TW201726164A - Liposomal vaccine - Google Patents

Liposomal vaccine Download PDF

Info

Publication number
TW201726164A
TW201726164A TW105134639A TW105134639A TW201726164A TW 201726164 A TW201726164 A TW 201726164A TW 105134639 A TW105134639 A TW 105134639A TW 105134639 A TW105134639 A TW 105134639A TW 201726164 A TW201726164 A TW 201726164A
Authority
TW
Taiwan
Prior art keywords
immunogenic
protein
fragment
variant
agent according
Prior art date
Application number
TW105134639A
Other languages
Chinese (zh)
Inventor
麥克 古德
梅弗茲 查曼
Original Assignee
格里菲斯大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2015904403A external-priority patent/AU2015904403A0/en
Application filed by 格里菲斯大學 filed Critical 格里菲斯大學
Publication of TW201726164A publication Critical patent/TW201726164A/en

Links

Abstract

An immunogenic agent suitable for preventing, treating or immunizing against one or a plurality of different pathogen comprises an immunogenic agent which comprises one or a plurality of pathogen-derived proteins, fragments, variants or derivatives thereof displayed on a lipid vesicle and a carrier protein such as diptheria toxoid located in an intravesicular space. The immunogenic agent may be suitable for intranasal administration and may be capable of eliciting a mucosal immune response. The immunogenic agent may further comprise an activator of innate immunity such as trehalose-6,6'-dibehenate and/or a bile salt such as sodium deoxycholate. The one or plurality of pathogens may be group A streptococcus, viruses or hookworms.

Description

脂質體疫苗Liposomal vaccine

本發明係關於預防及治療感染性疾病。更具體而言,本發明係關於一種藉由誘發黏膜免疫反應以治療或預防感染性疾病及症狀之脂質體疫苗。The present invention relates to the prevention and treatment of infectious diseases. More specifically, the present invention relates to a liposome vaccine for treating or preventing infectious diseases and symptoms by inducing a mucosal immune response.

全身性免疫已被證明能藉全身部位的血清免疫球蛋白(Ig)有效預防多種不同病原(pathogen)所引發之疾病,但無法預防黏膜部位的拓殖(colonization)因而無法預防人對人的傳染。因此,對於部分疾病,全身性疫苗接種並非為誘發免疫的最佳方法。反之,以鼻部施予以對抗各種生物體的黏膜疫苗能有效誘發全身性及黏膜腔室兩者的抗原專一性免疫反應。由於此雙層保護性免疫,黏膜疫苗對於對抗全身性及黏膜感染兩者為理想策略,其具預防黏膜拓殖之額外效益亦將抑制自上呼吸道之飛沫及氣霧的傳染。黏膜疫苗接種在經濟上亦為有利的,其對於疫苗開發為重要的考量。由於藉由鼻部途徑施予疫苗較為容易,可避免針頭的使用。因其無疼痛,傳遞時病患會有較大的順從性。Systemic immunity has been shown to effectively prevent disease caused by a variety of different pathogens by serum immunoglobulin (Ig) in the whole body, but it cannot prevent colonization of the mucosa and thus prevent human infection. Therefore, for some diseases, systemic vaccination is not the best way to induce immunity. Conversely, mucosal vaccines against various organisms by nasal administration can effectively induce antigen-specific immune responses in both systemic and mucosal compartments. Because of this two-layer protective immunity, mucosal vaccines are ideal for combating both systemic and mucosal infections, and their additional benefits of preventing mucosal colonization will also inhibit the transmission of droplets and aerosols from the upper respiratory tract. Mucosal vaccination is also economically advantageous and is an important consideration for vaccine development. Since it is easier to administer the vaccine by the nasal route, the use of the needle can be avoided. Because of its lack of pain, patients will have greater compliance when delivered.

本發明的目的係為提供一種免疫原性試劑及誘發對於病原之黏膜免疫反應之傳遞系統。在廣泛形式中,本發明係關於藉由以進一步包含例如白喉類毒素 (diptheria toxoid)(DT)之載體蛋白的脂囊泡的方式傳遞免疫原性蛋白、片段或變異體而輔助或誘發對病原之黏膜免疫。適當地,載體蛋白位在囊內空間(intravesicular space)。在一具體形式中,一種單一免疫原性試劑包含來自複數個不同病原之複數個不同的免疫原性蛋白、片段或變異體。It is an object of the present invention to provide an immunogenic agent and a delivery system that induces a mucosal immune response to a pathogen. In a broad form, the invention relates to assisting or inducing a pathogen by delivering an immunogenic protein, fragment or variant in a manner that further comprises a lipid vesicle of a carrier protein such as diptheria toxoid (DT). Mucosal immunity. Suitably, the carrier protein is located in the intravesicular space. In a specific form, a single immunogenic agent comprises a plurality of different immunogenic proteins, fragments or variants from a plurality of different pathogens.

本發明之一態樣提供適合施予至哺乳類的免疫原性試劑,該免疫原性試劑包含一或複數個免疫原性蛋白、其片段、變異體或衍生物、脂囊泡、載體蛋白或其片段或變異體。One aspect of the invention provides an immunogenic agent suitable for administration to a mammal, the immunogenic agent comprising one or more immunogenic proteins, fragments, variants or derivatives thereof, lipid vesicles, carrier proteins or Fragment or variant.

在一實施例中,載體蛋白為白喉類毒素 (DT)。In one embodiment, the carrier protein is diphtheria toxoid (DT).

在一實施例中,免疫原性試劑為包含來自不同病原之複數個免疫原性蛋白、其片段、變異體或衍生物之脂囊泡。In one embodiment, the immunogenic agent is a lipid vesicle comprising a plurality of immunogenic proteins, fragments, variants or derivatives thereof from different pathogens.

在本發明的另一態樣中,提供一種組成物,其包含上述態樣之免疫原性試劑。In another aspect of the invention, a composition comprising the immunogenic reagent of the above aspect is provided.

在一實施例中,組成物包含免疫原性試劑,其包含含有相同或單一病原之複數個免疫原性蛋白、其片段、變異體或衍生物,或含有來自相同或單一病原之複數個免疫原性蛋白、其片段、變異體或衍生物之脂囊泡。In one embodiment, the composition comprises an immunogenic agent comprising a plurality of immunogenic proteins, fragments, variants or derivatives thereof comprising the same or a single pathogen, or comprising a plurality of immunogens from the same or a single pathogen Lipid vesicles of a sex protein, fragment, variant or derivative thereof.

在一實施例中,組成物包含分別含有不同病原之一或複數個免疫原性蛋白、其片段、變異體或衍生物,或含有來自不同病原之一或複數個免疫原性蛋白、其片段、變異體或衍生物之複數個不同的免疫原性試劑。In one embodiment, the composition comprises one or more immunogenic proteins, fragments, variants or derivatives thereof, or one or more immunogenic proteins, fragments thereof, from different pathogens, A plurality of different immunogenic agents of a variant or derivative.

在一實施例中,組成物包含單一免疫原性試劑,其包含含有不同病原之複數個免疫原性蛋白、其片段、變異體或衍生物,或含有來自不同病原之複數個免疫原性蛋白、其片段、變異體或衍生物之脂囊泡。In one embodiment, the composition comprises a single immunogenic agent comprising a plurality of immunogenic proteins, fragments, variants or derivatives thereof comprising different pathogens, or a plurality of immunogenic proteins from different pathogens, a lipid vesicle of a fragment, variant or derivative thereof.

在一實施例中,組成物包含分別含有不同病原之一或複數個免疫原性蛋白、其片段、變異體或衍生物,或含有來自不同病原之一或複數個免疫原性蛋白、其片段、變異體或衍生物之複數個不同的免疫原性試劑。In one embodiment, the composition comprises one or more immunogenic proteins, fragments, variants or derivatives thereof, or one or more immunogenic proteins, fragments thereof, from different pathogens, A plurality of different immunogenic agents of a variant or derivative.

在本發明之另一態樣中,提供一種免疫原性試劑在製造用於誘發哺乳類中對一或複數個病原的免疫反應的藥劑之用途,該免疫原性試劑包含一或複數個免疫原性蛋白、其片段、變異體或衍生物、脂囊泡及白喉類毒素(DT)或其片段或變異體,或包含其之組成物。In another aspect of the invention, there is provided the use of an immunogenic agent for the manufacture of a medicament for inducing an immune response to one or more pathogens in a mammal, the immunogenic agent comprising one or more immunogenicities A protein, fragment, variant or derivative thereof, a lipid vesicle, and a diphtheria toxoid (DT), or a fragment or variant thereof, or a composition thereof.

在本發明之另一態樣中,提供一種免疫原性試劑在製造用於使哺乳類對一或複數個病原免疫的藥劑之用途,該免疫原性試劑包含一或複數個免疫原性蛋白、其片段、變異體或衍生物、脂囊泡及白喉類毒素(DT)或其片段或變異體,或包含其之組成物。In another aspect of the invention, there is provided the use of an immunogenic agent for the manufacture of a medicament for immunizing a mammal against one or more pathogens comprising one or more immunogenic proteins, A fragment, variant or derivative, lipid vesicle and diphtheria toxoid (DT) or a fragment or variant thereof, or a composition thereof.

在本發明之又一態樣中,提供一種免疫原性試劑在製造用以治療或預防哺乳類中由一或複數個病原所引發之感染的藥劑之用途,該免疫原性試劑包含一或複數個免疫原性蛋白、其片段、變異體或衍生物、脂囊泡及白喉類毒素(DT)或其片段或變異體,或包含其之組成物。In still another aspect of the present invention, there is provided the use of an immunogenic agent for the manufacture of a medicament for treating or preventing an infection caused by one or more pathogens in a mammal, the immunogenic reagent comprising one or more An immunogenic protein, a fragment, variant or derivative thereof, a lipid vesicle, and a diphtheria toxoid (DT), or a fragment or variant thereof, or a composition thereof.

適當地,免疫原性試劑誘發黏膜免疫反應Properly, the immunogenic agent induces a mucosal immune response

典型地,黏膜免疫反應包含IgA的產生。Typically, mucosal immune responses involve the production of IgA.

在一較佳形式中,免疫原性試劑經鼻內施予。In a preferred form, the immunogenic agent is administered intranasally.

適當地,免疫原性蛋白、其片段、變異體或衍生物係呈現於脂囊泡的表面上。適當地,白喉類毒素(DT)或其片段或變異體係位於囊泡內的囊內空間。在一較佳實施例中,脂囊泡係為脂質體。Suitably, the immunogenic protein, fragment, variant or derivative thereof is presented on the surface of the lipid vesicle. Suitably, the diphtheria toxoid (DT) or a fragment or variant thereof is located within the intracapsular space within the vesicle. In a preferred embodiment, the lipid vesicle is a liposome.

適當地,免疫原性蛋白片段或變異體為被脂質化的(lipidated)。在部分實施例中,在免疫原性蛋白片段或變異體的N端的離胺酸(K) 殘基係為脂質化的。在較佳形式中,N端離胺酸(K)殘基係經由α及ε胺基脂質化的。在部分實施例中,該脂質或各脂質係為例如棕櫚酸的C16 脂肪酸。較佳地,N端離胺酸(K)殘基係位在免疫原性蛋白片段或變異體的N端的間隔胺基酸序列(spacer amino acid sequence)中。Suitably, the immunogenic protein fragment or variant is lipidated. In some embodiments, the lysine (K) residue at the N-terminus of the immunogenic protein fragment or variant is lipidated. In a preferred form, the N-terminal amino acid (K) residue is lipidated via alpha and epsilon amine groups. In some embodiments, each of the lipid or lipid-based, for example, palmitic acid C 16 fatty acid. Preferably, the N-terminal cleavage of the amino acid (K) residue is in the spacer amino acid sequence at the N-terminus of the immunogenic protein fragment or variant.

在一特定實施例中,免疫原性蛋白、片段或變異體係為A群鏈球菌M蛋白片段、其變異體或衍生物。在其他或替代的實施例中,免疫原性蛋白係有利於恢復或加強嗜中性球活性的試劑。In a specific embodiment, the immunogenic protein, fragment or variant system is a Group A Streptococcal M protein fragment, a variant or derivative thereof. In other or alternative embodiments, the immunogenic protein is an agent that facilitates recovery or enhancement of neutrophil activity.

在一特定實施例中,M蛋白片段係為或包含M蛋白的保留區域 。在一實施例中,片段係為免疫原性片段,其包含或其中含有p145胜肽。在一特定實施例中,免疫原性片段係為其中為或包含J8胜肽或其變異體。In a specific embodiment, the M protein fragment is or comprises a reserved region of the M protein. In one embodiment, the fragment is an immunogenic fragment comprising or comprising a p145 peptide. In a particular embodiment, the immunogenic fragment is one in which or comprises a J8 peptide or a variant thereof.

較佳地,J8胜肽包含或實質上由胺基酸序列QAEDKVKQSREAKKQVEKALKQLEDKVQ(SEQ ID NO:1)所組成Preferably, the J8 peptide comprises or consists essentially of the amino acid sequence QAEDKVKQSREAKKQVEKALKQLEDKVQ (SEQ ID NO: 1)

在一廣泛實施例中,有利於恢復或加強嗜中性球活性的試劑係為SpyCEP的蛋白質或其片段。In a broad embodiment, the agent that facilitates recovery or enhancement of neutrophil activity is a protein of SpyCEP or a fragment thereof.

在一較佳實施例中,SpyCEP片段包含或實質上由胺基酸序列 NSDNIKENQFEDFDEDWENF (SEQ ID NO:2)所組成。In a preferred embodiment, the SpyCEP fragment comprises or consists essentially of the amino acid sequence NSDNIKENQFEDFDEDWENF (SEQ ID NO: 2).

在一特定實施例中,SpyCEP片段與M蛋白片段可融合以形成單一的嵌合胜肽(chimeric peptide)。In a particular embodiment, the SpyCEP fragment can be fused to the M protein fragment to form a single chimeric peptide.

在一實施例中,嵌合胜肽係為或可包含胺基酸序列NSDNIKENQFEDFDEDWENFQAEDKVKQSREAKKQVEKALKQLEDKVQ (SEQ ID NO:3)或其變異體,或由該胺基酸序列或其變異體所組成。In one embodiment, the chimeric peptide is or may comprise, or consist of, the amino acid sequence NSDNIKENQFEDFDEDWENFQAEDKVKQSREAKKQVEKALKQLEDKVQ (SEQ ID NO: 3) or variants thereof.

在一特定實施例中,免疫原性蛋白、片段或變異體係為流行性感冒病毒之免疫原性蛋白、其片段或變異體。該流行性感冒病毒可為A型流行性感冒(influenza virus)。一非限定例係為或包含胺基酸序列MSLLTEVETPIRNEWGCRCNDSSD (SEQ ID NO:11)或實質上由該胺基酸序列MSLLTEVETPIRNEWGCRCNDSSD (SEQ ID NO:11)所組成。該流行性感冒病毒可為B型流行性感冒。一非限制例係為或包含胺基酸序列PAKLLKERGFFGAIAGFLE (SEQ ID NO:12)、或實質上由PAKLLKERGFFGAIAGFLE (SEQ ID NO:12)所組成。In a specific embodiment, the immunogenic protein, fragment or variant system is an immunogenic protein, fragment or variant thereof of an influenza virus. The influenza virus can be a type A influenza virus. A non-limiting example is or comprises the amino acid sequence MSLLTEVETPIRNEWGCRCNDSSD (SEQ ID NO: 11) or consists essentially of the amino acid sequence MSLLTEVETPIRNEWGCRCNDSSD (SEQ ID NO: 11). The influenza virus can be type B influenza. A non-limiting example consists of or comprises the amino acid sequence PAKLLKERGFFGAIAGFLE (SEQ ID NO: 12), or substantially consists of PAKLLKERGFFGAIAGFLE (SEQ ID NO: 12).

在一特定實施例中,免疫原性蛋白、片段或變異體係為鼻病毒(rhinovirus)之免疫原性蛋白、其片段或變異體。一非限定例係為或包含胺基酸序列GAQVSTQKSGSHENQNILTNGSNQTFTVINY (SEQ ID NO:13)或實質上由該胺基酸序列GAQVSTQKSGSHENQNILTNGSNQTFTVINY (SEQ ID NO:13)所組成。另一非限定例係為或包含胺基酸序列GAQVSRQNVGTHSTQNMVSNGSSL (SEQ ID NO:14) 或實質上由該胺基酸序列GAQVSRQNVGTHSTQNMVSNGSSL (SEQ ID NO:14)所組成。In a specific embodiment, the immunogenic protein, fragment or variant system is an immunogenic protein, fragment or variant thereof of rhinovirus. A non-limiting example is or comprises the amino acid sequence GAQVSTQKSGSHENQNILTNGSNQTFTVINY (SEQ ID NO: 13) or consists essentially of the amino acid sequence GAQVSTQKSGSHENQNILTNGSNQTFTVINY (SEQ ID NO: 13). Another non-limiting example is or comprises the amino acid sequence GAQVSRQNVGTHSTQNMVSNGSSL (SEQ ID NO: 14) or consists essentially of the amino acid sequence GAQVSRQNVGTHSTQNMVSNGSSL (SEQ ID NO: 14).

在一特定實施例中,免疫原性蛋白、片段或變異體係為寄生蟲(worm),如鉤蟲(hook worm)之免疫原性蛋白、其片段或變異體。一非限定例係為或包含胺基酸序列TSLIAGLKAQVEAIQKYIGAEL (SEQ ID NO:15) 或實質上由該胺基酸序列TSLIAGLKAQVEAIQKYIGAEL (SEQ ID NO:15)所組成。In a particular embodiment, the immunogenic protein, fragment or variant system is a worm, such as an immunogenic protein, fragment or variant thereof of a hook worm. A non-limiting example is or comprises the amino acid sequence TSLIAGLKAQVEAIQKYIGAEL (SEQ ID NO: 15) or consists essentially of the amino acid sequence TSLIAGLKAQVEAIQKYIGAEL (SEQ ID NO: 15).

在部分實施例中,免疫原性試劑可進一步包含先天性免疫活化劑。先天性免疫的活化劑可靶向C型凝集蛋白(lectin),例如可誘導Ca2+ 依賴(C型) 凝集蛋白的巨噬細胞(「Mincle」)。該先天性免疫活化劑可為醣脂。非限定例包含醣脂,例如分支桿菌索狀因子海藻糖-6,6′-二黴菌酸酯(mycobacterial cord factor trehalose-6,6′-dimycolate) (TDM)及/或其合成類似物(analogue)海藻糖-6,6′-二山萮酸酯(trehalose-6,6′-dibehenate) (TDB)或脂質A醣脂佐劑(lipid A glycolipid adjuvant)。In some embodiments, the immunogenic agent can further comprise an innate immune activator. Activators of innate immunity can target C-type agins, such as macrophages ("Mincle"), which induce Ca 2+ -dependent (C-type) agglutination. The innate immune activator can be a glycolipid. Non-limiting examples include glycolipids, such as mycobacterial cord factor trehalose-6, 6'-dimycolate (TDM) and/or synthetic analogs thereof (analogue) Trehalose-6,6'-dibehenate (TDB) or lipid A glycolipid adjuvant.

在部分實施例中,免疫原性試劑可進一步包含膽鹽,例如脫氧膽酸鈉(sodium deoxycholate)。In some embodiments, the immunogenic agent can further comprise a bile salt, such as sodium deoxycholate.

除非本文另行要求,否則用語「包含(comprise)」、「包含(comprises)」及「包含(comprising)」或相似用語係意於表示非排他性包括,以使所述列舉的元件或特徵不僅包含其陳述或列舉的元件,而可包含未列舉或陳述之其他元件或特徵。The terms "comprise", "comprises" and "comprising" or similar terms are intended to mean a non-exclusive inclusion, such that the recited elements or features include not only The elements are recited or recited, and may include other elements or features not listed or stated.

本文的胺基酸序列藉由「實質上由…組成(consisting essentially of )」係表示所述胺基酸序列為與在N端或C端的其他一個、兩個或三個胺基酸一起之胺基酸序列。The amino acid sequence herein, by "consisting essentially of ", means that the amino acid sequence is an amine with one, two or three amino acids at the N-terminus or C-terminus. Base acid sequence.

如本文所使用,用於此的不定冠詞「一(a )」及「一(an )」係指或包括單數或複數個元件或特徵,且不應表示或定義「一個(one)」或「單一(single)」元件或特徵。As used herein, the indefinite article is used herein, "a (a)" and "a (AN)" means comprise a single or several or a plurality of elements or features, and should not be defined or represents "a (one)" or " A "single" element or feature.

本發明係至少部分由以下發現所肯定的是,與藉由已建立之非人類相容佐劑CTB所誘發之小鼠相比,藉由包含呈現於脂質體表面上之免疫原性胜肽與例如白喉類毒素(DT)之囊內載體蛋白之脂質體免疫原性進行鼻內免疫的小鼠導致黏膜及全身性抗體反應。在A群鏈球菌及J8胜肽的特定全文中,藉由脂質體製劑誘發的保護免疫的量顯著高於由J8/CTB誘發的量。此外,藉由該脂質體提出的純化人類樹突細胞(DC)子集合的細胞介素反應將有效地誘發人類的黏膜J8專一性IgA及全身性IgG反應。在部分實施例中,脂質體免疫原性試劑可包含單獨的SpyCEP胜肽或其之其他片段或與J8胜肽一起。在特定形式中,脂質體免疫原性試劑可適用於治療或預防由特定致病性菌株(particularly virulent strains)或A群鏈球菌的分離株(isolates)造成之感染,其能耐受用於A群鏈球菌感染的典型抗生素治療。該菌株或分離株通常會引起皮膚嚴重的感染(例如,壞死性筋膜炎(necrotizing fasciitis))且在部分情況下可能藏有CovR/SCovR/S突變。其可類推至包含但不限於:流行性感冒、鼻病毒及寄生蟲(如鉤蟲)的其他病原或其關聯性疾病、異常及症狀。據此,本發明中之實施例提供一種單一免疫原性試劑,其包含複數個不同病原的一或複數個免疫原性蛋白、其片段、變異體或衍生物,或來自其的一或複數個免疫原性蛋白、其片段、變異體或衍生物。The present invention is at least in part affirmed by the inclusion of an immunogenic peptide present on the surface of a liposome compared to a mouse induced by the established non-human compatible adjuvant CTB. For example, mice that are intranasally immunized with liposome immunogenicity of the intracapsular carrier protein of diphtheria toxoid (DT) cause mucosal and systemic antibody responses. In the specific full text of Group A Streptococcus and J8 peptides, the amount of protective immunity induced by the liposome preparation was significantly higher than that induced by J8/CTB. In addition, the interleukin reaction of purified human dendritic cell (DC) subsets proposed by the liposome will effectively induce mucosal J8-specific IgA and systemic IgG responses in humans. In some embodiments, the liposome immunogenic agent can comprise a separate SpyCEP peptide or other fragment thereof or together with a J8 peptide. In a particular form, the liposome immunogenic agent can be adapted to treat or prevent infection by isolates of particular virulent strains or group A streptococci, which can be tolerated for A Typical antibiotic treatment for streptococcal infections. This strain or isolate usually causes severe infection of the skin (for example, necrotizing fasciitis) and in some cases may harbor CovR/SCovR/S mutations. It can be analogized to include, but is not limited to, other pathogens of influenza, rhinovirus, and parasites (such as hookworms) or their associated diseases, abnormalities, and symptoms. Accordingly, embodiments of the invention provide a single immunogenic agent comprising one or more immunogenic proteins, fragments, variants or derivatives thereof, or one or more of a plurality of different pathogens An immunogenic protein, fragment, variant or derivative thereof.

為了本發明的目的,藉由「分離的(isolated )」係表示已自其自然狀態或移除或已受到人為操作的材料。分離的材料可實質上或基本上自通常伴隨其在自然狀態的組成物游離,或可操作以便於在人工狀態下與通常伴隨其在自然狀態的組成物結合。分離的材料可為天然(native)、化學合成或重組形式。For the purposes of the present invention, " isolated " means a material that has been removed from its natural state or that has been artificially manipulated. The separated material may be substantially or substantially freed from the composition normally associated with it in its natural state, or may be manipulated to facilitate its association with the composition normally associated with it in its natural state. The isolated material can be in a native, chemically synthesized or recombinant form.

藉由「蛋白質(protein )」係表示胺基酸聚合物。該胺基酸可為所屬技術領域中所理解的自然或非自然胺基酸、D-或L-胺基酸。By "protein (protein)" represents the amino acid-based polymer. The amino acid can be a natural or unnatural amino acid, D- or L-amino acid as understood in the art.

用語「蛋白質(protein )」包含及包括「胜肽(peptide )」,其通常用於敘述具有小於五十個(50)胺基酸之蛋白質、以及「多肽(polypeptide ),其通常用於敘述具有大於五十個(50)胺基酸之蛋白質。The term "protein (Protein)" and contains include "peptide (Peptide)", which is generally used to describe having less than fifty (50) amino acids of the protein, and "polypeptide (Polypeptide), which is generally used to describe having A protein of more than fifty (50) amino acids.

於本文中普遍使用之,當蛋白質被歸於「為……的(of )」或「來自(from )」病原,其通常代表該蛋白質包含一胺基酸序列,該序列係至少一部分或完全存在於病原內之蛋白質。The commonly used herein, when the protein is attributable to "as the ...... (of)" or "from (from)" pathogen, which generally represents the protein comprises an amino acid sequence which at least a portion or the entire system is present in the Protein in the pathogen.

「片段(fragment )」係為蛋白質的斷片、域、部分或區域,其由小於100%的蛋白質的胺基酸序列構成。將理解的是,片段可為單一片段或可為單獨重複或與其他片段一起。"Fragment (the fragment)" is based protein fragment, domain, portion or region, which consists of the amino acid sequence of the protein is less than 100%. It will be understood that the segments may be a single segment or may be repeated individually or with other segments.

通常片段可包含、實質上由5、6、7、8、9、10、12、15、20、25、30、40、50、60、70、80、90、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1050、1100、1150、1200、1250、1300、1350、1400、1450、1500、1550或1600個胺基酸的全長蛋白質所組成、或由高達5、6、7、8、9、10、12、15、20、25、30、40、50、60、70、80、90、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950、1000、1050、1100、1150、1200、1250、1300、1350、1400、1450、1500、1550或1600個胺基酸的全長蛋白質所組成。Typically a segment may comprise, substantially consist of 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400, 1450, 1500, 1550 or 1600 amino acid full length proteins, or up to 5, 6, 7, 8, 9, 10, 12, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, 1300, It consists of a full length protein of 1350, 1400, 1450, 1500, 1550 or 1600 amino acids.

如本文所使用,蛋白質「變異體(variant )」與參考胺基酸序列共享可定義的核苷酸或胺基酸序列關係。「變異體」蛋白質可具有刪除或由不同胺基酸置換的參考胺基酸序列的一或複數個胺基酸。在所屬技術領域中所理解的是,部分胺基酸可被置換或刪除而不會改變免疫原性片段及/或蛋白質的活性(保守性取代)。較佳地,蛋白變異體與參考胺基酸序列共享至少70% 或75%,較佳地至少80% 或85%或更佳地至少90%、91%、92%、93%、94%、95%、96%、97%、98%或99%相同的序列。As used herein, a protein " variant " shares a definable nucleotide or amino acid sequence relationship with a reference amino acid sequence. A "variant" protein can have one or more amino acids of a reference amino acid sequence deleted or replaced by a different amino acid. It is understood in the art that a portion of the amino acid can be replaced or deleted without altering the activity of the immunogenic fragment and/or protein (conservative substitution). Preferably, the protein variant shares at least 70% or 75%, preferably at least 80% or 85% or more preferably at least 90%, 91%, 92%, 93%, 94%, with the reference amino acid sequence, 95%, 96%, 97%, 98% or 99% identical sequences.

通常在此用於敘述各自的蛋白質與核酸之間的序列關係之用語包含「比較窗口(comparison window)」、「序列相同 (sequence identity)」、「序列相同的百分比(percentage of sequence identity)」及「實質上相同(substantial identity)」。由於各自的核酸/蛋白質可各自包含(1)僅藉由核酸/蛋白質共享的完全核酸/蛋白質序列的一或多個蛋白質、以及(2)在核酸/蛋白質之間趨異的一或多個蛋白質,序列比較通常藉由「比較窗口」比較序列來執行,以辨識及比較局部區域的序列相似性。「比較窗口」係指通常為與參考序列比較的6、9或12連續性殘基的概念性片段。與各自序列的最適比對(Optimal alignment)的參考序列相比,比較窗口可包含約20%或以下的附加物(additions)或缺失(deletions)(即,間隙)。用於比對比較窗口的最適比對的序列可藉由演算法的電腦化執行來處理(藉由Intelligenetics的Geneworks程式;Wisconsin遺傳套裝軟體7.0版(Wisconsin Genetics Software Package Release 7.0)中的GAP、BESTFIT、FASTA及TFASTA,遺傳計算機組(Genetics Computer Group),575科學驅動Madison(575 Science Drive Madison),WI,USA於此併入作為參考)或藉由以任何選擇的各種方法產生的檢驗及最佳比對(即,透過比較窗口產生最高百分比同源性)。參考亦可由例如於此併入作為參考的Altschul等人,1997,Nucl. Acids Res.25 3389所揭露的BLAST家族(BLAST family)的程式進行。序列分析的詳細討論可基於Eds. Ausubel 等人的分子生物學實驗操作手冊(CURRENT PROTOCOLS IN MOLECULAR BIOLOGY)的19.3單元(John Wiley及Sons Inc NY,1995-1999)(Unit 19.3 of CURRENT PROTOCOLS IN MOLECULAR BIOLOGY Eds. Ausubelet al . (John Wiley & Sons Inc NY, 1995-1999))。Generally used herein to describe the sequence relationship between proteins and nucleic acids includes "comparison window", "sequence identity", "percentage of sequence identity" and "Substantial identity". Since the respective nucleic acids/proteins may each comprise (1) one or more proteins of only the complete nucleic acid/protein sequence shared by the nucleic acid/protein, and (2) one or more proteins that divergence between the nucleic acids/proteins Sequence comparisons are typically performed by comparing the sequences in a "comparison window" to identify and compare sequence similarities in local regions. "Comparative window" refers to a conceptual fragment of a 6, 9 or 12 contiguous residue that is typically compared to a reference sequence. The comparison window may contain about 20% or less of additionals or deletions (i.e., gaps) as compared to the optimal alignment of the respective sequences. The optimal alignment sequence for comparing the comparison windows can be processed by computerized execution of the algorithm (by Intelligenetics' Geneworks program; Wisconsin Genetics Software Package Release 7.0), GAP, BESTFIT , FASTA and TFASTA, Genetics Computer Group, 575 Scientific Drive Madison (575 Science Drive Madison), WI, USA incorporated herein by reference) or by inspection and best by any of a variety of methods selected Alignment (ie, producing the highest percentage of homology through the comparison window). Reference may also be made to the program of the BLAST family (BLAST family) as disclosed in, for example, Altschul et al., 1997, Nucl. Acids Res. 25 3389. A detailed discussion of sequence analysis can be based on Unit 19.3 of the CURRENT PROTOCOLS IN MOLECULAR BIOLOGY by Eds. Ausubel et al. (John Wiley and Sons Inc NY, 1995-1999) (Unit 19.3 of CURRENT PROTOCOLS IN MOLECULAR BIOLOGY Eds. Ausubel et al . (John Wiley & Sons Inc NY, 1995-1999)).

用語「序列相同」在本文中最廣泛的意義為包含具有考慮到利用標準演算法的適當比對、具有考慮到序列透過比較窗口為相同的程度之精確核苷酸或胺基酸匹配的數目。因此,「序列相同的百分比」係藉由透過比較窗口比較兩個最適比對序列、定義在兩個序列出現相同的核酸鹼基(例如A、T、C、G、I)的位置數目以產生匹配位置的數目、將匹配位置的數目除以比較窗口位置的總數(即,窗口尺寸)以及將該結果乘以100以產生序列相同的百分比來計算。例如,「序列相同」可理解成藉由DNASIS計算機程式(DNASIS computer program)(用於windows 的2.5版(Version 2.5 for windows);購得自Hitachi Software engineering Co., Ltd.,南舊金山(South San Francisco),加州( California),USA))計算的「匹配百分比(match percentage)」的意義。The term "sequence identical" is used in the broadest sense herein to encompass the number of precise nucleotide or amino acid matches that have the same degree of alignment with respect to the sequence through the comparison window, taking into account the appropriate alignment using standard algorithms. Therefore, the "sequence of the same sequence" is generated by comparing the two optimal alignment sequences through the comparison window and defining the number of positions of the same nucleic acid base (eg, A, T, C, G, I) in the two sequences. The number of matching locations, the number of matching locations is divided by the total number of comparison window locations (ie, window size) and the result is multiplied by 100 to produce the same percentage of the sequence. For example, "same sequence" can be understood as using the DNASIS computer program (version 2.5 for windows); purchased from Hitachi Software engineering Co., Ltd., South San Francisco (South San) Francisco), California, USA)) The meaning of the "match percentage" calculated.

如本文所使用的「衍生物(derivatives )」係例如藉由所屬技術領域中所理解的與其他化學部分共軛(conjugation)或複合、藉由轉譯後修飾(post-translational modification)(例如,磷酸化、乙醯化等)、醣化(glycosylation)的修飾(例如,增加、移除或改變醣化)、脂質化及/或額外胺基酸序列的納入所改變的分子,例如蛋白質、其片段或變異體。在一特定實施例中,額外胺基酸序列可包含在其N端及/或C端的一或複數個離胺酸殘基。複數個離胺酸殘基(例如,聚離胺酸)可為離胺酸殘基的線性序列或可為離胺酸殘基的支鏈序列。此額外的離胺酸殘基可有利於增加胜肽溶解度。As used herein, "derivatives (Derivatives)" system in the art, for example by understood with other chemical moieties conjugated (Conjugation) or composite, by post-translational modifications (post-translational modification) (e.g., phosphoric acid Molecules, such as proteins, fragments or variants thereof, modified by glycosylation (eg, addition, removal or alteration of glycation), lipidation, and/or incorporation of additional amino acid sequences body. In a particular embodiment, the additional amino acid sequence can comprise one or more lysine residues at its N-terminus and/or C-terminus. The plurality of lysine residues (eg, polyaminic acid) can be a linear sequence of an lysine residue or a branched sequence that can be an amide residue. This additional lytic acid residue can be beneficial to increase the solubility of the peptide.

額外胺基酸序列可包含融合配偶體(fusion partner)胺基酸序列,其產生融合蛋白。例如,融合配偶體胺基酸序列可協助分離的融合蛋白的檢測及/或純化。非限定例包含金屬結合(例如,聚組胺酸(polyhistidine)) 融合配偶體、麥芽糖結合蛋白(maltose binding protein (MBP))、A蛋白質、麩胺基S-轉移酶(glutathione S-transferase (GST))、螢光蛋白質序列(例如,GFP)、例如myc、FLAG及球凝集素標籤(haemagglutinin tags)的表位標籤(epitope tags)。其他的額外胺基酸序列包含間隔序列。間隔序列的一示例係為在免疫原性蛋白片段的胺基酸序列的N端或C端的胺基酸序列或包含適用於脂質化的離胺酸(K)殘基之變異體。通常地,間隔胺基酸序列包含兩個(2)至十個(10)胺基酸,例如三個(3)胺基酸序列KSS。The additional amino acid sequence can comprise a fusion partner amino acid sequence which produces a fusion protein. For example, the fusion partner amino acid sequence can aid in the detection and/or purification of the isolated fusion protein. Non-limiting examples include metal binding (eg, polyhistidine) fusion partner, maltose binding protein (MBP), protein A, glutathione S-transferase (GST) )), fluorescent protein sequences (eg, GFP), epitope tags such as myc, FLAG, and haemagglutinin tags. Other additional amino acid sequences comprise spacer sequences. An example of a spacer sequence is an amino acid sequence at the N-terminus or C-terminus of the amino acid sequence of the immunogenic protein fragment or a variant comprising an lysine (K) residue suitable for lipidation. Typically, the spacer amino acid sequence comprises two (2) to ten (10) amino acids, such as three (3) amino acid sequences KSS.

由本發明預期的其他衍生物包含,但不限於,對側鏈的修飾、非自然胺基酸及/或胜肽中的其衍生物的併入或蛋白質合成及交聯劑(crosslinkers)的使用以及在本發明的免疫原性蛋白、片段及變異體上加強構形限制(conformational constraints)的其他方法。Other derivatives contemplated by the present invention include, but are not limited to, modifications to the side chain, incorporation of their derivatives in the unnatural amino acid and/or peptide, or protein synthesis and use of crosslinkers, and Other methods of enhancing conformational constraints on immunogenic proteins, fragments and variants of the invention.

在此方面,所屬技術領域中具有通常知識者係參照Coligan等人蛋白質科學實驗操作手冊(CURRENT PROTOCOLS IN PROTEIN SCIENCE)的第15章(John Wiley及Sons NY,1995-2008)用於對蛋白質以更廣泛的方法進行化學修飾。In this regard, those of ordinary skill in the art are referred to in Chapter 15 of the CURRENT PROTOCOLS IN PROTEIN SCIENCE (John Wiley and Sons NY, 1995-2008) for more A wide range of methods for chemical modification.

本發明揭露的免疫原性蛋白、片段及變異體將被理解為可各自呈現於脂囊泡的表面上或作為包含相同胜肽的多個複製或多個不同胜肽之嵌合體或融合蛋白質。非限制例為SEQ ID NO:3的嵌合胜肽,其將在下文中更詳細地描述。The immunogenic proteins, fragments and variants disclosed herein will be understood to be each present on the surface of a lipid vesicle or as a chimeric or fusion protein comprising multiple copies or multiple different peptides of the same peptide. A non-limiting example is the chimeric peptide of SEQ ID NO: 3, which will be described in more detail below.

在本發明的全文中,如本文所用的「免疫原性(immunogenic )」係表示在對哺乳類或其他動物施予免疫原性試劑之後,對例如病原或其分子組成產生或誘發免疫反應的能力或潛力。In the context of the present invention, such as "immunogenic (immunogenic)" as used herein, are diagrams of mammals or other animals after administration of an immunogenic agent, for example, pathogen or a molecule or composition to induce an immune response to produce power or potential.

藉由「誘發免疫反應(elicit an immune response )」係表示產生或刺激包含細胞免疫系統的免疫系統、抗體及/或天然免疫系統(native immune system)的一或多個元素的產生或活性。適當地,免疫系統的一或多個元素包含B淋巴細胞、抗體、嗜中性球、包含漿細胞樣樹突細胞的樹突細胞、細胞介素及/或化學激活素。細胞介素的非限制例包含促發炎細胞介素,例如TNF-α、IL-6及IL-1(例如,IL-1 β)。化學激活素的非限制例係為嗜中性球趨化物(chemo-attractant) IL-8。適當地,免疫反應係為或包含黏膜免疫反應,例如包含IgA 產生。較佳地,由免疫原性試劑誘發的免疫反應為保護性的。By " elicit an immune response " is meant the production or activity of one or more elements that produce or stimulate an immune system, an antibody, and/or a native immune system comprising a cellular immune system. Suitably, one or more elements of the immune system comprise B lymphocytes, antibodies, neutrophils, dendritic cells comprising plasmacytoid dendritic cells, interleukins and/or chemical activins. Non-limiting examples of interleukins include pro-inflammatory interleukins such as TNF-[alpha], IL-6 and IL-1 (e.g., IL- l[beta]). A non-limiting example of a chemical activin is the chemo-attractant IL-8. Suitably, the immune response is or comprises a mucosal immune response, for example comprising IgA production. Preferably, the immune response elicited by the immunogenic agent is protective.

如本文通常所使用的用語「免疫(immunize )」、「疫苗接種(vaccinate )」及「疫苗(vaccine )」係指誘發保護的免疫反應對抗病原之方法及/或製劑,因而至少部份地避免或最小化因病原的隨後感染。As used herein, the term generally "immunization (immunize)", "vaccination (vaccinate)" and "vaccine (Vaccine)" means to induce a protective immune response against the pathogen of the method, and / or formulation, thereby at least partially avoided Or minimize subsequent infection with the pathogen.

如本文中所使用的「病原(pathogen )」係為有能力於動物體導致疾病、異常或症狀的任何有生命或無生命之個體,該動物例如為家禽或哺乳類,亦包含人類。病原可為但不限於病毒、細菌、原生動物或寄生蟲。病原之具體非限制例包含細菌,例如A群鏈球菌、呼吸道病毒,如流行性感冒病毒,以及鼻病毒及寄生蟲,如線蟲,亦包含鉤蟲。As used herein, a "pathogen (pathogen)" system for the animals have the ability to cause any disease, disorder or condition which has no individual life or the life of the animals such as birds or mammals, human beings are also included. The pathogen can be, but is not limited to, a virus, a bacterium, a protozoa or a parasite. Specific non-limiting examples of pathogens include bacteria, such as group A streptococci, respiratory viruses, such as influenza viruses, and rhinoviruses and parasites, such as nematodes, which also contain hookworms.

如自本文的揭露所理解的,本發明提供包含免疫原性蛋白片段、變異體或衍生物及配製在脂囊泡中的載體蛋白之脂囊泡製劑。如本文廣泛使用,脂囊泡可為脂質體、微小胞(minicell)、多層微脂粒(multilamellar vesicle)、微胞(micelle)、液泡(vacuole)或其他包含脂質雙層的其他泡狀結構(vesicular structure),適當地,免疫原性蛋白片段、變異體或衍生物係衍生化成包含有利於固定在脂質雙層的一或多種脂質,以使免疫原性蛋白片段、變異體或衍生物呈現在脂囊泡的表面上。在較佳形式中,離胺酸(K)殘基係經由α及/或ε胺基脂質化。為了利於脂質化,免疫原性蛋白片段、變異體或衍生物可進一步包含含有脂質化的離胺酸(K)殘基的N端間隔。間隔通常可包含2~10個相接的胺基酸,例如三個(3)胺基酸間隔KSS。在部分實施例中,該脂質或各脂質為C16 脂肪酸,例如棕櫚酸。然而,亦將理解的是,其他脂質,例如根據本發明可使用具有C12 -C22 碳鏈的飽和或不飽和(例如,單元不飽和(mono-unsaturated))脂肪酸。As understood from the disclosure herein, the invention provides a lipid vesicle formulation comprising an immunogenic protein fragment, variant or derivative and a carrier protein formulated in a lipid vesicle. As widely used herein, a lipid vesicle can be a liposome, a minicell, a multilamellar vesicle, a micelle, a vacuole, or other vesicular structure comprising a lipid bilayer ( Vesicular structure), suitably, an immunogenic protein fragment, variant or derivative is derivatized to comprise one or more lipids that are useful for immobilization in a lipid bilayer such that the immunogenic protein fragment, variant or derivative is present On the surface of lipid vesicles. In a preferred form, the lysine (K) residue is lipidated via an alpha and/or epsilon amine group. To facilitate lipidation, the immunogenic protein fragment, variant or derivative may further comprise an N-terminal spacer comprising a lipidated lysine (K) residue. The spacing may typically comprise from 2 to 10 linked amino acids, such as three (3) amino acid spacer KSS. In some embodiments, each of the lipid or lipid is C 16 fatty acids such as palmitic acid. However, it will also be appreciated that other lipids, for example, a C 12 -C 22 saturated or unsaturated carbon chain (e.g., units of unsaturated (mono-unsaturated)) according to the present invention, fatty acid can be used.

脂囊泡適當地包含可形成脂質雙層結構的任意脂質或混合脂質。其包含磷脂類(phospholipids)、包含膽固醇(cholesterol)、膽固醇酯(cholesterol-esters)及植物固醇(phytosterols)的固醇類、脂肪酸及/或三酸甘油酯(triglycerides)。磷脂類的非限制例包含磷脂醯膽鹼(phosphatidylcholine (PC))(卵磷脂(lecithin))、磷脂酸(phosphatidic acid)、磷脂醯乙醇胺(phosphatidylethanolamine(PE))(腦磷脂(cephalin))、磷脂醯甘油(phosphatidylglycerol(PG))、磷脂醯絲胺酸(phosphatidylserine(PS))、磷脂酸肌醇(phosphatidylinositol(PI))及鞘磷脂(sphingomyelin (SM))或其自然或合成衍生物。自然衍生物包含蛋PC(egg PC)、蛋PG、大豆PC、氫化油大豆PC、大豆PG、腦PS、神經脂質(sphingolipid)、腦SM、半乳糖腦苷脂(galactocerebroside)、神經節苷脂(gangliosides)、腦脂質(cerebrosides)、腦磷脂、心磷脂(cardiolipin)及雙十六烷基磷酸鹽(dicetylphosphate)。合成衍生物包含二棕櫚醯磷酯醯膽鹼(dipalmitoylphosphatidylcholine(DPPC)、二癸醯磷酯醯膽鹼(didecanoylphosphatidylcholine(DDPC))、二芥子醯磷酯醯膽鹼(dierucoylphosphatidylcholine(DEPC))、二肉豆蔻醯磷脂醯膽鹼(dimyristoylphosphatidylcholine(DMPC))、二硬脂醯磷脂醯膽鹼(distearoylphosphatidylcholine(DSPC))、二月桂醯磷脂醯膽鹼(dilaurylphosphatidylcholine(DLPC))、棕櫚醯油醯磷脂醯膽鹼(palmitoyloleoylphosphatidylcholine(POPC))、棕櫚醯肉豆蔻醯磷脂醯膽鹼(palmitoylmyristoylphosphatidylcholine(PMPC))、棕櫚醯硬脂醯磷脂醯膽鹼(palmitoylstearoylphosphatidylcholine(PSPC))、二油醯磷脂醯膽鹼(dioleoylphosphatidylcholine(DOPC))、二油醯磷脂醯乙醇胺(dioleoylphosphatidylethanolamine(DOPE))、二月桂醯磷脂醯甘油(dilauroylphosphatidylglycerol(DLPG))、二硬脂醯磷脂醯甘油(distearoylphosphatidylglycerol(DSPG))、二肉豆蔻醯磷脂醯甘油(dimyristoylphosphatidylglycerol(DMPG))、二棕櫚醯磷脂醯甘油(dipalmitoylphosphatidylglycerol(DPPG))、二硬脂醯磷脂醯甘油(distearoylphosphatidylglycerol(DSPG))、二油醯磷脂醯甘油(dioleoylphosphatidylglycerol(DOPG))、棕櫚醯油醯磷脂醯甘油(palmitoyloleoylphosphatidylglycerol(POPG))、二肉豆蔻醯磷脂酸(dimyristoylphosphatidic acid(DMPA))、二棕櫚醯磷脂酸(dipalmitoylphosphatidic acid(DPPA))、二硬脂醯磷脂酸(distearoylphosphatidic acid(DSPA))、二肉豆蔻醯磷脂醯乙醇胺(dimyristoylphosphatidylethanolamine(DMPE))、二棕櫚醯磷脂醯乙醇胺(dipalmitoylphosphatidylethanolamine(DPPE))、二肉豆蔻醯磷脂醯絲胺酸(dimyristoylphosphatidylserine(DMPS))、二棕櫚醯磷脂醯絲胺酸(dipalmitoylphosphatidylserine(DPPS))、二硬脂醯磷脂醯乙醇胺(distearoylphosphatidylethanolamine(DSPE))、二油醯磷脂醯乙醇胺(dioleoylphosphatidylethanolamine(DOPE))、二油醯磷脂醯絲胺酸(dioleoylphosphatidylserine(DOPS))、二棕櫚醯鞘磷脂(dipalmitoylsphingomyelin(DPSM))以及二硬脂醯鞘磷脂(distearoylsphingomyelin(DSSM))。磷脂質亦可為任意上述磷脂質的衍生物或類似物。The lipid vesicles suitably comprise any lipid or mixed lipid that can form a lipid bilayer structure. It comprises phospholipids, sterols, fatty acids and/or triglycerides comprising cholesterol (cholesterol), cholesterol esters (cholesterol-esters) and phytosterols. Non-limiting examples of phospholipids include phosphatidylcholine (PC) (lecithin), phosphatidic acid, phosphatidylethanolamine (PE), cephalin, and phospholipids. Phosphatidylglycerol (PG), phospholipidylserine (PS), phosphatidylinositol (PI), and sphingomyelin (SM) or natural or synthetic derivatives thereof. Natural derivatives include egg PC (egg PC), egg PG, soybean PC, hydrogenated oil soybean PC, soybean PG, brain PS, sphingolipid, brain SM, galactocerebroside, ganglioside (gangliosides), cerebrosides, cephalin, cardiolipin, and dicecityl phosphate. The synthetic derivative comprises dipalmitoylphosphatidylcholine (DPPC), didecanoylphosphatidylcholine (DDPC), dierucoylphosphatidylcholine (DEPC), and two flesh. Dimyristoylphosphatidylcholine (DMPC), disearoylphosphatidylcholine (DSPC), dilaurylphosphatidylcholine (DLPC), palmitoyl phosphatidylcholine choline (palmitoyloleoylphosphatidylcholine (POPC)), palmitosylphosphatidylcholine (PMPC), palmitoylstearoylphosphatidylcholine (PSPC), dioleoylphosphatidylcholine (DOPC) )), dioleoylphosphatidylethanolamine (DOPE), dilauroylphosphatidylglycerol (DLPG), disearoylphosphatidylglycerol (DSPG), dimylopectin phospholipid (dimyristoylphosphatidylglycerol (DMPG)), Dipalmitoylphosphatidylglycerol (DPPG), disearoylphosphatidylglycerol (DSPG), dioleoylphosphatidylglycerol (DOPG), palmitoyloleoylphosphatidylglycerol (POPG) )), dimyristoylphosphatidic acid (DMPA), dipalmitoylphosphatidic acid (DPPA), disearoylphosphatidic acid (DSPA), dimylopectin Dimyristoylphosphatidylethanolamine (DMPE), dipalmitoylphosphatidylethanolamine (DPPE), dimyristoylphosphatidylserine (DMPS), dipalmitoylphosphatidylserine (DPPS) ), disearoylphosphatidylethanolamine (DSPE), dioleoylphosphatidylethanolamine (DOPE), dioleoylphosphatidylserine (DOPS), dipalmitoside sphingomyelin Dipalmitoylsph Ingomylin (DPSM)) and distearoylsphingomyelin (DSSM). The phospholipid may also be a derivative or analog of any of the above phospholipids.

適當地,混合的脂質可包含各脂質間為所期望的莫耳或wt%比。例如,脂質體可利用7 7二棕櫚醯基-sn-甘油酸-3-磷酸膽鹼(dipalmitoyl-sn-glycero-3-phosphocholine(DPPC)):2 膽固醇(CHOL):1 L-α-磷脂醯甘油(L-α-phosphatidylglycerol (PG))的莫耳比來形成。Suitably, the mixed lipids may comprise a desired molar or wt% ratio between the individual lipids. For example, liposomes can utilize 7 7 dipalmitoyl-sn-glycero-3-phosphocholine (DPPC): 2 cholesterol (CHOL): 1 L-α-phospholipid The molar ratio of glycerol (L-α-phosphatidylglycerol (PG)) is formed.

適當地,脂囊泡進一步包含載體蛋白。適當地,載體蛋白係為免疫原性蛋白,或至少部分地有利於或加強免性原性試劑的免疫原性。通常載體蛋白係以脂囊泡製備,以使載體蛋白位在脂囊泡內側的內部水性空間中。在部分實施例中,載體蛋白可與該免疫原性蛋白片段、其變異體或衍生物融合、共軛或複合。其包含重組蛋白融合、化學交聯(chemical cross-linking)及例如藉由生物素-抗生物素蛋白(biotin-avidin)或其他分子間結合劑的方式之分子間複合(intermolecular complexing),但不限於此。在此實施例中,該免疫原性蛋白片段、其變異體或衍生物係與載體蛋白位在脂囊泡內側的內部水性空間中融合、共軛或複合。此實施例可特別適用於口服施予的免疫原性試劑,例如包含膽鹽的脂質體,其將在下文中更詳細地描述。載體蛋白的非限制例包含白喉類毒素(DT)、破傷風類毒素(tetanus toxoid(TT))、例如CRM197的CRM蛋白及百日咳毒素突變(Pertussis toxin mutant),但不限於此。亦考慮為載體蛋白的片段及變異體。在一特定實施例中,載體蛋白係為白喉類毒素 (DT)或其片段。Suitably, the lipid vesicle further comprises a carrier protein. Suitably, the carrier protein is an immunogenic protein, or at least partially facilitates or enhances the immunogenicity of the immunogenic agent. Typically, the carrier protein is prepared as a lipid vesicle such that the carrier protein is located in the internal aqueous space inside the lipid vesicle. In some embodiments, the carrier protein can be fused, conjugated or complexed with the immunogenic protein fragment, variant or derivative thereof. It includes recombinant protein fusion, chemical cross-linking, and intermolecular complexing, for example, by biotin-avidin or other intermolecular binding agents, but not Limited to this. In this embodiment, the immunogenic protein fragment, variant or derivative thereof is fused, conjugated or complexed with the carrier protein site in the internal aqueous space inside the lipid vesicle. This embodiment may be particularly useful for orally administered immunogenic agents, such as liposomes comprising bile salts, which are described in more detail below. Non-limiting examples of carrier proteins include diphtheria toxoid (DT), tetanus toxoid (TT), CRM protein such as CRM197, and Pertussis toxin mutant, but are not limited thereto. Fragments and variants of carrier proteins are also contemplated. In a specific embodiment, the carrier protein is diphtheria toxoid (DT) or a fragment thereof.

在部分實施例中,脂囊泡進一步包含先天性免疫的活化劑。先天性免疫的活化劑可靶向由與先天性免疫相關的一或多種細胞表現的C型凝集蛋白。較佳地C型凝集蛋白係為可誘導Ca2+ 依賴(C型)凝集蛋白的巨噬細胞(「Mincle」)。非限制例包含醣脂類,例如分支桿菌索狀因子海藻糖-6,6′-二黴菌酸酯(TDM)及/或其合成類似物海藻糖-6,6′-二山萮酸酯(TDB)及/或脂質A醣脂佐劑,如可為PHAD®、3D-PHAD®及3D (6-acyl) PHAD®型態之單磷醯基3-去醯基-脂質A。雖然不希望受任何特定理論的束縛,但如上述所建議的先天性免疫的活化劑可加強或改善由免疫原性試劑誘發的黏膜免疫。較佳地,一或多個醣脂可包含於脂囊泡中以至於其不佔有超過脂囊泡中全體脂質的約25%、約20%、約15%、約10%。In some embodiments, the lipid vesicle further comprises an activator of innate immunity. An activator of innate immunity can target a type C agglutinin expressed by one or more cells associated with innate immunity. Preferably, the C-type agglutinin is a macrophage ("Mincle") that induces a Ca 2+ -dependent (C-type) agglutinin. Non-limiting examples include glycolipids such as mycobacterium cord-like factor trehalose-6,6'-dimyristate (TDM) and/or its synthetic analog trehalose-6,6'-dibehenate ( TDB) and/or a lipid A glycolipid adjuvant, such as monophosphoryl 3-dethiol-lipid A, which may be in the form of PHAD®, 3D-PHAD® and 3D (6-acyl) PHAD®. While not wishing to be bound by any particular theory, the activators of innate immunity as suggested above may enhance or ameliorate mucosal immunity induced by immunogenic agents. Preferably, one or more glycolipids may be included in the lipid vesicles such that they do not occupy more than about 25%, about 20%, about 15%, about 10% of the total lipid in the lipid vesicles.

在部分實施例中,脂囊泡可進一步包含膽酸(bile acid)或膽鹽。膽酸通常為具有24個碳的雙羥化(dihydroxylated)或三羥化(trihydroxylated)的固醇類,其包含膽酸(cholic acid)、去氧膽酸(deoxycholic acid)、鵝去氧膽酸(chenodeoxycholic acid)及熊去氧膽酸(ursodeoxycholic acid)。較佳地,脂囊泡包含膽鹽,例如膽酸鹽(cholate)、去氧膽酸鹽(deoxycholate)、鵝去氧膽酸鹽(chenodeoxycholate)或熊去氧膽酸鹽(ursodeoxycholate salt)。較佳地膽鹽為脫氧膽酸鈉。In some embodiments, the lipid vesicles may further comprise bile acid or bile salts. The bile acid is usually a dihydroxylated or trihydroxylated sterol having 24 carbons, which comprises cholic acid, deoxycholic acid, chenodeoxycholic acid. (chenodeoxycholic acid) and ursodeoxycholic acid. Preferably, the lipid vesicles comprise a bile salt such as cholate, deoxycholate, chenodeoxycholate or ursodeoxycholate salt. Preferably the bile salt is sodium deoxycholate.

在其他實施例中,包含脂質體的免疫原性試劑可製成在特定、所選的或期望的特定尺寸或尺寸範圍。在部分實施例中,較大粒徑脂質體可誘發較強的黏膜免疫反應。In other embodiments, the immunogenic agent comprising the liposome can be made to a particular size, size or range of specific, selected or desired. In some embodiments, larger particle size liposomes can induce a stronger mucosal immune response.

在其他實施例中,包含脂質體的免疫原性試劑可冷凍乾燥或凍乾(lyophilized),以利於長期儲存。重組冷凍乾燥的脂質體免疫原性試劑誘發的免疫反應可與「新鮮(fresh)」脂質體免疫原性試劑相比。In other embodiments, the immunogenic agent comprising the liposome can be freeze dried or lyophilized to facilitate long term storage. The immune response elicited by the recombinant freeze-dried liposome immunogenic agent can be compared to a "fresh" liposome immunogenic reagent.

在部分實施例中,病原為A群鏈球菌。In some embodiments, the pathogen is group A streptococci.

如本文所使用的用語「A群鏈球菌(group A streptococcus )」、「A群鏈球菌(Group A Streptococci )」、「A群鏈球菌(Group A Streptococcal )」、「A群鏈球菌(Group A Strep )」及縮寫「GAS」係指Lancefield血清群A(Lancefield serogroup A)的鏈球菌,其為化膿性鏈球菌物種(Streptococcus pyogenes )的革蘭氏陽性β-溶血菌(gram positive β-hemolytic bacteria)。GAS的重要致病因子為M蛋白,其為強烈的抗吞噬(anti-phagocytic)且與血清因子H連結,破壞C3轉化酶(C3-convertase)且藉由C3b避免助噬作用(opsonization)。如Graham等人,PNAS USA99 13855(Grahamet al ., 2002, PNAS USA99 13855)所述,其亦包含例如CovR/S或CovRS突變的致病性「突變」,但不限於此。As used herein, the terms " group A streptococcus ", " Group A Streptococci ", " Group A Streptococcal ", " Group A Streptococcus " ( Group A) "Strep " and the abbreviation "GAS" refer to the Streptococcus of Lancefield serogroup A, which is a Gram-positive β-hemolytic bacteria of Streptococcus pyogenes . ). An important causative agent of GAS is the M protein, which is strongly anti-phagocytic and linked to serum factor H, destroys C3-convertase and avoids opsonization by C3b. As described by Graham et al ., PNAS USA 99 13855 (Graham et al ., 2002, PNAS USA 99 13855), it also encompasses pathogenic "mutations" such as CovR/S or CovRS mutations, but is not limited thereto.

由A群鏈球菌所引起的疾病及症狀包含蜂窩性組織炎(cellulitis)、丹毒(erysipelas)、膿皰症(impetigo)、猩紅熱(scarlet fever)、例如急性咽炎(acute pharyngitis)的喉部感染(鏈球菌性喉炎(strep throat))、菌血症(bacteremia)、中毒性休克症候群、壞死性筋膜炎、急性風濕熱及急性腎絲球腎炎(acute glomerulonephritis),但不限於此。Diseases and symptoms caused by group A streptococci include cellulitis, erysipelas, impetigo, scarlet fever, laryngeal infection such as acute pharyngitis ( Strept throat, bacteremia, toxic shock syndrome, necrotizing fasciitis, acute rheumatic fever, and acute glomerulonephritis, but are not limited thereto.

如本文所使用的「嗜中性球(neutrophils )」或嗜中性顆粒細胞係為與嗜鹼性球(basophils)及嗜酸性球(eosinophil)一起形成多型核細胞家族(polymorphonuclear cell family (PMNs))的部分。嗜中性球係自骨髓幹細胞形成相對短壽命的吞噬細胞且在哺乳類中通常構成40%至75%的白血球細胞。吞噬的嗜中性球釋出水性抗微生物(soluble anti-microbials)(例如,顆粒蛋白)並產生嗜中性白血球胞外網狀結構(neutrophil extracellular traps)。嗜中性球對例如介白素8 (IL-8)、C5a、fMLP及白三烯(leukotriene)B4的分子反應,其促使嗜中性球趨化至受傷及/或急性發炎的位置。As used herein, "neutrophils (neutrophils)" or neutrophil cell line to form granules with basophil granulocyte (basophils) and eosinophil (eosinophil) family polymorphonuclear cells (polymorphonuclear cell family (PMNs ))part. Neutrophils produce relatively short-lived phagocytic cells from bone marrow stem cells and typically constitute 40% to 75% of white blood cells in mammals. The phagocytic neutrophils release soluble anti-microbials (eg, granule proteins) and produce neutrophil extracellular traps. The neutrophil reacts with molecules such as interleukin 8 (IL-8), C5a, fMLP, and leukotriene B4, which promote chemotaxis of the neutrophils to the site of injury and/or acute inflammation.

在一實施例中,免疫原性蛋白可為M蛋白、其片段或變異體。In one embodiment, the immunogenic protein can be an M protein, a fragment or variant thereof.

如本文所使用「M蛋白片段(M protein fragment )」為GAS M蛋白的任意片段,其為免疫原性及/或可藉由抗體或抗體片段束縛。通常地,該片段係為、包含或被含有在GAS M蛋白的C重複區域的胺基酸序列或其片段。非限制例包含LRRDLDASREAKKQVEKALE (SEQ ID NO:4)胺基酸序列之具有20mer胺基酸序列的p145。在此方面,p145 胺基酸序列片段可表現在J8胜肽中。As used herein, "fragment of the M protein (M protein fragment)" is any fragment using the GAS M proteins which and / or may be bound by an antibody or antibody fragment is immunogenic. Typically, the fragment is, comprises or is contained in an amino acid sequence or a fragment thereof in the C repeat region of the GAS M protein. Non-limiting examples include p145 having a 20mer amino acid sequence of the LRRDLDASREAKKQVEKALE (SEQ ID NO: 4) amino acid sequence. In this regard, the p145 amino acid sequence fragment can be expressed in the J8 peptide.

如本文所使用的「J8胜肽(J8 peptide )」為包含至少部分地來自或對應於GAS M蛋白C區域胜肽的胺基酸序列之胜肽。J8胜肽適當地包含構形B細胞表位(conformational B-cell epitope)及缺失可預期不良的T細胞自身表位(deleterious T-cell autoepitopes)。較佳的J8胜肽胺基酸序列為QAEDKVKQSREAKKQVEKALKQLEDKVQ (SEQ ID NO:1)或其片段或變異體,其中粗體 的殘基對應於GAS M蛋白的殘基344至355。在此實施例中,J8係為進一步包含側面(flanking)GCN4 DNA-結合蛋白序列的嵌合胜肽,其協助維持正確的螺旋摺疊及J8胜肽的構形結構。As used herein, "J8 peptide " is a peptide comprising an amino acid sequence at least partially derived from or corresponding to a GAS M protein C region peptide. The J8 peptide suitably comprises a conformational B-cell epitope and a deleterious T-cell autoepitopes. A preferred J8 peptide amino acid sequence is QAEDKVKQSREAKKQVEKALKQLEDKVQ (SEQ ID NO: 1) or a fragment or variant thereof, wherein the residues in bold correspond to residues 344 to 355 of the GAS M protein. In this example, J8 is a chimeric peptide further comprising a flanking GCN4 DNA-binding protein sequence that assists in maintaining the correct helical folding and configuration of the J8 peptide.

在另一實施例中,免疫原性蛋白可為利於恢復或加強嗜中性球活性的試劑。In another embodiment, the immunogenic protein can be an agent that facilitates recovery or enhancement of neutrophil activity.

如本文所使用的「利於恢復或加強嗜中性球活性的試劑(agent that facilitates restoring or enhancing neutrophil activity )」為直接或間接地至少部分地增加、加強或恢復嗜中性球的產生、移動及/或趨化性、及/或嗜中性球的一或多種免疫活性之分子。在一實施例中,試劑誘發對嗜中性球抑制劑的免疫反應。在另一實施例中,試劑結合且至少部分地不活化嗜中性球抑制劑。嗜中性球抑制劑可為衍生自或源自A群鏈球菌的分子。在一特定形式中,嗜中性球抑制劑為絲胺酸蛋白酶(serine protease)或其片段,其蛋白水解地剪切介白素8。在一特定實施例中,嗜中性球抑制劑為SpyCEP或其片段。SpyCEP係為在人類病原化膿性鏈球菌的表面上表現的170-kDa多域絲胺酸蛋白酶,其藉由催化剪切及不活化嗜中性球趨化物介白素8因而在感染上扮演重要的角色。SpyCEP 胺基酸序列的非限制例可基於序列編號YP597949.1及(S. pyogenes MGAS10270)及YP596076.1 (S. pyogenes MGAS9429)。因而,在一特定實施例中,SpyCEP片段係為或包含所述的SEQ ID NO:2 (NSDNIKENQFEDFDEDWENF) 胺基酸序列。其建議的SEQ ID NO:2係為或包含在SpyCEP上的顯性表位(dominant epitope),其可誘發功能性抗體。The agent that facilitates restoring or enhancing neutrophil activity , as used herein, directly or indirectly increases, enhances or restores the production, movement and/ or continuation of neutrophils . / or chemotactic, and / or one or more immunologically active molecules of the neutrophil. In one embodiment, the agent induces an immune response to a neutrophil inhibitor. In another embodiment, the agent binds and at least partially does not activate the neutrophil inhibitor. The neutrophil inhibitor can be a molecule derived or derived from Group A Streptococcus. In a particular form, the neutrophil inhibitor is a serine protease or a fragment thereof that proteolytically cleaves interleukin 8. In a specific embodiment, the neutrophil inhibitor is SpyCEP or a fragment thereof. SpyCEP is a 170-kDa multidomain serine protease expressed on the surface of human pathogenic Streptococcus pyogenes, which plays an important role in infection by catalyzing shear and not activating neutrophil chemoattractant protein-8. character of. Non-limiting examples of SpyCEP amino acid sequences can be based on SEQ ID NO: YP597949.1 and ( S. pyogenes MGAS 10270) and YP 596076.1 ( S. pyogenes MGAS 9429). Thus, in a particular embodiment, the SpyCEP fragment is or comprises the SEQ ID NO: 2 (NSDNIKENQFEDFDEDWENF) amino acid sequence. Its proposed SEQ ID NO: 2 is or is a dominant epitope on SpyCEP that induces functional antibodies.

再者,本文提供一種包含M蛋白胺基酸序列及SpyCEP 胺基酸序列的嵌合胜肽,其形成單一、相接的胺基酸序列。M蛋白胺基酸序列可位在SpyCEP 胺基酸序列的C端或其相反。在一實施例中,嵌合胜肽可包含胺基酸序列NSDNIKENQFEDFDEDWENFQAEDKVKQSREAKKQVEKALKQLEDKVQ (SEQ ID NO:3)或其變異體。Furthermore, provided herein is a chimeric peptide comprising an M protein amino acid sequence and a SpyCEP amino acid sequence which form a single, contiguous amino acid sequence. The M protein amino acid sequence can be located at the C-terminus of the SpyCEP amino acid sequence or vice versa. In one embodiment, the chimeric peptide may comprise the amino acid sequence NSDNIKENQFEDFDEDWENFQAEDKVKQSREAKKQVEKALKQLEDKVQ (SEQ ID NO: 3) or a variant thereof.

在替代實施例中,包含M蛋白胺基酸序列及SpyCEP 胺基酸序列的各自脂質體可產生用於作為「混合物(admixture)」施予。In an alternate embodiment, the respective liposomes comprising the M protein amino acid sequence and the SpyCEP amino acid sequence can be produced for administration as an "admixture."

在一特定實施例中,變異體M蛋白或胜肽可包含在其N端及/或C端的一或複數個離胺酸殘基。複數個離胺酸殘基(例如,聚離胺酸)可為離胺酸殘基的線性序列或可為離胺酸殘基的支鏈序列。此額外的離胺酸殘基可有利於增加胜肽溶解度。In a particular embodiment, the variant M protein or peptide may comprise one or more lysine residues at its N-terminus and/or C-terminus. The plurality of lysine residues (eg, polyaminic acid) can be a linear sequence of an lysine residue or a branched sequence that can be an amide residue. This additional lytic acid residue can be beneficial to increase the solubility of the peptide.

J8胜肽變異體的非限制例包含: S R E A K K Q S R E A K K Q V E K A L K Q V E K A L C (SEQ ID NO:5) S R E A K K Q S R E A K K Q V E K A L K Q S R E A K C (SEQ ID NO:6) S R E A K K Q V E K A L K Q S R E A K K Q V E K A L C (SEQ ID NO:7) S R E A K K Q V E K  A L D A S R E A K K Q V E K A L C (SEQ ID NO:8) 其他變異體可基於例如Cooper等人,1997所述的七肽(heptad)。Non-limiting examples of J8 peptide variants include: SREAKKQSREAKKQVEKALKQ VEKALC (SEQ ID NO: 5) SREAKKQSREAKKQVEKALKQ SREAKC (SEQ ID NO: 6) SREAKKQVEKALKQSREAKKQ VEKALC (SEQ ID NO: 7) SREAKKQVEK ALDASREAKKQVEKALC (SEQ ID NO: 8) Other variants It may be based on, for example, the heptapeptide described by Cooper et al., 1997.

例如,若表位已知位在α-螺旋蛋白結構構形中,接著可合成模型胜肽以摺疊成此構形。其基於GCN4白胺酸拉鍊(GCN4 leucine zipper)的結構(O’Shea等人,1991)設計α-螺旋的捲曲螺旋胜肽的模型。第一七肽含有序列MKQLEDK(SEQ ID NO:9),其包含數個在穩定的螺旋捲曲的七肽重複模體(heptad repeat motif)(a-b-c-d-e-f-g)n 中發現的特徵(Cohen及Parry,1990)。其包含在ad 位置的大的非極性殘基、在e及g位置的酸/鹼對(Glu/Lys)(通常有利於鏈間的離子相互作用)及在b c及f位置的極性基(與Lupas等人的預測一致(1991))。GCN4胜肽亦含有在a 位置的共識纈胺酸(consensus valine)。亦應注意的是,當由V及L佔據ad 位置時,捲曲螺旋二聚體(coiled coil dimer)為較佳(Harbury等人,1994)。自GCN4白胺酸拉鍊胜肽(VKQLEDK;SEQ ID NO:10)的共識特徵所衍生的七肽重複模型:具有形成α-螺旋形捲曲螺旋的潛能。此胜肽變成架構胜肽(framework peptide)。基於研究的構形表位的重疊片段嵌入模型捲曲螺旋胜肽,以形成嵌合胜肽。每當在螺旋型模型胜肽及表位序列兩者中找到相同的殘基時,將設計成確保正確的螺旋捲曲螺旋構形(Cohen及Parry,1990)的胺基酸置換併入至嵌合胜肽。通常使用的下列置換:在a位置,V換成I;b位置,K換成R;c位置,Q換成N;在d 位置,L換成A;在e位置,E換成Q;在f位置,D換成E;在g位置,K換成R。所有此置換殘基在捲曲螺旋蛋白質的其各自位置中為常見的(Lupas等人,1991)。For example, if the epitope is known to be in the alpha-helical protein structural conformation, then the model peptide can be synthesized to fold into this configuration. It is based on the structure of the GCN4 leucine zipper (O'Shea et al., 1991) to design a model of the alpha-helical coiled-coil peptide. The first heptapeptide contains the sequence MKQLEDK (SEQ ID NO: 9), which contains several features found in the stable helically coiled heptad repeat motif (abcdefg) n (Cohen and Parry, 1990). . It contains large non-polar residues at the a and d positions, acid/base pairs at the e and g positions (Glu/Lys) (usually favoring ionic interactions between chains) and at positions b , c and f Polar group (consistent with Lupas et al.'s prediction (1991)). The GCN4 peptide also contains a consensus valine in the a position. It should also be noted that a coiled coil dimer is preferred when occupying the a and d positions by V and L (Harbury et al., 1994). A heptad repeat model derived from the consensus feature of GCN4 leucine zipper peptide (VKQLEDK; SEQ ID NO: 10): has the potential to form an alpha-helical coiled-coil. This peptide becomes a framework peptide. Overlapping fragments based on the studied conformational epitope are embedded in the model coiled coil peptide to form a chimeric peptide. Whenever the same residue is found in both the helical model peptide and the epitope sequence, it will be designed to ensure that the correct helical coiled helical configuration (Cohen and Parry, 1990) is incorporated into the chimeric acid substitution Peptide. The following permutations are commonly used: at position a, V is changed to I; b is position, K is replaced by R; c is position, Q is replaced by N; at position d , L is replaced by A; at position e, E is replaced by Q; f position, D is replaced by E; at the g position, K is replaced by R. All such replacement residues are common in their respective positions of the coiled-coil protein (Lupas et al., 1991).

於Olive等人,2002,Infect & Immun.70 2734中所述的一特定J8胜肽衍生物係為「脂質核心胜肽(lipid core peptide)」。在一實施例中,脂質核心胜肽可包含直接地將支鏈聚離胺酸核心的各離胺酸中的兩個胺基酸耦接至脂溶性錨定物(lipophilic anchor)而合成的複數個J8胜肽(例如,四個J8胜肽)。A specific J8 peptide derivative described in Olive et al., 2002, Infect & Immun. 70 2734 is a "lipid core peptide". In one embodiment, the lipid core peptide may comprise a plurality of amino acids synthesized directly by coupling two amino acids in each of the lysines of the branched polyaminic acid core to a lipophilic anchor. A J8 peptide (for example, four J8 peptides).

M蛋白片段或變異體及/或SpyCEP片段或變異體可衍生成包含一或多種脂質,其有利於固定至上述的脂質雙層。在又一實施例中,包含M蛋白胺基酸序列及SpyCEP 胺基酸序列(例如,SEQ ID NO:3)的嵌合胜肽可包含在其N端的間隔胺基酸序列。因而,在實施例中的SpyCEP片段或變異體被包含在脂囊泡,其可與M蛋白片段或變異體單獨地脂質化或可以脂質化的嵌合胜肽呈現。M protein fragments or variants and/or SpyCEP fragments or variants can be derivatized to comprise one or more lipids that facilitate immobilization to the lipid bilayer described above. In yet another embodiment, a chimeric peptide comprising an M protein amino acid sequence and a SpyCEP amino acid sequence (eg, SEQ ID NO: 3) can comprise a spacer amino acid sequence at its N-terminus. Thus, the SpyCEP fragment or variant in the examples is contained in a lipid vesicle, which can be presented as a chimeric peptide that is lipidated separately or can be lipidated with the M protein fragment or variant.

在部分實施例中,病原為流行性感冒病毒,在一特定實施例中,免疫原性蛋白、片段或變異體為A型流行性感冒病毒之免疫原性蛋白、其片段或變異體。該免疫原性蛋白或片段可為基質蛋白2或其片段。非限制例係為或包含胺基酸序列MSLLTEVETPIRNEWGCRCNDSSD (SEQ ID NO:11)。在一特定實施例中,免疫原性蛋白、片段或變異體為B型流行性感冒病毒之免疫原性蛋白、其片段或變異體。該免疫原性蛋白或片段可為血球凝集素(haemagglutinin)蛋白或其片段。非限制例係為或包含胺基酸序列PAKLLKERGFFGAIAGFLE (SEQ ID NO:12)。In some embodiments, the pathogen is an influenza virus, and in a particular embodiment, the immunogenic protein, fragment or variant is an immunogenic protein, fragment or variant thereof of influenza A virus. The immunogenic protein or fragment can be matrix protein 2 or a fragment thereof. Non-limiting examples are or include the amino acid sequence MSLLTEVETPIRNEWGCRCNDSSD (SEQ ID NO: 11). In a specific embodiment, the immunogenic protein, fragment or variant is an immunogenic protein, fragment or variant thereof of influenza B virus. The immunogenic protein or fragment may be a haemagglutinin protein or a fragment thereof. Non-limiting examples are or include the amino acid sequence PAKLLKERGFFGAIAGFLE (SEQ ID NO: 12).

在部分實施例中,病原為鼻病毒。在一特定實施例中,免疫原性蛋白、片段或變異體為B型鼻病毒蛋白,如殼蛋白(capsid protein)。非限制例係為或包含胺基酸序列GAQVSTQKSGSHENQNILTNGSNQTFTVINY (SEQ ID NO:13)。在另一特定實施例中,免疫原性蛋白、片段或變異體為A型鼻病毒蛋白的免疫原性蛋白、片段或變異體,如殼蛋白。另一非限制例係為或包含胺基酸序列GAQVSRQNVGTHSTQNMVSNGSSL (SEQ ID NO:14)。In some embodiments, the pathogen is a rhinovirus. In a specific embodiment, the immunogenic protein, fragment or variant is a type B rhinovirus protein, such as a capsid protein. Non-limiting examples are or include the amino acid sequence GAQVSTQKSGSHENQNILTNGSNQTFTVINY (SEQ ID NO: 13). In another specific embodiment, the immunogenic protein, fragment or variant is an immunogenic protein, fragment or variant of a rhinovirus type A, such as a capsid protein. Another non-limiting example is or comprises the amino acid sequence GAQVSRQNVGTHSTQNMVSNGSSL (SEQ ID NO: 14).

在部分實施例中,病原為寄生蟲,例如鉤蟲。在一特定實施例中,免疫原性蛋白、片段或變異體為美洲鉤蟲(Necator americanus )的免疫原性蛋白、片段或變異體。非限制例係為或包含胺基酸序列TSLIAGLKAQVEAIQKYIGAEL (SEQ ID NO:15)。In some embodiments, the pathogen is a parasite, such as a hookworm. In a specific embodiment, the immunogenic protein, fragment or variant is an immunogenic protein, fragment or variant of Necator americanus . Non-limiting examples are or include the amino acid sequence TSLIAGLKAQVEAIQKYIGAEL (SEQ ID NO: 15).

本發明的分離的免疫原性蛋白、片段及/或衍生物可由所屬技術領域中已知的任何方法產生,包含但不限於化學合成、重組DNA技術及蛋白水解剪切以產生胜肽片段。Isolated immunogenic proteins, fragments and/or derivatives of the invention can be produced by any method known in the art including, but not limited to, chemical synthesis, recombinant DNA techniques, and proteolytic cleavage to produce a peptide fragment.

化學合成係包含固態及液態合成。雖然參照Ed. Nicholson (Blackwell科學出版社(Blackwell Scientific Publications))的合成疫苗(SYNTHETIC VACCINES)第9章及Eds. Coligan等人的蛋白質科學實驗操作手冊第15章(John Wiley及Sons, Inc. NY USA 1995-2008)所提供的化學合成技術的示例進行製作,但該方法為所屬技術領域中已知的方法。在此方面,亦參照國際公開號WO 99/02550及國際公開號WO 97/45444進行製作。Chemical synthesis consists of solid and liquid synthesis. Although reference is made to Ed. Nicholson (Blackwell Scientific Publications) Synthetic Vaccine (SYNTHETIC VACCINES) Chapter 9 and Eds. Coligan et al. Protein Science Laboratory Manual, Chapter 15 (John Wiley and Sons, Inc. NY) An example of a chemical synthesis technique provided by USA 1995-2008) is made, but the method is a method known in the art. In this respect, it is also produced in accordance with International Publication No. WO 99/02550 and International Publication No. WO 97/45444.

重組蛋白藉由所屬技術領域中具有通常知識者利用例如Sambrook等人的分子選殖,實驗室手冊(MOLECULAR CLONING. A Laboratory Manual) (冷泉港出版社(Cold Spring Harbor Press),1989),特別是在第16段及第17段;Eds. Ausubel等人的分子生物學實驗操作手冊(John Wiley及 Sons, Inc. NY USA 1995-2008),特別是在第10章及第16章;以及Eds. Coligan等人的蛋白質科學實驗操作手冊(John Wiley及 Sons, Inc. NY USA 1995-2008),特別是在第1章、第5章及第6章所述的標準實驗操作而可方便地製備。通常地,重組蛋白製備包含在適合的宿主細胞中編碼蛋白質的核酸的表現。Recombinant proteins are utilized by those of ordinary skill in the art using, for example, the molecular laboratory of Sambrook et al. (MOLECULAR CLONING. A Laboratory Manual) (Cold Spring Harbor Press, 1989), in particular In paragraphs 16 and 17; Eds. Ausubel et al. Molecular Biology Laboratory Manual (John Wiley and Sons, Inc. NY USA 1995-2008), particularly in Chapters 10 and 16; and Eds. The Coligan et al. Protein Science Laboratory Manual (John Wiley and Sons, Inc. NY USA 1995-2008), especially in the standard experimental procedures described in Chapters 1, 5, and 6, can be conveniently prepared. Generally, recombinant protein preparation encompasses the expression of a nucleic acid encoding a protein in a suitable host cell.

如上述,本發明提供用於在哺乳類或其他動物中預防或治療與病原體相關的疾病、異常或症狀的免疫原性試劑及/或其用途。As described above, the present invention provides an immunogenic agent and/or use thereof for preventing or treating a disease, abnormality or symptom associated with a pathogen in a mammal or other animal.

如本文所使用的「治療(treating )」、「治療(treat )」或「治療(treatment )」係指在其發展之後至少部分地改善(ameliorates)、消除(eliminates)或減輕與病原相關的疾病、異常或症狀的病徵或病理徵兆的治療介入(therapeutic intervention)。該治療不需絕對為對個體為有益的。有益效果可利用所屬技術領域中具有通常知識者已知的任何方法或標準定義。Such as "treatment (treating)", as used herein, "treatment (treat)" or "treatment (treatment)" means at least part of its development after the improvement (ameliorates), elimination (eliminates) or mitigate a disease associated with the pathogen Therapeutic intervention of the symptoms or pathological signs of abnormalities or symptoms. This treatment does not need to be absolutely beneficial to the individual. Advantageous effects can be defined using any method or standard known to those of ordinary skill in the art.

如本文所使用的「預防(preventin g)」、「預防(prevent )」或「預防(prevention )」係指在藉由或暴露於A群鏈球菌而感染之前及/或與A群鏈球菌相關的疾病、異常或症狀的病徵或病理徵兆的開始之前起始的行動過程,以避免感染及/或降低病徵或病理徵兆。將理解的是,該預防不需絕對為對個體為有益的。「預防性(prophylactic )」治療是對尚未出現疾病、異常或症狀的徵兆、或僅出現早期徵兆的個體施予治療,以用於降低疾病、異常或症狀的病徵或病理徵兆的發展風險的目的。As used herein, "prevention (preventin g)", "prevention (prevent)" or "prophylaxis (prevention)" means before or by exposure to group A streptococcal infection and / or associated with group A streptococcal The course of action initiated prior to the onset of a disease, abnormality or symptom of the pathology or pathology to avoid infection and/or reduce signs or pathological signs. It will be understood that this prevention need not be absolutely beneficial to the individual. "Preventive (prophylactic)" treatment is the individual signs of the disease, disorder or condition which has not yet appeared, or only early signs of administered treatment to reduce the risk of developing a disease, disorder or pathological symptoms or signs of symptoms of purpose .

疾病、異常或症狀可為與A群鏈球菌相關的疾病、異常或症狀。The disease, abnormality or symptom may be a disease, abnormality or symptom associated with group A streptococcus.

在本發明的全文中,藉由「與A群鏈球菌相關的疾病、異常或症狀(group A-strep-associated disease, disorder or condition )」係表示由A群鏈球菌感染所造成的任何臨床病理且包含蜂窩性組織炎、丹毒、膿皰症、猩紅熱、例如急性咽炎的喉部感染(鏈球菌性喉炎)、菌血症、中毒性休克症候群、壞死性筋膜炎、急性風濕熱及急性腎絲球腎炎,但不限於此。In the entire text of the present invention, " group A-strep-associated disease (disorder or condition )" means any clinical pathology caused by group A streptococcal infection. And includes cellulitis, erysipelas, pustular fever, scarlet fever, laryngeal infections such as acute pharyngitis (streptotoxic laryngitis), bacteremia, toxic shock syndrome, necrotizing fasciitis, acute rheumatic fever and acute Renal glomerulonephritis, but not limited to this.

如本文上述所述,本文所揭露的用於治療及/或免疫的用途包含對哺乳類施予含有有利於回復或加強嗜中性球活性的M蛋白片段、變異體或衍生物、脂囊泡、載體蛋白及/或SpyCEP胜肽或其他片段之免疫原性試劑。As described herein above, the use of the invention for treatment and/or immunization comprises administering to a mammal an M protein fragment, variant or derivative, lipid vesicle, comprising a protein fragment that is useful for rejuvenating or enhancing neutrophil activity, An immunogenic agent for carrier proteins and/or SpyCEP peptides or other fragments.

如本文所揭露,此外,治療及/或免疫可包含抗體或抗體片段的施予以治療性處理GAS感染,例如藉由靶向在感染位置(例如,皮膚)的SpyCEP及/或結合M蛋白、其片段或變異體的抗體或抗體片段。As disclosed herein, in addition, the treatment and/or immunization may comprise the therapeutic treatment of a GAS infection by an antibody or antibody fragment, for example by targeting SpyCEP and/or binding M protein at the site of infection (eg, skin), An antibody or antibody fragment of a fragment or variant.

抗體及抗體片段可為多株(polyclonal)或單株(monoclonal)、自然或重組。抗體片段包含Fc、Fab或F(ab)2片段及/或可包含單一鏈Fv抗體(scFvs)。此scFvs可例如根據美國專利號5,091,513、歐洲專利號239,400或由Winter及Milstein,1991,自然349:293(Winter & Milstein, 1991, Nature 349:293)的文章中分別所述的方法製備。抗體亦可包含多價重組抗體片段,例如二抗體(diabodies)、三抗體(triabodies)及/或四抗體(tetrabodies),其包含複數個scFvs以及二聚化活化半抗體(dimerisation-activated demibodies)(例如,WO/2007/062466)。例如,此抗體可根據Holliger等人,1993 Proc Natl Acad Sci USA90 6444;或Kipriyanov,2009 Methods Mol Biol562 177所述的方法製備。已知的實驗操作可基於例如Coligan等人的免疫學實驗操作手冊(CURRENT PROTOCOLS IN IMMUNOLOGY)的第2章(John Wiley及Sons NY,1991-1994)以及Harlow, E.及Lane, D.的抗體:實驗室手冊,冷泉港,冷泉港實驗室,1988(Harlow, E. & Lane, D.Antibodies:  A Laboratory Manual , Cold Spring Harbor, Cold Spring Harbor Laboratory, 1988)應用於抗體產生、純化及使用。The antibody and antibody fragment may be polyclonal or monoclonal, natural or recombinant. Antibody fragments comprise Fc, Fab or F(ab)2 fragments and/or may comprise single chain Fv antibodies (scFvs). Such scFvs can be prepared, for example, according to the methods described in U.S. Patent No. 5,091,513, European Patent No. 239,400, or by the respectives of Winter and Milstein, 1991, Nature 349:293 (Winter & Milstein, 1991, Nature 349:293). The antibody may also comprise multivalent recombinant antibody fragments, such as diabodies, triabodies, and/or tetrabodies, comprising a plurality of scFvs and dimerisation-activated demibodies ( For example, WO/2007/062466). For example, such antibodies can be prepared according to the method described by Holliger et al, 1993 Proc Natl Acad Sci USA 90 6444; or Kipriyanov, 2009 Methods Mol Biol 562 177. Known experimental procedures can be based, for example, on the antibodies of Corigan et al., CURRENT PROTOCOLS IN IMMUNOLOGY, Chapter 2 (John Wiley and Sons NY, 1991-1994) and Harlow, E. and Lane, D. : Laboratory Manual , Cold Spring Harbor, Cold Spring Harbor Laboratory, 1988 (Harlow, E. & Lane, D. Antibodies: A Laboratory Manual , Cold Spring Harbor, Cold Spring Harbor Laboratory, 1988) for antibody production, purification, and use.

產生多株抗體的方法為所屬技術領域中具有通常知識者已知。例示性實驗操作可使用例如Coligan等人的免疫學實驗操作手冊,同上,與Harlow及Lane,1988,同上,中所述。在特定實施例中,抗SpyCEP多株抗體可自個體暴露於A群鏈球菌或由A群鏈球菌感染的人類血清獲得或純化。替代地,多株抗體可在例如馬的產生物種中針對純化或重組SpyCEP或其免疫原性片段而產生,且接著在施予之前進行純化。Methods for producing polyclonal antibodies are known to those of ordinary skill in the art. Exemplary experimental procedures can be performed, for example, in the immunological experimental manipulation manual of Coligan et al., supra, and Harlow and Lane, 1988, supra. In a particular embodiment, the anti-SpyCEP polyclonal antibody can be obtained or purified from an individual exposed to Group A Streptococcus or human serum infected with Group A Streptococcus. Alternatively, multiple strains of antibodies can be produced against purified or recombinant SpyCEP or immunogenic fragments thereof in, for example, a horse producing species, and then purified prior to administration.

單株抗體可利用例如由Köhler及Milstein,1975, Nature256 ,495的文章中原始所述的標準方法或藉由例如在Coligan等人的免疫學實驗操作手冊,同上,所述的更最近的修改方法,藉由已接種本發明的一或多種的分離蛋白、片段、變異體或衍生物之永生化(immortalizing)脾臟或源自產生物種的其他抗體產生細胞而產生。因而,單株抗體可針對M蛋白片段、變異體或衍生物及/或根據本發明的用途之有利於回復或加強嗜中性球活性(例如,SpyCEP)之試劑而產生。在部分實施例中,單株抗體或其片段可為重組形式。若單株抗體最初由非人類哺乳類的脾臟細胞所產生,則其可特別有利於「人類化(humanizing)」單株抗體或片段。Monoclonal antibodies can be utilized, for example, by standard methods originally described in the article by Köhler and Milstein, 1975, Nature 256 , 495 or by, for example, the manual of the immunology experiment in Coligan et al., supra, the more recent modifications described. The method is produced by immortalizing a spleen of an isolated protein, fragment, variant or derivative of one or more of the invention or other antibody producing cells derived from the producing species. Thus, a monoclonal antibody can be produced against an M protein fragment, variant or derivative and/or an agent that facilitates recovery or enhancement of neutrophil activity (eg, SpyCEP) in accordance with the use of the invention. In some embodiments, the monoclonal antibodies or fragments thereof can be in recombinant form. If a monoclonal antibody is originally produced by a non-human mammalian spleen cell, it may be particularly advantageous for "humanizing" monoclonal antibodies or fragments.

於與治療性抗體有關的實施例,較佳的M蛋白片段可為p145胜肽。In an embodiment associated with a therapeutic antibody, a preferred M protein fragment can be a p145 peptide.

用於抗體產生的SpyCEP的較佳片段可包含胺基酸序列 NSDNIKENQFEDFDEDWENF (SEQ ID NO:2)或由胺基酸序列 NSDNIKENQFEDFDEDWENF (SEQ ID NO:2)組成。A preferred fragment of SpyCEP for antibody production may comprise or consist of the amino acid sequence NSDNIKENQFEDFDEDWENF (SEQ ID NO: 2).

在部分實施例中,疾病、異常及症狀可為流行性感冒病毒相關的疾病、異常或症狀。流行性感冒病毒可導致已知為「流行性感冒(flu)」的傳播或其他傳染性疾病,其。典型的症狀包含發燒、頭痛、咳嗽、嗜睡、呼吸道及鼻咽的黏液產生以及分泌性肌肉疼痛、噁心及嘔吐。該症狀可持續數天或數周。在部分情況下,可能發生二次呼吸道細菌感染,在部分情況下,造成重度症狀,如肺炎。據此,本發明之免疫原性試劑及/或其用途可治療或預防如上述之流行性感冒病毒相關的疾病、異常或症狀。In some embodiments, the disease, abnormality, and symptoms can be influenza virus related diseases, abnormalities, or symptoms. Influenza viruses can cause transmissions known as "flu" or other infectious diseases. Typical symptoms include fever, headache, cough, lethargy, mucus production in the respiratory and nasopharynx, and secretory muscle pain, nausea and vomiting. This symptom can last for days or weeks. In some cases, secondary respiratory bacterial infections may occur, and in some cases, severe symptoms such as pneumonia may occur. Accordingly, the immunogenic agent of the present invention and/or its use can treat or prevent a disease, abnormality or symptom associated with the influenza virus as described above.

在部分實施例中,疾病、異常或症狀可為鼻病毒相關之疾病、異常或症狀。鼻病毒(例如:A型鼻病毒及B型鼻病毒)微小核醣核酸病毒(Picornaviridae )家族病毒之腸病毒屬(genusEnterovirus )的物種。鼻病毒通常是一般感冒的致病因,其症狀與流行性感冒類似但較不嚴重且較少有機會造成二次細菌感染,如肺炎。In some embodiments, the disease, disorder, or condition can be a rhinovirus-associated disease, disorder, or condition. Rhinovirus (eg, type A rhinovirus and type B rhinovirus) species of the genus Enterovirus of the Picornaviridae family of viruses. Rhinoviruses are usually the cause of the common cold, with symptoms similar to those of influenza but less severe and less likely to cause secondary bacterial infections such as pneumonia.

據此,本發明之免疫原性試劑及/或其用途可治療或預防如上述之鼻病毒相關疾病、異常及症狀。Accordingly, the immunogenic agent of the present invention and/or its use can treat or prevent rhinovirus-related diseases, abnormalities and symptoms as described above.

在部分實施例中,疾病、異常或症狀可為鉤蟲相關疾病、異常或症狀。鉤蟲屬侵擾多種不同的動物的線蟲。通常感染人類的鉤蟲可包含美洲鉤蟲(Necator americanus )及十二指腸鉤蟲(Ancylostoma duodenalis )。鉤蟲具有鉤狀之口部以使鉤蟲附著於腸壁、刺穿血管並以血液為食,在部分情況下導致重度貧血。感染孕婦之鉤蟲可造成胎兒的成長遲緩、早產及低出生體重。感染孩童之鉤蟲可造成智能、認知及成長障礙。In some embodiments, the disease, abnormality, or condition can be a hookworm-related disease, disorder, or symptom. Hookworm is a nematode that invades many different animals. Hookworms that normally infect humans can include Necator americanus and Ancylostoma duodenalis . Hookworms have a hook-like mouth to allow hookworms to attach to the intestinal wall, pierce blood vessels and feed on blood, and in some cases cause severe anemia. Infected hookworms in pregnant women can cause fetal growth retardation, premature birth and low birth weight. Hookworms that infect children can cause mental, cognitive and growth disorders.

據此,本發明之免疫原性試劑及/或其用途可治療或預防如上述之寄生蟲相關疾病、異常或症狀。Accordingly, the immunogenic agent of the present invention and/or its use can treat or prevent a parasitic-related disease, abnormality or symptom as described above.

在部分實施例中,前述之用途可包含: (i)        包含單一或同樣病原之一或複數個不同的蛋白質、片段、變異體或衍生物之免疫原性試劑; (ii)     分別包含不同病原之一或複數個不同的蛋白質、片段、變異體或衍生物之複數個不同的免疫原性試劑;或 (iii)   包含不同病原之一或複數個不同的蛋白質、片段、變異體或衍生物之免疫原性試劑; 其用於: (i)        誘發對一或多個病原之免疫反應; (ii)     針對一或多個病原之免疫;或 (iii)   預防或治療由一或複數個病原導致之一或複數種疾病、異常或症狀。In some embodiments, the foregoing uses may comprise: (i) an immunogenic agent comprising one or a plurality of different proteins, fragments, variants or derivatives; (ii) comprising different pathogens, respectively a plurality of different immunogenic agents of one or more different proteins, fragments, variants or derivatives; or (iii) immunization comprising one or a plurality of different proteins, fragments, variants or derivatives An original reagent; it is used to: (i) induce an immune response to one or more pathogens; (ii) immunize against one or more pathogens; or (iii) prevent or treat one or more of the pathogens Or multiple diseases, abnormalities or symptoms.

在部分態樣及實施例中,免疫原性試劑可以組成物之形式施予。In some aspects and embodiments, the immunogenic agent can be administered in the form of a composition.

在特定實施例中,該組成物可包含: (i)        包含單一或同樣病原之一或複數個不同的蛋白質、片段、變異體或衍生物之免疫原性試劑; (ii)     分別包含不同病原之一或複數個不同的蛋白質、片段、變異體或衍生物之複數個不同的免疫原性試劑;或 (iii)   包含不同病原之一或複數個不同的蛋白質、片段、變異體或衍生物之免疫原性試劑; 在一較佳型態,該組成物包含可接受的載體、稀釋劑或賦形劑。In a particular embodiment, the composition can comprise: (i) an immunogenic agent comprising one or a plurality of different proteins, fragments, variants or derivatives; (ii) comprising different pathogens, respectively a plurality of different immunogenic agents of one or more different proteins, fragments, variants or derivatives; or (iii) immunization comprising one or a plurality of different proteins, fragments, variants or derivatives In situ reagent; In a preferred form, the composition comprises an acceptable carrier, diluent or excipient.

藉由「可接受的載體、稀釋劑或賦形劑(acceptable carrier, diluent or excipient )」係表示可安全地用在全身性施予的固態或液態填充物、稀釋劑或封裝物質。根據施予的特定途徑,可使用所屬技術領域中已知的各種載體、稀釋劑及賦形劑。其可選自包含糖類、澱粉類、纖維素及其衍生物、麥芽(malt)、明膠(gelatine)、滑石(talc)、硫酸鈣、植物油、合成油(synthetic oils)、多元醇(polyols)、海藻酸(alginic acid)、磷酸鹽緩衝溶液(phosphate buffered solutions)、乳化劑、等張生理食鹽水(isotonic saline)及例如包含氫氯化物(hydrochlorides)、溴化物及硫酸鹽類(sulfates)的無機酸鹽類(mineral acid salts)、例如乙酸鹽(acetates)、丙酸鹽(propionates)及丙二酸鹽(malonates)的有機酸類之鹽類、水以及滅菌無熱原水(pyrogen-free water)的群組By "acceptable carrier, diluent or excipient (acceptable carrier, diluent or excipient)" line represents safely used in systemic administration of solid or liquid filler, diluent or encapsulating substance. Various carriers, diluents and excipients known in the art can be used depending on the particular route of administration. It may be selected from the group consisting of sugars, starches, cellulose and its derivatives, malt, gelatine, talc, calcium sulfate, vegetable oils, synthetic oils, polyols. , alginic acid, phosphate buffered solutions, emulsifiers, isotonic saline, and, for example, hydrochlorides, bromides, and sulfates Mineral acid salts, salts of organic acids such as acetates, propionates, and malonates, water, and pyrogen-free water Group

描述可接受的載體、稀釋劑及賦形劑之有益參照為於此併入作為參考的Remington’s藥物科學(Remington’s Pharmaceutical Sciences)( Mack Publishing Co. N.J. USA,1991)。A useful reference for the description of acceptable carriers, diluents and excipients is incorporated herein by reference to Remington's Pharmaceutical Sciences (Mack Publishing Co. N. J. USA, 1991).

較佳地,為了誘發免疫反應的目的,部分免疫試劑可與本文所揭露的免疫原性試劑結合而用於製劑。Preferably, for the purpose of eliciting an immune response, a portion of the immunological reagent can be used in combination with the immunogenic reagents disclosed herein for formulation.

用語「免疫試劑(immunological agent )」包含如所屬技術領域中已知的其範圍內的載體、傳遞試劑(delivery agents)、免疫刺激物(immunostimulants)及/或佐劑。如所屬技術領域中已理解的,免疫刺激物及佐劑係指或包含一或多種加強免疫原性及/或製劑的有效性之物質。適合的免疫刺激物及佐劑的非限制例包含角鯊烷(squalane)和角鯊烯(squalene)(或植物源或動物源之其他油類);嵌段共聚物(block copolymers);例如Tween®‑80的洗滌劑;Quil® A、例如Drakeol或Marcol的礦物油、例如花生油的植物油;例如小棒狀桿菌(Corynebacterium parvum )的棒狀桿菌衍生佐劑;例如痤瘡丙酸桿菌(Propionibacterium acne )的丙酸桿菌衍生佐劑;牛分枝桿菌(Mycobacterium bovis )(Bacille Calmette及Guerin或BCG);百日咳博特氏桿菌(Bordetella pertussis )抗原;破傷風類毒素;白喉類毒素;例如十六烷基胺(hexadecylamine)、十八烷基胺(octadecylamine)、十八烷基胺基酸酯(octadecyl amino acid esters)、脫脂酸卵磷脂(lysolecithin)、溴化二甲基二十八烷基銨(dimethyldioctadecylammonium bromide)、N,N -雙十八烷基- N¢, N¢雙(2-羥乙基-丙二胺)(N,N -dicoctadecyl-N¢, N¢bis(2-hydroxyethyl-propanediamine))、甲氧基十六烷基甘油醇(methoxyhexadecylglycerol)以及普洛尼克多元醇(pluronic polyols)的表面活性物質;例如吡喃(pyran)、葡聚糖硫酸酯(dextransulfate)、聚IC卡波莫(poly IC carbopol)的多元胺類(polyamines);例如胞壁二胜肽(muramyl dipeptide)及衍生物、二甲基甘胺酸(dimethylglycine)、特夫素(tuftsin)的胜肽;油乳化劑;以及例如磷酸鋁(aluminium phosphate)、氫氧化鋁(aluminium hydroxide)或明礬(alum)的礦物膠;例如介白素2及介白素12的介白素;例如介白素1的單核因子;腫瘤壞死因子(tumour necrosis factor);例如γ干擾素的干擾素;例如CpG DNA的免疫刺激DNA(immunostimulatory DNA)、例如皂素氫氧化鋁(saponin‑aluminium hydroxide)或Quil‑A氫氧化鋁(Quil‑A aluminium hydroxide)的組成物;脂質體;ISCOM®及ISCOMATRIX®佐劑;分支桿菌細胞壁萃取物;例如胞壁二胜肽或其他衍生物的合成醣肽(synthetic glycopeptides);阿夫立定(Avridine);脂質A衍生物;葡聚糖硫酸酯(dextran sulfate);單獨或與磷酸鋁的DEAE‑Dextran;例如卡波莫' EMA(Carbopol' EMA)的羧聚乙烯(carboxypolymethylene);例如Neocryl A640(例如,美國專利號No. 5,047,238)的丙烯共聚物乳液(acrylic copolymer emulsions);例如蒙太得(Montanide) ISA 720的油中水型乳化劑(water in oil emulsifiers);脊髓灰質炎病毒(poliovirus)、疫苗或動物痘病毒蛋白(animal poxvirus proteins);或其混合物。The term " immunological agent " encompasses vectors, delivery agents, immunostimulants, and/or adjuvants within the scope thereof as known in the art. As is understood in the art, immunostimulants and adjuvants refer to or comprise one or more substances that enhance the effectiveness of the immunogenicity and/or formulation. Non-limiting examples of suitable immunostimulants and adjuvants include squalane and squalene (or other oils of plant or animal origin); block copolymers; for example, Tween ®-80 detergent; Quil® a, for example mineral oil Drakeol or Marcol, vegetable oils such as peanut oil; for example, small Corynebacterium (Corynebacterium parvum) derived adjuvant, Corynebacterium; e.g. P. acnes (Propionibacterium acne) Propionibacterium-derived adjuvant; Mycobacterium bovis (Bacille Calmette and Guerin or BCG); Bordetella pertussis antigen; tetanus toxoid; diphtheria toxoid; eg hexadecylamine (hexadecylamine), octadecylamine, octadecyl amino acid esters, lysolecithin, dimethyldioctadecylammonium bromide , N,N -dioctadecyl-N¢, N¢ N- dicoctadecyl-N¢, N¢bis(2-hydroxyethyl-propanediamine) Methoxy hexadecyl A surface active substance of methoxyhexadecylglycerol and pluronic polyols; for example, a polyamine of pyran, dextransulfate, poly IC carbopol ( Polyamines; for example, muramyl dipeptides and derivatives, dimethylglycine, tuftsin peptides; oil emulsifiers; and, for example, aluminum phosphate, a mineral hydroxide of aluminium hydroxide or alum; a medium such as interleukin 2 and interleukin 12; a mononuclear factor such as interleukin-1; tumor necrosis factor; For example, an interferon of gamma interferon; an immunostimulatory DNA such as CpG DNA, a composition such as saponin-aluminium hydroxide or Quil-A aluminium hydroxide; Liposomes; ISCOM® and ISCOMATRIX® adjuvants; mycobacterial cell wall extracts; synthetic glycopeptides such as cell wall dipeptides or other derivatives; Avridine; lipid A derivatives Dextran sulfate; DEAE-Dextran alone or in combination with aluminum phosphate; carboxypolymethylene such as Carbopol'EMA; for example, Neocryl A640 (for example, US Patent No. 5,047,238) of acrylic copolymer emulsions; for example, water in oil emulsifiers of Montanide ISA 720; poliovirus, vaccine or animal pox virus Animal poxvirus proteins; or mixtures thereof.

免疫試劑可包含例如甲狀腺球蛋白(thyroglobulin)的載體蛋白;例如人類血清白蛋白(human serum albumin)的白蛋白;自破傷風、白喉、百日咳、假單胞菌(Pseudomonas )、大腸桿菌(E. coli )、葡萄球菌(Staphylococcus )及鏈球菌(Streptococcus )的毒素之毒素、類毒素或任何突變交叉反應性材料(CRM);例如聚(離胺酸:麩胺酸)(poly(lysine:glutamic acid))的聚胺基酸;流行性感冒;輪狀病毒(Rotavirus) VP6、小病毒(Parvovirus) VP1及VP2;B型肝炎病毒(hepatitis B virus)核心蛋白;B型肝炎病毒重組疫苗等。替代地,可使用載體蛋白或其他免疫原性蛋白的片段或表位。例如,可使用細菌毒素、類毒素或CRM的T細胞表位。在此方面,可參照於此併入作為參考的美國專利號第5,785,973號來製造。Immunizing agent may include, for example, thyroglobulin (Thyroglobulin) a carrier protein; e.g. (human serum albumin) human albumin serum albumin; from tetanus, diphtheria, pertussis, Pseudomonas (of Pseudomonas), Escherichia coli (E. coli ), Staphylococcus (Staphylococcus) and streptococci (Streptococcus) toxin of the toxin, toxoid or mutants of any cross-reactive material (CRM); such as poly (lysine: glutamic acid) (poly (lysine: glutamic acid ) Polyamino acid; influenza; Rotavirus VP6, Parvovirus VP1 and VP2; hepatitis B virus core protein; hepatitis B virus recombinant vaccine. Alternatively, fragments or epitopes of carrier proteins or other immunogenic proteins can be used. For example, bacterial cell toxins, toxoids or T cell epitopes of CRM can be used. In this regard, it can be made by reference to U.S. Patent No. 5,785,973, which is incorporated herein by reference.

任何適當的步驟為考慮用於生產疫苗製劑。例示性步驟包含例如於此併入作為參考的新一代疫苗(New Generation Vaccines) (1997,Levine等人,Marcel Dekker, Inc. New York,巴賽爾(Basel),香港(Hong Kong))所述之步驟。Any suitable step is considered for the production of a vaccine formulation. Exemplary steps include, for example, New Generation Vaccines (1997, Levine et al, Marcel Dekker, Inc. New York, Basel, Hong Kong), incorporated herein by reference. The steps.

可採用任何安全的施予途徑,包含鼻內、口服、直腸(rectal)、非經口(parenteral)、舌下(sublingual)、經頰(buccal)、靜脈內(intravenous)、關節內(intra-articular)、肌肉內(intra-muscular)、真皮內(intra-dermal)、皮下(subcutaneous)、吸入(inhalational)、眼內(intraocular)、腹膜內(intraperitoneal)、腦室內(intracerebroventricular)、局部、粘膜及經皮施予,但不限於此。Any safe route of administration may be employed, including intranasal, oral, rectal, parenteral, sublingual, buccal, intravenous, intra-articular (intra- Articular), intra-muscular, intra-dermal, subcutaneous, inhalational, intraocular, intraperitoneal, intracerebroventricular, local, mucosa And transdermal administration, but is not limited thereto.

劑型(Dosage form)包含片劑、分散劑、懸浮劑、注射劑、溶液、糖漿、錠劑、膠囊、鼻腔噴霧劑、栓劑(suppositories)、噴霧劑(aerosols)、經皮貼劑(transdermal patches)等。該劑型亦可包含注射或植入特別為此目的設計的控制釋出裝置或修改以額外地採取此方式植入的其他形式。控制釋出可因以包含丙烯酸酯樹脂(acrylic resins)、蠟、高級脂肪醇(higher aliphatic alcohols)、聚乳酸(polylactic acid)和聚乙醇酸(polyglycolic acids)以及例如羥丙基甲基纖維素(hydroxypropylmethyl cellulose)的部分纖維素衍生物之疏水性聚合物包覆而影響。Dosage forms include tablets, dispersing agents, suspending agents, injections, solutions, syrups, troches, capsules, nasal sprays, suppositories, aerosols, transdermal patches, and the like. . The dosage form may also comprise injection or implantation of a controlled release device or modification designed specifically for this purpose to additionally be implanted in this manner. Controlled release may include the inclusion of acrylic resins, waxes, higher aliphatic alcohols, polylactic acid and polyglycolic acids, and, for example, hydroxypropyl methylcellulose (for example) The hydrophobic polymer coating of a part of the cellulose derivative of hydroxypropylmethyl cellulose) is affected.

組成物可以各含有本發明的一或多種治療性試劑的預定量之例如膠囊、囊劑(sachets)、功能性食品/飼料或片劑的分散單元、以粉末或顆粒或以在水性液體中的懸浮液、非水性液體、水中油乳液(oil-in-water emulsion)或油中水液體乳液(water-in-oil liquid emulsion)呈現。此製劑可以任何製藥方法製備,但所有方法包含將上述一或多種製劑與由一或多種需要成分構成的載體組合之步驟。通常,製劑藉由均勻且緊密地將本發明的製劑與液體載體或細碎的固體載體或兩者混合,且接著若需要,將產物成型為期望的形式來製備。The compositions may each comprise a predetermined amount of one or more therapeutic agents of the invention, such as capsules, sachets, functional foods/feeds or tablets, in powders or granules or in aqueous liquids. Suspensions, non-aqueous liquids, oil-in-water emulsions or water-in-oil liquid emulsions are present. The formulation may be prepared by any of the methods of pharmacy, but all methods comprise the step of combining one or more of the above formulations with a carrier comprised of one or more of the desired ingredients. In general, the formulations are prepared by uniformly and intimately admixing the formulation of the present invention with a liquid carrier or a finely divided solid carrier or both, and, if desired, shaping the product into the desired form.

上述製劑可施予在與劑型相容的方式,且可以有效的劑量施用。在本發明的全文中,施予給患者的劑量應足以使患者在一段適當的時間產生有益反應的效果。試劑的量可依據治療的患者包含其年齡、性別、體重及通常健康狀況、依據醫師的判斷的因素來施予。The above formulations may be administered in a manner compatible with the dosage form and may be administered in an effective dosage. In the context of the present invention, the dose administered to the patient should be sufficient to provide the patient with a beneficial response at an appropriate time. The amount of the agent can be administered depending on factors such as the age, sex, weight, and general health of the patient being treated, according to the judgment of the physician.

在特定實施例中,組成物適用於對個體鼻內施予。In a particular embodiment, the composition is suitable for intranasal administration to an individual.

如本文通常使用的用語「患者(patient )」、「個體(individual )」及「個體(subjec t)」為使用在全文中的接受本文所揭露的治療或製劑的任何哺乳類。因而,本文所揭露的方法及製劑可具有醫藥及/或獸醫的應用。在較佳形式中,哺乳類為人類。As used herein, the term commonly used "patients (patient)", "individual (individual)" and "individual (subjec t)" as used throughout the text to accept disclosed herein or any mammalian therapeutic agents. Thus, the methods and formulations disclosed herein can be used in medical and/or veterinary applications. In a preferred form, the mammal is a human.

因此本發明可參照下文非限制例製成而完全理解並達到實際效果。Therefore, the present invention can be fully understood and achieved with reference to the following non-limiting examples.

示例Example

範例1導論 Example 1 Introduction

A群鏈球菌 (GAS)主要為感染上呼吸道(URT)黏膜,但亦會感染人類的皮膚,而造成疾病的普遍性。感染可能導致中毒性休克症候群、壞死性筋膜炎及肌炎。壞死性筋膜炎具有100,000分之1的發病率及高達70%的死亡率(1)。鏈球菌疾病後之風濕熱(RF)及風濕性心臟病(RHD)亦有極大關係。其估計每年有1560萬的RHD的流行案例及大約400,000死亡數(2)。URT的拓殖後最常見的疾病是咽炎及RF與RHD,其與未處理的原咽腔感染有密切的關連(3)。GAS感染及相關疾病是在發展中國家的熱帶地區流行,且在每年造成500,000死亡數的發展中國家的本土族群 (4)中凸顯出對疫苗的迫切需要。Group A Streptococcus (GAS) mainly infects the upper respiratory tract (URT) mucosa, but it also infects human skin, causing disease prevalence. Infection can lead to toxic shock syndrome, necrotizing fasciitis and myositis. Necrotizing fasciitis has an incidence of 100,000 and a mortality rate of up to 70% (1). Rheumatoid fever (RF) and rheumatic heart disease (RHD) after streptococcal disease are also highly relevant. It is estimated to have 15.6 million RHD epidemics and approximately 400,000 deaths per year (2). The most common diseases after URT colonization are pharyngitis and RF and RHD, which are closely related to untreated pharyngeal infections (3). GAS infections and related diseases are prevalent in tropical regions of developing countries and highlight the urgent need for vaccines in the indigenous populations of developing countries (4), which cause 500,000 deaths per year.

GAS疫苗候選可區分成M蛋白質及非M蛋白類疫苗(5)。由3個主要域構成的捲曲螺旋蛋白之細胞表面M蛋白是主要的致病因子(6)。此蛋白是由高度變異胺基端及用於流行病學分子型(emm 或M型)的A重複域;B重複域及保留C重複域所組成(6)。根據臨床調查的領導次單元疫苗是胺基端M蛋白類多價疫苗及保留C重複的M蛋白胜肽疫苗(5)。該GAS疫苗候選基於其成功地誘發全身性免疫而已進入臨床試驗(7)。全身性免疫已證明透過在全身部位的血清免疫球蛋白(Ig)有效地預防GAS傳播至深部組織及預防疾病,但無法預防黏膜部位的拓殖因而無法預防人對人的傳染(8)。因此,全身性疫苗接種並非為誘發免疫對抗GAS的最佳方法。反之,對抗各種微生物施予鼻的黏膜疫苗有效地在全身性及黏膜腔室兩者誘發抗原專一性免疫反應(9-11)。由於雙層保護性免疫,對於對抗全身性及黏膜GAS感染兩者為理想策略,其具預防黏膜拓殖之額外效益亦將抑制自URT的飛沫及氣霧傳染(7)。黏膜疫苗接種在經濟上亦為有利的,其對於疫苗開發為重要的考量。由於藉由鼻部路徑施予疫苗較為容易,而可避免針頭的使用(7)。因其無疼痛,傳遞時病患會有較大的順從性。GAS vaccine candidates can be divided into M protein and non-M protein vaccines (5). The cell surface M protein of coiled-coil protein consisting of three major domains is the major causative factor (6). This protein consists of a highly variable amine terminus and an A repeat domain for epidemiological molecular types ( emm or M); a B repeat domain and a C repeat domain (6). According to the clinical investigation, the leading subunit vaccine is an amino-based M-protein multivalent vaccine and a C-repetitive M-protein peptide vaccine (5). The GAS vaccine candidate has entered clinical trials based on its successful induction of systemic immunity (7). Systemic immunity has been shown to effectively prevent GAS from spreading to deep tissues and prevent disease through serum immunoglobulin (Ig) throughout the body, but it does not prevent colonization of the mucosal site and thus prevents human-to-human infection (8). Therefore, systemic vaccination is not the best way to induce immunity against GAS. Conversely, mucosal vaccines that administer nasal mucosa against various microorganisms effectively induce antigen-specific immune responses in both systemic and mucosal compartments (9-11). Because of the two-layer protective immunity, it is an ideal strategy for combating both systemic and mucosal GAS infections, and its additional benefit of preventing mucosal colonization will also inhibit droplets and aerosol infection from URT (7). Mucosal vaccination is also economically advantageous and is an important consideration for vaccine development. Since the administration of the vaccine by the nasal route is easier, the use of the needle can be avoided (7). Because of its lack of pain, patients will have greater compliance when delivered.

如先前基於自M蛋白的保留C3重複域的最小化B細胞表位定義疫苗候選胜肽J8(12)。J8胜肽(QAEDKVKQSREAKKQVEKAL KQLEDKVQ;SEQ ID NO:1)為含有自位於GCN4 DNA結合蛋白序列側面的C區域(以粗體顯示)的12個胺基酸之嵌合胜肽,以維持正確的螺旋構形結構(13)。當連接至載體蛋白白喉類毒素(DT)且與明礬(Alum)施予時,J8誘發保護小鼠免於因多發性GAS菌株的全身性及皮膚激發之IgG抗體(4, 13)。此外,當與動物限定(animal-restricted)黏膜佐劑CTB施予(14, 15)或當作為蛋白酶體(proteasomes)施予(16)時,基於GAS的M蛋白的保留區域之疫苗候選有效地保護對抗因GAS的鼻內感染。當誘發黏膜免疫及降地URT拓殖時,辨識出與IgA的產生相關。有鑑於此,本目的為發展一種J8類、人類可相容的黏膜疫苗。The vaccine candidate peptide J8 (12) was previously defined as a minimal B cell epitope based on the retained C3 repeat domain from the M protein. The J8 peptide (QAEDKVKQ SREAKKQVEKAL KQLEDKVQ; SEQ ID NO: 1) is a chimeric peptide containing 12 amino acids from the C region (shown in bold) located on the side of the GCN4 DNA binding protein sequence to maintain the correct helix Configuration structure (13). When conjugated to the carrier protein diphtheria toxoid (DT) and administered with alum, J8 induced protection of mice from systemic and skin-stimulated IgG antibodies due to multiple GAS strains (4, 13). Furthermore, when administered with an animal-restricted mucosal adjuvant CTB (14, 15) or when administered as a proteasome (16), a vaccine candidate based on the reserved region of the GAS-based M protein is effectively Protect against intranasal infections due to GAS. When mucosal immunity was induced and URT colonization was reduced, it was identified that it was associated with IgA production. In view of this, the purpose is to develop a J8-type, human compatible mucosal vaccine.

然而,在發展用於人類的黏膜疫苗的限制之一為缺乏安全且有效的黏膜佐劑(17, 18)。However, one of the limitations in the development of mucosal vaccines for humans is the lack of safe and effective mucosal adjuvants (17, 18).

脂質體是由生物相容的磷脂質雙層所構成的球形囊泡且可裝載及傳遞親水性及疏水性分子兩者(19)。磷脂質經由鼻內途徑安全地對人類施予(20, 21)。然而,呈現胜肽抗原的脂質體對於誘發胜肽專一性抗體反應不是理想的平台。胜肽可能僅含有可活化對於B細胞的抗體反應所需的輔助T細胞(helper T cells)之限制抗原表位。其需要共軛至「載體」蛋白,以在遠親(outbred)族群呈現其免疫原性且使其無法理想地適用於藉由脂質體呈現。然而,由於自然病原體亦為顆粒物且已被免疫系統認識,因此藉由例如脂質體的顆粒物賦予免疫原性增強是無庸置疑的(22)。使脂質體與抗原呈現細胞(antigen presenting cell)交互的自然趨勢是作為利用脂質體將抗原呈現給免疫系統的主要理論(23)。本研究的目標為發展一種J8類脂質體製劑(在佐劑的缺乏下),其中親脂性J8構造是納入在脂質雙層中且親水性載體蛋白(DT)封裝在內部水性核心。材料與方法 Liposomes are spherical vesicles composed of biocompatible phospholipid bilayers and are capable of loading and transporting both hydrophilic and hydrophobic molecules (19). Phospholipids are safely administered to humans via the intranasal route (20, 21). However, liposomes that exhibit peptide antigens are not an ideal platform for inducing peptide specific antibody responses. The peptide may only contain a restricted epitope of helper T cells required to activate an antibody response to B cells. It needs to be conjugated to a "vector" protein to present its immunogenicity in the outbred population and render it undesirably suitable for presentation by liposomes. However, since natural pathogens are also particulate and have been recognized by the immune system, there is no doubt that immunogenicity is enhanced by particulate matter such as liposomes (22). The natural tendency to interact liposomes with antigen presenting cells is the primary theory of presenting antigens to the immune system using liposomes (23). The goal of this study was to develop a J8 liposome formulation (in the absence of an adjuvant) in which the lipophilic J8 construct was incorporated into the lipid bilayer and the hydrophilic carrier protein (DT) was encapsulated in the internal aqueous core. Materials and Methods

小鼠。 所有動物操作由葛瑞菲斯大學研究倫理審查委員會的動物相關作業(Griffith University Research Ethics Review Board for Animal-Based Work),GU Ref No: GLY/09/14/AEC批准使用。此研究是嚴格根據澳大利亞國家健康及醫學研究委員會(NHMRC)的實驗動物指導方針(National Health and Medical Research Council (NHMRC) of Australia guidelines)進行。選擇對小鼠的疼痛及痛苦最小化的方法且動物是由受培訓的動物照護員每日觀察。小鼠是利用CO2 吸入室終止活動。 Mouse. All animal operations were approved for use by the Griffith University Research Ethics Review Board for Animal-Based Work, GU Ref No: GLY/09/14/AEC. This study was conducted in strict accordance with the National Health and Medical Research Council (NHMRC) of Australia guidelines. Methods for minimizing pain and pain in mice are selected and animals are observed daily by trained animal caregivers. The mice were terminated using a CO 2 inhalation chamber.

人類血液。 在具有書面告知同意下,在葛瑞菲斯大學健康中心(Griffith university health centre)由抽血員自捐贈者獲得血液。該研究的許可由葛瑞菲斯大學人類研究倫理委員會(Griffith University Human Research Ethics Committee)批准(GU HREC, Protocol # GLY/03/14/HREC)。樣本在實驗室人員處理之前去識別化(de-identified)。 Human blood. Blood was obtained from the donor at the Griffith university health centre with written consent. The study was approved by the Griffith University Human Research Ethics Committee (GU HREC, Protocol # GLY/03/14/HREC). Samples are de-identified before being processed by laboratory personnel.

J8-Lipo-DT 製劑。 為了促進使J8非共價複合至脂質體雙層,將由兩個棕櫚酸(C16)組成的疏水錨定物(hydrophobic anchor)加至在J8胺基端呈現的三肽間隔(由Lys Ser Ser組成)的離胺酸的ε(epsilon)及一級(primary)胺基(C16-C16-KSSJ8)。此構成由Chinapeptides Co., Ltd.(上海(Shanghai),中國)所製造。該構成的預期分子量(MW 4061.97 g/mol)由ESI-MS確認,且獲得的產物具有大於95%純度(由分析曲線分析下的RP-HPLC面積)。脂質體利用薄膜水合法(thin film hydration method)製備(42)。自Avanti Polar Lipids, Inc. (Alabaster,美國)的脂質以7 二棕櫚醯基-sn-甘油酸-3-磷酸膽鹼(DPPC):2 膽固醇(CHOL):1 L-α-磷脂醯甘油(PG)的莫耳比使用。三氯甲烷(chloroform (CHCl3 ))溶液中的脂質是利用旋轉式蒸發器與預定量的C16-C16-KSSJ8一起塗佈在原底燒瓶(round-bottom flasks)。使用的量為在CHCl3 中0.7 ml的DPPC(10 mg/ml)、在CHCl3 中0.2 ml的CHOL(5 mg/ml)以及在CHCl3 中0.1 ml的PG (10 mg/ml)。脂質薄膜接著在室溫下藉由充分混合而水合且分散在含有預定量的DT之1 mL的磷酸鹽緩沖鹽水(PBS)中。合成脂質體懸浮液(resultant liposomal suspension)在16,162g 下離心10分鐘,移除上清液,且脂質體沉澱物(liposome pellet)再次懸浮在適當量的PBS中,以施予小鼠。為了定義DT封裝率,收集上清液且利用NanoDrop 2000 UV-Vis分光光度計(Thermo Scientific,Massachusetts,美國)定義在上清液中未封裝的DT量。將用於脂質的再水合的PBS中起始DT濃度減去上清液的DT濃度以產生脂質體預定量化的封裝率。脂質體的平均粒徑(nm)是在25°C下利用Nanosizer (Zetasizer Nano Series ZS,Malvern Instruments,英國(United Kingdom))以拋棄式毛細比色管(disposable capillary cuvettes)進行測定。尺寸是利用非侵入式反向散射系統(non-invasive backscatter system)且採取173°散射角度的測量進行分析。相關時間是基於每次運作10秒鐘且每次測量進行至少五次的連續運作。結果是利用分散技術軟體(Dispersion Technology Software )(Malvern Instruments,英國)分析重複三次獨立測量的平均。均質尺寸分布(Homogenous size distribution)是由J8-Lipo-DT所示的0.238的低多分散性指數(low polydispersity index) (PDI)定義。PDI為樣本尺寸分布為多狹窄的表示,且數值大於0.7表示樣品具有廣泛的尺寸分布。 J8-Lipo-DT preparation. To facilitate non-covalent complexation of J8 to the liposome bilayer, a hydrophobic anchor consisting of two palmitic acids (C16) is added to the tripeptide spacer presented at the amine end of J8 (consisting of Lys Ser Ser) The epsilon of the lysine and the primary amine (C16-C16-KSSJ8). This composition was manufactured by Chinapeptides Co., Ltd. (Shanghai, China). The expected molecular weight of this composition (MW 4061.97 g/mol) was confirmed by ESI-MS, and the obtained product had a purity of more than 95% (RP-HPLC area under analysis curve). Liposomes were prepared using a thin film hydration method (42). The lipid from Avanti Polar Lipids, Inc. (Alabaster, USA) is 7 dipalmitoyl-sn-glycerate-3-phosphocholine (DPPC): 2 cholesterol (CHOL): 1 L-α-phospholipid glycerol ( PG) is used by Mobi. The lipid in the chloroform (CHCl 3 ) solution was coated with a predetermined amount of C16-C16-KSSJ8 in a round-bottom flask using a rotary evaporator. It is used in an amount of 0.7 ml of CHCl 3 DPPC (10 mg / ml), in 0.2 ml CHCl 3 in the CHOL (5 mg / ml), and the CHCl 3 in 0.1 ml of PG (10 mg / ml). The lipid film was then hydrated by intimate mixing at room temperature and dispersed in 1 mL of phosphate buffered saline (PBS) containing a predetermined amount of DT. The resultant liposomal suspension was centrifuged at 16,162 g for 10 minutes, the supernatant was removed, and the liposome pellet was resuspended in an appropriate amount of PBS to be administered to the mice. To define the DT encapsulation rate, supernatants were collected and the amount of unpackaged DT in the supernatant was defined using a NanoDrop 2000 UV-Vis spectrophotometer (Thermo Scientific, Massachusetts, USA). The initial DT concentration in the rehydrated PBS for lipids was subtracted from the DT concentration of the supernatant to produce a predetermined quantitation encapsulation ratio for the liposomes. The average particle size (nm) of the liposomes was measured at 25 ° C using a disposable capillary cuvettes using a Nanosizer (Zetasizer Nano Series ZS, Malvern Instruments, United Kingdom). The dimensions were analyzed using a non-invasive backscatter system and taking measurements of the 173° scattering angle. The correlation time is based on a continuous operation of 10 seconds per operation and at least five measurements per measurement. The result was an average of three independent measurements repeated using Dispersion Technology Software (Malvern Instruments, UK). The Homogenous size distribution is defined by the low polydispersity index (PDI) of 0.238 as indicated by J8-Lipo-DT. PDI is a representation of how narrow the sample size distribution is, and a value greater than 0.7 indicates that the sample has a broad size distribution.

小鼠的鼻內免疫。 B10.BR及BALB/c(動物資源中心(Animal Resources Centre),西澳大利亞(Western Australia),澳大利亞(Australia))是利用甲苯噻嗪(xylazine)及氯胺酮(ketamine)的混合物(xylazine:ketamine:H2 O的1:1:10混合物)麻醉以進行免疫。小鼠施予在總體積20 µL PBS(10 µL/鼻孔)中單獨30 µg的J8-Lipo-DT,同時控制組小鼠施予20 µL 的PBS(10 µL/鼻孔)。陽性控制組(Positive control)小鼠接收在總體積20 µL PBS中的30 µg 的共軛至DT的J8與共施予(co-administered)的10 µg的CTB(Sigma Aldrich,St. Louis,美國)。小鼠在間隔21天以與初次免疫的相同方式接收兩次加強免疫(2 booster immunizations)。其他控制組為單獨接收上述等量的J8、DT或脂質體。 Intranasal immunization of mice. B10.BR and BALB/c (Animal Resources Centre, Western Australia, Australia) are mixtures of xylazine and ketamine (xylazine:ketamine:H) 2 :1:1 mixture of 2 O) anesthetize for immunization. Mice were administered 30 μg of J8-Lipo-DT alone in a total volume of 20 μL PBS (10 μL/nostril), while control mice were administered 20 μL of PBS (10 μL/nostril). Positive control mice received 30 μg of J8 conjugated to DT in total volume of 20 μL PBS and co-administered 10 μg of CTB (Sigma Aldrich, St. Louis, USA) ). Mice received two booster immunizations in the same manner as the primary immunization at 21 days apart. The other control groups received the above equivalent amounts of J8, DT or liposomes separately.

收集血清、唾液及糞便樣本。 在初次免疫之後20天、40天及60天收集血清,以定義J8-專一性全身性抗體的程度。血液是經由尾動脈(tail artery)收集小鼠的血液且允許在37 °C下凝集至少30分鐘。以1000g 離心10分鐘之後收集血清,在56 °C下熱不活化10分鐘且儲存在–20 °C。 Collect serum, saliva and stool samples. Sera were collected 20 days, 40 days, and 60 days after the initial immunization to define the extent of J8-specific systemic antibodies. Blood is collected from the blood of the mouse via a tail artery and allowed to agglutinate for at least 30 minutes at 37 °C. Serum was collected after centrifugation at 1000 g for 10 minutes, heat inactivated at 56 °C for 10 minutes and stored at –20 °C.

小鼠施予毛果芸香鹼(pilocarpine)的0.1%溶液50 μL以誘發流涎。將唾液收集在含有2 μL的50 mmol/L苯甲基磺醯氟(phenylmethylsulfonyl fluoride (PMSF))蛋白酶抑制劑(Sigma Aldrich)的微離心管中。顆粒物質(Particulate matter)以13,000 g離心10分鐘來分離且將樣本儲存在−80°C。Mice were administered 50 μL of a 0.1% solution of pilocarpine to induce salivation. Saliva was collected in a microcentrifuge tube containing 2 μL of 50 mmol/L phenylmethylsulfonyl fluoride (PMSF) protease inhibitor (Sigma Aldrich). The Particulate matter was separated by centrifugation at 13,000 g for 10 minutes and the sample was stored at −80 °C.

自各個小鼠收集六至十個新鮮空隙糞粒、冷凍且接著凍乾。在糞便藉由渦流在5%無脂乾燥奶粉、50 mmol/L EDTA(Sigma Aldrich)、0.1 mg/mL大豆胰蛋白酶抑制劑(soyabean trypsin inhibitor)(Sigma Aldrich)以及2 mmol/L PMSF(20 μL/mg 的乾重)而再懸浮之前,測定糞便固體的乾重。固體物質以15,000g 離心10分鐘來分離。將上清液儲存在−80°C。Six to ten fresh interstitial fecal pellets were collected from each mouse, frozen and then lyophilized. In feces by vortexing in 5% fat-free dry milk powder, 50 mmol/L EDTA (Sigma Aldrich), 0.1 mg/mL soybean trypsin inhibitor (Sigma Aldrich) and 2 mmol/L PMSF (20 μL) The dry weight of the fecal solids was determined before resuspending at /mg dry weight. The solid material was separated by centrifugation at 15,000 g for 10 minutes. Store the supernatant at −80 °C.

藉由酵素連結免疫吸附分析法 (ELISA) 定義抗體效價。 如上所述,ELISA是用於測定J8-專一性血清IgG及黏膜IgA(43)。J8胜肽在碳酸酯塗佈緩衝液(carbonate coating buffer),pH 9.6中稀釋成0.5 mg/ml,且在100 μl/孔的體積中塗佈在聚碳酸酯(polycarbonate)板上,在4°C下放置一晚。移除未結合的胜肽且將孔以150 μl的5%脫脂奶粉PBS-Tween 20在37°C下進行阻隔2小時。接著將板以PBS-Tween 20緩衝液清洗3次。將樣本以0.5%脫脂奶粉PBS-Tween 20緩衝液在板中進行序列稀釋,對血清開始為1:100的起始稀釋至1:12,800的最終稀釋,對於唾液/糞便樣本為1:2至1:256。各樣本稀釋成100 μl的最終體積且在37°C下培養1.5小時。將板清洗5次且加入以0.5%脫脂奶粉PBS-Tween20分別稀釋成1:3000或1:1000的過氧化物酶共軛山羊抗小鼠IgG或IgA(Invivogen,San Diego,美國)在37°C下1.5小時。在清洗之後,根據製造商的說明,加入100 μl的OPD基質(Sigma Aldrich)且避光在室溫下培養30分鐘。以Victor3 1420多標記計數器(multilabel counter) (Perkin Elmer Life and Analytical Sciences,Shelton,美國) 測定在450 nm的吸光度。效價是描述成最低稀釋度,其給予陰性控制組孔(negative control wells)(含有以PBS免疫的正常小鼠血清)的平均吸光度以上的>3標準偏差(SD)的吸光度。顯著差異(p < 0.05)是利用單因子變異數分析(one-way analysis of variance (ANOVA))與利用GraphPad Prism 5 軟體(GraphPad,加州,美國)的Tukey事後檢測來定義。 Antibody titers were defined by enzyme linked immunosorbent assay (ELISA) . As described above, ELISA is used to determine J8-specific serum IgG and mucosal IgA (43). The J8 peptide was diluted to 0.5 mg/ml in a carbonate coating buffer, pH 9.6, and coated on a polycarbonate plate at a volume of 100 μl/well at 4°. Place a night under C. Unbound peptides were removed and wells were blocked with 150 μl of 5% skim milk powder PBS-Tween 20 for 2 hours at 37 °C. The plates were then washed 3 times with PBS-Tween 20 buffer. Samples were serially diluted in plates with 0.5% skim milk powder PBS-Tween 20 buffer, starting with a 1:100 initial dilution of serum to a final dilution of 1:12,800, for saliva/fecal samples 1:2 to 1 :256. Each sample was diluted to a final volume of 100 μl and incubated at 37 ° C for 1.5 hours. The plate was washed 5 times and added to peroxidase conjugated goat anti-mouse IgG or IgA (Invivogen, San Diego, USA) diluted to 1:3000 or 1:1000 with 0.5% skim milk powder PBS-Tween20 at 37°. 1.5 hours under C. After washing, 100 μl of OPD matrix (Sigma Aldrich) was added according to the manufacturer's instructions and incubated for 30 minutes at room temperature in the dark. Absorbance at 450 nm was measured with a Victor 3 1420 multilabel counter (Perkin Elmer Life and Analytical Sciences, Shelton, USA). The titer is described as the lowest dilution, which gives >3 standard deviation (SD) absorbance above the mean absorbance of negative control wells (containing normal mouse serum immunized with PBS). Significant differences ( p < 0.05) were defined using one-way analysis of variance (ANOVA) and Tukey post hoc detection using GraphPad Prism 5 software (GraphPad, California, USA).

用於 GAS 激發的步驟。 免疫及控制組小鼠在初次免疫之後的63天以預定劑量的GAS菌株M1進行鼻內激發。GAS菌株M1已在小鼠脾臟中連續傳代以加強致病性,且進行耐鏈黴素(streptomycin-resistant)而可在喉部擦拭中使GAS可與正常鼠菌叢(murine bacterial flora)區分(44)。為了定義GAS拓殖,在激發之後的1天至3天自小鼠得到喉部擦拭。將喉部擦拭在含有2%去纖維蛋白(defibrinated)馬血的Todd-Hewitt瓊脂板上進行劃線接種且在37°C下培養一晚。鼻部流出的細菌負荷是藉由將各小鼠的鼻孔按壓在哥倫比亞血瓊脂(columbia blood agar (CBA))盤的表面上十次(重複三次CBA盤/小鼠/天)並將呼出的顆粒進行劃線接種來定義。在第3天犧牲小鼠,將器官樣本在PBS中均質且將樣本利用混稀平板法(pour plate method)塗盤重複三次。對於鼻部流出及喉部擦拭,結果是以10隻小鼠/組在1天、2天及3天的平均菌落形成單元(CFU) +平均標準差(SEM)來表示。對於器官樣本,結果是以10隻小鼠/組在第3天的平均CFU + SEM來表示。差異是以GraphPad Prism 5利用無母數、無配對的Mann-Whitney U檢定比較測試群組與PBS控制群組進行分析(p < 0.05被認為具顯著性)。 Steps for GAS excitation. The immunized and control group mice were intranasally challenged with a predetermined dose of GAS strain M1 63 days after the primary immunization. GAS strain M1 has been serially passaged in the spleen of mice to enhance pathogenicity, and is resistant to streptomycin-resistant to distinguish GAS from normal murine bacterial flora in laryngeal wiping. (44). To define GAS colonization, a laryngeal wipe was obtained from the mice 1 to 3 days after challenge. The throat was wiped on a Todd-Hewitt agar plate containing 2% defibrinated horse blood and streaked and incubated at 37 ° C overnight. The bacterial load from the nose was obtained by pressing the nostrils of each mouse on the surface of a Columbia blood agar (CBA) disk ten times (three times CBA disk/mouse/day) and exhaled particles. Define by streaking. The mice were sacrificed on day 3, the organ samples were homogenized in PBS and the samples were plated three times using a pour plate method. For nasal outflow and throat swab, the results were expressed as mean colony forming units (CFU) + mean standard deviation (SEM) of 10 mice/group at 1 day, 2 days, and 3 days. For organ samples, the results are expressed as mean CFU + SEM on day 3 of 10 mice per group. The difference was analyzed by GraphPad Prism 5 using a parent-free, unpaired Mann-Whitney U assay comparing the test cohort with the PBS control cohort ( p < 0.05 was considered significant).

DC 的製備及成熟。 末梢血液自健康志願者收集且藉由標準步驟透過Ficoll-Paque(Amersham Pharmacia,Uppsala,瑞典(Sweden))分次(fractionated)。藉由透過Ficoll Paque離心、清洗及再懸浮獲得每0.35 mL MACS緩衝液(Miltenyi Biotec S.L.,德國(Germany))為1 x 108 的最終密度的PBMC。DC是根據製造商的說明利用Pan DC分離套組(Miltenyi Biotec)分離。合成DC族群再懸浮在RPMI 1640 (Gibco,Gaithersburg,美國)完全培養基(具有2 mM 1-麩醯胺酸(l-glutamine)、1%非必須胺基酸(non-essential amino acids)、1% Pen-strep、10 mM HEPES)且補充10% FCS(Gibco)。將0.2 mL總體積的DCs (2 x 106 )鋪開且隨後加入下列指示進行刺激:10 µg/mL的pIC(Invivogen,San Diego,美國)、J8-Lipo-DT (150 µg/mL)或單獨完全培養基刺激24小時。在24小時之後收集上清液並儲存在-20ºC。 Preparation and maturation of DC . Peripheral blood was collected from healthy volunteers and fractionated by Ficoll-Paque (Amersham Pharmacia, Uppsala, Sweden (Sweden)) by standard procedures. A final density of PBMC of 1 x 10 8 per 0.35 mL of MACS buffer (Miltenyi Biotec SL, Germany) was obtained by centrifugation, washing and resuspension by Ficoll Paque. The DC was separated using a Pan DC separation kit (Miltenyi Biotec) according to the manufacturer's instructions. Synthetic DC population resuspended in RPMI 1640 (Gibco, Gaithersburg, USA) complete medium (with 2 mM 1-l-glutamine, 1% non-essential amino acids, 1%) Pen-strep, 10 mM HEPES) and supplemented with 10% FCS (Gibco). Spread 0.2 mL of total volume of DCs (2 x 10 6 ) and then add the following instructions for stimulation: 10 μg/mL of pIC (Invivogen, San Diego, USA), J8-Lipo-DT (150 μg/mL) or Stimulation of complete medium alone for 24 hours. The supernatant was collected after 24 hours and stored at -20oC.

藉由 流式細胞儀的免疫分型 (Immunophenotype) 分析。 對於各種標記的表面表現的分析,將處理的DC以一或多種下列螢光標記(fluorophore-labeled) mAb染色且藉由利用LSR Fortessa細胞儀(Becton Dickinson,加州,美國)及FlowJo軟體(Treestar, Inc.,加州,美國)的流式細胞儀進行分析。合成族群藉由利用下列抗體(Becton Dickinson)的流式細胞分析進行測定:抗-HLA-DR-V450、-CD1c-APC、-CD80-PE-Cy7、-CD83-PE-TexasRed、-CD86-PE、-CD123-Percp-5.5、-CD141-APC-Cy7。以適當的抗體在4°C下避光30分鐘進行染色之後,將細胞以PBS清洗兩次,且以1% 聚甲醛(paraformaldehyde)固定。框選(Gating)為大顆粒細胞(large granular cell),且自各樣本收集2000–5000框選事件(gated event)。簡而言之,框選HLA-DR陽性細胞以定義人類DC且根據先前建立的方法進一步細分成CD141+1型習知DC(conventional DCs type 1)、CD1c+ 2型DCs習知(骨髓) DC以及CD123+漿細胞樣DC(45)。平均螢光強度(MFI)值定義在框選族群。數據以平均+ SEM報告,且差異是以GraphPad Prism 5 軟體(GraphPad,加州,美國) 利用學生t檢驗進行分析。小於0.05的P 值被認為具顯著性。 Immune typing analysis by flow cytometry (Immunophenotype). For analysis of the surface representation of various markers, the treated DCs were stained with one or more of the following fluorophore-labeled mAbs and by using LSR Fortessa cytometer (Becton Dickinson, California, USA) and FlowJo software (Treestar, Inc., California, USA) Flow cytometry for analysis. Synthetic populations were determined by flow cytometry using the following antibodies (Becton Dickinson): anti-HLA-DR-V450, -CD1c-APC, -CD80-PE-Cy7, -CD83-PE-TexasRed, -CD86-PE , -CD123-Percp-5.5, -CD141-APC-Cy7. After staining with an appropriate antibody at 4 ° C for 30 minutes in the dark, the cells were washed twice with PBS and fixed with 1% paraformaldehyde. Gating is a large granular cell, and 2000–5000 framed events are collected from each sample. Briefly, HLA-DR positive cells were selected to define human DCs and further subdivided into CD141+1 conventional DCs (CDs), CD1c+ 2 DCs (bone marrow) DCs, and according to previously established methods. CD123+ plasma cell-like DC (45). The average fluorescence intensity (MFI) value is defined in the box selection group. Data were reported as mean + SEM and the difference was analyzed using Student's t-test using GraphPad Prism 5 software (GraphPad, California, USA). A P value of less than 0.05 was considered significant.

體外以抗原刺激脾細胞。 流式微球陣列(CBA)分析及流式細胞儀分析用於定量以J8胜肽刺激之後脾細胞產生的促發炎反應。簡而言之,在RPMI 1640培養基中製備自J8-Lipo-DT免疫小鼠的去除紅血球的脾臟的單一細胞懸浮液。將總體積0.1 mL的脾細胞 (4 x 105 ) 鋪開且隨後加入下列指示進行刺激:2 µg/mL的LPS (Sigma Aldrich)、J8 (10 µg/mL)或單獨RPMI 1640 培養基刺激72小時。在72小時之後分離上清液且儲存在-80ºC,以用於CBA流式細胞分析。 Splenocytes are stimulated with antigen in vitro. Flow microsphere array (CBA) analysis and flow cytometry analysis were used to quantify the pro-inflammatory response produced by splenocytes after stimulation with J8 peptide. Briefly, a single cell suspension of erythrocytes from the J8-Lipo-DT immunized mice was prepared in RPMI 1640 medium. Sprinkle a total volume of 0.1 mL of splenocytes (4 x 10 5 ) and then stimulate with the following instructions: 2 μg/mL of LPS (Sigma Aldrich), J8 (10 μg/mL) or RPMI 1640 alone for 72 hours. . The supernatant was separated after 72 hours and stored at -80 °C for CBA flow cytometry analysis.

CBA 定量分泌的化學激活素及細胞介素。 累積的發炎細胞介素的量根據製造商的說明進行定量。對於小鼠發炎套組CBA,將樣本及標準品的量縮減至10 μl,且各使用2 μl的捕獲珠(capture bead)。根據製造商的建議,將自人類DC細胞的上清液使用於人類發炎套組CBA(Becton Dickinson)。將樣本在LSR Fortessa細胞儀上運作,且數據以FCAP array (用於Windows的 v1.01)軟體(Becton Dickinson)進行分析。數據以平均+平均標準差(SEM)報告,且差異是以GraphPad Prism 5 軟體利用學生t檢驗進行分析。小於0.05的P 值被認為顯著性。結果 Chemical activin and interleukin secreted by CBA . The amount of accumulated inflammatory interleukins was quantified according to the manufacturer's instructions. For the mouse inflamed kit CBA, the amount of sample and standard was reduced to 10 μl, and 2 μl of capture bead was used for each. Supernatants from human DC cells were used in human inflammatory kit CBA (Becton Dickinson) according to the manufacturer's recommendations. The samples were run on an LSR Fortessa cytometer and the data was analyzed using FCAP array (v1.01 for Windows) software (Becton Dickinson). Data were reported as mean + mean standard deviation (SEM) and the differences were analyzed using the StudentPaint 5 software using Student's t-test. A P value of less than 0.05 was considered significant. result

具有表面相關J8胜肽且含有白喉類毒素的脂質體(第1圖)如材料及方法所述的方式建構。施予的製劑每劑含有30 μg的J8,其利用棕櫚酸類部分(moiety)連結至脂質體表面。在內部,脂質體含有每劑30 μg的DT。脂質體的平均直徑由動態光散射測定(見材料與方法)為1.8 μm(標準偏差= 100.3 nm)。Liposomes with a surface-related J8 peptide and containing diphtheria toxoid (Fig. 1) were constructed as described in Materials and Methods. The administered formulation contained 30 μg of J8 per dose, which was attached to the surface of the liposome using a palmitic acid moiety. Internally, the liposomes contained 30 μg of DT per dose. The average diameter of the liposomes was determined by dynamic light scattering (see Materials and Methods) to be 1.8 μm (standard deviation = 100.3 nm).

利用初次及2次-加強方案,BALB/c小鼠(每組10隻)以J8-Lipo-DT及各控制組:單獨脂質體(Lipo);脂質體封裝DT(Lipo-DT);J8嵌入在脂質體的表面但不封裝DT(J8-Lipo);J8-DT+CTB;PBS+CTB;以及PBS進行鼻內免疫。Using primary and secondary-boost regimens, BALB/c mice (10 per group) were J8-Lipo-DT and each control group: liposome alone (Lipo); liposome encapsulated DT (Lipo-DT); J8 embedded Intranasal immunization was performed on the surface of liposomes but not in DT (J8-Lipo); J8-DT+CTB; PBS+CTB; and PBS.

為了評估J8-Lipo-DT與其他建構相比的效力,將鼻內疫苗接種的小鼠接著藉由自猩紅熱的病人得到的咽部分離M1 GAS菌株經鼻腔進行激發(16)。在激發之前,我們觀察到J8-Lipo-DT誘發比J8-Lipo更高的J8-專一性IgA(糞便及唾液)及血清IgG效價。雖然在J8-Lipo-DT與J8-Lipo之間的差在任何一組沒有統計上顯著性,但觀察到J8-Lipo-DT有較優異的唾液IgA反應、糞便IgA反應及血清IgG反應(第2圖A部分至C部分)。以GAS激發之後,在鼻內流出的細菌負荷,J8-Lipo-DT免疫小鼠與PBS組相比顯著地較低,而與J8-DT+CTB免疫的小鼠相當(第3天,第3圖A部分)。To assess the efficacy of J8-Lipo-DT compared to other constructs, intranasal vaccinated mice were then challenged intranasally by the pharyngeal isolated M1 GAS strain obtained from patients with scarlet fever (16). Before challenge, we observed that J8-Lipo-DT induced higher J8-specific IgA (feces and saliva) and serum IgG titers than J8-Lipo. Although the difference between J8-Lipo-DT and J8-Lipo was not statistically significant in any of the groups, it was observed that J8-Lipo-DT has superior salivary IgA response, fecal IgA response, and serum IgG response (p. 2 Figure A to Part C). After the GAS challenge, the bacterial load in the nose, J8-Lipo-DT immunized mice were significantly lower than the PBS group, and comparable to the J8-DT+CTB immunized mice (Day 3, 3rd) Figure A)).

然而令人驚訝的是,J8-DT+CTB免疫小鼠並未保護喉部或NALT的拓殖,反之J8-Lipo-DT免疫小鼠在兩個腔室皆顯示有顯著地預防拓殖(第3圖B部分及C部分)。由於J8-Lipo-DT的保護顯著優於由J8-Lipo誘發。鼠NALT對於持續性GAS感染是進入的入口(24),且為人類扁桃腺的功能性同源(25)。因此,該結果凸顯J8-Lipo-DT在降低黏膜GAS感染的偏向位置(preferential site)的生物負荷(bio-burden)的效力。Surprisingly, J8-DT+CTB immunized mice did not protect the larynx or NALT colonization, whereas J8-Lipo-DT immunized mice showed significant prevention of colonization in both chambers (Fig. 3) Part B and Part C). The protection of J8-Lipo-DT is significantly better than that induced by J8-Lipo. Murine NALT is the entry point for persistent GAS infection (24) and is a functional homolog of the human tonsil (25). Therefore, this result highlights the efficacy of J8-Lipo-DT in reducing the bio-burden of the preferential site of mucosal GAS infection.

接著我們探討J8-Lipo-DT是否同樣保護不同品系的小鼠。將J8-DT/CTB及PBS作為控制免疫原。B10.BR小鼠(n=5)以J8-Lipo-DT的免疫誘發顯著的J8-專一性抗體效價(第4圖)。在唾液及糞便樣本中的黏膜抗體效價與以J8-DT+CTB免疫的小鼠相當(第4圖A部分及B部分)。為了測試J8-Lipo-DT是否保護B10.BR小鼠免於GAS感染,將另一組小鼠(n=5)免疫並以GAS M1菌株激發。透過3天觀察期間監測鼻部流出及喉部擦拭。到第2天,J8-Lipo-DT及J8-DT+CTB免疫小鼠在鼻部流出已檢測不出生物負荷(第5圖A部分)。與BALB/c小鼠相似,數據亦證明J8-Lipo-DT免疫小鼠在激發後第2天的喉部擦拭中沒有細菌,反之J8-DT+CTB免疫小鼠在第3天的喉部擦拭中仍可檢測到GAS的量(第5圖B部分)。Next we explored whether J8-Lipo-DT also protects mice of different strains. J8-DT/CTB and PBS were used as control immunogens. B10.BR mice (n=5) induced significant J8-specific antibody titers with J8-Lipo-DT immunization (Fig. 4). The mucosal antibody titers in saliva and stool samples were comparable to those immunized with J8-DT+CTB (Fig. 4, Parts A and B). To test whether J8-Lipo-DT protected B10.BR mice from GAS infection, another group of mice (n=5) was immunized and challenged with the GAS M1 strain. Nasal outflow and throat swabs were monitored during 3 days of observation. By day 2, J8-Lipo-DT and J8-DT+CTB immunized mice had no bioburden detected in the nose (Fig. 5A). Similar to BALB/c mice, the data also showed that J8-Lipo-DT immunized mice had no bacteria in the throat wipe on the second day after challenge, whereas J8-DT+CTB immunized mice had a throat wipe on the third day. The amount of GAS can still be detected (Fig. 5, Part B).

先前研究證明,當封裝在脂質體中的胜肽無法誘發免疫球蛋白反應,脂質體加脂質A(lipid A)(脂多醣(lipopolysaccharides)的成分)在經腹腔(intra-peritoneal)免疫之後可誘發抗體反應(26),因此表示脂質A的脂質尾端可作為佐劑。為了探討將J8固定在脂質體表面的雙C16脂質尾端是否負責抗體反應的誘發,將另一組小鼠以C16-C16-KSSJ8、J8-Lipo-DT、J8-DT+CTB或PBS進行免疫。我們觀察到J8-Lipo-DT 及J8-DT+CTB為免疫性,反之C16-C16-KSSJ8則無(第6圖A部分及B部分)。Previous studies have shown that when a peptide encapsulated in a liposome cannot induce an immunoglobulin reaction, liposome plus lipid A (a component of lipopolysaccharides) can be induced after intra-peritoneal immunization. The antibody reacts (26), thus indicating that the lipid tail of lipid A can act as an adjuvant. To investigate whether the double C16 lipid tail that immobilizes J8 on the surface of liposomes is responsible for the induction of antibody responses, another group of mice were immunized with C16-C16-KSSJ8, J8-Lipo-DT, J8-DT+CTB or PBS. . We observed that J8-Lipo-DT and J8-DT+CTB were immunogenic, whereas C16-C16-KSSJ8 did not (Fig. 6 Part A and Part B).

測定自鼻內免疫小鼠的脾細胞的細胞介素反應,以定義鼻內免疫是否誘發全身性細胞免疫反應,其可解釋J8-Lipo-DT的自體佐劑性(self adjuvanticity)及對IgA的同型(isotype)抗體的開關。分析促發炎細胞介素 (γ干擾素(gamma interferon [IFN-γ])、介白素1[IL-1]、IL-6、IL-12p70、單核細胞趨化蛋白1(monocyte chemotactic protein 1)[MCP-1]及腫瘤壞死因子α[TNF-α])。犧牲以J8-Lipo-DT免疫的B10.BR小鼠且將脾細胞以J8、LPS或培養基刺激。我們觀察到,對應於J8及LPS產生顯著的IFN-γ、MCP-1及IL-6(第7圖)。沒有檢測到評估的其他細胞介素。該結果證明,以J8-Lipo-DT的疫苗接種誘發促發炎反應,提供J8-Lipo-DT的自體佐劑性的潛在機制。尤其是,IL-6已知為負責開關IgA的抗體反應 (27)。此外,趨化物MCP-1已知在GAS防禦機制上扮演主要的角色(28)。The interleukin response of spleen cells from mice immunized intranasally was determined to define whether intranasal immunization induces a systemic cellular immune response, which may explain the self adjuvantity of J8-Lipo-DT and the IgA Switch of isotype antibody. Analysis of proinflammatory interferon (gamma interferon [IFN-γ]), interleukin 1 [IL-1], IL-6, IL-12p70, monocyte chemotactic protein 1 (monocyte chemotactic protein 1) ) [MCP-1] and tumor necrosis factor alpha [TNF-α]). B10.BR mice immunized with J8-Lipo-DT were sacrificed and splenocytes were stimulated with J8, LPS or medium. We observed that significant IFN-γ, MCP-1 and IL-6 were produced corresponding to J8 and LPS (Fig. 7). No other interleukins were assessed for evaluation. This result demonstrates that vaccination with J8-Lipo-DT induces a pro-inflammatory response, providing a potential mechanism for the autoadjuvant of J8-Lipo-DT. In particular, IL-6 is known to be responsible for the antibody response to switch IgA (27). In addition, the chemotactic MCP-1 is known to play a major role in the GAS defense mechanism (28).

為了評估J8-Lipo-DT在人類具有自體佐劑活性以誘發有效的免疫反應的可能性,樹突細胞子集合自三位健康志願者的血液分離且以J8-Lipo-DT刺激。成熟DC為有效的抗原呈現細胞,其表現參與抗原呈現及有利於抗原識別及細胞之間交互作用(cell-cell interactions)之共同刺激的高量的細胞表面分子。為了描繪人類DC成熟的特性,對應於J8-Lipo-DT的各種細胞表面分子的調節藉由流式細胞儀測定(第8圖A部分至C部分)。利用合成的雙股RNA佐劑、多核糖腺苷酸-多核糖胞苷酸(pIC)作為控制組(29)。共同刺激分子CD80、CD83及CD86的量在以J8-Lipo-DT培養的CD123+漿細胞樣DC(pDCs)中顯著較高(第8圖A部分)。CD80的表現在CD141+典型1型DC及CD1c+典型2型DC的典型DC(cDC)的兩個子集合中亦增加(第8圖B部分至C部分)。此外,CD86表現在CD141+ DC亦增加(第8圖B部分)。To assess the possibility of J8-Lipo-DT having autologous adjuvant activity in humans to elicit an effective immune response, dendritic cell subsets were isolated from the blood of three healthy volunteers and stimulated with J8-Lipo-DT. Mature DCs are potent antigen-presenting cells that exhibit high levels of cell surface molecules involved in antigen presentation and co-stimulation that facilitates antigen recognition and cell-cell interactions. To characterize the maturation of human DCs, the regulation of various cell surface molecules corresponding to J8-Lipo-DT was determined by flow cytometry (Figure 8, Panels A to C). A synthetic double-stranded RNA adjuvant, polyriboadenosyl-polyribose cytidine (pIC) was used as the control group (29). The amount of costimulatory molecules CD80, CD83 and CD86 was significantly higher in CD123+ plasmacytoid DCs (pDCs) cultured in J8-Lipo-DT (Fig. 8 Panel A). The performance of CD80 was also increased in two subsets of CD141+typical type 1 DC and CD1c+typical type 2 DC typical DCs (cDC) (Fig. 8 Part B to Part C). In addition, CD86 performance also increased in CD141+ DC (Fig. 8B).

為了進一步確定與人類DC的交互作用,刺激後的促發炎細胞介素的量利用流式微球陣列評估。我們觀察到促發炎細胞介素(TNF-α、IL-6及IL-1 beta (IL-1 β))及嗜中性球趨化物IL-8的表現增加(第9圖)。嗜中性球已知為IgA控制GAS感染的關鍵(30)。亦觀察到抗發炎細胞介素IL10的量提升(第9圖)。其可能因在DC成熟步驟中IL-10的調節作用及制衡宿主促發炎反應(31, 32)。然而,特別是IL-6反應顯示J8-lipo-DT將引起人類的IgA開關,且與嗜中性球反應(經由IL-8)一起使宿主有利於控制GAS感染。如第10圖所示,當兩者作為單獨或作為S2-J8嵌合體(SEQ ID NO:3)呈現時,藉由與囊內DT一起的脂質體呈現的SpyCEP胜肽(S2; SEQ ID NO:2)誘發黏膜IgA反應。To further determine interaction with human DCs, the amount of proinflammatory cytokines after stimulation was assessed using a flow microsphere array. We observed an increase in the expression of proinflammatory interleukins (TNF-α, IL-6 and IL-1 beta (IL-1 β)) and neutrophil chemoattractant IL-8 (Fig. 9). Neutrophils are known to be the key to IgA control of GAS infection (30). An increase in the amount of anti-inflammatory interleukin IL10 was also observed (Fig. 9). It may be due to the regulation of IL-10 in the DC maturation step and to counteract the host's inflammatory response (31, 32). However, in particular the IL-6 response showed that J8-lipo-DT would cause a human IgA switch and, together with a neutrophil response (via IL-8), would help the host to control GAS infection. As shown in Figure 10, when both are presented alone or as S2-J8 chimeras (SEQ ID NO: 3), the SpyCEP peptide (S2; SEQ ID NO) presented by the liposome together with the intracapsular DT : 2) Inducing mucosal IgA response.

參照第11圖,J8+S2-Lipo-DT誘發抗原專一性IgA、IgG反應。對應於J8-Lipo-DT及S2-Lipo-DT觀察到相當的免疫反應。不同製劑策略採用(i)在脂質體中的兩個表位(J8+S2-Lipo-DT)或(ii) J8/S2S2-Lipo-DT脂質體的混合物。Referring to Figure 11, J8+S2-Lipo-DT induces antigen-specific IgA and IgG responses. A comparable immune response was observed corresponding to J8-Lipo-DT and S2-Lipo-DT. Different formulation strategies employ (i) a mixture of two epitopes in the liposome (J8+S2-Lipo-DT) or (ii) J8/S2S2-Lipo-DT liposomes.

A群鏈球菌感染可能造成各種皮膚及軟組織感染,其中部分是嚴重的甚至危及生命。因此其有興趣觀察在以88/30菌株激發後,J8-Lipo-DT是否可預防皮膚感染。初始實驗採取僅包含DT及J8的脂質體的鼻內施予,在以J8-Lipo-DT的鼻內免疫後顯示顯著的IgG效價,但其在皮膚激發試驗中顯示沒有保護(未顯示數據)。目前正在進行透過不同脂質體製劑或透過經皮下給予的J8-DT+明礬的免疫來增強全身性IgG反應。討論 Group A streptococcal infections can cause a variety of skin and soft tissue infections, some of which are severe or even life-threatening. It is therefore of interest to see if J8-Lipo-DT can prevent skin infections after challenge with the 88/30 strain. Initial experiments with intranasal administration of liposomes containing only DT and J8 showed significant IgG titers after intranasal immunization with J8-Lipo-DT, but showed no protection in skin challenge tests (data not shown) ). Systemic IgG responses are currently being enhanced by immunization with different liposomal formulations or by subcutaneous administration of J8-DT + alum. discuss

我們已發展一種對A群鏈球菌(GAS)的黏膜活化子單元脂質體疫苗候選。脂質體的免疫刺激特性與蛋白載體DT的封裝結合,且在脂質體表面上呈現GAS-專一性B細胞表位。胜肽及載體蛋白兩者為最佳免疫所需。藉由複合脂質體誘發的黏膜免疫優於藉由胜肽-蛋白質與CTB共軛施予的誘發。We have developed a mucosal activator cell liposome vaccine candidate for group A streptococci (GAS). The immunostimulatory properties of the liposome bind to the encapsulation of the protein carrier DT and present a GAS-specific B cell epitope on the surface of the liposome. Both the peptide and the carrier protein are required for optimal immunity. Mucosal immunity induced by complex liposomes is superior to induction by peptide-protein and CTB conjugate administration.

黏膜免疫作為誘發保護性免疫以對抗感染性疾病的方式已吸引許多關注。絕大多數的感染發生在黏膜表面或從黏膜表面開始。因此,可誘發黏膜保護性免疫反應的疫苗應用為理想且實用的。尤其是,利用子單元胜肽抗原經常證明難以刺激強烈的黏膜IgA免疫反應且在黏膜疫苗接種成果的進度是令人失望的。其部分因相較於傳統的全生物體(whole-organism)基礎法,難以刺激有效的免疫反應。對於佐劑的添加及子單元抗原共軛至載體蛋白作為T細胞輔助的來源證明對於全身性免疫為有效的。然而,黏膜免疫的誘發需要新穎的策略。Mucosal immunity has attracted much attention as a way to induce protective immunity against infectious diseases. The vast majority of infections occur on the mucosal surface or from the mucosal surface. Therefore, vaccine applications that induce mucosal protective immune responses are desirable and practical. In particular, the use of subunit peptide antigens often proves to be difficult to stimulate a strong mucosal IgA immune response and the progress in mucosal vaccination results is disappointing. Part of it is difficult to stimulate an effective immune response compared to the traditional whole-organism basic method. The addition of an adjuvant and conjugation of the subunit antigen to the carrier protein as a source of T cell help proves to be effective for systemic immunity. However, the induction of mucosal immunity requires novel strategies.

與抗原相關的脂質體的地形位置(topographical position)影響抗原處理及對B細胞及輔助T細胞的呈現(33)。已證明的是,露出於脂質體表面上的抗原優先由B細胞處理及呈現,同時包覆抗原的脂質體藉由抗原呈現細胞而更有效地處理及呈現至T細胞(34)。因此,疫苗候選J8-Lipo-DT表現合理的子單元脂質體疫苗設計,確保B細胞表位與脂質體雙層相關而使結合至B細胞的Ig受體(receptor)露出,同時DT的包覆允許有效的傳遞、處理及呈現至T細胞。The topographical position of the antigen-associated liposomes affects antigen processing and presentation of B cells and helper T cells (33). It has been demonstrated that antigens exposed on the surface of liposomes are preferentially treated and presented by B cells, while antigen-coated liposomes are more efficiently processed and presented to T cells by antigen presenting cells (34). Therefore, the vaccine candidate J8-Lipo-DT has a well-designed subunit liposome vaccine design, ensuring that the B cell epitope is associated with the liposome bilayer and the Ig receptor (receptor) bound to the B cell is exposed, while the DT coating Allow efficient delivery, processing and presentation to T cells.

我們已證明在URT組織中GAS的清除率,其包含NALT。藉由疫苗候選有效的鼻咽免疫有可能降低與主要咽部感染(primary pharyngeal infection)相關之RF及RHD的潛能(7)。在人類URT、扁桃腺為GAS的主要蓄積處,其在全球為持續的地方性疾病(25)。降低在人類扁桃腺的功能性同源的NALT中的GAS拓殖,暗示以J8-Lipo-DT鼻內免疫將降低人類扁桃腺的拓殖及感染,因此降低GAS的傳播(25)。We have demonstrated clearance of GAS in URT tissue, which includes NALT. Nasopharyngeal immunity effective by vaccine candidates has the potential to reduce the potential of RF and RHD associated with primary pharyngeal infection (7). In human URT, the tonsils are the main accumulates of GAS, which are persistent endemic diseases worldwide (25). Reduction of GAS colonization in functional homologous NALT in human tonsils suggests that intranasal immunization with J8-Lipo-DT will reduce colonization and infection of human tonsils, thus reducing GAS transmission (25).

雖然先前已報告脂質體傳遞封裝胜肽以誘發細胞免疫反應,但除了有效的佐劑,例如脂質A的存在之外,該脂質體並未誘發IgA或IgG反應(26, 35)。由於J8上的脂質尾端可能提供佐劑活性,因而有助於J8-Lipo-DT的免疫原性;然而,在其所有的具有脂質尾端的J8胜肽並未證明對於脂質體製劑的免疫原性的需要。脂質體的自體佐劑免疫刺激活性已如先前報告且顯示是由於與抗原呈現細胞交互作用且誘發促發炎反應(36)。在本研究的體外測定顯示在免疫小鼠中誘發抗原特異性發炎化學激活素及細胞介素。值得關注的是,抗原專一性MCP-1及IL-6的分泌。MCP-1為對於淋巴細胞、單核細胞及抗原呈現細胞的趨化物(37)。先前相關的中介黏膜發炎,其已報告因顯著地增加黏膜IgA分泌而作為可能的黏膜佐劑(37)。Although liposomes have been previously reported to encapsulate peptides to induce cellular immune responses, in addition to the presence of effective adjuvants, such as lipid A, the liposomes do not induce IgA or IgG responses (26, 35). Since the lipid tail on J8 may provide adjuvant activity, it contributes to the immunogenicity of J8-Lipo-DT; however, all of the J8 peptides with lipid tails do not demonstrate immunogens for liposome preparations. Sexual needs. The autologous adjuvant immunostimulatory activity of liposomes has been previously reported and is shown to be due to cell interaction with the antigen and induce a pro-inflammatory response (36). In vitro assays in this study showed induction of antigen-specific inflammatory chemical activins and interleukins in immunized mice. Of concern is the secretion of antigen-specific MCP-1 and IL-6. MCP-1 is a chemoattractant that presents cells to lymphocytes, monocytes, and antigens (37). Previously associated mediator mucosal inflammation has been reported as a possible mucosal adjuvant due to a significant increase in mucosal IgA secretion (37).

雖然抗原可藉由各種細胞類型呈現至免疫系統,但是主要的初始T細胞(naive T cell)需要成熟、抗原的呈現及僅在專業的抗原呈現細胞,例如DC上發現的共同刺激分子的參與(38)。DC為將先天性反應及適應性免疫反應與感染橋接的關鍵元素(39)。成熟DC產生發炎細胞介素、向上調控(up-regulate)共同刺激及抗原呈現分子且移動至淋巴結,其功能為作為對於初始T細胞的有效抗原呈現細胞,以起始適應性免疫反應。依據體外露出及包含IL-6及IL-8的促發炎細胞介素的誘發,我們已證明J8-Lipo-DT介導在人類DC上的細胞表面活化及成熟標誌的表現。人類及鼠的IL-6在B細胞最後分化(terminal differentiation)扮演關鍵角色,且在黏膜位置刺激其增生且在黏膜位置分泌IgA(27)。對抗GAS的IgA專一性免疫需要嗜中性球的存在(30)。IL-8在嗜中性球的補充及活化具有關鍵性。在此方面,SpyCEP S2胜肽(SEQ ID NO:2)的施予藉由單獨脂質體顆粒傳遞系統(particulate delivery system)或與J8胜肽誘發胜肽專一性IgA結合來呈現。Although antigens can be presented to the immune system by various cell types, the primary naive T cells require maturation, antigen presentation, and involvement of co-stimulatory molecules found only in specialized antigen-presenting cells, such as DCs ( 38). DC is a key element in bridging congenital and adaptive immune responses to infection (39). Mature DCs produce inflammatory interleukins, up-regulate co-stimulation and antigen-presenting molecules and move to lymph nodes, which function to present cells as effective antigens to naive T cells to initiate an adaptive immune response. Based on the induction of proinflammatory cytokines exposed in vitro and containing IL-6 and IL-8, we have demonstrated that J8-Lipo-DT mediates the expression of cell surface activation and maturation markers on human DCs. Human and murine IL-6 play a key role in B cell terminal differentiation and stimulate proliferation at the mucosal site and secrete IgA at the mucosal site (27). IgA-specific immunity against GAS requires the presence of neutrophils (30). IL-8 is critical in the recruitment and activation of neutrophils. In this regard, administration of the SpyCEP S2 peptide (SEQ ID NO: 2) is presented by a separate liposome particle delivery system or in combination with J8 peptide-inducing peptide-specific IgA.

因此,在賦予人類對GAS感染的免疫性的基礎機制可利用脂質體平台進行介導,對臨床上的基礎研究的相關性有重要影響。Therefore, the underlying mechanisms that confer human immunity to GAS infection can be mediated through the liposome platform, which has important implications for the relevance of clinical basic research.

我們證明人類pDC在藉由J8-Lipo-DT刺激後增加成熟及共同刺激指標兩者。人類pDC容易吞噬及處理陷入在顆粒傳遞系統中的抗原(40),其表示顆粒傳遞系統可用於促進將抗原有效傳遞至pDC。據我們所知,我們結果首次顯示可以脂質體類顆粒傳遞系統刺激人類pDC。人類pDC最初在血液中被辨識,隨後在脾臟、淋巴結及包含扁桃腺的黏膜位置被偵測到(41)。因此,脂質體類疫苗傳遞在人類中可潛在地利用於靶向用於期望的黏膜免疫反應之DC子集合。範例 2 We demonstrate that human pDC increases both maturation and co-stimulatory markers after stimulation with J8-Lipo-DT. Human pDCs readily phagocytose and process antigens (40) trapped in the particle delivery system, which means that the particle delivery system can be used to facilitate efficient delivery of antigen to pDC. To the best of our knowledge, our results show for the first time that liposome-like particle delivery systems can stimulate human pDC. Human pDC is initially identified in the blood and subsequently detected in the spleen, lymph nodes, and mucosal sites containing the tonsils (41). Thus, liposome vaccine delivery can potentially be utilized in humans to target DC subsets for the desired mucosal immune response. Example 2

實驗進行以研究脂質體尺寸對免疫原性的影響。Experiments were conducted to investigate the effect of liposome size on immunogenicity.

以熱阻斷(heat block)、1 mL注射器微擠製器(syringe mini-extruder)(Avanti Polar Lipids)進行脂質體擠製。將再水合溶液(rehydrated solution)透過50 nm、400 nm、1000 mm過濾器(Avanti Polar Lipids)通過11次,同時將熱阻斷設定在~40°C。脂質體尺寸測量以Nanosizer(動態光散射或DLS)執行。Liposomal extrusion was performed with a heat block, 1 mL syringe-mini-extruder (Avanti Polar Lipids). The rehydrated solution was passed through a 50 nm, 400 nm, 1000 mm filter (Avanti Polar Lipids) 11 times while the thermal block was set at ~40 °C. Liposomal size measurements were performed with Nanosizer (Dynamic Light Scattering or DLS).

如第12圖所示,可擠製J8-Lipo-DT以形成奈米至微米尺寸粒子。主要的粒徑具有窄分子-重量分布(narrow molecular-weight distribution)(< 0.3的低多分散性指數)。如第13圖所示的數據顯示J8-Lipo-DT尺寸不影響全身性IgG反應。然而,如第14圖所示,較大尺寸的脂質體誘發J8-專一性黏膜反應。範例 3 As shown in Figure 12, J8-Lipo-DT can be extruded to form nano-micron sized particles. The primary particle size has a narrow molecular-weight distribution (< low polydispersity index of 0.3). The data shown in Figure 13 shows that the J8-Lipo-DT size does not affect the systemic IgG response. However, as shown in Figure 14, larger size liposomes induce a J8-specific mucosal response. Example 3

實驗進行以研究冷凍乾燥的脂質體對免疫原性的影響。脂質體薄膜以含有10% 海藻糖的milliQ水再水合且接著凍乾。在冷凍乾燥1週、4週及7週之後,將J8-Lipo-DT粉末復原在PBS中。Experiments were conducted to investigate the effect of freeze-dried liposomes on immunogenicity. The liposome film was rehydrated with milliQ water containing 10% trehalose and then lyophilized. The J8-Lipo-DT powder was reconstituted in PBS after freeze drying for 1 week, 4 weeks, and 7 weeks.

第15圖顯示脂質體尺寸的尺寸結果以Nanosizer(動態光散射或DLS)測定。主要的粒徑具有窄分子-重量分布(< 0.3的低多分散性指數)。第16圖顯示復原、冷凍乾燥的J8-Lipo-DT脂質體不添加佐劑而誘發J8-專一性全身性反應。其與新鮮製作的J8-Lipo-DT具有相當的免疫反應。海藻糖對於冷凍乾燥的J8-Lipo-DT的免疫原性為重要的。第17圖證明復原、冷凍乾燥的J8-Lipo-DT脂質體誘發J8專一性黏膜反應。範例 4 Figure 15 shows the size of the liposome size results as measured by Nanosizer (Dynamic Light Scattering or DLS). The main particle size has a narrow molecular-weight distribution (<low polydispersity index of < 0.3). Figure 16 shows that the reconstituted, freeze-dried J8-Lipo-DT liposomes induced a J8-specific systemic response without the addition of an adjuvant. It has a comparable immune response to freshly made J8-Lipo-DT. Trehalose is important for the immunogenicity of freeze-dried J8-Lipo-DT. Figure 17 demonstrates that the reconstituted, freeze-dried J8-Lipo-DT liposomes induce a J8-specific mucosal response. Example 4

進一步實驗定義如第18圖示意性繪示含有先天免疫的醣脂活化劑,如海藻糖-6,6′-二山萮酸酯(TDB)及3D PHAD®的免疫原性脂質體的效力。TDB基於脂質體中的總磷脂質的%與脂質體進行製劑。使用9 mg的磷脂質且使用其20%比率的TDB (1.8 mg)。效力以免疫後的抗體效價測定(IgA及IgG抗體)且以GAS菌株進行皮膚激發實驗。數據顯示於第19圖。小鼠(每群組n=5)經30 µg的J8-Lipo-Dt+TDB經鼻內免疫。小鼠被初始(第0天)及加強兩次(第21天及第42天)施予。與J8-Lipo-DT相比,與TDB併用之結果在唾液及糞便樣本兩者的黏膜IgA反應顯著較高。該結果源於J8-Lipo-DT+TDB之冷凍乾燥粉末方案,其增進了脂質體的穩定性。Further experimental definitions, as shown in Figure 18, schematically illustrate the efficacy of immunogenic liposomes containing innate immune glycolipid activators such as trehalose-6,6'-dibehenate (TDB) and 3D PHAD® . TDB is formulated with liposomes based on % of total phospholipids in the liposomes. 9 mg of phospholipid was used and its 20% ratio of TDB (1.8 mg) was used. Efficacy was determined by antibody titer after immunization (IgA and IgG antibodies) and skin challenge experiments were performed with GAS strain. The data is shown in Figure 19. Mice (n=5 per group) were immunized intranasally via 30 μg of J8-Lipo-Dt+TDB. Mice were administered initially (Day 0) and boosted twice (Day 21 and Day 42). Compared with J8-Lipo-DT, the results of the combination with TDB were significantly higher in mucosal IgA responses in both saliva and fecal samples. This result is derived from the freeze-dried powder protocol of J8-Lipo-DT+TDB, which enhances the stability of the liposomes.

進一步實驗將定義含有例如脫氧膽酸鈉的膽鹽之免疫原性脂質體的效力。含有膽鹽脫氧膽酸鈉的脂質體示例示意性繪示於第20圖中。應被注意的是,免疫原性試劑(此例指J8胜肽)可被融合或接合至載體蛋白(例如:DT)或可呈現於脂質體表面上。當磷脂脫水以產生脂質體時,將膽鹽製劑在脂質體中(含有脂質體的膽鹽稱為「膽鹽體(bilosomes)」)。膽鹽體的製備如下。Further experiments will define the efficacy of immunogenic liposomes containing a bile salt such as sodium deoxycholate. An example of a liposome containing sodium bile salt deoxycholate is schematically illustrated in Figure 20. It should be noted that the immunogenic agent (this example refers to the J8 peptide) can be fused or conjugated to a carrier protein (eg, DT) or can be presented on the surface of the liposome. When the phospholipid is dehydrated to produce a liposome, the bile salt preparation is referred to as a liposome (the bile salt containing the liposome is referred to as "bilosomes"). The preparation of bile salts is as follows.

具有150μg的以棕櫚酸部分修飾的J8的圓底燒瓶中,將山梨醇酐三硬脂酸酯(Sorbitan tristearate)(150 mmol)、膽固醇及雙十六烷基磷酸鹽(DCP)以莫耳比7:3:1溶解在10 mL三氯甲烷中。溶劑藉由旋轉蒸發器移除,以形成在原底燒瓶的玻璃表面上的薄膜。接著,將該薄膜以含有100 mg的脫氧膽酸鈉(膽鹽)的3.5 mL PBS(pH 7.4)與150 μg的白喉類毒素進行水合。範例 5 A round bottom flask with 150 μg of J8 modified with palmitic acid, sorbitan tristearate (150 mmol), cholesterol and dihexadecyl phosphate (DCP) in molar ratio 7:3:1 was dissolved in 10 mL of chloroform. The solvent was removed by a rotary evaporator to form a film on the glass surface of the original flask. Next, the film was hydrated with 150 μg of diphtheria toxoid in 3.5 mL of PBS (pH 7.4) containing 100 mg of sodium deoxycholate (bile salt). Example 5

脂囊泡對於A型流行性感冒、B型流行性感冒及A群鏈球菌之免疫原性藉由抗原專一性唾液IgA效價測定。第21A圖及第21B圖繪示免疫原性試劑之示意圖,該免疫原性試劑包含具有自A型流行性感冒、B型流行性感冒及A群鏈球菌的每一個的各自免疫原之單一脂囊泡。第22圖所示之結果呈現包含來自A型流行性感冒、B型流行性感冒及A群鏈球菌的每一個之各自免疫原之脂囊泡(如第21A圖所示)誘導針對小鼠的上述各病原之免疫。如第21B圖示意性繪示,進一步研究將探究包含醣脂佐劑的免疫原性試劑的免疫原性。The immunogenicity of lipid vesicles for influenza A, influenza B, and group A streptococci is determined by antigen-specific salivary IgA titers. 21A and 21B are schematic diagrams showing an immunogenic reagent comprising a single lipid having respective immunogens from each of influenza A, influenza B, and group A streptococci. Vesicles. The results shown in Fig. 22 show that lipid vesicles (as shown in Fig. 21A) containing the respective immunogens from each of influenza A, influenza B, and group A streptococcus are induced against mice. Immunization of each of the above pathogens. As schematically illustrated in Figure 21B, further studies will explore the immunogenicity of immunogenic agents comprising glycolipid adjuvants.

結論,此成果為首次報告脂質體類的黏膜活化GAS疫苗候選。我們的發現在GAS疫苗的發展為克服目前障礙的重要步驟,以預防黏膜位置的感染及群落傳染。該研究提供脂質體微粒傳遞系統可如何共同地誘發期望的黏膜免疫反應以對抗GAS感染之重要機制性觀點。本文所載之策略相關於針對其他病原有機體之子單元黏膜疫苗的發展。非限制例包含前述之流行性感冒病毒、鼻病毒及鉤蟲。在部分實施例中,單一脂囊泡可包含針對複數個不同病原之免疫原。In conclusion, this result is the first report of a mucosal activated GAS vaccine candidate for liposomes. Our findings in the development of GAS vaccines are important steps to overcome current barriers to prevent infection and community infection at mucosal sites. This study provides an important institutional perspective on how liposome microparticle delivery systems can collectively induce a desired mucosal immune response against GAS infection. The strategies contained herein are related to the development of subunit mucosal vaccines against other pathogenic organisms. Non-limiting examples include the aforementioned influenza virus, rhinovirus, and hookworm. In some embodiments, a single lipid vesicle can comprise an immunogen against a plurality of different pathogens.

在此說明書全文中,其目的為描述本發明之較佳實施例,而非將本發明限制於任一實施例或特徵的特定集合。在不脫離本發明的廣泛精神與範疇下,可對描述及本文所示的實施例進行各種的改變及修改。Throughout the specification, the present invention is intended to describe the preferred embodiments of the invention, and not to limit the invention to any particular embodiment. Various changes and modifications can be made to the described embodiments and the embodiments described herein without departing from the scope of the invention.

本文所提及的所有計算機程式、演算、專利及科學文獻,其全部內容於此併入作為參考。參考資料 All computer programs, algorithms, patents, and scientific literature referred to herein are hereby incorporated by reference. Reference material

1、Baker A (2012),A群鏈球菌感染之主要照護:案例報告。英國期刊的通常技術:英國皇家全科醫學院的期刊62(600):388-389。(Baker A (2012) Group A streptococcal infections in primary care: a case report.The British journal of general practice : the journal of the Royal College of General Practitioners 62(600):388-389.)1, Baker A (2012), the main care of group A streptococcal infection: case report. The usual technique of British journals: Journal of the Royal College of General Practitioners 62 (600): 388-389. (Baker A (2012) Group A streptococcal infections in primary care: a case report. The British journal of general practice : the journal of the Royal College of General Practitioners 62 (600): 388-389.)

2、Zuhlke LJ及Steer AC (2013),風濕性心臟病的全球負擔之預估。全球心臟,8(3):189-195。(Zuhlke LJ & Steer AC (2013) Estimates of the global burden of rheumatic heart disease.Global heart 8(3):189-195.)2. Zuhlke LJ and Steer AC (2013), an estimate of the global burden of rheumatic heart disease. Global Heart, 8 (3): 189-195. (Zuhlke LJ & Steer AC (2013) Estimates of the global burden of rheumatic heart disease. Global heart 8(3): 189-195.)

3、Nkomo VT (2007),在非洲的心臟瓣膜疾病及感染性心內膜炎之流行病學和預防。心臟(英國心臟協會) 93(12):1510-1519。( Nkomo VT (2007) Epidemiology and prevention of valvular heart diseases and infective endocarditis in Africa.Heart (British Cardiac Society) 93(12):1510-1519.)3. Nkomo VT (2007), Epidemiology and prevention of heart valve disease and infective endocarditis in Africa. Heart (British Heart Association) , 93(12): 1510-1919. (Nkomo VT (2007) Epidemiology and prevention of valvular heart diseases and infective endocarditis in Africa. Heart (British Cardiac Society) 93(12): 1510-1519.)

4、Pandey M等人(2015),合成M蛋白胜肽與CXC趨化蛋白酶的協同作用以誘發對抗致病性鏈球菌膿皮症(virulent streptococcal pyoderma)及菌血症的疫苗媒介(vaccine-mediated)保護。免疫學期刊(Baltimore, Md. : 1950) 194(12):5915-5925。( Pandey M, et al. (2015) A synthetic M protein peptide synergizes with a CXC chemokine protease to induce vaccine-mediated protection against virulent streptococcal pyoderma and bacteremia.Journal of immunology (Baltimore, Md. : 1950) 194(12):5915-5925.)4. Pandey M et al. (2015), Synergistic action of synthetic M protein peptides and CXC chemotactic proteases to induce vaccine vectors against pathogenic streptococcal pyoderma and bacteremia (vaccine-mediated) )protection. Journal of Immunology (Baltimore, Md.: 1950) 194(12): 5915-5925. ( Pandey M , et al. (2015) A synthetic M protein peptide synergizes with a CXC chemokine protease to induce vaccine-mediated protection against virulent streptococcal pyoderma and bacteremia. Journal of immunology (Baltimore, Md. : 1950) 194(12): 5915-5925.)

5、Steer AC;Dale JB及Carapetis JR (2013),對A群鏈球菌疫苗的發展。小兒科傳染病期刊 32(2):180-182。(Steer AC, Dale JB, & Carapetis JR (2013) Progress toward a global group a streptococcal vaccine.The Pediatric infectious disease journal 32(2):180-182.)5. Steer AC; Dale JB and Carapetis JR (2013), development of Group A Streptococcus vaccine. Journal of Pediatric Infectious Diseases , 32(2): 180-182. (Steer AC, Dale JB, & Carapetis JR (2013) Progress toward a global group a streptococcal vaccine. The Pediatric infectious disease journal 32(2): 180-182.)

6、Metzgar D及Zampolli A (2011),A群鏈球菌的M蛋白為關鍵致病因子及臨床相關菌株識別指標。致病性,2(5):402-412。(Metzgar D & Zampolli A (2011) The M protein of group A Streptococcus is a key virulence factor and a clinically relevant strain identification marker.Virulence 2(5):402-412.)6. Metzgar D and Zampolli A (2011), M protein of group A streptococcus is a key virulence factor and a clinically relevant strain identification index. Pathogenicity, 2 (5): 402-412. (Metzgar D & Zampolli A (2011) The M protein of group A Streptococcus is a key virulence factor and a clinically relevant strain identification marker. Virulence 2(5): 402-412.)

7、Georgousakis MM;McMillan DJ;Batzloff MR及Sriprakash KS (2009)展望未來:對抗A群鏈球菌的黏膜疫苗。疫苗的專家回顧 8(6):747-760。(Georgousakis MM, McMillan DJ, Batzloff MR, & Sriprakash KS (2009) Moving forward: a mucosal vaccine against group A streptococcus.Expert review of vaccines 8(6):747-760.)7. Georgousakis MM; McMillan DJ; Batzloff MR and Sriprakash KS (2009) Looking to the Future: Mucosal Vaccine against Group A Streptococcus. Review of vaccine experts , 8 (6): 747-760. (Georgousakis MM, McMillan DJ, Batzloff MR, & Sriprakash KS (2009) Moving forward: a mucosal vaccine against group A streptococcus. Expert review of vaccines 8(6): 747-760.)

8、Gamba MA等人(1997),重大疾病的家族性傳遞--產生的A群鏈球菌殖株:案例報告及回顧。美國的傳染病學會的官方出版物 24(6):1118-1121。(Gamba MA, et al. (1997) Familial transmission of a serious disease--producing group A streptococcus clone: case reports and review.Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 24(6):1118-1121.)8. Gamba MA et al. (1997), Familial transmission of major diseases - Generation of Group A Streptococcal strains: case report and review. Official Publication of the American Society of Infectious Diseases , 24(6): 1118-1121. (Gamba MA , et al. (1997) Familial transmission of a serious disease--producing group A streptococcus clone: case reports and review. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 24(6):1118- 1121.)

9、Langermann S;Palaszynski S;Sadziene A;Stover CK及Koenig S (1994),藉由BCG載體表現博氏疏螺旋體(Borrelia burgdorferi)的外表面蛋白A誘發全身性及黏膜免疫。Nature 372(6506):552-555。(Langermann S, Palaszynski S, Sadziene A, Stover CK, & Koenig S (1994) Systemic and mucosal immunity induced by BCG vector expressing outer-surface protein A of Borrelia burgdorferi.Nature 372(6506):552-555.)9. Langermann S; Palaszynski S; Sadziene A; Stover CK and Koenig S (1994), systemic and mucosal immunity induced by the BCG vector expressing the outer surface protein A of Borrelia burgdorferi. Nature 372 (6506): 552-555. (Langermann S, Palaszynski S, Sadziene A, Stover CK, & Koenig S (1994) Systemic and mucosal immunity induced by BCG vector expressing outer-surface protein A of Borrelia burgdorferi. Nature 372 (6506): 552-555.)

10、Wu HY及Russell MW (1998),藉由利用重組霍亂(cholera)毒素B次單元作為佐劑以誘導黏膜及全身性免疫。疫苗, 16(2-3):286-292。(Wu HY & Russell MW (1998) Induction of mucosal and systemic immune responses by intranasal immunization using recombinant cholera toxin B subunit as an adjuvant.Vaccine 16(2-3):286-292.)10. Wu HY and Russell MW (1998) induce mucosal and systemic immunity by using recombinant cholera toxin B subunits as adjuvants. Vaccine, 16(2-3): 286-292. (Wu HY & Russell MW (1998) Induction of mucosal and systemic immune responses by intranasal immunization using recombinant cholera toxin B subunit as an adjuvant. Vaccine 16(2-3): 286-292.)

11、Baldridge JR;Yorgensen Y;Ward JR及Ulrich JT (2000) 在鼻內施予後單磷醯A 脂促進對疫苗抗原的黏膜及全身性免疫。疫苗, 18(22):2416-2425。(Baldridge JR, Yorgensen Y, Ward JR, & Ulrich JT (2000) Monophosphoryl lipid A enhances mucosal and systemic immunity to vaccine antigens following intranasal administration.Vaccine 18(22):2416-2425.)11. Baldridge JR; Yorgensen Y; Ward JR and Ulrich JT (2000) After intranasal administration, monophosphorus A lipid promotes mucosal and systemic immunity to vaccine antigens. Vaccine, 18(22): 2416-2425. (Baldridge JR, Yorgensen Y, Ward JR, & Ulrich JT (2000) Monophosphoryl lipid A enhances mucosal and systemic immunity to vaccine antigens following intranasal administration. Vaccine 18(22):2416-2425.)

12、Hayman WA等人(1997) 自A群鏈球菌的M蛋白的保留區域(conserved region)定位在胜肽疫苗候選中的最小小鼠T細胞及B細胞表位。國際免疫學,9(11):1723-1733。(Hayman WA, et al. (1997) Mapping the minimal murine T cell and B cell epitopes within a peptide vaccine candidate from the conserved region of the M protein of group A streptococcus.International immunology 9(11):1723-1733.)12. Hayman WA et al. (1997) The smallest mouse T cell and B cell epitopes localized to peptide vaccine candidates from the conserved region of the M protein of Group A Streptococcus. International Immunology, 9 (11): 1723-1733. (Hayman WA , et al. (1997) Mapping the minimal murine T cell and B cell epitopes within a peptide vaccine candidate from the conserved region of the M protein of group A streptococcus. International immunology 9(11): 1723-1733.)

13、Batzloff MR, et al. (2003) 藉由以J8-白喉類毒素免疫作用對抗A群鏈球菌之保護:J8-及白喉類毒素-專一性抗體對保護的貢獻。傳染性疾病期刊,187(10):1598-1608。(Batzloff MR, et al. (2003) Protection against group A streptococcus by immunization with J8-diphtheria toxoid: contribution of J8- and diphtheria toxoid-specific antibodies to protection.The Journal of infectious diseases 187(10):1598-1608.)13. Batzloff MR , et al. (2003) Against the protection of group A streptococci by J8-diphtheria toxoid immunization: the contribution of J8- and diphtheria toxoid-specific antibodies to protection. Journal of Infectious Diseases, 187(10): 1598-1608. (Batzloff MR , et al. (2003) Protection against group A streptococcus by immunization with J8-diphtheria toxoid: contribution of J8- and diphtheria toxoid-specific antibodies to protection. The Journal of infectious diseases 187(10): 1598-1608. )

14、Bessen D及Fischetti VA (1990),合成胜肽疫苗對具有共用C重複區域表位的異種M血清型的預防以對抗由I型A群鏈球菌對的黏膜拓殖。免疫學期刊(Baltimore, Md. : 1950) 145(4):1251-1256。(Bessen D & Fischetti VA (1990) Synthetic peptide vaccine against mucosal colonization by group A streptococci. I. Protection against a heterologous M serotype with shared C repeat region epitopes.Journal of immunology (Baltimore, Md. : 1950) 145(4):1251-1256.)14. Bessen D and Fischetti VA (1990), Synthetic peptide vaccines for the prevention of mucosal colonization by a heterologous M serotype with a shared C repeat region epitope against a pair I streptococcus group A. Journal of Immunology (Baltimore, Md.: 1950) 145(4): 1251-1256. (Bessen D & Fischetti VA (1990) Synthetic peptide vaccine against mucosal colonization by group A streptococci. I. Protection against a heterologous M serotype with shared C repeat region epitopes. Journal of immunology (Baltimore, Md. : 1950) 145(4) :1251-1256.)

15、Bessen D 及Fischetti VA (1988),藉由對應於由A群鏈球菌的黏膜拓殖上的M蛋白的保留表位的合成胜肽的鼻內免疫的影響。感染及免疫,56(10):2666-2672。(Bessen D & Fischetti VA (1988) Influence of intranasal immunization with synthetic peptides corresponding to conserved epitopes of M protein on mucosal colonization by group A streptococci.Infection and immunity 56(10):2666-2672.)15. Bessen D and Fischetti VA (1988), by the effect of intranasal immunization of synthetic peptides corresponding to the retained epitope of the M protein colonized by the mucosa of group A Streptococcus. Infection and Immunity, 56 (10): 2666-2672. (Bessen D & Fischetti VA (1988) Influence of intranasal immunization with synthetic peptides corresponding to conserved epitopes of M protein on mucosal colonization by group A streptococci. Infection and immunity 56(10): 2666-2672.)

16、Batzloff MR等人(2005),對於抗疾病的發展,鼻內疫苗對A群鏈球菌的阻斷傳播。感染疾病期刊,192(8):1450-1455。(Batzloff MR, et al. (2005) Toward the development of an antidisease, transmission-blocking intranasal vaccine for group a streptococcus.The Journal of infectious diseases 192(8):1450-1455.)16. Batzloff MR et al. (2005), for the development of anti-disease, the intranasal vaccine blocked the transmission of group A streptococci. Journal of Infectious Diseases, 192(8): 1450-1455. (Batzloff MR , et al. (2005) Toward the development of an antidisease, transmission-blocking intranasal vaccine for group a streptococcus. The Journal of infectious diseases 192(8): 1450-1455.)

17、Zeng L等人(2015),48/80化合物作為有效黏膜佐劑,以用於年輕小鼠的抗肺炎鏈球菌感染的疫苗接種。疫苗,33(8):1008-1016(Zeng L, et al. (2015) Compound 48/80 acts as a potent mucosal adjuvant for vaccination against Streptococcus pneumoniae infection in young mice.Vaccine 33(8):1008-1016.)17. Zeng L et al. (2015), 48/80 compound as an effective mucosal adjuvant for vaccination against Streptococcus pneumoniae infection in young mice. Vaccine, 33(8): 1008-1016 (Zeng L , et al. (2015) Compound 48/67 acts as a potent mucosal adjuvant for vaccination against Streptococcus pneumoniae infection in young mice. Vaccine 33(8): 1008-1016. )

18、Zaman M;Chandrudu S及Toth I (2013),對疫苗的鼻內傳遞之策略。藥物傳遞及轉譯研究,3(1):100-109。(Zaman M, Chandrudu S, & Toth I (2013) Strategies for intranasal delivery of vaccines.Drug delivery and translational research 3(1):100-109.)18. Zaman M; Chandrudu S and Toth I (2013), strategies for intranasal delivery of vaccines. Drug Delivery and Translation Studies, 3(1): 100-109. (Zaman M, Chandrudu S, & Toth I (2013) Strategies for intranasal delivery of vaccines. Drug delivery and translational research 3(1): 100-109.)

19、Giddam AK;Zaman M;Skwarczynski M及Toth I (2012),用於疫苗候選的脂質體類傳遞系統:建構有效的製劑。奈米藥物(倫敦,英國) 7(12):1877-1893。(Giddam AK, Zaman M, Skwarczynski M, & Toth I (2012) Liposome-based delivery system for vaccine candidates: constructing an effective formulation.Nanomedicine (London, England) 7(12):1877-1893.)19. Giddam AK; Zaman M; Skwarczynski M and Toth I (2012), a liposome-like delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine (London, UK) 7(12): 1877-1893. (Giddam AK, Zaman M, Skwarczynski M, & Toth I (2012) Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomedicine (London, England) 7(12):1877-1893.

20、Childers NK等人(1999),在免疫反應的誘導上以單獨轉糖鏈球菌或合併脂質體對鼻免疫的影響的臨床對照研究。感染及免疫,67(2):618-623。(Childers NK, et al. (1999) A controlled clinical study of the effect of nasal immunization with a Streptococcus mutans antigen alone or incorporated into liposomes on induction of immune responses.Infection and immunity 67(2):618-623.)20. Childers NK et al. (1999), a clinical controlled study of the effects of S. subtilis alone or combined with liposomes on nasal immunity in the induction of immune responses. Infection and Immunity, 67(2): 618-623. (Childers NK , et al. (1999) A controlled clinical study of the effect of nasal immunization with a Streptococcus mutans antigen alone or incorporated into liposomes in induction of immune responses. Infection and immunity 67(2): 618-623.)

21、Childers NK;Tong G及Michalek SM (1997),以含有轉糖鏈球菌抗原的脂質體的人類的鼻免疫。口腔微生物學和免疫學,12(6):329-335。(Childers NK, Tong G, & Michalek SM (1997) Nasal immunization of humans with dehydrated liposomes containing Streptococcus mutans antigen.Oral microbiology and immunology 12(6):329-335.)21. Childers NK; Tong G and Michalek SM (1997), nasal immunization of humans with liposomes containing S. mutans antigens. Oral Microbiology and Immunology, 12(6): 329-335. (Childers NK, Tong G, & Michalek SM (1997) Nasal immunization of humans with dehydrated liposomes containing Streptococcus mutans antigen. Oral microbiology and immunology 12(6): 329-335.)

22、Zaman M;Good MF及Toth I (2013),奈米疫苗及其作用模式。方法,(San Diego, Calif.) 60(3):226-231。(Zaman M, Good MF, & Toth I (2013) Nanovaccines and their mode of action.Methods (San Diego, Calif.) 60(3):226-231.)22. Zaman M; Good MF and Toth I (2013), nano vaccine and its mode of action. Method, (San Diego, Calif.) , 60(3): 226-231. (Zaman M, Good MF, & Toth I (2013) Nanovaccines and their mode of action. Methods (San Diego, Calif.) 60(3): 226-231.)

23、Alving CR (1991),脂質體作為抗原及佐劑的載體。免疫學方法期刊,140(1):1-13。(Alving CR (1991) Liposomes as carriers of antigens and adjuvants.Journal of immunological methods 140(1):1-13.)23. Alving CR (1991), a liposome as a carrier for antigens and adjuvants. Journal of Immunology Methods, 140(1): 1-13. (Alving CR (1991) Liposomes as carriers of antigens and adjuvants. Journal of immunological methods 140(1): 1-13.)

24、Cleary PP;Zhang Y及Park HS (2004),鼻相關的淋巴組織及M細胞,對持續性鏈球菌感染的窗口。印度醫學研究期刊,119 Suppl:57-60。(Cleary PP, Zhang Y, & Park HS (2004) Nasal associated lymphoid tissue & M cells, a window to persistent streptococcal infections.The Indian journal of medical research 119 Suppl:57-60.)24, Cleary PP; Zhang Y and Park HS (2004), nasal related lymphoid tissue and M cells, a window against persistent streptococcal infection. Indian Journal of Medical Research, 119 Suppl: 57-60. (Cleary PP, Zhang Y, & Park HS (2004) Nasal associated lymphoid tissue & M cells, a window to persistent streptococcal infections. The Indian journal of medical research 119 Suppl: 57-60.)

25、Park HS及Cleary PP (2005),以鏈球菌表面蛋白C5a胜肽的主動與被動鼻內免疫預防人類扁桃腺的功能性同源之與鼠類鼻黏膜相關的淋巴組織的感染。感染及免疫,73(12):7878-7886。(Park HS & Cleary PP (2005) Active and passive intranasal immunizations with streptococcal surface protein C5a peptidase prevent infection of murine nasal mucosa-associated lymphoid tissue, a functional homologue of human tonsils.Infection and immunity 73(12):7878-7886.)25. Park HS and Cleary PP (2005), active and passive intranasal immunization with the streptococcal surface protein C5a peptide to prevent the functional homology of the human tonsils and the infection of lymphoid tissues associated with murine nasal mucosa. Infection and Immunity, 73(12): 7878-7886. (Park HS & Cleary PP (2005) Active and passive intranasal immunizations with streptococcal surface protein C5a peptidase prevent infection of murine nasal mucosa-associated lymphoid tissue, a functional homologue of human tonsils. Infection and immunity 73(12):7878-7886. )

26、White WI等人(1995),抗體及細胞毒性T淋巴細胞對與單一脂質體相關的胜肽抗原的反應。疫苗,13(12):1111-1122。(White WI, et al. (1995) Antibody and cytotoxic T-lymphocyte responses to a single liposome-associated peptide antigen.Vaccine 13(12):1111-1122.)26. White WI et al. (1995), Reaction of antibodies and cytotoxic T lymphocytes to a peptide antigen associated with a single liposome. Vaccine, 13(12): 1111-1122. (White WI , et al. (1995) Antibody and cytotoxic T-lymphocyte responses to a single liposome-associated peptide antigen. Vaccine 13(12):1111-1122.)

27、Beagley KW等人(1989),介白素及IgA合成。人類及小鼠介白素6誘導IgA定型B細胞中的高IgA分泌率。實驗醫學期刊,169(6):2133-2148。(Beagley KW, et al. (1989) Interleukins and IgA synthesis. Human and murine interleukin 6 induce high rate IgA secretion in IgA-committed B cells.The Journal of experimental medicine 169(6):2133-2148.)27. Beagley KW et al. (1989), interleukin and IgA synthesis. Human and mouse interleukin-6 induce high IgA secretion in IgA committed B cells. Journal of Experimental Medicine, 169(6): 2133-2148. (Beagley KW , et al. (1989) Interleukins and IgA synthesis. Human and murine interleukin 6 induce high rate IgA secretion in IgA-committed B cells. The Journal of experimental medicine 169(6): 2133-2148.)

28、Loof TG;Goldmann O;Gessner A;Herwald H及Medina E (2010),在缺乏骨髓分化因子88的小鼠中對化膿性鏈球菌的異常發炎反應。美國病理學期刊,176(2):754-763。(Loof TG, Goldmann O, Gessner A, Herwald H, & Medina E (2010) Aberrant inflammatory response to Streptococcus pyogenes in mice lacking myeloid differentiation factor 88.The American journal of pathology 176(2):754-763.)28. Loof TG; Goldmann O; Gessner A; Herwald H and Medina E (2010), an abnormal inflammatory response to S. pyogenes in mice lacking myeloid differentiation factor 88. American Journal of Pathology, 176(2): 754-763. (Loof TG, Goldmann O, Gessner A, Herwald H, & Medina E (2010) Aberrant inflammatory response to Streptococcus pyogenes in mice lacking myeloid differentiation factor 88. The American journal of pathology 176(2): 754-763.)

29、Verdijk RM等人(1999),多核糖腺苷酸:多核糖胞苷酸(poly(I:C))誘發功能活化人類樹突細胞的穩定成熟。免疫學期刊(Baltimore, Md. : 1950) 163(1):57-61。(Verdijk RM, et al. (1999) Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells.Journal of immunology (Baltimore, Md. : 1950) 163(1):57-61.)29. Verdijk RM et al. (1999), Polyriboadenosine: Polyribonucleotide (poly(I:C)) induces functional activation of stable maturation of human dendritic cells. Journal of Immunology (Baltimore, Md.: 1950) 163(1): 57-61. (Verdijk RM , et al. (1999) Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells. Journal of immunology (Baltimore, Md. : 1950) 163(1): 57-61 .)

30、Brandt ER等人(1999),IgA抗體對在澳大利亞原始特有群落之A群鏈球菌的M蛋白中的保留表位的專一性的功能性分析。國際免疫學,11(4):569-576。(Brandt ER, et al. (1999) Functional analysis of IgA antibodies specific for a conserved epitope within the M protein of group A streptococci from Australian Aboriginal endemic communities.International immunology 11(4):569-576.)30. Brandt ER et al. (1999), Functional analysis of the specificity of IgA antibodies to the retained epitopes in the M protein of Group A Streptococcus in the original Australian endemic community. International Immunology, 11(4): 569-576. (Brandt ER , et al. (1999) Functional analysis of IgA antibodies specific for a conserved epitope within the M protein of group A streptococci from Australian Aboriginal endemic communities. International immunology 11(4): 569-576.)

31、Lyke KE等人(2004),在具有嚴重惡性瘧疾及匹配複雜性瘧疾或健康控制組的馬里兒童的促發炎細胞介素介白素-1β (IL-1β)、IL-6、IL-8、IL-10、腫瘤壞死因子α及IL-12(p70)的血清量。感染及免疫72(10):5630-5637。(Lyke KE, et al. (2004) Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls.Infection and immunity 72(10):5630-5637.)31. Lyke KE et al. (2004), the proinflammatory mediators of interleukin-1β (IL-1β), IL-6, IL- in children with severe falciparum malaria and matching complex malaria or health control groups. 8. Serum levels of IL-10, tumor necrosis factor alpha and IL-12 (p70). Infection and Immunity 72 (10): 5630-5637. (Lyke KE , et al. (2004) Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12 (p70) In Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infection and immunity 72(10):5630-5637.)

32、Samarasinghe R等人(2006),在類toll受體訊號之後在樹突細胞中的抗發炎細胞介素IL10的誘導。干擾素及細胞介素研究期刊:干擾素及細胞介素研究的國際協會官方刊物,26(12):893-900。(Samarasinghe R, et al. (2006) Induction of an anti-inflammatory cytokine, IL-10, in dendritic cells after toll-like receptor signaling.Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 26(12):893-900.)32. Samarasinghe R et al. (2006), induction of anti-inflammatory interleukin IL10 in dendritic cells following a toll-like receptor signal. Journal of Interferon and Interleukin Research: Official Journal of International Association of Interferon and Interleukin Studies, 26(12): 893-900. (Samarasinghe R , et al. (2006) Induction of an anti-inflammatory cytokine, IL-10, in dendritic cells after toll-like receptor signaling. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 26(12): 893-900.)

33、Dal Monte P及Szoka FC, Jr. (1989),脂質體封裝在體外的抗原呈現的影響。藉由腹腔巨噬細胞及B細胞腫瘤呈現的比較。免疫學期刊(Baltimore, Md. : 1950) 142(5):1437-1443。(Dal Monte P & Szoka FC, Jr. (1989) Effect of liposome encapsulation on antigen presentation in vitro. Comparison of presentation by peritoneal macrophages and B cell tumors.Journal of immunology (Baltimore, Md. : 1950) 142(5):1437-1443.)33. Dal Monte P and Szoka FC, Jr. (1989), Effects of liposome encapsulation on antigen presentation in vitro. A comparison presented by peritoneal macrophages and B cell tumors. Journal of Immunology (Baltimore, Md.: 1950) 142(5): 1437-1443. (Dal Monte P & Szoka FC, Jr. (1989) Effect of liposome encapsulation on antigen presentation in vitro. Comparison of presentation by peritoneal macrophages and B cell tumors. Journal of immunology (Baltimore, Md. : 1950) 142(5): 1437-1443.)

34、Harding CV;Collins DS;Slot JW;Geuze HJ及Unanue ER (1991),脂質體封裝的抗原在溶酶體中的處理、回收及對T細胞的表現。細胞,64(2):393-401。(Harding CV, Collins DS, Slot JW, Geuze HJ, & Unanue ER (1991) Liposome-encapsulated antigens are processed in lysosomes, recycled, and presented to T cells.Cell 64(2):393-401.)34, Harding CV; Collins DS; Slot JW; Geuze HJ and Unanue ER (1991), liposome-encapsulated antigens in lysosomes, treatment and expression of T cells. Cell, 64(2): 393-401. (Harding CV, Collins DS, Slot JW, Geuze HJ, & Unanue ER (1991) Liposome-encapsulated antigens are processed in lysosomes, recycled, and presented to T cells. Cell 64(2): 393-401.)

35、Ninomiya A;Ogasawara K;Kajino K;Takada A及Kida H (2002),在小鼠中與抗CD40抗體一起封裝在脂質體中的合成胜肽疫苗的鼻內施予誘發抗流行性感冒A型病毒的保護免疫。疫苗,20(25-26):3123-3129。(Ninomiya A, Ogasawara K, Kajino K, Takada A, & Kida H (2002) Intranasal administration of a synthetic peptide vaccine encapsulated in liposome together with an anti-CD40 antibody induces protective immunity against influenza A virus in mice.Vaccine 20(25-26):3123-3129.)35, Ninomiya A; Ogasawara K; Kajino K; Takada A and Kida H (2002), intranasal administration of a synthetic peptide vaccine encapsulated in liposomes with anti-CD40 antibodies in mice to induce anti-influenza A The protection of the virus is immune. Vaccine, 20 (25-26): 3123-3129. (Ninomiya A, Ogasawara K, Kajino K, Takada A, & Kida H (2002) Intranasal administration of a synthetic peptide vaccine encapsulated in liposome together with an anti-CD40 antibody induces protective immunity against influenza A virus in mice. Vaccine 20 (25 -26): 3123-3129.)

36、Schwendener RA (2014),脂質體作為疫苗傳遞系統:近年進展的回顧。疫苗的治療進展,2(6):159-182。(Schwendener RA (2014) Liposomes as vaccine delivery systems: a review of the recent advances.Therapeutic advances in vaccines 2(6):159-182.)36. Schwendener RA (2014), Liposomes as a vaccine delivery system: a review of recent advances. Progress in the treatment of vaccines, 2 (6): 159-182. (Schwendener RA (2014) Liposomes as vaccine delivery systems: a review of the recent advances. Therapeutic advances in vaccines 2(6): 159-182.)

37、Stevceva L及Ferrari MG (2005),黏膜佐劑。目前醫藥設計,11(6):801-811。(Stevceva L & Ferrari MG (2005) Mucosal adjuvants.Current pharmaceutical design 11(6):801-811.)37, Stevceva L and Ferrari MG (2005), mucosal adjuvant. Current medical design, 11 (6): 801-811. (Stevceva L & Ferrari MG (2005) Mucosal adjuvants. Current pharmaceutical design 11(6): 801-811.)

38、Gamvrellis A等人(2004),促進抗體進入樹突細胞的疫苗。免疫學及細胞生物學,82(5):506-516。(Gamvrellis A, et al. (2004) Vaccines that facilitate antigen entry into dendritic cells.Immunology and cell biology 82(5):506-516.)38. Gamvrellis A et al. (2004), a vaccine that promotes entry of antibodies into dendritic cells. Immunology and Cell Biology, 82(5): 506-516. (Gamvrellis A , et al. (2004) Vaccines that facilitate antigen entry into dendritic cells. Immunology and cell biology 82(5): 506-516.)

39、Klechevsky E (2015),人類樹突細胞的功能多樣性。實驗醫藥及生物學的進展,850:43-54。(Klechevsky E (2015) Functional Diversity of Human Dendritic Cells.Advances in experimental medicine and biology 850:43-54.)39. Klechevsky E (2015), Functional diversity of human dendritic cells. Advances in Experimental Medicine and Biology, 850: 43-54. (Klechevsky E (2015) Functional Diversity of Human Dendritic Cells. Advances in experimental medicine and biology 850:43-54.)

40、Tel J等人(2010),人類漿細胞樣樹突細胞吞噬、處理及呈現外源性顆粒抗原。免疫學期刊(Baltimore, Md. : 1950) 184(8):4276-4283。(Tel J, et al. (2010) Human plasmacytoid dendritic cells phagocytose, process, and present exogenous particulate antigen.Journal of immunology (Baltimore, Md. : 1950) 184(8):4276-4283.)40. Tel J et al. (2010), human plasmacytoid dendritic cells phagocytose, treat and present exogenous particle antigens. Journal of Immunology (Baltimore, Md.: 1950) 184(8): 4276-4283. (Tel J , et al. (2010) Human plasmacytoid dendritic cells phagocytose, process, and present exogenous particulate antigen. Journal of immunology (Baltimore, Md. : 1950) 184(8): 4276-4283.)

41、Dutertre CA;Wang LF及Ginhoux F (2014),比對跨物種的真正的樹突細胞族群。細胞免疫學,291(1-2):3-10。(Dutertre CA, Wang LF, & Ginhoux F (2014) Aligning bona fide dendritic cell populations across species.Cellular immunology 291(1-2):3-10.)41. Dutertre CA; Wang LF and Ginhoux F (2014), comparing true dendritic cell populations across species. Cellular Immunology, 291 (1-2): 3-10. (Dutertre CA, Wang LF, & Ginhoux F (2014) Aligning bona fide dendritic cell populations across species. Cellular immunology 291(1-2): 3-10.)

42、Szoka F, Jr.及Papahadjopoulos D (1980) ,脂囊泡(脂質體)的製備的比較特性及方法。生物物理學及生物工程學的年度回顧,9:467-508。(Szoka F, Jr. & Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes).Annual review of biophysics and bioengineering 9:467-508.)42. Szoka F, Jr. and Papahadjopoulos D (1980), Comparative characteristics and methods for preparation of lipid vesicles (liposomes). Annual Review of Biophysics and Bioengineering, 9: 467-508. (Szoka F, Jr. & Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annual review of biophysics and bioengineering 9:467-508.)

43、Zaman M等人(2014),A群鏈球菌疫苗候選:表位對尺寸、抗原呈現細胞交互作用及免疫原性的貢獻。奈米醫學(倫敦,英國),9(17):2613-2624。(Zaman M, et al. (2014) Group A Streptococcal vaccine candidate: contribution of epitope to size, antigen presenting cell interaction and immunogenicity.Nanomedicine (London, England) 9(17):2613-2624.)43. Zaman M et al. (2014), Group A Streptococcal Vaccine Candidates: Contribution of epitopes to size, antigen-presenting cell interaction, and immunogenicity. Nanomedicine (London, UK), 9(17): 2613-2624. (Zaman M , et al. (2014) Group A Streptococcal vaccine candidate: contribution of epitope to size, antigen presenting cell interaction and immunogenicity. Nanomedicine (London, England) 9(17):2613-2624.)

44、Olive C;Clair T;Yarwood P及Good MF (2002),藉由以含有保留M蛋白B細胞表位及缺失T細胞自身表位的胜肽疫苗的鼻內免疫而保護小鼠免於A群鏈球菌感染。疫苗,20(21-22):2816-2825。(Olive C, Clair T, Yarwood P, & Good MF (2002) Protection of mice from group A streptococcal infection by intranasal immunisation with a peptide vaccine that contains a conserved M protein B cell epitope and lacks a T cell autoepitope.Vaccine 20(21-22):2816-2825.)44. Olive C; Clair T; Yarwood P and Good MF (2002), protecting mice from A by intranasal immunization with a peptide vaccine containing a M protein B cell epitope and a T cell self epitope. Group of streptococcal infections. Vaccine, 20 (21-22): 2816-2825. (Olive C, Clair T, Yarwood P, & Good MF (2002) Protection of mice from group A streptococcal infection by intranasal immunisation with a peptide vaccine that contains a conserved M protein B cell epitope and lacks a T cell autoepitope. Vaccine 20( 21-22): 2816-2825.)

45、Kassianos AJ;Jongbloed SL;Hart DN及Radford KJ (2010),人類血液DC亞型的分離。分子生物學的方法(Clifton, N.J.) 595:45-54.。(Kassianos AJ, Jongbloed SL, Hart DN, & Radford KJ (2010) Isolation of human blood DC subtypes.Methods in molecular biology (Clifton, N.J.) 595:45-54.)45. Kassianos AJ; Jongbloed SL; Hart DN and Radford KJ (2010), Separation of human blood DC subtypes. Methods of Molecular Biology (Clifton, NJ) , 595:45-54. (Kassianos AJ, Jongbloed SL, Hart DN, & Radford KJ (2010) Isolation of human blood DC subtypes. Methods in molecular biology (Clifton, NJ) 595:45-54.)

no

第1圖係為J8-Lipo-DT的理想化結構。脂質體封裝DT,同時附著在N端之間隔KSS的J8共價耦接至兩個棕櫚酸分子,以有利於J8插入至脂質體膜。Figure 1 is an idealized structure of J8-Lipo-DT. The liposome encapsulates DT, while J8 attached to the N-terminal spacer KSS is covalently coupled to two palmitic acid molecules to facilitate insertion of J8 into the liposome membrane.

第2圖係為J8專一性抗體對個別BALB/c小鼠的反應。平均抗體效價(antibody titer)以柱狀圖表示。A) 為唾液的IgA效價。B) 為糞便的IgA效價。C) 為血清的IgG效價。統計分析係在Tukey事後檢測(Tukey post hoc test)後,利用單因子變異數分析(one-way ANOVA)進行(ns,p > 0.05;*,p < 0.05;**,p < 0.01;***,p < 0.001)。Figure 2 is the response of J8-specific antibodies to individual BALB/c mice. The average antibody titer is represented by a histogram. A) IgA titer for saliva. B) is the IgA titer of feces. C) is the IgG titer of the serum. Statistical analysis was performed after Tukey post hoc test using one-way ANOVA (ns, p >0.05; *, p <0.05; **, p <0.01; ** *, p < 0.001).

第3圖係在BALB/C小鼠以M1 GAS菌株進行鼻內激發(intranasal challenge)之後的細菌負荷(Bacterial burden)。A) 為鼻部流出(Nasal shedding)。B) 為咽部擦拭。C) 為NALT的拓殖。以平均CFU + SEM表示10隻小鼠/群在第1天至第3天的喉部擦拭、鼻部流出以及第3天NALT的結果。統計分析係利用無母數(nonparametric)、無配對(unpaired)的Mann-Whitney U檢定進行測試群組與PBS控制群組的比較 (ns,p > 0.05;*,p < 0.05;**,p < 0.01;***,p < 0.001)。Figure 3 is the Bacterial burden after intranasal challenge of BA1/C mice with M1 GAS strain. A) Nasal shedding. B) Wipe for the pharynx. C) is the colonization of NALT. The results of throat swabs, nasal outflows, and NALT on day 3 of day 10 to day 3 of 10 mice/population were expressed as mean CFU + SEM. Statistical analysis was performed using a nonparametric, unpaired Mann-Whitney U assay for comparison of test cohorts with PBS control cohorts (ns, p >0.05; *, p <0.05; **, p <0.01; ***, p < 0.001).

第4圖係為J8專一性抗體對個別B10.BR小鼠(每群組n=5)的反應。平均抗體效價以柱狀圖表示。A) 為唾液的IgA效價。B) 為糞便的IgA效價。C) 為血清的IgG效價。統計分析係在Tukey事後檢測後,利用單因子變異數分析進行(ns,p > 0.05;*,p < 0.05;**,p < 0.01;***,p < 0.001)。Figure 4 is the response of J8-specific antibodies to individual B10.BR mice (n=5 per group). The average antibody titer is represented by a histogram. A) IgA titer for saliva. B) is the IgA titer of feces. C) is the IgG titer of the serum. Statistical analysis was performed after Tukey's post hoc test using single factor variance analysis (ns, p >0.05; *, p <0.05; **, p <0.01; ***, p < 0.001).

第5圖係為URT GAS激發(challenge)模式評估以M1菌株進行鼻內激發後的細菌負荷。A) 為B10.BR小鼠的鼻部流出。B) 為B10.BR小鼠的喉部擦拭。以平均CFU + SEM表示5隻小鼠/群在第1天至第3天的結果。統計分析係利用無母數、無配對的Mann-Whitney U檢定進行測試群組與PBS控制群組的比較 (ns,p > 0.05;*,p < 0.05)。Figure 5 is a URT GAS challenge mode to assess the bacterial load after intranasal challenge with the M1 strain. A) is the nasal outflow of B10.BR mice. B) Wipe the throat of B10.BR mice. The results of 5 mice/population on day 1 to day 3 were expressed as mean CFU + SEM. Statistical analysis was performed using a Mann-Whitney U assay with no parent number and no pairing to compare the test cohort with the PBS control cohort (ns, p >0.05; *, p < 0.05).

第6圖係為J8專一性抗體對個別BALB/c小鼠的反應。平均抗體效價以柱狀圖表示。A) 為唾液的IgA效價。B) 為血清的IgG效價。統計分析係在Tukey事後檢測後,利用單因子變異數分析進行(ns,p > 0.05;*,p < 0.05;**,p < 0.01;***,p < 0.001)。Figure 6 is the response of J8-specific antibodies to individual BALB/c mice. The average antibody titer is represented by a histogram. A) IgA titer for saliva. B) is the IgG titer of the serum. Statistical analysis was performed after Tukey's post hoc test using single factor variance analysis (ns, p >0.05; *, p <0.05; **, p <0.01; ***, p < 0.001).

第7圖係在免疫小鼠中抗原專一性分泌的化學激活素及細胞介素。將脾細胞(Splenocytes)平舖且隨後加入如下列指示進行刺激:LPS (2 µg/mL)、J8 (10 µg/mL)或單獨培養基。刺激72小時之後,分離上清液且利用流式微球陣列(cytometric bead array)(參照材料與方法)分析釋出的化學激活素或細胞介素的量(level)。統計分析利用學生t檢驗(Student’s t test)進行(ns,p > 0.05;*,p < 0.05;**,p < 0.01)。Figure 7 is a chemical activin and interleukin secreted specifically by antigen in immunized mice. Splenocytes were plated and subsequently stimulated by the following instructions: LPS (2 μg/mL), J8 (10 μg/mL) or medium alone. After 72 hours of stimulation, the supernatant was separated and the amount of released chemical activin or interleukin was analyzed using a cytometric bead array (reference materials and methods). Statistical analysis was performed using Student's t test (ns, p >0.05; *, p <0.05; **, p < 0.01).

第8圖係為以試劑及沒有以試劑處理在人類DC子集合(subsets)的表面標誌的量。隨後加入如下列指示進行刺激:聚肌苷酸:聚胞嘧啶核苷酸(Polyinosinic:polycytidylic acid) (pIC, 10 µg/mL)、J8-Lipo-DT (150 µg/mL)或單獨培養基。細胞表面標誌係在刺激24小時之後藉由流式細胞儀進行測定。A) 為CD123+漿細胞樣(plasmacytoid) DC。B) 為CD141+典型1型(classical type 1)DC。C) 為CD1c+典型2型(classical type 2 )DC。數值由自三個各自施予者± SEM總匯數據的平均螢光強度(median fluorescence intensities) (MFI)來表示。統計分析利用無母數、無配對的Mann-Whitney U檢定進行測試群組與培養基控制群組的比較(ns,p > 0.05;*,p < 0.05;**,p < 0.01;***,p < 0.001)。Figure 8 is the amount of surface markers in the human DC subsets with and without reagents. Stimulation was then added as follows: polyinosinic: polycytidylic acid (pIC, 10 μg/mL), J8-Lipo-DT (150 μg/mL) or medium alone. Cell surface markers were determined by flow cytometry 24 hours after stimulation. A) is CD123+ plasmacytoid DC. B) is CD141+ classic type 1 DC. C) is CD1c+classical type 2 DC. Values are expressed as the median fluorescence intensities (MFI) from the data of the three respective donors ± SEM. Statistical analysis was performed using a Mann-Whitney U assay with no parent number and no pairing to compare test groups with media control groups (ns, p >0.05; *, p <0.05; **, p <0.01; ***, p < 0.001).

第9圖係為J8-Lipo-DT在人類樹突細胞中誘發化學激活素及細胞介素的分泌。將樹突細胞鋪開(plated out)且隨後加入下列指示進行刺激:pIC (10 µg/mL)、J8-Lipo-DT (150 µg/mL)或單獨培養基。在刺激24小時之後分離上清液且利用流式微球陣列 (參照材料與方法)分析釋出的化學激活素或細胞介素的量。統計分析利用學生t檢驗進行(ns,p > 0.05;*,p < 0.05;**,p < 0.01;***,p < 0.001)。Figure 9 shows J8-Lipo-DT inducing the secretion of chemical activin and interleukin in human dendritic cells. Dendritic cells were plated out and subsequently stimulated by the addition of the following instructions: pIC (10 μg/mL), J8-Lipo-DT (150 μg/mL) or medium alone. The supernatant was separated after 24 hours of stimulation and the amount of released chemical activin or interleukin was analyzed using a flow microsphere array (reference materials and methods). Statistical analysis was performed using Student's t test (ns, p >0.05; *, p <0.05; **, p <0.01; ***, p < 0.001).

第10圖係為SpyCEP胜肽(S2;SEQ ID NO:2)脂質傳遞試劑誘發黏膜IgA反應。脂質體顯示棕櫚酸脂質化的S2胜肽或S2-J8嵌合體(chimera) (SEQ ID NO:3)的脂質體與囊內DT共同由鼻內施予至小鼠且測定S2專一性IgA效價。Figure 10 is a mucosal IgA response induced by a lipid delivery reagent of SpyCEP peptide (S2; SEQ ID NO: 2). Liposomes showing palmitate lipidated S2 peptide or S2-J8 chimera (SEQ ID NO: 3) liposomes were administered intranasally to mice with intracapsular DT and assayed for S2 specific IgA efficacy price.

第11圖係為J8+S2-Lipo-DT免疫原性試劑誘發小鼠中的抗原專一性IgA、IgG反應。Figure 11 shows the antigen-specific IgA and IgG responses in mice induced by the J8+S2-Lipo-DT immunogenic reagent.

第12圖係為J8-Lipo-DT免疫原性試劑可擠製(extruded)以形成奈米(nano-)至微米(micro-)尺寸粒子。脂質體尺寸係以Nanosizer測定(動態光散射或DLS)測定。Figure 12 is a J8-Lipo-DT immunogenic reagent that can be extruded to form nano- to micro-sized particles. Liposomal size was determined by Nanosizer assay (Dynamic Light Scattering or DLS).

第13圖係為J8-Lipo-DT免疫原性試劑的尺寸不影響全身性IgG反應。Figure 13 is the size of the J8-Lipo-DT immunogenic reagent does not affect the systemic IgG response.

第14圖係為較大尺寸的J8-Lipo-DT免疫原性試劑誘發J8專一性黏膜反應。Figure 14 is a larger size J8-Lipo-DT immunogenic reagent that induces a J8-specific mucosal response.

第15圖係為在PBS中重組的冷凍乾燥的J8-Lipo-DT粉末的尺寸分布。脂質體尺寸係以Nanosizer測定(動態光散射或DLS)測定。Figure 15 is the size distribution of the freeze-dried J8-Lipo-DT powder reconstituted in PBS. Liposomal size was determined by Nanosizer assay (Dynamic Light Scattering or DLS).

第16圖係為重組、冷凍乾燥的J8-Lipo-DT脂質體免疫原性試劑於沒有額外的佐劑之情況誘發J8-專一性全身反應。Figure 16 is a recombinant, freeze-dried J8-Lipo-DT liposome immunogenic agent that induces a J8-specific systemic response without additional adjuvant.

第17圖係為重組、冷凍乾燥的J8-Lipo-DT脂質體免疫原性試劑誘發J8-專一性黏膜反應。Figure 17 is a recombinant, freeze-dried J8-Lipo-DT liposome immunogenic reagent that induces a J8-specific mucosal response.

第18圖係為包含醣脂佐劑海藻糖-6,6′-二山萮酸酯(TDB)之脂質體J8-Lipo-DT免疫原性試劑之示意圖。Figure 18 is a schematic representation of a liposome J8-Lipo-DT immunogenic reagent comprising the glycolipid adjuvant trehalose-6,6'-dibehenate (TDB).

第19圖係為TDB提升由J8-Lipo-DT誘發之黏膜IgA反應。小鼠(每群組n=5)以30 µg的J8-Lipo-DT+TDB經鼻內免疫。該小鼠在初始(第0天)及兩次加強(第21天及第42天)施予。與TDB併用之結果在唾液及糞便樣本兩者中比起施予J8-Lipo-DT呈現顯著較高的黏膜IgA反應。該結果源於J8-Lipo-DT+TDB之冷凍乾燥粉末方案,其消除脂質體的穩定性問題。Figure 19 shows TDB enhancing the mucosal IgA response induced by J8-Lipo-DT. Mice (n=5 per group) were immunized intranasally with 30 μg of J8-Lipo-DT+TDB. The mice were administered on the initial (Day 0) and two boosts (Day 21 and Day 42). The results in combination with TDB showed a significantly higher mucosal IgA response in both saliva and fecal samples than in the administration of J8-Lipo-DT. This result stems from the freeze-dried powder protocol of J8-Lipo-DT+TDB, which eliminates the problem of liposome stability.

第20圖係為包含膽鹽脫氧膽酸鈉之脂質體免疫原性試劑之示意圖。Figure 20 is a schematic representation of a liposome immunogenic reagent comprising sodium bile salt deoxycholate.

第21A圖為包含脂囊泡、囊內DT及複數個不同病原(亦即A型流行性感冒、B型流行性感冒及A群鏈球菌)之免疫原性蛋白,或來自其之免疫原性蛋白之單一免疫原性試劑的示意圖;第21B圖為包含脂囊泡、囊內DT及複數個不同病原(亦即A型流行性感冒、B型流行性感冒、A群鏈球菌)之免疫原性蛋白或來自其之免疫原性蛋白與醣脂佐劑(海藻糖-6,6′-二山萮酸酯(TDB)及單磷醯基3-去醯基-脂質A(Monophosphoryl 3-Deacyl Lipid A,3D-PHAD®))之單一免疫原性試劑的示意圖。Figure 21A is an immunogenic protein containing or containing immunolipids from lipid vesicles, intracapsular DT, and a plurality of different pathogens (ie, influenza A, influenza B, and group A streptococci). Schematic diagram of a single immunogenic reagent for a protein; Figure 21B shows an immunogen comprising a lipid vesicle, an intracapsular DT, and a plurality of different pathogens (ie, influenza A, influenza B, group A streptococci) Protein or immunogenic protein and glycolipid adjuvant (trehalose-6,6'-dibehenate (TDB) and monophosphoryl 3-deacyl Schematic representation of a single immunogenic reagent of Lipid A, 3D-PHAD®)).

第22圖係藉由抗原專一性唾液IgA效價(antigen-specific salivary IgA titre)的測量比較針對A型流行性感冒、B型流行性感冒及A群鏈球菌之單一免疫原性試劑(“Multivax”)的免疫原性與針對A型流行性感冒、B型流行性感冒及A群鏈球菌的每一個之單獨免疫原性試劑的個別疫苗(“Single Antigen-vax”)的比較。Figure 22 compares the single immunogenic reagents for influenza A, influenza B, and group A streptococci by the measurement of antigen-specific salivary IgA titre ("Multivax The immunogenicity of ") is compared to individual vaccines ("Single Antigen-vax") for individual immunogenic agents for each of influenza A, influenza B, and group A streptococci.

<110>  格里菲斯大學(Griffith University)   <120>  脂質體疫苗   <130>  31639TW3   <150>  AU2015904403 <151>  2015-10-27   <150>  TW105111153 <151>  2016-04-08   <150>  AU2016901026 <151>  2016-03-18   <160>  15      <170>  PatentIn 版本 3.5   <210>  1 <211>  28 <212>  PRT <213>  人工序列   <220> <223>  合成胜肽   <400>  1   Gln Ala Glu Asp Lys Val Lys Gln Ser Arg Glu Ala Lys Lys Gln Val 1               5                   10                  15        Glu Lys Ala Leu Lys Gln Leu Glu Asp Lys Val Gln             20                  25                  <210>  2 <211>  20 <212>  PRT <213>  化膿性鏈球菌(Streptococcus pyogenes)   <400>  2   Asn Ser Asp Asn Ile Lys Glu Asn Gln Phe Glu Asp Phe Asp Glu Asp 1               5                   10                  15         Trp Glu Asn Phe             20      <210>  3 <211>  48 <212>  PRT <213>  人工序列   <220> <223>  合成嵌合胜肽   <400>  3   Asn Ser Asp Asn Ile Lys Glu Asn Gln Phe Glu Asp Phe Asp Glu Asp 1               5                   10                  15        Trp Glu Asn Phe Gln Ala Glu Asp Lys Val Lys Gln Ser Arg Glu Ala             20                  25                  30            Lys Lys Gln Val Glu Lys Ala Leu Lys Gln Leu Glu Asp Lys Val Gln         35                  40                  45                   <210>  4 <211>  20 <212>  PRT <213>  化膿性鏈球菌   <400>  4   Leu Arg Arg Asp Leu Asp Ala Ser Arg Glu Ala Lys Lys Gln Val Glu 1               5                   10                  15        Lys Ala Leu Glu             20      <210>  5 <211>  27 <212>  PRT <213>  人工序列   <220> <223>  合成胜肽   <400>  5   Ser Arg Glu Ala Lys Lys Gln Ser Arg Glu Ala Lys Lys Gln Val Glu 1               5                   10                  15        Lys Ala Leu Lys Gln Val Glu Lys Ala Leu Cys             20                  25              <210>  6 <211>  27 <212>  PRT <213>  人工序列   <220> <223>  合成胜肽變異型   <400>  6   Ser Arg Glu Ala Lys Lys Gln Ser Arg Glu Ala Lys Lys Gln Val Glu 1               5                   10                  15        Lys Ala Leu Lys Gln Ser Arg Glu Ala Lys Cys             20                  25              <210>  7 <211>  27 <212>  PRT <213>  人工序列   <220> <223>  合成胜肽變異型   <400>  7   Ser Arg Glu Ala Lys Lys Gln Val Glu Lys Ala Leu Lys Gln Ser Arg 1               5                   10                  15        Glu Ala Lys Lys Gln Val Glu Lys Ala Leu Cys             20                  25              <210>  8 <211>  27 <212>  PRT <213>  人工序列   <220> <223>  合成胜肽變異型   <400>  8   Ser Arg Glu Ala Lys Lys Gln Val Glu Lys Ala Leu Asp Ala Ser Arg 1               5                   10                  15        Glu Ala Lys Lys Gln Val Glu Lys Ala Leu Cys             20                  25              <210>  9 <211>  7 <212>  PRT <213>  人工序列   <220> <223>  模擬胜肽(Modeled peptide)   <400>  9   Met Lys Gln Leu Glu Asp Lys 1               5               <210>  10 <211>  7 <212>  PRT <213>  人工序列   <220> <223>  模擬胜肽   <400>  10   Val Lys Gln Leu Glu Asp Lys 1               5               <210>  11 <211>  24 <212>  PRT <213>  A型流行性感冒病毒(Influenza A virus)   <400>  11   Met Ser Leu Leu Thr Glu Val Glu Thr Pro Ile Arg Asn Glu Trp Gly 1               5                   10                  15        Cys Arg Cys Asn Asp Ser Ser Asp             20                       <210>  12 <211>  19 <212>  PRT <213>  B型流行型感冒病毒(Influenza B virus)   <400>  12   Pro Ala Lys Leu Leu Lys Glu Arg Gly Phe Phe Gly Ala Ile Ala Gly 1               5                   10                  15        Phe Leu Glu                 <210>  13 <211>  31 <212>  PRT <213>  鼻病毒(Rhinovirus)   <400>  13   Gly Ala Gln Val Ser Thr Gln Lys Ser Gly Ser His Glu Asn Gln Asn 1               5                   10                  15        Ile Leu Thr Asn Gly Ser Asn Gln Thr Phe Thr Val Ile Asn Tyr             20                  25                  30          <210>  14 <211>  24 <212>  PRT <213>  鼻病毒   <400>  14   Gly Ala Gln Val Ser Arg Gln Asn Val Gly Thr His Ser Thr Gln Asn 1               5                   10                  15        Met Val Ser Asn Gly Ser Ser Leu             20                      <210>  15 <211>  22 <212>  PRT <213>  美洲鉤蟲(Necator americanus)   <400>  15   Thr Ser Leu Ile Ala Gly Leu Lys Ala Gln Val Glu Ala Ile Gln Lys 1               5                   10                  15        Tyr Ile Gly Ala Glu Leu             20<110> Griffith University <120> Liposomal Vaccine <130> 31639TW3 <150> AU2015904403 <151> 2015-10-27 <150> TW105111153 <151> 2016-04-08 <150> AU2016901026 <151> 2016-03-18 <160> 15 <170> PatentIn Version 3.5 <210> 1 <211> 28 <212> PRT <213> Artificial Sequence <220> <223> Synthetic peptide <400> 1 Gln Ala Glu Asp Lys Val Lys Gln Ser Arg Glu Ala Lys Lys Gln Val 1 5 10 15 Glu Lys Ala Leu Lys Gln Leu Glu Asp Lys Val Gln 20 25 <210> 2 <211> 20 <212> PRT <213> Purulent chain Streptococcus pyogenes <400> 2 Asn Ser Asp Asn Ile Lys Glu Asn Gln Phe Glu Asp Phe Asp Glu Asp 1 5 10 15 Trp Glu Asn Phe 20 <210> 3 <211> 48 <212> PRT <213> Artificial sequence <220> <223> Synthetic chimeric peptide <400> 3 Asn Ser Asp Asn Ile Lys Glu Asn Gln Phe Glu Asp Phe Asp Glu Asp 1 5 10 15 Trp Glu Asn Phe Gln Ala Glu Asp Lys Val Lys Gln Ser Arg Glu Ala 20 25 30 Lys Lys Gln Val Glu Lys Ala Leu Lys Gln Leu Glu Asp Lys Val Gln 35 40 45 <210> 4 <211> 20 <212> PRT <213> Streptococcus pyogenes <400> 4 Leu Arg Arg Asp Leu Asp Ala Ser Arg Glu Ala Lys Lys Gln Val Glu 1 5 10 15 Lys Ala Leu Glu 20 <210> 5 <211> 27 <212> PRT <213> Artificial sequence <220> <223> Synthetic peptide <400> 5 Ser Arg Glu Ala Lys Lys Gln Ser Arg Glu Ala Lys Lys Gln Val Glu 1 5 10 15 Lys Ala Leu Lys Gln Val Glu Lys Ala Leu Cys 20 25 <210> 6 <211> 27 <212> PRT <213> Artificial Sequence <220> <223> Synthetic peptide variant < 400> 6 Ser Arg Glu Ala Lys Lys Gln Ser Arg Glu Ala Lys Lys Gln Val Glu 1 5 10 15 Lys Ala Leu Lys Gln Ser Arg Glu Ala Lys Cys 20 25 <210> 7 <211> 27 <212> PRT <213> Artificial sequence <220> <223> Synthetic peptide variant <400> 7 Ser Arg Glu Ala Lys Lys Gln Val Glu Lys Ala Leu Lys Gln Ser Arg 1 5 10 15 Glu Ala Lys Lys Gln Val Glu Lys Ala Leu Cys 20 25 <210> 8 <211> 27 <212> PRT <213> Artificial sequence <220> <223> Synthetic peptide variant <400> 8 Ser Arg Glu Ala Lys Lys Gln Val Glu Lys Ala Leu Asp Ala Ser Arg 1 5 10 15 Glu Ala Lys Lys Gln Val Glu Lys Ala Leu Cys 20 25 <210> 9 <211> 7 <212> PRT <213> Artificial sequence <220> <223> Modeled peptide <400> 9 Met Lys Gln Leu Glu Asp Lys 1 5 <210> 10 <211> 7 <212> PRT <213> Artificial sequence < 220> <223> Analog peptide <400> 10 Val Lys Gln Leu Glu Asp Lys 1 5 <210> 11 <211> 24 <212> PRT <213> Influenza A virus <400> 11 Met Ser Leu Leu Thr Glu Val Glu Thr Pro Ile Arg Asn Glu Trp Gly 1 5 10 15 Cys Arg Cys Asn Asp Ser Ser Asp 20 <210> 12 <211> 19 <212> PRT <213> Type B Epidemic Cold Virus (Influenza B virus) <400> 12 Pro Ala Lys Leu Leu Lys Glu Arg Gly Phe Phe Gly Ala Ile Ala Gly 1 5 10 15 Phe Leu Glu <210> 13 <211> 31 <212> PRT <213> Rhinovirus <400> 13 Gly Ala Gln Val Ser Thr Gln Lys Ser Gly Ser His Glu Asn Gln Asn 1 5 10 15 Ile Leu Thr Asn Gly Ser Asn Gln Thr Phe Thr Val Ile Asn Tyr 20 25 30 <210> 14 <211> 24 <212> PRT <213> Rhinovirus <400> 14 Gly Ala Gln Val Ser Arg Gln Asn Val Gly Thr His Ser Thr Gln Asn 1 5 10 15 Met Val Ser Asn Gly Ser Ser Leu 20 < 210> 15 <211> 22 <212> PRT <213> Necator americanus <400> 15 Thr Ser Leu Ile Ala Gly Leu Lys Ala Gln Val Glu Ala Ile Gln Lys 1 5 10 15 Tyr Ile Gly Ala Glu Leu 20

no

Claims (48)

一種免疫原性試劑,其適用於施予至一哺乳類,該免疫原性試劑包含一或複數個免疫原性蛋白、其片段、其變異體或其衍生物、一脂囊泡、一載體蛋白或其片段或其變異體。An immunogenic agent suitable for administration to a mammal comprising one or more immunogenic proteins, fragments thereof, variants or derivatives thereof, a lipid vesicle, a carrier protein or a fragment thereof or a variant thereof. 如申請專利範圍第1項所述之免疫原性試劑,其適用於鼻內施予。The immunogenic reagent of claim 1, which is suitable for intranasal administration. 如申請專利範圍第1項所述之免疫原性試劑,其能在該哺乳類中誘發黏膜免疫反應。The immunogenic agent according to claim 1, which is capable of inducing a mucosal immune response in the mammal. 如申請專利範圍第1項所述之免疫原性試劑,其中該載體蛋白係位於一囊內空間。The immunogenic agent of claim 1, wherein the carrier protein is located in an intracapsular space. 如申請專利範圍第1項所述之免疫原性試劑,其中該載體蛋白係為白喉類毒素(DT)。The immunogenic agent according to claim 1, wherein the carrier protein is diphtheria toxoid (DT). 如申請專利範圍第1項所述之免疫原性試劑,其中該免疫原性蛋白、其片段、其變異體或其衍生物係呈現於該脂囊泡的表面上。The immunogenic agent according to claim 1, wherein the immunogenic protein, a fragment thereof, a variant thereof or a derivative thereof is present on the surface of the lipid vesicle. 如申請專利範圍第1項所述之免疫原性試劑,其中該免疫原性蛋白、其片段、其變異體或其衍生物係融合或接合於該載體蛋白。The immunogenic agent according to claim 1, wherein the immunogenic protein, a fragment thereof, a variant thereof or a derivative thereof is fused or conjugated to the carrier protein. 如申請專利範圍第1項所述之免疫原性試劑,其中該脂囊泡係為一脂質體。The immunogenic agent according to claim 1, wherein the lipid vesicle is a liposome. 如申請專利範圍第1項所述之免疫原性試劑,其包含病原之一或複數個免疫原性蛋白片段、其變異體或其衍生物,或自該病原之一或複數個免疫原性蛋白片段、其變異體或其衍生物。The immunogenic agent according to claim 1, which comprises one or a plurality of immunogenic protein fragments, variants or derivatives thereof, or one or a plurality of immunogenic proteins from the pathogen A fragment, a variant thereof or a derivative thereof. 如申請專利範圍第1項所述之免疫原性試劑,其包含複數個不同病原的每一個之一或複數個免疫原性蛋白片段、其變異體或其衍生物,或自該複數種不同病原的每一個之一或複數個免疫原性蛋白片段、其變異體或其衍生物。An immunogenic agent according to claim 1, which comprises one or a plurality of immunogenic protein fragments, variants or derivatives thereof, or a plurality of different pathogens from the plurality of different pathogens One of each or a plurality of immunogenic protein fragments, variants thereof or derivatives thereof. 如申請專利範圍第9項所述之免疫原性試劑,其中該病原係為細菌、病毒或寄生蟲。The immunogenic agent according to claim 9, wherein the pathogen is a bacterium, a virus or a parasite. 如申請專利範圍第1項所述之免疫原性試劑,其中該免疫性蛋白、其片段或其變異體係為A群鏈球菌M蛋白的片段、變異體或衍生物。The immunogenic agent according to claim 1, wherein the immunological protein, a fragment thereof or a variant thereof is a fragment, variant or derivative of the group A Streptococcus M protein. 如申請專利範圍第12項所述之免疫原性試劑,其中該片段係在一J8胜肽或J8胜肽變異體中、或包含該J8胜肽或J8胜肽變異體。The immunogenic agent according to claim 12, wherein the fragment is in a J8 peptide or J8 peptide variant or comprises the J8 peptide or J8 peptide variant. 如專利申請範圍第13項所述之免疫原性試劑,其中該J8胜肽係為或包含胺基酸序列QAEDKVKQSREAKKQVEKALKQLEDKVQ(SEQ ID NO:1)或主要由胺基酸序列QAEDKVKQSREAKKQVEKALKQLEDKVQ(SEQ ID NO:1)所組成。The immunogenic reagent according to the invention of claim 13, wherein the J8 peptide is or comprises the amino acid sequence QAEDKVKQSREAKKQVEKALKQLEDKVQ (SEQ ID NO: 1) or mainly the amino acid sequence QAEDKVKQSREAKKQVEKALKQLEDKVQ (SEQ ID NO: 1) ) composed of. 如申請專利範圍第1項所述之免疫原性試劑,其中該免疫原性蛋白係為或包含有利於恢復或加強嗜中性球活性的試劑。The immunogenic agent of claim 1, wherein the immunogenic protein is or comprises an agent that facilitates recovery or enhancement of neutrophil activity. 如申請專利範圍第15項所述之免疫原性試劑,其中有利於恢復或加強嗜中性球活性的該試劑係為SpyCEP的蛋白或SpyCEP片段。The immunogenic agent according to claim 15, wherein the agent which is beneficial for restoring or enhancing neutrophil activity is a protein of SpyCEP or a fragment of SpyCEP. 如申請專利範圍第16項所述之免疫原性試劑,其中該SpyCEP片段係為或包含胺基酸序列 NSDNIKENQFEDFDEDWENF(SEQ ID NO:2)或主要由胺基酸序列NSDNIKENQFEDFDEDWENF(SEQ ID NO:2)所組成。The immunogenic reagent according to claim 16, wherein the SpyCEP fragment is or comprises the amino acid sequence NSDNIKENQFEDFDEDWENF (SEQ ID NO: 2) or mainly consists of the amino acid sequence NSDNIKENQFEDFDEDWENF (SEQ ID NO: 2) Composed of. 如申請專利範圍第1項所述之免疫原性試劑,其中該免疫原性蛋白、其片段或其變異體包含SpyCEP片段及M蛋白片段以作為單一的嵌合胜肽。The immunogenic agent according to claim 1, wherein the immunogenic protein, a fragment thereof or a variant thereof comprises a SpyCEP fragment and an M protein fragment as a single chimeric peptide. 如申請專利範圍第18項所述之免疫原性試劑,其中該嵌合胜肽係為或包含胺基酸序列NSDNIKENQFEDFDEDWENFQAEDKVKQSREAKKQVEKALKQLEDKVQ(SEQ ID NO:3)或其變異體、或主要由胺基酸序列NSDNIKENQFEDFDEDWENFQAEDKVKQSREAKKQVEKALKQLEDKVQ(SEQ ID NO:3)或其變異體所組成。The immunogenic reagent according to claim 18, wherein the chimeric peptide is or comprises an amino acid sequence NSDNIKENQFEDFDEDWENFQAEDKVKQSREAKKQVEKALKQLEDKVQ (SEQ ID NO: 3) or a variant thereof, or mainly consists of an amino acid sequence NSDNIKENQFEDFDEDWENFQAEDKVKQSREAKKQVEKALKQLEDKVQ (SEQ ID NO: 3) or a variant thereof. 如申請專利範圍第1項所述之免疫原性試劑,其中該免疫原性蛋白、其片段或其變異體係為流行性感冒病毒之免疫原性蛋白、片段或變異體。The immunogenic agent according to claim 1, wherein the immunogenic protein, a fragment thereof or a variant thereof is an immunogenic protein, fragment or variant of influenza virus. 如申請專利範圍第20項所述之免疫原性試劑,其中該免疫原性蛋白、其片段或其變異體係為或包含胺基酸序列 MSLLTEVETPIRNEWGCRCNDSSD(SEQ ID NO:11)或PAKLLKERGFFGAIAGFLE(SEQ ID NO:12)或主要由胺基酸序列 MSLLTEVETPIRNEWGCRCNDSSD(SEQ ID NO:11)或PAKLLKERGFFGAIAGFLE(SEQ ID NO:12)所組成。The immunogenic agent according to claim 20, wherein the immunogenic protein, a fragment thereof or a variant thereof thereof comprises or comprises an amino acid sequence MSLLTEVETPIRNEWGCRCNDSSD (SEQ ID NO: 11) or PAKLLKERGFFGAIAGFLE (SEQ ID NO: 12) or consists essentially of the amino acid sequence MSLLTEVETPIRNEWGCRCNDSSD (SEQ ID NO: 11) or PAKLLKERGFFGAIAGFLE (SEQ ID NO: 12). 如申請專利範圍第1項所述之免疫原性試劑,其中該免疫原性蛋白、其片段或其變異體係為鼻病毒之免疫原性蛋白、片段或變異體。The immunogenic agent according to claim 1, wherein the immunogenic protein, a fragment thereof or a variant thereof is an immunogenic protein, fragment or variant of rhinovirus. 如申請專利範圍第22項所述之免疫原性試劑,其中該免疫原性蛋白、其片段或其變異體係為或包含胺基酸序列GAQVSTQKSGSHENQNILTNGSNQTFTVINY(SEQ ID NO:13)或 GAQVSRQNVGTHSTQNMVSNGSSL(SEQ ID NO:14)或主要由胺基酸序列GAQVSTQKSGSHENQNILTNGSNQTFTVINY(SEQ ID NO:13)或 GAQVSRQNVGTHSTQNMVSNGSSL(SEQ ID NO:14)所組成。The immunogenic agent according to claim 22, wherein the immunogenic protein, a fragment thereof or a variant thereof thereof comprises or comprises an amino acid sequence GAQVSTQKSGSHENQNILTNGSNQTFTVINY (SEQ ID NO: 13) or GAQVSRQNVGTHSTQNMVSNGSSL (SEQ ID NO: 14) or consists essentially of the amino acid sequence GAQVSTQKSGSHENQNILTNGSNQTFTVINY (SEQ ID NO: 13) or GAQVSRQNVGTHSTQNMVSNGSSL (SEQ ID NO: 14). 如申請專利範圍第1項所述之免疫原性試劑,其中該免疫原性蛋白、其片段或其變異體係為鉤蟲之免疫原性蛋白、片段或變異體。The immunogenic agent according to claim 1, wherein the immunogenic protein, a fragment thereof or a variant thereof is an immunogenic protein, fragment or variant of hookworm. 如申請專利範圍第24項所述之免疫原性試劑,其中該免疫原性蛋白、其片段或其變異體係為或包含胺基酸序列TSLIAGLKAQVEAIQKYIGAEL(SEQ ID NO:15)或主要由胺基酸序列 TSLIAGLKAQVEAIQKYIGAEL (SEQ ID NO:15)所組成。The immunogenic agent according to claim 24, wherein the immunogenic protein, a fragment thereof or a variant thereof thereof comprises or comprises the amino acid sequence TSLIAGLKAQVEAIQKYIGAEL (SEQ ID NO: 15) or is mainly composed of an amino acid sequence. Composition of TSLIAGLKAQVEAIQKYIGAEL (SEQ ID NO: 15). 如申請專利範圍第1項所述之免疫原性試劑,其進一步包含一先天性免疫活化劑。The immunogenic agent of claim 1, further comprising an innate immune activator. 如申請專利範圍第26項所述之免疫原性試劑,其中該先天性免疫活化劑係為或包含一醣脂。The immunogenic agent according to claim 26, wherein the innate immune activator is or comprises a glycolipid. 如申請專利範圍第26項所述之免疫原性試劑,其中該先天性免疫活化劑係為海藻糖-6,6′-二山萮酸酯(TDB)或脂質A醣脂佐劑。The immunogenic agent according to claim 26, wherein the innate immune activator is trehalose-6,6'-dibehenate (TDB) or a lipid A glycolipid adjuvant. 如申請專利範圍第1項所述之免疫原性試劑,其進一步包含一膽鹽。The immunogenic agent according to claim 1, which further comprises a bile salt. 如申請專利範圍第29項所述之免疫原性試劑,其中該膽鹽係為脫氧膽酸鈉。The immunogenic agent according to claim 29, wherein the bile salt is sodium deoxycholate. 如申請專利範圍第1項所述之免疫原性試劑,其為冷凍乾燥或凍乾的。The immunogenic agent of claim 1, which is freeze-dried or lyophilized. 如申請專利範圍第1項所述之免疫原性試劑,其製成選定的尺寸或在選定的尺寸範圍中。The immunogenic agent of claim 1, which is made to a selected size or in a selected size range. 一種組成物,其包含如申請專利範圍第1項所述之免疫原性試劑。A composition comprising the immunogenic agent according to item 1 of the patent application. 如申請專利範圍第33項所述之組成物,其包含一單一免疫原性試劑,該單一免疫原性試劑包含同一病原之一或複數個免疫原性蛋白片段、其變異體或其衍生物,或來自該同一病原之一或複數個免疫原性蛋白片段、其變異體或其衍生物。The composition of claim 33, comprising a single immunogenic agent comprising one or a plurality of immunogenic protein fragments, variants or derivatives thereof, of the same pathogen, Or one or a plurality of immunogenic protein fragments, variants thereof or derivatives thereof from the same pathogen. 如申請專利範圍第33項所述之組成物,其包含一單一免疫原性試劑,該單一免疫原性試劑包含複數個不同病原之每一個的一或複數個免疫原性蛋白片段、其變異體或其衍生物,或來自該複數個不同病原之每一個的一或複數個免疫原性蛋白片段、其變異體或其衍生物。The composition of claim 33, comprising a single immunogenic reagent comprising one or more immunogenic protein fragments of each of a plurality of different pathogens, variants thereof Or a derivative thereof, or one or more immunogenic protein fragments, variants or derivatives thereof, from each of the plurality of different pathogens. 如申請專利範圍第33項所述之組成物,其包含個不同的複數免疫原性試劑,該複數免疫原性試劑分別包含不同病原之一或複數個免疫原性蛋白片段、其變異體或其衍生物,或自該不同病原之一或複數個免疫原性蛋白片段、其變異體或其衍生物。The composition of claim 33, comprising a plurality of complex immunogenic agents comprising one or a plurality of immunogenic protein fragments, variants thereof, or a derivative, or one or a plurality of immunogenic protein fragments, variants thereof or derivatives thereof from the different pathogens. 一種根據申請專利範圍第1項至第32項中任一項所述之免疫原性試劑或根據申請專利範圍第33項至36項中任一項所述之組成物用於製造誘發對於哺乳類中的一或複數個病原之免疫反應的藥劑的用途。An immunogenic agent according to any one of claims 1 to 32, or a composition according to any one of claims 33 to 36, for use in the manufacture of a mammal for induction Use of an agent for one or more pathogens for an immune response. 一種根據申請專利範圍第1項至第32項中任一項所述之免疫原性試劑或根據申請專利範圍第33項至36項中任一項所述之組成物用於製造針對一或複數個病原免疫哺乳類之藥劑的用途。An immunogenic agent according to any one of claims 1 to 32, or a composition according to any one of claims 33 to 36, for use in the manufacture of one or more The use of a medicament for pathogenic immune mammals. 一種根據申請專利範圍第1項至第32項中任一項所述之免疫原性試劑或根據申請專利範圍第33項至36項中任一項所述之組成物用於製造治療或預防哺乳類中因一或複數個病原所引發之感染的藥劑的用途。An immunogenic agent according to any one of claims 1 to 32, or a composition according to any one of claims 33 to 36, for use in the manufacture of a medicament for the treatment or prevention of mammals Use of an agent for infection caused by one or more pathogens. 如申請專利範圍第37項所述之用途,其中該藥劑可經鼻內施予至該哺乳類。The use of claim 37, wherein the medicament is administered intranasally to the mammal. 如申請專利範圍第37項所述之用途,其中該免疫原性試劑誘發黏膜免疫反應。The use of claim 37, wherein the immunogenic agent induces a mucosal immune response. 如申請專利範圍第37項所述之用途,其中該哺乳類係為人類。The use of claim 37, wherein the mammal is a human. 如申請專利範圍第38項所述之用途,其中該藥劑能經鼻內施予至該哺乳類。The use of claim 38, wherein the agent is administered intranasally to the mammal. 如申請專利範圍第38項所述之用途,其中該免疫原性試劑誘發黏膜免疫反應。The use of claim 38, wherein the immunogenic agent induces a mucosal immune response. 如申請專利範圍第38項所述之用途,其中該哺乳類係為人類。The use of claim 38, wherein the mammal is a human. 如申請專利範圍第39項所述之用途,其中該藥劑能經鼻內施予至該哺乳類。The use of claim 39, wherein the medicament is administered intranasally to the mammal. 如申請專利範圍第39項所述之用途,其中該免疫原性試劑誘發黏膜免疫反應。The use of claim 39, wherein the immunogenic agent induces a mucosal immune response. 如申請專利範圍第39項所述之用途,其中該哺乳類係為人類。The use of claim 39, wherein the mammal is a human.
TW105134639A 2015-10-27 2016-10-26 Liposomal vaccine TW201726164A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2015904403A AU2015904403A0 (en) 2015-10-27 Liposomal vaccine
AU2016901026A AU2016901026A0 (en) 2016-03-18 Liposomal vaccine
TW105111153 2016-04-08

Publications (1)

Publication Number Publication Date
TW201726164A true TW201726164A (en) 2017-08-01

Family

ID=60186546

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105134639A TW201726164A (en) 2015-10-27 2016-10-26 Liposomal vaccine

Country Status (1)

Country Link
TW (1) TW201726164A (en)

Similar Documents

Publication Publication Date Title
JP6916828B2 (en) A protein antigen that provides protection from pneumococcal colonization and / or disease
JP5654345B2 (en) Multimeric multi-epitope influenza vaccine
JP4294584B2 (en) Methods for enhancing the immune response of nucleic acid vaccination
US20140287022A1 (en) Liposomal formulations
JP2012501959A (en) Composition comprising Yersinia pestis antigen
AU2010273708A1 (en) Vaccines and compositions against Streptococcus pneumoniae
AU2012257771C1 (en) Vaccine against Streptococcus pneumoniae
US10301362B2 (en) Group A Streptococcus vaccine
CN109069424B (en) Liposome vaccine
KR20200121825A (en) Immunogenic composition comprising staphylococcal antigen
JP2018135388A (en) Pseudomonas antigens and antigen combinations
Tarahomjoo Utilizing bacterial flagellins against infectious diseases and cancers
JP2024501754A (en) Vaccine composition against Streptococcus pneumoniae infection
AU2021205866A1 (en) Self-assembling, self-adjuvanting system for delivery of vaccines
US20140161836A1 (en) Carious tooth vaccine and preparation method
TW201726164A (en) Liposomal vaccine
JP2022544407A (en) immunogenic composition
JP2013510188A (en) Bacteremia-related antigens derived from Staphylococcus aureus
Xu The serological response of sheep to DNA immunisation against Toxoplasma gondii