TW201727928A - Ultraviolet light sensor and fabrication method thereof - Google Patents

Ultraviolet light sensor and fabrication method thereof Download PDF

Info

Publication number
TW201727928A
TW201727928A TW105102669A TW105102669A TW201727928A TW 201727928 A TW201727928 A TW 201727928A TW 105102669 A TW105102669 A TW 105102669A TW 105102669 A TW105102669 A TW 105102669A TW 201727928 A TW201727928 A TW 201727928A
Authority
TW
Taiwan
Prior art keywords
zinc oxide
substrate
oxide nano
seed layer
layer
Prior art date
Application number
TW105102669A
Other languages
Chinese (zh)
Inventor
賴聰賢
張家維
Original Assignee
國立中興大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中興大學 filed Critical 國立中興大學
Priority to TW105102669A priority Critical patent/TW201727928A/en
Publication of TW201727928A publication Critical patent/TW201727928A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present disclosure provides an ultraviolet light sensor and a fabrication method thereof. Coating a HfO2 layer on ZnO nanorods by atomic layer chemical vapor deposition method can decrease the surface state density of the ZnO nanorods. Therefore, the sensing efficiency of the ultraviolet light sensor can be improved.

Description

紫外光感測器及其製造方法 Ultraviolet light sensor and manufacturing method thereof

本發明是有關於一種光感測器及其製造方法,且特別是有關於一種紫外光感測器及其製造方法。 The present invention relates to a photosensor and a method of fabricating the same, and more particularly to an ultraviolet photosensor and a method of fabricating the same.

氧化鋅(Zinc oxide,ZnO)是近年來相當熱門的半導體材料,其屬於直接能隙(Direct bandgap),在室溫下之能隙約為3.37eV(電子伏特),屬於六方晶系烏采(Wurtzite)結構。另外氧化鋅相較其他半導體材料的優點為較大的激子束縛能(Exciton binding energy),約為60meV(毫電子伏特)。因此,在室溫下的氧化鋅材料擁有較高的激子放射效率,在短波長的光電元件如發光二極體(Light emitting diode,LED)、雷射二極體(Laser diode,LD)及光檢測器(Photodetector,PD)等應用方面具有相當大的發展潛力。 Zinc oxide (ZnO) is a very popular semiconductor material in recent years. It belongs to the direct bandgap. The energy gap at room temperature is about 3.37 eV (electron volt), which belongs to the hexagonal system. Wurtzite) structure. In addition, the advantage of zinc oxide compared to other semiconductor materials is the larger exciton binding energy, which is about 60 meV (mElvolts). Therefore, the zinc oxide material at room temperature has a high exciton radiation efficiency, and short-wavelength photovoltaic elements such as a light emitting diode (LED), a laser diode (LD), and Applications such as Photodetector (PD) have considerable potential for development.

故到目前為止,一維結構的氧化鋅奈米柱(Nanorods,NRs)成為了現今相當熱門的研究對象,而製備上目前以水熱合成法(Hydrothermal process)較為普遍使用,其不僅相較其他製備方法具有較低的成本的優點,更可 在一大氣壓以及較低溫度的環境下進行製備,所以可以選擇熔點較低的材料做為基板,具備未來發展可撓式元件的可能性。 So far, one-dimensional structure of zinc oxide nano-columns (Nanorods, NRs) has become a very popular research object, and the preparation is currently more commonly used in the hydrothermal process (Hydrothermal process), which is not only compared to other The preparation method has the advantages of lower cost, and more Preparation is carried out in an atmosphere of one atmosphere and a lower temperature, so that a material having a lower melting point can be selected as a substrate, and the possibility of developing a flexible element in the future is possible.

此外,具有一維奈米結構的光感測器後續發展優勢在於感測元件所消耗的功率大幅減少,且提高各種不同半導體材料的應用整合,藉此不僅選擇更多樣性也可增加感測靈敏性。最重要的仍在於其微小化後的尺寸,可與微加工技術及微機電系統整合,批量製造以降低成本。 In addition, the subsequent development advantage of the photosensor with one-dimensional nanostructure is that the power consumed by the sensing component is greatly reduced, and the application integration of various semiconductor materials is improved, thereby not only selecting more diversity but also increasing sensing. Sensitive. The most important thing is still its miniaturized size, which can be integrated with micromachining technology and MEMS, and mass-produced to reduce costs.

然而眾所皆知的是氧化鋅具有多種發光的躍遷能帶,例如紫外光、綠光、橘光及近紅外光等,紫外光為其本質,除此之外其他都與電子藉由雜質能階的躍遷有關。紫外光的發光機制主要是因為電子在能帶與能帶之間(band-to-band)的直接能隙跳躍,價電帶的電子經由高能量的光激發至導電帶後,此較高能量的電子再度跳躍回價電帶時,多餘的能量會以紫外光的形式釋放出。若是在紫外光波段以外的發光現象,主要為氧化鋅晶格中的鋅及氧空缺造成。 However, it is well known that zinc oxide has a variety of luminescent transition energy bands, such as ultraviolet light, green light, orange light, and near-infrared light, etc., ultraviolet light is its essence, and all other electrons and impurities can be The transition of the order is related. The luminescence mechanism of ultraviolet light is mainly due to the direct energy gap hopping of electrons between the band and the band. The electrons of the valence band are excited by the high energy light to the conductive band. When the electrons jump back to the price band again, the excess energy is released in the form of ultraviolet light. If it is outside the ultraviolet band, it is mainly caused by zinc and oxygen vacancies in the zinc oxide lattice.

因此,如果要有效利用氧化鋅一維結構的直接能隙躍遷的光電效應來作為紫外光感測器,勢必得降低氧化鋅表面能態密度(surface state density),藉此抑制載子的非輻射複合。 Therefore, if the photoelectric effect of the direct energy gap transition of the one-dimensional structure of zinc oxide is effectively utilized as the ultraviolet light sensor, it is necessary to reduce the surface state density of the zinc oxide surface, thereby suppressing the non-radiation of the carrier. complex.

本發明之目的是在於提供一種紫外光感測器及其製造方法,其降低氧化鋅奈米結構表面能態密度,藉此提高氧化鋅中能隙間的紫外光感測效率。 It is an object of the present invention to provide an ultraviolet light sensor and a method of fabricating the same that reduce the surface energy density of a zinc oxide nanostructure, thereby improving the ultraviolet light sensing efficiency between the energy gaps in the zinc oxide.

根據本發明一實施方式是在提供一種紫外光感測器,其包含一基板、一晶種層、多數氧化鋅奈米柱、一二氧化鉿層及一金屬電極。晶種層位於基板上。氧化鋅奈米柱排列於晶種層上。二氧化鉿層沿各氧化鋅奈米柱之表面以及氧化鋅奈米柱之間隙覆蓋於氧化鋅奈米柱上。金屬電極位於二氧化鉿層上。 An embodiment of the present invention provides an ultraviolet light sensor comprising a substrate, a seed layer, a plurality of zinc oxide nano columns, a germanium dioxide layer, and a metal electrode. The seed layer is on the substrate. A zinc oxide nanocolumn is arranged on the seed layer. The ruthenium dioxide layer is coated on the zinc oxide nano-pillar along the surface of each zinc oxide nano-column and the gap of the zinc oxide nano-column. The metal electrode is on the ruthenium dioxide layer.

根據前述紫外光感測器之一實施例,其中晶種層為氧化鋅摻鋁(Al-doped ZnO),且由98wt%(重量百分濃度)氧化鋅及2wt%(重量百分濃度)三氧化二鋁所組成,晶種層之厚度可為70nm(奈米)。各氧化鋅奈米柱之直徑可為40到60nm(奈米),各氧化鋅奈米柱之長度可為300nm到360nm(奈米),氧化鋅奈米柱於晶種層之排列密度為2.4×1010/cm2(個/每平方公分)。二氧化鉿層之厚度可為50nm(奈米)。基板包含一玻璃及一透明導電膜層,透明導電膜層位於玻璃與晶種層之間。 According to one embodiment of the foregoing ultraviolet light sensor, wherein the seed layer is aluminum-doped ZnO, and is 98 wt% (weight percent) zinc oxide and 2 wt% (weight percent concentration) The composition of the aluminum oxide, the thickness of the seed layer can be 70 nm (nano). Each zinc oxide nanocolumn may have a diameter of 40 to 60 nm (nano), each zinc oxide nanocolumn may have a length of 300 nm to 360 nm (nano), and the zinc oxide nanocolumn has a density of 2.4 in the seed layer. ×10 10 /cm 2 (pieces per square centimeter). The thickness of the ruthenium dioxide layer may be 50 nm (nano). The substrate comprises a glass and a transparent conductive film layer, and the transparent conductive film layer is located between the glass and the seed layer.

根據本發明另一實施方式是在提供一種製造方法,用於前述之紫外光感測器,製造方法包含一濺鍍步驟、一水熱法步驟、一原子層沉積法步驟及一蒸鍍步驟。濺鍍步驟係於一基板上鍍上一晶種層。水熱法步驟係於晶種層上成長多數氧化鋅奈米柱。原子層沉積法步驟係沿各氧化鋅奈米柱之外表面以及氧化鋅奈米柱之間隙覆蓋一二氧化鉿層於氧 化鋅奈米柱上。蒸鍍步驟係於二氧化鉿層上鍍上一金屬電極。 Another embodiment of the present invention provides a method of fabricating the above-described ultraviolet light sensor. The manufacturing method includes a sputtering step, a hydrothermal step, an atomic layer deposition step, and an evaporation step. The sputtering step is performed by plating a seed layer on a substrate. The hydrothermal process is performed by growing a majority of zinc oxide nano columns on the seed layer. The Atomic Layer Deposition step is to cover a layer of cerium oxide along the outer surface of each zinc oxide nanocolumn and the gap between the zinc oxide nano columns. Zinc on the nano column. The evaporation step is performed by plating a metal electrode on the ceria layer.

根據前述製造方法之一實施例,更包含一第一清潔步驟,執行第一清潔步驟於濺鍍步驟前以清潔基板之表面。第一清潔步驟包含分別使用丙酮、異丙醇以及去離子水配合超音波震盪清洗基板;使用氮氣吹乾基板之表面;烘烤加熱基板一分鐘。濺鍍步驟包含將基板置於一濺鍍真空系統中;控制濺鍍真空系統內之壓力維持於2×10-6torr(托耳);通入流量為5sccm(毫升/分)之氬氣;控制濺鍍真空系統內之壓力維持於6×10-3torr(托耳),且加熱基板至100℃;以90W(瓦特)之射頻功率濺鍍厚度為70nm(奈米)之晶種層於基板上。製造方法更包含一第二清潔步驟,執行第二清潔步驟於濺鍍步驟及水熱法步驟之間以清潔晶種層之表面。第二清潔步驟包含分別使用丙酮、異丙醇以及去離子水配合超音波震盪清洗基板;使用氮氣吹乾基板上晶種層之表面;烘烤加熱基板及晶種層一分鐘。水熱法步驟包含將醋酸鋅、六亞甲基四胺及去離子水調配為濃度0.01M到0.02M(莫耳/公升)之一反應溶液;將反應溶液隔水加熱至90℃;將完成濺鍍步驟之基板置於反應溶液中;維持反應溶液於90℃達60分鐘,使氧化鋅奈米柱成長於基板上之晶種層。製造方法更包含一第三清潔步驟,執行第三清潔步驟於水熱法步驟及原子層沉積法步驟之間以清潔氧化鋅奈米柱之表面。第三清潔步驟包含使用去離子水配合超音波震盪清洗基板、晶種層及氧化鋅奈米柱;使用氮氣吹乾氧化鋅奈米柱之表面;烘烤加熱 基板、晶種層及氧化鋅奈米柱一分鐘。製造方法更包含一第四清潔步驟,執行第四清潔步驟於第三清潔步驟及原子層沉積法步驟之間,藉以再次清潔氧化鋅奈米柱之表面。第四清潔步驟包含分別使用丙酮、異丙醇以及去離子水配合超音波震盪清洗基板、晶種層及氧化鋅奈米柱;使用氮氣吹乾前述氧化鋅奈米柱之表面;烘烤加熱基板、晶種層及氧化鋅奈米柱一分鐘。原子層沉積法步驟包含抽真空,加熱基板、晶種層以及氧化鋅奈米柱至250℃,注入四-(乙基甲基胺基酸)-鉿(TEMAH),通入氮氣,注入水蒸氣以及再度通入氮氣使二氧化鉿層成長於氧化鋅奈米柱上的厚度為50nm(奈米)。 According to an embodiment of the foregoing manufacturing method, a first cleaning step is further included, and the first cleaning step is performed to clean the surface of the substrate before the sputtering step. The first cleaning step comprises washing the substrate with acetone, isopropanol and deionized water in combination with ultrasonic vibration, respectively; drying the surface of the substrate with nitrogen; baking the substrate for one minute. The sputtering step comprises placing the substrate in a sputtering vacuum system; controlling the pressure in the sputtering vacuum system to be maintained at 2×10 -6 torr (Torr); and introducing an argon gas having a flow rate of 5 sccm (ml/min); Control the pressure in the sputtering vacuum system to be maintained at 6 × 10 -3 torr (Torr), and heat the substrate to 100 ° C; sputter a 70 nm (nano) seed layer at a RF power of 90 W (Watt) On the substrate. The manufacturing method further includes a second cleaning step of performing a second cleaning step between the sputtering step and the hydrothermal step to clean the surface of the seed layer. The second cleaning step comprises separately washing the substrate with acetone, isopropanol and deionized water in combination with ultrasonic vibration; drying the surface of the seed layer on the substrate with nitrogen; baking the substrate and the seed layer for one minute. The hydrothermal step comprises dissolving zinc acetate, hexamethylenetetramine and deionized water into one reaction solution having a concentration of 0.01 M to 0.02 M (mole/liter); heating the reaction solution to 90 ° C in water; The substrate of the sputtering step is placed in the reaction solution; the reaction solution is maintained at 90 ° C for 60 minutes to grow a zinc oxide nano column on the seed layer on the substrate. The manufacturing method further includes a third cleaning step of performing a third cleaning step between the hydrothermal step and the atomic layer deposition step to clean the surface of the zinc oxide nanocolumn. The third cleaning step comprises: cleaning the substrate, the seed layer and the zinc oxide nano column with deionized water in combination with ultrasonic vibration; drying the surface of the zinc oxide nano column with nitrogen; baking the heating substrate, the seed layer and the zinc oxide naphthalene Rice column for one minute. The manufacturing method further includes a fourth cleaning step of performing a fourth cleaning step between the third cleaning step and the atomic layer deposition step to thereby clean the surface of the zinc oxide nano column again. The fourth cleaning step comprises separately cleaning the substrate, the seed layer and the zinc oxide nano column with acetone, isopropanol and deionized water in combination with ultrasonic vibration; drying the surface of the zinc oxide nano column with nitrogen; baking the substrate , seed layer and zinc oxide nano column for one minute. The atomic layer deposition method comprises vacuuming, heating the substrate, the seed layer and the zinc oxide nano column to 250 ° C, injecting tetrakis-(ethylmethylamino acid)-ruthenium (TEMAH), introducing nitrogen gas, and injecting water vapor. And the nitrogen dioxide layer was again introduced to grow the ceria layer on the zinc oxide nano column to a thickness of 50 nm (nano).

因此,本發明所提出紫外光感測器及其製造方法,其利用原子層沉積法成長二氧化鉿層覆蓋於氧化鋅奈米柱之表面,且並未填滿原本氧化鋅奈米柱之間隙,使其不僅降低氧化鋅奈米結構表面能態密度,可以保持原本氧化鋅奈米柱之照光表面積大小,藉此提高氧化鋅中能隙間的紫外光感測效率,解決習知技術中氧化鋅紫外光感測器照光感測效率不佳的缺點。 Therefore, the ultraviolet light sensor and the method for fabricating the same according to the present invention use the atomic layer deposition method to grow a ceria layer covering the surface of the zinc oxide nano column, and do not fill the gap between the original zinc oxide nano columns. Therefore, it not only reduces the surface energy density of the zinc oxide nanostructure, but also maintains the illuminating surface area of the original zinc oxide nanocolumn, thereby improving the ultraviolet light sensing efficiency between the energy gaps in the zinc oxide, and solving the zinc oxide in the prior art. UV light sensor has the disadvantage of poor light sensing efficiency.

100‧‧‧紫外光感測器 100‧‧‧UV sensor

200‧‧‧基板 200‧‧‧Substrate

210‧‧‧玻璃 210‧‧‧ glass

220‧‧‧透明導電膜層 220‧‧‧Transparent conductive film layer

300‧‧‧晶種層 300‧‧‧ seed layer

400‧‧‧氧化鋅奈米柱 400‧‧‧Zinc Oxide Nano Column

500‧‧‧二氧化鉿層 500‧‧‧ cerium oxide layer

600‧‧‧金屬電極 600‧‧‧Metal electrode

S01‧‧‧第一清潔步驟 S01‧‧‧First cleaning step

S02‧‧‧濺鍍步驟 S02‧‧‧ Sputtering step

S03‧‧‧第二清潔步驟 S03‧‧‧Second cleaning steps

S04‧‧‧水熱法步驟 S04‧‧‧ hydrothermal method steps

S05‧‧‧第三清潔步驟 S05‧‧‧ Third cleaning step

S06‧‧‧第四清潔步驟 S06‧‧‧Four cleaning steps

S07‧‧‧原子層沉積法步驟 S07‧‧‧Atomic layer deposition method steps

S08‧‧‧蒸鍍步驟 S08‧‧‧ evaporation step

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖係繪示依照本發明一實施方式的一種紫外光感測器的立體示意圖。 The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Stereoscopic view.

第2圖係繪示第1圖紫外光感測器的部分立體剖視圖。 Figure 2 is a partial perspective cross-sectional view showing the ultraviolet sensor of Figure 1.

第3圖係繪示第1圖紫外光感測器的製造流程圖。 Fig. 3 is a flow chart showing the manufacture of the ultraviolet sensor of Fig. 1.

第4圖係繪示第1圖紫外光感測器的製造示意圖。 Fig. 4 is a schematic view showing the manufacture of the ultraviolet light sensor of Fig. 1.

第5A圖係繪示以濃度0.01M反應溶液成長氧化鋅奈米柱後的俯視圖。 Fig. 5A is a plan view showing the growth of a zinc oxide nano column by a reaction solution having a concentration of 0.01 M.

第5B圖係繪示以濃度0.01M反應溶液成長氧化鋅奈米柱後的剖面圖。 Fig. 5B is a cross-sectional view showing the growth of a zinc oxide nano column by a reaction solution having a concentration of 0.01 M.

第6A圖係繪示以濃度0.02M反應溶液成長氧化鋅奈米柱後的俯視圖。 Fig. 6A is a plan view showing the growth of a zinc oxide nano column by a reaction solution having a concentration of 0.02 M.

第6B圖係繪示以濃度0.02M反應溶液成長氧化鋅奈米柱後的剖面圖。 Fig. 6B is a cross-sectional view showing the growth of a zinc oxide nano column by a reaction solution having a concentration of 0.02 M.

第7圖係繪示以濃度0.01M反應溶液成長氧化鋅奈米柱後,再沉積二氧化鉿層的俯視圖。 Fig. 7 is a plan view showing the deposition of a cerium oxide layer after growing a zinc oxide nano column with a concentration of 0.01 M.

第8圖係繪示以濃度0.02M反應溶液成長氧化鋅奈米柱後,再沉積二氧化鉿層的俯視圖。 Fig. 8 is a plan view showing the deposition of a cerium oxide layer after growing a zinc oxide nano column with a concentration of 0.02 M.

第9A圖係繪示以濃度0.01M反應溶液成長氧化鋅奈米柱並製造紫外光感測器的光響應頻譜圖。 Figure 9A is a photo-response spectrum diagram showing the growth of a zinc oxide nano column with a concentration of 0.01 M reaction solution and fabrication of an ultraviolet light sensor.

第9B圖係繪示以濃度0.02M反應溶液成長氧化鋅奈米柱並製造紫外光感測器的光響應頻譜圖。 Figure 9B is a diagram showing the optical response spectrum of a zinc oxide nanometer column grown in a concentration of 0.02 M reaction solution to produce an ultraviolet light sensor.

第10圖係繪示以濃度0.01M反應溶液氧化鋅奈米柱進行有無二氧化鉿層的光激螢光比較圖。 Fig. 10 is a graph showing the comparison of the photoluminescence of the presence or absence of the ceria layer with a 0.01 M reaction solution zinc oxide nano column.

第11圖係繪示金半結構與金氧半結構之氧化鋅奈米柱在未照光情況下之電流-電壓比較圖。 Figure 11 is a graph showing the current-voltage comparison of the gold semi-structure and the gold oxide half-structure zinc oxide nano column in the absence of illumination.

請參照第1圖及第2圖,其中第1圖係繪示依照本發明一實施方式的一種紫外光感測器100的立體示意圖,第2圖係繪示紫外光感測器100的部分立體剖面示意圖。紫外光感測器100包含一基板200、一晶種層300、多數氧化鋅奈米柱400、一二氧化鉿層500及一金屬電極600。 Please refer to FIG. 1 and FIG. 2 , wherein FIG. 1 is a schematic perspective view of an ultraviolet light sensor 100 according to an embodiment of the invention, and FIG. 2 is a partial perspective view of the ultraviolet light sensor 100 . Schematic diagram of the section. The ultraviolet light sensor 100 includes a substrate 200, a seed layer 300, a plurality of zinc oxide nano columns 400, a germanium dioxide layer 500, and a metal electrode 600.

基板200包含一玻璃210及一透明導電膜層220,且透明導電膜層220位於玻璃210上。透明導電膜層220良好的透光性及導電特性可以增加紫外光產生光電流的感測效率。 The substrate 200 includes a glass 210 and a transparent conductive film layer 220, and the transparent conductive film layer 220 is located on the glass 210. The good light transmittance and conductive properties of the transparent conductive film layer 220 can increase the sensing efficiency of the photocurrent generated by the ultraviolet light.

晶種層300位於基板200上。晶種層300為氧化鋅摻鋁(Al-doped ZnO),更詳細地說是由98wt%氧化鋅及2wt%三氧化二鋁所組成。晶種層300之厚度可為70nm。晶種層300是用以提升氧化鋅奈米柱400的成長率及排列密度,此外採用氧化鋅摻鋁來當作晶種層300不僅可提供優良的紫外光穿透率,更可以提高其載子濃度,藉此增加導電性。 The seed layer 300 is located on the substrate 200. The seed layer 300 is Al-doped ZnO, and more specifically consists of 98% by weight of zinc oxide and 2% by weight of aluminum oxide. The seed layer 300 may have a thickness of 70 nm. The seed layer 300 is used to increase the growth rate and the arrangement density of the zinc oxide nano-column 400. In addition, the use of zinc oxide-doped aluminum as the seed layer 300 not only provides excellent ultraviolet light transmittance, but also improves the load. Subconcentration, thereby increasing conductivity.

多數氧化鋅奈米柱400排列於晶種層300,且基本上是朝垂直於晶種層300的方向排列。各氧化鋅奈米柱400之直徑可為40nm到60nm,各氧化鋅奈米柱400長度可為300nm到360nm,且氧化鋅奈米柱400於晶種層300上的排列密度可為2.4×1010/cm2。值得一提的是,氧化鋅奈米柱400是用來吸收紫外光而轉為電能,故氧化鋅奈米柱400之照光表面積越大,代表著吸收紫外光的效率越好。而前述氧化鋅奈米柱400之直徑、長度及排列密度為本實施方式之紫外光感測器100經長久實驗後之最佳數值。因為氧化鋅奈米柱400之直 徑若過大,反而導致其排列密度下降,因此所有氧化鋅奈米柱400之照光表面積也會跟著縮小。另一方面,若氧化鋅奈米柱400長度過高,也將導致各氧化鋅奈米柱400之頂端會逐漸橫向成長而密合,如此一來所有氧化鋅奈米柱400之表面積雖然增加,但氧化鋅奈米柱400之側表面卻無法再受紫外光照射,降低其有效照光面積。 Most of the zinc oxide nano-pillars 400 are arranged in the seed layer 300 and are arranged substantially in a direction perpendicular to the seed layer 300. Each zinc oxide nano column 400 may have a diameter of 40 nm to 60 nm, each zinc oxide nano column 400 may have a length of 300 nm to 360 nm, and the zinc oxide nano column 400 may have an arrangement density of 2.4×10 on the seed layer 300. 10 /cm 2 . It is worth mentioning that the zinc oxide nano column 400 is used to absorb ultraviolet light and is converted into electric energy. Therefore, the larger the illumination surface area of the zinc oxide nano column 400, the better the efficiency of absorbing ultraviolet light. The diameter, length and arrangement density of the zinc oxide nano-column 400 are the optimum values of the ultraviolet light sensor 100 of the embodiment after long-term experiments. Since the diameter of the zinc oxide nanocolumn 400 is too large, the arrangement density thereof is lowered, so that the illuminating surface area of all the zinc oxide nanocolumns 400 is also reduced. On the other hand, if the length of the zinc oxide nano-column 400 is too high, the top end of each zinc oxide nano-column 400 will gradually grow laterally and closely, so that the surface area of all the zinc oxide nano-pillars 400 increases, However, the side surface of the zinc oxide nanocolumn 400 is no longer exposed to ultraviolet light, reducing its effective illumination area.

二氧化鉿層500沿各氧化鋅奈米柱400之表面以及氧化鋅奈米柱400之間隙覆蓋於氧化鋅奈米柱400上,其覆蓋的厚度可為50nm。在氧化鋅奈米柱400之表面覆蓋二氧化鉿層500可以產生表面鈍化(surface passivation)的效果,藉此抑制氧化鋅晶格中的鋅及氧空缺所造成表面能態的缺陷發光機制。 The cerium oxide layer 500 is deposited on the zinc oxide nanocolumn 400 along the surface of each zinc oxide nanocolumn 400 and the gap of the zinc oxide nanocolumn 400, and may cover a thickness of 50 nm. Covering the surface of the zinc oxide nanocolumn 400 with the ceria layer 500 can produce a surface passivation effect, thereby suppressing the defect luminescence mechanism of the surface energy state caused by zinc and oxygen vacancies in the zinc oxide crystal lattice.

金屬電極600位於二氧化鉿層500上。以下將詳細說明前述紫外光感測器100的製造方法。 The metal electrode 600 is located on the ceria layer 500. The method of manufacturing the aforementioned ultraviolet light sensor 100 will be described in detail below.

請參照第3圖及第4圖,其中第3圖係繪示紫外光感測器100的製造流程圖,第4圖係繪示紫外光感測器100的製造示意圖。紫外光感測器100的製造方法包含一第一清潔步驟S01、一濺鍍步驟S02、一第二清潔步驟S03、一水熱法步驟S04、一第三清潔步驟S05、一第四清潔步驟S06、一原子層沉積法步驟S07及一蒸鍍步驟S08。而在第4圖中,省略第3圖中的第一清潔步驟S01、第二清潔步驟S03、第三清潔步驟S05及第四清潔步驟S06之繪示。 Please refer to FIG. 3 and FIG. 4 , wherein FIG. 3 is a manufacturing flow chart of the ultraviolet light sensor 100, and FIG. 4 is a schematic view showing the manufacturing of the ultraviolet light sensor 100. The manufacturing method of the ultraviolet light sensor 100 includes a first cleaning step S01, a sputtering step S02, a second cleaning step S03, a hydrothermal step S04, a third cleaning step S05, and a fourth cleaning step S06. An atomic layer deposition method step S07 and an evaporation step S08. In FIG. 4, the illustration of the first cleaning step S01, the second cleaning step S03, the third cleaning step S05, and the fourth cleaning step S06 in FIG. 3 is omitted.

第一清潔步驟S01執行於濺鍍步驟S02之前,第一清潔步驟S01依序如下:分別使用丙酮、異丙醇以及去離 子水配合超音波震盪清洗基板200;使用氮氣吹乾基板200之表面;烘烤加熱基板200一分鐘。 The first cleaning step S01 is performed before the sputtering step S02, and the first cleaning step S01 is sequentially as follows: acetone, isopropyl alcohol and separation are respectively used. The sub-water is ultrasonically oscillated to clean the substrate 200; the surface of the substrate 200 is blown dry with nitrogen; and the substrate 200 is baked and heated for one minute.

其中,濺鍍步驟S02係於基板200上鍍上晶種層300,以利於後續成長氧化鋅奈米柱400。濺鍍步驟S02主要是利用高能量離子撞擊氧化鋅摻鋁的靶材,使氧化鋅摻鋁的原子獲得動能發射到基板200上,逐漸堆積形成晶種層300。濺鍍步驟S02的詳細步驟為將基板200置於一濺鍍真空系統中;控制濺鍍真空系統內之壓力維持於2×10-6torr;通入流量為5sccm之氬氣;控制濺鍍真空系統內之壓力維持於6×10-3torr,且加熱基板200至100℃;以90W之射頻功率濺鍍厚度為70nm之晶種層300於基板200上。在此當然也可利用別的材料來當作晶種層300,本實施方式並未加以限制。 The sputtering step S02 is performed by plating the seed layer 300 on the substrate 200 to facilitate subsequent growth of the zinc oxide nano column 400. The sputtering step S02 mainly uses high energy ions to impinge on the zinc oxide doped aluminum target, so that the zinc oxide doped aluminum atoms obtain kinetic energy and are emitted onto the substrate 200, and gradually deposit to form the seed layer 300. The detailed step of the sputtering step S02 is to place the substrate 200 in a sputtering vacuum system; to control the pressure in the sputtering vacuum system to be maintained at 2×10 -6 torr; to pass the argon gas at a flow rate of 5 sccm; to control the sputtering vacuum The pressure in the system was maintained at 6 × 10 -3 torr, and the substrate was heated to 200 ° C; a seed layer 300 having a thickness of 70 nm was sputtered onto the substrate 200 at a radio frequency of 90 W. It is of course also possible to use other materials as the seed layer 300, which is not limited in this embodiment.

第二清潔步驟S03執行於濺鍍步驟S02及水熱法步驟S04之間以清潔晶種層300之表面。第二清潔步驟S03與第一清潔步驟S01相同。 The second cleaning step S03 is performed between the sputtering step S02 and the hydrothermal step S04 to clean the surface of the seed layer 300. The second cleaning step S03 is the same as the first cleaning step S01.

水熱法步驟S04係於晶種層300上成長多數氧化鋅奈米柱400。水熱法步驟S04依序如下:將醋酸鋅、六亞甲基四胺及去離子水調配為濃度0.01M到0.02M之一反應溶液;將反應溶液隔水加熱至90℃;將完成濺鍍步驟S02之基板200置於反應溶液中;維持反應溶液於90℃達60分鐘,使氧化鋅奈米柱400成長於基板200上之晶種層300。 The hydrothermal method step S04 is to grow a majority of the zinc oxide nano column 400 on the seed layer 300. The hydrothermal method step S04 is as follows: zinc acetate, hexamethylenetetramine and deionized water are prepared into a reaction solution having a concentration of 0.01 M to 0.02 M; the reaction solution is heated to 90 ° C in water; the sputtering is completed. The substrate 200 of the step S02 is placed in the reaction solution; the reaction solution is maintained at 90 ° C for 60 minutes to grow the zinc oxide nano column 400 on the seed layer 300 on the substrate 200.

第三清潔步驟S05執行於水熱法步驟S04及原子層沉積法步驟S07之間,以清潔氧化鋅奈米柱400之表面。第三清潔步驟S05與第二清潔步驟S03及第一清潔步驟S01大 致,其差異在於第三清潔步驟S05僅使用去離子水配合超音波震盪清洗基板200、晶種層300及氧化鋅奈米柱400,而不需使用丙酮及異丙醇。 The third cleaning step S05 is performed between the hydrothermal method step S04 and the atomic layer deposition method step S07 to clean the surface of the zinc oxide nanocolumn 400. The third cleaning step S05 is larger than the second cleaning step S03 and the first cleaning step S01 The difference is that the third cleaning step S05 uses only deionized water in combination with ultrasonic vibration to clean the substrate 200, the seed layer 300, and the zinc oxide nano column 400 without using acetone and isopropyl alcohol.

第四清潔步驟S06執行於第三清潔步驟S05及原子層沉積法步驟S07之間,以再次清潔氧化鋅奈米柱400之表面。第四清潔步驟S06相同於第二清潔步驟S03及第一清潔步驟S01。 The fourth cleaning step S06 is performed between the third cleaning step S05 and the atomic layer deposition method step S07 to clean the surface of the zinc oxide nano column 400 again. The fourth cleaning step S06 is the same as the second cleaning step S03 and the first cleaning step S01.

原子層沉積法步驟S07係沿各氧化鋅奈米柱400之外表面以及氧化鋅奈米柱400之間隙覆蓋二氧化鉿層500於氧化鋅奈米柱400上,更具體而言,原子層沉積法步驟S07是利用原子層氣相化學沉積(Atomic layer chemical vapor deposition)方式來成長二氧化鉿層500,藉此才能控制二氧化鉿層500以薄膜方式包覆氧化鋅奈米柱400,而且不會將氧化鋅奈米柱400的間隙都填滿,使其仍具有柱狀外型而保留最大化照光表面積。原子層沉積法步驟S07依序如下:(a)抽真空,(b)加熱基板200、晶種層300以及氧化鋅奈米柱400至250℃,(c)注入四-(乙基甲基胺基酸)-鉿(TEMAH),(d)通入氮氣,(e)注入水蒸氣以及再度(f)通入氮氣,並重覆(c)~(d)約500次,使厚度為50nm之二氧化鉿層500成長於氧化鋅奈米柱400上。 The atomic layer deposition method step S07 covers the ceria layer 500 on the zinc oxide nano column 400 along the outer surface of each zinc oxide nano column 400 and the gap of the zinc oxide nano column 400, more specifically, atomic layer deposition. The method step S07 is to use the Atomic layer chemical vapor deposition method to grow the cerium oxide layer 500, thereby controlling the cerium oxide layer 500 to be coated with the zinc oxide nano column 400 in a thin film manner, and The gaps in the zinc oxide nanocolumn 400 are filled to still have a cylindrical appearance while retaining the maximum illuminating surface area. The atomic layer deposition method step S07 is sequentially as follows: (a) vacuuming, (b) heating the substrate 200, the seed layer 300, and the zinc oxide nano column 400 to 250 ° C, (c) injecting tetra-(ethyl methylamine) Base acid)-铪 (TEMAH), (d) nitrogen gas is introduced, (e) water vapor is injected, and (f) nitrogen gas is introduced again, and (c) to (d) are repeated for about 500 times to have a thickness of 50 nm. The yttria layer 500 is grown on the zinc oxide nanocolumn 400.

蒸鍍步驟S08係於二氧化鉿層500上鍍上一金屬電極600。蒸鍍步驟S08是將高能量電子束的動能轉為熱能,使金屬靶材蒸發再堆積到二氧化鉿層500上形成金屬電極600。 The vapor deposition step S08 is performed by plating a metal electrode 600 on the ceria layer 500. In the vapor deposition step S08, the kinetic energy of the high-energy electron beam is converted into thermal energy, and the metal target is evaporated and then deposited on the ceria layer 500 to form the metal electrode 600.

藉此,依序完成第一清潔步驟S01、濺鍍步驟S02、第二清潔步驟S03、一水熱法步驟S04、第三清潔步驟S05、第四清潔步驟S06、原子層沉積法步驟S07及蒸鍍步驟S08並可製造具有高紫外光偵測效率之紫外光感測器100。 Thereby, the first cleaning step S01, the sputtering step S02, the second cleaning step S03, the hydrothermal method step S04, the third cleaning step S05, the fourth cleaning step S06, the atomic layer deposition method step S07, and steaming are sequentially performed. The plating step S08 can produce an ultraviolet light sensor 100 having high ultraviolet light detection efficiency.

請參照第5A、5B、6A及6B圖,其中第5A圖及5B圖係分別繪示以濃度0.01M反應溶液成長氧化鋅奈米柱400後的俯視圖及剖面圖,第6A圖及6B圖係分別繪示以濃度0.02M反應溶液成長氧化鋅奈米柱400後的俯視圖及剖面圖。為了找出氧化鋅奈米柱400之最佳製程品質,依序在第3圖的水熱法步驟S04使用0.005M、0.01M、0.02M及0.04M來調配不同濃度之反應溶液並成長氧化鋅奈米柱400。而實驗結果整理如下: Please refer to Figures 5A, 5B, 6A and 6B, wherein Figures 5A and 5B show a top view and a cross-sectional view, respectively, after growing a zinc oxide nano column 400 with a concentration of 0.01 M reaction solution, Figures 6A and 6B. The top view and the cross-sectional view of the zinc oxide nano column 400 grown in a concentration of 0.02 M reaction solution are shown. In order to find the optimum process quality of the zinc oxide nano column 400, 0.005M, 0.01M, 0.02M and 0.04M are used in the hydrothermal step S04 of Fig. 3 to prepare different concentrations of the reaction solution and grow zinc oxide. Nano column 400. The experimental results are organized as follows:

藉此可分析出濃度0.005M之反應溶液會導致成長後氧化鋅奈米柱400的排列密度過高,且其長度及直徑過小,氧化鋅奈米柱400的整體可照光面積減少。反之,濃度0.04M之反應溶液會導致成長後氧化鋅奈米柱400的排列密度過低,且其長度及直徑過大,出現各氧化鋅奈米柱400互相連接的現象,同樣縮小了氧化鋅奈米柱400的整體可照光表面積。因此,實驗證明0.01M到0.02M的反應溶液為成長氧化鋅奈米柱400的較佳濃度數值範圍。 Thereby, the reaction solution having a concentration of 0.005 M can be analyzed, which causes the arrangement density of the zinc oxide nano-column 400 to be too high, and the length and diameter thereof are too small, and the overall illuminable area of the zinc oxide nano-column 400 is reduced. On the contrary, the reaction solution having a concentration of 0.04 M causes the arrangement density of the zinc oxide nano-column 400 to be too low, and the length and diameter thereof are too large, and the zinc oxide nano-columns 400 are connected to each other, and the zinc oxide naphthalene is also reduced. The overall illuminable surface area of the rice column 400. Therefore, experiments have shown that a reaction solution of 0.01 M to 0.02 M is a preferred concentration range of the growth of the zinc oxide nano column 400.

而後續也以0.01M到0.02M的反應溶液所成長氧化鋅奈米柱400來製作第1圖之紫外光感測器100。請參照第7圖、第8圖、第9A圖及第9B圖。其中,第7圖係繪示以濃度0.01M反應溶液成長氧化鋅奈米柱400後,再沉積二氧化鉿層500的俯視圖。第8圖係繪示以濃度0.02M反應溶液成長氧化鋅奈米柱400後,再沉積二氧化鉿層500的俯視圖。第9A圖繪示以濃度0.01M反應溶液成長氧化鋅奈米柱400並製造紫外光感測器100的光響應頻譜圖。第9B圖繪示以濃度0.02M反應溶液成長氧化鋅奈米柱400並製造紫外光感測器100的光響應頻譜圖。 Then, the ultraviolet light sensor 100 of Fig. 1 was produced by growing the zinc oxide nano column 400 with a reaction solution of 0.01 M to 0.02 M. Please refer to Fig. 7, Fig. 8, Fig. 9A and Fig. 9B. Here, FIG. 7 is a plan view showing the deposition of the ceria layer 500 after the zinc oxide nano column 400 is grown at a concentration of 0.01 M. Fig. 8 is a plan view showing the deposition of the ceria layer 500 after the zinc oxide nano column 400 is grown at a concentration of 0.02 M. FIG. 9A is a diagram showing the optical response spectrum of the ultraviolet light sensor 100 grown by growing the zinc oxide nano column 400 with a concentration of 0.01 M. FIG. 9B is a diagram showing the optical response spectrum of the ultraviolet light sensor 100 grown by growing the zinc oxide nano column 400 at a concentration of 0.02 M.

光響應頻譜圖主要是利用不同波長的入射光照射紫外光感測器100,並探測其感測電流。其中,額外加偏壓(-2V到2V)的目的是由於照光轉換成的電流很小,加上氧化鋅奈米柱400內部有較多缺陷時,其照光產生的電子電洞對很容易複合到缺陷,使探針萃取不到足夠的電流訊號,因此利用外加偏壓的方式來幫助萃取紫外光感測器100的電流訊號。由 前述圖中可看出濃度0.01M反應溶液製造的紫外光感測器100,在紫外光波段波長約350nm處之光頻率響應可達1.29安培/瓦特,故紫外光(350nm)對可見光(波長500nm處)之互斥比(rejection ratio)約為873;而濃度0.02M反應溶液製造的紫外光感測器100,在紫外光波段波長約350nm處之光頻率響應可達2.41安培/瓦特,故紫外光(350nm)對可見光(波長500nm處)之互斥比約為151。由於濃度0.01M及0.02M反應溶液製造的紫外光感測器100,皆具有良好的光頻率響應及紫外光對可見光之互斥比,因此可推斷濃度介於0.01M至0.02M之間為成長氧化鋅奈米柱400的最佳濃度。 The optical response spectrum diagram mainly uses the incident light of different wavelengths to illuminate the ultraviolet light sensor 100 and detect the sensing current. Among them, the purpose of extra bias (-2V to 2V) is that the current converted into light is small, and when there are more defects inside the zinc oxide nano-column 400, the electron hole pairs generated by the illumination are easy to be compounded. To the defect, the probe does not extract enough current signals, so the external bias voltage is used to help extract the current signal of the ultraviolet sensor 100. by In the above figure, the ultraviolet light sensor 100 manufactured by the reaction solution having a concentration of 0.01 M can be seen, and the optical frequency response at a wavelength of about 350 nm in the ultraviolet light band can reach 1.29 amps/watt, so ultraviolet light (350 nm) is visible light (wavelength 500 nm). The mutual rejection ratio (rejection ratio) is about 873; and the ultraviolet light sensor 100 manufactured by the concentration of 0.02 M reaction solution has an optical frequency response of about 2.41 amps/watt at a wavelength of about 350 nm in the ultraviolet light band, so the ultraviolet light The mutual exclusion ratio of light (350 nm) to visible light (at a wavelength of 500 nm) is about 151. Since the ultraviolet light sensor 100 manufactured by the reaction solution of 0.01 M and 0.02 M has good optical frequency response and mutual exclusion ratio of ultraviolet light to visible light, it can be inferred that the concentration is between 0.01 M and 0.02 M for growth. The optimum concentration of zinc oxide nanocolumn 400.

在此也針對濃度0.01M反應溶液成長氧化鋅奈米柱400分別進行有覆蓋二氧化鉿層500及無覆蓋二氧化鉿層500的光激螢光實驗。請參照第10圖,其係繪示以濃度0.01M反應溶液成長氧化鋅奈米柱400進行有無二氧化鉿層500的光激螢光比較圖。有覆蓋二氧化鉿層500的氧化鋅奈米柱400於380奈米出現紫外光波段的峰值,且其半高寬為19奈米,而無覆蓋二氧化鉿層500的氧化鋅奈米柱400於378奈米出現紫外光波段的峰值,且半高寬為21奈米。故實驗證明有覆蓋二氧化鉿層500的氧化鋅奈米柱400比較無覆蓋二氧化鉿層500的氧化鋅奈米柱400,不僅光激螢光峰值強度較強,且半高寬(FWHM)也較窄。 Here, a photo-excited fluorescence experiment in which the cerium oxide-coated layer 500 and the uncovered cerium oxide layer 500 were carried out was also carried out for the growth of the zinc oxide nano-column 400 with a concentration of 0.01 M. Referring to Fig. 10, there is shown a comparison of the photoluminescence of the presence or absence of the ceria layer 500 in the zinc oxide nano column 400 grown at a concentration of 0.01 M. The zinc oxide nanocolumn 400 covering the cerium oxide layer 500 exhibits a peak in the ultraviolet light band at 380 nm, and its full width at half maximum is 19 nm, and the zinc oxide nano column 400 without the cerium oxide layer 500 is covered. At 378 nm, the peak of the ultraviolet band appeared, and the full width at half maximum was 21 nm. Therefore, it has been experimentally proved that the zinc oxide nano column 400 covering the ceria layer 500 is relatively free of the zinc oxide nano column 400 covering the ceria layer 500, and not only the peak intensity of the photo-induced fluorescence is strong, but also the full width at half maximum (FWHM). Also narrower.

請參閱第11圖,其中第11圖係繪示金半結構與金氧半結構之氧化鋅奈米柱400在未照光情況下之電流-電壓比較圖。由圖可知,由於紫外光感測器100具有金氧半結構, 故相較於金氧結構可具有較低的漏電流,主要原因在於利用原子沉積二氧化鉿於氧化鋅奈米柱400上,可以提供一位障有效地抑制氧化鋅奈米柱400的缺陷,以減少載子的非輻射複合,使得漏電流降低。 Please refer to Fig. 11, wherein Fig. 11 is a graph showing current-voltage comparison of the gold semi-structure and the gold oxide half structure zinc oxide nano column 400 in the absence of illumination. As can be seen from the figure, since the ultraviolet light sensor 100 has a gold oxide half structure, Therefore, compared with the gold-oxygen structure, the leakage current can be low. The main reason is that the use of atomic deposition of cerium oxide on the zinc oxide nano-column 400 can provide a barrier to effectively suppress the defects of the zinc oxide nano-column 400. In order to reduce the non-radiative recombination of the carrier, the leakage current is reduced.

因此,本發明所提出紫外光感測器及其製造方法,其將厚度僅50nm的二氧化鉿層覆蓋於氧化鋅奈米柱之表面,且並未填滿原本氧化鋅奈米柱之間隙,可降低氧化鋅奈米結構表面能態密度,並保留原本氧化鋅奈米柱之照光表面積大小,對比習知技術中氧化鋅紫外光感測器並未覆蓋二氧化鉿的結構,本發明之紫外光感測器有效抑制雜質能階所產生的發光機制,提高氧化鋅中能隙間的紫外光感測效率。 Therefore, the ultraviolet light sensor and the method for fabricating the same according to the present invention cover a surface of a zinc oxide nano column with a thickness of only 50 nm, and do not fill the gap between the original zinc oxide nano columns. The surface energy density of the zinc oxide nanostructure can be reduced, and the illuminating surface area of the original zinc oxide nanometer column can be preserved. Compared with the structure of the prior art, the zinc oxide ultraviolet light sensor does not cover the structure of the cerium oxide. The photo sensor effectively suppresses the luminescence mechanism generated by the impurity energy level and improves the ultraviolet light sensing efficiency between the energy gaps in the zinc oxide.

此外,本發明也以實驗證明以水熱法成長氧化鋅奈米柱之最佳反應溶液濃度為0.01M至0.02M。若低於濃度0.01M之反應溶液將使得氧化鋅奈米柱排列密度過高,氧化鋅奈米柱之半徑及長度略小。若高於濃度0.02M之反應溶液將使得氧化鋅奈米柱排列密度過低,氧化鋅奈米柱之半徑及長度略大。因此,不論是低於濃度0.01M或高於0.02M都將導致成長的氧化鋅奈米柱之照光表面積較小。 In addition, the present invention also experimentally demonstrates that the optimum reaction solution concentration for growing a zinc oxide nano column by hydrothermal method is from 0.01 M to 0.02 M. If the reaction solution is lower than the concentration of 0.01 M, the zinc oxide nano column arrangement density is too high, and the radius and length of the zinc oxide nano column are slightly smaller. If the reaction solution is higher than the concentration of 0.02M, the zinc oxide nano column arrangement density is too low, and the radius and length of the zinc oxide nano column are slightly larger. Therefore, whether it is below the concentration of 0.01 M or higher than 0.02 M, the growth of the zinc oxide nano column will result in a smaller illuminating surface area.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

100‧‧‧紫外光感測器 100‧‧‧UV sensor

200‧‧‧基板 200‧‧‧Substrate

210‧‧‧玻璃 210‧‧‧ glass

220‧‧‧透明導電膜層 220‧‧‧Transparent conductive film layer

300‧‧‧晶種層 300‧‧‧ seed layer

400‧‧‧氧化鋅奈米柱 400‧‧‧Zinc Oxide Nano Column

500‧‧‧二氧化鉿層 500‧‧‧ cerium oxide layer

600‧‧‧金屬電極 600‧‧‧Metal electrode

Claims (19)

一種紫外光感測器,其包含:一基板;一晶種層,位於該基板上;多數氧化鋅奈米柱,排列於該晶種層上;一二氧化鉿層,沿各該氧化鋅奈米柱之表面以及該些氧化鋅奈米柱之間隙覆蓋於該些氧化鋅奈米柱上;以及一金屬電極,位於該二氧化鉿層上。 An ultraviolet light sensor comprising: a substrate; a seed layer on the substrate; a plurality of zinc oxide nano columns arranged on the seed layer; a germanium dioxide layer along each of the zinc oxide The surface of the rice column and the gaps of the zinc oxide nano columns cover the zinc oxide nano columns; and a metal electrode is disposed on the ceria layer. 如申請專利範圍第1項所述之紫外光感測器,其中該晶種層為氧化鋅摻鋁(Al-doped ZnO)。 The ultraviolet light sensor of claim 1, wherein the seed layer is aluminum-doped ZnO. 如申請專利範圍第2項所述之紫外光感測器,其中該晶種層由98wt%氧化鋅及2wt%三氧化二鋁所組成。 The ultraviolet light sensor of claim 2, wherein the seed layer is composed of 98 wt% zinc oxide and 2 wt% aluminum oxide. 如申請專利範圍第1項所述之紫外光感測器,其中該晶種層之厚度為70nm。 The ultraviolet light sensor of claim 1, wherein the seed layer has a thickness of 70 nm. 如申請專利範圍第1項所述之紫外光感測器,其中各該氧化鋅奈米柱之直徑為40nm到60nm,各該氧化鋅奈米柱之長度為300nm到360nm,該些氧化鋅奈米柱於該晶種層之排列密度為2.4×1010/cm2The ultraviolet light sensor according to claim 1, wherein each of the zinc oxide nano columns has a diameter of 40 nm to 60 nm, and each of the zinc oxide nano columns has a length of 300 nm to 360 nm, and the zinc oxide naphthalenes. The arrangement density of the rice pillars in the seed layer was 2.4 × 10 10 /cm 2 . 如申請專利範圍第1項所述之紫外光感測器,其中該二氧化鉿層之厚度為50nm。 The ultraviolet sensor of claim 1, wherein the cerium oxide layer has a thickness of 50 nm. 如申請專利範圍第1項所述之紫外光感測器,其中該基板包含一玻璃及一透明導電膜層,該透明導電膜層位於該玻璃與該晶種層之間。 The ultraviolet sensor of claim 1, wherein the substrate comprises a glass and a transparent conductive film layer, the transparent conductive film layer being located between the glass and the seed layer. 一種製造方法,用以製造如申請專利範圍第1項所述之紫外光感測器,該製造方法之步驟包含:一濺鍍步驟,於一基板上鍍上一晶種層;一水熱法步驟,於該晶種層上成長多數氧化鋅奈米柱;一原子層沉積法步驟,沿各該氧化鋅奈米柱之外表面以及該些氧化鋅奈米柱之間隙覆蓋一二氧化鉿層於該些氧化鋅奈米柱上;以及一蒸鍍步驟,於該二氧化鉿層上鍍上一金屬電極。 A manufacturing method for manufacturing the ultraviolet light sensor according to claim 1, wherein the step of the manufacturing method comprises: a sputtering step of plating a seed layer on a substrate; a hydrothermal method a step of growing a plurality of zinc oxide nano columns on the seed layer; and an atomic layer deposition step of covering a layer of ceria along the outer surface of each of the zinc oxide nano columns and the gaps of the zinc oxide nano columns On the zinc oxide nano columns; and an evaporation step, a metal electrode is plated on the ceria layer. 如申請專利範圍第8項所述之製造方法,更包含一第一清潔步驟,執行該第一清潔步驟於該濺鍍步驟前以清潔該基板之表面。 The manufacturing method of claim 8, further comprising a first cleaning step of performing the first cleaning step to clean the surface of the substrate before the sputtering step. 如申請專利範圍第9項所述之製造方法,其中該第一清潔步驟包含:分別使用丙酮、異丙醇以及去離子水配合超音波震盪清洗該基板; 使用氮氣吹乾該基板之表面;以及烘烤加熱該基板一分鐘。 The manufacturing method of claim 9, wherein the first cleaning step comprises: washing the substrate with acetone, isopropyl alcohol, and deionized water in combination with ultrasonic vibration; The surface of the substrate was blown dry with nitrogen; and the substrate was baked and heated for one minute. 如申請專利範圍第9項所述之製造方法,更包含一第二清潔步驟,執行該第二清潔步驟於該濺鍍步驟及該水熱法步驟之間以清潔該晶種層之表面。 The manufacturing method of claim 9, further comprising a second cleaning step of performing the second cleaning step between the sputtering step and the hydrothermal step to clean the surface of the seed layer. 如申請專利範圍第11項所述之製造方法,其中該第二清潔步驟包含:分別使用丙酮、異丙醇以及去離子水配合超音波震盪清洗該基板;使用氮氣吹乾該基板上該晶種層之表面;以及烘烤加熱該基板及該晶種層一分鐘。 The manufacturing method of claim 11, wherein the second cleaning step comprises: washing the substrate with acetone, isopropyl alcohol, and deionized water in combination with ultrasonic vibration, respectively; drying the substrate on the substrate using nitrogen gas. The surface of the layer; and baking the substrate and the seed layer for one minute. 如申請專利範圍第11項所述之製造方法,更包含一第三清潔步驟,執行該第三清潔步驟於該水熱法步驟及該原子層沉積法步驟之間以清潔該些氧化鋅奈米柱之表面。 The manufacturing method of claim 11, further comprising a third cleaning step of performing the third cleaning step between the hydrothermal step and the atomic layer deposition step to clean the zinc oxide nano The surface of the column. 如申請專利範圍第13項所述之製造方法,其中該第三清潔步驟包含:使用去離子水配合超音波震盪清洗該基板、該晶種層及該些氧化鋅奈米柱;使用氮氣吹乾該些氧化鋅奈米柱之表面;以及 烘烤加熱該基板、該晶種層及該些氧化鋅奈米柱一分鐘。 The manufacturing method of claim 13, wherein the third cleaning step comprises: cleaning the substrate, the seed layer and the zinc oxide nano columns with deionized water in combination with ultrasonic vibration; drying with nitrogen gas The surface of the zinc oxide nanocolumn; The substrate, the seed layer and the zinc oxide nano columns are baked for one minute. 如申請專利範圍第13項所述之製造方法,更包含一第四清潔步驟,執行該第四清潔步驟於該第三清潔步驟及該原子層沉積法步驟之間以再次清潔該些氧化鋅奈米柱之表面。 The manufacturing method of claim 13, further comprising a fourth cleaning step, performing the fourth cleaning step between the third cleaning step and the atomic layer deposition step to clean the zinc oxide naphthalene again The surface of the rice column. 如申請專利範圍第15項所述之製造方法,其中該第四清潔步驟包含:分別使用丙酮、異丙醇以及去離子水配合超音波震盪清洗該基板、該晶種層及該些氧化鋅奈米柱;使用氮氣吹乾該些氧化鋅奈米柱之表面;以及烘烤加熱該基板、該晶種層及該些氧化鋅奈米柱一分鐘。 The manufacturing method of claim 15, wherein the fourth cleaning step comprises: cleaning the substrate, the seed layer and the zinc oxide naphthalate by using ultrasonic, isopropyl alcohol, and deionized water, respectively, in combination with ultrasonic vibration a column of rice; drying the surface of the zinc oxide nano column with nitrogen; and baking the substrate, the seed layer and the zinc oxide nano column for one minute. 如申請專利範圍第8項所述之製造方法,其中該濺鍍步驟包含:將該基板置於一濺鍍真空系統中;控制該濺鍍真空系統內之壓力維持於2×10-6torr;通入流量為5sccm之氬氣;控制濺鍍真空系統內之壓力維持於6×10-3torr,且加熱該基板至100℃;以及 以90W之射頻功率濺鍍厚度為70nm之該晶種層於該基板上。 The manufacturing method of claim 8, wherein the sputtering step comprises: placing the substrate in a sputtering vacuum system; controlling the pressure in the sputtering vacuum system to be maintained at 2 × 10 -6 torr; Passing argon gas at a flow rate of 5 sccm; controlling the pressure in the sputtering vacuum system to be maintained at 6 × 10 -3 torr, and heating the substrate to 100 ° C; and sputtering the seed layer having a thickness of 70 nm at a radio frequency of 90 W On the substrate. 如申請專利範圍第8項所述之製造方法,其中該水熱法步驟包含:將醋酸鋅、六亞甲基四胺及去離子水調配為濃度0.01到0.02M之一反應溶液;將該反應溶液隔水加熱至90℃;將完成該濺鍍步驟之該基板置於該反應溶液中;以及維持該反應溶液於90℃達60分鐘,使該些氧化鋅奈米柱成長於該基板之該晶種層。 The manufacturing method according to claim 8, wherein the hydrothermal step comprises: formulating zinc acetate, hexamethylenetetramine and deionized water into a reaction solution having a concentration of 0.01 to 0.02 M; The solution is heated to 90 ° C in water; the substrate in which the sputtering step is completed is placed in the reaction solution; and the reaction solution is maintained at 90 ° C for 60 minutes to grow the zinc oxide nano columns on the substrate. Seed layer. 如申請專利範圍第8項所述之製造方法,其中該原子層沉積法步驟包含:抽真空;加熱該基板、該晶種層以及該些氧化鋅奈米柱至250°C;注入四-(乙基甲基胺基酸)-鉿(TEMAH);通入氮氣;注入水蒸氣;以及再度通入氮氣使二氧化鉿層成長於氧化鋅奈米柱上的厚度為50nm。 The manufacturing method of claim 8, wherein the atomic layer deposition method comprises: vacuuming; heating the substrate, the seed layer, and the zinc oxide nano columns to 250 ° C; injecting four-( Ethylmethylamino acid)-indole (TEMAH); nitrogen gas was introduced; water vapor was injected; and nitrogen dioxide was again introduced to grow the ceria layer on the zinc oxide nano column to a thickness of 50 nm.
TW105102669A 2016-01-28 2016-01-28 Ultraviolet light sensor and fabrication method thereof TW201727928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105102669A TW201727928A (en) 2016-01-28 2016-01-28 Ultraviolet light sensor and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105102669A TW201727928A (en) 2016-01-28 2016-01-28 Ultraviolet light sensor and fabrication method thereof

Publications (1)

Publication Number Publication Date
TW201727928A true TW201727928A (en) 2017-08-01

Family

ID=60186783

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105102669A TW201727928A (en) 2016-01-28 2016-01-28 Ultraviolet light sensor and fabrication method thereof

Country Status (1)

Country Link
TW (1) TW201727928A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355540B2 (en) 2020-04-15 2022-06-07 Visera Technologies Company Limited Optical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355540B2 (en) 2020-04-15 2022-06-07 Visera Technologies Company Limited Optical device
TWI777270B (en) * 2020-04-15 2022-09-11 采鈺科技股份有限公司 Optical device

Similar Documents

Publication Publication Date Title
Selman et al. Fabrication and characterization of metal–semiconductor–metal ultraviolet photodetector based on rutile TiO2 nanorod
Wang et al. Balanced performance for β-Ga2O3 solar blind photodetectors: The role of oxygen vacancies
Inamdar et al. High-performance metal–semiconductor–metal UV photodetector based on spray deposited ZnO thin films
Basak et al. Photoconductive UV detectors on sol–gel-synthesized ZnO films
Huang et al. A simple, repeatable and highly stable self-powered solar-blind photoelectrochemical-type photodetector using amorphous Ga 2 O 3 films grown on 3D carbon fiber paper
Hanna et al. Low temperature-processed ZnO thin films for p–n junction-based visible-blind ultraviolet photodetectors
Huang et al. Low-Dark-Current $\hbox {TiO} _ {2} $ MSM UV Photodetectors With Pt Schottky Contacts
Abd-Alghafour et al. High-performance p–n heterojunction photodetectors based on V 2 O 5 nanorods by spray pyrolysis
US20150287871A1 (en) Solution-processed ultraviolet light detector based on p-n junctions of metal oxides
Sun et al. The ultraviolet photoconductive detector based on Al-doped ZnO thin film with fast response
Han et al. Synthesis of ternary oxide Zn 2 GeO 4 nanowire networks and their deep ultraviolet detection properties
Hunashimarad et al. ZnO: Ca MSM ultraviolet photodetectors
CN112563353A (en) Heterojunction ultraviolet detector and preparation method thereof
Liu et al. TiO 2-based metal–semiconductor–metal ultraviolet photodetectors deposited by ultrasonic spray pyrolysis technique
Abdulgafour et al. Enhancing photoresponse time of low cost Pd/ZnO nanorods prepared by thermal evaporation techniques for UV detection
Hsu et al. A dual-band photodetector based on ZnO nanowires decorated with Au nanoparticles synthesized on a glass substrate
Yang et al. Noise properties of ag nanoparticle-decorated ZnO nanorod UV photodetectors
Raj et al. The role of silver doping in tuning the optical absorption, energy gap, photoluminescence properties of NiO thin films for UV photosensor applications
Pedapudi et al. High temperature annealing on vertical pn junction p-NiO/n-β-Ga2O3 nanowire arrays for high performance UV photodetection
Zhu et al. ZnO nanoparticles as a luminescent down-shifting layer for photosensitive devices
Ghosh et al. Effect of oxygen flow rate and radio-frequency power on the photoconductivity of highly ultraviolet sensitive ZnO thin films grown by magnetron sputtering
TW201727928A (en) Ultraviolet light sensor and fabrication method thereof
Chen et al. Photoconductive gain of vertical ZnO nanorods on flexible polyimide substrate by low-temperature process
Zhilin et al. Photoelectric properties of MSM structure based on ZnO nanorods, received by thermal evaporation and carbothermal syntesis
KR102425182B1 (en) Substrate for photodetector comprising heterostructure of Al and ZnO, and UV photodetector comprising the same