)、III-V族材料的材料(例如,砷化鎵(GaAs))、碳化矽(SiC)、藍寶石(Al2O3)或其的任何組合。在一實施例中,基板101可包括包括具有(100)晶向的矽。在種種範例中,基板101可包括金屬化互連層,其用於積體電路或電子裝置,諸如電晶體、記憶體、電容器、電阻器、光電裝置、開關或任何其他可被電絕緣層(例如,層間介電質、溝槽絕緣層等等)分開的主動或被動電子裝置。例 如,基板101可包括如進一步於本文有關圖3所論述的金屬接觸及互連。 Returning to FIG. 1, as described, the magnetic tunnel junction device 100 can include a substrate 101. Substrate 101 can comprise any suitable material, materials, and devices. In an embodiment. The substrate 101 may include a semiconductor material such as single crystal germanium (Si), germanium (Ge), germanium (SiGe), a material of a group III-V material (for example, gallium arsenide (GaAs)), tantalum carbide (SiC), Sapphire (Al 2 O 3 ) or any combination thereof. In an embodiment, the substrate 101 may include a crucible having a (100) crystal orientation. In various examples, substrate 101 can include a metallization interconnect layer for use in an integrated circuit or electronic device, such as a transistor, memory, capacitor, resistor, optoelectronic device, switch, or any other electrically insulating layer ( For example, interlayer dielectrics, trench isolation layers, etc.) separate active or passive electronic devices. For example, substrate 101 can include metal contacts and interconnects as discussed further herein with respect to FIG.

如所示,磁性穿隧接面裝置100可包括自旋霍爾效應金屬層102,其具有在基板101之上各自從高電阻部115延伸出來的低電阻部113、114。在一些實施例中,自旋霍爾效應金屬層102包括鉭、鎢或鉑,具有含本文所討論之不同結晶相的低電阻部113、114及高電阻部115。自旋霍爾效應金屬層102可具有任何適當的厚度,例如約等於或大於8nm的厚度。再者,磁性穿隧接面裝置100可包括自由磁層103,其設置在自旋霍爾效應金屬層102的高電阻部115之上,使得低電阻部113、114曝露在自由磁層103及其他材料堆疊120的組成中。如吾人所理解者,曝露出的低電阻部113、114可被介電層或鈍化層或類似者覆蓋,使得曝露出的低電阻部113、114可曝露在材料堆疊120中但被介電層或鈍化層或類似者覆蓋。自由磁層103可包括任何適合的一種或多種材料,像是諸如約為0.4到3nm的範圍內的厚度的任何適合厚度的鐵磁材料。在一實施例中,自由磁層103為鈷鐵硼(CoFeB)。 As shown, the magnetic tunnel junction device 100 can include a spin Hall effect metal layer 102 having low resistance portions 113, 114 each extending from the high resistance portion 115 over the substrate 101. In some embodiments, the spin Hall effect metal layer 102 comprises tantalum, tungsten or platinum having low resistance portions 113, 114 and high resistance portions 115 comprising different crystalline phases as discussed herein. The spin Hall effect metal layer 102 can have any suitable thickness, such as a thickness of about equal to or greater than 8 nm. Furthermore, the magnetic tunnel junction device 100 can include a free magnetic layer 103 disposed over the high resistance portion 115 of the spin Hall effect metal layer 102 such that the low resistance portions 113, 114 are exposed to the free magnetic layer 103 and The composition of the other material stacks 120. As is understood by us, the exposed low resistance portions 113, 114 may be covered by a dielectric layer or a passivation layer or the like such that the exposed low resistance portions 113, 114 may be exposed in the material stack 120 but by the dielectric layer Or covered by a passivation layer or the like. The free magnetic layer 103 can comprise any suitable material or materials, such as any suitable thickness of ferromagnetic material, such as a thickness in the range of about 0.4 to 3 nm. In an embodiment, the free magnetic layer 103 is cobalt iron boron (CoFeB).

此外,如所示,磁性穿隧接面裝置100可包括在自由磁層103之上的絕緣體層104(例如,穿隧障壁)。絕緣體層104可包括任何適合的一種或多種材料,像是具有諸如0.4至3nm的範圍內的厚度的任何適合厚度的氧化鎂。固定磁層105可配置於絕緣體層104之上, 且固定磁層105可包括任何適合的一種或多種材料,像是具有諸如0.4至3nm的範圍內的厚度的任何適合厚度的鐵磁材料。在一實施例中,固定磁層105為鈷鐵硼(CoFeB)。自由磁層103及固定磁層105可以有相同厚度或是它們的厚度可以不同。磁性穿隧接面裝置100亦可包括反鐵磁層106,其在固定磁層105之上,而接觸層107、108在反鐵磁層106之上。反鐵磁層106和接觸層107、108可包括任何適合厚度的任何適合的一種或多種材料。在一實施例中,反鐵磁層106為合成反鐵磁(SAF)層。在一實施例中,接觸層107、108可分別包括鉭及釕。在一些實施例中,接觸層107、108包括如所示的兩層;然而,可以使用像是一個接觸層的任何數量的接觸層。在一些實施例中,接觸層107及/或接觸層108的特徵可以在於像是固定電極的電極,且自旋霍爾效應金屬層102的特徵可以在於像是自由電極的電極。 Moreover, as shown, the magnetic tunnel junction device 100 can include an insulator layer 104 (eg, a tunneling barrier) over the free magnetic layer 103. The insulator layer 104 can comprise any suitable material or materials, such as magnesium oxide of any suitable thickness having a thickness, such as in the range of 0.4 to 3 nm. The fixed magnetic layer 105 can be disposed on the insulator layer 104. And the fixed magnetic layer 105 can comprise any suitable material or materials, such as a ferromagnetic material having any suitable thickness, such as a thickness in the range of 0.4 to 3 nm. In one embodiment, the fixed magnetic layer 105 is cobalt iron boron (CoFeB). The free magnetic layer 103 and the fixed magnetic layer 105 may have the same thickness or their thicknesses may be different. The magnetic tunnel junction device 100 can also include an antiferromagnetic layer 106 over the fixed magnetic layer 105 with the contact layers 107, 108 over the antiferromagnetic layer 106. The antiferromagnetic layer 106 and the contact layers 107, 108 can comprise any suitable material or materials of any suitable thickness. In one embodiment, the antiferromagnetic layer 106 is a synthetic antiferromagnetic (SAF) layer. In an embodiment, the contact layers 107, 108 may comprise tantalum and niobium, respectively. In some embodiments, the contact layers 107, 108 comprise two layers as shown; however, any number of contact layers such as a contact layer can be used. In some embodiments, contact layer 107 and/or contact layer 108 may be characterized by electrodes such as fixed electrodes, and spin Hall effect metal layer 102 may be characterized by electrodes such as free electrodes.

如所示,在一些實施例中。材料堆疊120的自由磁層103、絕緣體層104、固定磁層105、反鐵磁層106及接觸層107、108可具有大致垂直的側壁(sidewall)。然而,在一些實施例中,此等側壁可以錐形化(tapered)。此外,材料堆疊120可具有任何適合的尺寸。例如,材料堆疊120的自由磁層103、絕緣體層104、固定磁層105、反鐵磁層106及接觸層107、108可具有一個約50至70nm的寬度(例如在x方向)以及一個約120至200nm的深度(例如在y方向)。 As shown, in some embodiments. The free magnetic layer 103, the insulator layer 104, the fixed magnetic layer 105, the antiferromagnetic layer 106, and the contact layers 107, 108 of the material stack 120 can have substantially vertical sidewalls. However, in some embodiments, such sidewalls may be tapered. Moreover, material stack 120 can have any suitable size. For example, the free magnetic layer 103, the insulator layer 104, the fixed magnetic layer 105, the antiferromagnetic layer 106, and the contact layers 107, 108 of the material stack 120 can have a width of about 50 to 70 nm (eg, in the x direction) and approximately 120 To a depth of 200 nm (eg in the y direction).

圖3是例示性積體電路300的側視圖,積體電路300包括磁性穿隧接面裝置100及磁性穿隧接面裝置301,至少根據本揭露的某些實施例來配置。舉例來說,積體電路300可包括記憶體電路、具有整合記憶體(integrated memory)的處理器、或系統單晶片等等。如所示,積體電路300可包括具有任何本文述及之特性的磁性穿隧接面裝置100及磁性穿隧接面裝置301。舉例來說,磁性穿隧接面裝置100可包括材料堆疊120,其包括具有高電阻部115及低電阻部113、114的自旋霍爾效應金屬層102。再者,磁性穿隧接面裝置301可包括材料堆疊320,其包括具有高電阻部315及低電阻部113、114的自旋霍爾效應金屬層302。磁性穿隧接面裝置301可具有任何本文述及有關磁性穿隧接面裝置100的特性。在一些實施例中,磁性穿隧接面裝置100、301可具有相同的特性,且在其他實施例中,它們可以具有一或多個不同的特性。 3 is a side view of an exemplary integrated circuit 300 that includes a magnetic tunnel junction device 100 and a magnetic tunnel junction device 301, at least configured in accordance with certain embodiments of the present disclosure. For example, the integrated circuit 300 can include a memory circuit, a processor with integrated memory, or a system single chip, and the like. As shown, the integrated circuit 300 can include a magnetic tunnel junction device 100 and a magnetic tunnel junction device 301 having any of the characteristics described herein. For example, the magnetic tunnel junction device 100 can include a material stack 120 that includes a spin Hall effect metal layer 102 having a high resistance portion 115 and low resistance portions 113, 114. Furthermore, the magnetic tunnel junction device 301 can include a material stack 320 that includes a spin Hall effect metal layer 302 having a high resistance portion 315 and low resistance portions 113, 114. The magnetic tunnel junction device 301 can have any of the characteristics described herein with respect to the magnetic tunnel junction device 100. In some embodiments, the magnetic tunneling junction devices 100, 301 can have the same characteristics, and in other embodiments, they can have one or more different characteristics.

如所示,基板101可包括設置在層間介電質341(ILD)以內的接觸331-334。舉例來說,接觸331-334可將磁性穿隧接面裝置100、301互連到形成在基板101的下層以內的諸裝置,諸如邏輯電晶體、或其他裝置等等。舉例來說,如所示,自旋霍爾效應金屬層102的低電阻部113、114可分別延伸到接觸331、332,且自旋霍爾效應金屬層302的低電阻部313、314可分別延伸到接觸333、334。此等低電阻部可提供像是低電阻率的想要 的互連特性,且高電阻部115、315可提供如本文所述之磁性穿隧接面裝置100、301的操作。在繪示的範例中,接觸331-334在磁性穿隧接面裝置100、301之下。在其他的範例中,一或多個接觸331-334可在磁性穿隧接面裝置100、301的旁邊或上面。 As shown, substrate 101 can include contacts 331-334 disposed within interlayer dielectric 341 (ILD). For example, contacts 331-334 can interconnect magnetic tunnel junction devices 100, 301 to devices formed within the underlying layers of substrate 101, such as logic transistors, or other devices, and the like. For example, as shown, the low resistance portions 113, 114 of the spin Hall effect metal layer 102 may extend to the contacts 331, 332, respectively, and the low resistance portions 313, 314 of the spin Hall effect metal layer 302 may be respectively Extends to contacts 333, 334. These low resistance parts can provide like low resistivity The interconnect characteristics, and the high resistance portions 115, 315 can provide operation of the magnetic tunnel junction devices 100, 301 as described herein. In the illustrated example, contacts 331-334 are below magnetic tunnel junction devices 100,301. In other examples, one or more contacts 331-334 may be beside or above the magnetic tunneling junction devices 100,301.

於此針對圖5A-5G及相關討論,提供有關磁性穿隧接面裝置100、301的所述特徵的額外細節,該相關討論提供有關形成磁性穿隧接面裝置100、301的額外細節。再者,磁性穿隧接面裝置100、301可實作於諸如合併記憶體、或MRAM等等的邏輯裝置的電子裝置結構中,如此處所進一步討論者。 Additional details regarding the features of the magnetic tunneling junction devices 100, 301 are provided herein with respect to Figures 5A-5G and related discussions, which provide additional details regarding the formation of the magnetic tunneling junction devices 100,301. Moreover, the magnetic tunnel junction devices 100, 301 can be implemented in electronic device structures such as logic devices that incorporate memory, or MRAM, etc., as discussed further herein.

圖4是說明用以形成至少根據本揭露某些實施例配置,具有降低電阻率金屬互連之磁性穿隧接面裝置例示性方法400的流程圖。舉例來說,如此處所討論者,方法400可對磁性穿隧接面裝置100及/或磁性穿隧接面裝置301實施。在說明的實施中,方法400可包括一或多個如401-403所說明的操作。然而,這裡的實施例可包括額外操作、省略的特定操作、或不依所提供的順序實施的操作。 4 is a flow diagram illustrating an exemplary method 400 for forming a magnetic tunnel junction device having a reduced resistivity metal interconnect configured to be constructed in accordance with at least certain embodiments of the present disclosure. For example, method 400 can be implemented for magnetic tunnel junction device 100 and/or magnetic tunnel junction device 301, as discussed herein. In the illustrated implementation, method 400 can include one or more operations as illustrated by 401-403. However, the embodiments herein may include additional operations, specific operations that are omitted, or operations that are not performed in the order presented.

方法400可始於操作401,「設置自由磁層於具有第一結晶相的自旋霍爾效應金屬層的第一部之上」,其中,一自由磁層可設置在具有第一結晶相的自旋霍爾效應金屬層的一第一部之上。舉例來說,第一結晶相可為可操作來切換自由磁層(例如,第一結晶相可為beta相 鉭、beta相鎢、或beta相鉑等等)之相。在一實施例中,材料堆疊120的自由磁層103及/或材料堆疊320的自由磁層可分別形成於自旋霍爾效應金屬層503、504的部份之上,如進一步此處對圖5A-5E及本文它處所討論者。在一實施例中,使用大量設置技術(bulk deposition technique)及後續的圖案化技術,自由磁層可設置在自旋霍爾效應金屬層的第一部之上。 The method 400 may begin at operation 401, "Setting a free magnetic layer on a first portion of a spin Hall effect metal layer having a first crystalline phase", wherein a free magnetic layer may be disposed in the first crystalline phase Above a first portion of the spin Hall effect metal layer. For example, the first crystalline phase can be operable to switch the free magnetic layer (eg, the first crystalline phase can be beta phase) The phase of ruthenium, beta phase tungsten, or beta phase platinum, etc.). In an embodiment, the free magnetic layer 103 of the material stack 120 and/or the free magnetic layer of the material stack 320 may be formed over portions of the spin Hall effect metal layers 503, 504, respectively, as further illustrated herein. 5A-5E and the discussion in this article. In one embodiment, a free magnetic layer may be disposed over the first portion of the spin Hall effect metal layer using a bulk deposition technique and subsequent patterning techniques.

方法400可接續於操作402,「設置一絕緣體層、一固定磁層、以及一接觸層於該自由磁層之上,使得自旋霍爾效應金屬層的一第二部曝露出來」。其中,一絕緣體層可設置於該自由磁層之上,一自由磁層可設置於該絕緣體層之上,且一接觸層可設置於該固定磁層之上,使得自旋霍爾效應金屬層的一第二部被曝露出來。在一實施例中,材料堆疊120的絕緣體層104、固定磁層105、以及接觸層107、108的其中一或二者可設置於自由磁層103之上,及/或材料堆疊320的絕緣體層、固定磁層、以及接觸層的其中一或二者可設置於材料堆疊320的自由磁層之上,如進一步於此針對圖5C-5E以及本文它處所討論者。在一實施例中,使用大量設置技術及後續的圖案化技術,絕緣體層可設置於自由磁層之上,固定磁層可設置於絕緣體層之上,且接觸層可設置於固定磁層之上。 The method 400 can continue with operation 402, "providing an insulator layer, a fixed magnetic layer, and a contact layer over the free magnetic layer such that a second portion of the spin Hall effect metal layer is exposed." Wherein, an insulator layer may be disposed on the free magnetic layer, a free magnetic layer may be disposed on the insulator layer, and a contact layer may be disposed on the fixed magnetic layer to form a spin Hall effect metal layer A second part was exposed. In an embodiment, one or both of the insulator layer 104, the fixed magnetic layer 105, and the contact layers 107, 108 of the material stack 120 may be disposed over the free magnetic layer 103, and/or the insulator layer of the material stack 320. One or both of the fixed magnetic layer, and the contact layer may be disposed over the free magnetic layer of the material stack 320, as further discussed herein with respect to Figures 5C-5E and elsewhere herein. In one embodiment, using a large number of placement techniques and subsequent patterning techniques, an insulator layer can be disposed over the free magnetic layer, a fixed magnetic layer can be disposed over the insulator layer, and the contact layer can be disposed over the fixed magnetic layer .

方法400可接續於操作403,「自旋霍爾效應金屬層的該第二部從該第一結晶相到第二結晶相的轉換」,其中,自旋霍爾效應金屬層的被曝露的第二部可以 從第一結晶相轉換到導電性比第一結晶相還低的第二結晶相。可使用任何適合的一種或多種技術轉換自旋霍爾效應金屬層的被曝露的第二部。在一實施例中,經由快閃退火操作,自旋霍爾效應金屬層的第二部可以從第一結晶相轉換到第二結晶相,如進一步於此針對圖5F及本文它處所討論者。 The method 400 can continue with operation 403, "Conversion of the second portion of the spin Hall effect metal layer from the first crystalline phase to the second crystalline phase", wherein the exposed Hall of the spin Hall effect metal layer The second part can The first crystalline phase is converted to a second crystalline phase having a lower conductivity than the first crystalline phase. The exposed second portion of the spin Hall effect metal layer can be converted using any suitable technique or techniques. In one embodiment, the second portion of the spin Hall effect metal layer can be converted from the first crystalline phase to the second crystalline phase via a flash annealing operation, as further discussed herein with respect to FIG. 5F and elsewhere herein.

如前論述,可實施方法400以製造磁性穿隧接面裝置100及/或磁性穿隧接面裝置301。與此等製造技術相關聯的進一步細節特別針對圖5A-5G於此論述。可回應一或多個電腦程式產品所提供的指令從事方法400(或於此關於圖5A-5G所論述的操作)的任何一或多個操作。此種程式產品可包括提供指令的信號承載媒體,當指令例如被處理器執行時,可提供此處所述及的功能性。此電腦程式產品可以任何電腦可讀媒體的形式提供。因而,舉例來說,包括一或多個處理器核心的處理器可從事一或多個述及的操作以回應由電腦可讀媒體遞傳送到處理器的指令。 As previously discussed, method 400 can be implemented to fabricate magnetic tunnel junction device 100 and/or magnetic tunnel junction device 301. Further details associated with such manufacturing techniques are specifically discussed herein with respect to Figures 5A-5G. Any one or more of the operations of method 400 (or the operations discussed herein with respect to Figures 5A-5G) may be performed in response to instructions provided by one or more computer program products. Such a program product may include a signal bearing medium that provides instructions that, when executed by, for example, a processor, may provide the functionality described herein. This computer program product can be provided in any form of computer readable media. Thus, for example, a processor including one or more processor cores can perform one or more of the operations described herein in response to the instructions being transferred to the processor by computer readable media.

圖5A-5G是實施特定製造操作之例示性磁性穿隧接面裝置結構的側視圖,至少依照本揭露的某些實作配置。圖5A說明磁性穿隧接面裝置結構501的側視圖。如圖5A所示,磁性穿隧接面裝置結構501包括基板101,其具有與層間介電質341一起設置的接觸331-334。舉例來說,接觸331-334可將隨後形成的磁性穿隧接面裝置100、301互連到先前形成於基板101下層內的裝置, 諸如邏輯電晶體、或其他裝置等等。在一實施例中,接觸331-334可提供到形成於基板101內之裝置的金屬層102的連接。可使用任何適合的一種或多種技術形成基板101。 5A-5G are side views of an exemplary magnetic tunnel junction device structure for performing a particular fabrication operation, at least in accordance with certain implementations of the present disclosure. FIG. 5A illustrates a side view of a magnetic tunneling junction device structure 501. As shown in FIG. 5A, the magnetic tunnel junction device structure 501 includes a substrate 101 having contacts 331-334 disposed with an interlayer dielectric 341. For example, contacts 331-334 can interconnect subsequently formed magnetic tunnel junction devices 100, 301 to devices previously formed in the lower layer of substrate 101, Such as logic transistors, or other devices. In an embodiment, the contacts 331-334 can provide a connection to the metal layer 102 of the device formed within the substrate 101. Substrate 101 can be formed using any suitable technique or techniques.

圖5B說明在形成自旋霍爾效應金屬層503、504之後,類似磁性穿隧接面裝置結構501的磁性穿隧接面裝置結構502。可使用任何適合的一種或多種技術形成自旋霍爾效應金屬層503、504。在一實施例中,自旋霍爾效應金屬層503、504可藉由提供塊材(bulk material)層(例如,透過電鍍或沉積等等)及隨後的圖案化(例如,透過微影圖案化及蝕刻技術等等)來形成。自旋霍爾效應金屬層503、504可包括任何可操作來提供自旋轉移扭矩到隨後形成的自由磁層的一種或多種材料,如此處所論述者。在一實施例中,自旋霍爾效應金屬層503、504包含或全部由beta相鉭組成。在另一實施例中,自旋霍爾效應金屬層503、504包含或全部由beta相鎢組成。在又一實施例中,自旋霍爾效應金屬層503、504包含或全部由beta相鉑組成。雖然以具有相同組成的自旋霍爾效應金屬層503、504加以說明,但在某些實施例中,自旋霍爾效應金屬層503、504可具有不同的組成。如前論述,自旋霍爾效應金屬層503、504分別可從接觸331、332及接觸333、334延伸。再者,自旋霍爾效應金屬層503、504可具有任何適當的厚度,例如等於或大於8nm的厚度。 FIG. 5B illustrates a magnetic tunnel junction device structure 502 similar to the magnetic tunnel junction device structure 501 after forming the spin Hall effect metal layers 503, 504. The spin Hall effect metal layers 503, 504 can be formed using any suitable technique or techniques. In one embodiment, the spin Hall effect metal layers 503, 504 may be provided by providing a bulk material layer (eg, by electroplating or deposition, etc.) and subsequent patterning (eg, by lithography patterning) And etching techniques, etc.) to form. The spin Hall effect metal layers 503, 504 can include any one or more materials operable to provide spin transfer torque to a subsequently formed free magnetic layer, as discussed herein. In one embodiment, the spin Hall effect metal layers 503, 504 comprise or consist entirely of beta phase germanium. In another embodiment, the spin Hall effect metal layers 503, 504 comprise or consist entirely of beta phase tungsten. In yet another embodiment, the spin Hall effect metal layers 503, 504 comprise or consist entirely of beta phase platinum. Although illustrated with spin Hall effect metal layers 503, 504 having the same composition, in some embodiments, spin Hall effect metal layers 503, 504 can have different compositions. As previously discussed, the spin Hall effect metal layers 503, 504 can extend from the contacts 331, 332 and the contacts 333, 334, respectively. Furthermore, the spin Hall effect metal layers 503, 504 can have any suitable thickness, such as a thickness equal to or greater than 8 nm.

圖5C說明在形成塊狀自由磁層506、塊狀絕緣體層507、塊狀固定磁層508、塊狀反鐵磁層509、塊狀接觸層510及塊狀接觸層511之後,類似磁性穿隧接面裝置結構502的磁性穿隧接面裝置結構505。可使用任何適合的一種或多種技術,諸如電鍍、或沉積等等來形成塊狀自由磁層506、塊狀絕緣體層507、塊狀固定磁層508、塊狀反鐵磁層509、塊狀接觸層510及塊狀接觸層511。此外,塊狀自由磁層506、塊狀絕緣體層507、塊狀固定磁層508、塊狀反鐵磁層509、塊狀接觸層510及塊狀接觸層511可具有任何適合的厚度。舉例來說,塊狀自由磁層506在自旋霍爾效應金屬層503、504之上可具有在約0.4至3nm的範圍內的厚度,塊狀絕緣體層507可具有在約0.4至3nm的範圍內的厚度,以及塊狀固定磁層508可具有在約0.4至3nm的範圍內的厚度。 FIG. 5C illustrates a similar magnetic tunneling after forming the bulk free magnetic layer 506, the bulk insulator layer 507, the bulk fixed magnetic layer 508, the bulk antiferromagnetic layer 509, the bulk contact layer 510, and the bulk contact layer 511. The magnetic tunneling junction device structure 505 of the junction device structure 502. The bulk free magnetic layer 506, the bulk insulator layer 507, the bulk fixed magnetic layer 508, the bulk antiferromagnetic layer 509, the bulk contact may be formed using any suitable one or more techniques, such as electroplating, or deposition, or the like. Layer 510 and bulk contact layer 511. Further, the bulk free magnetic layer 506, the bulk insulator layer 507, the bulk fixed magnetic layer 508, the bulk antiferromagnetic layer 509, the bulk contact layer 510, and the bulk contact layer 511 may have any suitable thickness. For example, the bulk free magnetic layer 506 may have a thickness in the range of about 0.4 to 3 nm over the spin Hall effect metal layers 503, 504, and the bulk insulator layer 507 may have a range of about 0.4 to 3 nm. The inner thickness, as well as the bulk fixed magnetic layer 508, may have a thickness in the range of about 0.4 to 3 nm.

圖5D說明在形成材料堆疊120的遮罩513之後,類似磁性穿隧接面裝置結構505的磁性穿隧接面裝置結構512。可使用例如微影技術的任何適合的一種或多種技術來形成遮罩513。在一些實施例中,遮罩513可包括硬遮罩(hardmask)材料(例如,氧化矽、氮化矽、氮氧化矽、或氧化鋁等等)。遮罩513可以是任何材料,其提供關於塊狀自由磁層506、塊狀絕緣體層507、塊狀固定磁層508、塊狀反鐵磁層509、塊狀接觸層510及/或塊狀接觸層511的圖案化選擇性。在一些實施例中,材料堆疊120、320之形成可包括諸如蝕刻技術等等的材料移除技 術。 FIG. 5D illustrates a magnetic tunnel junction device structure 512 similar to the magnetic tunnel junction device structure 505 after forming the mask 513 of the material stack 120. Mask 513 can be formed using any suitable technique or techniques, such as lithography. In some embodiments, the mask 513 can comprise a hardmask material (eg, hafnium oxide, tantalum nitride, hafnium oxynitride, or aluminum oxide, etc.). The mask 513 can be any material that provides for the bulk free magnetic layer 506, the bulk insulator layer 507, the bulk fixed magnetic layer 508, the bulk antiferromagnetic layer 509, the bulk contact layer 510, and/or the bulk contact. Patterning selectivity of layer 511. In some embodiments, the formation of the material stacks 120, 320 can include material removal techniques such as etching techniques and the like. Surgery.

圖5E說明在移除遮罩513之後,類似磁性穿隧接面裝置結構512的磁性穿隧接面裝置結構514。可使用任何適合的一種或多種技術來移除遮罩513,諸如灰化(ashing)技術、或蝕刻技術等等。 FIG. 5E illustrates a magnetic tunnel junction device structure 514 similar to the magnetic tunnel junction device structure 512 after removal of the mask 513. The mask 513 can be removed using any suitable technique or techniques, such as ashing techniques, or etching techniques, and the like.

圖5F說明在自旋霍爾效應金屬層503、504的曝露部從第一結晶相到導電性比第一結晶還低的第二結晶相的轉換期間,類似磁性穿隧接面裝置結構514的磁性穿隧接面裝置結構515。如前論述,第二結晶相可具有比第一結晶相還低的導電性,以提供有利的互連特性,且使得第二結晶相可能無法透過自旋轉移扭矩來轉換自由磁層,如此處論述者。如前論述,使用任可適合的一種或多種技術將自旋霍爾效應金屬層503、504的曝露部從第一結晶相轉換到第二結晶相。 5F illustrates a similar magnetic tunneling junction device structure 514 during the transition of the exposed portion of the spin Hall effect metal layers 503, 504 from the first crystalline phase to the second crystalline phase having a lower conductivity than the first crystal. Magnetic tunneling junction device structure 515. As previously discussed, the second crystalline phase can have a lower electrical conductivity than the first crystalline phase to provide advantageous interconnect properties and such that the second crystalline phase may not be able to convert the free magnetic layer through spin transfer torque, as herein The arguer. As previously discussed, the exposed portions of the spin Hall effect metal layers 503, 504 are converted from the first crystalline phase to the second crystalline phase using any suitable technique or techniques.

在圖5F的範例中,可使用快閃退火操作轉換自旋霍爾效應金屬層503、504的曝露部。例如,閃光燈516可提供幅射517,其可以將自旋霍爾效應金屬層503、504的曝露部快閃退火,以將他們從第一轉換到第二結晶相。在一實施例中,曝露部分可以是beta相鉭且快閃退火可將曝露部分退火以形成alpha相鉭低電阻部113、114、313、314並留下beta相鉭高電阻部115、315。在此種實施例中,快閃退火可將曝露部分退火到不小於750℃的溫度或在不小於750℃的溫度將曝露部分退火。在另一實施例中,曝露部分可以是beta相鎢且快閃 退火可退火曝露部分以形成alpha相鎢低電阻部113、114、313、314並留下beta相鎢高電阻部115、315。在此種實施例中,快閃退火可將曝露部分退火到不小於850℃的溫度或在不小於850℃的溫度將曝露部分退火。在又另一實施例中,曝露部分可以是beta相鉑且快閃退火可退火曝露部分以形成alpha相鉑低電阻部113、114、313、314並留下beta相鉑高電阻部115、315。在此種實施例中,快閃退火可將曝露部分退火到不小於750℃的溫度或在不小於750℃的溫度將曝露部分退火。 In the example of FIG. 5F, the exposed portions of the spin Hall effect metal layers 503, 504 can be converted using a flash anneal operation. For example, flash 516 can provide a radiation 517 that can flash anneat the exposed portions of spin Hall effect metal layers 503, 504 to convert them from the first to the second crystalline phase. In one embodiment, the exposed portion can be beta phase 钽 and flash anneal can anneal the exposed portions to form alpha phase 钽 low resistance portions 113, 114, 313, 314 and leave beta phase 钽 high resistance portions 115, 315. In such an embodiment, the flash annealing may anneal the exposed portion to a temperature of not less than 750 ° C or to anneal the exposed portion at a temperature of not less than 750 ° C. In another embodiment, the exposed portion can be beta phase tungsten and flash Annealing may anneal the exposed portions to form alpha phase tungsten low resistance portions 113, 114, 313, 314 and leave beta phase tungsten high resistance portions 115, 315. In such an embodiment, the flash annealing may anneal the exposed portion to a temperature of not less than 850 ° C or to anneal the exposed portion at a temperature of not less than 850 ° C. In yet another embodiment, the exposed portion can be beta phase platinum and the flash anneal annealed exposed portion to form alpha phase platinum low resistance portions 113, 114, 313, 314 and leave beta phase platinum high resistance portions 115, 315 . In such an embodiment, the flash annealing may anneal the exposed portion to a temperature of not less than 750 ° C or to anneal the exposed portion at a temperature of not less than 750 ° C.

如前論述,快閃退火可留下高電阻部115、315。舉例來說,材料堆疊120、320可阻擋高電阻部115、315曝露在幅射517中且從而維持高電阻部115、315的結晶相。前述快閃退火可使用任何適合的一種或多種技術實施。舉例來說,快閃退火可包括閃光或幅射強度或功率及/或閃光或幅射持續期間。可調整此種強度或功率及/或持續期間的一或二者以提供前述快閃退火溫度及/或結晶相改變。在一些實施例中,幅射517可在微秒到毫秒的範圍內從閃光燈516提供。 As previously discussed, flash annealing may leave high resistance portions 115, 315. For example, the material stacks 120, 320 can block the high resistance portions 115, 315 from being exposed in the radiation 517 and thereby maintaining the crystalline phase of the high resistance portions 115, 315. The aforementioned flash anneal can be carried out using any suitable technique or techniques. For example, flash annealing can include flash or radiation intensity or power and/or flash or radiation duration. One or both of such strength or power and/or duration may be adjusted to provide the aforementioned flash annealing temperature and/or crystalline phase change. In some embodiments, the radiation 517 can be provided from the flash 516 in the range of microseconds to milliseconds.

圖5G說明在形成低電阻部113、114、313、314之後,類似磁性穿隧接面裝置結構515的磁性穿隧接面裝置結構518。磁性穿隧接面裝置結構518可具有任何此處論述的特性,諸如針對圖1-3所論述者。再者,如吾人所理解者,磁性穿隧接面裝置結構518可受到進一步處理,諸如針對產生額外互連層(例如,金屬層及接觸或穿 孔層)、鈍化、封裝等等的後端處理。此種後端處理可包括對處理溫度的限制(例如,不高於400℃等等的溫度限制),其可確保高電阻部115、315不會遭受到結晶相改變(例如,使得高電阻部位115、315可操作來切換自由磁層,如此處所論述者)。 FIG. 5G illustrates a magnetic tunnel junction device structure 518 similar to the magnetic tunnel junction device structure 515 after forming the low resistance portions 113, 114, 313, 314. The magnetic tunneling junction device structure 518 can have any of the features discussed herein, such as those discussed with respect to Figures 1-3. Moreover, as we understand, the magnetic tunnel junction device structure 518 can be further processed, such as for creating additional interconnect layers (eg, metal layers and contacts or wear) Backend processing of hole layers, passivation, encapsulation, etc. Such back-end processing may include a limitation on the processing temperature (for example, a temperature limit of not higher than 400 ° C or the like), which ensures that the high-resistance portions 115, 315 do not suffer from a change in the crystal phase (for example, a high-resistance portion) 115, 315 are operable to switch the free magnetic layer, as discussed herein).

圖5A-5G說明如此處所論述之用以製造磁性穿隧接面裝置100及/或磁性穿隧接面裝置301的例示性流程圖。在各種範例中,可包括額外操作或省略特定操作。 5A-5G illustrate an exemplary flow diagram for fabricating magnetic tunnel junction device 100 and/or magnetic tunnel junction device 301 as discussed herein. In various examples, additional operations may be included or specific operations may be omitted.

圖6說明實施具有降低電阻率金屬互連之磁性穿隧接面裝置601的例示性MRAM單元600的範例,其至少依據本揭露之某些實作配置。如所示,MRAM單元600可包括磁性穿隧接面裝置601、選擇電晶體605、字線604、源極線606、位元線603以及參考線602。如所示,磁性穿隧接面裝置601可耦接到選擇電晶體605使其針對讀取及寫入而被選擇。舉例來說,當磁性穿隧接面裝置601於透過被字線604確立的選擇電晶體605被選擇時,磁性穿隧接面裝置601可藉由透過位元線603及源極線606提供經過磁性穿隧接面裝置601的電流而被讀取。舉例來說,可評估磁性穿隧接面裝置601的電阻以確定儲存在其內之資訊的位元。再者,磁性穿隧接面裝置601可藉由此所論述且透過位元線603及參考線602所提供之經過自旋霍爾效應金屬層102的高電阻部115的電流而被寫入。舉例來說,參考線602可保持在諸如接地的參考電位 以及提供參考平面等等。MRAM單元600可包括額外讀取及寫入電路(未示)、感測放大器(未示)、或位元線參考(bit line reference)(未示)等等,如會被熟於此技藝之人士所了解者,用於MRAM單元600的操作。MRAM單元600特徵可在於位元單元、MRAM位元單元、或自旋霍爾效應磁性穿隧接面(SHE-MTJ)位元單元等等。 6 illustrates an example of an exemplary MRAM cell 600 implementing a magnetic tunnel junction device 601 having a reduced resistivity metal interconnect, at least in accordance with certain implementations of the present disclosure. As shown, the MRAM cell 600 can include a magnetic tunnel junction device 601, a select transistor 605, a word line 604, a source line 606, a bit line 603, and a reference line 602. As shown, the magnetic tunnel junction device 601 can be coupled to the select transistor 605 for selection for reading and writing. For example, when the magnetic tunnel junction device 601 is selected through the selection transistor 605 established by the word line 604, the magnetic tunnel junction device 601 can be provided through the bit line 603 and the source line 606. The current of the magnetic tunnel junction device 601 is read. For example, the resistance of the magnetic tunnel junction device 601 can be evaluated to determine the bits of information stored therein. Furthermore, the magnetic tunnel junction device 601 can be written by the current flowing through the high resistance portion 115 of the spin Hall effect metal layer 102 provided by the bit line 603 and the reference line 602 as discussed herein. For example, reference line 602 can be held at a reference potential such as ground And provide a reference plane and more. MRAM cell 600 may include additional read and write circuits (not shown), sense amplifiers (not shown), or bit line references (not shown), etc., as would be appreciated by the art. As understood by those skilled in the art, it is used for the operation of the MRAM unit 600. The MRAM cell 600 can be characterized by a bit cell, an MRAM bit cell, or a spin Hall effect magnetic tunneling junction (SHE-MTJ) bit cell, and the like.

現參見圖6,磁性穿隧接面裝置601可包括有關磁性穿隧接面裝置100或本文他處所論述的任何特性。舉例來說,磁性穿隧接面裝置601可包括絕緣體層及自旋霍爾效應金屬層,絕緣體層在固定磁層與自由磁層之間,自旋霍爾效應金屬層具有與自由磁層毗鄰的第一部及從第一部與自由磁層延伸出來的第二部,使得第一部包括自旋霍爾效應金層的第一結晶相且第二部包括導電性低於第一結晶相的自旋霍爾效應金屬層的第二結晶相。在一實施例中,自旋霍爾效應金屬層包含鉭,第一相位包含beta相鉭,且第二相位包含alpha相鉭。在另一實施例中,自旋霍爾效應金屬層包含鎢,第一相位包含beta相鎢,且第二相位包含alpha相鎢。在又另一實施例中,自旋霍爾效應金屬層包含鉭或鎢,自由磁層和固定磁層包含鈷鐵硼,且絕緣體層包含氧化鎂。 Referring now to Figure 6, the magnetic tunneling junction device 601 can include any of the features discussed with respect to the magnetic tunneling junction device 100 or elsewhere herein. For example, the magnetic tunnel junction device 601 may include an insulator layer and a spin Hall effect metal layer, the insulator layer is between the fixed magnetic layer and the free magnetic layer, and the spin Hall effect metal layer has a adjacent to the free magnetic layer. a first portion and a second portion extending from the first portion and the free magnetic layer such that the first portion includes a first crystalline phase of the spin Hall effect gold layer and the second portion includes conductivity lower than the first crystalline phase The second crystalline phase of the spin Hall effect metal layer. In one embodiment, the spin Hall effect metal layer comprises germanium, the first phase comprises a beta phase and the second phase comprises an alpha phase. In another embodiment, the spin Hall effect metal layer comprises tungsten, the first phase comprises beta phase tungsten, and the second phase comprises alpha phase tungsten. In yet another embodiment, the spin Hall effect metal layer comprises tantalum or tungsten, the free magnetic layer and the fixed magnetic layer comprise cobalt iron boron, and the insulator layer comprises magnesium oxide.

圖7是採用具有降低電阻率金屬互連之磁性穿隧接面裝置的行動運算平台700的示意圖,其至少依據本揭露的某些實作配置。舉例來說,行動運算平台700可 包括磁性穿隧接面裝置,其具有自旋霍爾效應金屬層,其具有與自由磁層毗鄰之具有第一結晶相的第一部,以及導電性低於第一結晶相之第二結晶相的第二部。磁性穿隧接面裝置可為此處所論述的任何磁性穿隧接面裝置,諸如磁性穿隧接面裝置100或磁性穿隧接面裝置301等等。在某些範例中,磁性穿隧接面裝置及電晶體可一起實施作為積體電路。行動運算平台700可為任何經組構用以針對電子資料顯示、或電子資料處理、或無線電子資料傳輸等等之每一者的攜帶型裝置。舉例來說,行動運算平台700可為平板電腦、智慧型電話、簡易筆記型電腦、膝上型電腦等等的任一者,且可包括顯示螢幕705,其在例示性實施例中為觸控螢幕(例如,電容式、電感式、電阻式等等的觸控螢幕)、晶片級(SoC)或封裝級整合系統710、以及電池715。 7 is a schematic diagram of a mobile computing platform 700 employing a magnetic tunneling junction device having a reduced resistivity metal interconnect, at least in accordance with certain implementations of the present disclosure. For example, the mobile computing platform 700 can The invention includes a magnetic tunnel junction device having a spin Hall effect metal layer having a first portion having a first crystal phase adjacent to the free magnetic layer and a second crystal phase having lower conductivity than the first crystal phase The second part. The magnetic tunneling junction device can be any of the magnetic tunneling junction devices discussed herein, such as magnetic tunneling junction device 100 or magnetic tunneling junction device 301, and the like. In some examples, the magnetic tunnel junction device and the transistor can be implemented together as an integrated circuit. The mobile computing platform 700 can be any portable device that is configured for each of electronic data display, or electronic data processing, or wireless electronic data transmission, and the like. For example, the mobile computing platform 700 can be any of a tablet, a smart phone, a simple notebook, a laptop, etc., and can include a display screen 705, which in the illustrative embodiment is a touch A screen (eg, a touch screen of capacitive, inductive, resistive, etc.), a wafer level (SoC) or package level integration system 710, and a battery 715.

整合系統710進一步繪示於展開圖720中。在例示性實施例中,封裝裝置750(於圖7中標示為「記憶體/處理器」)包括至少一記憶體晶片(例如,MRAM)、及/或至少一處理器晶片(例如,微處理器、多核心處理器、或圖形處理器等等)。在一實施例中,封裝裝置750為包括MRAM快取記憶體的微處理器。在一實施例中,封裝裝置750包括一或多個磁性穿隧接面裝置100或磁性穿隧接面裝置301或者二者。舉例來說,一所採用的記憶體單元可包括磁性穿隧接面裝置100或磁性穿隧接面裝置301。封裝裝置750可進一步耦合到(例如, 通訊地耦合到)板、基板、中介板760以及一或多個電源管理積體電路(PMIC)730、包括寬頻RF(無線)發射器及/或接收器(TX/RX)的RF(無線)積體電路(RFIC)725(例如,包括數位基帶且類比前端模組進一步包含功率放大器於發射路徑上且低雜訊放大器於接收路徑上)、以及其等之控制器735。一般而言,封裝裝置750亦可耦合到(例如,通訊耦合到)顯示螢幕705。 Integration system 710 is further depicted in expanded view 720. In an exemplary embodiment, package device 750 (labeled "memory/processor" in FIG. 7) includes at least one memory chip (eg, MRAM), and/or at least one processor die (eg, micro-processing) , multi-core processor, or graphics processor, etc.). In one embodiment, package device 750 is a microprocessor that includes MRAM cache memory. In an embodiment, the packaged device 750 includes one or more magnetic tunneling junction devices 100 or magnetic tunnel junction devices 301 or both. For example, a memory unit employed may include a magnetic tunnel junction device 100 or a magnetic tunnel junction device 301. Encapsulation device 750 can be further coupled to (eg, Communicatingly coupled to a board, substrate, interposer 760, and one or more power management integrated circuits (PMICs) 730, RF (wireless) including wideband RF (wireless) transmitters and/or receivers (TX/RX) A integrated circuit (RFIC) 725 (eg, including a digital baseband and analog front-end module further includes a power amplifier on the transmit path and a low noise amplifier on the receive path), and a controller 735 thereof. In general, package device 750 can also be coupled (e.g., communicatively coupled) to display screen 705.

功能上,PMIC 730可執行電池功率調節、DC對DC轉換等等,亦有耦合到電池715的輸入以及提供電流源到其他功能性模組的輸出。在一實施例中,PMIC 730可執行高電壓操作。如進一步說明者,在例示性實施例中,RFIC 725具有耦合到天線(未示)的輸出,以實施數個無線標準或協定的任一者,包括但不侷限於Wi-Fi(IEEE 802.11家族)、WiMAX(IEEE 802.16家族)、IEEE 802.20、長期演進(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、Bluetooth、其衍生物,以及任何指定用於3G、4G、5G以及更多的其它無線協定。在一替代實施例中,此等板級模組的每一者可整合到耦合到封裝裝置750的封裝基板的獨立IC上,或整合到耦合到封裝裝置750的封裝基板的單一IC(SoC)內。 Functionally, the PMIC 730 can perform battery power regulation, DC to DC conversion, etc., as well as inputs coupled to the battery 715 and provide current output to other functional modules. In an embodiment, PMIC 730 can perform high voltage operation. As further illustrated, in an exemplary embodiment, RFIC 725 has an output coupled to an antenna (not shown) to implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family) ), WiMAX (IEEE 802.16 family), IEEE 802.20, Long Term Evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, and any designation Other wireless protocols for 3G, 4G, 5G and more. In an alternate embodiment, each of the board level modules can be integrated into a separate IC coupled to the package substrate of the package device 750, or integrated into a single IC (SoC) coupled to the package substrate of the package device 750. Inside.

圖8是運算裝置800的功能方塊圖,其至少依據某些本揭露的實作配置。運算裝置800可見於例如平台800的內部,且進一步包括主管(hosting)例如但不限 於處理器801(例如應用處理器)及一或多個通訊晶片804、805的數個組件的主機板802。處理器801可實體及/或電氣耦合到主機板802。在一些實施例中,處理器801包括封裝於處理器801內的積體電路晶粒。一般而言,術語「處理器」可指處理來自暫存器及/或記憶體之電子資料以將該電子資料轉換成可儲存於暫存器及/或記憶體中的其他電子資料的任何裝置的或裝置的一部分。 8 is a functional block diagram of computing device 800 that is configured in accordance with at least some of the implementations of the present disclosure. The computing device 800 can be found, for example, inside the platform 800, and further includes hosting, for example, but not limited to A motherboard 802 of a plurality of components of the processor 801 (eg, an application processor) and one or more communication chips 804, 805. Processor 801 can be physically and/or electrically coupled to motherboard 802. In some embodiments, processor 801 includes integrated circuit dies that are packaged within processor 801. In general, the term "processor" may refer to any device that processes electronic data from a register and/or memory to convert the electronic data into other electronic data that can be stored in a register and/or memory. Or part of the device.

在各種範例中,一或多個通訊晶片804、805亦可實體及/或電氣耦合到主機板802。在進一步實作中,通訊晶片804可以是處理器801的一部分。取決於其應用,運算裝置800可包括可或不可實體及電氣耦合到802的其他組件。此等其他組件可包括但不侷限於揮發性記憶體(例如,DRAM)807、808、非揮發性記憶體(例如,ROM)810、圖形處理器812、快閃記憶體、全球定位系統(GPS)裝置813、羅盤814、晶片組806、天線816、功率放大器(AMP)809、觸控螢幕控制器811、觸控螢幕顯示器817、揚聲器815、相機803、以及電池818,如所繪示者,且其他諸如數位信號處理器、密碼處理器、音頻編解碼器、視頻編解碼器、加速度器、陀螺儀、以及大容量儲存裝置(例如:硬碟機、固態硬碟(SSD)、光碟(CD)、數位影音光碟(DVD)等等)、或類似者。 In various examples, one or more of the communication chips 804, 805 can also be physically and/or electrically coupled to the motherboard 802. In further implementations, the communication chip 804 can be part of the processor 801. Computing device 800 may include other components that may or may not be physically and electrically coupled to 802, depending on its application. Such other components may include, but are not limited to, volatile memory (eg, DRAM) 807, 808, non-volatile memory (eg, ROM) 810, graphics processor 812, flash memory, global positioning system (GPS) Apparatus 813, compass 814, chipset 806, antenna 816, power amplifier (AMP) 809, touch screen controller 811, touch screen display 817, speaker 815, camera 803, and battery 818, as depicted, Others such as digital signal processors, cryptographic processors, audio codecs, video codecs, accelerometers, gyroscopes, and mass storage devices (eg, hard disk drives, solid state drives (SSD), compact discs (CDs) ), digital audio and video (DVD), etc.), or the like.

通訊晶片804、805可以透過無線通訊從另一台運算裝置800傳送資料和接收資料。術語「無線」及其衍生用於描述電路、裝置、系統、方法、技術、通訊通道 等,透過使用調變電磁波傳送資料於非固態媒體。該術語並非暗示相關裝置不包含任何線路,儘管在一些實施例中可能沒有包含線路。通訊晶片804、805可以實現任何數目的無線標準或協定,包括但不侷限於本文它處所論述者。如前論述,運算裝置800可包括複數個通訊晶片804、805。例如,第一通訊晶片可專用於短距離無線通訊例如Wi-Fi和藍牙以及一第二通訊晶片可專用於長範圍的無線通訊如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO、和其他。 The communication chips 804, 805 can transmit data and receive data from another computing device 800 via wireless communication. The term "wireless" and its derivatives are used to describe circuits, devices, systems, methods, techniques, communication channels. Etc., transmitting data to non-solid media through the use of modulated electromagnetic waves. The term does not imply that the associated device does not include any circuitry, although in some embodiments the circuitry may not be included. Communication chips 804, 805 can implement any number of wireless standards or protocols, including but not limited to those discussed herein. As previously discussed, computing device 800 can include a plurality of communication chips 804, 805. For example, the first communication chip can be dedicated to short-range wireless communication such as Wi-Fi and Bluetooth, and a second communication chip can be dedicated to long-range wireless communication such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and other.

如使用於任何此處描述的實作,術語「模組」意指被配置成提供本文所述的功能的軟體、韌體及/或硬體之任何組合。該軟體可被實施為套裝軟體、程式碼及/或指令集或指令,且「硬體」可用於任何本文所述的任何實作中,可包括例如單一形式或任何組合形式、固線式(hardwired)電路、可程式電路、狀態機電路、及/或儲存了被可程式電路執行的指令之韌體。該等模組可被整體地或個別地實施為例如積體電路(IC)或系統單晶片(SoC)等的較大系統之一部分。 As used in any of the implementations described herein, the term "module" means any combination of software, firmware, and/or hardware configured to provide the functionality described herein. The software can be implemented as a packaged software, code and/or instruction set or instruction, and "hardware" can be used in any of the implementations described herein, and can include, for example, a single form or any combination, fixed line ( A hardwired circuit, a programmable circuit, a state machine circuit, and/or a firmware that stores instructions executed by the programmable circuit. The modules may be implemented, in whole or in part, as part of a larger system such as an integrated circuit (IC) or a system single chip (SoC).

雖然已參照各實作而說明了本文述及的某些特徵,但本說明不意圖以一種限制之方式詮釋。因此,本文所述的實施例之各種修改以及熟悉與本揭示相關之技術者易於得知之其他實施例將被視為在本揭示之精神及範圍內。 Although certain features are described herein with reference to various embodiments, the description is not intended to be construed as a limitation. Therefore, various modifications of the embodiments described herein, as well as other embodiments that are readily apparent to those skilled in the art of the present disclosure, are considered to be within the spirit and scope of the disclosure.

下文之例子係有關進一步之實施例。 The examples below are related to further embodiments.

在一或更多第一實施例中,一種磁性穿隧接面裝置包含絕緣體層及自旋霍爾效應金屬層,該絕緣體層在固定磁層與自由磁層之間,該自旋霍爾效應金屬層具有與該自由磁層毗鄰的第一部及從該第一部與該自由磁層延伸出來的第二部,其中,該第一部包含該自旋霍爾效應金層的第一結晶相,且該第二部包含導電性低於該第一結晶相的該自旋霍爾效應金屬層的第二結晶相。 In one or more first embodiments, a magnetic tunnel junction device includes an insulator layer and a spin Hall effect metal layer between the fixed magnetic layer and the free magnetic layer, the spin Hall effect The metal layer has a first portion adjacent to the free magnetic layer and a second portion extending from the first portion and the free magnetic layer, wherein the first portion includes the first crystal of the spin Hall effect gold layer And the second portion comprises a second crystalline phase of the spin Hall effect metal layer having a lower conductivity than the first crystalline phase.

進一步關於該第一實施例,該自旋霍爾效應金屬層包含鉭,該第一相位包含beta相(beta phase)鉭,且該第二相位包含alpha相(alpha phase)鉭。 Further with respect to the first embodiment, the spin Hall effect metal layer comprises germanium, the first phase comprises a beta phase 钽, and the second phase comprises an alpha phase 钽.

進一步關於該第一實施例,該自旋霍爾效應金屬層包含鎢,該第一相位包含beta相鎢,且該第二相位包含alpha相鎢。 Further with respect to the first embodiment, the spin Hall effect metal layer comprises tungsten, the first phase comprises beta phase tungsten, and the second phase comprises alpha phase tungsten.

進一步關於該第一實施例,該自旋霍爾效應金屬層由鉭或鎢組成。 Further to this first embodiment, the spin Hall effect metal layer is composed of tantalum or tungsten.

進一步關於該第一實施例,該固定磁層及該自由磁層包含鈷鐵硼且該絕緣體層包含氧化鎂。 Further with regard to the first embodiment, the fixed magnetic layer and the free magnetic layer comprise cobalt iron boron and the insulator layer comprises magnesium oxide.

進一步關於該第一實施例,該自旋霍爾效應金屬層由鉭或鎢組成,該固定磁層及該自由磁層包含鈷鐵硼,且該絕緣體層包含氧化鎂。 Further with regard to the first embodiment, the spin Hall effect metal layer is composed of tantalum or tungsten, the fixed magnetic layer and the free magnetic layer comprise cobalt iron boron, and the insulator layer contains magnesium oxide.

進一步關於該第一實施例,該自旋霍爾效應金屬層的該第一部與該自由磁層相接觸。 Further with regard to the first embodiment, the first portion of the spin Hall effect metal layer is in contact with the free magnetic layer.

進一步關於該第一實施例,回應電荷電流,該自旋霍爾效應金屬層的該第一部用以經由自旋轉移扭矩 提供自旋電流以切換該自由磁層的極性。 Further with respect to the first embodiment, in response to a charge current, the first portion of the spin Hall effect metal layer is used to transmit torque via spin transfer A spin current is provided to switch the polarity of the free magnetic layer.

進一步關於該第一實施例,該自旋霍爾效應金屬層的該第一部與該自由磁層相接觸且/或,回應電荷電流,該自旋霍爾效應金屬層的該第一部用以經由自旋轉移扭矩提供自旋電流以轉換該自由磁層的極性。 Further with regard to the first embodiment, the first portion of the spin Hall effect metal layer is in contact with the free magnetic layer and/or in response to a charge current, the first portion of the spin Hall effect metal layer is used The spin current is supplied via spin transfer torque to convert the polarity of the free magnetic layer.

進一步關於該第一實施例,該磁性穿隧接面裝置進一步包含與該固定磁層相接觸的反鐵磁層以及與該反鐵磁層相接觸的金屬接觸層。 Further with regard to the first embodiment, the magnetic tunneling junction device further includes an antiferromagnetic layer in contact with the fixed magnetic layer and a metal contact layer in contact with the antiferromagnetic layer.

進一步關於該第一實施例,該第一與該第二結晶相在一相界相接,該相界具有從該自由磁層的一角落延伸出來的輪廓。 Further with respect to the first embodiment, the first and the second crystalline phase are in phase boundary, the phase boundary having a profile extending from a corner of the free magnetic layer.

進一步關於該第一實施例,該自旋霍爾效應金屬層的該第二部沿著基板從該第一部延伸到設置於該基板內的接觸。 Further with regard to the first embodiment, the second portion of the spin Hall effect metal layer extends from the first portion along the substrate to a contact disposed within the substrate.

在一或更多第二實施例中,一種用以製造磁性穿隧接面裝置的方法,包含:設置一自由磁層於具有第一結晶相的自旋霍爾效應金屬層的第一部之上,設置一絕緣體層於該自由磁層之上、一固定磁層於該絕緣體層之上、以及一接觸層於該固定磁層之上,其中,該自旋霍爾效應金屬層的一第二部曝露出來,以及將該自旋霍爾效應金屬層的該第二部從該第一結晶相轉換到導電性低於該第一結晶相的第二結晶相。 In one or more second embodiments, a method for fabricating a magnetic tunnel junction device includes: providing a free magnetic layer to a first portion of a spin Hall effect metal layer having a first crystalline phase An insulator layer is disposed on the free magnetic layer, a fixed magnetic layer is over the insulator layer, and a contact layer is over the fixed magnetic layer, wherein the spin Hall effect metal layer is The second portion is exposed and the second portion of the spin Hall effect metal layer is converted from the first crystalline phase to a second crystalline phase having a lower conductivity than the first crystalline phase.

進一步關於該第二實施例,轉換該自旋霍爾效應金屬層的該第二部包含快閃退火操作。 Further with regard to the second embodiment, converting the second portion of the spin Hall effect metal layer comprises a flash annealing operation.

進一步關於該第二實施例,轉換該自旋霍爾效應金屬層的該第二部包含快閃退火操作,該自旋霍爾效應金屬層包含鉭,且該快閃退火操作將該自旋霍爾效應金屬層的該第二部退火到不小於750℃的溫度。 Further with regard to the second embodiment, converting the second portion of the spin Hall effect metal layer comprises a flash annealing operation, the spin Hall effect metal layer comprises germanium, and the flash annealing operation applies the spin The second portion of the effect metal layer is annealed to a temperature of not less than 750 °C.

進一步關於該第二實施例,轉換該自旋霍爾效應金屬層的該第二部包含快閃退火操作,該自旋霍爾效應金屬層包含鎢,且該快閃退火操作將該自旋霍爾效應金屬層的該第二部退火到不小於850℃的溫度。 Further with regard to the second embodiment, converting the second portion of the spin Hall effect metal layer comprises a flash annealing operation, the spin Hall effect metal layer comprises tungsten, and the flash annealing operation applies the spin The second portion of the effect metal layer is annealed to a temperature of not less than 850 °C.

進一步關於該第二實施例,轉換該自旋霍爾效應金屬層的該第二部包含快閃退火操作,該自旋霍爾效應金屬層包含鉭,且該快閃退火操作將該自旋霍爾效應金屬層的該第二部退火到不小於750℃的溫度或是該自旋霍爾效應金屬層包含鎢,且該快閃退火操作將該自旋霍爾效應金屬層的該第二部退火到不小於850℃的溫度。 Further with regard to the second embodiment, converting the second portion of the spin Hall effect metal layer comprises a flash annealing operation, the spin Hall effect metal layer comprises germanium, and the flash annealing operation applies the spin The second portion of the effect metal layer is annealed to a temperature of not less than 750 ° C or the spin Hall effect metal layer comprises tungsten, and the flash annealing operation operates the second portion of the spin Hall effect metal layer Anneal to a temperature of not less than 850 °C.

進一步關於該第二實施例,該方法進一步包含於該自由磁層與該接觸之間設置一反鐵磁層。 Further to the second embodiment, the method further includes disposing an antiferromagnetic layer between the free magnetic layer and the contact.

在一或更多第三實施例中,一種非揮發性MRAM位元單元包含選擇電晶體及耦合到該選擇電晶體的磁性穿隧接面裝置,該磁性穿隧接面裝置包含絕緣體層及自旋霍爾效應金屬層,該絕緣體層在固定磁層與自由磁層之間,該自旋霍爾效應金屬層具有與該自由磁層毗鄰的第一部及從該第一部與該自由磁層延伸出來的第二部,其中,該第一部包含該自旋霍爾效應金層的第一結晶相且第二部包含導電性低於該第一結晶相的該自旋霍爾效應金屬 層的第二結晶相。 In one or more third embodiments, a non-volatile MRAM bit cell includes a selection transistor and a magnetic tunnel junction device coupled to the selection transistor, the magnetic tunnel junction device including an insulator layer and a spin-effect metal layer between the fixed magnetic layer and the free magnetic layer, the spin Hall effect metal layer having a first portion adjacent to the free magnetic layer and from the first portion and the free magnetic a second portion extending from the layer, wherein the first portion comprises a first crystalline phase of the spin Hall effect gold layer and the second portion comprises the spin Hall effect metal having a lower conductivity than the first crystalline phase The second crystalline phase of the layer.

進一步關於該第三實施例,該自旋霍爾效應金屬層包含鉭,該第一相位包含beta相鉭,且該第二相位包含alpha相鉭。 Further with respect to the third embodiment, the spin Hall effect metal layer comprises germanium, the first phase comprises a beta phase, and the second phase comprises an alpha phase.

進一步關於該第三實施例,該自旋霍爾效應金屬層包含鎢,該第一相位包含beta相鎢,且該第二相位包含alpha相鎢。 Further with regard to the third embodiment, the spin Hall effect metal layer comprises tungsten, the first phase comprises beta phase tungsten, and the second phase comprises alpha phase tungsten.

進一步關於該第三實施例,該自旋霍爾效應金屬層由鉭或鎢組成,該固定磁層及該自由磁層包含鈷鐵硼,且該絕緣體層包含氧化鎂。 Further with regard to the third embodiment, the spin Hall effect metal layer is composed of tantalum or tungsten, the fixed magnetic layer and the free magnetic layer comprise cobalt iron boron, and the insulator layer contains magnesium oxide.

進一步關於該第三實施例,該自旋霍爾效應金屬層的該第一部與該自由磁層相接觸。 Further with regard to the third embodiment, the first portion of the spin Hall effect metal layer is in contact with the free magnetic layer.

在一或多個第四實施例中,該行動運算平台包含有關該第一或第二實施例所述的範例結構。 In one or more fourth embodiments, the mobile computing platform includes the example structure described in relation to the first or second embodiment.

我們應可認知:本發明不限於所述之該等實施例,而是可在不脫離所附的申請專利範圍之範圍下,利用修改及改變實施本發明。例如,上述實施例可包括各特徵之特定組合。然而,該等上述實施例不侷限於此方面,且在各實施例中,該等上述實施例可包括:只採取該等特徵之一子集;採取不同順序的該等特徵;採取該等特徵之不同的組合;及/或採取被明確列出的那些特徵之外的額外的特徵。因此,應參照所附的申請專利範圍以及該等申請專利範圍應的等效物之完整範圍而決定本發明之範圍。 It is to be understood that the invention is not limited to the described embodiments, and that the invention may be practiced without departing from the scope of the appended claims. For example, the above-described embodiments may include specific combinations of features. However, the above-described embodiments are not limited in this respect, and in various embodiments, the above-described embodiments may include: taking only a subset of the features; taking the features in a different order; taking the features Different combinations; and/or taking additional features beyond those explicitly listed. Accordingly, the scope of the invention should be determined by the scope of the appended claims and the scope of the claims.

102‧‧‧自旋霍爾效應金屬層 102‧‧‧ Spin Hall effect metal layer

103‧‧‧自由磁層 103‧‧‧Free magnetic layer

113‧‧‧低電阻部 113‧‧‧Low resistance section

114‧‧‧低電阻部 114‧‧‧Low resistance section

115‧‧‧高電阻部 115‧‧‧High Resistance Department

201‧‧‧相界 201‧‧‧ phase

202‧‧‧相界 202‧‧‧ phase

203‧‧‧角落 203‧‧‧ corner

204‧‧‧角落 204‧‧‧ corner

205‧‧‧位置 205‧‧‧ position

206‧‧‧位置 206‧‧‧Location

207‧‧‧底緣 207‧‧‧ bottom edge

Claims (20)

一種磁性穿隧接面裝置,包含:絕緣體層,在固定磁層與自由磁層之間;及自旋霍爾效應金屬層,具有與該自由磁層毗鄰的第一部及從該第一部與該自由磁層延伸出來的第二部,其中,該第一部包含該自旋霍爾效應金層的第一結晶相,且該第二部包含具有低於該第一結晶相的導電性之該自旋霍爾效應金屬層的第二結晶相。 A magnetic tunneling junction device comprising: an insulator layer between a fixed magnetic layer and a free magnetic layer; and a spin Hall effect metal layer having a first portion adjacent to the free magnetic layer and from the first portion a second portion extending from the free magnetic layer, wherein the first portion comprises a first crystalline phase of the spin Hall effect gold layer, and the second portion comprises a conductivity lower than the first crystalline phase The second crystalline phase of the spin Hall effect metal layer. 如申請專利範圍第1項之磁性穿隧接面裝置,其中,該自旋霍爾效應金屬層包含鉭,該第一相位包含beta相(beta phase)鉭,且該第二相位包含alpha相(alpha phase)鉭。 The magnetic tunnel junction device of claim 1, wherein the spin Hall effect metal layer comprises germanium, the first phase comprises a beta phase 钽, and the second phase comprises an alpha phase ( Alpha phase)钽. 如申請專利範圍第1項之磁性穿隧接面裝置,其中,該自旋霍爾效應金屬層包含鎢,該第一相位包含beta相鎢,且該第二相位包含alpha相鎢。 The magnetic tunnel junction device of claim 1, wherein the spin Hall effect metal layer comprises tungsten, the first phase comprises beta phase tungsten, and the second phase comprises alpha phase tungsten. 如申請專利範圍第1項之磁性穿隧接面裝置,其中,該自旋霍爾效應金屬層由鉭或鎢組成。 The magnetic tunnel junction device of claim 1, wherein the spin Hall effect metal layer is composed of tantalum or tungsten. 如申請專利範圍第1項之磁性穿隧接面裝置,其中,該固定磁層及該自由磁層包含鈷鐵硼,且該絕緣體層包含氧化鎂。 The magnetic tunnel junction device of claim 1, wherein the fixed magnetic layer and the free magnetic layer comprise cobalt iron boron, and the insulator layer comprises magnesium oxide. 如申請專利範圍第1項之磁性穿隧接面裝置,其中,該自旋霍爾效應金屬層的該第一部與該自由磁層相接觸。 The magnetic tunnel junction device of claim 1, wherein the first portion of the spin Hall effect metal layer is in contact with the free magnetic layer. 如申請專利範圍第1項之磁性穿隧接面裝置,其 中,回應電荷電流,該自旋霍爾效應金屬層的該第一部用以經由自旋轉移扭矩提供自旋電流以切換該自由磁層的極性。 For example, the magnetic tunneling junction device of claim 1 is And responding to the charge current, the first portion of the spin Hall effect metal layer is configured to provide a spin current via a spin transfer torque to switch the polarity of the free magnetic layer. 如申請專利範圍第1項之磁性穿隧接面裝置,進一步包含與該固定磁層相接觸的反鐵磁層以及與該反鐵磁層相接觸的金屬接觸層。 The magnetic tunnel junction device of claim 1, further comprising an antiferromagnetic layer in contact with the fixed magnetic layer and a metal contact layer in contact with the antiferromagnetic layer. 如申請專利範圍第1項之磁性穿隧接面裝置,其中,該第一與該第二結晶相在一相界相接,該相界具有從該自由磁層的一角落延伸出來的輪廓。 The magnetic tunnel junction device of claim 1, wherein the first and the second crystal phase are in phase boundary, the phase boundary having a contour extending from a corner of the free magnetic layer. 如申請專利範圍第1項之磁性穿隧接面裝置,其中,該自旋霍爾效應金屬層的該第二部沿著基板從該第一部延伸到設置於該基板內的接觸。 The magnetic tunnel junction device of claim 1, wherein the second portion of the spin Hall effect metal layer extends along the substrate from the first portion to a contact disposed within the substrate. 一種用以製造磁性穿隧接面裝置的方法,包含:設置一自由磁層於具有第一結晶相的自旋霍爾效應金屬層的第一部之上;設置一絕緣體層於該自由磁層之上、一固定磁層於該絕緣體層之上、以及一接觸層於該固定磁層之上,其中,該自旋霍爾效應金屬層的一第二部曝露出來;以及將該自旋霍爾效應金屬層的該第二部從該第一結晶相轉換到導電性低於該第一結晶相的第二結晶相。 A method for fabricating a magnetic tunnel junction device includes: disposing a free magnetic layer over a first portion of a spin Hall effect metal layer having a first crystalline phase; and providing an insulator layer to the free magnetic layer Above, a fixed magnetic layer over the insulator layer, and a contact layer over the fixed magnetic layer, wherein a second portion of the spin Hall effect metal layer is exposed; and the spin The second portion of the effect metal layer is converted from the first crystalline phase to a second crystalline phase having a lower conductivity than the first crystalline phase. 如申請專利範圍第11項之方法,其中,轉換該自旋霍爾效應金屬層的該第二部包含快閃退火操作。 The method of claim 11, wherein converting the second portion of the spin Hall effect metal layer comprises a flash annealing operation. 如申請專利範圍第12項之方法,其中,該自旋霍爾效應金屬層包含鉭,且該快閃退火操作將該自旋霍爾 效應金屬層的該第二部退火到不小於750℃的溫度。 The method of claim 12, wherein the spin Hall effect metal layer comprises germanium, and the flash annealing operation is performed on the spin Hall The second portion of the effect metal layer is annealed to a temperature of not less than 750 °C. 如申請專利範圍第12項之方法,其中,該自旋霍爾效應金屬層包含鎢,且該快閃退火操作將該自旋霍爾效應金屬層的該第二部退火到不小於850℃的溫度。 The method of claim 12, wherein the spin Hall effect metal layer comprises tungsten, and the flash annealing operation anneals the second portion of the spin Hall effect metal layer to not less than 850 ° C temperature. 如申請專利範圍第11項之方法,進一步包含於該固定磁層與該接觸之間設置一反鐵磁層。 The method of claim 11, further comprising providing an antiferromagnetic layer between the fixed magnetic layer and the contact. 一種非揮發性MRAM(磁阻式隨機存取記憶體)位元單元,包含:選擇電晶體及耦合到該選擇電晶體的磁性穿隧接面裝置,該磁性穿隧接面裝置包括:絕緣體層,在固定磁層與自由磁層之間;以及自旋霍爾效應金屬層,具有與該自由磁層毗鄰的第一部及從該第一部與該自由磁層延伸出來的第二部,其中,該第一部包含該自旋霍爾效應金層的第一結晶相,且該第二部包含具有低於該第一結晶相的導電性之該自旋霍爾效應金屬層的第二結晶相。 A non-volatile MRAM (magnetoresistive random access memory) bit cell includes: a selection transistor and a magnetic tunnel junction device coupled to the selection transistor, the magnetic tunnel junction device comprising: an insulator layer Between the fixed magnetic layer and the free magnetic layer; and the spin Hall effect metal layer, having a first portion adjacent to the free magnetic layer and a second portion extending from the first portion and the free magnetic layer, Wherein the first portion comprises a first crystalline phase of the spin Hall effect gold layer, and the second portion comprises a second phase of the spin Hall effect metal layer having a lower conductivity than the first crystalline phase Crystal phase. 如申請專利範圍第16項之非揮發性MRAM位元單元,其中,該自旋霍爾效應金屬層包含鉭,該第一相位包含beta相鉭,且該第二相位包含alpha相鉭。 The non-volatile MRAM cell of claim 16, wherein the spin Hall effect metal layer comprises germanium, the first phase comprises a beta phase, and the second phase comprises an alpha phase. 如申請專利範圍第16項之非揮發性MRAM位元單元,其中,該自旋霍爾效應金屬層包含鎢,該第一相位包含beta相鎢,且該第二相位包含alpha相鎢。 The non-volatile MRAM cell of claim 16, wherein the spin Hall effect metal layer comprises tungsten, the first phase comprises beta phase tungsten, and the second phase comprises alpha phase tungsten. 如申請專利範圍第16項之非揮發性MRAM位元單元,其中,該自旋霍爾效應金屬層由鉭或鎢組成,該固 定磁層及該自由磁層包含鈷鐵硼,且該絕緣體層包含氧化鎂。 The non-volatile MRAM cell of claim 16, wherein the spin Hall effect metal layer is composed of tantalum or tungsten, the solid The magnetostrictive layer and the free magnetic layer comprise cobalt iron boron, and the insulator layer comprises magnesium oxide. 如申請專利範圍第16項之非揮發性MRAM位元單元,其中,該自旋霍爾效應金屬層的該第一部與該自由磁層相接觸。 A non-volatile MRAM cell unit of claim 16 wherein the first portion of the spin Hall effect metal layer is in contact with the free magnetic layer.
TW105124631A 2015-09-21 2016-08-03 Flash anneal of a spin hall effect switched magnetic tunnel junction device to reduce resistivity of metal interconnects TW201727958A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/051177 WO2017052494A1 (en) 2015-09-21 2015-09-21 Flash anneal of a spin hall effect switched magnetic tunnel junction device to reduce resistivity of metal interconnects

Publications (1)

Publication Number Publication Date
TW201727958A true TW201727958A (en) 2017-08-01

Family

ID=58386879

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105124631A TW201727958A (en) 2015-09-21 2016-08-03 Flash anneal of a spin hall effect switched magnetic tunnel junction device to reduce resistivity of metal interconnects

Country Status (2)

Country Link
TW (1) TW201727958A (en)
WO (1) WO2017052494A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI769342B (en) * 2017-11-24 2022-07-01 台灣積體電路製造股份有限公司 Semiconductor structure and manufacturing method of the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910554B2 (en) 2017-09-07 2021-02-02 Tdk Corporation Spin-current magnetization rotational element and spin orbit torque type magnetoresistance effect element
US11715692B2 (en) 2020-08-11 2023-08-01 Micron Technology, Inc. Microelectronic devices including conductive rails, and related methods
US11574870B2 (en) * 2020-08-11 2023-02-07 Micron Technology, Inc. Microelectronic devices including conductive structures, and related methods
US11456208B2 (en) 2020-08-11 2022-09-27 Micron Technology, Inc. Methods of forming apparatuses including air gaps between conductive lines and related apparatuses, memory devices, and electronic systems
CN113707804B (en) * 2021-08-27 2023-12-15 致真存储(北京)科技有限公司 Spin orbit moment magnetic memory and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7611912B2 (en) * 2004-06-30 2009-11-03 Headway Technologies, Inc. Underlayer for high performance magnetic tunneling junction MRAM
US8992785B2 (en) * 2010-01-15 2015-03-31 Tel Epion Inc. Method for modifying an etch rate of a material layer using energetic charged particles
TWI525615B (en) * 2011-04-29 2016-03-11 半導體能源研究所股份有限公司 Semiconductor storage device
KR101457511B1 (en) * 2011-08-18 2014-11-04 코넬 유니버시티 Spin hall effect magnetic apparatus, method and applications
US20140252439A1 (en) * 2013-03-08 2014-09-11 T3Memory, Inc. Mram having spin hall effect writing and method of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI769342B (en) * 2017-11-24 2022-07-01 台灣積體電路製造股份有限公司 Semiconductor structure and manufacturing method of the same

Also Published As

Publication number Publication date
WO2017052494A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
TW201727958A (en) Flash anneal of a spin hall effect switched magnetic tunnel junction device to reduce resistivity of metal interconnects
GB2523932B (en) Electric field enhanced spin transfer torque memory (STTM) device
KR102100273B1 (en) Monolithic three-dimensional(3d) ics with local inter-level interconnects
KR102551980B1 (en) Approaches to Strain Engineering of Perpendicular Magnetic Tunnel Junctions (PMTJS) and resulting structures
TWI565005B (en) Integrated circuit and method of forming an integrated circuit
TW201635605A (en) Spin-orbit logic with charge interconnects and magnetoelectric nodes
TW201739076A (en) Approaches for embedding spin hall MTJ devices into a logic processor and the resulting structures
US11605671B2 (en) Double selector element for low voltage bipolar memory devices
US11411173B2 (en) Perpendicular spin transfer torque devices with improved retention and thermal stability
KR102078072B1 (en) Trigate transistor structure with unrecessed field insulator and thinner electrodes over the field insulator
US20200066967A1 (en) Damascene-based approaches for fabricating a pedestal for a magnetic tunnel junction (mtj) device and the resulting structures
US20200144330A1 (en) Multi-channel vertical transistor for embedded non-volatile memory
TWI565029B (en) Silicon die with integrated high voltage devices
US10504962B2 (en) Unipolar current switching in perpendicular magnetic tunnel junction (pMTJ) devices through reduced bipolar coercivity
US10559744B2 (en) Texture breaking layer to decouple bottom electrode from PMTJ device
WO2018186863A1 (en) Thin-film transistor based magnetic random-access memory
CN106605267B (en) Method of making crystalline magnetic films for PSTTM applications
TWI576921B (en) Embedded memory in interconnect stack on silicon die