TW201727314A - 3D display layer and 3D display structure thereof - Google Patents

3D display layer and 3D display structure thereof Download PDF

Info

Publication number
TW201727314A
TW201727314A TW105101932A TW105101932A TW201727314A TW 201727314 A TW201727314 A TW 201727314A TW 105101932 A TW105101932 A TW 105101932A TW 105101932 A TW105101932 A TW 105101932A TW 201727314 A TW201727314 A TW 201727314A
Authority
TW
Taiwan
Prior art keywords
display
layer
refractive index
adhesive layer
lenticular lens
Prior art date
Application number
TW105101932A
Other languages
Chinese (zh)
Other versions
TWI597527B (en
Inventor
陳盈同
Original Assignee
詠巨科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 詠巨科技有限公司 filed Critical 詠巨科技有限公司
Priority to TW105101932A priority Critical patent/TWI597527B/en
Publication of TW201727314A publication Critical patent/TW201727314A/en
Application granted granted Critical
Publication of TWI597527B publication Critical patent/TWI597527B/en

Links

Abstract

A 3D display layer with a transparent materials layer to form a 3D display structure. The 3D display structure is disposed on a display module. The 3D display layer comprises a base construction, a 3D optical construction and an adhesive layer. The base construction has a first surface and a second surface. The 3D optical construction is formed on the first surface of the base construction. The 3D optical construction has a majority of lenticular lens that top portion of each lenticular lens bulges toward a first direction. Wherein the curved surface of each lenticular lens has a curved surface, the adhesive layer covers the curved surface of each lenticular lens. The adhesive layer is connected to the transparent materials layer and the 3D display structure. The refractive index difference between the adhesive layer and the 3D display structure is greater than a predetermined difference. A thickness of the adhesive layer is greater than a protrusion height of each lenticular lens. The viscosity of the layer is greater than a predetermined viscosity.

Description

3D顯示層及其3D顯示結構3D display layer and its 3D display structure

本創作係有關於一種3D顯示層及其3D顯示結構,尤指一種運用於3D影像顯示的3D顯示層及其3D顯示結構。The present invention relates to a 3D display layer and a 3D display structure thereof, and more particularly to a 3D display layer applied to 3D image display and a 3D display structure thereof.

習知的裸視3D原理係依據聚光及折射原理改變光行進的方向,觀視者左、右眼在影像光線集中的設定區域分別看到不同畫面,以達到3D立體視覺感受。而現有裸視3D液晶顯示器係為一般2D平面顯示的液晶顯示器結合一3D顯示層、3D顯示膜或3D顯示板。其中觀視者在觀視區內雙眼可能會接收到不同的圖像,而這些圖像具有視差,因而可在觀視者的大腦中合成一副3D立體影像。 但是,3D顯示層的柱透鏡例如為直條狀,並且該些柱狀透鏡之間緊密排列且與RGB像素結構有序排列設置,有序排列的RGB像素與有序排列的柱透鏡之間產生明顯的干涉條紋。其中,當3D顯示層的柱狀透鏡與顯示模組的RGB像素之間平行排列及對位時,可能會因3D顯示層與顯示模組的週期性排列結構而產生疊紋(Moire)現象。甚至,嚴重影響觀賞效果。 此外,習知技術大多以該些柱狀透鏡為表面。其中,因形成該些柱狀透鏡的材料於紫外光曝曬而固化後,該些柱狀透鏡往往產生硬度不足、不耐刮或不耐磨擦等問題。再者,因該些柱狀透鏡的凹凸隙縫易使油汙、灰塵等雜質累積,進而使3D顯示結構改變折射率而降低3D顯示效果。The conventional naked-eye 3D principle changes the direction of light travel according to the principle of concentrating and refracting. The left and right eyes of the viewer see different images in the set regions of the image light concentrating to achieve 3D stereoscopic perception. The conventional naked-view 3D liquid crystal display is a liquid crystal display with a general 2D flat display combined with a 3D display layer, a 3D display film or a 3D display panel. Among them, the viewer may receive different images in the viewing area, and these images have parallax, so that a pair of 3D stereo images can be synthesized in the viewer's brain. However, the cylindrical lens of the 3D display layer is, for example, a straight strip shape, and the cylindrical lenses are closely arranged and arranged in an orderly arrangement with the RGB pixel structure, and an ordered array of RGB pixels is generated between the aligned cylindrical lenses. Obvious interference fringes. Wherein, when the lenticular lens of the 3D display layer and the RGB pixels of the display module are arranged in parallel and aligned, a Moire phenomenon may occur due to the periodic arrangement structure of the 3D display layer and the display module. Even, it seriously affects the viewing effect. In addition, conventional techniques mostly use the lenticular lenses as surfaces. Wherein, since the materials forming the lenticular lenses are cured by ultraviolet light exposure, the lenticular lenses tend to have problems such as insufficient hardness, scratch resistance or abrasion resistance. Further, the uneven grooves of the lenticular lenses tend to accumulate impurities such as oil stains and dust, and the 3D display structure changes the refractive index to lower the 3D display effect.

本創作在於提供一種3D顯示層及其3D顯示結構,透過膠層覆蓋各透鏡的設計,藉此改善顯示模組透過3D顯示層或3D顯示結構以輸出一3D影像的功效。 本創作提供一種3D顯示層,用於與一透光層形成一3D顯示結構,3D顯示結構配置於一顯示模組上。3D顯示層包括一基底構造、一3D光學構造及一膠層。基底構造具有一第一面及一第二面。3D光學構造形成於基底構造的第一面,3D光學構造包括多數個柱狀透鏡,各柱狀透鏡的頂部朝向一第一方向凸出,且各柱狀透鏡具有一曲面。膠層覆蓋各柱狀透鏡的曲面,膠層連接透光層與3D光學構造。其中,膠層與3D光學構造的折射率差異大於一預設差異值,膠層的一厚度大於各柱狀透鏡的一凸出高度,膠層的黏度大於一預設黏度。 本創作提供一種3D顯示結構,適用於一具有一顯示面的顯示模組上。3D顯示結構包括一3D顯示層及一透光層。透光層具有一表面及相對於表面的一貼合面。貼合面連接膠層。 本創作的具體手段為利用一種3D顯示層或3D顯示結構,透過膠層覆蓋各柱狀透鏡的設計,藉此克服油汙、灰塵等雜質累積至該些柱狀透鏡的凹凸隙縫之問題,以及克服習知技術以該些柱狀透鏡作為表面之問題。此外,膠層與3D光學構造的折射率差異大於一預設差異值,藉此改善顯示模組透過3D顯示層或3D顯示結構以輸出一3D影像的功效,而觀視者可裸視觀看較佳品質的3D影像。 以上之概述與接下來的實施例,皆是為了進一步說明本創作之技術手段與達成功效,然所敘述之實施例與圖式僅提供參考說明用,並非用來對本創作加以限制者。The present invention provides a 3D display layer and a 3D display structure thereof, and covers the design of each lens through a glue layer, thereby improving the effect of the display module transmitting a 3D image through the 3D display layer or the 3D display structure. The present invention provides a 3D display layer for forming a 3D display structure with a light transmissive layer, and the 3D display structure is disposed on a display module. The 3D display layer includes a substrate structure, a 3D optical structure, and a glue layer. The base structure has a first side and a second side. The 3D optical structure is formed on the first side of the base structure, and the 3D optical structure includes a plurality of cylindrical lenses, the tops of the respective cylindrical lenses are convex toward a first direction, and each of the cylindrical lenses has a curved surface. The glue layer covers the curved surface of each lenticular lens, and the glue layer connects the light transmission layer with the 3D optical structure. The difference in refractive index between the adhesive layer and the 3D optical structure is greater than a predetermined difference value, and a thickness of the adhesive layer is greater than a protruding height of each of the lenticular lenses, and the viscosity of the adhesive layer is greater than a predetermined viscosity. The present invention provides a 3D display structure suitable for a display module having a display surface. The 3D display structure includes a 3D display layer and a light transmissive layer. The light transmissive layer has a surface and a bonding surface with respect to the surface. The bonding surface is connected to the adhesive layer. The specific means of the present invention is to use a 3D display layer or a 3D display structure to cover the design of each lenticular lens through a glue layer, thereby overcoming the problem that oil, dust and the like are accumulated to the concave and convex slits of the lenticular lenses, and overcome Conventional techniques use these lenticular lenses as a problem with the surface. In addition, the refractive index difference between the adhesive layer and the 3D optical structure is greater than a predetermined difference value, thereby improving the function of the display module to output a 3D image through the 3D display layer or the 3D display structure, and the viewer can view the image by naked viewing. Good quality 3D imagery. The above summary and the following examples are intended to further illustrate the technical means and the efficiencies of the present invention, and the embodiments and drawings are merely provided for reference and are not intended to limit the present invention.

圖1為本創作一實施例之3D顯示結構之剖面示意圖。請參閱圖1。一種3D顯示結構1,適用於一具有一顯示面的顯示模組LCM上。3D顯示結構1包括一3D顯示層SL及一透光層16。在實務上,透光層16連接3D顯示層SL。透光層16的表面161與空氣接觸。3D顯示層SL透過一黏膠層(Adhesive)PSA或OCA以連接顯示模組LCM。因此,顯示模組LCM透過3D顯示結構1以輸出3D顯示影像至觀視者,而觀視者可裸視觀看3D影像。 為了方便說明,本實施例之顯示模組LCM係以一液晶顯示模組(LCD Module,LCM)來說明,而3D顯示結構1例如透過一3D顯示面板或一3D顯示膜片來實現。在他實施例中,顯示模組LCM例如為LCD面板、數位電視的觸控顯示器、筆記型電腦的顯示器或觸控顯示器、ATM提款機的顯示器或觸控顯示器、遊戲機的觸控顯示器、商業廣告機或是其他家用設備的顯示器或觸控顯示器。本實施例不限制3D顯示結構1及顯示模組LCM的態樣。 進一步來說,3D顯示層SL用於與一透光層16形成一3D顯示結構1。3D顯示結構1配置於一顯示模組LCM上。在實務上,3D顯示層SL包括一基底構造10、一3D光學構造12及一膠層14。在實務上,基底構造10具有一第一面101及一第二面102。3D光學構造12形成於基底構造10的第一面101。而膠層14覆蓋3D光學構造12,且透光層16連接膠層14。 其中,基底構造10例如為一聚對苯二甲酸乙二酯(Polyethylene Terephthalate,PET)。而3D光學構造12例如為裸視3D的柱狀晶(Lenticular Lens)構造、陣列透鏡(Lens Array)或是複眼式(Fly eyes)構造。而膠層14例如為一光學膠(Optical Clear Adhesive,OCA)或一含氟聚合物。本實施例不限制基底構造10、3D光學構造12及膠層14的態樣。 3D光學構造12包括多數個柱狀透鏡L1。各柱狀透鏡L1的頂部T朝向一第一方向D1凸出,且各柱狀透鏡L1具有一曲面C1。在實務上,柱狀透鏡L1係用以將顯示模組LCM的RGB像素所輸出的光束聚焦,使RGB像素所輸出的光束能分別聚焦至觀視者的左眼或右眼部,藉此達到3D顯示的功效。 為了方便說明,本實施例之第一方向D1係以顯示模組LCM朝向觀視者的方向來說明。本實施例不限制第一方向D1的態樣。在其他實施例中,各柱狀透鏡L1的頂部T亦可朝向與第一方向D1的逆向凸出。也就是說,與第一方向D1的逆向係指示自觀視者朝向顯示模組LCM的方向。換句話說,圖1中的3D光學構造12位於基底構造10的第二面102,而各柱狀透鏡L1的頂部T朝向顯示模組LCM的方向凸出,也就是頂部T朝向與第一方向D1的逆向凸出。本實施例不限制各柱狀透鏡L1的頂部T凸出方向的態樣。 膠層14覆蓋各柱狀透鏡L1的曲面C1。膠層14連接於透光層16與3D光學構造12之間。其中,膠層14與3D光學構造12的折射率差異大於一預設差異值,預設差異值例如為0.1。也就是說,3D光學構造12的折射率大於膠層14的折射率。3D光學構造12為具高折射率的柱狀透鏡L1。而膠層14係為低折射率的光學膠。其中,柱狀透鏡L1的折射率大於膠層14的折射率。 例如柱狀透鏡L1的折射率為1.55。而膠層14的折射率為1.20。3D光學構造12與膠層14的折射率差異值為0.35。又如,柱狀透鏡L1的折射率為1.55。而膠層14的折射率為1.40。3D光學構造12與膠層14的折射率差異值為0.15。其中,此兩例的3D光學構造12與膠層14的折射率差異值均大於0.1的預設差異值。換句話說,此兩例中的3D顯示層SL均可達到良好的3D顯示效果。 值得注意的是,光學產生全反射的條件為,入射光由光密介質射向光疏介質,以及入射角大於臨界角的條件下。其中,臨界角可透過司乃耳定律(Snell's Law)而得知。接著,各柱狀透鏡L1為高折射率介質(即光密介質)。而膠層14為低折射率介質(即光疏介質)。因此,RGB像素所輸出的光束經由各柱狀透鏡L1進入膠層14時,光束的入射角需小於臨界角,以使大部分的光束符合折射定律。若光束的入射角大於臨界角時,則找不到任何折射角可符合折射定律,因此光束將依照反射定律全部反射回原介質(即高折射率的各柱狀透鏡L1)。 所以,當各柱狀透鏡L1的弧度越大時,柱狀透鏡L1的凸出高度S1越低,則柱狀透鏡L1的球面像差(Spherical Aberration)越小。也就是,光束經過各柱狀透鏡L1的臨界角越大,藉此較多部分的RGB像素所輸出的光束可符合折射定律,並折射進入到低折射率的膠層14,藉此3D顯示結構1輸出良好的3D顯示影像。反之,當各柱狀透鏡L1的弧度越小時,柱狀透鏡L1的凸出高度S1越高,則柱狀透鏡L1的球面像差越大。也就是,光束經過各柱狀透鏡L1的臨界角越小,藉此較多部分的RGB像素所輸出的光束不符合折射定律,而符合反射定律。藉此3D顯示結構1輸出較差、串影或重疊的3D顯示影像。 此外,膠層14的一厚度T1大於各柱狀透鏡L1的一凸出高度S1。厚度T1例如為等於或大於3倍的凸出高度S1。凸出高度S1例如為5毫米,厚度T1例如為15~20毫米。也就是說,膠層14完全覆蓋過各柱狀透鏡L1的頂部T,並高出各柱狀透鏡L1的頂部T。 另膠層14的黏度大於一預設黏度。預設黏度大於或等於1 kg/in2 。於此種預設黏度的條件下,膠層14可緊密地黏附著於各柱狀透鏡L1的曲面C1。反之,若膠層14的黏度小於預設黏度,則膠層14無法完全覆蓋各柱狀透鏡L1的曲面C1,例如兩相鄰的柱狀透鏡L1之間的波谷無法被膠層14所覆蓋。也就是,兩相鄰的柱狀透鏡L1之間的波谷處產生空隙或空氣介質(即折射率為1),則會產生折射率不均勻的區域。 此外,透光層16具有一表面161及相對於表面161的一貼合面162。貼合面162連接膠層14。在實務上,透光層16的表面161塗佈一抗刮層、一抗污層及一抗反射層的其中之一或組合。透光層16例如為一聚對苯二甲酸乙二酯(Polyethylene Terephthalate,PET)、一玻璃(Glass)或一聚碳酸脂(Polycarbonates,PC)。透光層16的霧度例如為2%~7%,透光層16的折射率大於膠層14的折射率。本實施例不限制透光層16的態樣。 值得一提的是,膠層14係為低折射率的介質。透光層16係為高折射率的介質。在實務上,透光層16的折射率例如大於或等於各柱狀透鏡L1的折射率。而各柱狀透鏡L1的折射率大於膠層14的折射率。其中,RGB像素所輸出的光束自低折射率介質進入到高折射率介質之條件下,光束係不會產生全反射現象。因此,3D顯示結構1可輸出3D顯示影像至觀視者,而觀視者可裸視觀看3D影像。 圖2為本創作另一實施例之柱狀透鏡之局部放大示意圖。請參閱圖2。圖2繪示兩相鄰的柱狀透鏡L1,其中柱狀透鏡L1的凸出高度S1、間距P1及曲面C1弧度如圖2所繪示。其中,凸出高度S1係自基底構造10的第一面101至柱狀透鏡L1的頂部T。另基底構造10的厚度bt1如圖2所繪示。在實務上,以同樣的間距P1的條件下,曲率半徑(即柱狀透鏡L1的聚焦R值)越小,亦即弧度(Curvature)越小且柱狀透鏡L1的凸出高度S1越高,則柱狀透鏡L1的球面像差越大。因此,凸出高度S1越高的柱狀透鏡L1產生對3D顯示的干涉作用愈嚴重。 反之,以同樣的間距P1的條件下,曲率半徑(即柱狀透鏡L1的聚焦R值)越大,亦即弧度(Curvature)越大且柱狀透鏡L1的凸出高度S1越低,則柱狀透鏡L1的球面像差越小。因此,凸出高度S1越低的柱狀透鏡L1產生對3D顯示的干涉作用愈輕微。簡單來說,越小的曲率半徑,則柱狀透鏡L1的弧度越小以及凸出高度S1越高,藉此柱狀透鏡L1產生3D影像的效果越差。反之,越大的曲率半徑,則柱狀透鏡L1的弧度越大以及凸出高度S1越低,藉此柱狀透鏡L1產生3D影像的效果越好。 接下來,進一步說明折射率差異值與柱狀透鏡之曲率半徑的模擬數值曲線關係,以及折射率差異值與3D顯示之光斑直徑的模擬數值曲線關係。其中,上述兩模擬數值曲線關係圖分別繪示於圖3及圖4。為了方便說明,表一為數值模擬的柱狀透鏡折射率、膠層的折射率、折射率差異值、柱狀透鏡的曲率半徑以及3D顯示的光斑直徑等各項模擬數值。其中,柱狀透鏡的材質係以聚酸甲酯(Polymethylmethacrylate,PMMA)來說明。而聚酸甲酯的折射率例如為1.55。在其他實施例中,柱狀透鏡的材質亦可透過不同折射率的材質來實現。本實施例不限制柱狀透鏡的材質。   表一 圖3為本創作另一實施例之折射率差異值-柱狀透鏡之曲率半徑的曲線圖。請參閱圖3。如圖3中的曲線圖,X軸為柱狀透鏡的折射率與膠層的折射率的折射率差異值。其中,柱狀透鏡的折射率大於膠層的折射率。折射率差異值自X軸左側逐漸向X軸右側遞減。Y軸為柱狀透鏡的曲率半徑(即柱狀透鏡的聚焦R值)。其中,曲率半徑自Y軸下側逐漸向Y軸上側遞增。 舉例來說,折射率差異值為0.05時,曲率半徑約為0.096mm,光斑直徑係為30.810 mm。也就是說,柱狀透鏡的球面像差較大,無法聚焦。因此,球面像差較大的柱狀透鏡產生對3D顯示的干涉作用較嚴重。 反之,折射率差異值為0.1時,曲率半徑約為0.124mm。其中,對應表一中之0.1的折射率差異值的光斑直徑係為6.771 mm。因此,柱狀透鏡的球面像差較小。球面像差較小的柱狀透鏡產生對3D顯示的干涉作用較輕微。又如,折射率差異值為0.15時,曲率半徑約為0.169mm。也就是說,柱狀透鏡的球面像差較小。其中,對應表一中之0.15的折射率差異值的光斑直徑係為3.14 mm。因此,球面像差較小的柱狀透鏡產生對3D顯示的干涉作用較輕微。其餘請參考表一的模擬數值,在此不予贅述。 圖4為本創作另一實施例之折射率差異值-3D顯示之光斑直徑的曲線圖。請參閱圖4。如圖4中的曲線圖,X軸為柱狀透鏡的折射率與膠層的折射率的折射率差異值。其中,柱狀透鏡的折射率大於膠層的折射率。折射率差異值自X軸左側逐漸向X軸右側遞減。Y軸為3D顯示的光斑直徑。其中,光斑直徑自Y軸下側逐漸向Y軸上側遞增。 在光學設計3D顯示之柱狀透鏡時,係設定人類雙眼距離約為65mm。而在強光下人類瞳孔直徑約為1.5mm。在暗淡光線中人類瞳孔直徑擴大到8mm左右。一般環境下人類瞳孔直徑約在3mm~6mm之間。如果柱狀透鏡的聚焦的光斑直徑已經大於人類瞳孔直徑,則3D顯示結構無法清晰地把3D顯示影像分別送到人類的左右眼去。藉此3D顯示結構產生嚴重的串影或疊影的現象。由此可知,柱狀透鏡的折射率與膠層的折射率之折射率差異值大於0.1,最佳的折射率差異值是大於1.5以上。其中,折射率差異值為0.1時,各柱狀透鏡的3D顯示之光斑直徑約為6.77mm,大致符合一般環境下人類瞳孔直徑3mm~6mm的條件的上限。最佳的是折射率差異值為0.15時,各柱狀透鏡的3D顯示之光斑直徑約為3.14mm,已符合一般環境下人類瞳孔直徑3mm~6mm的條件。藉此達到良好的3D顯示效果。 舉例來說,折射率差異值為0.15時,曲率半徑約為0.169mm。3D顯示的光斑直徑係為3.14 mm。也就是說,柱狀透鏡的球面像差較小,並符合一般環境下人類瞳孔直徑。因此,球面像差較小的柱狀透鏡產生對3D顯示的干涉作用較輕微,並符合一般環境下人類瞳孔直徑。因此,顯示模組的RGB像素透過3D顯示層或3D顯示結構以輸出良好的3D顯示影像。 綜上所述,本創作係利用一種3D顯示層或3D顯示結構,透過低折射率的膠層覆蓋高折射率的各柱狀透鏡,其中柱狀透鏡的折射率與膠層的折射率之折射率差異值大於預設差異值,預設差異值例如為0.1。藉此3D顯示層或3D顯示結構可降低3D顯示的干涉作用。因此,顯示模組透過3D顯示層或3D顯示結構以輸出一3D影像的功效,而觀視者可裸視觀看較佳品質的3D影像。再者,本創作透過膠層覆蓋各柱狀透鏡的設計,藉此克服「油汙、灰塵等雜質累積至該些柱狀透鏡的凹凸隙縫」,以及「習知技術以硬度不足、不耐刮或不耐磨擦的該些柱狀透鏡作為表面」等問題。此外,膠層與3D光學構造的折射率差異大於一預設差異值,藉此改善顯示模組透過3D顯示層或3D顯示結構以輸出一3D影像的功效,值得一提的是,膠層的厚度大於各柱狀透鏡的凸出高度,且膠層的黏度大於一預設黏度。因此,本創作的膠層可完全覆蓋各柱狀透鏡的曲面,藉此降低3D顯示層或3D顯示結構產生3D影像的疊紋以及達到良好的3D視覺效果。 以上之概述與接下來的實施例,皆是為了進一步說明本創作之技術手段與達成功效,然所敘述之實施例與圖式僅提供參考說明用,並非用來對本創作加以限制者。FIG. 1 is a schematic cross-sectional view showing a 3D display structure according to an embodiment of the present invention. Please refer to Figure 1. A 3D display structure 1 is suitable for a display module LCM having a display surface. The 3D display structure 1 includes a 3D display layer SL and a light transmissive layer 16. In practice, the light transmissive layer 16 is connected to the 3D display layer SL. The surface 161 of the light transmissive layer 16 is in contact with air. The 3D display layer SL is connected to the display module LCM through an adhesive layer PSA or OCA. Therefore, the display module LCM transmits the 3D display image to the viewer through the 3D display structure 1, and the viewer can view the 3D image with the naked viewer. For convenience of description, the display module LCM of the present embodiment is described by a liquid crystal display module (LCD), and the 3D display structure 1 is realized by, for example, a 3D display panel or a 3D display film. In the embodiment, the display module LCM is, for example, an LCD panel, a touch display of a digital television, a display or a touch display of a notebook computer, a display of a ATM or a touch display, a touch display of a game machine, A display or touch display of a commercial advertising machine or other household device. This embodiment does not limit the aspect of the 3D display structure 1 and the display module LCM. Further, the 3D display layer SL is used to form a 3D display structure 1 with a light transmissive layer 16. The 3D display structure 1 is disposed on a display module LCM. In practice, the 3D display layer SL includes a substrate structure 10, a 3D optical structure 12, and a glue layer 14. In practice, the base structure 10 has a first face 101 and a second face 102. The 3D optical structure 12 is formed on the first face 101 of the base structure 10. The glue layer 14 covers the 3D optical structure 12, and the light transmission layer 16 is connected to the glue layer 14. The base structure 10 is, for example, a polyethylene terephthalate (PET). The 3D optical structure 12 is, for example, a bare-lens 3D columnar crystal structure, an array lens (Lens Array), or a fly-eye (Fly eyes) structure. The glue layer 14 is, for example, an Optical Clear Adhesive (OCA) or a fluoropolymer. This embodiment does not limit the aspect of the substrate construction 10, the 3D optical structure 12, and the glue layer 14. The 3D optical construction 12 includes a plurality of lenticular lenses L1. The top portion T of each of the lenticular lenses L1 is convex toward a first direction D1, and each of the lenticular lenses L1 has a curved surface C1. In practice, the lenticular lens L1 is used to focus the light beam output by the RGB pixels of the display module LCM, so that the light beams output by the RGB pixels can be respectively focused to the left eye or the right eye of the viewer. The efficacy of 3D display. For convenience of explanation, the first direction D1 of the present embodiment is described in the direction in which the display module LCM faces the viewer. This embodiment does not limit the aspect of the first direction D1. In other embodiments, the top portion T of each of the lenticular lenses L1 may also protrude in a direction opposite to the first direction D1. That is, the reverse direction with the first direction D1 indicates the direction from the viewer toward the display module LCM. In other words, the 3D optical structure 12 in FIG. 1 is located on the second side 102 of the base structure 10, and the top T of each of the lenticular lenses L1 is convex toward the display module LCM, that is, the top T is oriented toward the first direction. The reverse of D1 protrudes. This embodiment does not limit the aspect in which the top T of each of the lenticular lenses L1 protrudes. The glue layer 14 covers the curved surface C1 of each of the lenticular lenses L1. The glue layer 14 is connected between the light transmissive layer 16 and the 3D optical structure 12. The difference in refractive index between the adhesive layer 14 and the 3D optical structure 12 is greater than a predetermined difference value, and the preset difference value is, for example, 0.1. That is, the refractive index of the 3D optical construction 12 is greater than the refractive index of the adhesive layer 14. The 3D optical structure 12 is a lenticular lens L1 having a high refractive index. The glue layer 14 is a low refractive index optical glue. The refractive index of the lenticular lens L1 is greater than the refractive index of the adhesive layer 14. For example, the refractive index of the lenticular lens L1 is 1.55. The refractive index of the adhesive layer 14 is 1.20. The refractive index difference between the 3D optical structure 12 and the adhesive layer 14 is 0.35. For another example, the refractive index of the lenticular lens L1 is 1.55. The refractive index of the adhesive layer 14 is 1.40. The refractive index difference between the 3D optical structure 12 and the adhesive layer 14 is 0.15. The difference in refractive index between the 3D optical structure 12 and the adhesive layer 14 of the two examples is greater than a preset difference value of 0.1. In other words, the 3D display layer SL in both cases can achieve a good 3D display effect. It is worth noting that the condition that the optical total reflection occurs is that the incident light is directed from the optically dense medium to the light-diffusing medium, and the incident angle is greater than the critical angle. Among them, the critical angle can be known by Snell's Law. Next, each of the lenticular lenses L1 is a high refractive index medium (ie, a light-tight medium). The glue layer 14 is a low refractive index medium (ie, a light-dissipating medium). Therefore, when the light beams output by the RGB pixels enter the glue layer 14 via the respective lenticular lenses L1, the incident angle of the light beams needs to be smaller than the critical angle, so that most of the light beams conform to the law of refraction. If the incident angle of the beam is greater than the critical angle, then no refraction angle can be found to conform to the law of refraction, so the beam will be totally reflected back to the original medium (ie, the lenticular lens L1 of high refractive index) according to the law of reflection. Therefore, when the curvature of each of the lenticular lenses L1 is larger, the lower the convex height S1 of the lenticular lens L1, the smaller the spherical aberration of the lenticular lens L1. That is, the larger the critical angle of the light beam passing through each of the lenticular lenses L1, the larger the RGB pixels output the light beam can conform to the law of refraction and refracted into the low refractive index adhesive layer 14, thereby the 3D display structure. 1 Outputs a good 3D display image. On the other hand, the smaller the curvature of each of the lenticular lenses L1 is, the higher the convex height S1 of the lenticular lens L1 is, and the larger the spherical aberration of the lenticular lens L1 is. That is, the smaller the critical angle of the light beam passing through each of the lenticular lenses L1, the larger the output of the RGB pixels does not conform to the law of refraction, and conforms to the law of reflection. Thereby, the 3D display structure 1 outputs a poor, cross-talk or overlapping 3D display image. Further, a thickness T1 of the adhesive layer 14 is larger than a protruding height S1 of each of the lenticular lenses L1. The thickness T1 is, for example, a projection height S1 equal to or greater than 3 times. The projection height S1 is, for example, 5 mm, and the thickness T1 is, for example, 15 to 20 mm. That is, the glue layer 14 completely covers the top portion T of each of the lenticular lenses L1 and is higher than the top portion T of each of the lenticular lenses L1. The adhesive layer 14 has a viscosity greater than a predetermined viscosity. The preset viscosity is greater than or equal to 1 kg/in 2 . Under the condition of such a preset viscosity, the adhesive layer 14 can be closely adhered to the curved surface C1 of each of the lenticular lenses L1. On the other hand, if the viscosity of the adhesive layer 14 is less than the preset viscosity, the adhesive layer 14 cannot completely cover the curved surface C1 of each of the lenticular lenses L1, for example, the valley between the two adjacent lenticular lenses L1 cannot be covered by the adhesive layer 14. That is, a void or an air medium (i.e., a refractive index of 1) is generated at a valley between two adjacent lenticular lenses L1, and a region having a non-uniform refractive index is generated. Further, the light transmissive layer 16 has a surface 161 and a bonding surface 162 with respect to the surface 161. The bonding surface 162 is connected to the adhesive layer 14. In practice, the surface 161 of the light transmissive layer 16 is coated with one or a combination of a scratch resistant layer, an anti-stain layer, and an anti-reflective layer. The light transmissive layer 16 is, for example, a polyethylene terephthalate (PET), a glass (Glass) or a polycarbonate (PC). The haze of the light transmissive layer 16 is, for example, 2% to 7%, and the refractive index of the light transmissive layer 16 is greater than the refractive index of the subbing layer 14. This embodiment does not limit the aspect of the light transmissive layer 16. It is worth mentioning that the glue layer 14 is a low refractive index medium. The light transmissive layer 16 is a medium having a high refractive index. In practice, the refractive index of the light transmissive layer 16 is, for example, greater than or equal to the refractive index of each of the lenticular lenses L1. The refractive index of each of the lenticular lenses L1 is larger than the refractive index of the adhesive layer 14. Wherein, the beam output from the RGB pixel enters the high refractive index medium from the low refractive index medium, and the beam system does not cause total reflection. Therefore, the 3D display structure 1 can output a 3D display image to the viewer, and the viewer can view the 3D image in a naked manner. FIG. 2 is a partially enlarged schematic view showing a lenticular lens according to another embodiment of the present invention. Please refer to Figure 2. 2 shows two adjacent lenticular lenses L1, wherein the convex height S1, the pitch P1, and the curved surface C1 of the lenticular lens L1 are as shown in FIG. 2 . The protrusion height S1 is from the first face 101 of the base structure 10 to the top T of the lenticular lens L1. The thickness bt1 of the other substrate structure 10 is as shown in FIG. In practice, under the same pitch P1, the smaller the radius of curvature (ie, the focus R value of the lenticular lens L1), that is, the smaller the curvature (Curvature) and the higher the convex height S1 of the lenticular lens L1, Then, the spherical aberration of the lenticular lens L1 is larger. Therefore, the higher the protrusion height S1, the more the interference of the lenticular lens L1 on the 3D display. On the contrary, with the same pitch P1, the radius of curvature (that is, the focus R value of the lenticular lens L1) is larger, that is, the larger the curvature (Curvature) and the lower the convex height S1 of the lenticular lens L1, the column The spherical aberration of the lens L1 is smaller. Therefore, the lower the projection height S1, the less the interference of the lenticular lens L1 on the 3D display. In short, the smaller the radius of curvature, the smaller the curvature of the lenticular lens L1 and the higher the convex height S1, whereby the effect of the lenticular lens L1 producing a 3D image is worse. On the other hand, the larger the radius of curvature, the larger the curvature of the lenticular lens L1 and the lower the convex height S1, whereby the effect of the lenticular lens L1 to generate a 3D image is better. Next, the relationship between the refractive index difference value and the numerical value of the curvature radius of the lenticular lens, and the relationship between the refractive index difference value and the simulated numerical value of the spot diameter of the 3D display are further explained. The relationship between the two simulated numerical curves is shown in FIG. 3 and FIG. 4 respectively. For convenience of explanation, Table 1 is a numerical simulation of the refractive index of the lenticular lens, the refractive index of the adhesive layer, the refractive index difference value, the radius of curvature of the lenticular lens, and the spot diameter of the 3D display. The material of the lenticular lens is described by polymethylmethacrylate (PMMA). The refractive index of the polymethyl ester is, for example, 1.55. In other embodiments, the material of the lenticular lens can also be realized by materials having different refractive indices. This embodiment does not limit the material of the lenticular lens. Table I Fig. 3 is a graph showing the refractive index difference value of another embodiment of the present invention - the radius of curvature of the lenticular lens. Please refer to Figure 3. As shown in the graph of Fig. 3, the X-axis is a refractive index difference value between the refractive index of the lenticular lens and the refractive index of the adhesive layer. Wherein, the refractive index of the lenticular lens is greater than the refractive index of the adhesive layer. The refractive index difference value gradually decreases from the left side of the X axis to the right side of the X axis. The Y axis is the radius of curvature of the lenticular lens (ie, the focus R value of the lenticular lens). Among them, the radius of curvature gradually increases from the lower side of the Y-axis to the upper side of the Y-axis. For example, when the refractive index difference value is 0.05, the radius of curvature is about 0.096 mm, and the spot diameter is 30.810 mm. That is to say, the spherical aberration of the lenticular lens is large and cannot be focused. Therefore, the lenticular lens having a large spherical aberration produces a more serious interference effect on the 3D display. On the other hand, when the refractive index difference value is 0.1, the radius of curvature is about 0.124 mm. Among them, the spot diameter corresponding to the refractive index difference value of 0.1 in Table 1 is 6.771 mm. Therefore, the spherical aberration of the lenticular lens is small. A lenticular lens with a small spherical aberration produces a slight interference with the 3D display. For another example, when the refractive index difference value is 0.15, the radius of curvature is about 0.169 mm. That is to say, the spherical aberration of the lenticular lens is small. Among them, the spot diameter corresponding to the refractive index difference value of 0.15 in Table 1 is 3.14 mm. Therefore, the lenticular lens having a small spherical aberration produces a slight interference effect on the 3D display. For the rest, please refer to the analog values in Table 1. It will not be repeated here. Fig. 4 is a graph showing the spot diameter of the refractive index difference value - 3D display of another embodiment of the present invention. Please refer to Figure 4. As shown in the graph of FIG. 4, the X-axis is a refractive index difference value between the refractive index of the lenticular lens and the refractive index of the adhesive layer. Wherein, the refractive index of the lenticular lens is greater than the refractive index of the adhesive layer. The refractive index difference value gradually decreases from the left side of the X axis to the right side of the X axis. The Y axis is the spot diameter of the 3D display. Among them, the spot diameter gradually increases from the lower side of the Y axis to the upper side of the Y axis. When the lenticular lens of the 3D display is optically designed, the distance between the human eyes is set to be about 65 mm. In the strong light, the diameter of the human pupil is about 1.5mm. In dim light, the diameter of the human pupil is enlarged to about 8mm. In general, the diameter of human pupils is between 3mm and 6mm. If the diameter of the focused spot of the lenticular lens is already larger than the diameter of the human pupil, the 3D display structure cannot clearly send the 3D display image to the left and right eyes of the human. This 3D display structure produces severe crosstalk or aliasing. From this, it can be seen that the refractive index difference between the refractive index of the lenticular lens and the refractive index of the adhesive layer is greater than 0.1, and the optimum refractive index difference value is greater than 1.5 or more. Wherein, when the refractive index difference value is 0.1, the spot diameter of the 3D display of each lenticular lens is about 6.77 mm, which substantially corresponds to the upper limit of the condition of the human pupil diameter of 3 mm to 6 mm in a general environment. The best value is that when the refractive index difference value is 0.15, the diameter of the 3D display of each lenticular lens is about 3.14 mm, which is in accordance with the condition that the diameter of the human pupil is 3 mm to 6 mm in the general environment. Thereby achieving a good 3D display effect. For example, when the refractive index difference value is 0.15, the radius of curvature is about 0.169 mm. The 3D display has a spot diameter of 3.14 mm. That is to say, the spherical aberration of the lenticular lens is small and conforms to the diameter of the human pupil in a general environment. Therefore, the lenticular lens with a small spherical aberration produces a slight interference on the 3D display and conforms to the diameter of the human pupil in a general environment. Therefore, the RGB pixels of the display module pass through the 3D display layer or the 3D display structure to output a good 3D display image. In summary, the present invention utilizes a 3D display layer or a 3D display structure to cover each of the high refractive index lenticular lenses through a low refractive index adhesive layer, wherein the refractive index of the lenticular lens and the refractive index of the adhesive layer are refracted. The rate difference value is greater than the preset difference value, and the preset difference value is, for example, 0.1. Thereby the 3D display layer or the 3D display structure can reduce the interference of the 3D display. Therefore, the display module can output a 3D image through the 3D display layer or the 3D display structure, and the viewer can view the better quality 3D image with naked eyes. Furthermore, the present design overcomes the design of each lenticular lens through a glue layer, thereby overcoming the accumulation of impurities such as oil, dust and the like into the embossed slits of the lenticular lenses, and "the prior art is insufficient in hardness, scratch-resistant or These lenticular lenses that do not rub wear are a problem such as a surface. In addition, the refractive index difference between the adhesive layer and the 3D optical structure is greater than a predetermined difference value, thereby improving the function of the display module to output a 3D image through the 3D display layer or the 3D display structure, and it is worth mentioning that the adhesive layer The thickness is greater than the convex height of each lenticular lens, and the viscosity of the adhesive layer is greater than a predetermined viscosity. Therefore, the glue layer of the present invention can completely cover the curved surface of each lenticular lens, thereby reducing the 3D image overlay and the 3D visual effect of the 3D display layer or the 3D display structure. The above summary and the following examples are intended to further illustrate the technical means and the efficiencies of the present invention, and the embodiments and drawings are merely provided for reference and are not intended to limit the present invention.

1‧‧‧3D顯示結構
10‧‧‧基底構造
101‧‧‧第一面
102‧‧‧第二面
L1‧‧‧柱狀透鏡
12‧‧‧3D光學構造
14‧‧‧膠層
16‧‧‧透光層
161‧‧‧表面
162‧‧‧貼合面
C1‧‧‧曲面
T1‧‧‧膠層的厚度
bt1‧‧‧基底構造的厚度
S1‧‧‧凸出高度
P1‧‧‧間距
SL‧‧‧3D顯示層
SV‧‧‧波谷
T‧‧‧頂部
D1‧‧‧第一方向
PSA‧‧‧黏膠層
LCM‧‧‧顯示模組
1‧‧‧3D display structure
10‧‧‧Base structure
101‧‧‧ first side
102‧‧‧ second side
L1‧‧‧ lenticular lens
12‧‧‧3D optical construction
14‧‧‧ glue layer
16‧‧‧Transparent layer
161‧‧‧ surface
162‧‧‧Fitting surface
C1‧‧‧ surface
Thickness of T1‧‧‧ adhesive layer
Thickness of bt1‧‧‧ base structure
S1‧‧‧ protruding height
P1‧‧‧ spacing
SL‧‧‧3D display layer
SV‧‧ trough
Top of T‧‧‧
D1‧‧‧ first direction
PSA‧‧ ‧ adhesive layer
LCM‧‧‧ display module

圖1為本創作一實施例之3D顯示結構之剖面示意圖。             圖2為本創作另一實施例之柱狀透鏡之局部放大示意圖。             圖3為本創作另一實施例之折射率差異值-柱狀透鏡之曲率半徑的曲線圖。             圖4為本創作另一實施例之折射率差異值-3D顯示之光斑直徑的曲線圖。FIG. 1 is a schematic cross-sectional view showing a 3D display structure according to an embodiment of the present invention. FIG. 2 is a partially enlarged schematic view showing a lenticular lens according to another embodiment of the present invention. Fig. 3 is a graph showing the refractive index difference value of another embodiment of the present invention - the radius of curvature of the lenticular lens. Fig. 4 is a graph showing the spot diameter of the refractive index difference value - 3D display of another embodiment of the present invention.

1‧‧‧3D顯示結構 1‧‧‧3D display structure

10‧‧‧基底構造 10‧‧‧Base structure

101‧‧‧第一面 101‧‧‧ first side

102‧‧‧第二面 102‧‧‧ second side

L1‧‧‧透鏡 L1‧‧ lens

12‧‧‧3D光學構造 12‧‧‧3D optical construction

14‧‧‧膠層 14‧‧‧ glue layer

16‧‧‧透光層 16‧‧‧Transparent layer

161‧‧‧表面 161‧‧‧ surface

162‧‧‧貼合面 162‧‧‧Fitting surface

C1‧‧‧曲面 C1‧‧‧ surface

T1‧‧‧膠層厚度 T1‧‧‧ glue layer thickness

S1‧‧‧凸出高度 S1‧‧‧ protruding height

SL‧‧‧3D顯示層 SL‧‧‧3D display layer

T‧‧‧頂部 Top of T‧‧‧

D1‧‧‧第一方向 D1‧‧‧ first direction

PSA‧‧‧黏膠層 PSA‧‧ ‧ adhesive layer

LCM‧‧‧顯示模組 LCM‧‧‧ display module

Claims (9)

一種3D顯示層,用於與一透光層形成一3D顯示結構,該3D顯示結構配置於一顯示模組上,該3D顯示層包括: 一基底構造,具有一第一面及一第二面; 一3D光學構造,形成於該基底構造的該第一面,該3D光學構造包括多數個透鏡,各該透鏡的頂部朝向一第一方向凸出,且各該透鏡具有一曲面;及 一膠層,覆蓋各該透鏡的該曲面,該膠層連接該透光層與該3D光學構造; 其中,該膠層與該3D光學構造的折射率差異大於一預設差異值,該膠層的一厚度大於該各該透鏡的一凸出高度,該膠層的黏度大於一預設黏度。A 3D display layer is configured to form a 3D display structure with a light transmissive layer. The 3D display structure is disposed on a display module. The 3D display layer includes: a base structure having a first surface and a second surface a 3D optical structure formed on the first side of the base structure, the 3D optical structure includes a plurality of lenses, a top of each of the lenses protruding toward a first direction, and each of the lenses has a curved surface; and a glue a layer covering the curved surface of each of the lenses, the adhesive layer connecting the light transmissive layer and the 3D optical structure; wherein a difference in refractive index between the adhesive layer and the 3D optical structure is greater than a predetermined difference value, and one of the adhesive layers The thickness is greater than a protruding height of each of the lenses, and the adhesive layer has a viscosity greater than a predetermined viscosity. 如請求項第1項所述之3D顯示層,其中該基底構造為一聚對苯二甲酸乙二酯(Polyethylene Terephthalate,PET),該膠層為一光學膠(Optical Clear Adhesive,OCA)。The 3D display layer of claim 1, wherein the substrate is constructed as a polyethylene terephthalate (PET), and the adhesive layer is an Optical Clear Adhesive (OCA). 如請求項第1項所述之3D顯示層,其中該3D光學構造的折射率大於該膠層的折射率,該預設差異值為0.1,該預設黏度大於或等於1kg/in2。The 3D display layer of claim 1, wherein the 3D optical structure has a refractive index greater than a refractive index of the adhesive layer, and the predetermined difference value is 0.1, and the predetermined viscosity is greater than or equal to 1 kg/in2. 如請求項第1項所述之3D顯示層,其中該膠層的該厚度為等於或大於3倍的各該透鏡的該凸出高度。The 3D display layer of claim 1, wherein the thickness of the adhesive layer is equal to or greater than 3 times the convex height of each of the lenses. 如請求項第1項所述之3D顯示層,其中該膠層為一含氟聚合物。The 3D display layer of claim 1, wherein the adhesive layer is a fluoropolymer. 一種3D顯示結構,適用於一具有一顯示面的顯示模組上,該3D顯示結構包括: 一如請求項1至5其中之一所述之3D顯示層;及 一透光層,具有一表面及相對於該表面的一貼合面,該貼合面連接該膠層。A 3D display structure is applicable to a display module having a display surface, the 3D display structure comprising: a 3D display layer as claimed in one of claims 1 to 5; and a light transmissive layer having a surface And the bonding surface is connected to the adhesive layer with respect to a bonding surface of the surface. 如請求項第6項所述之3D顯示結構,其中該透光層的該表面塗佈一抗刮層、一抗污層及一抗反射層的其中之一或組合,該透光層為一聚對苯二甲酸乙二酯(Polyethylene Terephthalate,PET)、一玻璃或一聚碳酸脂(Polycarbonates,PC)。The 3D display structure of claim 6, wherein the surface of the light transmissive layer is coated with one or a combination of a scratch resistant layer, an anti-staining layer and an anti-reflective layer, the light transmissive layer being a Polyethylene Terephthalate (PET), a glass or a polycarbonate (Polycarbonates, PC). 如請求項第6項所述之3D顯示結構,其中該透光層的霧度為2%~7%,該透光層的折射率大於該膠層的折射率。The 3D display structure of claim 6, wherein the light transmissive layer has a haze of 2% to 7%, and the transmissive layer has a refractive index greater than a refractive index of the adhesive layer. 如請求項第6項所述之3D顯示結構,其中各該透鏡的材質為聚酸甲酯(Polymethylmethacrylate,PMMA)。The 3D display structure of claim 6, wherein each of the lenses is made of polymethylmethacrylate (PMMA).
TW105101932A 2016-01-21 2016-01-21 3d display layer and 3d display structure thereof TWI597527B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105101932A TWI597527B (en) 2016-01-21 2016-01-21 3d display layer and 3d display structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105101932A TWI597527B (en) 2016-01-21 2016-01-21 3d display layer and 3d display structure thereof

Publications (2)

Publication Number Publication Date
TW201727314A true TW201727314A (en) 2017-08-01
TWI597527B TWI597527B (en) 2017-09-01

Family

ID=60186691

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105101932A TWI597527B (en) 2016-01-21 2016-01-21 3d display layer and 3d display structure thereof

Country Status (1)

Country Link
TW (1) TWI597527B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI836810B (en) * 2022-09-08 2024-03-21 友達光電股份有限公司 3d display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI836810B (en) * 2022-09-08 2024-03-21 友達光電股份有限公司 3d display device

Also Published As

Publication number Publication date
TWI597527B (en) 2017-09-01

Similar Documents

Publication Publication Date Title
TWI564591B (en) Microreplicated film for autostereoscopic displays
US20100027113A1 (en) Display device
KR20110016461A (en) An optical arrangement and an autostereoscopic display device incorporating the same
US10129533B2 (en) High quality and moire-free 3D stereoscopic image rendering system using a lenticular lens
CN101568426A (en) Plane lens sheet using light transmission rate difference
JP2017211454A (en) Screen and image display device
CN105652454B (en) A kind of 3D display layer and its 3D display structure
JP7421386B2 (en) Display device and head mounted display
TW201629588A (en) Contrast enhancement sheet and display device comprising the same
JP6790616B2 (en) Reflective screen, video display device
JP6642043B2 (en) Reflective screen, video display
JP2010068202A (en) Image display device
US11480864B2 (en) Reflection-type transparent screen, and image display system
JP2018109687A (en) Reflection screen and video display device
TWM520771U (en) 3D display layer and 3D display structure thereof
JP6988069B2 (en) Reflective screen, video display device
JP7048045B2 (en) Liquid crystal display module for naked eye 3D
US9479765B2 (en) Autostereoscopic projection device
TWI597527B (en) 3d display layer and 3d display structure thereof
JP6593201B2 (en) Screen, video display device
JP2018124315A (en) Screen and video display device
JP2018081193A (en) Reflection screen and video display device
CN107144973B (en) Compact cylindrical lens grating type naked eye 3D display panel
CN205485088U (en) 3D shows layer and 3D shows structure thereof
US8022927B1 (en) Low-cost graphic input device with uniform sensitivity and no keystone distortion

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees