TW201727702A - Semiconductor light emitting device and method of fabricating the same - Google Patents

Semiconductor light emitting device and method of fabricating the same Download PDF

Info

Publication number
TW201727702A
TW201727702A TW106116374A TW106116374A TW201727702A TW 201727702 A TW201727702 A TW 201727702A TW 106116374 A TW106116374 A TW 106116374A TW 106116374 A TW106116374 A TW 106116374A TW 201727702 A TW201727702 A TW 201727702A
Authority
TW
Taiwan
Prior art keywords
epitaxial
semiconductor
semiconductor light
substrate
layer
Prior art date
Application number
TW106116374A
Other languages
Chinese (zh)
Other versions
TWI631596B (en
Inventor
林俊宇
倪慶懷
陳怡名
徐子傑
邱新智
呂志強
林敬倍
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Publication of TW201727702A publication Critical patent/TW201727702A/en
Application granted granted Critical
Publication of TWI631596B publication Critical patent/TWI631596B/en

Links

Abstract

A method of fabricating a semiconductor light emitting device is disclosed. The method includes providing a first substrate, providing a semiconductor epitaxial stack, providing an adhesive layer adhering the semiconductor epitaxial stack to the first substrate, patterning the semiconductor epitaxial stack to be a plurality of epitaxial units and separating the epitaxial units from the first substrate. Wherein the epitaxial units include a plurality of first epitaxial units, and each of the first epitaxial units includes a first geometric shape and a first area. Wherein the epitaxial units include a plurality of second epitaxial units, and each of the second epitaxial units includes a second geometric shape and a second area. Providing a second substrate with a surface, transferring the second epitaxial units to the surface of the second substrate, dividing the first substrate to form a plurality of first semiconductor optoelectronic devices wherein each of the first semiconductor optoelectronic devices includes one first epitaxial unit, and dividing the second substrate to form a plurality of second semiconductor optoelectronic devices wherein each of the second semiconductor optoelectronic devices includes one second epitaxial unit, wherein the first geometric shape is different from the second geometric shape or the first area is different from the second area.

Description

半導體發光元件及其製作方法Semiconductor light emitting element and manufacturing method thereof

本發明係關於一種半導體發光元件的製作方法,尤其是關於一種在單一基板上形成兩種不同半導體磊晶疊層的半導體發光元件的製作方法。The present invention relates to a method of fabricating a semiconductor light emitting device, and more particularly to a method of fabricating a semiconductor light emitting device in which two different semiconductor epitaxial stacks are formed on a single substrate.

隨著科技日新月異,半導體發光元件在資訊的傳輸以及能量的轉換上有極大的貢獻。以系統的運用為例,例如光纖通訊、光學儲存及軍事系統等,半導體發光元件皆能有所發揮。以能量的轉換方式進行區分,半導體發光元件一般可分為三類:將電能轉換為光的放射,如發光二極體及雷射二極體;將光的訊號轉換為電的信號,如光檢測器;將光的輻射能轉換為電能,如太陽能電池。With the rapid development of technology, semiconductor light-emitting components have greatly contributed to the transmission of information and the conversion of energy. Taking the use of the system as an example, such as optical fiber communication, optical storage, and military systems, semiconductor light-emitting elements can be used. Differentiated by the way energy is converted, semiconductor light-emitting elements can be generally classified into three types: radiation that converts electrical energy into light, such as light-emitting diodes and laser diodes; and signals that convert light into electrical signals, such as light. Detector; converts the radiant energy of light into electrical energy, such as a solar cell.

在半導體發光元件之中,成長基板扮演著非常重要的角色。形成半導體發光元件所必要的半導體磊晶結構皆成長於基板之上,並透過基板得到支持。因此,選擇一個適合的成長基板,往往成為決定半導體發光元件中元件成長品質的重要因素。Among semiconductor light-emitting elements, the growth substrate plays a very important role. The semiconductor epitaxial structure necessary for forming the semiconductor light-emitting device is grown on the substrate and supported by the substrate. Therefore, selecting a suitable growth substrate is often an important factor in determining the quality of component growth in a semiconductor light-emitting device.

然而,有時一個好的元件成長基板並不一定是一個好的元件承載基板。以發光二極體為例,在習知的紅光元件製程中,為了提昇元件的成長品質,會選擇晶格常數與半導體磊晶結構較為接近但不透明的砷化鎵(GaAs)基板作為成長基板。然而,對於以發光為操作目的的發光二極體元件而言,於操作過程之中,不透明的成長基板會造成元件的發光效率下降。However, sometimes a good component growth substrate is not necessarily a good component carrier substrate. Taking a light-emitting diode as an example, in a conventional red light device process, in order to improve the growth quality of the device, a gallium arsenide (GaAs) substrate having a lattice constant close to the semiconductor epitaxial structure but opaque is selected as a growth substrate. . However, for a light-emitting diode element that operates for illumination, an opaque growth substrate causes a decrease in luminous efficiency of the element during operation.

為了滿足半導體發光元件對於成長基板與承載基板不同需求條件的要求,基板的轉移技術於是因應而生。亦即,半導體磊晶結構先於成長基板上進行成長,再將成長完成的半導體磊晶結構轉移至承載基板,以方便後續的元件操作進行。在半導體磊晶結構與承載基板結合之後,原有成長基板的移除則成為轉移技術的關鍵之一。In order to meet the requirements of different requirements of the semiconductor light-emitting device for the growth substrate and the carrier substrate, the transfer technology of the substrate is thus generated. That is, the semiconductor epitaxial structure is grown on the growth substrate, and the grown semiconductor epitaxial structure is transferred to the carrier substrate to facilitate subsequent component operations. After the semiconductor epitaxial structure is combined with the carrier substrate, the removal of the original growth substrate becomes one of the keys to the transfer technology.

成長基板的移除方式主要包括將原有的成長基板以蝕刻液蝕刻溶解,以物理方式切割磨除,或事先在成長基板與半導體磊晶結構之間生成犧牲層,再藉由蝕刻去除犧牲層的方式將成長基板與半導體分離等。然而,不論是以蝕刻液溶解基板或是以物理性切割方式磨除基板,對原有的成長基板而言,都是一種破壞。成長基板無法再度利用,在強調環保及節能的現代,無疑是一種材料的浪費。然而,若是使用犧牲層結構進行分離,對於半導體發光元件而言,如何進行有效地選擇性轉移,則是目前研究的方向之一。The removal method of the growth substrate mainly includes etching and dissolving the original growth substrate by etching, physically cutting and grinding, or forming a sacrificial layer between the growth substrate and the semiconductor epitaxial structure in advance, and removing the sacrificial layer by etching. The method is to separate the growth substrate from the semiconductor. However, whether the substrate is dissolved by the etching solution or the substrate is physically removed, it is a kind of damage to the original grown substrate. The growth of the substrate can not be reused, and the modernization of environmental protection and energy conservation is undoubtedly a waste of materials. However, if the separation is performed using a sacrificial layer structure, how to efficiently and selectively transfer semiconductor light-emitting elements is one of the current research directions.

本發明提供一種半導體發光元件的製作方法,包含提供一第一基板、提供一半導體磊晶疊層、提供一第一黏著層連接第一基板及半導體磊晶疊層、圖案化半導體磊晶疊層為複數磊晶單元並使彼此自第一基板上分離,其中上述複數磊晶單元包含複數第一磊晶單元,其中每一第一磊晶單元具有一第一幾何形狀及一第一面積、複數第二磊晶單元,其中每一第二磊晶單元具有一第二幾何形狀及一第二面積、提供一第二基板,具有一表面、轉移上述複數第二磊晶單元至第二基板之表面上、切割第一基板以形成複數第一半導體發光元件,其中每一個第一半導體發光元件包含至少一第一磊晶單元、以及切割第二基板以形成複數第二半導體發光元件,其中每一個第二半導體發光元件包含至少一第二磊晶單元、其中,第一幾何形狀與第二幾何形狀不相同或第一面積與第二面積不相同。The invention provides a method for fabricating a semiconductor light emitting device, comprising providing a first substrate, providing a semiconductor epitaxial layer, providing a first adhesive layer to connect the first substrate and the semiconductor epitaxial layer, and patterning the semiconductor epitaxial layer. And a plurality of epitaxial cells comprising a plurality of first epitaxial cells, wherein each of the first epitaxial cells has a first geometric shape and a first area, a plurality a second epitaxial unit, wherein each second epitaxial unit has a second geometry and a second area, and provides a second substrate having a surface for transferring the plurality of second epitaxial units to the surface of the second substrate And etching the first substrate to form a plurality of first semiconductor light emitting elements, wherein each of the first semiconductor light emitting elements comprises at least one first epitaxial unit, and the second substrate is cut to form a plurality of second semiconductor light emitting elements, wherein each The second semiconductor light emitting element includes at least one second epitaxial unit, wherein the first geometric shape is different from the second geometric shape or the first area is Two areas are not the same.

本發明另外提供一種一種半導體發光元件,包含一基板、一半導體磊晶疊層位於基板上、自垂直基板觀之,基板未被半導體磊晶疊層覆蓋的部分大致被半導體磊晶疊層隔開為複數區域、以及一第一電極,與半導體磊晶疊層電性連接。The present invention further provides a semiconductor light emitting device comprising a substrate, a semiconductor epitaxial layer on the substrate, and a portion of the substrate not covered by the semiconductor epitaxial layer, substantially separated by a semiconductor epitaxial layer. A plurality of regions and a first electrode are electrically connected to the semiconductor epitaxial stack.

以下配合圖式說明本發明之實施例。首先,第1A圖至第1H圖所示為本發明實施例之半導體發光元件的一種製作方法。Embodiments of the invention are described below in conjunction with the drawings. First, FIGS. 1A to 1H show a method of fabricating a semiconductor light emitting element according to an embodiment of the present invention.

首先,參考第1A圖,以傳統的磊晶成長製程,在一成長基板10上依序形成n型半導體層112,活性層114,以及p型半導體層116等半導體磊晶疊層110。在本實施例中,成長基板10的材質為砷化鎵(GaAs)。當然,除了砷化鎵(GaAs)基板之外,成長基板10的材質亦可包含但不限於鍺(germanium, Ge)、磷化銦(indium phosphide, InP)、藍寶石(sapphire, Al2 O3 )、碳化矽(silicon carbide, SiC)、矽(silicon, Si)、鋁酸鋰(lithium aluminum oxide, LiAlO2 )、氧化鋅(zinc oxide, ZnO)、氮化鎵(gallium nitride, GaN)、氮化鋁(aluminum nitride, AlN)。在本實施例中,n型半導體層112的材質例如為磷化鋁鎵銦(AlGaInP),除了磷化鋁鎵銦之外,n型半導體層112的材質可不限於此;p型半導體層116的材質例如為磷化鎵(GaP),除了磷化鎵之外,p型半導體層116的材質可不限於此;活性層114常用的材料為磷化鋁鎵銦(aluminum gallium indium phosphide, AlGaInP)系列、氮化鋁鎵銦(aluminum gallium indium nitride, AlGaInN) 系列、氧化鋅系列(zinc oxide, ZnO),其結構可為單異質結構(single heterostructure, SH ),雙異質結構(double heterostructure, DH ),雙側雙異質結( double-side double heterostructure, DDH ),多層量子井(multi-quantum well, MWQ ) 。具體來說,活性層114可為中性、p型或n型電性的半導體。施以電流通過半導體磊晶疊層110時,活性層114會發光。當活性層114以磷化鋁銦鎵(AlGaInP)為基礎的材料時,會發出紅、橙、黃光之琥珀色系的光;當以氮化鋁鎵銦(AlGaInN)為基礎的材料時,會發出藍或綠光。除此之外,半導體磊晶疊層110中更可以依不同功能再包含其他半導體層。First, referring to FIG. 1A, a semiconductor epitaxial layer 110 such as an n-type semiconductor layer 112, an active layer 114, and a p-type semiconductor layer 116 is sequentially formed on a growth substrate 10 by a conventional epitaxial growth process. In the present embodiment, the material of the growth substrate 10 is gallium arsenide (GaAs). Of course, in addition to the gallium arsenide (GaAs) substrate, the material of the growth substrate 10 may include, but is not limited to, germanium (Ge), indium phosphide (InP), sapphire (Al 2 O 3 ). , silicon carbide (SiC), silicon (silicon), lithium aluminum oxide (LiAlO 2 ), zinc oxide (ZnO), gallium nitride (GaN), nitriding Aluminum nitride (AlN). In the present embodiment, the material of the n-type semiconductor layer 112 is, for example, aluminum gallium indium phosphide (AlGaInP), and the material of the n-type semiconductor layer 112 may be not limited thereto except for aluminum gallium indium phosphide; the p-type semiconductor layer 116 The material is, for example, gallium phosphide (GaP). The material of the p-type semiconductor layer 116 is not limited thereto except for gallium phosphide; the material commonly used for the active layer 114 is aluminum gallium indium phosphide (AlGaInP) series. Aluminium gallium indium nitride (AlGaInN) series, zinc oxide (ZnO), the structure of which can be single heterostructure (SH), double heterostructure (DH), double Double-side double heterostructure (DDH), multi-quantum well (MWQ). In particular, the active layer 114 can be a neutral, p-type or n-type semiconductor. When a current is applied through the semiconductor epitaxial stack 110, the active layer 114 will illuminate. When the active layer 114 is made of an aluminum indium gallium phosphide (AlGaInP)-based material, red, orange, and yellow amber light is emitted; when an aluminum gallium indium nitride (AlGaInN) based material is used, Blue or green light. In addition, the semiconductor epitaxial stack 110 may further comprise other semiconductor layers according to different functions.

接著,參照第1B圖,以黃光微影製程技術在p型半導體層116上以濺鍍(sputtering)、熱蒸鍍(thermal deposition)、或電鍍(electroplating)等方式形成圖案化的p型電極120a與120b。其中,p型電極120a與120b的材質較佳例如可以是金屬,例如金(Au)、銀(Ag)、銅(Cu)、鉻(Cr)、鋁(Al)、鉑(Pt)、鎳(Ni)、鈦(Ti)、錫(Sn)等,其合金或其疊層組合。p型電極120a與120b形成後,準備一第一承載基板20,在第一承載基板20上以塗佈(spin coating)或沉積(deposition)的方式形成第一黏著層135,透過第一黏著層135將半導體磊晶疊層110黏著至第一承載基板20上。接著,再透過濕蝕刻或雷射舉離(laser lift-off)的方式去除成長基板10。第一承載基板20並不限定為單一材料,亦可以是由不同材料組合而成的複合式基板。例如:第一承載基板20可以包含兩個相互接合的第一基板與第二基板(圖未示)。本實施例中,第一承載基板20的材質為藍寶石(sapphire, Al2 O3 )。然而,第一承載基板20的材質亦可以包含但不限於鋁酸鋰(lithium aluminum oxide, LiAlO2 )、氧化鋅(zinc oxide, ZnO)、磷化鎵(gallium nitride, GaP)、玻璃(Glass)、有機高分子板材、氮化鋁(aluminum nitride, AlN)。將半導體磊晶疊層110轉移至第一承載基板20後,形成如第1C圖所示的轉移結構。其中,如第1C圖中所示,為增加後續透過此半導體磊晶疊層110製成的半導體發光元件的出光效率,p型半導體層116部分表面依需求可以利用例如乾蝕刻或濕蝕刻的方式進行粗化。Next, referring to FIG. 1B, the patterned p-type electrode 120a is formed on the p-type semiconductor layer 116 by sputtering, thermal deposition, or electroplating by a yellow light lithography process. 120b. The material of the p-type electrodes 120a and 120b is preferably, for example, a metal such as gold (Au), silver (Ag), copper (Cu), chromium (Cr), aluminum (Al), platinum (Pt), or nickel ( Ni), titanium (Ti), tin (Sn), etc., alloys thereof or a combination thereof. After the p-type electrodes 120a and 120b are formed, a first carrier substrate 20 is prepared, and a first adhesive layer 135 is formed on the first carrier substrate 20 by spin coating or deposition, and the first adhesive layer is transmitted through the first adhesive layer. 135 adheres the semiconductor epitaxial stack 110 to the first carrier substrate 20. Then, the growth substrate 10 is removed by wet etching or laser lift-off. The first carrier substrate 20 is not limited to a single material, and may be a composite substrate in which different materials are combined. For example, the first carrier substrate 20 may include two first substrates and a second substrate (not shown) that are bonded to each other. In this embodiment, the material of the first carrier substrate 20 is sapphire (Al 2 O 3 ). However, the material of the first carrier substrate 20 may also include, but is not limited to, lithium aluminum oxide (LiAlO 2 ), zinc oxide (ZnO), gallium nitride (GaP), glass (Glass). , organic polymer sheet, aluminum nitride (AlN). After the semiconductor epitaxial layer stack 110 is transferred to the first carrier substrate 20, a transfer structure as shown in FIG. 1C is formed. Wherein, as shown in FIG. 1C, in order to increase the light-emitting efficiency of the semiconductor light-emitting device formed through the semiconductor epitaxial layer 110, the surface of the p-type semiconductor layer 116 may be, for example, dry etched or wet etched as needed. Perform coarsening.

半導體磊晶疊層110轉移至第一承載基板20後,同樣的,可以在裸露的n型半導體層112表面以黃光微影製程技術例如濺鍍(sputtering)、熱蒸鍍(thermal deposition)、或電鍍(electroplating)等方式形成圖案化n型電極130a與130b,如第1D圖所示。其中,n型電極130a與130b的材質較佳例如可以是金屬,例如金(Au)、銀(Ag)、銅(Cu)、鉻(Cr)、鋁(Al)、鉑(Pt)、鎳(Ni)、鈦(Ti)、錫(Sn)等,其合金或其疊層組合。After the semiconductor epitaxial layer 110 is transferred to the first carrier substrate 20, similarly, the surface of the exposed n-type semiconductor layer 112 may be subjected to a yellow lithography process such as sputtering, thermal deposition, or plating. The patterned n-type electrodes 130a and 130b are formed by electroplating or the like as shown in FIG. 1D. The material of the n-type electrodes 130a and 130b is preferably, for example, a metal such as gold (Au), silver (Ag), copper (Cu), chromium (Cr), aluminum (Al), platinum (Pt), or nickel ( Ni), titanium (Ti), tin (Sn), etc., alloys thereof or a combination thereof.

如第1E圖所示,為了後續不同半導體發光發光元件的製作,n型電極130a與130b表面後續的製程步驟可以相同或是不相同。本實施例中,在半導體磊晶疊層110表面的位置上,以化學氣相沉積方式(CVD)、物理氣相沉積方式(PVD) 等技術沉積形成金屬氧化物透明導電層140。接著,再於金屬氧化物透明導電層140部分表面形成反射層150。其中,金屬氧化物透明導電層140的材質例如是氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化銦(InO)、氧化錫(SnO)、氧化錫氟(FTO)、銻錫氧化物(ATO)、鎘錫氧化物(CTO)、氧化鋅鋁(AZO)、掺鎘氧化鋅(GZO)等材料或其組合;反射層150的材質例如是金屬,包含金(Au)、銀(Ag)、銅(Cu)、鉻(Cr)、鋁(Al)、鉑(Pt)、鎳(Ni)、鈦(Ti)、錫(Sn)、鈹(Be)等,其合金或其疊層組合;或者是分佈式布拉格反射層(Distributed Bragg Reflector),包含選自氧化鋁(Al2 O3 )、二氧化矽(SiO2 )、二氧化鈦(TiO2 )、氮化鋁(AlN)等化合物的疊層組合。接著,移除多餘的金屬氧化物透明導電層140,使金屬氧化物透明導電層140包覆n型電極130a。As shown in FIG. 1E, the subsequent processing steps of the surfaces of the n-type electrodes 130a and 130b may be the same or different for the subsequent fabrication of different semiconductor light-emitting elements. In the present embodiment, the metal oxide transparent conductive layer 140 is deposited by a technique such as chemical vapor deposition (CVD) or physical vapor deposition (PVD) at a position on the surface of the semiconductor epitaxial layer 110. Next, a reflective layer 150 is formed on a portion of the surface of the metal oxide transparent conductive layer 140. The material of the metal oxide transparent conductive layer 140 is, for example, indium tin oxide (ITO), indium zinc oxide (IZO), indium oxide (InO), tin oxide (SnO), tin oxide fluoride (FTO), antimony tin oxide. (ATO), cadmium tin oxide (CTO), zinc aluminum oxide (AZO), cadmium-doped zinc oxide (GZO) or the like or a combination thereof; the material of the reflective layer 150 is, for example, a metal, including gold (Au), silver (Ag) ), copper (Cu), chromium (Cr), aluminum (Al), platinum (Pt), nickel (Ni), titanium (Ti), tin (Sn), bismuth (Be), etc., alloys or laminate combinations thereof Or a distributed Bragg Reflector comprising a stack of compounds selected from the group consisting of alumina (Al 2 O 3 ), cerium oxide (SiO 2 ), titanium dioxide (TiO 2 ), and aluminum nitride (AlN) Layer combination. Next, the excess metal oxide transparent conductive layer 140 is removed, and the metal oxide transparent conductive layer 140 is coated with the n-type electrode 130a.

為了達到半導體疊層完全電性分離的效果,在本實施例中,於轉移半導體磊晶疊層前,先透過乾蝕刻方式將第一磊晶單元201與第二磊晶單元202自第一承載基板20以上彼此完全分離,其側視圖如第1F圖所示。In order to achieve the effect of the complete electrical separation of the semiconductor stack, in the embodiment, the first epitaxial unit 201 and the second epitaxial unit 202 are self-contained by the dry etching method before transferring the semiconductor epitaxial stack. The substrates 20 are completely separated from each other, and their side views are as shown in Fig. 1F.

具體而言,例如以反應性離子蝕刻(Reactive Ion Etching, RIE)、誘導式耦合電漿(Inductively Coupled Plasma, ICP)、電漿(Plasma Etching, PE)等乾蝕刻方式,透過圖案化光阻層(圖未示)以垂直於第一承載基板20表面方向自n型半導體層112將半導體磊晶疊層110分隔為兩個不同的第一磊晶單元與第二磊晶單元。本實施例中,第一承載基板20上包含兩種不同表面積與幾何形狀的第一磊晶單元201與第二磊晶單元202,其中第一磊晶單元201如第1G圖所示具有p型電極120a與n型電極130a,第二磊晶單元202如第1H圖所示具有p型電極120b與n型電極130b。Specifically, the patterned photoresist layer is transparently etched by, for example, reactive ion etching (RIE), inductively coupled plasma (ICP), or plasma etching (PE). (not shown) The semiconductor epitaxial stack 110 is separated from the n-type semiconductor layer 112 into two different first epitaxial cells and a second epitaxial cell in a direction perpendicular to the surface direction of the first carrier substrate 20. In this embodiment, the first carrier substrate 20 includes two first epitaxial cells 201 and a second epitaxial cell 202 of different surface areas and geometries, wherein the first epitaxial cell 201 has a p-type as shown in FIG. 1G. The electrode 120a and the n-type electrode 130a, and the second epitaxial unit 202 have a p-type electrode 120b and an n-type electrode 130b as shown in FIG. 1H.

此外,自第7圖所示之上視圖觀之,第二磊晶單元202大致圍繞第一磊晶單元201。其中,再如第1F圖所示,為增加半導體發光發光元件的出光效率,可以將第一磊晶單元201及/或第二磊晶單元202的n型半導體層112部分表面依需求利用例如乾蝕刻或濕蝕刻的方式進行粗化;後續,透過光罩圖案(例如為圖案化光阻,圖未示),在第一承載基板20上相對應於未來要進行二次轉移部份,即相對應第二磊晶單元202的位置的n型半導體層112表面以塗佈(spin coating)或沉積(deposition)的方式形成圖案化第二黏著層230。Further, from the top view shown in FIG. 7, the second epitaxial unit 202 substantially surrounds the first epitaxial unit 201. Further, as shown in FIG. 1F, in order to increase the light-emitting efficiency of the semiconductor light-emitting device, the surface of the portion of the n-type semiconductor layer 112 of the first epitaxial unit 201 and/or the second epitaxial unit 202 may be utilized, for example, as needed. Roughening is performed by etching or wet etching; subsequently, through the mask pattern (for example, patterned photoresist, not shown), the second transfer portion corresponding to the future is required on the first carrier substrate 20, that is, the phase The surface of the n-type semiconductor layer 112 corresponding to the position of the second epitaxial unit 202 is patterned to form a patterned second adhesive layer 230 in a spin coating or deposition manner.

再準備第二承載基板30。以加熱及/或加壓的方式將第二磊晶單元202藉由圖案化第二黏著層230黏著於第二承載基板30之上。接著,以雷射光自第一承載基板20方向照射致能並溶解存在於第一承載基板20與p型半導體層116之間的第一黏著層135後,轉移第二磊晶單元202的部分至第二承載基板30上。將第二磊晶單元202黏著至第二承載基板30上後,再以乾蝕刻或濕蝕刻方式清除殘餘在第二承載基板30上第二磊晶單元202表面的第一黏著層135,如第1G圖與第1H圖所示,以形成第一承載基板20與第一磊晶單元201以及第二承載基板30與第二磊晶單元202(其上視圖分別如第3A圖及第4A圖所示)。於本實施例中,如第4A圖的上視圖所示,第二磊晶單元202呈U型的排列。其中,第一承載基板20與第一磊晶單元201後續將再形成半導體發光發光元件200,而第二承載基板30與第二磊晶單元202後續則將再形成半導體發光元件300(其上視圖分別如第3C圖及第4C圖所示)。The second carrier substrate 30 is prepared. The second epitaxial unit 202 is adhered to the second carrier substrate 30 by patterning the second adhesive layer 230 in a heated and/or pressurized manner. Then, after the laser light is irradiated from the first carrier substrate 20 to dissolve and dissolve the first adhesive layer 135 existing between the first carrier substrate 20 and the p-type semiconductor layer 116, the portion of the second epitaxial unit 202 is transferred to The second carrier substrate 30 is on. After the second epitaxial unit 202 is adhered to the second carrier substrate 30, the first adhesive layer 135 remaining on the surface of the second epitaxial unit 202 on the second carrier substrate 30 is removed by dry etching or wet etching. 1G and 1H are shown to form the first carrier substrate 20 and the first epitaxial unit 201 and the second carrier substrate 30 and the second epitaxial unit 202 (the upper views thereof are as shown in FIGS. 3A and 4A, respectively) Show). In the present embodiment, as shown in the upper view of FIG. 4A, the second epitaxial cells 202 are arranged in a U-shape. The first carrier substrate 20 and the first epitaxial unit 201 will be further formed with the semiconductor light emitting device 200, and the second carrier substrate 30 and the second epitaxial unit 202 will be further formed with the semiconductor light emitting device 300 (the upper view thereof) These are shown in Figures 3C and 4C, respectively.

在本實施例中,如上所述,分離第二磊晶單元202與第一承載基板20的方式例如是以雷射照射溶解第一黏著層135的方式。除此之外,也可以選擇性地使用與第一承載基板20黏著力較低的材質作為第一黏著層135(例如為二氧化矽(SiO2 ))。後續僅須透過於要進行二次轉移的第二磊晶單元202表面部分位置設置圖案化第二黏著層230,並選擇性地將第二磊晶單元202黏著於第二承載基板30表面後,再以物理的機械力即可將第二磊晶單元202自第一承載基板20上分離。In the present embodiment, as described above, the manner in which the second epitaxial unit 202 and the first carrier substrate 20 are separated is, for example, a manner in which the first adhesive layer 135 is dissolved by laser irradiation. In addition to this, a material having a lower adhesion to the first carrier substrate 20 may be selectively used as the first adhesive layer 135 (for example, cerium oxide (SiO 2 )). Subsequently, the patterned second adhesive layer 230 is disposed through the surface portion of the second epitaxial unit 202 to be subjected to the second transfer, and the second epitaxial unit 202 is selectively adhered to the surface of the second carrier substrate 30. The second epitaxial unit 202 can be separated from the first carrier substrate 20 by physical mechanical force.

接著,第2A圖至第2H圖所示為依本發明另一實施例所示之半導體發光元件的製作方法。Next, FIGS. 2A to 2H are views showing a method of fabricating a semiconductor light emitting element according to another embodiment of the present invention.

首先,參考第2A圖,以傳統的磊晶成長製程,在一成長基板210上依序形成n型半導體層2112,活性層2114,以及p型半導體層2116等半導體磊晶疊層2110。在本實施例中,成長基板210的材質為砷化鎵(GaAs)。除了砷化鎵(GaAs)基板之外,成長基板210的材質亦可包含但不限於鍺(germanium, Ge)、磷化銦(indium phosphide, InP)、藍寶石(sapphire, Al2O3)、碳化矽(silicon carbide, SiC)、矽(silicon, Si)、鋁酸鋰(lithium aluminum oxide, LiAlO2)、氧化鋅(zinc oxide, ZnO)、氮化鎵(gallium nitride, GaN)、氮化鋁(aluminum nitride, AlN)。在本實施例中,n型半導體層2112的材質例如為磷化鋁鎵銦(AlGaInP),除了磷化鋁鎵銦之外,n型半導體層2112的材質可不限於此;p型半導體層2116的材質例如為磷化鎵(GaP),除了磷化鎵之外,p型半導體層2116的材質可不限於此;活性層2114的材質常用的材料為磷化鋁鎵銦(aluminum gallium indium phosphide, AlGaInP)系列、氮化鋁鎵銦(aluminum gallium indium nitride, AlGaInN) 系列、氧化鋅系列(zinc oxide, ZnO),其結構可為單異質結構(single heterostructure, SH ),雙異質結構(double heterostructure, DH ),雙側雙異質結( double-side double heterostructure, DDH ),多層量子井(multi-quantum well, MWQ ) 。具體來說,活性層2114可為中性、p型或n型電性的半導體。施以電流通過半導體磊晶疊層2110時,活性層2114會發光。當活性層2114以磷化鋁銦鎵(AlGaInP)為基礎的材料時,會發出紅、橙、黃光之琥珀色系的光;當以氮化鋁鎵銦(AlGaInN)為基礎的材料時,會發出藍或綠光。。除此之外,半導體磊晶疊層2110中更可以依不同功能包含其他半導體層。First, referring to FIG. 2A, a semiconductor epitaxial laminate 2110 such as an n-type semiconductor layer 2112, an active layer 2114, and a p-type semiconductor layer 2116 is sequentially formed on a growth substrate 210 by a conventional epitaxial growth process. In the present embodiment, the material of the growth substrate 210 is gallium arsenide (GaAs). In addition to the gallium arsenide (GaAs) substrate, the material of the growth substrate 210 may include, but is not limited to, germanium (Ge), indium phosphide (InP), sapphire (Al2O3), silicon carbide (silicon). Carbide, SiC), silicon (Si), lithium aluminum oxide (LiAlO2), zinc oxide (ZnO), gallium nitride (GaN), aluminum nitride (AlN) ). In this embodiment, the material of the n-type semiconductor layer 2112 is, for example, aluminum gallium indium phosphide (AlGaInP), and the material of the n-type semiconductor layer 2112 may be not limited thereto except for aluminum gallium indium phosphide; the p-type semiconductor layer 2116 The material is, for example, gallium phosphide (GaP). The material of the p-type semiconductor layer 2116 is not limited thereto except for gallium phosphide; the material commonly used for the active layer 2114 is aluminum gallium indium phosphide (AlGaInP). Series, aluminum gallium indium nitride (AlGaInN) series, zinc oxide (ZnO), the structure can be single heterostructure (SH), double heterostructure (DH) , double-side double heterostructure (DDH), multi-quantum well (MWQ). In particular, the active layer 2114 can be a neutral, p-type or n-type semiconductor. When an electric current is applied through the semiconductor epitaxial laminate 2110, the active layer 2114 emits light. When the active layer 2114 is made of an aluminum indium gallium phosphide (AlGaInP)-based material, red, orange, and yellow amber light is emitted; when an aluminum gallium indium nitride (AlGaInN) based material is used, Blue or green light. . In addition, the semiconductor epitaxial laminate 2110 may further comprise other semiconductor layers according to different functions.

接著,參照第2B圖,以黃光微影製程技術在p型半導體層2116上以濺鍍(sputtering)、熱蒸鍍(thermal deposition)、或電鍍(electroplating)等方式形成圖案化的p型電極2120a與2120b。其中,p型電極2120a與2120b的材質較佳例如可以是金屬,例如金(Au)、銀(Ag)、銅(Cu)、鉻(Cr)、鋁(Al)、鉑(Pt)、鎳(Ni)、鈦(Ti)、錫(Sn)等,其合金或其疊層組合。Next, referring to FIG. 2B, the patterned p-type electrode 2120a is formed on the p-type semiconductor layer 2116 by sputtering, thermal deposition, or electroplating by a yellow lithography process technique. 2120b. The material of the p-type electrodes 2120a and 2120b is preferably, for example, a metal such as gold (Au), silver (Ag), copper (Cu), chromium (Cr), aluminum (Al), platinum (Pt), or nickel ( Ni), titanium (Ti), tin (Sn), etc., alloys thereof or a combination thereof.

p型電極2120a與2120b形成後,如第2C圖所示,準備一第一承載基板220,在第一承載基板220的表面上以黃光微影製程技術形成一圖案化犧牲層2123。圖案化犧牲層2123配置的位置係對應於未來要再進行二次轉移的第二磊晶單元的位置。接著,再以塗佈(spin coating)或沉積(deposition)的方式形成一第一黏著層2135。透過第一黏著層2135將半導體磊晶疊層2110黏著至第一承載基板220上。其中,製程步驟可以是將第一黏著層2135塗佈於第一承載基板220的表面上,並覆蓋圖案化犧牲層2123的上表面,也可以是將第一黏著層2135塗佈在p型半導體層2116的表面上,並覆蓋p型電極2120a與2120b的上表面。再以加熱及/或加壓的方式將半導體磊晶疊層2110與第一承載基板220相互接合。最後,再透過濕蝕刻或雷射舉離(laser lift-off)的方式去除成長基板210,便形成如第2C圖所示的半成品結構。After the p-type electrodes 2120a and 2120b are formed, as shown in FIG. 2C, a first carrier substrate 220 is prepared, and a patterned sacrificial layer 2123 is formed on the surface of the first carrier substrate 220 by a yellow lithography process. The position at which the patterned sacrificial layer 2123 is disposed corresponds to the position of the second epitaxial unit to be further transferred in the future. Next, a first adhesive layer 2135 is formed by spin coating or deposition. The semiconductor epitaxial laminate 2110 is adhered to the first carrier substrate 220 through the first adhesive layer 2135. The process step may be that the first adhesive layer 2135 is coated on the surface of the first carrier substrate 220 and covers the upper surface of the patterned sacrificial layer 2123, or the first adhesive layer 2135 may be coated on the p-type semiconductor. The surface of layer 2116 covers the upper surface of p-type electrodes 2120a and 2120b. The semiconductor epitaxial laminate 2110 and the first carrier substrate 220 are bonded to each other by heating and/or pressurization. Finally, the growth substrate 210 is removed by wet etching or laser lift-off to form a semi-finished structure as shown in FIG. 2C.

其中,第一承載基板220並不限定為單一材料,亦可以是由不同材料組合而成的複合式基板。例如:第一承載基板220可以包含兩個相互接合的第一基板與第二基板(圖未示)。本實施例中,第一承載基板220的材質為藍寶石(sapphire, Al2 O3 )。然而,第一承載基板220的材質亦可以包含但不限於鋁酸鋰(lithium aluminum oxide, LiAlO2 )、氧化鋅(zinc oxide, ZnO)、磷化鎵(gallium nitride, GaP)、玻璃(Glass)、有機高分子板材、氮化鋁(aluminum nitride, AlN)。如第2C圖中所示,為增加後續透過此半導體磊晶疊層2110製成的半導體發光元件的出光效率,p型半導體層2116部分表面依需求可以利用例如乾蝕刻或濕蝕刻的方式進行粗化。The first carrier substrate 220 is not limited to a single material, and may be a composite substrate composed of different materials. For example, the first carrier substrate 220 may include two first substrates and a second substrate (not shown) that are bonded to each other. In this embodiment, the material of the first carrier substrate 220 is sapphire (Al 2 O 3 ). However, the material of the first carrier substrate 220 may also include, but is not limited to, lithium aluminum oxide (LiAlO 2 ), zinc oxide (ZnO), gallium nitride (GaP), glass (Glass). , organic polymer sheet, aluminum nitride (AlN). As shown in FIG. 2C, in order to increase the light-emitting efficiency of the semiconductor light-emitting element subsequently formed through the semiconductor epitaxial layer 2110, the surface of the p-type semiconductor layer 2116 may be roughened by, for example, dry etching or wet etching. Chemical.

半導體磊晶疊層2110轉移至第一承載基板220後,同樣的,可以在裸露的n型半導體層2112表面以黃光微影製程技術例如濺鍍(sputtering)、熱蒸鍍(thermal deposition)、或電鍍(electroplating)等方式形成圖案化n型電極2130a與2130b,如第2D圖所示。其中,n型電極2130a與2130b的材質較佳例如可以是金屬,例如金(Au)、銀(Ag)、銅(Cu)、鉻(Cr)、鋁(Al)、鉑(Pt)、鎳(Ni)、鈦(Ti)、錫(Sn)等,其合金或其疊層組合。After the semiconductor epitaxial layer 2110 is transferred to the first carrier substrate 220, similarly, the surface of the exposed n-type semiconductor layer 2112 may be subjected to a yellow lithography process such as sputtering, thermal deposition, or plating. The patterned n-type electrodes 2130a and 2130b are formed by electroplating or the like as shown in FIG. 2D. The material of the n-type electrodes 2130a and 2130b is preferably, for example, a metal such as gold (Au), silver (Ag), copper (Cu), chromium (Cr), aluminum (Al), platinum (Pt), or nickel ( Ni), titanium (Ti), tin (Sn), etc., alloys thereof or a combination thereof.

如第2E圖所示,為了後續不同半導體發光元件的製作,n型電極2130a與2130b表面後續的製程步驟可以相同或是不相同。本實施例中,在半導體磊晶疊層2110表面的位置上,以化學氣相沉積方式(CVD)、物理氣相沉積方式(PVD)等技術於n型半導體層2112部分表面再沉積形成金屬氧化物透明導電層2140或/及反射層2150。其中,金屬氧化物透明導電層2140的材質例如是氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化銦(InO)、氧化錫(SnO)、氧化錫氟(FTO)、銻錫氧化物(ATO)、鎘錫氧化物(CTO)、氧化鋅鋁(AZO)、掺鎘氧化鋅(GZO)等材料或其組合;反射層2150的材質例如包含金(Au)、銀(Ag)、銅(Cu)、鉻(Cr)、鋁(Al)、鉑(Pt)、鎳(Ni)、鈦(Ti)、錫(Sn)、鈹(Be)等,其合金或其層疊組合。As shown in FIG. 2E, the subsequent processing steps of the surfaces of the n-type electrodes 2130a and 2130b may be the same or different for the subsequent fabrication of different semiconductor light-emitting elements. In this embodiment, at the position of the surface of the semiconductor epitaxial layer 2110, metal oxide is redeposited on the surface of the n-type semiconductor layer 2112 by chemical vapor deposition (CVD), physical vapor deposition (PVD) or the like. The transparent conductive layer 2140 or/and the reflective layer 2150. The material of the metal oxide transparent conductive layer 2140 is, for example, indium tin oxide (ITO), indium zinc oxide (IZO), indium oxide (InO), tin oxide (SnO), tin oxide fluoride (FTO), antimony tin oxide. (ATO), cadmium tin oxide (CTO), zinc aluminum oxide (AZO), cadmium-doped zinc oxide (GZO) or other materials or combinations thereof; the material of the reflective layer 2150 includes, for example, gold (Au), silver (Ag), copper (Cu), chromium (Cr), aluminum (Al), platinum (Pt), nickel (Ni), titanium (Ti), tin (Sn), bismuth (Be), etc., alloys thereof or a combination thereof.

為了進行後續半導體疊層的選擇性分離,在本實施例中,於轉移半導體磊晶疊層前,先透過乾蝕刻方式將要相互分離的第一磊晶單元2201與第二磊晶單元2202自第一承載基板220以上彼此完全分離,包含分隔第一黏著層2135與圖案化犧牲層2123,其側視圖如第2F圖所示。In order to perform selective separation of the subsequent semiconductor layers, in the present embodiment, the first epitaxial unit 2201 and the second epitaxial unit 2202 are separated from each other by dry etching before transferring the semiconductor epitaxial layer. A carrier substrate 220 is completely separated from each other, including a first adhesive layer 2135 and a patterned sacrificial layer 2123, the side view of which is shown in FIG. 2F.

具體而言,可以反應性離子蝕刻(Reactive Ion Etching, RIE)、誘導式耦合電漿(Inductively Coupled Plasma, ICP)、電漿(Plasma Etching, PE)等乾蝕刻方式,透過圖案化光阻層(圖未示)以垂直於第一承載基板220表面方向自n型半導體層2112將半導體磊晶疊層2110分隔為兩個不同的第一磊晶單元2201與第二磊晶單元2202。本實施例中,第一承載基板220上包含兩種不同表面積與幾何形狀的第一磊晶單元2201與第二磊晶單元2202,其中第一磊晶單元2201具有p型電極2120a與n型電極2130a,第二磊晶單元2202具有p型電極2120b與n型電極2130b。Specifically, the patterned photoresist layer can be transmitted through a dry etching method such as reactive ion etching (RIE), inductively coupled plasma (ICP), or plasma etching (PE). The semiconductor epitaxial layer 2110 is separated from the n-type semiconductor layer 2112 into two different first epitaxial cells 2201 and second epitaxial cells 2202 in a direction perpendicular to the surface direction of the first carrier substrate 220. In this embodiment, the first carrier substrate 220 includes two first epitaxial cells 2201 and a second epitaxial cell 2202 having different surface areas and geometries, wherein the first epitaxial cell 2201 has a p-type electrode 2120a and an n-type electrode. 2130a, the second epitaxial unit 2202 has a p-type electrode 2120b and an n-type electrode 2130b.

其中,如第2F圖所示,為增加半導體發光元件的出光效率,可以將第一磊晶單元2201及/或第二磊晶單元2202的n型半導體層2112部分表面依需求利用例如乾蝕刻或濕蝕刻的方式進行粗化;後續,再透過光罩圖案(例如為圖案化光阻,圖未示),在第一承載基板220上半導體磊晶疊層於未來要進行二次轉移的部份,即對應於具有圖案化犧牲層2123的第二磊晶單元2202的n型半導體層2112表面位置設置圖案化第二黏著層2230;當然,也可以是將圖案化第二黏著層2230以塗佈(spin coating)或沉積(deposition)的方式圖案化地形成在後續要承載第二磊晶單元2202的第二承載基板230的部分表面上。As shown in FIG. 2F, in order to increase the light-emitting efficiency of the semiconductor light-emitting device, the surface of the portion of the n-type semiconductor layer 2112 of the first epitaxial unit 2201 and/or the second epitaxial unit 2202 may be dry-etched or Wet etching is performed in a wet etching manner; subsequently, through a mask pattern (for example, patterned photoresist, not shown), a semiconductor epitaxial layer is laminated on the first carrier substrate 220 in a portion to be transferred in the future. That is, the second adhesive layer 2230 is disposed at a surface position corresponding to the surface of the n-type semiconductor layer 2112 of the second epitaxial unit 2202 having the patterned sacrificial layer 2123; of course, the patterned second adhesive layer 2230 may be coated. A spin coating or a deposition is patterned on a portion of the surface of the second carrier substrate 230 to be subsequently carried by the second epitaxial unit 2202.

在本實施例中,圖案化第二黏著層2230的材質可以是有機材料,例如丙烯酸(Acrylic acid)、不飽和聚酯環氧樹脂(Unsaturated polyester)、環氧樹脂(Epoxy)、氧雜環丁烷(Oxetane)、乙烯醚(Vinyl ether)、尼龍(Nylon)、聚丙烯(PP)、聚對苯二甲酸丁二醇酯(PBT)、聚苯醚(PPO)、聚碳酸酯(PC)、丙烯腈-丁二烯-苯乙烯(ABS)、聚氯乙烯(PVC)等;可以是金屬,例如鈦(Ti)、金(Au)、鈹(Be)、鎢(W)、鋁(Al)、鍺(Ge)、銅(Cu)等或其組合;可以是金屬氧化物,例如銦錫氧化物(ITO)、鎘錫氧化物(CTO)、銻氧化錫、氧化銦鋅、氧化鋅鋁、鋅錫氧化物、氧化鋅(ZnO)、氧化矽(SiOx )等;也可以是氮化物,例如氮化矽(SiNx )等。In this embodiment, the material of the patterned second adhesive layer 2230 may be an organic material such as Acrylic acid, Unsaturated polyester, Epoxy, and oxirane. Oxetane, Vinyl ether, Nylon, Polypropylene (PP), Polybutylene Terephthalate (PBT), Polyphenylene Ether (PPO), Polycarbonate (PC), Acrylonitrile-butadiene-styrene (ABS), polyvinyl chloride (PVC), etc.; may be metals such as titanium (Ti), gold (Au), beryllium (Be), tungsten (W), aluminum (Al) , germanium (Ge), copper (Cu), or the like, or a combination thereof; may be a metal oxide such as indium tin oxide (ITO), cadmium tin oxide (CTO), antimony tin oxide, indium zinc oxide, zinc aluminum oxide, Zinc tin oxide, zinc oxide (ZnO), yttrium oxide (SiO x ), etc.; may also be a nitride such as tantalum nitride (SiN x ).

接著,準備第二承載基板230,如同與上述相似的方式,以加熱及/或加壓的方式將第二磊晶單元2202藉由圖案化第二黏著層2230設置於第二承載基板230之上。接著,再以乾蝕刻、濕蝕刻、機械力分離、UV光照射、加熱等方式移除圖案化犧牲層2123或減少圖案化犧牲層2123的黏著力後,將第二磊晶單元2202轉移至第二承載基板230之上。Next, the second carrier substrate 230 is prepared, and the second epitaxial unit 2202 is disposed on the second carrier substrate 230 by patterning the second adhesive layer 2230 in a heating and/or pressure manner in a manner similar to the above. . Then, after removing the patterned sacrificial layer 2123 or reducing the adhesion of the patterned sacrificial layer 2123 by dry etching, wet etching, mechanical force separation, UV light irradiation, heating, or the like, the second epitaxial unit 2202 is transferred to the first The second carrier substrate 230 is over.

最後,再以乾蝕刻或濕蝕刻方式清除殘餘在第二承載基板230上第二磊晶單元2202表面的第一黏著層2135及/或圖案化犧牲層2123後,如第2G圖與第2H圖所示,形成第一承載基板220與第一磊晶單元2201以及第二承載基板230與第二磊晶單元2202(其上視圖分別如第3A圖及第4A圖所示)。其中,第一承載基板220與第一磊晶單元2201後續將再形成半導體發光元件200,而第二承載基板230與第二磊晶單元2202後續則將再形成半導體發光元件300(其上視圖分別如第3C圖及第4C圖所示)。Finally, after removing the first adhesive layer 2135 and/or the patterned sacrificial layer 2123 remaining on the surface of the second epitaxial unit 2202 on the second carrier substrate 230 by dry etching or wet etching, as shown in FIG. 2G and FIG. As shown, the first carrier substrate 220 and the first epitaxial unit 2201 and the second carrier substrate 230 and the second epitaxial unit 2202 are formed (the upper views thereof are shown in FIGS. 3A and 4A, respectively). The first carrier substrate 220 and the first epitaxial unit 2201 will be further formed with the semiconductor light emitting device 200, and the second carrier substrate 230 and the second epitaxial unit 2202 will be further formed with the semiconductor light emitting device 300 (the upper view thereof is respectively As shown in Figures 3C and 4C).

在本實施例中,圖案化犧牲層2123的材質可以是金屬,例如鈦(Ti)、金(Au)、銀(Ag)、鎢(W)、鋁(Al)、鉻(Cr)、銅(Cu)、鉑(Pt)等或其組合;可以是UV解離膠;也可以是介電材料,例如氧化矽(SiOx )、氮化矽(SiNx )等。如上所述,後續可藉由乾蝕刻、濕蝕刻、UV光照射等方式移除圖案化犧牲層2123或利用加熱減少圖案化犧牲層2123與第一承載基板220之間的黏著力,再利用機械力分離的方式將第二磊晶單元2202與第一承載基板220分離。In this embodiment, the material of the patterned sacrificial layer 2123 may be a metal such as titanium (Ti), gold (Au), silver (Ag), tungsten (W), aluminum (Al), chromium (Cr), copper ( Cu), platinum (Pt) and the like, or combinations thereof; dissociation may be UV glue; may also be a dielectric material such as silicon oxide (SiO x), silicon nitride (SiN x) and the like. As described above, the patterned sacrificial layer 2123 may be removed by dry etching, wet etching, UV light irradiation, or the like, or the adhesion between the patterned sacrificial layer 2123 and the first carrier substrate 220 may be reduced by heating, and the mechanical mechanism may be reused. The second epitaxial unit 2202 is separated from the first carrier substrate 220 by force separation.

在上述的實施例之中,半導體發光元件200例如為覆晶(Flip Chip)式發光二極體元件,其側視圖與上視圖如第3B與第3C圖所示。如第3B圖所示,為了形成覆晶式發光二極體元件200的兩個延伸電極130a’與130a”,以反應性離子蝕刻(Reactive Ion Etching, RIE)、誘導式耦合電漿(Inductively Coupled Plasma, ICP)、電漿(Plasma Etching, PE)等乾蝕刻方式,透過光罩圖案(例如為圖案化光阻,圖未示),以垂直於第一承載基板20表面方向自n型半導體層112(2112)將半導體磊晶疊層110(2110)蝕刻出一導電通孔134貫通至p型電極120a(2120a),在導電通孔134的側壁以化學氣相沉積方式(CVD)、物理氣相沉積方式(PVD)等技術沉積形成絕緣層132以與半導體層形成電性絕緣後,在導電通孔134中形成金屬導電結構,以形成延伸至n型半導體層112表面之p型延伸電極130a’,可與n型電極130a(2130a)上方同一步驟形成的n型延伸電極130a”組合構成覆晶式發光二極體元件200的兩個延伸電極。當覆晶式發光二極體元件200以覆晶方式電性連結於外部電子元件(例如為印刷電路板)時,為了使整體結構間的連結具有較佳的信賴性與穩定性,較佳的情況下,可以透過結構設計,使位於第一磊晶單元201同一側的n型延伸電極130a” 的外表面a與p型延伸電極130a’的外表面b位於同一水平面高度上。In the above-described embodiment, the semiconductor light emitting element 200 is, for example, a flip chip type light emitting diode element, and its side view and top view are as shown in FIGS. 3B and 3C. As shown in FIG. 3B, in order to form the two extension electrodes 130a' and 130a" of the flip-chip light-emitting diode element 200, reactive ion etching (RIE), inductively coupled plasma (Inductively Coupled) Dry etching method such as plasma, ICP), plasma etching (PE), etc., through a mask pattern (for example, patterned photoresist, not shown), from the surface of the first carrier substrate 20 from the n-type semiconductor layer 112 (2112) etching the semiconductor epitaxial layer 110 (2110) through a conductive via 134 to the p-type electrode 120a (2120a), and chemical vapor deposition (CVD), physical gas on the sidewall of the conductive via 134 After the deposition of the insulating layer 132 to form an insulating layer 132 to form a dielectric insulating structure, a metal conductive structure is formed in the conductive via 134 to form a p-type extending electrode 130a extending to the surface of the n-type semiconductor layer 112. The n-type extension electrode 130a" formed in the same step as above the n-type electrode 130a (2130a) is combined to constitute the two extension electrodes of the flip-chip light-emitting diode element 200. When the flip-chip LED device 200 is electrically connected to an external electronic component (for example, a printed circuit board) by flip chip, it is preferable to have better reliability and stability in connection between the entire structures. In this case, the outer surface a of the n-type extension electrode 130a" on the same side of the first epitaxial unit 201 and the outer surface b of the p-type extension electrode 130a' can be located at the same level by the structural design.

在上述的實施例中,轉移至第二承載基板30上形成的半導體發光元件300例如為高壓(high voltage)式單晶片發光二極體元件,其側視圖與上視圖如第4B與第4C圖所示。為了清楚表達高壓(high voltage)式單晶片發光二極體元件300的製作過程,以下再分別以第4A圖、第5A圖、第5B圖、第4B圖及第4C圖描述其依序的製程步驟及結構。In the above embodiment, the semiconductor light emitting element 300 formed on the second carrier substrate 30 is, for example, a high voltage single-wafer light-emitting diode element, and its side view and top view are as shown in FIGS. 4B and 4C. Shown. In order to clearly express the manufacturing process of the high voltage single-chip light-emitting diode element 300, the sequential processes are described in the following sections 4A, 5A, 5B, 4B, and 4C, respectively. Steps and structure.

首先,請先參照第4A圖,當第二磊晶單元202(2202)轉移至第二承載基板30(230)後,由於p型電極120b(2120b)在形成半導體磊晶疊層110(2110)於成長基板10(210)後即直接製作於p型半導體層116(2116)上;而n型電極130b(2130b)在第一次基板轉移後即直接製作於n型半導體層112(2112)上;因此,當第二磊晶單元202(2202)轉移至第二承載基板30(230),n型電極130b(2130b)會埋在n型半導體層112(2112)下面(此處以虛線表示)。此時,第二磊晶單元202(2202)表面具有p型電極120b(2120b),而圖案化第二黏著層230(2230)則覆蓋第二磊晶單元202(2202)及p型電極120b(2120b)的表面。First, referring to FIG. 4A, after the second epitaxial unit 202 (2202) is transferred to the second carrier substrate 30 (230), the p-type electrode 120b (2120b) is formed in the semiconductor epitaxial layer 110 (2110). Immediately after the growth of the substrate 10 (210), the p-type semiconductor layer 116 (2116) is formed; and the n-type electrode 130b (2130b) is directly formed on the n-type semiconductor layer 112 (2112) after the first substrate transfer. Therefore, when the second epitaxial unit 202 (2202) is transferred to the second carrier substrate 30 (230), the n-type electrode 130b (2130b) is buried under the n-type semiconductor layer 112 (2112) (herein indicated by a broken line). At this time, the surface of the second epitaxial unit 202 (2202) has a p-type electrode 120b (2120b), and the patterned second adhesive layer 230 (2230) covers the second epitaxial unit 202 (2202) and the p-type electrode 120b ( 2120b) surface.

接著,如第5A圖所示,除去第二磊晶單元202(2202)及p型電極表面的圖案化第二黏著層230(2230)後,再以反應性離子蝕刻(Reactive Ion Etching, RIE)、誘導式耦合電漿(Inductively Coupled Plasma, ICP)、電漿(Plasma Etching, PE)等乾蝕刻方式將第二磊晶單元202(2202)分割為複數第三磊晶單元202’。此時,會裸露出部份第三磊晶單元202’下方的n型電極130b’ (此處以斜線表示)。接著,再以圖案化製程在第三磊晶單元202’部分表面及相鄰第三磊晶單元202’間的側壁以化學氣相沉積(CVD)、物理氣相沉積(PVD)等技術沉積形成絕緣層232以與第三磊晶單元202’中其他電性半導體層形成電性絕緣。在本製程步驟中,兩個相鄰第三磊晶單元202’間的側視結構如第5B圖所示。在本實施例中,絕緣層232的材質為二氧化矽(SiO2 ),除了二氧化矽之外,絕緣層232的材質可包含氮化矽(SiNx )、氧化鋁(Al2 O3 )、氮化鋁(AlNx )或其組合。Next, as shown in FIG. 5A, the second epitaxial unit 202 (2202) and the patterned second adhesive layer 230 (2230) on the surface of the p-type electrode are removed, and then reactive ion etching (Reactive Ion Etching, RIE) is performed. The second epitaxial unit 202 (2202) is divided into a plurality of third epitaxial cells 202' by dry etching such as Inductively Coupled Plasma (ICP) or Plasma Etching (PE). At this time, the n-type electrode 130b' (shown by oblique lines here) under part of the third epitaxial unit 202' is exposed. Then, the sidewall between the surface of the third epitaxial unit 202' and the adjacent third epitaxial unit 202' is deposited by a chemical vapor deposition (CVD) or physical vapor deposition (PVD) process in a patterning process. The insulating layer 232 is electrically insulated from other electrical semiconductor layers in the third epitaxial unit 202'. In the process step, the side view structure between two adjacent third epitaxial cells 202' is as shown in FIG. 5B. In this embodiment, the material of the insulating layer 232 is cerium oxide (SiO 2 ). In addition to the cerium oxide, the material of the insulating layer 232 may include tantalum nitride (SiN x ), aluminum oxide (Al 2 O 3 ). Aluminum nitride (AlN x ) or a combination thereof.

接著,以黃光微影蝕刻技術在相鄰的第三磊晶單元202’間形成一金屬導電連結結構125,連結第三磊晶單元202’的n型電極130b’與相鄰第三磊晶單元202’的p型電極120b,以形成電性串聯的結構,便構成如第4B與第4C圖所示的高壓(high voltage)式單晶片發光二極體元件300。在此元件結構中,p型電極120b(2120b)與n型電極130b’分別位於第三磊晶單元202’的相反側,而元件末端的兩個第三磊晶單元202’的p型電極120b(2120b)與n型電極130b’則分別外接形成p型p型電極襯墊102b’與n型電極襯墊120b”。其中,p型電極120b(2120b)、n型電極130b’、p型電極襯墊120b’與n型電極襯墊120b”可以是和導電連結結構125在同一個步驟下一併形成。如第4C圖所示,為了增加發光二極體元件300的出光效率,本實施例中,p型電極襯墊120b’與n型電極襯墊120b”分別形成於第三磊晶單元202’之外的第二承載基板30(230)表面上,而不與第三磊晶單元202'表面相互重疊。Next, a metal conductive connection structure 125 is formed between the adjacent third epitaxial cells 202 ′ by a yellow light micro-etching technique, and the n-type electrode 130 b ′ of the third epitaxial cell 202 ′ and the adjacent third epitaxial cell 202 are connected. The p-type electrode 120b is configured to form an electrically connected series to form a high-voltage single-crystal light-emitting diode element 300 as shown in FIGS. 4B and 4C. In this element structure, the p-type electrode 120b (2120b) and the n-type electrode 130b' are respectively located on opposite sides of the third epitaxial unit 202', and the p-type electrode 120b of the two third epitaxial units 202' at the end of the element (2120b) and the n-type electrode 130b' are externally connected to form a p-type p-type electrode pad 102b' and an n-type electrode pad 120b", wherein the p-type electrode 120b (2120b), the n-type electrode 130b', and the p-type electrode The pad 120b' and the n-type electrode pad 120b" may be formed in the same step as the conductive connection structure 125. As shown in FIG. 4C, in order to increase the light-emitting efficiency of the light-emitting diode element 300, in the present embodiment, the p-type electrode pad 120b' and the n-type electrode pad 120b" are respectively formed in the third epitaxial unit 202'. The surface of the outer second carrier substrate 30 (230) does not overlap the surface of the third epitaxial unit 202'.

在本領域具有通常知識者應當理解,除了電性串聯的結構之外,相鄰的第三磊晶單元202’間亦可形成電性並聯的結構。而磊晶單元間電性連結的方式,除了透過形成於第三磊晶單元202’上的導電連結結構125之外,亦可事先在第二承載基板30(230)的表面上圖案化形成導電連結結構,再以覆晶方式將各個第三磊晶單元202’接著於第二承載基板30(230)上,並與第二承載基板表面的圖案化導電連結結構進行電性連結,亦可形成由複數個第三磊晶單元202’間電性串聯或並聯所構成的發光二極體發光元件。Those of ordinary skill in the art will appreciate that in addition to the electrically connected structures, adjacent third epitaxial cells 202' may also form electrically parallel structures. The manner of electrically connecting the epitaxial cells can be patterned to form conductive on the surface of the second carrier substrate 30 (230) in addition to the conductive connection structure 125 formed on the third epitaxial cell 202'. And connecting the third epitaxial cells 202 ′ to the second carrier substrate 30 ( 230 ) in a flip-chip manner, and electrically connecting to the patterned conductive connection structure on the surface of the second carrier substrate, or forming A light-emitting diode light-emitting element composed of a plurality of third epitaxial cells 202' electrically connected in series or in parallel.

在另外一個實施例之中,半導體發光元件200可以藉由後續的再製程形成另一種包含封裝形式的半導體發光元件400,其完成的側視圖與上視圖如第6C與第6D圖所示。為了清楚表達封裝形式的半導體發光元件400,以下再分別以第6A至第6C圖描述其依序的製程步驟及結構。In another embodiment, the semiconductor light emitting device 200 can form another semiconductor light emitting device 400 including a package form by a subsequent rework, and the completed side view and top view are as shown in FIGS. 6C and 6D. In order to clearly express the semiconductor light emitting element 400 in a package form, the sequential process steps and structure will be described below in the sixth to sixth embodiments, respectively.

在本實施例中,以半導體發光元件200為例,首先,如第6A圖所示,以塗佈(spin coating)或沉積(deposition)的方式將第一透明結構40覆蓋並包圍第二半導體發光元件200,包含包圍了構成半導體發光元件200中磊晶單元的側壁。其中,第一透明結構40相對應於第二半導體發光元件200所發出的光而言是透明的,用以封裝並增加第二半導體發光元件200的機械強度,其材質可以例如是環氧樹脂(Epoxy)、聚亞醯胺(Polyimide)、苯並環丁烯(Benzocyclobutene)、過氟環丁烷(Perfluorocyclobutane)、SU8光阻、丙烯酸樹酯(Acrylic Resin)、聚甲基丙烯酸甲酯(Polymethylmethacrylate)、聚對苯二甲酸乙二酯(Poly(ethylene terephthalate))、聚碳酸酯(Polycarbonate)、聚醚醯亞胺(Polyetherimide)、氟碳聚合物(Fluorocarbon Polymer)、玻璃(Glass)、氧化鋁(Al2 O3 )、SINR、旋塗玻璃(SOG)、鐵氟龍或上述的組合等。In the present embodiment, taking the semiconductor light emitting element 200 as an example, first, as shown in FIG. 6A, the first transparent structure 40 is covered and surrounded by the second semiconductor light by spin coating or deposition. The element 200 includes a sidewall surrounding the epitaxial unit constituting the semiconductor light emitting element 200. The first transparent structure 40 is transparent with respect to the light emitted by the second semiconductor light emitting element 200 for encapsulating and increasing the mechanical strength of the second semiconductor light emitting element 200, and the material thereof may be, for example, an epoxy resin ( Epoxy), Polyimide, Benzocyclobutene, Perfluorocyclobutane, SU8 photoresist, Acrylic Resin, Polymethylmethacrylate Poly(ethylene terephthalate), polycarbonate (Polycarbonate), polyetherimide, fluorocarbon polymer, glass, alumina Al 2 O 3 ), SINR, spin-on glass (SOG), Teflon or a combination thereof.

接著,移除部分第一透明結構40,使p型延伸電極130a’與n型延伸電極130a”的部分裸露出來,如第6B圖所示。接著,在第一透明結構40的表面與p型延伸電極130a’及n型延伸電極130a”的部分表面及側面以塗佈(spin coating)、沉積(deposition)、鋼板印刷或網版印刷的方式覆蓋一層絕緣散射層410,絕緣散射層410同時可提供散射與反射光線以及電絕緣的功能,可減少散射材料、反射材料與絕緣材料的使用,也避免材料之間因為材料特性所造成的損耗,例如熱膨脹係數或機械強度的差異,而可提高良率並降低成本,另外更可防止水氣進入第二半導體發光元件200,增加可靠度。其中,絕緣散射層410之材料可為環氧樹脂(Epoxy)、氧化矽(SiOx )、氧化鋁(Al2 O3 )、二氧化鈦(TiO2 )、矽膠(Silicone)、樹脂(Resin)或上述材料之組合,如第6C圖所示。Next, a portion of the first transparent structure 40 is removed, and a portion of the p-type extension electrode 130a' and the n-type extension electrode 130a" is exposed as shown in Fig. 6B. Next, on the surface of the first transparent structure 40 and the p-type A portion of the surface and the side surface of the extension electrode 130a' and the n-type extension electrode 130a" are covered with an insulating scattering layer 410 by spin coating, deposition, steel plate printing or screen printing, and the insulating scattering layer 410 is simultaneously Provides scattering and reflected light and electrical insulation to reduce the use of scattering materials, reflective materials and insulating materials, as well as loss due to material properties, such as differences in thermal expansion coefficient or mechanical strength. The rate and cost are reduced, and in addition, moisture is prevented from entering the second semiconductor light emitting element 200, increasing reliability. The material of the insulating scattering layer 410 may be epoxy resin (Epoxy), cerium oxide (SiO x ), aluminum oxide (Al 2 O 3 ), titanium dioxide (TiO 2 ), silicone (Silicone), resin (Resin) or the above. The combination of materials is shown in Figure 6C.

接著,以黃光微影製程技術將相對應於p型延伸電極130a’與n型延伸電極130a”位置的絕緣散射層410部分移除,以形成相對應於p型延伸電極130a’與n型延伸電極130a”的開口411與412。在這邊,值得一提的是,為了增加半導體發光元件200絕緣的效果,散射絕緣層410較佳地實施方式應包含覆蓋p型延伸電極130a’與n型延伸電極130a”的側壁與部分表面,如第6D圖所示。Then, the insulating scattering layer 410 corresponding to the position of the p-type extension electrode 130a' and the n-type extension electrode 130a" is partially removed by a yellow lithography process to form a p-type extension electrode 130a' and an n-type extension electrode. Openings 411 and 412 of 130a". Here, it is worth mentioning that, in order to increase the effect of insulating the semiconductor light emitting element 200, the preferred embodiment of the scattering insulating layer 410 should include sidewalls and partial surfaces covering the p-type extension electrode 130a' and the n-type extension electrode 130a". As shown in Figure 6D.

最後,透過化學鍍、電鍍或以光罩部分濺鍍的方式在開口411與412的地方分別形成外接的p型電極襯墊1310與n型電極襯墊1320於透明結構40及絕緣散射層410之上,便完成如第6E圖所示,具有封裝形式的半導體發光元件400。由於半導體磊晶疊層外圍具有封裝的結構,元件整體已具有較佳的抗熱性、抗濕性、及抗氧性。可透過打線或覆晶方式直接電性連接於發光裝置的電路載板上,製成後續的發光裝置,例如燈泡、背光模組、或車燈裝置等。Finally, an external p-type electrode pad 1310 and an n-type electrode pad 1320 are formed on the transparent structure 40 and the insulating scattering layer 410 at the openings 411 and 412, respectively, by electroless plating, electroplating or partial sputtering of the mask. Then, the semiconductor light emitting element 400 having the package form as shown in Fig. 6E is completed. Since the periphery of the semiconductor epitaxial layer has a package structure, the element as a whole has better heat resistance, moisture resistance, and oxidation resistance. It can be directly electrically connected to the circuit carrier of the light-emitting device through wire bonding or flip chip to form a subsequent light-emitting device, such as a light bulb, a backlight module, or a lamp device.

如第8圖所示,為半導體發光元件400的上視圖。自垂直於第一承載基板20的方向觀之(第6E圖中箭頭D方向),由第一磊晶單元201所構成的半導體發光元件200被透明結構40所包圍,而透明結構40上方覆蓋有絕緣散射層(圖未示),將部分絕緣散射層410移除後,形成的開口411與412分別位於第一磊晶單元201的上方。其中,開口411與412的上方再分別重疊有與第一磊晶單元201電性連結的p型電極襯墊1310與n型電極襯墊1320。從圖中我們可以發現,p型電極襯墊1310與n型電極襯墊1320的範圍超出第一磊晶單元201的區域。即,自垂直於第一承載基板20的方向觀之,p型電極襯墊1310與n型電極襯墊1320各有部分並未與第一磊晶單元201重疊。As shown in Fig. 8, it is a top view of the semiconductor light emitting element 400. The semiconductor light emitting element 200 composed of the first epitaxial unit 201 is surrounded by the transparent structure 40, and the transparent structure 40 is covered by the direction perpendicular to the direction of the first carrier substrate 20 (the direction of the arrow D in FIG. 6E). An insulating scattering layer (not shown) removes the partially insulating scattering layer 410, and the formed openings 411 and 412 are respectively located above the first epitaxial unit 201. The p-type electrode pad 1310 and the n-type electrode pad 1320 electrically connected to the first epitaxial unit 201 are respectively superposed on the upper sides of the openings 411 and 412. From the figure, we can find that the range of the p-type electrode pad 1310 and the n-type electrode pad 1320 is beyond the area of the first epitaxial unit 201. That is, from the direction perpendicular to the first carrier substrate 20, portions of the p-type electrode pad 1310 and the n-type electrode pad 1320 do not overlap with the first epitaxial unit 201.

上述設計可以增加金屬電極襯墊的面積。當發光二極體元件400與外部電子元件基板(例如為印刷電路板)電性連結時,可以使整體結構間的連結具有較佳的信賴性與穩定性。較佳的情況下,可以透過結構設計,使位於第一半導體磊晶疊層201同一側的n型電極襯墊1320的外表面與p型電極襯墊1310的外表面位於同一水平面高度上。The above design can increase the area of the metal electrode pad. When the LED component 400 is electrically connected to an external electronic component substrate (for example, a printed circuit board), the connection between the entire structures can be improved in reliability and stability. Preferably, the outer surface of the n-type electrode pad 1320 on the same side of the first semiconductor epitaxial layer 201 is at the same level as the outer surface of the p-type electrode pad 1310 through the structural design.

此外,n型電極襯墊1320與p型電極襯墊1310用以接受外部電壓,其材料可為金屬材料,包含但不限於銅(Cu)、錫(Sn)、金(Au)、鎳(Ni)、鈦(Ti)、鉛(Pb)、銅-錫(Cu-Sn)、銅-鋅(Cu-Zn)、銅-鎘(Cu-Cd)、錫-鉛-銻(Sn-Pb-Sb)、錫-鉛-鋅(Sn-Pb-Zn)、鎳-錫(Ni-Sn)、鎳-鈷(Ni-Co)、金合金(Au alloy)、金-銅-鎳-金(Au-Cu-Ni-Au)或上述材料之組合等。n型電極襯墊1320與p型電極襯墊1310亦可包含複數個附屬層(未顯示),具有較大面積的金屬襯墊結構對於來自發光二極體元件400的光具有70%以上的反射率,可以有效的提升發光二極體元件400的出光效率。In addition, the n-type electrode pad 1320 and the p-type electrode pad 1310 are for receiving an external voltage, and the material thereof may be a metal material, including but not limited to copper (Cu), tin (Sn), gold (Au), and nickel (Ni). ), titanium (Ti), lead (Pb), copper-tin (Cu-Sn), copper-zinc (Cu-Zn), copper-cadmium (Cu-Cd), tin-lead-bismuth (Sn-Pb-Sb) ), tin-lead-zinc (Sn-Pb-Zn), nickel-tin (Ni-Sn), nickel-cobalt (Ni-Co), gold alloy (Au alloy), gold-copper-nickel-gold (Au-) Cu-Ni-Au) or a combination of the above materials, and the like. The n-type electrode pad 1320 and the p-type electrode pad 1310 may also include a plurality of sub-layers (not shown), and the metal pad structure having a larger area has a reflection of 70% or more for the light from the LED body 400. The rate can effectively improve the light extraction efficiency of the LED component 400.

依據不同的元件需求,自垂直基板的方向觀之,磊晶單元可以具有不同的幾何形狀,在本實施例中,如第9圖所示,後續可再切割形成例如為正方形或十字形的半導體發光元件。成長基板510上的半導體磊晶疊層5110依據形狀被分隔為第一磊晶單元501與第二磊晶單元502,再分別透過前述的基板轉移方式轉移至第一承載基板520與第二承載基板530之上,如第10A圖與第10B圖所示。According to different component requirements, the epitaxial cells can have different geometries from the direction of the vertical substrate. In this embodiment, as shown in FIG. 9, the semiconductor can be further diced to form a semiconductor such as a square or a cross. Light-emitting element. The semiconductor epitaxial layer stack 5110 on the growth substrate 510 is divided into a first epitaxial unit 501 and a second epitaxial unit 502 according to the shape, and then transferred to the first carrier substrate 520 and the second carrier substrate through the substrate transfer manner. Above 530, as shown in Figures 10A and 10B.

值得注意的是,由於第一承載基板520與第二承載基板530的材質例如可以是藍寶石(sapphire, Al2 O3 )等絕緣材質,為了使後續磊晶單元接觸承載基板側的半導體層可以與裸露於磊晶單元上方側的半導體層電性連接,在承載基板的表面上(與磊晶單元之間)可以全面性地或圖案化地部分形成一層導電層,例如是一相對於半導體磊晶疊層發光波長為透明的金屬氧化物導電層(圖未示)。其中,形成透明金屬氧化物導電層的方式例如可以是化學氣相沉積方式(CVD)、物理氣相沉積方式(PVD)等技術,而透明金屬氧化物導電層的材質例如是氧化銦錫(ITO)、氧化銦鋅(IZO)、氧化銦(InO)、氧化錫(SnO)、氧化錫氟(FTO)、銻錫氧化物(ATO)、鎘錫氧化物(CTO)、氧化鋅鋁(AZO)、掺鎘氧化鋅(GZO)等材料或其組合。參照本發明前述的實施方式,透明金屬氧化物導電層亦可以做為接著層的材料,在基板轉移製程時一併製作。It is to be noted that the material of the first carrier substrate 520 and the second carrier substrate 530 may be an insulating material such as sapphire (Al 2 O 3 ), etc., in order to make the subsequent epitaxial unit contact the semiconductor layer on the carrier substrate side. The semiconductor layer exposed on the upper side of the epitaxial cell is electrically connected, and a conductive layer may be partially or partially formed on the surface of the carrier substrate (between the epitaxial cells), for example, a semiconductor epitaxial layer The laminated light-emitting wavelength is a transparent metal oxide conductive layer (not shown). The transparent metal oxide conductive layer may be formed by a technique such as chemical vapor deposition (CVD) or physical vapor deposition (PVD), and the transparent metal oxide conductive layer is made of, for example, indium tin oxide (ITO). ), indium zinc oxide (IZO), indium oxide (InO), tin oxide (SnO), tin oxide fluoride (FTO), antimony tin oxide (ATO), cadmium tin oxide (CTO), zinc aluminum oxide (AZO) , cadmium zinc oxide (GZO) and other materials or a combination thereof. Referring to the foregoing embodiments of the present invention, the transparent metal oxide conductive layer can also be used as a material for the adhesive layer, which is produced at the time of the substrate transfer process.

以下,依據第11A圖至第11E圖顯示依本發明以透明金屬氧化物導電層作為接著層材質的另一實施例所示之半導體發光元件的製作方法。首先,如第11A圖所示,以前述實施例或習知的方式將半導體磊晶疊層自成長基板510轉移至具有第一黏著層5130的第一承載基板520之上,並且圖案化分隔半導體磊晶疊層為第一磊晶單元501與第二磊晶單元502。其中,第一黏著層5130的材質可以是有機材料,例如丙烯酸(Acrylic acid)、不飽和聚酯環氧樹脂(Unsaturated polyester)、環氧樹脂(Epoxy)、氧雜環丁烷(Oxetane)、乙烯醚(Vinyl ether)、尼龍(Nylon)、聚丙烯(PP)、聚對苯二甲酸丁二醇酯(PBT)、聚苯醚(PPO)、聚碳酸酯(PC)、丙烯腈-丁二烯-苯乙烯(ABS)、聚氯乙烯(PVC)等;可以是金屬,例如鈦(Ti)、金(Au)、鈹(Be)、鎢(W)、鋁(Al)、鍺(Ge)、銅(Cu)等或其組合;可以是金屬氧化物,例如銦錫氧化物(ITO)、鎘錫氧化物(CTO)、銻氧化錫、氧化銦鋅、氧化鋅鋁、鋅錫氧化物、氧化鋅(ZnO)、氧化矽(SiOx )等;也可以是氮化物,例如氮化矽(SiNx )等。Hereinafter, a method of fabricating a semiconductor light-emitting device according to another embodiment of the present invention using a transparent metal oxide conductive layer as a material for the underlayer is shown in accordance with FIGS. 11A to 11E. First, as shown in FIG. 11A, the semiconductor epitaxial laminate is transferred from the growth substrate 510 to the first carrier substrate 520 having the first adhesive layer 5130 in the foregoing embodiment or a conventional manner, and the semiconductor is patterned. The epitaxial stack is a first epitaxial unit 501 and a second epitaxial unit 502. The material of the first adhesive layer 5130 may be an organic material such as Acrylic acid, Unsaturated polyester, Epoxy, Oxetane, Ethylene. Vinyl ether, nylon (Nylon), polypropylene (PP), polybutylene terephthalate (PBT), polyphenylene ether (PPO), polycarbonate (PC), acrylonitrile-butadiene - styrene (ABS), polyvinyl chloride (PVC), etc.; may be a metal such as titanium (Ti), gold (Au), beryllium (Be), tungsten (W), aluminum (Al), germanium (Ge), Copper (Cu) or the like or a combination thereof; may be a metal oxide such as indium tin oxide (ITO), cadmium tin oxide (CTO), antimony tin oxide, indium zinc oxide, zinc aluminum oxide, zinc tin oxide, oxidation Zinc (ZnO), yttrium oxide (SiO x ), etc.; may also be a nitride such as tantalum nitride (SiN x ).

如第11A圖與第11B圖所示,半導體磊晶疊層由n型半導體層5112,活性層5114,以及p型半導體層5116所構成。在如同前述的製作方式中,圖案化分隔半導體磊晶疊層為一個第一磊晶單元501與複數個第二磊晶單元502。接著,在第二磊晶單元502表面及第二承載基板530表面塗佈透明金屬氧化物導電層作為圖案化第二黏著層5230,並將其藉由加熱或加壓的方式互相接著。其中,圖案化第二黏著層5230可以是全面性地或圖案化地部分形成於第二承載基板530表面上。接著,再如第11C圖與第11D圖所示,以雷射光或UV光自第一承載基板520的方向照射致能並溶解存在於第一承載基板520與磊晶單元502之間的第一黏著層5130後轉移第二磊晶單元502的部分至第二承載基板530上。將第二磊晶單元502接著至第二承載基板530上後,再以乾蝕刻或濕蝕刻方式清除殘餘在第二承載基板530上第二磊晶單元502表面的第一黏著層5130後,如第10A圖與第10B圖所示,以形成第一承載基板520與第一磊晶單元501以及第二承載基板530與第二磊晶單元502。As shown in FIGS. 11A and 11B, the semiconductor epitaxial laminate is composed of an n-type semiconductor layer 5112, an active layer 5114, and a p-type semiconductor layer 5116. In the fabrication manner as described above, the patterned interleaved semiconductor epitaxial stack is a first epitaxial unit 501 and a plurality of second epitaxial units 502. Next, a transparent metal oxide conductive layer is applied on the surface of the second epitaxial unit 502 and the surface of the second carrier substrate 530 as the patterned second adhesive layer 5230, and is connected to each other by heating or pressurization. The patterned second adhesive layer 5230 may be partially or patterned partially formed on the surface of the second carrier substrate 530. Then, as shown in FIG. 11C and FIG. 11D, the laser light is irradiated from the first carrier substrate 520 in the direction of the first carrier substrate 520, and is dissolved and dissolved in the first between the first carrier substrate 520 and the epitaxial unit 502. The adhesive layer 5130 then transfers a portion of the second epitaxial unit 502 onto the second carrier substrate 530. After the second epitaxial unit 502 is subsequently applied to the second carrier substrate 530, the first adhesive layer 5130 remaining on the surface of the second epitaxial unit 502 on the second carrier substrate 530 is removed by dry etching or wet etching, such as 10A and 10B are formed to form the first carrier substrate 520 and the first epitaxial unit 501 and the second carrier substrate 530 and the second epitaxial unit 502.

在本實施例中,如上所述,分離第二磊晶單元502與第一承載基板520的方式例如是以雷射照射溶解第一黏著層5130的方式。除此之外,也可以選擇性地使用與第一承載基板520黏著力較低的材質作為第一黏著層5130(例如為二氧化矽(SiO2 ))。後續僅須透過於要進行二次轉移的第二磊晶單元502表面部分位置設置圖案化第二黏著層5230,並選擇性地將第二磊晶單元502黏著於第二承載基板530表面後,再以物理的機械力即可將第二磊晶單元502自第一承載基板520上分離。In this embodiment, as described above, the manner of separating the second epitaxial unit 502 and the first carrier substrate 520 is, for example, a manner in which the first adhesive layer 5130 is dissolved by laser irradiation. In addition to this, a material having a lower adhesion to the first carrier substrate 520 may be selectively used as the first adhesive layer 5130 (for example, cerium oxide (SiO 2 )). Subsequently, the patterned second adhesive layer 5230 is disposed through the surface portion of the second epitaxial unit 502 to be subjected to the second transfer, and the second epitaxial unit 502 is selectively adhered to the surface of the second carrier substrate 530. The second epitaxial unit 502 can be separated from the first carrier substrate 520 by physical mechanical force.

將上述第二磊晶單元502自第一承載基板分離520後,第二承載基板530上便含有複數個第二磊晶單元502。接著,可依據後續要製成半導體發光元件的需求,再將第二承載基板530進行圖案化切割為複數個第二承載基板單元(圖未示)。每個承載基板單元上可承載一個第二磊晶單元502或複數個第二磊晶單元502。After the second epitaxial unit 502 is separated from the first carrier substrate 520, the second carrier substrate 530 includes a plurality of second epitaxial cells 502. Then, the second carrier substrate 530 can be patterned into a plurality of second carrier substrate units (not shown) according to the requirements for subsequent fabrication of the semiconductor light emitting device. Each of the carrier substrate units may carry a second epitaxial unit 502 or a plurality of second epitaxial units 502.

以第11E圖為例,切割後的單一第二承載基板單元530’上承載有一個第二磊晶單元502。由於是以透明金屬氧化物導電層作為圖案化第二黏著層5230,圖案化第二黏著層5230可以直接電性連結n型半導體層5112並延伸至第二磊晶單元502外第二承載基板單元530’的表面之上。接著,在延伸於第二磊晶單元502外的圖案化第二黏著層5230表面上以及p型半導體層5116表面上以黃光微影製程技術例如濺鍍(sputtering)、熱蒸鍍(thermal deposition)、或電鍍(electroplating)等方式分別形成圖案化的n型電極5120a與p型電極5120b。透過此方式製作的n型電極5120a不位在第二磊晶單元502的表面上,減少不透光金屬遮光的效果,可使元件達到更佳的光萃取量。Taking FIG. 11E as an example, a single second epitaxial substrate unit 530' is carried on the diced single second carrier substrate unit 530'. Since the transparent metal oxide conductive layer is used as the patterned second adhesive layer 5230, the patterned second adhesive layer 5230 can be directly electrically connected to the n-type semiconductor layer 5112 and extended to the second second substrate unit 502. Above the surface of the 530'. Next, on the surface of the patterned second adhesive layer 5230 extending outside the second epitaxial unit 502 and on the surface of the p-type semiconductor layer 5116, a yellow lithography process such as sputtering, thermal deposition, Patterned n-type electrode 5120a and p-type electrode 5120b are formed by electroplating or the like, respectively. The n-type electrode 5120a fabricated in this manner is not located on the surface of the second epitaxial unit 502, and the effect of opaque metal shading is reduced, so that the component can achieve a better light extraction amount.

當我們將第10B圖中的第二磊晶單元502依所需圖案化移除製成不同的半導體發光元件後,餘留於第一承載基板520上的第一磊晶單元501可再藉由自第一承載基板520切割分離的方式以後續不同的製程製作成不同的半導體發光元件。When the second epitaxial unit 502 in FIG. 10B is removed by patterning to form different semiconductor light emitting elements, the first epitaxial unit 501 remaining on the first carrier substrate 520 can be further The manner in which the first carrier substrate 520 is diced and separated is formed into different semiconductor light-emitting elements in subsequent different processes.

參照第13圖,可依據圖中的虛線所示,將剩餘的第一磊晶單元501以例如本實施例中的方式切割製作成複數個具有十字形磊晶單元501'的半導體發光元件。如後續第14A圖至第14D圖所示,此製程方式可有效利用基板上所有半導體磊晶疊層。Referring to Fig. 13, the remaining first epitaxial cells 501 can be cut into a plurality of semiconductor light-emitting elements having a cross-shaped epitaxial unit 501' in the manner of, for example, the present embodiment, as indicated by a broken line in the drawing. As shown in subsequent Figures 14A through 14D, this process can effectively utilize all of the semiconductor epitaxial stacks on the substrate.

以下,再以圖示描述上述實施例不同實施樣態的上視圖及斜側視圖結構。如第14A圖及14B圖所示,顯示自上視圖觀之,由十字形磊晶單元501’組成的半導體發光元件500,第14B圖則顯示其斜側視圖。如上述的實施例,參照第14A圖所示,在本實施例中,透明金屬氧化物導電層5280全面性地形成於第二承載基板單元530’表面上,而在延伸於第二磊晶單元502外的透明金屬氧化物導電層5280表面上以及p型半導體層5116表面上,設置圖案化的n型電極5120a與p型電極5120b分別與n型半導體層5112及p型半導體層5116電性連接。Hereinafter, the top view and the oblique side view structure of the different embodiments of the above embodiment will be described by way of illustration. As shown in Figs. 14A and 14B, the semiconductor light emitting element 500 composed of the cross-shaped epitaxial unit 501' is shown from the top view, and Fig. 14B shows an oblique side view thereof. As shown in the above embodiment, referring to FIG. 14A, in the present embodiment, the transparent metal oxide conductive layer 5280 is formed integrally on the surface of the second carrier substrate unit 530' and extends over the second epitaxial unit. The surface of the transparent metal oxide conductive layer 5280 outside the 502 and the surface of the p-type semiconductor layer 5116 are electrically connected to the n-type semiconductor layer 5112 and the p-type semiconductor layer 5116, respectively. .

接著,參照第14C圖與第14D圖所示,顯示依本發明實施方式的第二種實施樣態,即由十字形磊晶單元501’所組成的半導體發光元件600的上視圖及斜側視圖。在本實施例中,第二承載基板單元530’表面設置有作為接著層的部分圖案化的透明金屬氧化物導電層5280。其中,第二承載基板530為絕緣基板,例如藍寶石(sapphire, Al2 O3 )。因此,在未設置有透明金屬氧化物導電層5280的第二承載基板單元530’表面設置p型電極5120b後,再藉由自p型電極5120b延伸的p型延伸電極5120b’與p型半導體層5116電性連接。而n型電極5120a則一樣配置在延伸於第二磊晶單元502外的圖案化第二黏著層5230表面上。透過圖案化第二黏著層5230與n型半導體層5112電性連接。此方式製作的n型電極5120a與p型電極5120b皆不位在第二磊晶單元502的表面上,可更加減少不透光金屬遮光的效果,亦可達到更佳的元件光萃取量。Next, referring to FIGS. 14C and 14D, a second embodiment of the semiconductor light-emitting device 600 composed of the cross-shaped epitaxial unit 501' is shown in a top view and an oblique side view according to an embodiment of the present invention. . In the present embodiment, the surface of the second carrier substrate unit 530' is provided with a partially patterned transparent metal oxide conductive layer 5280 as an adhesion layer. The second carrier substrate 530 is an insulating substrate such as sapphire (Al 2 O 3 ). Therefore, after the p-type electrode 5120b is disposed on the surface of the second carrier substrate unit 530' not provided with the transparent metal oxide conductive layer 5280, the p-type extension electrode 5120b' extending from the p-type electrode 5120b and the p-type semiconductor layer are further provided. 5116 electrical connection. The n-type electrode 5120a is disposed on the surface of the patterned second adhesive layer 5230 extending outside the second epitaxial unit 502. The second adhesive layer 5230 is electrically connected to the n-type semiconductor layer 5112 through the patterning. The n-type electrode 5120a and the p-type electrode 5120b fabricated in this manner are not located on the surface of the second epitaxial unit 502, so that the effect of opaque metal shading can be further reduced, and a better component light extraction amount can be achieved.

由上述兩種實施樣態的上視圖觀之(第14A圖與第14C圖)。半導體發光元件500及600中,由於第二磊晶單元為一個十字形磊晶單元501’(為一對稱的形狀,具有與基板面垂直的兩個不同的對稱面A’及B’),且十字形磊晶單元501’的末端與第二承載基板單元530’側邊的位置相近。因此,第二承載基板單元530’未被十字形磊晶單元501’覆蓋的部分大致可被十字形磊晶單元501’隔開為四個區域。當然,於本領域中具有通常知識的人應可理解,十字形磊晶單元501’的形狀可以不同,例如為L形,不規則多邊形等,第二承載基板單元530’亦可能依據形狀的不同大致被分隔為不同數目的區域。From the top view of the above two implementations (Fig. 14A and Fig. 14C). In the semiconductor light-emitting elements 500 and 600, since the second epitaxial unit is a cross-shaped epitaxial unit 501 ′ (in a symmetrical shape, having two different symmetry planes A′ and B′ perpendicular to the substrate surface), and The end of the cross-shaped epitaxial unit 501' is similar to the position of the side of the second carrier substrate unit 530'. Therefore, the portion of the second carrier substrate unit 530' not covered by the cross-shaped epitaxial unit 501' can be substantially divided into four regions by the cross-shaped epitaxial unit 501'. Of course, those having ordinary knowledge in the art should understand that the shape of the cross-shaped epitaxial unit 501' may be different, for example, an L-shape, an irregular polygon, etc., and the second carrier substrate unit 530' may also be different in shape. It is roughly divided into different numbers of areas.

於本實施例中,第二承載基板530為絕緣基板,例如藍寶石(sapphire, Al2 O3 )。然而,依據元件需求不同。第二承載基板530的材質亦可以包含但不限於鋁酸鋰(lithium aluminum oxide, LiAlO2 )、氧化鋅(zinc oxide, ZnO)、磷化鎵(gallium nitride, GaP)、玻璃(Glass)、有機高分子板材、氮化鋁(aluminum nitride, AlN)。可以是絕緣基板,也可以是導電基板;可以是透明基板,也可以是反射基板。此外,為了增加元件的散熱效率,基板也可以也可以是具有高散熱性的散熱基板,材料之熱導係數至少為24W/m•K,例如為銅(Cu)、鎢(Wu)、氮化鋁(AlN)、金屬基複合材料 (Metal Matrix Composite;MMC)、陶瓷基複合材料 (Ceramic Matrix Composite;CMC)、碳化矽(SiC)、鋁(Al)、矽(Si)、鑽石(Diamond)或此等材料之組合。In the embodiment, the second carrier substrate 530 is an insulating substrate such as sapphire (Al 2 O 3 ). However, depending on the component requirements. The material of the second carrier substrate 530 may also include, but is not limited to, lithium aluminum oxide (LiAlO 2 ), zinc oxide (ZnO), gallium nitride (GaP), glass (Glass), organic Polymer sheet, aluminum nitride (AlN). It may be an insulating substrate or a conductive substrate; it may be a transparent substrate or a reflective substrate. In addition, in order to increase the heat dissipation efficiency of the component, the substrate may also be a heat dissipation substrate having high heat dissipation, and the material has a thermal conductivity of at least 24 W/m·K, such as copper (Cu), tungsten (Wu), and nitride. Aluminum (AlN), Metal Matrix Composite (MMC), Ceramic Matrix Composite (CMC), tantalum carbide (SiC), aluminum (Al), bismuth (Si), diamond (Diamond) or A combination of these materials.

此外,以前述形成的半導體發光元件200與300為例,相對應於半導體磊晶疊層110中活性層114的表面積,下方透明的承載基板(20,30)相對而言具有較大的表面積。當光線進入折射率較低的透明的承載基板(20,30)時,由於透明的承載基板(20,30)的表面積較大,有較高比例的光線可以自透明的承載基板(20,30)中被萃取出來。以傳統覆晶式發光二極體元件為例,如第12A圖與第12B圖所示,傳統覆晶式發光二極體元件具有與基板50表面積一樣大的活性層114,與本發明實施例中的覆晶式發光二極體元件200(如第3C圖所示)相較,其第一承載基板20具有較活性層114大一倍以上的表面積。當發光二極體元件以銲錫560, 260黏著於次載體50’, 20’表面相對應的電路結構上後,分別形成發光裝置5000與2000。此時,有較多光線L自活性層發出後可以透過大透明承載基板20被萃取出來,而不會因為被活性層114再吸收而損失。即,發光裝置2000較發光裝置5000具有較佳的出光效率。同樣地,將大透明承載基板20結構應用在高壓式單晶片發光二極體元件300中、封裝形式的半導體發光元件400、及由單一磊晶單元502構成的單晶片發光二極體元件500及600皆應具有相似的效果。Further, taking the semiconductor light-emitting elements 200 and 300 formed as described above as an example, the lower transparent carrier substrate (20, 30) has a relatively large surface area corresponding to the surface area of the active layer 114 in the semiconductor epitaxial layer 110. When the light enters the transparent carrier substrate (20, 30) with a lower refractive index, since the surface area of the transparent carrier substrate (20, 30) is larger, a higher proportion of light can be transmitted from the transparent carrier substrate (20, 30). ) was extracted. Taking a conventional flip-chip light-emitting diode element as an example, as shown in FIGS. 12A and 12B, the conventional flip-chip light-emitting diode element has an active layer 114 as large as the surface area of the substrate 50, and the embodiment of the present invention The first carrier substrate 20 has a surface area that is more than twice as large as the active layer 114 compared to the flip-chip LED device 200 (shown in FIG. 3C). When the light-emitting diode elements are adhered to the corresponding circuit structures of the sub-carriers 50', 20' by the solders 560, 260, the light-emitting devices 5000 and 2000 are formed, respectively. At this time, a large amount of light L can be extracted from the large transparent carrier substrate 20 after being emitted from the active layer without being lost by being reabsorbed by the active layer 114. That is, the light-emitting device 2000 has better light-emitting efficiency than the light-emitting device 5000. Similarly, the structure of the large transparent carrier substrate 20 is applied to the high-voltage single-crystal light-emitting diode element 300, the packaged semiconductor light-emitting element 400, and the single-crystal light-emitting diode element 500 composed of a single epitaxial unit 502 and 600 should have a similar effect.

於不同實施例中,單一承載基板上的半導體磊晶疊層並不以一個為限。為簡化製程步驟,在一個較大的第一承載基板20(例如:一片晶圓片)上形成半導體磊晶疊層後,透過黃光微影蝕刻技術及基板轉移技術,可以形成多個如上述第7圖所示相同且重複的第一磊晶單元201與第二磊晶單元202。接著,將形成於第一承載基板20上的複數第二磊晶單元202一次轉移到另一個較大的第二承載基板30(例如:另一片晶圓片)上,並在第一承載基板20上留下複數第一磊晶單元201。接著,在第一承載基板20與第二承載基板30上分別進行例如前面所述的元件製程後,以如第3C圖所示的基板表面積為一個元件大小,切割第一承載基板20,可獲得複數包含第一磊晶單元201的第一半導體發光元件200;相似地,以如第4C圖所示的基板表面積為一個元件大小,切割第二承載基板30,即可相對應地獲得複數包含第三磊晶單元202’的第二半導體發光元件300。In various embodiments, the semiconductor epitaxial stack on a single carrier substrate is not limited to one. In order to simplify the process steps, a semiconductor epitaxial stack is formed on a larger first carrier substrate 20 (for example, a wafer), and a plurality of yellow photolithography etching techniques and substrate transfer techniques are used to form a plurality of The same and repeated first epitaxial unit 201 and second epitaxial unit 202 are shown. Next, the plurality of second epitaxial cells 202 formed on the first carrier substrate 20 are transferred to the other second second carrier substrate 30 (eg, another wafer) at a time, and on the first carrier substrate 20 A plurality of first epitaxial units 201 are left on. Then, after performing the component process described above on the first carrier substrate 20 and the second carrier substrate 30, for example, the substrate surface area as shown in FIG. 3C is one element size, and the first carrier substrate 20 is cut. The plurality of first semiconductor light emitting elements 200 including the first epitaxial unit 201; similarly, the second carrier substrate 30 is cut by the surface area of the substrate as shown in FIG. 4C, and the plurality of inclusions can be correspondingly obtained. The second semiconductor light emitting element 300 of the triple epitaxial unit 202'.

由於切割後構成的半導體發光元件200與300分別是由一組原本形成在單一基板上的單一半導體磊晶疊層110所構成,因此所形成的半導體發光元件200與300應具有大致相同的元件尺寸,即大致相同的元件基板表面積,如第3C圖與第4C圖所示。Since the semiconductor light emitting elements 200 and 300 formed after dicing are respectively composed of a single semiconductor epitaxial layer 110 originally formed on a single substrate, the formed semiconductor light emitting elements 200 and 300 should have substantially the same element size. That is, substantially the same surface area of the element substrate, as shown in FIGS. 3C and 4C.

本發明所列舉之各實施例僅用以說明本發明,並非用以限制本發明之範圍。任何人對本發明所作之任何顯而易知之修飾或變更皆不脫離本發明之精神與範圍。The examples of the invention are intended to be illustrative only and not to limit the scope of the invention. Any changes or modifications of the present invention to those skilled in the art will be made without departing from the spirit and scope of the invention.

50‧‧‧基板
10, 210, 510‧‧‧成長基板
112, 2112, 5112‧‧‧n型半導體層
114, 2114, 5114‧‧‧活性層
116, 2116, 5116‧‧‧p型半導體層
110, 2110, 5110‧‧‧半導體磊晶疊層
120a, 120b, 2120a, 2120b, 5120b‧‧‧p型電極
20, 220, 520, 60‧‧‧第一承載基板
135, 2135, 5130‧‧‧第一黏著層
130a, 130b, 2130a, 2130b, 130b’, 5120a‧‧‧n型電極
140, 2140‧‧‧金屬氧化物透明導電層
150, 2150‧‧‧反射層
201, 2201, 501‧‧‧第一磊晶單元
202, 2202, 502, 501’‧‧‧第二磊晶單元
230, 2230, 5230‧‧‧第二黏著層
5280‧‧‧透明金屬氧化物導電層
30, 530‧‧‧第二承載基板
200, 300, 400, 500, 600‧‧‧半導體發光元件
2123‧‧‧圖案化犧牲層
130a’, 5120b’‧‧‧p型延伸電極
130a”‧‧‧n型延伸電極
134‧‧‧導電通孔
132, 232‧‧‧絕緣層
202’‧‧‧第三磊晶單元
125‧‧‧金屬導電連結結構
120b’, 1310‧‧‧p型電極襯墊
120b”, 1320‧‧‧n型電極襯墊
40‧‧‧第一透明結構
410‧‧‧絕緣散射層
411, 412‧‧‧開口
530’‧‧‧第二承載基板單元
501'‧‧‧十字形磊晶單元
260, 560‧‧‧銲錫
50’, 20’‧‧‧次載體
5000, 2000‧‧‧發光裝置
A’, B’‧‧‧對稱面
D‧‧‧方向
50‧‧‧Substrate
10, 210, 510‧‧‧ growth substrate
112, 2112, 5112‧‧‧n type semiconductor layer
114, 2114, 5114‧‧‧Active layer
116, 2116, 5116‧‧‧p-type semiconductor layer
110, 2110, 5110‧‧‧Semiconductor epitaxial stack
120a, 120b, 2120a, 2120b, 5120b‧‧‧p-type electrode
20, 220, 520, 60‧‧‧ first carrier substrate
135, 2135, 5130‧‧‧ first adhesive layer
130a, 130b, 2130a, 2130b, 130b', 5120a‧‧‧n type electrode
140, 2140‧‧‧Metal oxide transparent conductive layer
150, 2150‧‧‧reflective layer
201, 2201, 501‧‧‧ first epitaxial unit
202, 2202, 502, 501'‧‧‧Second epitaxial unit
230, 2230, 5230‧‧‧second adhesive layer
5280‧‧‧Transparent metal oxide conductive layer
30, 530‧‧‧second carrier substrate
200, 300, 400, 500, 600‧‧‧ semiconductor light-emitting elements
2123‧‧‧ patterned sacrificial layer
130a', 5120b'‧‧‧p type extension electrode
130a”‧‧·n type extension electrode
134‧‧‧ conductive through holes
132, 232‧‧‧Insulation
202'‧‧‧ third epitaxial unit
125‧‧‧Metal conductive joint structure
120b', 1310‧‧‧p type electrode pad
120b”, 1320‧‧‧n type electrode pad
40‧‧‧First transparent structure
410‧‧‧Insulation scattering layer
411, 412‧‧‧ openings
530'‧‧‧Second carrier substrate unit
501'‧‧‧Cross-shaped epitaxial unit
260, 560‧‧‧ solder
50', 20'‧‧‧ vectors
5000, 2000‧‧‧Lighting device
A', B'‧‧ symmetry plane
D‧‧‧ Direction

第1A圖為側視結構圖,顯示依據本發明第一實施例中半導體發光元件第一製作步驟的側視結構圖;1A is a side view structural view showing a side view of a first fabrication step of a semiconductor light emitting element according to a first embodiment of the present invention;

第1B圖為側視結構圖,顯示依據本發明第一實施例中半導體發光元件第二製作步驟的側視結構圖;1B is a side view structural view showing a side view of a second fabrication step of the semiconductor light emitting device according to the first embodiment of the present invention;

第1C圖為側視結構圖,顯示依據本發明第一實施例中半導體發光元件第三製作步驟的側視結構圖;1C is a side view structural view showing a side view of a third manufacturing step of the semiconductor light emitting device according to the first embodiment of the present invention;

第1D圖為側視結構圖,顯示依據本發明第一實施例中半導體發光元件第四製作步驟的側視結構圖;1D is a side view structural view showing a side view of a fourth fabrication step of the semiconductor light emitting device according to the first embodiment of the present invention;

第1E圖為側視結構圖,顯示依據本發明第一實施例中半導體發光元件第五製作步驟的側視結構圖;1E is a side view structural view showing a side view of a fifth fabrication step of the semiconductor light emitting element according to the first embodiment of the present invention;

第1F圖為側視結構圖,顯示依據本發明第一實施例中半導體發光元件第六製作步驟的側視結構圖;1F is a side view structural view showing a side view of a sixth fabrication step of the semiconductor light emitting element according to the first embodiment of the present invention;

第1G圖為側視結構圖,顯示依據本發明第一實施例中半導體發光元件第七製作步驟的側視結構圖一;1G is a side view structural view showing a side view of the seventh fabrication step of the semiconductor light emitting device according to the first embodiment of the present invention;

第1H圖為側視結構圖,顯示依據本發明第一實施例中半導體發光元件第七製作步驟的側視結構圖二;1H is a side view structural view showing a side view of the seventh fabrication step of the semiconductor light emitting device according to the first embodiment of the present invention;

第2A圖為側視結構圖,顯示依據本發明第二實施例中半導體發光元件第一製作步驟的側視結構圖;2A is a side view structural view showing a side view of a first fabrication step of a semiconductor light emitting element according to a second embodiment of the present invention;

第2B圖為側視結構圖,顯示依據本發明第二實施例中半導體發光元件第二製作步驟的側視結構圖;2B is a side view structural view showing a side view of a second fabrication step of the semiconductor light emitting device according to the second embodiment of the present invention;

第2C圖為側視結構圖,顯示依據本發明第二實施例中半導體發光元件第三製作步驟的側視結構圖;2C is a side view structural view showing a side view of a third manufacturing step of the semiconductor light emitting device according to the second embodiment of the present invention;

第2D圖為側視結構圖,顯示依據本發明第二實施例中半導體發光元件第四製作步驟的側視結構圖;2D is a side view structural view showing a side view of a fourth fabrication step of the semiconductor light emitting element according to the second embodiment of the present invention;

第2E圖為側視結構圖,顯示依據本發明第二實施例中半導體發光元件第五製作步驟的側視結構圖;2E is a side view structural view showing a side view of a fifth fabrication step of the semiconductor light emitting element according to the second embodiment of the present invention;

第2F圖為側視結構圖,顯示依據本發明第二實施例中半導體發光元件第六製作步驟的側視結構圖;2F is a side view structural view showing a side view of a sixth fabrication step of the semiconductor light emitting element according to the second embodiment of the present invention;

第2G圖為側視結構圖,顯示依據本發明第二實施例中半導體發光元件第七製作步驟的側視結構圖一;2G is a side view structural view showing a side view of the seventh fabrication step of the semiconductor light emitting device according to the second embodiment of the present invention;

第2H圖為側視結構圖,顯示依據本發明第二實施例中半導體發光元件第七製作步驟的側視結構圖二;2H is a side view structural view showing a side view of the seventh fabrication step of the semiconductor light emitting device according to the second embodiment of the present invention;

第3A圖為上視結構圖,顯示對應本發明第一實施例中半導體發光元件第七製作步驟的上視結構圖一;3A is a top view, showing a top view of the seventh fabrication step of the semiconductor light-emitting device according to the first embodiment of the present invention;

第3B圖為側視結構圖,顯示對應本發明第一實施例第八製作步驟中第一半導體發光元件的側視結構圖;3B is a side view structural view showing a side view of the first semiconductor light emitting element in the eighth fabrication step of the first embodiment of the present invention;

第3C圖為上視結構圖,顯示對應本發明第一實施例第八製作步驟中第一半導體發光元件的上視結構圖;3C is a top view structural view showing a top view of the first semiconductor light emitting element in the eighth fabrication step of the first embodiment of the present invention;

第4A圖為上視結構圖,顯示對應本發明第一實施例中半導體發光元件第七製作步驟的上視結構圖二;4A is a top view structural view showing a second top view of the seventh fabrication step of the semiconductor light emitting device according to the first embodiment of the present invention;

第4B圖為側視結構圖,顯示對應本發明第一實施例第八製作步驟中第二半導體發光元件的側視結構圖;4B is a side view structural view showing a side view of a second semiconductor light emitting element corresponding to the eighth fabrication step of the first embodiment of the present invention;

第4C圖為上視結構圖,顯示對應本發明第一實施例第八製作步驟中第二半導體發光元件的上視結構圖;4C is a top view structural view showing a top view of the second semiconductor light emitting element in the eighth fabrication step of the first embodiment of the present invention;

第5A圖為上視結構圖,顯示對應本發明第一實施例高壓式單晶片發光二極體元件第二製作步驟的上視結構圖;5A is a top view structural view showing a top view of a second manufacturing step of the high voltage single-chip light-emitting diode element according to the first embodiment of the present invention;

第5B圖為側視結構圖,顯示對應本發明第一實施例高壓式單晶片發光二極體元件第二製作步驟的側視結構圖;5B is a side view structural view showing a side view of a second manufacturing step of the high voltage single-crystal light-emitting diode element according to the first embodiment of the present invention;

第6A圖為側視結構圖,顯示對應本發明第三實施例封裝形式半導體發光元件第一製作步驟的側視結構圖;6A is a side view structural view showing a side view of a first fabrication step of a packaged semiconductor light emitting device according to a third embodiment of the present invention;

第6B圖為側視結構圖,顯示對應本發明第三實施例封裝形式半導體發光元件第二製作步驟的側視結構圖;6B is a side view structural view showing a side view of a second fabrication step of a packaged semiconductor light emitting device according to a third embodiment of the present invention;

第6C圖為側視結構圖,顯示對應本發明第三實施例封裝形式半導體發光元件第三製作步驟的側視結構圖;6C is a side view structural view showing a side view of a third manufacturing step of the packaged semiconductor light emitting device according to the third embodiment of the present invention;

第6D圖為側視結構圖,顯示對應本發明第三實施例封裝形式半導體發光元件第四製作步驟的側視結構圖;6D is a side view structural view showing a side view of a fourth fabrication step of a packaged-type semiconductor light-emitting device according to a third embodiment of the present invention;

第6E圖為側視結構圖,顯示對應本發明第三實施例封裝形式半導體發光元件第五製作步驟的側視結構圖;6E is a side view structural view showing a side view of a fifth fabrication step of a packaged semiconductor light emitting device according to a third embodiment of the present invention;

第7圖為上視結構圖,顯示對應本發明第一實施例中半導體發光元件第六製作步驟的上視結構圖;Figure 7 is a top view structural view showing a top view of a sixth fabrication step of the semiconductor light-emitting device according to the first embodiment of the present invention;

第8圖為上視結構圖,顯示對應本發明第三實施例封裝形式半導體發光元件第五製作步驟的上視結構圖;Figure 8 is a top plan view showing a top view of a fifth fabrication step of a packaged semiconductor light-emitting device according to a third embodiment of the present invention;

第9圖為上視結構圖,顯示對應本發明第四實施例中半導體發光元件第一製作步驟的上視結構圖;Figure 9 is a top view, showing a top view of a first fabrication step of a semiconductor light-emitting device in accordance with a fourth embodiment of the present invention;

第10A圖為斜側視結構圖,顯示對應本發明第四實施例中半導體發光元件第二製作步驟的斜側視結構圖;10A is an oblique side view structural view showing a diagonal side view corresponding to a second fabrication step of the semiconductor light emitting element in the fourth embodiment of the present invention;

第10B圖為斜側視結構圖,顯示對應本發明第四實施例中半導體發光元件第二製作步驟的斜側視結構圖;10B is an oblique side view structural view showing an oblique side view of a second fabrication step of the semiconductor light emitting element according to the fourth embodiment of the present invention;

第11A圖為側視結構圖,顯示對應本發明第五實施例中半導體發光元件第一製作步驟的側視結構圖;11A is a side view structural view showing a side view of a first fabrication step of a semiconductor light emitting element according to a fifth embodiment of the present invention;

第11B圖為側視結構圖,顯示對應本發明第五實施例中半導體發光元件第二製作步驟的側視結構圖;11B is a side view structural view showing a side view of a second fabrication step of the semiconductor light emitting element according to the fifth embodiment of the present invention;

第11C圖為側視結構圖,顯示對應本發明第五實施例中半導體發光元件第三製作步驟的側視結構圖;11C is a side view structural view showing a side view of a third manufacturing step of the semiconductor light emitting element according to the fifth embodiment of the present invention;

第11D圖為側視結構圖,顯示對應本發明第五實施例中半導體發光元件第四製作步驟的側視結構圖;11D is a side view structural view showing a side view of a fourth manufacturing step of the semiconductor light emitting element according to the fifth embodiment of the present invention;

第11E圖為側視結構圖,顯示對應本發明第五實施例中半導體發光元件第五製作步驟的側視結構圖;11E is a side view structural view showing a side view of a fifth manufacturing step of the semiconductor light emitting element according to the fifth embodiment of the present invention;

第12A圖為側視結構圖,顯示習知覆晶式發光二極體元件的側視結構圖;Figure 12A is a side elevational view showing a side view of a conventional flip-chip light emitting diode element;

第12B圖為側視結構圖,顯示依據本發明第一實施例覆晶式發光二極體元件的側視結構圖;12B is a side view structural view showing a side view of a flip-chip light emitting diode element according to a first embodiment of the present invention;

第13圖為斜側視結構圖,顯示對應本發明第四實施例中半導體發光元件第一製作步驟的斜側視結構圖;Figure 13 is a perspective side elevational view showing the oblique side view of the first fabrication step of the semiconductor light-emitting device in accordance with the fourth embodiment of the present invention;

第14A圖為上視結構圖,顯示對應本發明第四實施例製成的一種半導體發光元件的上視結構圖;FIG. 14A is a top view structural view showing a top view of a semiconductor light emitting element according to a fourth embodiment of the present invention; FIG.

第14B圖為斜側視結構圖,顯示對應本發明第四實施例製成的一種半導體發光元件的斜側視結構圖;Figure 14B is an oblique side view structural view showing an oblique side view of a semiconductor light emitting element fabricated in accordance with a fourth embodiment of the present invention;

第14C圖為上視結構圖,顯示對應本發明第四實施例製成的另一種半導體發光元件的上視結構圖;Figure 14C is a top view structural view showing a top view of another semiconductor light-emitting device fabricated in accordance with a fourth embodiment of the present invention;

第14D圖為斜側視結構圖,顯示對應本發明第四實施例製成的另一種半導體發光元件的斜側視結構圖。Fig. 14D is a perspective side view showing the oblique side view of another semiconductor light-emitting element produced in accordance with the fourth embodiment of the present invention.

20‧‧‧第一承載基板 20‧‧‧First carrier substrate

110‧‧‧半導體磊晶疊層 110‧‧‧Semiconductor epitaxial stack

112‧‧‧n型半導體層 112‧‧‧n type semiconductor layer

114‧‧‧活性層 114‧‧‧Active layer

116‧‧‧p型半導體層 116‧‧‧p-type semiconductor layer

120a、120b‧‧‧p型電極 120a, 120b‧‧‧p-type electrode

130a、130b‧‧‧n型電極 130a, 130b‧‧‧n type electrode

140‧‧‧金屬氧化物透明導電層 140‧‧‧Metal oxide transparent conductive layer

150‧‧‧反射層 150‧‧‧reflective layer

230‧‧‧圖案化黏著層 230‧‧‧ patterned adhesive layer

201‧‧‧第一磊晶單元 201‧‧‧First epitaxial unit

202‧‧‧第二磊晶單元 202‧‧‧Second epitaxy unit

Claims (10)

一種半導體發光元件,包含: 一基板; 一第一黏著層位於該基板上; 複數個磊晶單元位於該第一黏著層上; 一第二黏著層位於該複數個磊晶單元上; 複數個第一電極位於該其中該複數個磊晶單元及該第一黏著層之間與該複數個磊晶單元及該第一黏著層接觸; 複數個第二電極位於該複數個磊晶單元及該第二黏著層之間與該複數個磊晶單元及該第二黏著層接觸; 其中該複數個磊晶單元彼此分離。A semiconductor light emitting device comprising: a substrate; a first adhesive layer on the substrate; a plurality of epitaxial cells on the first adhesive layer; a second adhesive layer on the plurality of epitaxial cells; An electrode is located between the plurality of epitaxial cells and the first adhesive layer, and the plurality of epitaxial cells and the first adhesive layer are in contact; the plurality of second electrodes are located in the plurality of epitaxial cells and the second Adhesive layers are in contact with the plurality of epitaxial cells and the second adhesive layer; wherein the plurality of epitaxial cells are separated from each other. 如申請專利範圍第1項所述半導體發光元件,其中該複數個磊晶單元彼此電性絕緣。The semiconductor light-emitting device of claim 1, wherein the plurality of epitaxial cells are electrically insulated from each other. 如申請專利範圍第1項所述半導體發光元件,其中該第一黏著層包含複數個次第一黏著層分別對應該複數個磊晶單元,且該複數個次第一黏著層彼此完全分離。The semiconductor light-emitting device of claim 1, wherein the first adhesive layer comprises a plurality of secondary adhesive layers respectively corresponding to the plurality of epitaxial cells, and the plurality of first adhesive layers are completely separated from each other. 如申請專利範圍第1項所述半導體發光元件,其中該第一黏著層包含絕緣材料。The semiconductor light emitting device of claim 1, wherein the first adhesive layer comprises an insulating material. 如申請專利範圍第1項所述半導體發光元件,更包含一金屬層在該第二黏著層上。The semiconductor light-emitting device of claim 1, further comprising a metal layer on the second adhesive layer. 如申請專利範圍第5項所述半導體發光元件,其中該金屬層覆蓋局部的該第二黏著層。The semiconductor light-emitting device of claim 5, wherein the metal layer covers a portion of the second adhesive layer. 如申請專利範圍第6項所述半導體發光元件,其中該第二黏著層包含一第一部分及一第二部分,該第一部分與該第二部分的材料相異。The semiconductor light-emitting device of claim 6, wherein the second adhesive layer comprises a first portion and a second portion, the first portion being different from the material of the second portion. 如申請專利範圍第7項所述半導體發光元件,其中該第一部分位於該金屬層與該複數個磊晶單元之間。The semiconductor light-emitting device of claim 7, wherein the first portion is located between the metal layer and the plurality of epitaxial cells. 如申請專利範圍第8項所述半導體發光元件,其中該第一部分包含氧化物導電材料。The semiconductor light-emitting device of claim 8, wherein the first portion comprises an oxide conductive material. 如申請專利範圍第6項所述半導體發光元件,其中該金屬層包含金(Au)、銀(Ag)、銅(Cu)、鉻(Cr)、鋁(Al)、鉑(Pt)、鎳(Ni)、鈦(Ti)、錫(Sn)、鈹(Be)等,其合金或其疊層組合。The semiconductor light-emitting device of claim 6, wherein the metal layer comprises gold (Au), silver (Ag), copper (Cu), chromium (Cr), aluminum (Al), platinum (Pt), nickel ( Ni), titanium (Ti), tin (Sn), bismuth (Be), etc., alloys thereof or a combination thereof.
TW106116374A 2012-10-09 2013-07-02 Semiconductor light emitting device and method of fabricating the same TWI631596B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW101137395 2012-10-09
??101137395 2012-10-09

Publications (2)

Publication Number Publication Date
TW201727702A true TW201727702A (en) 2017-08-01
TWI631596B TWI631596B (en) 2018-08-01

Family

ID=55182092

Family Applications (3)

Application Number Title Priority Date Filing Date
TW105121403A TWI590302B (en) 2012-10-09 2013-07-02 Semiconductor light emitting device and method of fabricating the same
TW102123757A TWI546844B (en) 2012-10-09 2013-07-02 Semiconductor light emitting device and method of fabricating the same
TW106116374A TWI631596B (en) 2012-10-09 2013-07-02 Semiconductor light emitting device and method of fabricating the same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW105121403A TWI590302B (en) 2012-10-09 2013-07-02 Semiconductor light emitting device and method of fabricating the same
TW102123757A TWI546844B (en) 2012-10-09 2013-07-02 Semiconductor light emitting device and method of fabricating the same

Country Status (1)

Country Link
TW (3) TWI590302B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI689170B (en) * 2018-12-26 2020-03-21 財團法人工業技術研究院 Solar cell
US11901478B2 (en) 2013-07-29 2024-02-13 Epistar Corporation Method of selectively transferring semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160329461A1 (en) 2015-02-17 2016-11-10 Genesis Photonics Inc. Light emitting diode
TWI765450B (en) * 2015-04-22 2022-05-21 新世紀光電股份有限公司 Light emitting diode
US10535572B2 (en) * 2016-04-15 2020-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Device arrangement structure assembly and test method
TW202036933A (en) 2019-03-22 2020-10-01 新世紀光電股份有限公司 Red light emitting diode and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100714589B1 (en) * 2005-10-05 2007-05-07 삼성전기주식회사 Method for Manufacturing Vertical Structure Light Emitting Diode
TWI427829B (en) * 2010-07-26 2014-02-21 Epistar Corp A semiconductor optoelectronic device and the method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11901478B2 (en) 2013-07-29 2024-02-13 Epistar Corporation Method of selectively transferring semiconductor device
TWI689170B (en) * 2018-12-26 2020-03-21 財團法人工業技術研究院 Solar cell

Also Published As

Publication number Publication date
TW201635341A (en) 2016-10-01
TWI590302B (en) 2017-07-01
TWI631596B (en) 2018-08-01
TWI546844B (en) 2016-08-21
TW201415534A (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP7384848B2 (en) Manufacturing method of semiconductor light emitting device
TWI631596B (en) Semiconductor light emitting device and method of fabricating the same
KR20120025433A (en) Light-emitting device and the manufacturing therof
TWI427829B (en) A semiconductor optoelectronic device and the method of manufacturing the same
JP2010040937A (en) Semiconductor light emitting element, light emitting device, illuminating apparatus, and display
CN113555482A (en) Light emitting element and method for manufacturing the same
TWI536603B (en) A semiconductor optoelectronic device and the method of manufacturing the same