TW201722357A - Three-dimensional median filtering method applied to computerized tomographic image eliminating the discontinuity occurred in the combination of two-dimensional section tomographic images - Google Patents

Three-dimensional median filtering method applied to computerized tomographic image eliminating the discontinuity occurred in the combination of two-dimensional section tomographic images Download PDF

Info

Publication number
TW201722357A
TW201722357A TW104143969A TW104143969A TW201722357A TW 201722357 A TW201722357 A TW 201722357A TW 104143969 A TW104143969 A TW 104143969A TW 104143969 A TW104143969 A TW 104143969A TW 201722357 A TW201722357 A TW 201722357A
Authority
TW
Taiwan
Prior art keywords
dimensional
noise
median
image
coordinate
Prior art date
Application number
TW104143969A
Other languages
Chinese (zh)
Other versions
TWI594732B (en
Inventor
Bing-Guo Weng
Ying-Yi Wu
Yi-Fu Tang
Lan-Rong Dong
Original Assignee
Nat Chung-Shan Inst Of Science And Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Chung-Shan Inst Of Science And Tech filed Critical Nat Chung-Shan Inst Of Science And Tech
Priority to TW104143969A priority Critical patent/TWI594732B/en
Publication of TW201722357A publication Critical patent/TW201722357A/en
Application granted granted Critical
Publication of TWI594732B publication Critical patent/TWI594732B/en

Links

Landscapes

  • Image Processing (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A three-dimensional median filtering method applied to a computerized tomographic image comprises the steps of: (A) reading a set of two-dimensional section computerized tomographic images which can be utilized to construct a three-dimensional image; (B) calibrating all coordinate positions of noises in the set of two-dimensional section computerized tomographic images; and (C) analyzing a distribution state of each noise in a two-dimensional section tomographic image and the adjacent two-dimensional section tomographic image where the noise is located; (D) performing a filtering algorithm according to the distribution state of the noise to obtain a median image datum that is utilized to replace the noise; and (E) processing the noise of the set of two-dimensional section computerized tomographic images to construct the three-dimensional image. In this way, the discontinuity occurred in the combination of the two-dimensional section tomographic images can be eliminated when the three-dimensional image is processed for stacking imagining.

Description

應用於電腦斷層影像之三維中值濾波方法 Three-dimensional median filtering method applied to computer tomographic images

本發明係關於一種電腦斷層影像的影像處理方法,特別是關於一種電腦斷層影像之三維中值濾波方法。 The invention relates to an image processing method for computer tomographic images, in particular to a three-dimensional median filtering method for computer tomographic images.

電腦斷層掃描Computer Tomography是用X光來產生影像,X光由X球管產生,當X光穿透不同密度的被檢測物時,X光會因組織密度的差異而產生不同程度的衰減,這些強弱程度不同的X光,會由閃爍體(CsI)吸收並轉換成可見光,可見光會被一個一維或二維的CCD或CMOS影像感測器吸收,最後得到被拍攝物體的X光投影影像,而X光管和偵測器則會持續在被檢測體的橫斷面上做旋轉,每轉一定角度就拍攝一張影像,直到完成旋轉180度以上的多方向影像拍攝;使用一維偵檢器時X球管需以螺旋方式對被檢測物旋轉多圈,使用二維偵檢器配合錐狀束X球管只需對被檢測物旋轉一圈即可,之後電腦會透過演算法將獲得的X光影像重建為二維的電腦斷層切面影像,二維切面影像堆疊起來可成為三維影像,三維影像係由二維切面影像合成而產生,因此往往會因為取像的精確度限制而摻雜斑點雜訊(impulsive noise)。 Computer Tomography uses X-rays to generate images. X-rays are generated by X-tubes. When X-rays penetrate different densities, X-rays will be attenuated to varying degrees due to differences in tissue density. X-rays with different degrees of intensity are absorbed by the scintillator (CsI) and converted into visible light. The visible light is absorbed by a one-dimensional or two-dimensional CCD or CMOS image sensor, and finally the X-ray projection image of the object is obtained. The X-ray tube and the detector will continue to rotate on the cross-section of the object to be tested, and one image will be taken at a certain angle until the multi-directional image is rotated by more than 180 degrees; the one-dimensional detection is used. When the X-tube is rotated in a spiral manner, the object to be detected is rotated by a plurality of turns. Using a two-dimensional detector and a cone-shaped X-tube, it is only necessary to rotate the object for one rotation, and then the computer will obtain an algorithm through the algorithm. The X-ray image is reconstructed into a two-dimensional computerized tomographic image. The two-dimensional image is stacked to form a three-dimensional image. The three-dimensional image is generated by two-dimensional image synthesis, so it is often mixed due to the accuracy of the image. Speckle noise (impulsive noise).

目前許多的影像處理技術提供多種方法解決雜訊問題,但如果目的只是要把雜訊去除,這樣的處理固然可以有效的在視覺上消除每張斷層切面影像(二維影像)的斑點雜訊,這些個別經影像處理的二維切面影像堆疊成為三維影像時,二維切面影像會造成三維影像成像時物體(objects)切片組合的不連續,這些不連續是肇因於影像處理後物體切片間的邊緣無法對齊,因此被檢測物3D重建後的三維影像會產生輪廓失真。 At present, many image processing technologies provide a variety of methods to solve the noise problem, but if the purpose is only to remove the noise, such a process can effectively visually eliminate the spot noise of each slice image (two-dimensional image). When these individual image-processed two-dimensional slice images are stacked into a three-dimensional image, the two-dimensional slice image will cause discontinuity of the object slice combination when the three-dimensional image is imaged. These discontinuities are caused by the image slice after the image processing. The edges cannot be aligned, so the 3D image reconstructed by the detected object 3D will produce contour distortion.

因此目前業界極需發展出一種三維電腦斷層影像的影像處理方法,可消除三維影像堆疊成像時物體(objects)切片組合的不連續,如此一來,方能同時兼具消除雜訊與避免三維電腦斷層影像建構時產生輪廓失真的問題。 Therefore, there is a great need in the industry to develop an image processing method for three-dimensional computed tomography images, which can eliminate the discontinuity of the object slice combination in the three-dimensional image stacking imaging, so that the noise can be eliminated simultaneously and the three-dimensional computer can be avoided. The problem of contour distortion occurs when the tomographic image is constructed.

鑒於上述悉知技術之缺點,本發明之主要目的在於提供一種應用於電腦斷層影像之三維中值濾波方法,整合一組可建構出三維影像的二維切面電腦斷層影像、一雜訊的分佈狀態、一濾波演算法及一中位值影像資料等,以建構出消除雜訊與避免輪廓失真的三維電腦斷層影像。 In view of the above-mentioned shortcomings of the prior art, the main object of the present invention is to provide a three-dimensional median filtering method for computerized tomographic images, which integrates a set of two-dimensional sliced computer tomographic images and a noise distribution state in which three-dimensional images can be constructed. A filter algorithm and a median image data are used to construct a three-dimensional computed tomography image that eliminates noise and avoids contour distortion.

為了達到上述目的,根據本發明所提出之一方案,提供一種應用於電腦斷層影像之三維中值濾波方法,步驟包括:(A)讀取一組可建構出三維影像的二維切面電腦斷層影像;(B)標定該組二維切面電腦斷層影像所有雜訊的座標位 置;(C)分析每一點雜訊之其所在二維切面電腦斷層影像及相鄰的二維切面電腦斷層影像的雜訊分佈狀態;(D)根據雜訊的分佈狀態進行一濾波演算法而得一中位值影像資料,並以該中位值影像資料取代雜訊;(E)將該組二維切面電腦斷層影像的雜訊處理後,建構出三維影像。 In order to achieve the above object, according to one aspect of the present invention, a three-dimensional median filtering method for computer tomographic images is provided, the steps comprising: (A) reading a set of two-dimensional slice computed tomography images capable of constructing three-dimensional images (B) calibration of the coordinate position of all noise of the two-dimensional section computer tomography image (C) analyze the noise distribution of the two-dimensional section computer tomographic image of each point of noise and the adjacent two-dimensional section computer tomogram; (D) perform a filtering algorithm according to the distribution state of the noise A median image data is obtained, and the noise is replaced by the median image data; (E) the noise of the two-dimensional sliced computer tomographic image is processed to construct a three-dimensional image.

步驟(B)中該雜訊的座標位置的標定,為給予位於第Z張二維切面電腦斷層影像的該雜訊一個笛卡兒座標值(x,y,z),其中z係代表第Z張二維切面電腦斷層影像,x、y代表雜訊在第Z張二維切面電腦斷層影像平面的二維座標,藉由雜訊的笛卡兒座標值(x,y,z),可精確定位出雜訊在該組可建構出三維影像的二維切面電腦斷層影像的位置。 The calibration of the coordinate position of the noise in the step (B) is to give a Cartesian coordinate value (x, y, z) of the noise in the Z-dimensional two-dimensional section computer tomographic image, wherein the z system represents the Z-dimensional two-dimensional section Computer tomographic image, x, y represents the two-dimensional coordinates of the noise in the plane of the Z-dimensional two-dimensional computerized tomographic image, and the noise of the Cartesian coordinates (x, y, z) of the noise can accurately locate the noise. The group can construct the position of the two-dimensional slice computer tomographic image of the three-dimensional image.

步驟(C)中雜訊所在的二維切面電腦斷層影像及其相鄰的二維切面電腦斷層影像,指的是第Z張有雜訊的二維切面電腦斷層影像及第Z-1、Z+1張的二維切面電腦斷層影像;本發明分析處理的雜訊,不單純處理二維的雜訊資訊,而是分析雜訊在第Z-1、Z及Z+1張二維切面電腦斷層影像上的3維的分佈狀態。 The two-dimensional section computer tomographic image of the noise in step (C) and its adjacent two-dimensional section computer tomographic image refer to the Z-dimensional two-dimensional section computer tomographic image with noise and the third Z, Z +1 piece of two-dimensional section computer tomography image; the noise of the analysis and processing of the present invention does not simply deal with two-dimensional noise information, but analyzes the noise in the Z-1, Z and Z+1 two-dimensional section computer tomography image The 3-dimensional distribution state on the top.

根據雜訊的3維的分佈狀態,可將雜訊分為3種類型(但不以此為限)來做後續的影像處理,本發明提出三種區域範圍(但不以此為限)為第一等第笛卡兒座標區域、第二等第笛卡兒座標區域及第三等第笛卡兒座標區域;當雜訊點的3維的分佈狀態落入第一等第笛卡兒座標區域的範圍時,本發 明提出的濾波演算法為:I1(0,0,0)=median({I(x,y,x))|(x,y,z) S1})其中,S1表示第一等第笛卡兒座標區域,包含(0,0,0)、(1,0,0)、(0,1,0)、(0,0,1)、(-1,0,0)、(0,-1,0)、(0,0,-1),其中,S1:第一等第笛卡兒座標區域、I1:執行濾波演算法後,雜訊在座標位置的中位值影像資料,(0,0,0)為已被標定的雜訊點在第一等第笛卡兒座標區域的座標;當雜訊的3維的分佈狀態落入第二等第笛卡兒座標區域的範圍時,本發明提出的濾波演算法為:I2(0,0,0)=median({I(x,y,x))|(x,y,z) S2})其中,S2表示第二等第笛卡兒座標區域,包含(0,0,0)、(1,0,0)、(0,1,0)、(0,0,1)、(-1,0,0)、(0,-1,0)、(0,0,-1)、(0,1,1)、(0,-1,1)、(0,1,-1)、(0,-1,-1)、(1,1,0)、(1,-1,0)、(-1,1,0)、(-1,-1,0)、(1,0,1)、(-1,0,1)、(1,0,-1)、(-1,0,-1),其中,S2:第二等第笛卡兒座標區域、I2:執行濾波演算法後,雜訊在座標位置的中位值影像資料,(0,0,0)為已被標定的雜訊點在第二等第笛卡兒座標區域的座標;當雜訊的3維的分佈狀態落入第三等第笛卡兒座標區域的範圍時,本發明提出的濾波演算法為:I3(0,0,0)=median({I(x,y,x))|(x,y,z) S3})其中,S3表示第三等第笛卡兒座標區域,包含(0,0,0)、(1,0,0)、(0,1,0)、(0,0,1)、(-1,0,0)、(0,-1,0)、(0,0,-1)、(0,1,1)、(0,-1,1)、(0,1,-1)、(0,-1,-1)、(1,1,0)、(1,-1,0)、(-1,1,0)、(-1,-1,0)、(1,0,1)、(-1,0,1)、(1,0,-1)、(-1,0,-1)、(1,1,1)、(-1,1,1)、(1,-1,1)、(-1,-1,1)、(1,1,-1)、(1,-1,-1)、(-1,1,-1)、 (-1,-1,-1),其中,S3:第三等第笛卡兒座標區域、I3:執行濾波演算法後,雜訊在座標位置的中位值影像資料,(0,0,0)為已被標定的雜訊點在第三等第笛卡兒座標區域的座標。 According to the three-dimensional distribution state of the noise, the noise can be divided into three types (but not limited thereto) for subsequent image processing, and the present invention proposes three types of regions (but not limited thereto). The first-order Descartes coordinate area, the second-order Descartes coordinate area, and the third-order Descartes coordinate area; when the three-dimensional distribution of the noise points falls into the first-order Descartes coordinate area The range of the filtering algorithm proposed by the present invention is: I 1 (0,0,0)=median({I(x,y,x))|(x,y,z) S 1 }) where S 1 represents the first equal Cartesian coordinate region, including (0, 0, 0), ( 1 , 0, 0), (0, 1 , 0), (0, 0, 1 ), (-1,0,0), (0,-1,0), (0,0,-1), where S 1 : first equal Cartesian coordinate region, I 1 : perform filtering calculation After the law, the median image data of the noise at the coordinate position, (0,0,0) is the coordinate of the calibrated noise point in the coordinate area of the first-order Descartes; when the 3D of the noise When the distribution state falls within the range of the second-order Cartesian coordinate region, the filtering algorithm proposed by the present invention is: I 2 (0,0,0)=median({I(x,y,x))|( x,y,z) S 2 }) wherein S 2 represents a second equal Cartesian coordinate region, including (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1 ), (-1,0,0), (0,-1,0), (0,0,-1), (0,1,1), (0,-1,1), (0,1 ,-1), (0,-1,-1), (1,1,0), (1,-1,0), (-1,1,0), (-1,-1,0) , (1,0,1), (-1,0,1), (1,0,-1), (-1,0,-1), where S 2 : second-order Descartes coordinates Area, I 2 : After performing the filtering algorithm, the median image data of the noise at the coordinate position, (0, 0, 0) is the coordinate of the already calibrated noise point in the second-order Cartesian coordinate area. When the 3-dimensional distribution state of the noise falls within the range of the third-order Cartesian coordinate region, the filtering algorithm proposed by the present invention is: I 3 (0, 0, 0) = median ({I(x) ,y,x))|(x,y,z) S 3 }) where S 3 represents a third-order Cartesian coordinate region including (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1 ), (-1,0,0), (0,-1,0), (0,0,-1), (0,1,1), (0,-1,1), (0,1 ,-1), (0,-1,-1), (1,1,0), (1,-1,0), (-1,1,0), (-1,-1,0) , (1,0,1), (-1,0,1), (1,0,-1), (-1,0,-1), (1,1,1), (-1,1 , 1), (1, -1, 1), (-1, -1, 1), (1, 1, -1), (1, -1, -1), (-1, 1, -1 ), (-1,-1,-1), where S 3 : third-order Cartesian coordinate region, I 3 : median image data of the noise at the coordinate position after performing the filtering algorithm, ( 0,0,0) is the coordinate of the calibrated noise point in the third-order Cartesian coordinate area.

以上之概述與接下來的詳細說明及附圖,皆是為了能進一步說明本創作達到預定目的所採取的方式、手段及功效。而有關本創作的其他目的及優點,將在後續的說明及圖式中加以闡述。 The above summary and the following detailed description and drawings are intended to further illustrate the manner, means and effects of the present invention in achieving its intended purpose. Other purposes and advantages of this creation will be explained in the following description and drawings.

S101-S105‧‧‧步驟 S101-S105‧‧‧Steps

S1‧‧‧第一等第笛卡兒座標區域 S 1 ‧‧‧First Descartes Coordinate Area

S2‧‧‧第二等第笛卡兒座標區域 S 2 ‧‧‧Second Descartes Coordinate Area

S3‧‧‧第三等第笛卡兒座標區域 S 3 ‧‧‧ Third Descartes Coordinate Area

第一圖係為本發明一種應用於電腦斷層影像之三維中值濾波方法流程圖;第二圖係為本發明第一等第笛卡兒座標區域示意圖;第三圖係為本發明第二等第笛卡兒座標區域示意圖;第四圖係為本發明第三等第笛卡兒座標區域示意圖。 The first figure is a flow chart of a three-dimensional median filtering method applied to computer tomographic images according to the present invention; the second figure is a schematic diagram of a first-order Cartesian coordinate area of the present invention; Schematic diagram of the Descartes coordinate area; the fourth figure is a schematic diagram of the third-order Cartesian coordinate area of the present invention.

以下係藉由特定的具體實例說明本創作之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地了解本創作之優點及功效。 The embodiments of the present invention are described by way of specific examples, and those skilled in the art can readily understand the advantages and effects of the present invention from the disclosure of the present disclosure.

各種立體透視醫學影像(如:CT,MRI,PET等)往往會因為取像的精確度限制造成三維的合成影像會摻雜斑點雜 訊(impulsive noise),本發明消除斑點雜訊的方法是採用中值濾波法對每一張二維電腦斷層影像進行雜訊濾除,但若單純使用中值濾波法對每一張二維電腦斷層影像進行雜訊濾除,固然可以在視覺上消除每張斷層影像的斑點雜訊,但是卻會造成三維影像成像時物體(objects)切片組合的不連續,使得濾波後物體切片間的邊緣無法對齊。 Various stereoscopic medical images (such as: CT, MRI, PET, etc.) tend to cause three-dimensional synthetic images to be doped with spots due to the accuracy of image acquisition. (impulsive noise), the method for eliminating speckle noise in the present invention is to use a median filtering method to perform noise filtering on each two-dimensional computed tomography image, but if only the median filtering method is used, each two-dimensional computerized tomographic image is mixed. The filtering can obviously eliminate the speckle noise of each tomographic image visually, but it will cause the discontinuity of the object slice combination in the 3D image imaging, so that the edges between the filtered object slices cannot be aligned.

請參閱第一圖,為本發明一種應用於電腦斷層影像之三維中值濾波方法流程圖。如圖所示,本發明所提供一種應用於電腦斷層影像之三維中值濾波方法,步驟包括:(A)讀取一組可建構出三維影像的二維切面電腦斷層影像S101;(B)標定該組二維切面電腦斷層影像所有雜訊的座標位置S102;分析每一點雜訊之其所在二維切面電腦斷層影像及相鄰的二維切面電腦斷層影像的分佈狀態S103;根據雜訊的分佈狀態進行一濾波演算法而得一中位值影像資料,並以該中位值影像資料取代雜訊S104;將該組二維切面電腦斷層影像的雜訊處理後,建構出三維影像S105。 Please refer to the first figure, which is a flow chart of a three-dimensional median filtering method applied to computer tomographic images according to the present invention. As shown in the figure, the present invention provides a three-dimensional median filtering method for computer tomographic images, the steps comprising: (A) reading a set of two-dimensional slice computer tomography image S101 capable of constructing a three-dimensional image; (B) calibration The coordinate position of all the noises of the two-dimensional section computerized tomographic image S102; analyzing the distribution state of the two-dimensional section computer tomographic image of each point of noise and the adjacent two-dimensional section computer tomographic image S103; according to the distribution of noise The state performs a filtering algorithm to obtain a median image data, and replaces the noise S104 with the median image data; and processes the noise of the two-dimensional slice computer tomographic image to construct a three-dimensional image S105.

本發明的濾波演算法是利用中值濾波器進行雜訊濾除,中值濾波器(median filter)在脈衝雜訊(impulse noises)出現時特別有用,因為脈衝雜訊看起來,像是疊加在影像上的白點和黑點,所以又稱為胡椒鹽雜訊(salt-and-pepper noise);本發明利用中值濾波器的濾波演算法,係為使用遮罩之排序運算,遮罩之排序運算是一種非 線性的濾波方式,首先對在遮罩裡所有像素的灰階值大小做排序,接著選取排序在中間的灰階值(或稱中值灰階值、中位值灰階值)的影像資料,再將此中位值(灰階)影像資料代入所對應的像素(雜訊影像資料)中,如此便完成一個像素的濾波動作,此法不但可以濾掉影像中突起的高頻雜訊部份,對於影像的邊緣也能夠給予適當的保留,再將像素的值(雜訊的影像資料)用該像素近鄰灰階的中位值影像資料(經濾波演算法運算)來取代,本發明即是根據雜訊大小,選擇不同遮罩的中值濾波器,遮罩的形式是三個等第的笛卡兒座標區域。 The filtering algorithm of the present invention uses a median filter for noise filtering, and a median filter is particularly useful when impulse noises appear, because the pulse noise appears to be superimposed on The white point and the black point on the image are also called salt-and-pepper noise. The filtering algorithm using the median filter of the present invention is a sorting operation using a mask, and the mask is used. Sort operation is a kind of non Linear filtering method, first sorting the grayscale value of all the pixels in the mask, and then selecting the image data of the grayscale value (or the median grayscale value, the median grayscale value) sorted in the middle, Then, the median value (grayscale) image data is substituted into the corresponding pixel (noise image data), so that a pixel filtering operation is completed, and the method can not only filter out the high frequency noise portion of the image in the image. The edge of the image can also be appropriately reserved, and then the value of the pixel (the image data of the noise) is replaced by the median image data of the pixel neighbor gray scale (filtered algorithm operation), and the present invention is Depending on the size of the noise, choose a median filter of different masks in the form of three equal Cartesian coordinates.

請參閱第二圖,為本發明第一等第笛卡兒座標區域示意圖、請參閱第三圖,為本發明第二等第笛卡兒座標區域示意圖、請參閱第四圖,為本發明第三等第笛卡兒座標區域示意圖。本發明實施例步驟如下: Please refer to the second figure, which is a schematic diagram of the first-order Cartesian coordinate area of the present invention. Please refer to the third figure, which is a schematic diagram of the second-order Cartesian coordinate area of the present invention. Please refer to the fourth figure, which is the first embodiment of the present invention. Schematic diagram of the third-order Descartes coordinate area. The steps of the embodiment of the present invention are as follows:

步驟(1)首先讀取一組可建構出三維影像的二維切面電腦斷層影像,以(x,y,z)代表第z張二維切面影像的(x,y)座標值,將二維切面影像的平面數位化,以方便位置標定及影像資料的數位化處理。 Step (1) first reads a set of two-dimensional slice computer tomographic images that can construct a three-dimensional image, and (x, y, z) represents the (x, y) coordinate value of the z-th two-dimensional slice image, and the two-dimensional slice image The plane is digitized to facilitate position calibration and digital processing of image data.

步驟(2)定義出三種不同區域大小的笛卡兒座標區域,,包含第一等第笛卡兒座標區域、第二等第笛卡兒座標區域、第三等第笛卡兒座標區域,這三種不同區域大小的笛卡兒座標區域裡的座標不同於步驟(1)的座標(x,y,z),其中,第 一等第笛卡兒座標區域(S1)包括(0,0,0)、(1,0,0)、(0,1,0)、(0,0,1)、(-1,0,0)、(0,-1,0)、(0,0,-1)(如圖二所示),第二等第笛卡兒座標區域(S2)包括(0,0,0)、(1,0,0)、(0,1,0)、(0,0,1)、(-1,0,0)、(0,-1,0)、(0,0,-1)、(0,1,1)、(0,-1,1)、(0,1,-1)、(0,-1,-1)、(1,1,0)、(1,-1,0)、(-1,1,0)、(-1,-1,0)、(1,0,1)、(-1,0,1)、(1,0,-1)、(-1,0,-1)(如圖三所示),第三等第笛卡兒座標區域(S3)包括(0,0,0)、(1,0,0)、(0,1,0)、(0,0,1)、(-1,0,0)、(0,-1,0)、(0,0,-1)、(0,1,1)、(0,-1,1)、(0,1,-1)、(0,-1,-1)、(1,1,0)、(1,-1,0)、(-1,1,0)、(-1,-1,0)、(1,0,1)、(-1,0,1)、(1,0,-1)、(-1,0,-1)、(1,1,1)、(-1,1,1)、(1,-1,1)、(-1,-1,1)、(1,1,-1)、(1,-1,-1)、(-1,1,-1)、(-1,-1,-1)(如圖四所示)。 Step (2) defines three Cartesian coordinate regions of different area sizes, including a first-order Cartesian coordinate region, a second-order Cartesian coordinate region, and a third-order Cartesian coordinate region. The coordinates in the Cartesian coordinate region of three different region sizes are different from the coordinates (x, y, z) of step (1), wherein the first equal Cartesian coordinate region (S 1 ) includes (0, 0, 0), (1,0,0), (0,1,0), (0,0,1), (-1,0,0), (0,-1,0), (0,0, -1) (as shown in Figure 2), the second-order Cartesian coordinate region (S 2 ) includes (0,0,0), (1,0,0), (0,1,0), ( 0,0,1), (-1,0,0), (0,-1,0), (0,0,-1), (0,1,1), (0,-1,1) , (0,1,-1), (0,-1,-1), (1,1,0), (1,-1,0), (-1,1,0), (-1, -1,0), (1,0,1), (-1,0,1), (1,0,-1), (-1,0,-1) (as shown in Figure 3), The third-order Cartesian coordinate region (S 3 ) includes (0,0,0), (1,0,0), (0,1,0), (0,0,1), (-1,0) , 0), (0, -1, 0), (0, 0, -1), (0, 1, 1), (0, -1, 1), (0, 1, -1), (0 ,-1,-1),(1,1,0), (1,-1,0), (-1,1,0), (-1,-1,0), (1,0,1 ), (-1,0,1), (1,0,-1), (-1,0,-1), (1,1,1), (-1,1,1), (1, -1,1), (-1,-1,1), (1,1,-1) (1, -1, -1), (- 1,1, -1), (- 1, -1, -1) (as shown in Figure IV).

步驟(3)檢查第z片與前後片(第z+1張、第z-1張)共三張二維切面斷層影像之雜訊分佈,並記錄下所有雜訊座標位置的座標點(x,y,z),其中,雜訊通常不會是一個個體,一個雜訊的分佈可能包含許多雜訊顆粒,因此雜訊座標位置的座標點(x,y,z)可利用質心點(不以此為限)的計算方式,計算出某一群落雜訊顆粒的質心點,以該質心點座標為雜訊座標位置的座標點(x,y,z),以方便標定每一點雜訊在該組可建構出三維影像的二維切面電腦斷層影像的位置,但在進行後續濾波演算法(中值濾波)時,每一雜訊點在其所屬的笛卡兒座標區域中的座標皆設置為(0,0,0)。 Step (3) Check the noise distribution of the three-dimensional two-dimensional tomographic image of the z-th slice and the front and rear slices (the z+1th, the z-1th), and record the coordinate points of all the noise coordinates (x, y , z), where the noise is usually not an individual, the distribution of a noise may contain many noise particles, so the coordinate point (x, y, z) of the noise coordinate position can use the centroid point (not The calculation method of this limit is to calculate the centroid point of a certain community noise particle, and the centroid point coordinates the coordinate point (x, y, z) of the noise coordinate position to facilitate calibration of each point noise. In this group, the position of the two-dimensional image computerized tomographic image of the three-dimensional image can be constructed, but in the subsequent filtering algorithm (median filtering), the coordinates of each noise point in the Cartesian coordinate region to which it belongs are Set to (0,0,0).

步驟(4)依據雜訊分佈選擇中值濾波器的遮罩大小與相鄰點位置,當雜訊分佈散落於第一等第笛卡兒座標區域時,中值濾波器的遮罩大小為7,而相鄰點位置(雜訊分佈區域)的選擇為S1;當雜訊散落於第二等第笛卡兒座標區域時,中值濾波器的遮罩大小為19,而相鄰點位置(雜訊分佈區域)的選擇為S2;當雜訊散落於第三等第笛卡兒座標區域時,中值濾波器的遮罩大小為27,而相鄰點位置(雜訊分佈區域)的選擇為S3Step (4) selects the mask size of the median filter and the position of the adjacent point according to the noise distribution. When the noise distribution is scattered in the first isochronous Cartesian coordinate region, the mask size of the median filter is 7 The position of the adjacent point (the noise distribution area) is selected as S 1 ; when the noise is scattered in the second equal Cartesian coordinate area, the mask size of the median filter is 19, and the adjacent point position The choice of (noise distribution area) is S 2 ; when the noise is scattered in the third-order Cartesian coordinate area, the mask size of the median filter is 27, and the adjacent point position (noise distribution area) is selected to S 3.

步驟(5)依雜訊分佈的區域範圍座落於哪一個等第笛卡兒座標區域,執行不同的濾波演算法(中值濾波),若雜訊分佈位於第一等第笛卡兒座標區域時,使用式(一)完成濾波:I1(0,0,0)=median({I(x,y,x))|(x,y,z) S1})...式(一)式(一)中,I1為執行濾波演算法後,雜訊在座標位置的中間灰階值(中位值影像資料),座標(0,0,0)為雜訊座標位置在第一等第笛卡兒座標區域(S1)的座標,其餘座標為其他雜訊顆粒(雜訊分布)在第一等第笛卡兒座標區域(S1)的座標;若雜訊分佈位於第一等第笛卡兒座標區域時,使用式(二)完成濾波:I2(0,0,0)=median({I(x,y,x))|(x,y,z) S2})...式(二)式(二)中,I2為執行濾波演算法後,雜訊在座標位置的中間灰階值(中位值影像資料),座標(0,0,0)為雜訊座標位置在第二等第笛卡兒座標區域(S2)的座標,其餘座標為其他雜訊顆 粒(雜訊分布)在第二等第笛卡兒座標區域(S2)的座標;若雜訊分佈位於第三等第笛卡兒座標區域時,使用式(三)完成濾波:I3(0,0,0)=median({I(x,y,x))|(x,y,z) S3})...式(三)式(三)中,I3為執行濾波演算法後,雜訊在座標位置的中間灰階值(中位值影像資料),座標(0,0,0)為雜訊座標位置在第二等第笛卡兒座標區域(S3)的座標,其餘座標為其他雜訊顆粒(雜訊分布)在第三等第笛卡兒座標區域(S3)的座標。 Step (5) performs a different filtering algorithm (median filtering) according to which isochronous region of the noise distribution region is located, if the noise distribution is located in the first isochronous Cartesian coordinate region When using equation (1) to complete the filtering: I 1 (0,0,0)=median({I(x,y,x))|(x,y,z) S 1 })... In the formula (1), I 1 is the middle gray scale value (median image data) of the noise at the coordinate position after the execution of the filtering algorithm, and the coordinates (0, 0, 0) is the coordinate of the noise coordinate position in the first-order Cartesian coordinate area (S 1 ), and the other coordinates are other noise particles (noise distribution) in the first-order Cartesian coordinate area (S 1 ) Coordinates; if the noise distribution is in the first-order Cartesian coordinate region, use (2) to complete the filtering: I 2 (0,0,0)=median({I(x,y,x))| (x,y,z) S 2 })... In equation (2) (2), I 2 is the middle gray scale value (median image data) of the noise at the coordinate position after the execution of the filtering algorithm, and the coordinates (0, 0, 0) is the coordinate of the noise coordinate position in the second-order Cartesian coordinate area (S 2 ), and the remaining coordinates are other noise particles (noise distribution) in the second-order Cartesian coordinate area (S 2 ) Coordinates; if the noise distribution is in the third-order Cartesian coordinate region, use (3) to complete the filtering: I 3 (0,0,0)=median({I(x,y,x))| (x,y,z) S 3 })... In equation (3) (3), I 3 is the middle gray scale value (median image data) of the noise at the coordinate position after the execution of the filtering algorithm, and the coordinates (0, 0, 0) is the coordinate of the noise coordinate position in the second-order Cartesian coordinate area (S 3 ), and the remaining coordinates are other noise particles (noise distribution) in the third-order Cartesian coordinate area (S 3 ) The coordinates of the coordinates.

步驟(6)重複步驟(4)-(5),直到所有雜訊處理完畢。 Step (6) repeat steps (4)-(5) until all noise is processed.

步驟(7)將所有的二維切面電腦斷層影像的雜訊處理後,依順序建構出三維影像。 Step (7) After all the noises of the two-dimensional sliced computer tomographic image are processed, the three-dimensional image is constructed in sequence.

上述之實施例僅為例示性說明本創作之特點及功效,非用以限制本創作之實質技術內容的範圍。任何熟悉此技藝之人士均可在不違背創作之精神及範疇下,對上述實施例進行修飾與變化。因此,本創作之權利保護範圍,應如後述之申請專利範圍所列。 The above-described embodiments are merely illustrative of the features and functions of the present invention and are not intended to limit the scope of the technical content of the present invention. Any person skilled in the art can modify and change the above embodiments without departing from the spirit and scope of the creation. Therefore, the scope of protection of this creation should be as listed in the scope of the patent application described later.

S101-S105‧‧‧步驟 S101-S105‧‧‧Steps

Claims (7)

一種應用於電腦斷層影像之三維中值濾波方法,步驟包括:(A)讀取一組可建構出三維影像的二維切面電腦斷層影像;(B)標定該組二維切面電腦斷層影像所有雜訊的座標位置;(C)分析每一點雜訊之其所在二維切面電腦斷層影像及相鄰的二維切面電腦斷層影像的分佈狀態;(D)根據雜訊的分佈狀態進行一濾波演算法而得一中位值影像資料,並以該中位值影像資料取代雜訊;(E)將該組二維切面電腦斷層影像的雜訊處理後,建構出三維影像。 A three-dimensional median filtering method for computer tomographic images, the steps comprising: (A) reading a set of two-dimensional slice computer tomographic images capable of constructing three-dimensional images; (B) calibrating the two-dimensional slice computer tomographic images of the group Coordinate position of the signal; (C) analyze the distribution of the two-dimensional section computer tomographic image of each point of noise and the adjacent two-dimensional section computer tomogram; (D) perform a filtering algorithm according to the distribution state of the noise A median image data is obtained, and the noise is replaced by the median image data; (E) the noise of the two-dimensional sliced computerized tomographic image is processed to construct a three-dimensional image. 如申請專利範圍第1項所述之應用於電腦斷層影像之三維中值濾波方法,其中,步驟(B)中該雜訊的座標位置之座標係依位於第Z張二維切面電腦斷層影像的該雜訊給予一笛卡兒座標值(x,y,z)。 The three-dimensional median filtering method for computer tomographic image according to claim 1, wherein the coordinates of the coordinates of the noise in the step (B) are based on the Z-dimensional two-dimensional computerized tomographic image. The signal is given a Cartesian coordinate value (x, y, z). 如申請專利範圍第2項所述之應用於電腦斷層影像之三維中值濾波方法,其中,該雜訊的分佈狀態係為該雜訊在第Z-1、Z及Z+1張二維切面電腦斷層影像上的分佈狀態。 The three-dimensional median filtering method for computer tomographic images according to the second aspect of the patent application, wherein the distribution state of the noise is the Z-1, Z and Z+1 two-dimensional section computer tomography of the noise. The distribution state on the image. 如申請專利範圍第2項所述之應用於電腦斷層影像之三維中值濾波方法,其中,步驟(C)中該雜訊的分佈狀態係依一 第一等第笛卡兒座標區域、一第二等第笛卡兒座標區域、一第三等第笛卡兒座標區域來分類。 The three-dimensional median filtering method for computer tomographic image according to claim 2, wherein the distribution state of the noise in step (C) is one The first-order Descartes coordinate area, a second-order Descartes coordinate area, and a third-order Descartes coordinate area are classified. 如申請專利範圍第4項所述之應用於電腦斷層影像之三維中值濾波方法,其中,步驟(D)中屬於該第一等第笛卡兒座標區域的雜訊分佈進行的該濾波演算法係為:I1=median({I(x,y,x))|(x,y,z) S1})S1:第一等第笛卡兒座標區域、I1:執行濾波演算法後,雜訊在座標位置的中位值影像資料。 The three-dimensional median filtering method for computer tomographic images according to claim 4, wherein the filtering algorithm performed in the noise distribution of the first isochronous coordinate region in step (D) is performed. Is: I 1 =median({I(x,y,x))|(x,y,z) S 1 })S 1 : First-order Cartesian coordinate area, I 1 : Median image data of the noise at the coordinate position after performing the filtering algorithm. 如申請專利範圍第4項所述之應用於電腦斷層影像之三維中值濾波方法,其中,步驟(D)中屬於該第二等第笛卡兒座標的雜訊分佈進行的該濾波演算法係為:I2=median({I(x,y,x))|(x,y,z) S2}).S2:第二等第笛卡兒座標區域、I2:執行濾波演算法後,雜訊在座標位置的中位值影像資料。 The three-dimensional median filtering method for computer tomographic image according to claim 4, wherein the filtering algorithm performed in the noise distribution of the second Cartesian coordinate in step (D) Is: I 2 =median({I(x,y,x))|(x,y,z) S 2 }).S 2 : second-order Cartesian coordinate region, I 2 : median image data of the noise at the coordinate position after performing the filtering algorithm. 如申請專利範圍第4項所述之應用於電腦斷層影像之三維中值濾波方法,其中,步驟(D)中屬於該第三等第笛卡兒座標的雜訊分佈進行的該濾波演算法係為:I3=median({I(x,y,x))|(x,y,z) S3})S3:第三等第笛卡兒座標區域、I3:執行濾波演算法後,雜訊在座標位置的中位值影像資料。 The three-dimensional median filtering method for computer tomographic image according to claim 4, wherein the filtering algorithm performed in the noise distribution of the third-order Cartesian coordinate in step (D) Is: I 3 =median({I(x,y,x))|(x,y,z) S 3 }) S 3 : third-order Cartesian coordinate region, I 3 : median image data of the noise at the coordinate position after performing the filtering algorithm.
TW104143969A 2015-12-28 2015-12-28 Three-dimensional median filter applied to computed tomography TWI594732B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104143969A TWI594732B (en) 2015-12-28 2015-12-28 Three-dimensional median filter applied to computed tomography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104143969A TWI594732B (en) 2015-12-28 2015-12-28 Three-dimensional median filter applied to computed tomography

Publications (2)

Publication Number Publication Date
TW201722357A true TW201722357A (en) 2017-07-01
TWI594732B TWI594732B (en) 2017-08-11

Family

ID=60047991

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104143969A TWI594732B (en) 2015-12-28 2015-12-28 Three-dimensional median filter applied to computed tomography

Country Status (1)

Country Link
TW (1) TWI594732B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI646945B (en) * 2017-01-11 2019-01-11 南京中硼聯康醫療科技有限公司 Deconstruction method of tissue element mass ratio based on medical image and establishment method of geometric model

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141514A (en) * 2002-10-28 2004-05-20 Toshiba Corp Image processing apparatus and ultrasonic diagnostic apparatus
TWI385544B (en) * 2009-09-01 2013-02-11 Univ Nat Pingtung Sci & Tech Density-based data clustering method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI646945B (en) * 2017-01-11 2019-01-11 南京中硼聯康醫療科技有限公司 Deconstruction method of tissue element mass ratio based on medical image and establishment method of geometric model
US11590360B2 (en) 2017-01-11 2023-02-28 Neuboron Medtech Ltd. Method for analyzing elements and mass ratios of elements of tissue and method for establishing geometric model based on medical image

Also Published As

Publication number Publication date
TWI594732B (en) 2017-08-11

Similar Documents

Publication Publication Date Title
JP7161212B2 (en) Data processing device and data processing method in X-ray inspection, and X-ray inspection device equipped with the device
US10274439B2 (en) System and method for spectral x-ray imaging
JP5858625B2 (en) Method for generating corrected tomographic image of corrected version
CN103679642B (en) A kind of CT image metal artifact bearing calibration, device and CT equipment
JP4354484B2 (en) Imaging internal structures
JP2007050259A (en) Method for filtering tomographic three-dimensional image after reconstructing volume data
CN104508710B (en) The vision of selectivity tissue in view data is suppressed
ES2706749T3 (en) Method to process image data that represent a three-dimensional volume
JP2007530132A (en) Method, computer program product and apparatus for enhancing computed tomography images
JP2005044050A (en) Image processing method, image processing program, and computer-readable recording medium
EP3131062A2 (en) Method, apparatus, and computer readable medium for removing unwanted objects from a tomogram
CN107106107B (en) Method and system for processing tomosynthesis data
KR102473298B1 (en) Method for obtaining 3D model data of multiple components of an object
Mouton et al. A novel intensity limiting approach to metal artefact reduction in 3D CT baggage imagery
Körner et al. Increasing throughput in x-ray computed tomography measurement of surface topography using sinogram interpolation
KR101146006B1 (en) Method and apparatus to remove ring artifacts in x-ray CT
US9867586B2 (en) Stereo X-ray tube based suppression of outside body high contrast objects
TWI594732B (en) Three-dimensional median filter applied to computed tomography
Johari et al. Metal artifact suppression in dental cone beam computed tomography images using image processing techniques
JP6525837B2 (en) Product defect detection method
JP2003344316A (en) Reconstitution method of inclined three-dimensional x- ray ct image
CN109870471B (en) Single-grating-detection cone-beam CT angle sequence scattering acquisition method
CN105992558A (en) Device and method for tomosynthesis imaging
US20070053570A1 (en) Image processing method, and computer-readable recording medium in which image processing program is recorded
KR102664286B1 (en) SYSTEMS AND METHODS FOR GENERATING MULTI-VIEW SYNTHETIC DENTAL RADIOGRAPHS FOR INTRAORAL TOMOSYNTHESIS