TW201724788A - Method and apparatus for processing DRMS signals in a wireless communication system - Google Patents

Method and apparatus for processing DRMS signals in a wireless communication system Download PDF

Info

Publication number
TW201724788A
TW201724788A TW105130919A TW105130919A TW201724788A TW 201724788 A TW201724788 A TW 201724788A TW 105130919 A TW105130919 A TW 105130919A TW 105130919 A TW105130919 A TW 105130919A TW 201724788 A TW201724788 A TW 201724788A
Authority
TW
Taiwan
Prior art keywords
occ
dmrs
processing
available
pattern
Prior art date
Application number
TW105130919A
Other languages
Chinese (zh)
Inventor
qing-chuan Zhang
Min Zhang
Original Assignee
Alcatel Lucent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent filed Critical Alcatel Lucent
Publication of TW201724788A publication Critical patent/TW201724788A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals

Abstract

The present invention relates to a method and apparatus for processing DMRS signal in a LTE protocol-based base station and an user equipment. According to one aspect of the present invention, the method comprises a method for processing DMRS signal in a LTE protocol-based base station, wherein before performing OFDMA modulation, the method further comprises: - performing pattern rotation processing with OCCs on subcarriers corresponding to available DMRS antenna ports so as to reduce power imbalance between OFDM symbols generated subsequently. The solution according to the present invention may eliminate or reduce the imbalance issue between OFDM symbols of the DMRS enhancement technology in the existing LTE protocol.

Description

在無線通信系統中對解調參考信號進行處理之方法及裝置Method and apparatus for processing demodulation reference signals in a wireless communication system

本發明係關於無線通信技術,尤其係關於基於長期演進(LTE)之無線通信系統中對解調參考信號(DMRS)信號進行處理之方法及裝置。The present invention relates to wireless communication technologies, and more particularly to a method and apparatus for processing a Demodulation Reference Signal (DMRS) signal in a Long Term Evolution (LTE) based wireless communication system.

在LTE R13協定中,第三代合作夥伴計劃(3GPP)組織已經決定考慮使用DMRS增強技術以更好地支援下行多使用者多輸入多輸出(MU-MIMO)。關於此點,已在技術報告TR36.897中提出一些備選方案,支援擴展下行DMRS,用於減少DMRS埠間之相互干擾。 其中,在目前3GPP提出之備選方案1中,正交覆蓋碼(OCC,Orthogonal Cover Code)=4以及在每個實體資源區塊(PRB)使用12個資源要素(RE,Resource Element),即在現有天線埠7、8、11、13之基礎上進行增強,此種方式有幾個優點,比如最少之參考信號(RS)附加項,沒有額外之RE打孔,對MU之操作不可見,因此很有可能被3GPP支援。然而,當前DMRS型樣會使得備選方案1在DMRS所處之OFDM符號間有功率抖動問題。此即所謂之功率不平衡問題,此係在使用參考信號設計時需要避免的。為了解決此問題,本發明提出一種基於針對擴展之DMRS埠使用新型OCC型樣之方案來解決此問題。 在當前LTE協定中,有兩種OCC型樣如下:,其中,p為天線埠號; 在上述TR36.897之備選方案1中,此兩種OCC型樣在與第7、8、11、13天線埠對應之DMRS副載波上交替循環使用。每個埠使用之序列定義如下沃爾什(Walsh)變換碼: 若重寫為如下walsh矩陣則輪轉型樣可相應地表示為。假定有四個多使用者層(MU layers),在eNB側之第n個傳輸天線之相關預編碼權重可以表示為。則如圖1所展示的,在一個子幀內四個DMRS OFDM符號上第n個傳輸天線之傳輸功率分別為:, 由於預編碼向量依賴於頻道條件,使得對以上四個符號之DMRS傳輸功率各不相同。最差情況係其中一個序列匹配。例如,若,則,此會導致在OFDM符號間之功率抖動,導致OFDM符號間之功率不平衡。In the LTE R13 agreement, the 3rd Generation Partnership Project (3GPP) organization has decided to consider using DMRS enhancement technology to better support downlink multi-user multiple input multiple output (MU-MIMO). In this regard, some alternatives have been proposed in Technical Report TR36.897 to support extended downlink DMRS for reducing mutual interference between DMRSs. In the alternative 1 proposed by the current 3GPP, an orthogonal cover code (OCC)=4 and 12 resource elements (REs) are used in each physical resource block (PRB), that is, Enhancements based on existing antennas 、 7, 8, 11, 13 have several advantages, such as a minimum of reference signal (RS) additions, no additional RE puncturing, and are invisible to MU operations. Therefore, it is very likely to be supported by 3GPP. However, the current DMRS pattern would cause Option 1 to have a power jitter problem between the OFDM symbols in which the DMRS is located. This is the so-called power imbalance problem, which needs to be avoided when using reference signal design. In order to solve this problem, the present invention proposes a solution to solve this problem based on the use of a new OCC type scheme for extended DMRS. In the current LTE agreement, there are two OCC types as follows: Where p is the antenna apostrophe; in the alternative 1 of TR 36.897 above, the two OCC patterns are alternately cycled over the DMRS subcarriers corresponding to the seventh, eighth, eleventh, and thirteenth antennas. The sequence used by each 定义 is defined by the following Walsh transform code: If rewritten as walsh matrix Round transformation and Can be expressed as and . Assuming that there are four multi-user layers (MU layers), the associated precoding weights of the nth transmission antenna on the eNB side can be expressed as . Then, as shown in FIG. 1, the transmission power of the nth transmission antenna on the four DMRS OFDM symbols in one subframe are respectively: Due to precoding vector Depending on the channel conditions, the DMRS transmission power for the above four symbols is different. Worst case versus One of the sequences matches. For example, if ,then And This can result in power jitter between OFDM symbols, resulting in a power imbalance between OFDM symbols.

本發明之目的係為了解決現有LTE協定中DMRS增強技術下存在之OFDM符號間不平衡問題。 根據本發明之第一態樣,提供一種在基於LTE協定之基地台中用於處理DMRS信號之方法,其中,該方法在進行OFDMA調變前亦包含: - 對可用DMRS天線埠對應之副載波上之OCC進行型樣輪轉處理,以減少隨後產生之OFDM符號間之功率不平衡。 根據本發明之第二態樣,提供一種在基於LTE之使用者設備中處理DMRS信號之方法,其中,包含: 對經OFDM解調後之資料區塊中與可用DMRS天線埠對應之副載波上之OCC進行與根據本發明第一態樣之方法中之型樣輪換處理相逆的處理。 根據本發明之第三態樣,提供一種在基於LTE協定之基地台中用於處理DMRS信號之裝置,其中,在進行OFDMA調變前,該裝置亦包含: 型樣輪轉處理裝置,用於對可用DMRS天線埠對應之副載波上之OCC進行型樣輪轉處理,以減少隨後產生之OFDM符號間之功率不平衡。 根據本發明之第四態樣,提供一種在基於LTE之使用者設備中處理DMRS信號之裝置,其中,包含: 型樣輪換逆處理裝置,用於對經OFDM解調後之資料區塊中與可用DMRS天線埠對應之副載波上之OCC進行與前述根據本發明第三態樣所述之基地台中之型樣輪換處理相逆的處理。 根據本發明之方案可以消除或減少現有LTE協定中DMRS增強技術下存在之OFDM符號間不平衡問題。The purpose of the present invention is to solve the problem of OFDM inter-symbol imbalance existing under the DMRS enhancement technology in the existing LTE protocol. According to a first aspect of the present invention, a method for processing a DMRS signal in a base station based on an LTE protocol is provided, wherein the method further comprises: - performing on the subcarrier corresponding to the available DMRS antenna 进行 before performing the OFDMA modulation The OCC performs a pattern rounding process to reduce the power imbalance between the subsequently generated OFDM symbols. According to a second aspect of the present invention, a method for processing a DMRS signal in an LTE-based user equipment is provided, comprising: on a subcarrier corresponding to an available DMRS antenna 中 in an OFDM demodulated data block The OCC performs a reverse process from the pattern rotation process in the method according to the first aspect of the present invention. According to a third aspect of the present invention, there is provided an apparatus for processing a DMRS signal in a base station based on an LTE protocol, wherein before performing OFDMA modulation, the apparatus further comprises: a pattern rotation processing apparatus for The OCC on the corresponding subcarrier of the DMRS antenna performs a pattern rotation process to reduce the power imbalance between the subsequently generated OFDM symbols. According to a fourth aspect of the present invention, there is provided an apparatus for processing a DMRS signal in an LTE-based user equipment, comprising: a pattern rotation inverse processing apparatus, configured to perform OFDM-demodulated data blocks The processing of the OCC on the subcarrier corresponding to the DMRS antenna 可用 can be reversed from the above-described pattern rotation processing in the base station according to the third aspect of the present invention. According to the solution of the present invention, the problem of imbalance between OFDM symbols existing under the DMRS enhancement technology in the existing LTE protocol can be eliminated or reduced.

儘管示例性實施例可以有多種修改及替換形式,但在附圖中以舉例方式展示其中的一些實施例,並且將在此處對其進行詳細描述。但應當理解的是,並不意欲將示例性實施例限制於所揭示之具體形式,相反,示例性實施例意欲涵蓋落在申請專利範圍之範疇內之所有修改、等效方案及替換方案。相同的附圖標記在各圖之描述中始終指代相同的單元。 在更加詳細地討論示例性實施例之前應當提及的是,一些示例性實施例被描述成作為流程圖描繪之處理或方法。儘管流程圖將各項操作描述成順序處理,但其中之許多操作可以被並行地、併發地或者同時實施。此外,各項操作之順序可以被重新安排。當其操作完成時,該處理可以被終止,但亦可以具有未包含在附圖中之附加步驟。該處理可以對應於方法、函數、過程、子常式、子程式等等。 此處所使用之術語「無線設備」或「設備」可以被視為與以下各項同義並且在後文中有時可以被稱作以下各項:用戶端、使用者設備、行動台、行動使用者、行動端、用戶、使用者、遠端台、存取終端機、接收器、行動單元等等,並且可以描述無線通信網路中之無線資源之遠端使用者。 類似地,此處所使用之術語「基地台」可以被視為與以下各項同義並且在後文中有時可以被稱作以下各項:B節點、演進型B節點、eNodeB、收發器基地台(BTS)、RNC等等,並且可以描述在可以跨越多個技術世代之無線通信網路中與行動端通信並且為之提供無線資源之收發器。除了實施此處所討論之方法的能力之外,此處所討論之基地台可以具有與傳統的眾所周知之基地台相關聯之所有功能。 下文所討論之方法(其中一些藉由流程圖展示)可以藉由硬體、軟體、韌體、中介軟體、微碼、硬體描述語言或者其任意組合來實施。當用軟體、韌體、中介軟體或微碼來實施時,用以實施必要任務之程式碼或碼段可以被儲存在機器或電腦可讀媒體(比如儲存媒體)中。(一或多個)處理器可以實施必要任務。 此處所揭示之具體結構及功能細節僅係代表性的,並且係用於描述本發明之示例性實施例之目的。但本發明可以藉由許多替換形式來具體實現,並且不應當被解釋成僅受限於此處所闡述之實施例。 應當理解的是,儘管在此處可能使用術語「第一」、「第二」等等來描述各個單元,但此等單元不應當受此等術語限制。使用此等術語僅係為了將一個單元與另一個單元進行區分。舉例而言,在不背離示例性實施例之範疇之情況下,第一單元可以被稱為第二單元,並且類似地第二單元可以被稱為第一單元。此處所使用之術語「及/或」包含其中一或多個所列出之相關聯項目的任意及所有組合。 應當理解的是,當一個單元被稱為「連接」或「耦接」至另一單元時,其可以直接連接或耦接至該另一單元,或者可以存在中間單元。與此相對,當一個單元被稱為「直接連接」或「直接耦接」至另一單元時,則不存在中間單元。應當按照類似之方式來解釋被用於描述單元之間的關係之其他詞語(例如「處於…之間」相比於「直接處於…之間」,「與…鄰近」相比於「與…直接鄰近」等等)。 此處所使用之術語僅係為了描述具體實施例而不意欲限制示例性實施例。除非上下文明確地另有所指,否則此處所使用之單數形式「一個」、「一項」亦意欲包含複數。亦應當理解的是,此處所使用之術語「包含」及/或「包括」規定所陳述之特徵、整數、步驟、操作、單元及/或組件之存在,而不排除存在或添加一或多個其他特徵、整數、步驟、操作、單元、組件及/或其組合。 亦應當提及的是,在一些替換實現方式中,所提及之功能/動作可以按照不同於附圖中標示之順序發生。舉例而言,取決於所涉及之功能/動作,相繼展示之兩個圖實際上可以實質上同時執行或者有時可以按照相反之順序來執行。 除非另行定義,否則此處使用之所有術語(包含技術及科學術語)皆具有與示例性實施例熟習此項技術者通常所理解的相同之含義。亦應當理解的是,除非在此處被明確定義,否則例如在常用字典中定義之彼等術語應當被解釋成具有與其在相關領域之上下文中之含義相一致之含義,而不應按照理想化或者過於正式之意義來解釋。 示例性實施例之一些部分及相應之詳細描述係藉由電腦儲存器內之軟體或演算法以及對於資料位元之操作之符號表示而給出的。此等描述及表示係熟習此項技術者用以向熟習此項技術的其他人員有效地傳達其工作實質之描述及表示。正如其通常被使用的一般,此處所使用之術語「演算法」被設想成獲得所期望之結果之自相一致之步驟序列。該等步驟係需要對實體數量進行實體操縱之彼等步驟。通常而非必要的是,此等數量採取能夠被儲存、傳輸、組合、比較以及按照其他方式被操縱之光學、電氣或磁性信號之形式。主要出於通常使用之原因,已經證明有時把此等信號稱作位元、數值、元素、符號、字符、項、數位等等係便利的。 在下文之描述中將參照可以被實施為程式模組或功能處理之動作以及操作之符號表示(例如以流程圖之形式)來描述說明性實施例,該等程式模組或功能處理包含實施特定任務或者實施特定抽象資料類型之常式、程式、物件、組件、資料結構等等,並且可以利用現有網路單元處之現有硬體來實施。此類現有硬體可以包含一或多個中央處理單元(CPU)、數位信號處理器(DSP)、特殊應用積體電路、現場可程式化閘陣列(FPGA)電腦等等。 但應當認識到,所有此等以及類似之術語應當與適當之實體數量相關聯,並且僅係被應用於此等數量之便利標籤。除非明確地另行聲明或者從討論中可以明顯看出,否則例如「處理」、「計算」、「確定」或「顯示」等術語係指電腦系統或類似之電子計算設備之動作及處理,其對被表示為該電腦系統之暫存器及記憶體內之實體、電子數量之資料進行操縱,並且將其變換成被類似地表示為該等電腦系統記憶體或暫存器或者其他此類資訊儲存、傳送或顯示設備內之實體數量之其他資料。 亦應當提及的是,示例性實施例之軟體實施之態樣通常被編碼在某種形式之程式儲存媒體上或者藉由某種類型之傳送媒體來實施。該程式儲存媒體可為磁性(例如軟碟或硬碟機)或光學(例如壓縮光碟唯讀記憶體或「CD ROM」)儲存媒體,並且可為唯讀或隨機存取儲存媒體。類似地,該傳送媒體可為雙絞線、同軸電纜、光纖或者此項技術內已知之某種其他適當傳送媒體。示例性實施例不受任何給定實現方式之此等態樣之限制。 處理器及記憶體可以一同操作來運行裝置功能。舉例而言,記憶體可以儲存關於裝置功能之碼段。該碼段亦可以由處理器執行。此外,記憶體可以儲存處理變數及常數以供處理器使用。 圖4展示根據本發明一個態樣之一種在基於LTE協定之基地台中用於處理DMRS信號之方法。其中,如圖4所示: 在步驟S401中,基地台對可用DMRS天線埠對應之副載波上之OCC進行型樣輪轉處理,以減少隨後產生之OFDM符號間之功率不平衡; 隨後在步驟S402中,基地台對包括該經對OCC進行型樣輪換處理後之資料區塊進行OFDM調變,產生OFDM符號。 亦即,為了解決現有LTE協定之DMRS增強技術中存在之OFDM符號間功率不平衡的問題,根據本發明之基地台藉由對可用DMRS天線埠對應之副載波上之OCC型樣進行型樣輪轉處理,隨後再對包括該經對OCC進行型樣輪換處理後之資料區塊進行OFDM調變,產生OFDM符號。 具體地,上述型樣輪換處理過程包含但不限於在型樣中對DMRS使用之OCC輪轉型樣進行一定程度之變換,例如基於列置換及頻率相關碼之變換。以下分別給出基於列置換及頻率相關碼之變換之兩種實現方案。基於列置換之方案: 在步驟S401中,該對可用DMRS天線埠對應之副載波上之OCC進行型樣輪轉處理之步驟包含: - 對可用DMRS天線埠對應之副載波上使用如下公式給出之M=4個DMRS OCC輪轉型樣:(1) 其中,係4×4置換矩陣,即之每一列皆係不相同的,且從以下列集合中選擇:, 且滿足以下條件:(2)。 下文以當前LTE協定中指定用於DMRS增強之4個天線埠7/8/11/13為例,用二個實例來進一步說明以上基於列置換之方案:實例 1 其中,為:顯然,滿足以上公式(2)之條件,則如圖2所示,OCC輪換型樣為:。 在此,如以下公式所示,可以很容易驗證在本實例中經列置換後之DMRS符號間之傳輸功率相同。, 若PRB數目係4之整數倍,基於本實例之旋轉後之DMRS OCC型樣(以下簡稱「OCC型樣」)消除不同符號間之功率抖動問題。將上述旋轉後之OCC型樣代入至原始walsh矩陣中,在此例子中可以看到,埠7/8仍然保持與R12相同之旋轉型樣,埠11/13上之DMRS OCC型樣變換為:。 作為一種較佳方案,由於埠7/8上之OCC型樣沒有改變,因此該實例可以在DMRS增強技術中與R12及更早版本之使用者設備相容。 一般而言,除了實例1之外,若要在DMRS增強技術中支援R12及更早版本之使用者設備,對選擇之另一個限制條件係保證埠7/8之OCC輪轉型樣與R12協定中規定之OCC型樣相同。 2 在本實例中,為:同樣地,亦滿足公式(2)之條件。OCC輪轉型樣為:。 可以看出,以上OCC輪換型樣係一個循環位移之形式,亦可以很容易驗證基於本實例之OCC輪轉型樣亦消除不同符號間之功率抖動問題,並且未改變R12中定義之埠7/8之輪轉型樣。 由於DMRS增強技術在每個OFDM符號之一個PRB中有個RE之情況,列置換之方法只能在數目為4之整數倍之PRB中才能達到功率均衡。此亦要求在頻道頻率選擇性上有一定限制,亦即,要求頻道頻率選擇特性在4個PRB中基本一致。為了解決此問題,提出另一種基於頻率相關碼之解決方案,可以減輕上述基於列置換之方案對於頻道頻率選擇性之要求。基於頻率相關碼之方案: 在本方案中,在步驟S401中,該對可用DMRS天線埠對應之副載波上之OCC進行型樣輪轉處理之步驟包含: - 將在可用DMRS天線埠對應之副載波上使用如下式之M個DMRS OCC輪換型樣:其中,表示以向量為對角元素之對角矩陣 其中,滿足,其中。 為進一步闡述本方案,先給出一個當前OCC輪轉型樣之表達方式如下。 (3) 其中,。以上表達式可以表示當前R12版本使用之輪轉型樣。對於每個天線埠上之傳輸層,皆有不同頻率相關碼。例如,係對於天線埠7/13,對應於天線埠8/11。從而,第一個OFDM符號之傳輸功率可以表達為: (4) 其中,。考察以下條件(5) 很明顯,若對沒有特別假定,依賴於向量。若上述公式(5)可以得到滿足,即矩陣之列之間皆係相互正交的,則利用中元素之恆模特性,得到=,亦即,不依賴於時域之OCC碼。此一結果對於亦係同樣的。換言之,當時,一個子幀內之四個DMRS符號間有相同之傳輸功率。 本方案之OCC型樣如圖3所示,其中,為了使得有效,M應大於等於4。 下文用二個實例來進一步說明本方案:實例 3 較佳地,為了能與以往之使用者設備相容,埠7/8對應之副載波上之OCC型樣必須與當前R12之型樣一致。因此,矩陣F之前2列必須為:。 例如,當M=6時,F矩陣設為:。 其中,。 使用以上F矩陣,由於F矩陣之前兩列與現有R12版本之OCC型樣相同,因此可以在DMRS增強技術中與R12及更早版本之使用者設備相容,同時消除DMRS所處之OFDM符號間功率不平衡問題。實例 4 當M=9,F矩陣設為:。 其中,。 由於以上F矩陣僅有第一列與現有R12版本之OCC型樣相同,因此只能在天線埠7上在DMRS增強技術中與R12及更早版本之使用者設備相容。 圖5展示根據本發明另一態樣之在基於LTE之使用者設備中處理信號之方法。其中,如圖5所示: 在步驟S501中,使用者設備對來自基地台之OFDM符號進行解調處理,以獲得經OFDM解調後之資料區塊; 隨後,在步驟S502中,使用者設備對經OFDM解調後之資料區塊中與可用DMRS天線埠對應之副載波上之OCC進行與上述參照圖3所描述之在基於LTE協定之基地台中之型樣輪換處理相逆之處理。 亦即,為了解決現有LTE協定之DMRS增強技術中存在之OFDM符號間功率不平衡問題,根據本發明之基地台藉由對可用DMRS天線埠對應之副載波上之OCC型樣進行型樣輪轉處理,隨後再對包括該經對OCC進行型樣輪換處理後之資料區塊進行OFDM調變,產生OFDM符號,用於進行傳輸。相應地,根據本發明之使用者設備需對來自基地台之經OFDM解調後之資料區塊中與可用DMRS天線埠對應之副載波上之OCC進行與上述參照圖3所描述之在基於LTE協定之基地台中之型樣輪換處理相逆之處理,才能還原原始之與可用DMRS天線埠對應之副載波上之OCC。因為,對於熟習此項技術者而言,很容易在已知一種處理過程中推導出與之相逆之處理,故在此不做贅述。 圖6展示根據本發明一個態樣之一種在基於LTE協定之基地台中用於處理DMRS信號之裝置,其中,如圖4所示,包含: 型樣輪轉處理裝置601,用於對可用DMRS天線埠對應之副載波上之OCC進行型樣輪轉處理,以減少隨後產生之OFDM符號間之功率不平衡; OFDM調變裝置602,用於對包括該經對OCC進行型樣輪換處理後之資料區塊進行OFDM調變,產生OFDM符號。 亦即,為了解決現有LTE協定之DMRS增強技術中存在之OFDM符號間功率不平衡問題,根據本發明之基地台藉由對可用DMRS天線埠對應之副載波上之OCC型樣進行型樣輪轉處理,隨後再對包括該經對OCC進行型樣輪換處理後之資料區塊進行OFDM調變,產生OFDM符號。 具體地,上述型樣輪換處理過程包含但不限於在型樣中對DMRS使用之OCC輪轉型樣進行一定程度之變換,例如基於列置換及頻率相關碼之變換。以下分別給出基於列置換及頻率相關碼之變換之兩種實現方案。基於列置換之方案: 在本方案中,該型樣輪轉處理裝置601具體用於: -對可用DMRS天線埠對應之副載波上使用如下公式給出之M=4個DMRS OCC輪轉型樣::(1) 其中,係4×4置換矩陣,即之每一列皆係不相同的,且從以下列集合中選擇:, 且滿足以下條件:(2)。 下文以當前LTE協定中指定用於DMRS增強之4個天線埠7/8/11/13為例,用二個實例來進一步說明以上基於列置換之方案:實例 1 其中,為:顯然,滿足以上公式(2)之條件,則如圖2所示,OCC之輪換旋轉型樣為:。 在此,如以下公式所示,可以很容易驗證在本實例中經列置換後之DMRS符號間之傳輸功率相同。若PRB數目係4之整數倍,基於本實例之旋轉後之DMRS OCC型樣(以下簡稱「OCC型樣」)消除不同符號間之功率抖動問題。將上述旋轉後之OCC型樣代入至原始walsh矩陣中,在此例子中可以看到,埠7/8上仍然保持與R12版本相同之旋轉型樣,埠11/13上之OCC型樣變換為: 作為一種較佳方案,由於埠7/8上之OCC型樣沒有改變,因此該實例可以在DMRS增強技術中與R12及更早版本之使用者設備相容。 一般而言,除了實例1之外,若要在DMRS增強技術中支援R12及更早版本之使用者設備,對選擇之另一個限制條件係保證埠7/8之OCC輪轉型樣與R12協定中規定之OCC型樣相同。實例 2 在本實例中,為:同樣地,亦滿足公式(2)之條件。OCC輪轉型樣為:。 可以看出,以上OCC輪換型樣係一個循環位移之形式,亦可以很容易驗證基於本實例之OCC輪轉型樣亦消除不同符號間之功率抖動問題,並且未改變R12中定義之埠7/8之輪轉型樣。 由於DMRS增強技術在每個OFDM符號之一個PRB中有個RE之情況,列置換之方法只能在數目為4之整數倍之PRB中才能達到功率均衡。此亦要求在頻道頻率選擇性上有一定限制,亦即,要求頻道頻率選擇特性在4個PRB中基本一致。為了解決此問題,提出另一種基於頻率相關碼之解決方案,可以減輕上述基於列置換之方案對於頻道頻率選擇性之要求。基於頻率相關碼之方案: 在本方案中,該型樣輪轉處理601具體用於: -將在可用DMRS天線埠對應之副載波上使用如下式之M個DMRS OCC輪換型樣:, 其中,表示以向量為對角元素之對角矩陣 其中,滿足,其中。 為進一步闡述本方案,先給出一個當前OCC輪轉型樣之表達方式如下: (3) 其中,。以上表達式可以表示當前R12使用之輪轉型樣。對於每個天線埠上之傳輸層,皆有不同之頻率相關碼。例如,係對於天線埠7/13,對應於天線埠8/11。從而,第一個OFDM符號之傳輸功率可以表達為: (4) 其中,。考察以下條件(5) 很明顯,若對沒有特別假定,依賴於向量。若上述公式(5)可以得到滿足,即矩陣之列之間皆係相互正交的,則利用中元素之恆模特性,得到=,亦即,不依賴於時域之OCC碼。此一結果對於亦係同樣的。換言之,當,一個子幀內之四個DMRS符號間有相同之傳輸功率。 本方案之OCC型樣如圖3所示,其中,為了使得有效,M應大於等於4。 下文用二個實例來進一步說明本方案:實例 3 較佳地,為了與以往之使用者設備能相容,埠7/8對應之副載波上之OCC型樣必須與當前R12之型樣一致。因此矩陣F之前2列必須為:。 例如,當M=6時,F矩陣設為:, 其中,。 使用以上F矩陣,由於F矩陣之前兩列與現有R12之DMRS OCC型樣相同,因此可以在DMRS增強技術中與R12及更早版本之使用者設備相容,同時消除DMRS所處之OFDM符號間功率不平衡問題。實例 4 當M=9時,F矩陣設為:。 其中,。 由於以上F矩陣僅有第一列與現有R12之OCC型樣相同,因此只能在天線埠7上在DMRS增強技術中與R12及更早版本之使用者設備相容。 圖7展示根據本發明另一態樣之在基於LTE之使用者設備中處理信號之裝置,其中,如圖5所示,包含: OFDM解調裝置701,用於對來自基地台之OFDM符號進行解調處理,以獲得經OFDM解調後之資料區塊; 型樣輪換逆處理裝置702,用於對經OFDM解調後之資料區塊中與可用DMRS天線埠對應之副載波上之OCC進行與上述參照圖3所描述之在基於LTE協定之基地台中之型樣輪換處理相逆之處理。 亦即,為了解決現有LTE協定之DMRS增強技術中存在之OFDM符號間功率不平衡問題,根據本發明之基地台藉由對可用DMRS天線埠對應之副載波上之OCC型樣進行型樣輪轉處理,隨後再對包括該經對OCC進行型樣輪換處理後之資料區塊進行OFDM調變,產生OFDM符號,用於進行傳輸。相應地,根據本發明之使用者設備需對來自基地台之經OFDM解調後之資料區塊中與可用DMRS天線埠對應之副載波上之OCC進行與上述參照圖3所描述之在基於LTE協定之基地台中之型樣輪換處理相逆之處理,才能還原原始之與可用DMRS天線埠對應之副載波上之OCC。因為,對於熟習此項技術者而言,很容易在已知一種處理過程中推導出與之相逆之處理,故在此不做贅述。 需要注意的是,本發明可在軟體及/或軟體與硬體之組合體中被實施,例如,本發明之各個裝置可採用特殊應用積體電路(ASIC)或任何其他類似硬體設備來實現。在一個實施例中,本發明之軟體程式可以藉由處理器執行以實現上文所述步驟或功能。同樣地,本發明之軟體程式(包含相關之資料結構)可以被儲存至電腦可讀記錄媒體中,例如,RAM記憶體,磁碟機或光碟機或軟碟及類似設備。另外,本發明之一些步驟或功能可採用硬體來實現,例如,作為與處理器配合從而執行各個步驟或功能之電路。 對於熟習此項技術者而言,顯然本發明不限於上述例示性實施例之細節,而且在不背離本發明之精神或基本特徵之情況下,能夠以其他具體形式實現本發明。因此,無論從哪一點來看,皆應將實施例看作係例示性的,而且係非限制性的,本發明之範疇由所附申請專利範圍而不是上述說明限定,因此旨在將落在申請專利範圍之等同要件之含義及範疇內之所有變化涵括在本發明內。不應將請求項中之任何附圖標記視為限制所涉及之請求項。此外,顯然「包含」一詞不排除其他單元或步驟,單數不排除複數。系統請求項中陳述之多個單元或裝置亦可以由一個單元或裝置藉由軟體或者硬體來實現。第一、第二等詞語用來表示名稱,而並不表示任何特定順序。 儘管上文特別展示並且描述例性實施例,但熟習此項技術者將會理解的是,在不背離申請專利範圍之精神及範疇之情況下,其形式及細節態樣可以有所變化。此處所尋求之保護在所附申請專利範圍中闡述。While the invention may be susceptible to various modifications and alternative forms, It should be understood, however, that the invention is not intended to be The same reference numbers will be used throughout the description of the drawings. It should be mentioned before discussing the exemplary embodiments in more detail that some exemplary embodiments are described as a process or method depicted as a flowchart. Although the flowcharts describe various operations as a sequential process, many of the operations can be implemented in parallel, concurrently, or concurrently. In addition, the order of operations can be rearranged. The process may be terminated when its operation is completed, but may have additional steps not included in the drawings. This processing may correspond to methods, functions, procedures, subroutines, subroutines, and the like. The term "wireless device" or "device" as used herein may be considered synonymous with the following and may sometimes be referred to as the following: client, user device, mobile station, mobile user, Mobile terminals, users, users, remote stations, access terminals, receivers, mobile units, etc., and can describe remote users of wireless resources in a wireless communication network. Similarly, the term "base station" as used herein may be considered synonymous with the following and may sometimes be referred to as the following: Node B, evolved Node B, eNodeB, transceiver base station ( BTS), RNC, etc., and may describe a transceiver that communicates with and provides wireless resources to a mobile terminal that can span multiple technical generations. In addition to the ability to implement the methods discussed herein, the base stations discussed herein can have all of the functionality associated with conventional well-known base stations. The methods discussed below, some of which are illustrated by flowcharts, can be implemented by hardware, software, firmware, mediation software, microcode, hardware description language, or any combination thereof. When implemented in software, firmware, mediation software or microcode, the code or code segments used to carry out the necessary tasks can be stored in a machine or computer readable medium (such as a storage medium). The processor(s) can perform the necessary tasks. The specific structural and functional details disclosed herein are merely representative and are for the purpose of describing exemplary embodiments of the invention. The present invention may, however, be embodied in many alternative forms and should not be construed as being limited only to the embodiments set forth herein. It will be understood that, although the terms "first", "second", and the like may be used herein to describe the various elements, such elements should not be limited by the terms. The use of such terms is only intended to distinguish one unit from another. For example, a first unit could be termed a second unit without departing from the scope of the exemplary embodiments, and similarly the second unit could be termed a first unit. The term "and/or" used herein includes any and all combinations of one or more of the associated listed items. It will be understood that when a unit is referred to as "connected" or "coupled" to another unit, it can be directly connected or coupled to the other unit, or an intermediate unit can be present. In contrast, when a unit is referred to as "directly connected" or "directly coupled" to another unit, there is no intermediate unit. Other words used to describe the relationship between units should be interpreted in a similar manner (eg "between" and "directly between" and "close to" compared to "directly with" Proximity, etc.). The terminology used herein is for the purpose of describing the particular embodiments, The singular forms "a", "an", and <RTIgt; It is also to be understood that the terms "comprises" and / or "comprising" are used to mean the existence of the recited features, integers, steps, operations, units and/or components, and do not exclude the presence or addition of one or more Other features, integers, steps, operations, units, components, and/or combinations thereof. It should also be noted that, in some alternative implementations, the functions/acts noted may occur in a different order than that illustrated in the drawings. For example, two figures shown in succession may in fact be executed substantially concurrently or sometimes in the reverse order, depending on the function/acts involved. All terms (including technical and scientific terms) used herein have the same meaning as commonly understood by those skilled in the art, unless otherwise defined. It should also be understood that, unless explicitly defined herein, such terms as defined in the commonly used dictionary should be interpreted as having a meaning consistent with their meaning in the context of the relevant art, and should not be idealized. Or too formal meaning to explain. Portions of the exemplary embodiments and corresponding detailed description are given by software or algorithms within the computer memory and symbolic representations of operations on the data bits. These descriptions and representations are used to convey a description and representation of the substance of the work to others skilled in the art. As is commonly used, the term "algorithm" as used herein is conceived to be a self-consistent sequence of steps to achieve the desired result. These steps are those steps that require physical manipulation of the number of entities. Usually, but not necessarily, such quantities are in the form of optical, electrical, or magnetic signals that can be stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to such signals as bits, values, elements, symbols, characters, terms, digits, and so forth. In the following description, illustrative embodiments are described with reference to the acts of the program modules or functional processes and the symbolic representation of the operations, such as in the form of a flowchart, which includes implementation specific Tasks or implementations of routines, programs, objects, components, data structures, etc. of a particular abstract data type, and can be implemented using existing hardware at existing network elements. Such existing hardware may include one or more central processing units (CPUs), digital signal processors (DSPs), special application integrated circuits, field programmable gate array (FPGA) computers, and the like. It should be recognized, however, that all such and similar terms should be associated with the appropriate number of entities and are applied only to the number of convenience labels. Terms such as "processing", "calculating", "determining" or "displaying" refer to the actions and processing of computer systems or similar electronic computing devices, unless explicitly stated otherwise or apparent from the discussion. Manipulating the data of the physical and electronic quantities of the scratchpad and memory in the computer system and converting it into similarly represented as computer memory or scratchpad or other such information storage, Transfer or display additional information about the number of entities in the device. It should also be noted that the software implementation aspects of the exemplary embodiments are typically encoded on some form of program storage medium or implemented by some type of transmission medium. The program storage medium can be a magnetic (eg, floppy or hard drive) or optical (eg, compact disc-read only memory or "CD ROM") storage medium and can be a read-only or random access storage medium. Similarly, the transmission medium can be twisted pair, coaxial cable, fiber optics, or some other suitable transmission medium known in the art. The exemplary embodiments are not limited by the scope of any given implementation. The processor and memory can operate together to run device functions. For example, the memory can store code segments for device functionality. The code segment can also be executed by a processor. In addition, the memory can store processing variables and constants for use by the processor. 4 shows a method for processing a DMRS signal in a base station based on an LTE protocol in accordance with an aspect of the present invention. Wherein, as shown in FIG. 4: in step S401, the base station performs pattern rotation processing on the OCC on the subcarrier corresponding to the available DMRS antenna , to reduce the power imbalance between the subsequently generated OFDM symbols; then in step S402 The base station performs OFDM modulation on the data block including the type rotation processing on the OCC to generate an OFDM symbol. That is, in order to solve the problem of power imbalance between OFDM symbols existing in the DMRS enhancement technology of the existing LTE protocol, the base station according to the present invention performs pattern rotation by using the OCC pattern on the subcarrier corresponding to the available DMRS antenna 埠Processing, and then performing OFDM modulation on the data block including the pattern rotation processing on the OCC to generate an OFDM symbol. Specifically, the above-described pattern rotation process includes, but is not limited to, a certain degree of transformation of the OCC wheel transformation sample used by the DMRS in the pattern, for example, based on column permutation and frequency dependent code transformation. Two implementations based on column permutation and frequency dependent code conversion are given below. Based on the column permutation scheme: in step S401, the step of performing the type rotation processing on the OCC on the subcarrier corresponding to the available DMRS antenna 包含 includes: - using the following formula for the subcarrier corresponding to the available DMRS antenna 埠M=4 DMRS OCC round transformation samples: (1) Among them, a 4×4 permutation matrix, ie Each of the columns is different and is selected from the following collections: , and the following conditions are met: (2). The following is based on the four antennas 埠7/8/11/13 specified in the current LTE protocol for DMRS enhancement. Two examples are used to further illustrate the above scheme based on column permutation: Example 1 : for: Obviously, To satisfy the conditions of the above formula (2), as shown in Figure 2, the OCC rotation pattern is: . Here, as shown in the following formula, it can be easily verified that the transmission power between the DMRS symbols after column replacement in this example is the same. If the number of PRBs is an integer multiple of 4, the rotated DMRS OCC pattern (hereinafter referred to as "OCC pattern") based on this example eliminates the power jitter problem between different symbols. Substituting the above rotated OCC pattern into the original walsh matrix, it can be seen in this example that 埠7/8 still maintains the same rotation pattern as R12. , DM11/13 on the DMRS OCC type is transformed into: . As a preferred solution, since the OCC pattern on the 埠7/8 is unchanged, this example can be compatible with the R12 and earlier user devices in the DMRS enhancement technique. In general, in addition to the example 1, in order to support R12 and earlier user devices in the DMRS enhancement technology, Another limitation of the choice is to ensure that the OCC round transformation of the 埠7/8 is the same as the OCC version specified in the R12 Agreement. Examples 2: In this example, for: Similarly, The condition of formula (2) is also satisfied. The OCC round transformation is: . It can be seen that the above OCC rotation pattern is in the form of a cyclic displacement, and it can be easily verified that the OCC wheel transition sample based on this example also eliminates the power jitter problem between different symbols, and does not change the 埠7/8 defined in R12. The transformation of the round. Since the DMRS enhancement technique has one PRB per OFDM symbol In the case of REs, the method of column permutation can only achieve power equalization in a PRB with an integer multiple of four. This also requires a certain limitation on the channel frequency selectivity, that is, the channel frequency selection characteristic is required to be substantially identical among the four PRBs. In order to solve this problem, another frequency-dependent code-based solution is proposed, which can alleviate the channel frequency selectivity requirement of the above-mentioned column-based replacement scheme. The scheme based on the frequency correlation code: In the present solution, in step S401, the step of performing the type rotation processing on the OCC on the subcarrier corresponding to the available DMRS antenna 包含 includes: - the subcarrier corresponding to the available DMRS antenna 埠M DMRS OCC rotation patterns using the following formula: among them, Representation vector a diagonal matrix of diagonal elements, , Satisfy ,among them . To further elaborate this scheme, first give a current OCC round transformation sample. and The expression is as follows. (3) Among them, , . The above expression can represent the round transformation used by the current R12 version. For each transmission layer on the antenna, there are different frequency correlation codes. E.g, For the antenna 埠7/13, Corresponds to antenna 埠 8/11. Thus, the transmission power of the first OFDM symbol can be expressed as: (4) Among them, . Investigate the following conditions (5) Obviously, if No special assumptions, Dependent on vector . If the above formula (5) can be satisfied, ie The columns of the matrix are orthogonal to each other, and the use The constant elementality of the element = ,that is, OCC code that does not depend on the time domain . This result is for , and The same is true. In other words, when When there are the same transmission power between the four DMRS symbols in one subframe. The OCC type of this scheme is shown in Figure 3, in order to make Valid, M should be greater than or equal to 4. The following two examples are used to further illustrate the scheme: Example 3 : Preferably, in order to be compatible with the prior user equipment, the OCC pattern on the subcarrier corresponding to 埠7/8 must be consistent with the current R12 type. . Therefore, the first two columns of matrix F must be: . For example, when M=6, the F matrix is set to: . among them, . Using the above F matrix, since the first two columns of the F matrix are identical to the OCC version of the existing R12 version, it can be compatible with the R12 and earlier user devices in the DMRS enhancement technology, and eliminate the OFDM symbol between the DMRSs. Power imbalance problem. Example 4 : When M=9, the F matrix is set to: . among them, . Since only the first column of the above F matrix is the same as the OCC version of the existing R12 version, it can only be compatible with the user equipment of R12 and earlier in the DMRS enhancement technology on the antenna 埠7. 5 shows a method of processing signals in an LTE-based user equipment in accordance with another aspect of the present invention. As shown in FIG. 5, in step S501, the user equipment performs demodulation processing on the OFDM symbols from the base station to obtain the OFDM-demodulated data block; subsequently, in step S502, the user equipment The OCC on the subcarrier corresponding to the available DMRS antenna 中 in the OFDM demodulated data block is inversely processed from the above-described LTE-based base station in the base station according to FIG. That is, in order to solve the power imbalance problem between OFDM symbols existing in the DMRS enhancement technology of the existing LTE protocol, the base station according to the present invention performs type rotation processing on the OCC pattern on the subcarrier corresponding to the available DMRS antenna 埠Then, the data block including the type-rotation processing of the OCC is OFDM-modulated to generate an OFDM symbol for transmission. Correspondingly, the user equipment according to the present invention needs to perform OCC on the subcarrier corresponding to the available DMRS antenna 中 in the OFDM demodulated data block from the base station, and the LTE-based method described above with reference to FIG. The reverse processing of the type rotation in the base station of the agreement can restore the original OCC on the subcarrier corresponding to the available DMRS antenna. Because, for those skilled in the art, it is easy to derive a reverse processing in a known process, so it will not be described here. 6 shows an apparatus for processing a DMRS signal in a base station based on an LTE protocol according to an aspect of the present invention, wherein, as shown in FIG. 4, the method includes: a pattern rotation processing apparatus 601 for using an available DMRS antenna. The OCC on the corresponding subcarrier performs a pattern rotation process to reduce the power imbalance between the OFDM symbols that are subsequently generated; the OFDM modulation device 602 is configured to perform the data block after the type rotation processing of the OCC OFDM modulation is performed to generate OFDM symbols. That is, in order to solve the power imbalance problem between OFDM symbols existing in the DMRS enhancement technology of the existing LTE protocol, the base station according to the present invention performs type rotation processing on the OCC pattern on the subcarrier corresponding to the available DMRS antenna 埠And then performing OFDM modulation on the data block including the pattern rotation processing on the OCC to generate an OFDM symbol. Specifically, the above-described pattern rotation process includes, but is not limited to, a certain degree of transformation of the OCC wheel transformation sample used by the DMRS in the pattern, for example, based on column permutation and frequency dependent code transformation. Two implementations based on column permutation and frequency dependent code conversion are given below. Scheme based on column permutation: In the present scheme, the pattern rotation processing device 601 is specifically configured to: - use M=4 DMRS OCC round transformation samples on the subcarriers corresponding to the available DMRS antennas using the following formula: (1) Among them, a 4×4 permutation matrix, ie Each of the columns is different and is selected from the following collections: , and the following conditions are met: (2). The following is based on the four antennas 埠7/8/11/13 specified in the current LTE protocol for DMRS enhancement. Two examples are used to further illustrate the above scheme based on column permutation: Example 1 : for: Obviously, To satisfy the conditions of the above formula (2), as shown in Fig. 2, the rotation pattern of the OCC is: . Here, as shown in the following formula, it can be easily verified that the transmission power between the DMRS symbols after column replacement in this example is the same. If the number of PRBs is an integer multiple of 4, the rotated DMRS OCC pattern (hereinafter referred to as "OCC pattern") based on this example eliminates the power jitter problem between different symbols. Substituting the above rotated OCC pattern into the original walsh matrix, it can be seen in this example that the 旋转7/8 still maintains the same rotation pattern as the R12 version. , OCC type on 埠11/13 is transformed into: As a preferred solution, since the OCC pattern on the 埠7/8 is unchanged, this example can be compatible with the R12 and earlier user devices in the DMRS enhancement technique. In general, in addition to the example 1, in order to support R12 and earlier user devices in the DMRS enhancement technology, Another limitation of the choice is to ensure that the OCC round transformation of the 埠7/8 is the same as the OCC version specified in the R12 Agreement. Example 2 : In this example, for: Similarly, The condition of formula (2) is also satisfied. The OCC round transformation is: . It can be seen that the above OCC rotation pattern is in the form of a cyclic displacement, and it can be easily verified that the OCC wheel transition sample based on this example also eliminates the power jitter problem between different symbols, and does not change the 埠7/8 defined in R12. The transformation of the round. Since the DMRS enhancement technique has one PRB per OFDM symbol In the case of REs, the method of column permutation can only achieve power equalization in a PRB with an integer multiple of four. This also requires a certain limitation on the channel frequency selectivity, that is, the channel frequency selection characteristic is required to be substantially identical among the four PRBs. In order to solve this problem, another frequency-dependent code-based solution is proposed, which can alleviate the channel frequency selectivity requirement of the above-mentioned column-based replacement scheme. Scheme based on frequency correlation code: In this scheme, the pattern rotation processing 601 is specifically used for: - M DMRS OCC rotation patterns of the following formula will be used on the subcarriers corresponding to the available DMRS antennas: , among them, Representation vector a diagonal matrix of diagonal elements, , Satisfy ,among them . To further elaborate this scheme, first give a current OCC round transformation sample. and The expression is as follows: (3) Among them, , . The above expression can represent the current round of transformations used by R12. There are different frequency correlation codes for the transmission layers on each antenna. E.g, For the antenna 埠7/13, Corresponds to antenna 埠 8/11. Thus, the transmission power of the first OFDM symbol can be expressed as: (4) Among them, . Investigate the following conditions (5) Obviously, if No special assumptions, Dependent on vector . If the above formula (5) can be satisfied, ie The columns of the matrix are orthogonal to each other, and the use The constant elementality of the element = ,that is, OCC code that does not depend on the time domain . This result is for , and The same is true. In other words, when The same transmission power is available between the four DMRS symbols in one subframe. The OCC type of this scheme is shown in Figure 3, in order to make Valid, M should be greater than or equal to 4. The following two examples are used to further illustrate the scheme: Example 3 : Preferably, in order to be compatible with the prior user equipment, the OCC pattern on the subcarrier corresponding to 埠7/8 must be consistent with the current R12 type. . Therefore the first two columns of matrix F must be: . For example, when M=6, the F matrix is set to: , among them, . Using the above F matrix, since the first two columns of the F matrix are the same as the existing DMRS OCC of the R12, it can be compatible with the user equipment of the R12 and earlier versions in the DMRS enhancement technology, and eliminate the OFDM symbol between the DMRSs. Power imbalance problem. Example 4 : When M=9, the F matrix is set to: . among them, . Since only the first column of the above F matrix is the same as the OCC of the existing R12, it can only be compatible with the user equipment of R12 and earlier in the DMRS enhancement technology on the antenna 埠7. 7 shows an apparatus for processing a signal in an LTE-based user equipment according to another aspect of the present invention, wherein, as shown in FIG. 5, an OFDM demodulation apparatus 701 is configured to perform OFDM symbols from a base station. Demodulation processing to obtain an OFDM demodulated data block; a pattern rotation inverse processing device 702, configured to perform OCC on the subcarrier corresponding to the available DMRS antenna 资料 in the OFDM demodulated data block The processing reversed from the pattern rotation processing in the base station based on the LTE protocol described above with reference to FIG. That is, in order to solve the power imbalance problem between OFDM symbols existing in the DMRS enhancement technology of the existing LTE protocol, the base station according to the present invention performs type rotation processing on the OCC pattern on the subcarrier corresponding to the available DMRS antenna 埠Then, the data block including the type-rotation processing of the OCC is OFDM-modulated to generate an OFDM symbol for transmission. Correspondingly, the user equipment according to the present invention needs to perform OCC on the subcarrier corresponding to the available DMRS antenna 中 in the OFDM demodulated data block from the base station, and the LTE-based method described above with reference to FIG. The reverse processing of the type rotation in the base station of the agreement can restore the original OCC on the subcarrier corresponding to the available DMRS antenna. Because, for those skilled in the art, it is easy to derive a reverse processing in a known process, so it will not be described here. It should be noted that the present invention can be implemented in a combination of software and/or software and hardware. For example, each device of the present invention can be implemented by using an application specific integrated circuit (ASIC) or any other similar hardware device. . In one embodiment, the software program of the present invention may be executed by a processor to implement the steps or functions described above. Similarly, the software program of the present invention (including related data structures) can be stored in a computer readable recording medium such as a RAM memory, a disk drive or a CD player or a floppy disk and the like. In addition, some of the steps or functions of the present invention may be implemented in hardware, for example, as a circuit that cooperates with a processor to perform various steps or functions. It is apparent to those skilled in the art that the present invention is not limited to the details of the above-described exemplary embodiments, and the present invention can be embodied in other specific forms without departing from the spirit or essential characteristics of the invention. Therefore, the embodiments are to be considered as illustrative and not restrictive, and the scope of the invention is defined by the scope of the appended claims rather than the description All changes in the meaning and scope of the equivalents of the scope of the claims are included in the invention. Any reference in the request shall not be considered as a request for limitation. In addition, it is obvious that the word "comprising" does not exclude other elements or steps, and the singular does not exclude the plural. The plurality of units or devices recited in the system claim can also be implemented by a unit or device by software or hardware. The words first, second, etc. are used to denote names and do not denote any particular order. While the exemplifying embodiments have been shown and described, it will be understood by those skilled in the art that the form and details may be varied without departing from the spirit and scope of the invention. The protection sought here is set forth in the scope of the appended claims.

601‧‧‧型樣輪轉處理裝置
602‧‧‧OFDM調變裝置
S401‧‧‧步驟
S402‧‧‧步驟
S501‧‧‧步驟
S502‧‧‧步驟
601‧‧‧Model Rotary Treatment Unit
602‧‧‧OFDM modulation device
S401‧‧‧Steps
S402‧‧‧Steps
S501‧‧‧ steps
S502‧‧‧Steps

藉由下文給出之詳細描述及附圖將會更加全面地理解本發明,其中相同之單元由相同之附圖標記表示,附圖僅係作為說明給出的,因此不意欲對本發明構成限制,並且在附圖中: 圖1展示根據LTE R12協定之當前方案中的OCC輪轉型樣; 圖2展示根據本發明一個實施例之基於列置換之對DMRS信號進行處理後獲得之OCC輪轉型樣; 圖3展示根據本發明另一實施例之基於頻率相關碼之對DMRS進行處理後獲得之OCC輪轉型樣; 圖4展示根據本發明一個態樣之在基於LTE之基地台中處理DMRS信號之方法流程圖; 圖5展示根據本發明另一態樣之在基於LTE之使用者設備中處理DMRS信號之方法流程圖; 圖6展示根據本發明一個態樣之在基於LTE之基地台中處理DMRS信號之裝置方塊圖; 圖7展示根據本發明另一態樣之在基於LTE之使用者設備中處理DMRS信號之裝置方塊圖; 應當提及的是,此等附圖意欲說明在某些示例性實施例中所利用之方法、結構及/或材料之一般特性,並且對下文提供之書面描述做出補充。但此等附圖並非按比例繪製並且可能沒有精確地反映出任何給定實施例之精確結構或效能特性,並且不應當被解釋成定義或限制由示例性實施例所涵蓋之數值或屬性之範圍。在各個圖中使用類似的或完全相同的附圖標記係為了表明類似的或完全相同的單元或特徵之存在。The invention will be more fully understood from the following detailed description and the appended claims. And in the drawings: FIG. 1 shows an OCC round transition sample in a current scheme according to the LTE R12 protocol; FIG. 2 shows an OCC round transition sample obtained by processing a DMRS signal based on column permutation according to an embodiment of the present invention; 3 shows an OCC round transition sample obtained by processing a DMRS based on a frequency correlation code according to another embodiment of the present invention; FIG. 4 is a flowchart showing a method for processing a DMRS signal in an LTE-based base station according to an aspect of the present invention; Figure 5 shows a flow chart of a method for processing DMRS signals in an LTE-based user equipment according to another aspect of the present invention; Figure 6 shows a device for processing DMRS signals in an LTE-based base station according to an aspect of the present invention; Figure 7 shows a block diagram of a device for processing DMRS signals in an LTE-based user equipment in accordance with another aspect of the present invention; it should be mentioned that such The figures are intended to illustrate the general characteristics of the methods, structures, and/or materials utilized in certain exemplary embodiments, and to supplement the written description provided below. The drawings are not to scale and may not accurately reflect the precise structure or performance characteristics of any given embodiments, and should not be construed as limiting or limiting the scope of the values or attributes covered by the exemplary embodiments. . The use of similar or identical reference numerals in the various figures is intended to indicate the presence of similar or identical elements or features.

S401‧‧‧步驟 S401‧‧‧Steps

S402‧‧‧步驟 S402‧‧‧Steps

Claims (15)

一種在基於LTE協定之基地台中用於處理DMRS信號之方法,其中該方法在進行OFDMA調變前亦包含: 對可用DMRS天線埠對應之副載波上之OCC進行型樣輪轉處理,以減少隨後產生之OFDM符號間之功率不平衡。A method for processing a DMRS signal in a base station based on an LTE protocol, wherein the method further comprises: performing a round robin processing on an OCC on a subcarrier corresponding to the available DMRS antenna to perform subsequent OFDMA modulation to reduce subsequent generation The power imbalance between the OFDM symbols. 如請求項1之方法,該對可用DMRS天線埠對應之副載波上之OCC進行型樣輪轉處理之步驟包含: 在可用DMRS天線埠對應之副載波上使用如下公式給出之M=4個DMRS OCC輪轉型樣:其中W為沃爾什矩陣 係4×4置換矩陣,即之每一列皆係不相同的,且從以下列集合中選擇:, 且滿足以下條件:For the method of claim 1, the step of performing the type rotation processing on the OCC on the subcarrier corresponding to the available DMRS antenna includes: M=4 DMRSs are given on the subcarriers corresponding to the available DMRS antennas using the following formula: OCC round transformation sample: Where W is the Walsh matrix a 4×4 permutation matrix, ie Each of the columns is different and is selected from the following collections: , and the following conditions are met: . 如請求項1之方法,其中該對可用DMRS天線埠對應之副載波上之OCC進行型樣輪轉處理之步驟包含: 在可用DMRS天線埠對應之副載波上使用如下式之M個DMRS OCC輪換型樣:其中表示以向量為對角元素之對角矩陣; 其中W為沃爾什矩陣: ,滿足,其中The method of claim 1, wherein the step of performing the type rotation processing on the OCC on the subcarrier corresponding to the available DMRS antenna comprises: using the M DMRS OCC rotation type of the following formula on the subcarrier corresponding to the available DMRS antenna kind: among them Representation vector a diagonal matrix of diagonal elements; where W is a Walsh matrix: , Satisfy ,among them . 如請求項1至3中任一項之方法,其中該可用DMRS天線埠包含埠7、8、11及13。The method of any one of claims 1 to 3, wherein the available DMRS antenna 埠 comprises 埠 7, 8, 11 and 13. 一種在基於LTE之使用者設備中處理DMRS信號之方法,其中包含: 對經OFDM解調後之資料區塊中與可用DMRS天線埠對應之副載波上之OCC進行與如請求項1至4中任一項之型樣輪換處理相逆之處理。A method for processing a DMRS signal in an LTE-based user equipment, comprising: performing an OCC on a subcarrier corresponding to an available DMRS antenna 资料 in an OFDM demodulated data block and as in claims 1 to 4 The processing of any type of rotation is reversed. 一種在基於LTE協定之基地台中用於處理DMRS信號之裝置,其中在進行OFDMA調變前,該裝置亦包含: 型樣輪轉處理裝置,用於對可用DMRS天線埠對應之副載波上之OCC進行型樣輪轉處理,以減少隨後產生之OFDM符號間之功率不平衡。An apparatus for processing a DMRS signal in a base station based on an LTE protocol, wherein before performing OFDMA modulation, the apparatus further includes: a pattern rotation processing apparatus, configured to perform OCC on a subcarrier corresponding to the available DMRS antenna Pattern rotation processing to reduce power imbalance between OFDM symbols that are subsequently generated. 如請求項6之裝置,其中該型樣輪轉處理裝置具體用於: 在可用DMRS天線埠對應之副載波上使用如下公式給出之M=4個DMRS OCC輪轉型樣:其中其中W為沃爾什矩陣: 係4×4置換矩陣,即之每一列皆係不相同的,且從以下列集合中選擇:, 且滿足以下條件:The device of claim 6, wherein the pattern rotation processing device is specifically configured to: use the following formula to obtain M=4 DMRS OCC round transition samples on the corresponding subcarriers of the available DMRS antennas: Where W is the Walsh matrix: a 4×4 permutation matrix, ie Each of the columns is different and is selected from the following collections: , and the following conditions are met: . 如請求項7之裝置,其中為:The device of claim 7, wherein for: . 如請求項7之裝置,其中為:The device of claim 7, wherein for: . 如請求項6之裝置,其中該型樣輪轉處理裝置具體用於: 在可用DMRS天線埠對應之副載波上使用如下式之M個DMRS OCC輪換型樣:其中表示以向量為對角元素之對角矩陣; 其中W為沃爾什矩陣: ,滿足,其中The device of claim 6, wherein the pattern rotation processing device is specifically configured to: use the M DMRS OCC rotation patterns of the following formula on the subcarriers corresponding to the available DMRS antennas: among them Representation vector a diagonal matrix of diagonal elements; where W is a Walsh matrix: , Satisfy ,among them . 如請求項10之裝置,其中F滿足如下條件: F之前2列為:The device of claim 10, wherein F satisfies the following conditions: 2 before F is: . 如請求項10之裝置,其中M為6,F滿足如下條件:, 其中The device of claim 10, wherein M is 6, and F satisfies the following conditions: , among them . 如請求項10之裝置,其中M為9,F滿足如下條件:, 其中The device of claim 10, wherein M is 9, and F satisfies the following conditions: , among them . 如請求項6至13中任一項之裝置,其中該可用DMRS天線埠包含埠7、8、11及13。The apparatus of any one of claims 6 to 13, wherein the available DMRS antennas 埠 comprise 埠 7, 8, 11, and 13. 一種在基於LTE之使用者設備中處理DMRS信號之裝置,其中包含: 型樣輪換逆處理裝置,用於對經OFDM解調後之資料區塊中與可用DMRS天線埠對應之副載波上之OCC進行與如請求項6至14中任一項之型樣輪換處理相逆之處理。An apparatus for processing a DMRS signal in an LTE-based user equipment, comprising: a pattern rotation inverse processing apparatus, configured to perform OCC on a subcarrier corresponding to an available DMRS antenna in an OFDM demodulated data block The processing reversed from the pattern rotation processing according to any one of claims 6 to 14 is performed.
TW105130919A 2015-09-25 2016-09-23 Method and apparatus for processing DRMS signals in a wireless communication system TW201724788A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510622983.7A CN106559193B (en) 2015-09-25 2015-09-25 The method and apparatus that DMRS signal is handled in a wireless communication system

Publications (1)

Publication Number Publication Date
TW201724788A true TW201724788A (en) 2017-07-01

Family

ID=57218945

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105130919A TW201724788A (en) 2015-09-25 2016-09-23 Method and apparatus for processing DRMS signals in a wireless communication system

Country Status (3)

Country Link
CN (1) CN106559193B (en)
TW (1) TW201724788A (en)
WO (1) WO2017051255A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10419181B2 (en) 2017-03-31 2019-09-17 Futurewei Technologies, Inc. System and method for demodulation reference signal overhead reduction
CN108809562B (en) * 2017-05-02 2020-08-28 电信科学技术研究院 DMRS sequence determination method, terminal and network side equipment
CN110933003B (en) * 2019-11-30 2021-09-14 上海大学 DMRS signal generation method based on FPGA

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8761087B2 (en) * 2009-11-11 2014-06-24 Samsung Electronics Co., Ltd. Method and system for balancing reference signal powers across OFDM symbols
US9179464B2 (en) * 2010-04-20 2015-11-03 Lg Electronics Inc. Method and device for transmitting reference signal in wireless communication system
CN102271109B (en) * 2010-06-07 2015-08-12 中兴通讯股份有限公司 A kind of mapping method of demodulation reference mark and system
KR101783165B1 (en) * 2010-06-16 2017-09-28 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) Methods and arrangements for transmitting and decoding reference signals
CN105191246B (en) * 2013-05-08 2019-06-14 瑞典爱立信有限公司 Orthogonality is provided to reference signal by the circle rotation of the basic sequence in frequency domain

Also Published As

Publication number Publication date
WO2017051255A2 (en) 2017-03-30
CN106559193B (en) 2019-09-27
WO2017051255A3 (en) 2017-05-04
CN106559193A (en) 2017-04-05

Similar Documents

Publication Publication Date Title
WO2020238573A1 (en) Signal processing method and apparatus
JP6628747B2 (en) Communication device, communication method, and integrated circuit
WO2018133650A1 (en) Sending method and receiving method for sideband information, sending terminal and receiving terminal
EP3232592B1 (en) Sending-end device
CN106411486B (en) Method and device for sending and receiving uplink demodulation pilot frequency
US10135589B2 (en) Inserting and extracting pilot sequences
JP7309887B2 (en) Signal processing method and apparatus
US11082112B2 (en) Base station and reception method for receiving repetition signals using a channel format that accommodates SRS transmission
US10784938B2 (en) Data processing method and apparatus
CN111200572B (en) Data transmission method and device
WO2018137460A1 (en) Reference signal configuration method, base station, and terminal
TW201724788A (en) Method and apparatus for processing DRMS signals in a wireless communication system
CN108809562B (en) DMRS sequence determination method, terminal and network side equipment
US10771133B2 (en) Signal transmission method and apparatus
US11902187B2 (en) Frequency spreading for high-performance communications
JP2020504915A (en) Signal transmission method, network device and terminal device
US20160020878A1 (en) Terminal device and base station device
TWI710235B (en) Method and device for transmitting data, method and device for channel estimation
JP2017509213A (en) Information processing apparatus, network node, and information processing method
WO2021031874A1 (en) Signal transmission method and communication apparatus
TWI734550B (en) Methods for generating a multi-port multi-symbol reference signal
JP7223841B2 (en) Data transmission method and equipment
CN110719152A (en) Uplink sending method and sending end
CN116886239A (en) Blind detection method and user equipment for 5G wireless communication system
CN115499275A (en) Communication method and device