TW201721863A - Display device - Google Patents

Display device Download PDF

Info

Publication number
TW201721863A
TW201721863A TW105115275A TW105115275A TW201721863A TW 201721863 A TW201721863 A TW 201721863A TW 105115275 A TW105115275 A TW 105115275A TW 105115275 A TW105115275 A TW 105115275A TW 201721863 A TW201721863 A TW 201721863A
Authority
TW
Taiwan
Prior art keywords
layer
metal oxide
gate
insulating layer
transistor
Prior art date
Application number
TW105115275A
Other languages
Chinese (zh)
Other versions
TWI608610B (en
Inventor
顏子旻
林明昌
李冠鋒
Original Assignee
群創光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 群創光電股份有限公司 filed Critical 群創光電股份有限公司
Priority to US15/363,289 priority Critical patent/US9911762B2/en
Publication of TW201721863A publication Critical patent/TW201721863A/en
Application granted granted Critical
Publication of TWI608610B publication Critical patent/TWI608610B/en
Priority to US15/876,383 priority patent/US10312268B2/en

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Liquid Crystal (AREA)

Abstract

A display device is provided, which includes a substrate structure having a substrate with a plurality of pixels, and each of the pixels includes an apeture region. A metal oxide transistor is disposed on the substrate and includes a metal oxide semiconductor layer with a first channel region, a first gate electrode corresponding to the first channel region, and a silicon oxide insulating layer on the metal oxide semiconductor layer. The silicon oxide insulating layer includes an opening corresponding to the aperture region. A polysilicon transistor is disposed on the substrate. The display device also includes an opposite substrate structure, and a display media between the substrate structure and the opposite substrate structure.

Description

顯示裝置 Display device

本揭露關於顯示裝置,更特別關於其陣列基板結構。 The present disclosure relates to display devices, and more particularly to their array substrate structures.

目前常見之薄膜液晶顯示器(TFT-LCD)其製程可分為三大流程,第一段為驅動、顯示訊號製作的陣列(Array)基板製程及彩色濾光基板製程,第二段為液晶控制、充填與封合的液晶面板(Cell)製程;第三段則是偏光片、背光模組與液晶面板組裝的模組化(Module)組裝製程。在陣列基板製程中,常採用氧化矽層與氮化矽層作為不同導電層之間的絕緣層。然而氧化矽層與氮化矽層的折射率不同,兩者的界面易使光線部份反射而無法完全穿過。如此一來,將降低陣列基板之畫素開口區的開口率。 At present, the conventional thin film liquid crystal display (TFT-LCD) process can be divided into three major processes, the first segment is an array (Array) substrate process for driving and display signals, and the color filter substrate process, and the second segment is liquid crystal control. Filled and sealed liquid crystal panel (Cell) process; the third section is a modular assembly process of polarizer, backlight module and liquid crystal panel assembly. In the array substrate process, a hafnium oxide layer and a tantalum nitride layer are often used as an insulating layer between different conductive layers. However, the refractive index of the yttrium oxide layer and the tantalum nitride layer are different, and the interface between the two is easy to partially reflect light and cannot pass through completely. As a result, the aperture ratio of the pixel opening region of the array substrate is lowered.

綜上所述,目前亟需新的陣列基板結構克服上述問題。 In summary, there is a need for a new array substrate structure to overcome the above problems.

本揭露一實施例提供之顯示裝置,包含:基板結構,包括:基板,具有畫素,且畫素具有開口區;金屬氧化物電晶體,設置在基板上且包括;金屬氧化物半導體層,具有第一通道區;第一閘極,對應第一通道區;以及氧化矽絕緣層,位於金屬氧化物半導體層上,其中氧化矽絕緣層具有開口,且開口對應開口區設置;以及多晶矽電晶體,設置在基板上;對向基板結構;以及 顯示介質,位於基板結構與對向基板結構之間。 A display device according to an embodiment of the present invention includes: a substrate structure including: a substrate having a pixel, and the pixel has an open region; a metal oxide transistor disposed on the substrate and including: a metal oxide semiconductor layer having a first channel region; a first gate corresponding to the first channel region; and a yttria insulating layer on the metal oxide semiconductor layer, wherein the yttrium oxide insulating layer has an opening, and the opening is disposed corresponding to the open region; and the polysilicon transistor, Provided on the substrate; the opposite substrate structure; The display medium is located between the substrate structure and the opposite substrate structure.

本揭露一實施例提供之顯示裝置,包含:基板結構,包括:基板,具有畫素,且畫素具有開口區;金屬氧化物電晶體,設置在基板上且包括;金屬氧化物半導體層,具有第一通道區;第一閘極,對應第一通道區;以及閘極絕緣層,位於第一閘極與金屬氧化物半導體層之間,其中閘極絕緣層包含第一氮化矽層與第一氧化矽層,第一氧化矽層位於第一氮化矽層與金屬氧化物半導體層之間;多晶矽電晶體,設置在基板上;以及氮化矽絕緣層,位於金屬氧化物電晶體與多晶矽電晶體上,其中開口區中的氮化矽絕緣層直接接觸第一氮化矽層;對向基板結構;以及顯示介質,位於基板結構與對向基板結構之間。 A display device according to an embodiment of the present invention includes: a substrate structure including: a substrate having a pixel, and the pixel has an open region; a metal oxide transistor disposed on the substrate and including: a metal oxide semiconductor layer having a first channel region; a first gate corresponding to the first channel region; and a gate insulating layer between the first gate and the metal oxide semiconductor layer, wherein the gate insulating layer comprises a first layer of tantalum nitride a ruthenium oxide layer, the first ruthenium oxide layer is between the first tantalum nitride layer and the metal oxide semiconductor layer; the polycrystalline germanium transistor is disposed on the substrate; and the tantalum nitride insulating layer is located at the metal oxide transistor and the polysilicon The transistor, wherein the tantalum nitride insulating layer in the open region directly contacts the first tantalum nitride layer; the opposite substrate structure; and the display medium is located between the substrate structure and the opposite substrate structure.

14‧‧‧遮光層 14‧‧‧Lighting layer

10a‧‧‧畫素區 10a‧‧‧Photo District

10b‧‧‧驅動電路 10b‧‧‧Drive circuit

11a‧‧‧金屬氧化物電晶體 11a‧‧‧Metal oxide crystal

11n、11p‧‧‧多晶矽電晶體 11n, 11p‧‧‧ polycrystalline germanium transistors

11o‧‧‧開口區 11o‧‧‧Open area

13‧‧‧基板 13‧‧‧Substrate

15、15a、15b、19a、19b、19c‧‧‧緩衝層 15, 15a, 15b, 19a, 19b, 19c‧‧‧ buffer layer

17‧‧‧多晶矽層 17‧‧‧Polysilicon layer

17c‧‧‧通道區 17c‧‧‧Channel area

17d‧‧‧汲極區 17d‧‧‧Bungee Area

17s‧‧‧源極區 17s‧‧‧ source area

21d、29d、43d‧‧‧汲極 21d, 29d, 43d‧‧‧ bungee

21s、29s、43s‧‧‧源極 21s, 29s, 43s‧‧‧ source

21、29g‧‧‧閘極 21, 29g‧‧ ‧ gate

21'、29L3‧‧‧閘極線 21', 29L3‧‧ ‧ gate line

23、25‧‧‧層間介電層 23, 25‧‧‧ Interlayer dielectric layer

27‧‧‧金屬氧化物半導體層 27‧‧‧Metal oxide semiconductor layer

29c‧‧‧接點 29c‧‧‧Contact

29h、43h、45h‧‧‧通孔 29h, 43h, 45h‧‧‧through holes

29L1、45L1、45L3‧‧‧源極線 29L1, 45L1, 45L3‧‧‧ source line

29L2、45L2、45L4‧‧‧汲極線 29L2, 45L2, 45L4‧‧‧汲polar line

31、31a、31b、31c、35、35a、35b、41‧‧‧絕緣層 31, 31a, 31b, 31c, 35, 35a, 35b, 41‧‧ ‧ insulation

32‧‧‧背面曝光製程 32‧‧‧Back exposure process

33‧‧‧開口 33‧‧‧ openings

37‧‧‧有機絕緣層 37‧‧‧Organic insulation

39‧‧‧共同電極 39‧‧‧Common electrode

43p‧‧‧畫素電極 43p‧‧‧ pixel electrodes

51‧‧‧非晶矽層 51‧‧‧Amorphous layer

53‧‧‧掺雜矽層 53‧‧‧Doped layer

100a、100b、100c、100d、100e、100f、100g、100h、100i、100j、100k、100l、100m、100n、100o、100p、100q、100r、210a‧‧‧陣列基板結構 100a, 100b, 100c, 100d, 100e, 100f, 100g, 100h, 100i, 100j, 100k, 100l, 100m, 100n, 100o, 100p, 100q, 100r, 210a‧‧‧ array substrate structure

210b‧‧‧顯示介質 210b‧‧‧Display media

210c‧‧‧對向基板結構 210c‧‧‧ opposite substrate structure

第1至8圖與第12至19圖係本揭露實施例中,陣列基板結構的剖視圖。 1 to 8 and 12 to 19 are cross-sectional views showing the structure of the array substrate in the embodiment of the present disclosure.

第9A至9J圖、第10A至10C圖、與第11A至11B圖係本揭露實施例中,陣列基板結構的製程剖視圖。 9A to 9J, 10A to 10C, and 11A to 11B are process cross-sectional views of the array substrate structure in the disclosed embodiment.

第20圖係本揭露實施例中,多晶矽電晶體與金屬氧化物電晶體均採用底閘極之設計的剖視圖。 Figure 20 is a cross-sectional view showing the design of the bottom gate of both the polycrystalline germanium transistor and the metal oxide transistor in the embodiment of the present disclosure.

第21圖係本揭露一實施例中,顯示裝置的示意圖。 Figure 21 is a schematic view of a display device in an embodiment of the present disclosure.

多晶矽電晶體具有高開啟電流(Ion)與高載子遷移率,而金屬氧化物半導體電晶體具有低關閉電流(Ioff)與好的均勻度。本揭露整合上述兩者,在面板中同時使用多晶矽電晶體與金 屬氧化物半導體電晶體,配合電晶體使用特性配置於顯示面板中。例如驅動電路中同時使用多晶矽電晶體與金屬氧化物半導體電晶體,相對位置可以是垂直方向的層疊連接或水平方向的電性連接以形成所需要的電路結構;或在畫素區中搭配使用多晶矽電晶體與金屬氧化物半導體電晶體,可做為開關、補償等電路設計。 Polycrystalline germanium transistors have high turn-on current (Ion) and high carrier mobility, while metal oxide semiconductor transistors have low turn-off current (Ioff) and good uniformity. The present disclosure integrates the above two, and simultaneously uses polycrystalline germanium transistors and gold in the panel. It is an oxide semiconductor transistor and is disposed in a display panel in accordance with the use characteristics of the transistor. For example, in a driving circuit, a polycrystalline germanium transistor and a metal oxide semiconductor transistor are simultaneously used, and the relative position may be a vertical connection or a horizontal electrical connection to form a desired circuit structure; or a polycrystalline germanium may be used in a pixel region. The transistor and the metal oxide semiconductor transistor can be used as circuit design for switching and compensation.

以下各實施例中,在驅動電路採用多晶矽電晶體,並在畫素區採用金屬氧化物電晶體,以兼具兩者優點。 In the following embodiments, a polycrystalline germanium transistor is used in the driving circuit, and a metal oxide transistor is used in the pixel region to have both advantages.

在一實施例中,陣列基板結構100a之剖視圖如第1圖所示。在第1圖中,陣列基板結構100a分為多個畫素區10a與驅動電路10b。每一畫素區10a具有金屬氧化物電晶體11a與開口區11o,而驅動電路10b包含n型的多晶矽電晶體11n與p型的多晶矽電晶體11p。在其他實施例中,驅動電路10b可只具有n型的多晶矽電晶體11n,或只具有p型的多晶矽電晶體11p,端視需要而定。陣列基板結構100a包含基板13,其為透明材質如玻璃或塑膠。遮光層14位於基板13上,且分別對應多晶矽電晶體11n與11p之多晶矽層17與金屬氧化物電晶體11a之金屬氧化物半導體層27,其材質可為黑色樹脂或金屬如鉻,且其形成方法可為濺鍍成層後以微影蝕刻等製程圖案化。緩衝層15位於遮光層14上,其材質可為氮化矽,且其形成方法可為化學氣相沉積(CVD)。緩衝層19a位於緩衝層15上,其材質可為氧化矽,且其形成方法可為化學氣相沉積。多晶矽層17位於緩衝層19a上,且對應多晶矽電晶體11n與11p,其材質可為低溫多晶矽(LTPS)層。在一實施例中,形成多晶矽層17後可採用微影製程形成之遮光光阻圖案(未圖示)保護中間的通道區17c,再佈值離子至通道區17c兩側以定義源極區17s/汲極區17d。 之後可視情況移除遮光光阻圖案,移除方法可為濕式或乾式剝除。 In one embodiment, a cross-sectional view of the array substrate structure 100a is shown in FIG. In Fig. 1, the array substrate structure 100a is divided into a plurality of pixel regions 10a and a driving circuit 10b. Each of the pixel regions 10a has a metal oxide transistor 11a and an open region 11o, and the driving circuit 10b includes an n-type polycrystalline germanium transistor 11n and a p-type polycrystalline germanium transistor 11p. In other embodiments, the driver circuit 10b may have only an n-type polysilicon transistor 11n, or a p-type polysilicon transistor 11p, as desired. The array substrate structure 100a includes a substrate 13 which is a transparent material such as glass or plastic. The light shielding layer 14 is located on the substrate 13 and corresponds to the polysilicon layer 17 of the polycrystalline germanium transistors 11n and 11p and the metal oxide semiconductor layer 27 of the metal oxide transistor 11a, respectively, which may be made of a black resin or a metal such as chromium, and formed thereof. The method can be patterned by sputtering, layering, and the like by a process such as photolithography. The buffer layer 15 is located on the light shielding layer 14 and may be made of tantalum nitride, and may be formed by chemical vapor deposition (CVD). The buffer layer 19a is located on the buffer layer 15, and may be made of ruthenium oxide, and may be formed by chemical vapor deposition. The polysilicon layer 17 is located on the buffer layer 19a and corresponds to the polycrystalline germanium transistors 11n and 11p, and the material thereof may be a low temperature polysilicon (LTPS) layer. In one embodiment, after forming the polysilicon layer 17, the opaque photoresist pattern (not shown) formed by the lithography process can be used to protect the intermediate channel region 17c, and the ions are ionized to the sides of the channel region 17c to define the source region 17s. / bungee area 17d. The shading photoresist pattern can then be removed as appropriate, either by wet or dry stripping.

緩衝層19b位於多晶矽層17與緩衝層19a上,其材質可為氧化矽,且其形成方法可為CVD。閘極21位於緩衝層19b上,其材質可為金屬,且其形成方法可為濺鍍成層後以微影蝕刻等製程圖案化。對多晶矽電晶體11n與11p而言,閘極21對應通道區17c,而通道區17c與閘極21之間的閘極絕緣層為緩衝層19b。層間介電層23位於閘極21與緩衝層19b上,其材質可為氮化矽,且其形成方法可為CVD。層間介電層25位於層間介電層23上,其材質可為氧化矽,且其形成方法可為CVD。 The buffer layer 19b is located on the polysilicon layer 17 and the buffer layer 19a, and may be made of ruthenium oxide, and may be formed by CVD. The gate 21 is located on the buffer layer 19b and may be made of a metal. The method is formed by sputtering a layer and then patterning by a process such as photolithography. For the polysilicon transistors 11n and 11p, the gate 21 corresponds to the channel region 17c, and the gate insulating layer between the channel region 17c and the gate 21 is the buffer layer 19b. The interlayer dielectric layer 23 is located on the gate 21 and the buffer layer 19b, and may be made of tantalum nitride, and may be formed by CVD. The interlayer dielectric layer 25 is located on the interlayer dielectric layer 23 and may be made of ruthenium oxide, and may be formed by CVD.

金屬氧化物半導體層27位於層間介電層25上並對應金屬氧化物電晶體11a之閘極21,其材質可為氧化銦鎵鋅(IGZO),且其形成方法可為濺鍍成層後以微影蝕刻等製程圖案化。值得注意的是,金屬氧化物半導體層27的通道區不應曝光或接觸氮化矽層以避免由半導體轉變為導體。對金屬氧化物電晶體11a而言,通道區(金屬氧化物半導體層27)與閘極21之間的閘極絕緣層為層間介電層23與25,比如氧化矽層與氮化矽層的雙層結構,且氧化矽層位於氮化矽層與金屬氧化物半導體層27之間。值得注意的是,若上述閘極絕緣層之排列順序相反(比如氮化矽層位於氧化矽層與金屬氧化物半導體層27之間),則金屬氧化物半導體層27將接觸氮化矽層而電性表現不佳。 The metal oxide semiconductor layer 27 is located on the interlayer dielectric layer 25 and corresponds to the gate 21 of the metal oxide transistor 11a. The material thereof may be indium gallium zinc oxide (IGZO), and the formation method thereof may be micro-sputtering and layering. Process etching such as shadow etching. It is to be noted that the channel region of the metal oxide semiconductor layer 27 should not be exposed or contact with the tantalum nitride layer to avoid conversion from a semiconductor to a conductor. For the metal oxide transistor 11a, the gate insulating layer between the channel region (metal oxide semiconductor layer 27) and the gate 21 is interlayer dielectric layers 23 and 25, such as a hafnium oxide layer and a tantalum nitride layer. The double layer structure and the ruthenium oxide layer are located between the tantalum nitride layer and the metal oxide semiconductor layer 27. It should be noted that if the gate insulating layer is arranged in the reverse order (for example, the tantalum nitride layer is located between the tantalum oxide layer and the metal oxide semiconductor layer 27), the metal oxide semiconductor layer 27 will contact the tantalum nitride layer. Electrical performance is not good.

源極線29L1、汲極線29L2、源極29s、與汲極29d形成於層間介電層25上。源極線29L1位於源極區17s上,兩者之間以穿過層間介電層25、層間介電層23、與緩衝層19b的通孔29h連接。汲極線29L2位於汲極區17d上,兩者之間以穿過層間介電層25、 層間介電層23、與緩衝層19b的通孔29h連接。源極29s與汲極29d分別位於金屬氧化物半導體層27之兩側上。通孔29h之形成方法可為微影與蝕刻穿過層間介電層27、層間介電層25、與緩衝層19b後形成孔洞後,將金屬填入孔洞並成層於層間介電層27上。接著以微影蝕刻等製程圖案化金屬層,即可定義源極線29L1、汲極線29L2、源極29s、與汲極29d。 The source line 29L1, the drain line 29L2, the source 29s, and the drain 29d are formed on the interlayer dielectric layer 25. The source line 29L1 is located on the source region 17s, and is connected between the interlayer dielectric layer 25, the interlayer dielectric layer 23, and the via hole 29h of the buffer layer 19b. The drain line 29L2 is located on the drain region 17d, and passes between the interlayer dielectric layers 25, The interlayer dielectric layer 23 is connected to the via hole 29h of the buffer layer 19b. The source 29s and the drain 29d are respectively located on both sides of the metal oxide semiconductor layer 27. The through hole 29h can be formed by lithography and etching through the interlayer dielectric layer 27, the interlayer dielectric layer 25, and the buffer layer 19b to form a hole, and then filling the hole into the hole and layering the interlayer dielectric layer 27. Next, the metal layer is patterned by a process such as photolithography to define a source line 29L1, a drain line 29L2, a source 29s, and a drain 29d.

絕緣層31位於層間介電層25、金屬氧化物半導體層27、源極線29L1、汲極線29L2、源極29s、與汲極29d上,其材料可為氧化矽,其形成方法可為CVD。絕緣層31與層間介電層25具有開口33對應開口區11o,其形成方法可為微影蝕刻製程。值得注意的是,上述微影製程中的曝光步驟可由下方向上曝光,且此曝光步驟採用遮光層14、源極線29L1、汲極線29L2、源極29s、與汲極29d作為遮罩,即可省略一道光罩而節省成本。在此曝光方向之微影與蝕刻製程後,絕緣層31與層間介電層25等氧化矽層之邊緣,將對準上述遮罩之邊緣。由於金屬氧化物電晶體11a之閘極21本身即可遮光,因此可視情況省略金屬氧化物電晶體11a中的遮光層14。在某些實施例中,開口33可進一步往下延伸穿過層間介電層23、緩衝層19b、緩衝層19a、甚至緩衝層15。 The insulating layer 31 is located on the interlayer dielectric layer 25, the metal oxide semiconductor layer 27, the source line 29L1, the drain line 29L2, the source 29s, and the drain 29d. The material thereof may be ruthenium oxide, and the formation method may be CVD. . The insulating layer 31 and the interlayer dielectric layer 25 have openings 33 corresponding to the opening regions 11o, which may be formed by a photolithography process. It should be noted that the exposure step in the above lithography process may be upwardly exposed from below, and the exposure step uses the light shielding layer 14, the source line 29L1, the drain line 29L2, the source 29s, and the drain 29d as a mask, that is, A mask can be omitted to save costs. After the lithography and etching process in the exposure direction, the edges of the ruthenium oxide layer such as the insulating layer 31 and the interlayer dielectric layer 25 are aligned with the edges of the mask. Since the gate 21 of the metal oxide transistor 11a itself can be shielded from light, the light shielding layer 14 in the metal oxide transistor 11a can be omitted as appropriate. In some embodiments, the opening 33 can extend further down through the interlayer dielectric layer 23, the buffer layer 19b, the buffer layer 19a, and even the buffer layer 15.

絕緣層35位於絕緣層31與開口33內,其材料可為氮化矽,其形成方法可為CVD。在此實施例中,絕緣層35可經由開口33直接接觸層間介電層23。有機絕緣層37位於絕緣層35上,其形成方法可為旋轉塗佈法而提供絕緣面以利後續膜層疊置。共同電極39位於有機絕緣層37上,主要對應畫素區10a。共同電極39之材質可為透明導電材料如銦錫氧化物(ITO),其形成方法可為濺 鍍成層後以微影蝕刻等製程圖案化。絕緣層41位於共同電極39與有機絕緣層37上,其材質可為氮化矽,且其形成方法可為CVD。 The insulating layer 35 is located in the insulating layer 31 and the opening 33, and the material thereof may be tantalum nitride, which may be formed by CVD. In this embodiment, the insulating layer 35 can directly contact the interlayer dielectric layer 23 via the opening 33. The organic insulating layer 37 is located on the insulating layer 35, and the forming method may be an spin coating method to provide an insulating surface for subsequent film lamination. The common electrode 39 is located on the organic insulating layer 37, and mainly corresponds to the pixel region 10a. The material of the common electrode 39 may be a transparent conductive material such as indium tin oxide (ITO), which may be formed by sputtering. After plating, the layer is patterned by a process such as photolithography. The insulating layer 41 is located on the common electrode 39 and the organic insulating layer 37, and may be made of tantalum nitride, and may be formed by CVD.

畫素電極43p位於絕緣層41上。部份畫素電極43p位於汲極29d上,兩者之間以穿過絕緣層41、有機絕緣層37、絕緣層35、與絕緣層31的通孔43h連接。通孔43h之形成方法可為微影與蝕刻穿過絕緣層41、有機絕緣層37、絕緣層35、與絕緣層31後形成孔洞,將透明導電材料如ITO填入孔洞並成層於絕緣層41上。接著以微影蝕刻等製程進行圖案化,即可定義畫素電極43p。 The pixel electrode 43p is located on the insulating layer 41. The partial pixel electrode 43p is located on the drain electrode 29d, and is connected between the insulating layer 41, the organic insulating layer 37, the insulating layer 35, and the through hole 43h of the insulating layer 31. The through hole 43h can be formed by lithography and etching through the insulating layer 41, the organic insulating layer 37, the insulating layer 35, and the insulating layer 31, and a transparent conductive material such as ITO is filled into the hole and layered on the insulating layer 41. on. Then, patterning is performed by a process such as photolithography to define the pixel electrode 43p.

第1圖中驅動電路10b之多晶矽電晶體11n與11p屬於頂閘極結構,而金屬氧化物電晶體11a屬於底閘極結構。在第1圖中,位於金屬氧化物半導體層27上的氧化矽層(如絕緣層31),與夾設於金屬氧化物半導體層27與閘極21之間的閘極絕緣層中的氧化矽層(如層間介電層25)具有開口33對應開口區11o,以減少開口區11o中氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構100a的光穿透度。值得注意的是,開口33除了形成於畫素區10a之開口區11o外,亦可形成於驅動電路10b中,端視光罩設計而定。 The polysilicon transistors 11n and 11p of the driving circuit 10b in Fig. 1 belong to the top gate structure, and the metal oxide transistor 11a belongs to the bottom gate structure. In Fig. 1, a ruthenium oxide layer (e.g., insulating layer 31) on the metal oxide semiconductor layer 27, and ruthenium oxide interposed in the gate insulating layer interposed between the metal oxide semiconductor layer 27 and the gate electrode 21 The layer (such as the interlayer dielectric layer 25) has an opening 33 corresponding to the opening region 11o to reduce the number of interfaces between the yttrium oxide layer and the tantalum nitride layer in the opening region 11o, thereby improving the light transmittance of the array substrate structure 100a. It should be noted that the opening 33 may be formed in the driving circuit 10b in addition to the opening region 11o of the pixel region 10a, depending on the reticle design.

在下述實施例中,與前述實施例採用相同標號的單元其材料與形成方法類似時將不再贅述相關細節。在一實施例中,陣列基板結構100b之剖視圖如第2圖所示。在第2圖中,畫素區10a、驅動電路10b、金屬氧化物電晶體11a、開口區11o、多晶矽電晶體11n與11p之相對位置與第1圖類似。遮光層14位於基板13上,且分別對應多晶矽電晶體11n與11p之多晶矽層17與金屬氧化物電晶體11a之金屬氧化物半導體層27。緩衝層15位於遮光層14上,而緩衝層19a位於緩衝層15上。多晶矽層17(如源極區17s、 通道區17c、與汲極區17d)位於緩衝層19a上並對應多晶矽電晶體11n與11p。緩衝層19b位於多晶矽層17與緩衝層19a上,而閘極21位於緩衝層19b上。對多晶矽電晶體11n與11p而言,閘極21位於通道區17c上,且兩者之間隔有閘極絕緣層如緩衝層19b。 In the following embodiments, the same reference numerals are used for the elements of the foregoing embodiments, and the details are not described herein. In an embodiment, a cross-sectional view of the array substrate structure 100b is shown in FIG. In Fig. 2, the relative positions of the pixel region 10a, the driving circuit 10b, the metal oxide transistor 11a, the opening region 11o, and the polysilicon transistors 11n and 11p are similar to those of Fig. 1. The light shielding layer 14 is located on the substrate 13 and corresponds to the polysilicon layer 17 of the polycrystalline germanium transistors 11n and 11p and the metal oxide semiconductor layer 27 of the metal oxide transistor 11a, respectively. The buffer layer 15 is located on the light shielding layer 14, and the buffer layer 19a is located on the buffer layer 15. Polycrystalline germanium layer 17 (such as source region 17s, The channel region 17c and the drain region 17d) are located on the buffer layer 19a and correspond to the polysilicon transistors 11n and 11p. The buffer layer 19b is located on the polysilicon layer 17 and the buffer layer 19a, and the gate 21 is located on the buffer layer 19b. For the polysilicon transistors 11n and 11p, the gate 21 is located on the channel region 17c with a gate insulating layer such as a buffer layer 19b.

層間介電層23位於閘極21上,而層間介電層25位於層間介電層23上。金屬氧化物半導體層27位於層間介電層25上,並對應金屬氧化物電晶體11a之閘極21。對金屬氧化物電晶體11a而言,通道區(金屬氧化物半導體層27)與閘極21之間的閘極絕緣層為層間介電層23與25。源極線29L1、汲極線29L2、源極29s、與汲極29d位於層間介電層25上。源極線29L1位於源極區17s上,兩者之間以穿過層間介電層25、層間介電層23、與緩衝層19b的通孔29h連接。汲極線29L2位於汲極區17d上,兩者之間以穿過層間介電層25、層間介電層23、與緩衝層19b的通孔29h連接。源極29s與汲極29d分別位於金屬氧化物半導體層27之兩側上。 The interlayer dielectric layer 23 is on the gate 21, and the interlayer dielectric layer 25 is on the interlayer dielectric layer 23. The metal oxide semiconductor layer 27 is on the interlayer dielectric layer 25 and corresponds to the gate 21 of the metal oxide transistor 11a. For the metal oxide transistor 11a, the gate insulating layer between the channel region (metal oxide semiconductor layer 27) and the gate 21 is the interlayer dielectric layers 23 and 25. The source line 29L1, the drain line 29L2, the source 29s, and the drain 29d are located on the interlayer dielectric layer 25. The source line 29L1 is located on the source region 17s, and is connected between the interlayer dielectric layer 25, the interlayer dielectric layer 23, and the via hole 29h of the buffer layer 19b. The drain line 29L2 is located on the drain region 17d, and is connected between the interlayer dielectric layer 25, the interlayer dielectric layer 23, and the via hole 29h of the buffer layer 19b. The source 29s and the drain 29d are respectively located on both sides of the metal oxide semiconductor layer 27.

層間介電層25具有開口33對應開口區11o,其形成方法可為微影蝕刻製程。值得注意的是,上述微影製程中的曝光步驟可由下方向上曝光,且此曝光步驟採用遮光層14、源極線29L1、汲極線29L2、源極29s、與汲極29d作為遮罩,即可省略一道光罩而節省成本。在此曝光方向之微影與蝕刻製程後,層間介電層25(氧化矽層)之邊緣將對準上述遮罩之邊緣。由於金屬氧化物電晶體11a之閘極21本身即可遮光,因此可視情況省略金屬氧化物電晶體11a中的遮光層14。在某些實施例中,開口33可進一步往下延伸穿過層間介電層23、緩衝層19b、緩衝層19a、甚至緩衝層15。 The interlayer dielectric layer 25 has an opening 33 corresponding to the opening region 11o, and the forming method thereof may be a photolithography etching process. It should be noted that the exposure step in the above lithography process may be upwardly exposed from below, and the exposure step uses the light shielding layer 14, the source line 29L1, the drain line 29L2, the source 29s, and the drain 29d as a mask, that is, A mask can be omitted to save costs. After the lithography and etching process in this exposure direction, the edges of the interlayer dielectric layer 25 (yttria layer) will be aligned with the edges of the mask. Since the gate 21 of the metal oxide transistor 11a itself can be shielded from light, the light shielding layer 14 in the metal oxide transistor 11a can be omitted as appropriate. In some embodiments, the opening 33 can extend further down through the interlayer dielectric layer 23, the buffer layer 19b, the buffer layer 19a, and even the buffer layer 15.

有機絕緣層37位於層間介電層25、金屬氧化物半導體層27、源極線29L1、汲極線29L2、源極29s、與汲極29d上,以及開口33內。共同電極39位於有機絕緣層37上,主要對應畫素區10a。絕緣層41位於共同電極39與有機絕緣層37上。畫素電極43p位於絕緣層41上。部份畫素電極43p位於汲極29d上,兩者之間以穿過絕緣層41與有機絕緣層37的通孔43h連接。在此實施例中,有機絕緣層37可經由開口33直接接觸層間介電層23。第2圖中驅動電路10b之多晶矽電晶體11n與11p屬於頂閘極結構,而金屬氧化物電晶體11a屬於底閘極結構。在第2圖中,夾設於金屬氧化物半導體層27與閘極21之間的閘極絕緣層中的氧化矽層(如層間介電層25)具有開口33對應開口區11o,以減少開口區11o中氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構100b的光穿透度。 The organic insulating layer 37 is located in the interlayer dielectric layer 25, the metal oxide semiconductor layer 27, the source line 29L1, the drain line 29L2, the source 29s, the drain 29d, and the opening 33. The common electrode 39 is located on the organic insulating layer 37, and mainly corresponds to the pixel region 10a. The insulating layer 41 is located on the common electrode 39 and the organic insulating layer 37. The pixel electrode 43p is located on the insulating layer 41. The partial pixel electrode 43p is located on the drain electrode 29d, and is connected to the through hole 43h of the organic insulating layer 37 through the insulating layer 41 therebetween. In this embodiment, the organic insulating layer 37 may directly contact the interlayer dielectric layer 23 via the opening 33. The polycrystalline germanium transistors 11n and 11p of the driving circuit 10b in Fig. 2 belong to the top gate structure, and the metal oxide transistor 11a belongs to the bottom gate structure. In FIG. 2, a ruthenium oxide layer (such as the interlayer dielectric layer 25) interposed between the MOS insulating layer 27 and the gate insulating layer 21 has an opening 33 corresponding to the opening region 11o to reduce the opening. The number of interfaces between the ruthenium oxide layer and the tantalum nitride layer in the region 11o, thereby improving the light transmittance of the array substrate structure 100b.

在一實施例中,陣列基板結構100c之剖視圖如第3圖所示。在第3圖中,畫素區10a、驅動電路10b、金屬氧化物電晶體11a、開口區11o、多晶矽電晶體11n與11p之相對位置與第1圖類似。遮光層14位於基板13上,且分別對應多晶矽電晶體11n與11p之多晶矽層17與金屬氧化物電晶體11a之金屬氧化物半導體層27。在此實施例中,對應金屬氧化物電晶體設置之遮光層14同時作為金屬氧化物電晶體之閘極,因此遮光層14之材質必需為金屬等導電材料,其形成方法可為沉積成層後以微影蝕刻等製程圖案化。 In an embodiment, a cross-sectional view of the array substrate structure 100c is shown in FIG. In Fig. 3, the relative positions of the pixel region 10a, the driving circuit 10b, the metal oxide transistor 11a, the opening region 11o, and the polysilicon transistors 11n and 11p are similar to those of Fig. 1. The light shielding layer 14 is located on the substrate 13 and corresponds to the polysilicon layer 17 of the polycrystalline germanium transistors 11n and 11p and the metal oxide semiconductor layer 27 of the metal oxide transistor 11a, respectively. In this embodiment, the light shielding layer 14 corresponding to the metal oxide transistor is simultaneously used as the gate of the metal oxide transistor. Therefore, the material of the light shielding layer 14 must be a conductive material such as metal, and the formation method can be performed by depositing a layer. Process patterning such as lithography etching.

緩衝層15位於基板13與遮光層14上,緩衝層19a位於緩衝層15上,而多晶矽層17(如源極區17s、通道區17c、與汲極區17d)位於緩衝層19a上且對應多晶矽電晶體11n與11p。緩衝層 19b位於多晶矽層17與緩衝層19a上,而閘極21與閘極線21'位於緩衝層19b上。對多晶矽電晶體11n與11p而言,閘極21位於通道區17c上,且兩者之間隔有閘極絕緣層如緩衝層19b。在金屬氧化物電晶體11a中,閘極線21’與遮光層14之間以穿過緩衝層19b、19a、與15之通孔21h相連。通孔21h之形成方法可為以微影與蝕刻製程形成開口穿過緩衝層19b、19a、與15後,沉積金屬填滿開口並成層於緩衝層19b上。接著以微影蝕刻製程圖案化緩衝層19b上的金屬層,即可形成閘極21與閘極線21’。 The buffer layer 15 is located on the substrate 13 and the light shielding layer 14, the buffer layer 19a is located on the buffer layer 15, and the polysilicon layer 17 (such as the source region 17s, the channel region 17c, and the drain region 17d) is located on the buffer layer 19a and corresponds to the polysilicon layer. The transistors 11n and 11p. The buffer layer 19b is located on the polysilicon layer 17 and the buffer layer 19a, and the gate 21 and the gate line 21' are located on the buffer layer 19b. For the polysilicon transistors 11n and 11p, the gate 21 is located on the channel region 17c with a gate insulating layer such as a buffer layer 19b. In the metal oxide transistor 11a, the gate line 21' and the light shielding layer 14 are connected to each other through the buffer holes 19b, 19a and the through holes 21h of 15. The via hole 21h may be formed by forming a opening through the buffer layers 19b, 19a, and 15 by a lithography and etching process, and depositing a metal filling opening and layering on the buffer layer 19b. The gate layer 21 and the gate line 21' are formed by patterning the metal layer on the buffer layer 19b by a photolithography process.

層間介電層23位於閘極21、閘極線21'、與緩衝層19b上。層間介電層25位於層間介電層23上。金屬氧化物半導體層27位於層間介電層25上,並對應金屬氧化物電晶體11a之閘極(遮光層14/閘極21)。對金屬氧化物電晶體11a而言,通道區(金屬氧化物半導體層27)與閘極(遮光層14/閘極21)之間的閘極絕緣層為層間介電層25、層間介電層23、緩衝層19b、緩衝層19a、與緩衝層15。源極線29L1、汲極線29L2、源極29s、與汲極29d位於層間介電層25上。源極線29L1位於源極區17s上,兩者之間以穿過層間介電層25、層間介電層23、與緩衝層19b的通孔29h連接。汲極線29L2位於汲極區17d上,兩者之間以穿過層間介電層25、層間介電層23、與緩衝層19b的通孔29h連接。源極29s與汲極29d分別位於金屬氧化物半導體層27之兩側上。 The interlayer dielectric layer 23 is located on the gate 21, the gate line 21', and the buffer layer 19b. The interlayer dielectric layer 25 is on the interlayer dielectric layer 23. The metal oxide semiconductor layer 27 is on the interlayer dielectric layer 25 and corresponds to the gate of the metal oxide transistor 11a (light shielding layer 14 / gate 21). For the metal oxide transistor 11a, the gate insulating layer between the channel region (metal oxide semiconductor layer 27) and the gate (light shielding layer 14 / gate 21) is an interlayer dielectric layer 25, an interlayer dielectric layer 23. A buffer layer 19b, a buffer layer 19a, and a buffer layer 15. The source line 29L1, the drain line 29L2, the source 29s, and the drain 29d are located on the interlayer dielectric layer 25. The source line 29L1 is located on the source region 17s, and is connected between the interlayer dielectric layer 25, the interlayer dielectric layer 23, and the via hole 29h of the buffer layer 19b. The drain line 29L2 is located on the drain region 17d, and is connected between the interlayer dielectric layer 25, the interlayer dielectric layer 23, and the via hole 29h of the buffer layer 19b. The source 29s and the drain 29d are respectively located on both sides of the metal oxide semiconductor layer 27.

絕緣層31位於源極線29L1、汲極線29L2、源極29s、汲極29d、金屬氧化物半導體層27、與層間介電層25上。絕緣層31與層間介電層25具有開口33對應開口區11o,其形成方法可為微影蝕刻製程。值得注意的是,上述微影製程中的曝光步驟可由下方 向上曝光,且此曝光步驟採用遮光層14、源極線29L1、汲極線29L2、與源極29s作為遮罩,即可省略一道光罩而節省成本。在此曝光方向之微影與蝕刻製程後,絕緣層31與層間介電層25(氧化矽層)之邊緣將對準上述遮罩之邊緣。在某些實施例中,開口33可進一步往下延伸穿過層間介電層23、緩衝層19b、緩衝層19a、甚至緩衝層15。 The insulating layer 31 is located on the source line 29L1, the drain line 29L2, the source 29s, the drain 29d, the metal oxide semiconductor layer 27, and the interlayer dielectric layer 25. The insulating layer 31 and the interlayer dielectric layer 25 have openings 33 corresponding to the opening regions 11o, which may be formed by a photolithography process. It is worth noting that the exposure step in the above lithography process can be performed below. The exposure is upward, and the exposure step uses the light shielding layer 14, the source line 29L1, the drain line 29L2, and the source 29s as a mask, thereby omitting a mask and saving cost. After the lithography and etching process in this exposure direction, the edges of the insulating layer 31 and the interlayer dielectric layer 25 (yttria layer) will be aligned with the edges of the mask. In some embodiments, the opening 33 can extend further down through the interlayer dielectric layer 23, the buffer layer 19b, the buffer layer 19a, and even the buffer layer 15.

絕緣層35位於絕緣層31以及開口33內,並接觸層間介電層23。有機絕緣層37位於絕緣層35上。共同電極39位於有機絕緣層37上,主要對應畫素區10a。絕緣層41位於共同電極39與有機絕緣層37上。畫素電極43p位於絕緣層41上。部份畫素電極43p位於汲極29d上,兩者之間以穿過絕緣層41、有機絕緣層37、絕緣層35、與絕緣層31的通孔43h連接。第3圖中驅動電路10b之多晶矽電晶體11n與11p屬於頂閘極結構,而金屬氧化物電晶體11a屬於底閘極結構。在第3圖中,夾設於金屬氧化物半導體層27與閘極(遮光層14/閘極21)之間的閘極絕緣層中的氧化矽層(如層間介電層25),與金屬氧化物半導體層27上的氧化矽層(如絕緣層31)具有開口33對應開口區11o,以減少開口區11o中氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構100c的光穿透度。 The insulating layer 35 is located in the insulating layer 31 and the opening 33 and contacts the interlayer dielectric layer 23. The organic insulating layer 37 is located on the insulating layer 35. The common electrode 39 is located on the organic insulating layer 37, and mainly corresponds to the pixel region 10a. The insulating layer 41 is located on the common electrode 39 and the organic insulating layer 37. The pixel electrode 43p is located on the insulating layer 41. The partial pixel electrode 43p is located on the drain electrode 29d, and is connected between the insulating layer 41, the organic insulating layer 37, the insulating layer 35, and the through hole 43h of the insulating layer 31. The polycrystalline germanium transistors 11n and 11p of the driving circuit 10b in Fig. 3 belong to the top gate structure, and the metal oxide transistor 11a belongs to the bottom gate structure. In FIG. 3, a ruthenium oxide layer (such as interlayer dielectric layer 25) interposed between a MOS insulating layer 27 and a gate insulating layer (such as interlayer dielectric layer 25), and a metal The yttrium oxide layer (such as the insulating layer 31) on the oxide semiconductor layer 27 has an opening 33 corresponding to the opening region 11o to reduce the number of interfaces between the yttrium oxide layer and the tantalum nitride layer in the opening region 11o, thereby improving the light of the array substrate structure 100c. Penetration.

在一實施例中,陣列基板結構100d之剖視圖如第4圖所示。在第4圖中,畫素區10a、驅動電路10b、金屬氧化物電晶體11a、開口區11o、多晶矽電晶體11n與11p之相對位置與第1圖類似。遮光層14位於基板13上,且分別對應多晶矽電晶體11n與11p之多晶矽層17與金屬氧化物電晶體11a之金屬氧化物半導體層27。在此實施例中,金屬氧化物電晶體之遮光層14同時作為閘極, 因此遮光層14之材質必需為金屬等導電材料。 In an embodiment, a cross-sectional view of the array substrate structure 100d is shown in FIG. In Fig. 4, the relative positions of the pixel region 10a, the driving circuit 10b, the metal oxide transistor 11a, the opening region 11o, and the polysilicon transistors 11n and 11p are similar to those of Fig. 1. The light shielding layer 14 is located on the substrate 13 and corresponds to the polysilicon layer 17 of the polycrystalline germanium transistors 11n and 11p and the metal oxide semiconductor layer 27 of the metal oxide transistor 11a, respectively. In this embodiment, the light shielding layer 14 of the metal oxide transistor serves as a gate at the same time. Therefore, the material of the light shielding layer 14 must be a conductive material such as metal.

緩衝層15位於基板13與遮光層14上,而緩衝層19a位於緩衝層15上。多晶矽層17(如源極區17s、通道區17c、與汲極區17d)位於緩衝層19a上且對應多晶矽電晶體11n與11p。金屬氧化物半導體層27位於緩衝層19a上,並對應金屬氧化物電晶體11a之閘極(遮光層14)。緩衝層19b位於多晶矽層17、金屬氧化物半導體層27、與緩衝層19a上。閘極21與閘極線21'位於緩衝層19b上,而源極21s與汲極21d穿過緩衝層19b以接觸金屬氧化物半導體層27之兩側。對多晶矽電晶體11n與11p而言,閘極21位於通道區17c上,且兩者之間隔有閘極絕緣層如緩衝層19b。對金屬氧化物電晶體11a而言,通道區(金屬氧化物半導體層27)與閘極(遮光層14)之間的閘極絕緣層為緩衝層19a與緩衝層15。在金屬氧化物電晶體11a中,閘極線21’與遮光層14之間以穿過緩衝層19b、19a、與15之通孔21h相連。 The buffer layer 15 is located on the substrate 13 and the light shielding layer 14, and the buffer layer 19a is located on the buffer layer 15. The polysilicon layer 17 (e.g., the source region 17s, the channel region 17c, and the drain region 17d) is located on the buffer layer 19a and corresponds to the polysilicon transistors 11n and 11p. The metal oxide semiconductor layer 27 is on the buffer layer 19a and corresponds to the gate of the metal oxide transistor 11a (light shielding layer 14). The buffer layer 19b is located on the polysilicon layer 17, the metal oxide semiconductor layer 27, and the buffer layer 19a. The gate 21 and the gate line 21' are located on the buffer layer 19b, and the source 21s and the drain 21d pass through the buffer layer 19b to contact both sides of the metal oxide semiconductor layer 27. For the polysilicon transistors 11n and 11p, the gate 21 is located on the channel region 17c with a gate insulating layer such as a buffer layer 19b. For the metal oxide transistor 11a, the gate insulating layer between the channel region (metal oxide semiconductor layer 27) and the gate (light shielding layer 14) is the buffer layer 19a and the buffer layer 15. In the metal oxide transistor 11a, the gate line 21' and the light shielding layer 14 are connected to each other through the buffer holes 19b, 19a and the through holes 21h of 15.

層間介電層23位於閘極21、閘極線21'、源極21s、汲極21d、與緩衝層19b上。層間介電層25位於層間介電層23上。源極線29L1、汲極線29L2、與接點29c位於層間介電層25上。多晶矽電晶體11n與11p之源極線29L1位於源極區17s上,兩者之間以穿過層間介電層25、層間介電層23、與緩衝層19b的通孔29h連接。多晶矽電晶體11n與11p之汲極線29L2位於汲極區17d上,兩者之間以穿過層間介電層25、層間介電層23、與緩衝層19b的通孔29h連接。金屬氧化物電晶體11a之源極線29L1位於源極21s上,兩者之間以穿過層間介電層25與層間介電層23的通孔29h連接。金屬氧化物電晶體11a之接點29c位於汲極21d上,兩者之間以穿過層間介 電層25與層間介電層23的通孔29h連接。 The interlayer dielectric layer 23 is located on the gate 21, the gate line 21', the source 21s, the drain 21d, and the buffer layer 19b. The interlayer dielectric layer 25 is on the interlayer dielectric layer 23. The source line 29L1, the drain line 29L2, and the contact 29c are located on the interlayer dielectric layer 25. The source lines 29L1 of the polysilicon transistors 11n and 11p are located on the source region 17s, and are connected between the interlayer dielectric layer 25, the interlayer dielectric layer 23, and the via hole 29h of the buffer layer 19b. The gate lines 29L2 of the polycrystalline germanium transistors 11n and 11p are located on the drain region 17d, and are connected between the interlayer dielectric layer 25, the interlayer dielectric layer 23, and the via hole 29h of the buffer layer 19b. The source line 29L1 of the metal oxide transistor 11a is located on the source 21s, and is connected between the interlayer via holes 29h passing through the interlayer dielectric layer 25 and the interlayer dielectric layer 23. The contact 29c of the metal oxide transistor 11a is located on the drain 21d with the interlayer interposed therebetween. The electric layer 25 is connected to the through hole 29h of the interlayer dielectric layer 23.

層間介電層25、層間介電層23、緩衝層19b、與緩衝層19a具有開口33對應開口區11o,其形成方法可為微影蝕刻製程。值得注意的是,上述微影製程中的曝光步驟可由下方向上曝光,且此曝光步驟採用遮光層14、源極線29L1、與汲極線29L2作為遮罩,即可省略一道光罩而節省成本。在此曝光方向之微影與蝕刻製程後,層間介電層25、緩衝層19b、與緩衝層19a(氧化矽層)之邊緣將對準上述遮罩之邊緣。在某些實施例中,開口33可進一步往下延伸穿過緩衝層15。 The interlayer dielectric layer 25, the interlayer dielectric layer 23, the buffer layer 19b, and the buffer layer 19a have openings 33 corresponding to the opening regions 11o, which may be formed by a photolithography process. It should be noted that the exposure step in the above lithography process can be upwardly exposed from below, and the exposure step uses the light shielding layer 14, the source line 29L1, and the drain line 29L2 as a mask, thereby omitting a mask and saving cost. . After the lithography and etching process in this exposure direction, the edges of the interlayer dielectric layer 25, the buffer layer 19b, and the buffer layer 19a (the yttria layer) will be aligned with the edges of the mask. In some embodiments, the opening 33 can extend further down through the buffer layer 15.

絕緣層35位於層間介電層層25以及開口33內,並接觸緩衝層15。有機絕緣層37位於絕緣層35上。共同電極39位於有機絕緣層37上,主要對應畫素區10a。絕緣層41位於共同電極39與有機絕緣層37上。畫素電極43p位於絕緣層41上。部份畫素電極43p位於接點29c上,兩者之間以穿過絕緣層41、有機絕緣層37、與絕緣層35的通孔43h連接。第4圖中驅動電路10b之多晶矽電晶體11n與11p屬於頂閘極結構,而金屬氧化物電晶體11a屬於底閘極結構。在第4圖中,夾設於金屬氧化物半導體層27與閘極(遮光層14)之間的閘極絕緣層中的氧化矽層(如緩衝層19b與19a),與金屬氧化物半導體層27上的氧化矽層(如層間介電層25)具有開口33對應開口區11o,以減少開口區11o中氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構100d的光穿透度。 The insulating layer 35 is located in the interlayer dielectric layer 25 and the opening 33 and contacts the buffer layer 15. The organic insulating layer 37 is located on the insulating layer 35. The common electrode 39 is located on the organic insulating layer 37, and mainly corresponds to the pixel region 10a. The insulating layer 41 is located on the common electrode 39 and the organic insulating layer 37. The pixel electrode 43p is located on the insulating layer 41. The partial pixel electrode 43p is located on the contact 29c, and is connected between the insulating layer 41, the organic insulating layer 37, and the through hole 43h of the insulating layer 35. The polycrystalline germanium transistors 11n and 11p of the driving circuit 10b in Fig. 4 belong to the top gate structure, and the metal oxide transistor 11a belongs to the bottom gate structure. In Fig. 4, a ruthenium oxide layer (e.g., buffer layers 19b and 19a) interposed in a gate insulating layer between the MOS layer 27 and the gate (light shielding layer 14), and a metal oxide semiconductor layer The yttrium oxide layer on 27 (such as the interlayer dielectric layer 25) has an opening 33 corresponding to the opening region 11o to reduce the number of interfaces between the yttrium oxide layer and the tantalum nitride layer in the opening region 11o, thereby improving light penetration of the array substrate structure 100d. degree.

在一實施例中,陣列基板結構100e之剖視圖如第5圖所示。在第5圖中,畫素區10a、驅動電路10b、金屬氧化物電晶體11a、開口區11o、多晶矽電晶體11n與11p之相對位置與第1圖類 似。遮光層14位於基板13上,且分別對應多晶矽電晶體11n與11p之多晶矽層17與金屬氧化物電晶體11a之金屬氧化物半導體層27。在此實施例中,金屬氧化物電晶體之遮光層14同時作為閘極,因此遮光層14之材質必需為金屬等導電材料。 In an embodiment, a cross-sectional view of the array substrate structure 100e is shown in FIG. In Fig. 5, the relative positions of the pixel region 10a, the driving circuit 10b, the metal oxide transistor 11a, the opening region 11o, and the polysilicon transistors 11n and 11p are the same as those in the first pattern. like. The light shielding layer 14 is located on the substrate 13 and corresponds to the polysilicon layer 17 of the polycrystalline germanium transistors 11n and 11p and the metal oxide semiconductor layer 27 of the metal oxide transistor 11a, respectively. In this embodiment, the light shielding layer 14 of the metal oxide transistor serves as a gate at the same time, and therefore the material of the light shielding layer 14 must be a conductive material such as metal.

緩衝層15位於基板13與遮光層14上。多晶矽層17(如源極區17s、通道區17c、與汲極區17d)位於緩衝層15上且對應多晶矽電晶體11n與11p。緩衝層19b位於多晶矽層17與緩衝層19a上。閘極21與閘極線21'位於緩衝層19b上。對多晶矽電晶體11n與11p而言,閘極21位於通道區17c上,且兩者之間隔有閘極絕緣層如緩衝層19b。在金屬氧化物電晶體11a中,閘極線21’與遮光層14之間以穿過緩衝層19b、19a、與15之通孔21h相連。金屬氧化物半導體層27位於緩衝層19b上,並對應金屬氧化物電晶體11a之閘極(遮光層14)。對金屬氧化物電晶體11a而言,通道區(金屬氧化物半導體層27)與閘極(遮光層14)之間的閘極絕緣層為緩衝層19b、19a、與15。 The buffer layer 15 is located on the substrate 13 and the light shielding layer 14. The polysilicon layer 17 (e.g., the source region 17s, the channel region 17c, and the drain region 17d) is located on the buffer layer 15 and corresponds to the polysilicon transistors 11n and 11p. The buffer layer 19b is located on the polysilicon layer 17 and the buffer layer 19a. The gate 21 and the gate line 21' are located on the buffer layer 19b. For the polysilicon transistors 11n and 11p, the gate 21 is located on the channel region 17c with a gate insulating layer such as a buffer layer 19b. In the metal oxide transistor 11a, the gate line 21' and the light shielding layer 14 are connected to each other through the buffer holes 19b, 19a and the through holes 21h of 15. The metal oxide semiconductor layer 27 is on the buffer layer 19b and corresponds to the gate of the metal oxide transistor 11a (light shielding layer 14). For the metal oxide transistor 11a, the gate insulating layer between the channel region (metal oxide semiconductor layer 27) and the gate (light shielding layer 14) is the buffer layers 19b, 19a, and 15.

層間介電層25位於緩衝層19b、閘極21、閘極線21'、與金屬氧化物半導體層27上。層間介電層25、緩衝層19b、與緩衝層19a具有開口33對應開口區11o,其形成方法可為微影蝕刻製程。值得注意的是,上述微影製程中的曝光步驟可由下方向上曝光,且此曝光步驟採用遮光層14、源極線29L1、與汲極線29L2、與閘極線21'作為遮罩,即可省略一道光罩而節省成本。在此曝光方向之微影與蝕刻製程後,層間介電層25、緩衝層19b、與緩衝層19a(氧化矽層)之邊緣將對準上述遮罩之邊緣。在某些實施例中,開口33可進一步往下延伸穿過緩衝層15。 The interlayer dielectric layer 25 is located on the buffer layer 19b, the gate 21, the gate line 21', and the metal oxide semiconductor layer 27. The interlayer dielectric layer 25, the buffer layer 19b, and the buffer layer 19a have openings 33 corresponding to the opening regions 11o, and the formation method thereof may be a photolithography etching process. It should be noted that the exposure step in the above lithography process can be upwardly exposed from below, and the exposure step uses the light shielding layer 14, the source line 29L1, the drain line 29L2, and the gate line 21' as a mask. Save money by omitting a mask. After the lithography and etching process in this exposure direction, the edges of the interlayer dielectric layer 25, the buffer layer 19b, and the buffer layer 19a (the yttria layer) will be aligned with the edges of the mask. In some embodiments, the opening 33 can extend further down through the buffer layer 15.

層間介電層23位於層間介電層25以及開口33內,並接觸緩衝層15。源極線29L1、汲極線29L2、與接點29c位於層間介電層23上。多晶矽電晶體11n與11p之源極線29L1位於源極區17s上,兩者之間以穿過層間介電層23、層間介電層25、與緩衝層19b的通孔29h連接。多晶矽電晶體11n與11p之汲極線29L2位於汲極區17d上,兩者之間以穿過層間介電層23、層間介電層25、與緩衝層19b的通孔29h連接。金屬氧化物電晶體11a之源極線29L1位於金屬氧化物半導體層27之一側上,兩者之間以穿過層間介電層23與層間介電層25的通孔29h連接。金屬氧化物電晶體11a之接點29c位於金屬氧化物半導體層27之另一側上,兩者之間以穿過層間介電層23與層間介電層25的通孔29h連接。 The interlayer dielectric layer 23 is located in the interlayer dielectric layer 25 and the opening 33 and contacts the buffer layer 15. The source line 29L1, the drain line 29L2, and the contact 29c are located on the interlayer dielectric layer 23. The source lines 29L1 of the polysilicon transistors 11n and 11p are located on the source region 17s, and are connected to each other through the interlayer dielectric layer 23, the interlayer dielectric layer 25, and the via hole 29h of the buffer layer 19b. The gate lines 29L2 of the polycrystalline germanium transistors 11n and 11p are located on the drain region 17d, and are connected to each other through the interlayer dielectric layer 23, the interlayer dielectric layer 25, and the via hole 29h of the buffer layer 19b. The source line 29L1 of the metal oxide transistor 11a is located on one side of the metal oxide semiconductor layer 27, and is connected between the interlayer via holes 29h passing through the interlayer dielectric layer 23 and the interlayer dielectric layer 25. The contact 29c of the metal oxide transistor 11a is located on the other side of the metal oxide semiconductor layer 27, and is connected between the interlayer via holes 29h passing through the interlayer dielectric layer 23 and the interlayer dielectric layer 25.

絕緣層35位於源極線29L1、汲極線29L2、接點29c、與層間介電層23上。有機絕緣層37位於絕緣層35上。共同電極39位於有機絕緣層37上,主要對應畫素區10a。絕緣層41位於共同電極39與有機絕緣層37上。畫素電極43p位於絕緣層41上。部份畫素電極43p位於接點29c上,兩者之間以穿過絕緣層41、有機絕緣層37、與絕緣層35的通孔43h連接。第5圖中驅動電路10b之多晶矽電晶體11n與11p屬於頂閘極結構,而金屬氧化物電晶體11a屬於底閘極結構。在第5圖中,夾設於金屬氧化物半導體層27與閘極(遮光層14)之間的閘極絕緣層中的氧化矽層(如緩衝層19b與19a),與金屬氧化物半導體層27上的氧化矽層(如層間介電層25)具有開口33對應開口區11o,以減少開口區11o中氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構100e的光穿透度。 The insulating layer 35 is located on the source line 29L1, the drain line 29L2, the contact 29c, and the interlayer dielectric layer 23. The organic insulating layer 37 is located on the insulating layer 35. The common electrode 39 is located on the organic insulating layer 37, and mainly corresponds to the pixel region 10a. The insulating layer 41 is located on the common electrode 39 and the organic insulating layer 37. The pixel electrode 43p is located on the insulating layer 41. The partial pixel electrode 43p is located on the contact 29c, and is connected between the insulating layer 41, the organic insulating layer 37, and the through hole 43h of the insulating layer 35. The polysilicon transistors 11n and 11p of the driving circuit 10b in Fig. 5 belong to the top gate structure, and the metal oxide transistor 11a belongs to the bottom gate structure. In Fig. 5, a ruthenium oxide layer (e.g., buffer layers 19b and 19a) interposed in a gate insulating layer between the MOS layer 27 and the gate (light shielding layer 14), and a metal oxide semiconductor layer The yttrium oxide layer on 27 (such as the interlayer dielectric layer 25) has an opening 33 corresponding to the opening region 11o to reduce the number of interfaces between the yttrium oxide layer and the tantalum nitride layer in the opening region 11o, thereby improving light penetration of the array substrate structure 100e. degree.

在一實施例中,陣列基板結構100f之剖視圖如第6圖 所示。在第6圖中,畫素區10a、驅動電路10b、金屬氧化物電晶體11a、開口區11o、多晶矽電晶體11n與11p之相對位置與第1圖類似。遮光層14位於基板13上,且分別對應多晶矽電晶體11n與11p之多晶矽層17與金屬氧化物電晶體11a之金屬氧化物半導體層27。在此實施例中,金屬氧化物電晶體之遮光層14同時作為閘極,因此遮光層14之材質必需為金屬等導電材料。 In an embodiment, a cross-sectional view of the array substrate structure 100f is as shown in FIG. Shown. In Fig. 6, the relative positions of the pixel region 10a, the driving circuit 10b, the metal oxide transistor 11a, the opening region 11o, and the polysilicon transistors 11n and 11p are similar to those of Fig. 1. The light shielding layer 14 is located on the substrate 13 and corresponds to the polysilicon layer 17 of the polycrystalline germanium transistors 11n and 11p and the metal oxide semiconductor layer 27 of the metal oxide transistor 11a, respectively. In this embodiment, the light shielding layer 14 of the metal oxide transistor serves as a gate at the same time, and therefore the material of the light shielding layer 14 must be a conductive material such as metal.

緩衝層19a位於基板13與遮光層14上,緩衝層15位於緩衝層19a上,而緩衝層19b位於緩衝層15上。多晶矽層17(如源極區17s、通道區17c、與汲極區17d)位於緩衝層19b上且對應多晶矽電晶體11n與11p。緩衝層19c位於多晶矽層17與緩衝層19b上,其材質可為氧化矽,且其形成方法可為CVD。閘極21、源極21s、與汲極21d位於緩衝層19b上,其材質可為金屬,其形成方法可為沉積成層後,以微影蝕刻等製程圖案化。對多晶矽電晶體11n與11p而言,閘極21位於通道區17c上,且兩者之間隔有閘極絕緣層如緩衝層19c。金屬氧化物半導體層27位於緩衝層19b上,位於源極21s與汲極21d之間,並對應金屬氧化物電晶體11a之閘極(遮光層14)。對金屬氧化物電晶體11a而言,通道區(金屬氧化物半導體層27)與閘極(遮光層14)之間的閘極絕緣層為緩衝層19c、19b、15、與19a。 The buffer layer 19a is located on the substrate 13 and the light shielding layer 14, the buffer layer 15 is on the buffer layer 19a, and the buffer layer 19b is on the buffer layer 15. The polysilicon layer 17 (e.g., the source region 17s, the channel region 17c, and the drain region 17d) is located on the buffer layer 19b and corresponds to the polysilicon transistors 11n and 11p. The buffer layer 19c is located on the polysilicon layer 17 and the buffer layer 19b, and may be made of ruthenium oxide, and may be formed by CVD. The gate 21, the source 21s, and the drain 21d are located on the buffer layer 19b, and the material thereof may be metal. The method may be formed by depositing a layer and then patterning by a process such as photolithography. For the polysilicon transistors 11n and 11p, the gate 21 is located on the channel region 17c with a gate insulating layer such as a buffer layer 19c interposed therebetween. The metal oxide semiconductor layer 27 is located on the buffer layer 19b between the source 21s and the drain 21d and corresponds to the gate of the metal oxide transistor 11a (light shielding layer 14). For the metal oxide transistor 11a, the gate insulating layer between the channel region (metal oxide semiconductor layer 27) and the gate (light shielding layer 14) is the buffer layers 19c, 19b, 15, and 19a.

層間介電層25位於緩衝層19c、閘極21、源極21s、汲極21d、與金屬氧化物半導體層27上。層間介電層25、緩衝層19c、緩衝層19b、緩衝層15、與緩衝層19a具有開口33對應開口區11o,其形成方法可為微影蝕刻製程。值得注意的是,上述微影製程中的曝光步驟可由下方向上曝光,且此曝光步驟採用遮光層14、源 極線29L1、汲極線29L2、源極21s、與汲極21d作為遮罩,即可省略一道光罩而節省成本。在此曝光方向之微影與蝕刻製程後,層間介電層25、緩衝層19c、緩衝層19b、與緩衝層19a(氧化矽層)之邊緣將對準上述遮罩之邊緣。 The interlayer dielectric layer 25 is located on the buffer layer 19c, the gate 21, the source 21s, the drain 21d, and the metal oxide semiconductor layer 27. The interlayer dielectric layer 25, the buffer layer 19c, the buffer layer 19b, the buffer layer 15, and the buffer layer 19a have openings 33 corresponding to the opening regions 11o, which may be formed by a photolithography process. It should be noted that the exposure step in the above lithography process can be exposed upward from the bottom, and the exposure step uses the light shielding layer 14 and the source. Since the polar line 29L1, the drain line 29L2, the source 21s, and the drain 21d serve as a mask, a mask can be omitted and cost can be saved. After the lithography and etching process in this exposure direction, the edges of the interlayer dielectric layer 25, the buffer layer 19c, the buffer layer 19b, and the buffer layer 19a (the yttria layer) will be aligned with the edges of the mask.

層間介電層23位於層間介電層25以及開口33內,並接觸基板13。源極線29L1、汲極線29L2、與接點29c位於層間介電層23上。多晶矽電晶體11n與11p之源極線29L1位於源極區17s上,兩者之間以穿過層間介電層23、層間介電層25、與緩衝層19c的通孔29h連接。多晶矽電晶體11n與11p之汲極線29L2位於汲極區17d上,兩者之間以穿過層間介電層23、層間介電層25、與緩衝層19c的通孔29h連接。金屬氧化物電晶體11a之源極線29L1位於源極21s上,兩者之間以穿過層間介電層23與層間介電層25的通孔29h連接。金屬氧化物電晶體11a之接點29c位於汲極21d上,兩者之間以穿過層間介電層23與層間介電層25的通孔29h連接。 The interlayer dielectric layer 23 is located in the interlayer dielectric layer 25 and the opening 33 and contacts the substrate 13. The source line 29L1, the drain line 29L2, and the contact 29c are located on the interlayer dielectric layer 23. The source lines 29L1 of the polysilicon transistors 11n and 11p are located on the source region 17s, and are connected between the interlayer dielectric layer 23, the interlayer dielectric layer 25, and the via hole 29h of the buffer layer 19c. The gate lines 29L2 of the polycrystalline germanium transistors 11n and 11p are located on the drain region 17d, and are connected between the interlayer dielectric layer 23, the interlayer dielectric layer 25, and the via hole 29h of the buffer layer 19c. The source line 29L1 of the metal oxide transistor 11a is located on the source 21s, and is connected between the interlayer via holes 29h passing through the interlayer dielectric layer 23 and the interlayer dielectric layer 25. The contact 29c of the metal oxide transistor 11a is located on the drain 21d, and is connected between the interlayer via hole 29h passing through the interlayer dielectric layer 23 and the interlayer dielectric layer 25.

絕緣層35位於源極線29L1、汲極線29L2、接點29c、與層間介電層23上。有機絕緣層37位於絕緣層35上。共同電極39位於有機絕緣層37上,主要對應畫素區10a。絕緣層41位於共同電極39與有機絕緣層37上。畫素電極43p位於絕緣層41上。部份畫素電極43p位於接點29c上,兩者之間以穿過絕緣層41、有機絕緣層37、與絕緣層35的通孔43h連接。第6圖中驅動電路10b之多晶矽電晶體11n與11p屬於頂閘極結構,而金屬氧化物電晶體11a屬於底閘極結構。在第6圖中,夾設於金屬氧化物半導體層27與閘極(遮光層14)之間的閘極絕緣層中的氧化矽層(如緩衝層19c、19b、與19a),與金屬氧化物半導體層27上的氧化矽層(如層間介電層25) 具有開口33對應開口區11o,以減少開口區11o中氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構100f的光穿透度。 The insulating layer 35 is located on the source line 29L1, the drain line 29L2, the contact 29c, and the interlayer dielectric layer 23. The organic insulating layer 37 is located on the insulating layer 35. The common electrode 39 is located on the organic insulating layer 37, and mainly corresponds to the pixel region 10a. The insulating layer 41 is located on the common electrode 39 and the organic insulating layer 37. The pixel electrode 43p is located on the insulating layer 41. The partial pixel electrode 43p is located on the contact 29c, and is connected between the insulating layer 41, the organic insulating layer 37, and the through hole 43h of the insulating layer 35. The polycrystalline germanium transistors 11n and 11p of the driving circuit 10b in Fig. 6 belong to the top gate structure, and the metal oxide transistor 11a belongs to the bottom gate structure. In Fig. 6, a ruthenium oxide layer (e.g., buffer layers 19c, 19b, and 19a) interposed in a gate insulating layer between the metal oxide semiconductor layer 27 and the gate (light shielding layer 14), and metal oxide a ruthenium oxide layer on the semiconductor layer 27 (eg, interlayer dielectric layer 25) The opening 33 corresponds to the opening region 11o to reduce the number of interfaces between the yttrium oxide layer and the tantalum nitride layer in the opening region 11o, thereby improving the light transmittance of the array substrate structure 100f.

在一實施例中,陣列基板結構100g之剖視圖如第7圖所示。在第7圖中,金屬氧化物電晶體11a、開口區11o、與n型的多晶矽電晶體11n之相對位置與第1圖類似。此實施例可進一步包含p型的多晶矽電晶體11p,或將n型的多晶矽電晶體11n置換為p型的多晶矽電晶體11p,端視需要而定。緩衝層15位於基板13上,而緩衝層19a位於緩衝層15上。多晶矽層17(如源極區17s、通道區17c、與汲極區17d)位於緩衝層19a上且對應多晶矽電晶體11n。緩衝層19b形成於部份的多晶矽層17上,而閘極21形成於緩衝層19b上。對多晶矽電晶體11n而言,閘極21位於通道區17c上,且兩者之間隔有閘極絕緣層如緩衝層19b。層間介電層23位於閘極21、源極區17s、汲極區17d、與緩衝層19a上。層間介電層25位於層間介電層23上。 In an embodiment, a cross-sectional view of the array substrate structure 100g is shown in FIG. In Fig. 7, the relative positions of the metal oxide transistor 11a, the opening region 11o, and the n-type polysilicon transistor 11n are similar to those of Fig. 1. This embodiment may further comprise a p-type polycrystalline germanium transistor 11p, or a n-type polycrystalline germanium transistor 11n may be replaced with a p-type polycrystalline germanium transistor 11p, as desired. The buffer layer 15 is on the substrate 13, and the buffer layer 19a is on the buffer layer 15. The polysilicon layer 17 (e.g., the source region 17s, the channel region 17c, and the drain region 17d) is located on the buffer layer 19a and corresponds to the polycrystalline germanium transistor 11n. The buffer layer 19b is formed on a portion of the polysilicon layer 17, and the gate 21 is formed on the buffer layer 19b. For the polysilicon transistor 11n, the gate 21 is located on the channel region 17c, and is separated by a gate insulating layer such as a buffer layer 19b. The interlayer dielectric layer 23 is located on the gate 21, the source region 17s, the drain region 17d, and the buffer layer 19a. The interlayer dielectric layer 25 is on the interlayer dielectric layer 23.

接點29c、閘極線29L3、與閘極29g位於層間介電層23上。多晶矽電晶體11n之接點29c位於源極區17s(或汲極區17d)上,兩者之間以穿過層間介電層25與23的通孔29h連接。多晶矽電晶體11n之閘極線29L3位於閘極21上,兩者之間以穿過層間介電層25與23的通孔29h連接。 The contact 29c, the gate line 29L3, and the gate 29g are located on the interlayer dielectric layer 23. The contact 29c of the polysilicon transistor 11n is located on the source region 17s (or the drain region 17d), and is connected between the via holes 29h passing through the interlayer dielectric layers 25 and 23. The gate line 29L3 of the polysilicon transistor 11n is located on the gate 21, and is connected between the through holes 29h passing through the interlayer dielectric layers 25 and 23.

絕緣層35a位於接點29c、閘極線29L3、與閘極29g上,其材料可為氮化矽,且其形成方法可為CVD。絕緣層31a位於絕緣層35a上,其材料可為氧化矽,且其形成方法可為CVD。金屬氧化物半導體層27位於絕緣層31a上,並對應金屬氧化物電晶體11a的閘極29g。對金屬氧化物電晶體11a而言,通道區(金屬氧化 物半導體層27)與閘極29g之間的閘極絕緣層為絕緣層31a與35a。源極43s與汲極43d分別位於金屬氧化物半導體層27的兩側上,其材質可為金屬,且其形成方法可為濺鍍成層後,以微影與蝕刻等製程圖案化。絕緣層31b位於源極43s、汲極43d、金屬氧化物半導體層27、與絕緣層31a上,其材料可為氧化矽,且其形成方法可為CVD。絕緣層31a與31b具有開口33對應開口區11o,其形成方法可為微影蝕刻製程。在某些實施例中,開口33可進一步向下穿過絕緣層35a、層間介電層25、層間介電層23、緩衝層19a、甚至緩衝層15。 The insulating layer 35a is located on the contact 29c, the gate line 29L3, and the gate 29g, and the material thereof may be tantalum nitride, and the formation method may be CVD. The insulating layer 31a is located on the insulating layer 35a, and the material thereof may be yttrium oxide, and the forming method may be CVD. The metal oxide semiconductor layer 27 is on the insulating layer 31a and corresponds to the gate 29g of the metal oxide transistor 11a. Channel region (metal oxide) for metal oxide transistor 11a The gate insulating layer between the semiconductor layer 27) and the gate 29g is an insulating layer 31a and 35a. The source 43s and the drain 43d are respectively located on both sides of the metal oxide semiconductor layer 27, and the material thereof may be metal, and the forming method may be patterning by sputtering, layering, and the like by a process such as lithography and etching. The insulating layer 31b is located on the source electrode 43s, the drain electrode 43d, the metal oxide semiconductor layer 27, and the insulating layer 31a. The material thereof may be ruthenium oxide, and the formation method may be CVD. The insulating layers 31a and 31b have openings 33 corresponding to the opening regions 11o, which may be formed by a photolithography process. In some embodiments, the opening 33 can further pass down through the insulating layer 35a, the interlayer dielectric layer 25, the interlayer dielectric layer 23, the buffer layer 19a, or even the buffer layer 15.

絕緣層35b位於絕緣層31b以及開口33內,並接觸絕緣層35a。絕緣層35b之材料可為氮化矽,且其形成方法可為CVD。有機絕緣層37位於絕緣層35b上,而絕緣層41位於有機絕緣層37上。源極線45L1與汲極線45L2位於絕緣層41上,其材料可為金屬、合金、或其他導電材料。多晶矽電晶體11n之源極線45L1位於左側之接點29c上,兩者之間以穿過絕緣層41、有機絕緣層37、絕緣層35b、絕緣層31b、絕緣層31a、與絕緣層35a的通孔45h連接。多晶矽電晶體11n之汲極線45L2位於右側之接點29c上,兩者之間以穿過絕緣層41、有機絕緣層37、絕緣層35b、絕緣層31b、絕緣層31a、與絕緣層35a的通孔45h連接。金屬氧化電晶體之源極線45L3位於源極43s上,兩者之間以穿過絕緣層41、有機絕緣層37、絕緣層35b、與絕緣層31b之通孔45h連接。金屬氧化電晶體之汲極線45L4位於汲極43d上,兩者之間以穿過絕緣層41、有機絕緣層37、絕緣層35b、與絕緣層31b之通孔45h連接。 The insulating layer 35b is located inside the insulating layer 31b and the opening 33 and contacts the insulating layer 35a. The material of the insulating layer 35b may be tantalum nitride, and the forming method may be CVD. The organic insulating layer 37 is on the insulating layer 35b, and the insulating layer 41 is on the organic insulating layer 37. The source line 45L1 and the drain line 45L2 are located on the insulating layer 41, and the material thereof may be a metal, an alloy, or other conductive material. The source line 45L1 of the polycrystalline germanium transistor 11n is located on the contact 29c on the left side with the insulating layer 41, the organic insulating layer 37, the insulating layer 35b, the insulating layer 31b, the insulating layer 31a, and the insulating layer 35a interposed therebetween. The through holes 45h are connected. The drain line 45L2 of the polycrystalline germanium transistor 11n is located on the contact 29c on the right side with the insulating layer 41, the organic insulating layer 37, the insulating layer 35b, the insulating layer 31b, the insulating layer 31a, and the insulating layer 35a interposed therebetween. The through holes 45h are connected. The source line 45L3 of the metal oxide transistor is located on the source electrode 43s, and is connected between the insulating layer 41, the organic insulating layer 37, the insulating layer 35b, and the through hole 45h of the insulating layer 31b. The drain line 45L4 of the metal oxide transistor is located on the drain electrode 43d, and is connected between the insulating layer 41, the organic insulating layer 37, the insulating layer 35b, and the via hole 45h of the insulating layer 31b.

第7圖中多晶矽電晶體11n屬於頂閘極結構,而金屬 氧化物電晶體11a屬於底閘極結構。在第7圖中,夾設於金屬氧化物半導體層27與閘極29g之間的閘極絕緣層中的氧化矽層(如絕緣層31a),與金屬氧化物半導體層27上的氧化矽層(如絕緣層31b)具有開口33對應開口區11o,以減少開口區11o中氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構100g的光穿透度。 In Fig. 7, the polycrystalline germanium transistor 11n belongs to the top gate structure, and the metal The oxide transistor 11a belongs to the bottom gate structure. In Fig. 7, a ruthenium oxide layer (e.g., insulating layer 31a) interposed in the gate insulating layer between the metal oxide semiconductor layer 27 and the gate electrode 29g, and a ruthenium oxide layer on the metal oxide semiconductor layer 27 The insulating layer 31b has an opening 33 corresponding to the opening region 11o to reduce the number of interfaces between the yttrium oxide layer and the tantalum nitride layer in the opening region 11o, thereby improving the light transmittance of the array substrate structure 100g.

在一實施例中,陣列基板結構100h之剖視圖如第8圖所示。在第8圖中,金屬氧化物電晶體11a、開口區11o、與n型的多晶矽電晶體11n之相對位置與第1圖類似。此實施例可進一步包含p型的多晶矽電晶體11p,或將n型的多晶矽電晶體11n置換為p型的多晶矽電晶體11p,端視需要而定。緩衝層15位於基板13上,而緩衝層19a位於緩衝層15上。多晶矽層17(如源極區17s、通道區17c、與汲極區17d)位於緩衝層19a上且對應多晶矽電晶體11n。緩衝層19b形成於部份的多晶矽層17上,而閘極21形成於緩衝層19b上。對多晶矽電晶體11n而言,閘極21位於通道區17c上,且兩者之間隔有閘極絕緣層如緩衝層19b。層間介電層23位於閘極21、源極區17s、汲極區17d、與緩衝層19a上。層間介電層25位於層間介電層23上。 In an embodiment, a cross-sectional view of the array substrate structure 100h is shown in FIG. In Fig. 8, the relative positions of the metal oxide transistor 11a, the opening region 11o, and the n-type polysilicon transistor 11n are similar to those of Fig. 1. This embodiment may further comprise a p-type polycrystalline germanium transistor 11p, or a n-type polycrystalline germanium transistor 11n may be replaced with a p-type polycrystalline germanium transistor 11p, as desired. The buffer layer 15 is on the substrate 13, and the buffer layer 19a is on the buffer layer 15. The polysilicon layer 17 (e.g., the source region 17s, the channel region 17c, and the drain region 17d) is located on the buffer layer 19a and corresponds to the polycrystalline germanium transistor 11n. The buffer layer 19b is formed on a portion of the polysilicon layer 17, and the gate 21 is formed on the buffer layer 19b. For the polysilicon transistor 11n, the gate 21 is located on the channel region 17c, and is separated by a gate insulating layer such as a buffer layer 19b. The interlayer dielectric layer 23 is located on the gate 21, the source region 17s, the drain region 17d, and the buffer layer 19a. The interlayer dielectric layer 25 is on the interlayer dielectric layer 23.

接點29c、閘極線29L3、與閘極29g位於層間介電層23上。多晶矽電晶體11n之接點29c位於源極區17s(或汲極區17d)上,兩者之間以穿過層間介電層25與23的通孔29h連接。多晶矽電晶體11n之閘極線29L3位於閘極21上,兩者之間以穿過層間介電層25與23的通孔29h連接。 The contact 29c, the gate line 29L3, and the gate 29g are located on the interlayer dielectric layer 23. The contact 29c of the polysilicon transistor 11n is located on the source region 17s (or the drain region 17d), and is connected between the via holes 29h passing through the interlayer dielectric layers 25 and 23. The gate line 29L3 of the polysilicon transistor 11n is located on the gate 21, and is connected between the through holes 29h passing through the interlayer dielectric layers 25 and 23.

絕緣層35a位於接點29c、閘極線29L3、與閘極29g上。絕緣層31a位於絕緣層35a上。金屬氧化物半導體層27位於絕 緣層31a上,並對應金屬氧化物電晶體11a的閘極29g。對金屬氧化物電晶體11a而言,通道區(金屬氧化物半導體層27)與閘極29g之間的閘極絕緣層為絕緣層31a與35a。絕緣層31b位於金屬氧化物半導體層27與絕緣層31a上。 The insulating layer 35a is located on the contact 29c, the gate line 29L3, and the gate 29g. The insulating layer 31a is located on the insulating layer 35a. Metal oxide semiconductor layer 27 is located The edge layer 31a corresponds to the gate 29g of the metal oxide transistor 11a. For the metal oxide transistor 11a, the gate insulating layer between the channel region (metal oxide semiconductor layer 27) and the gate 29g is the insulating layers 31a and 35a. The insulating layer 31b is located on the metal oxide semiconductor layer 27 and the insulating layer 31a.

源極43s與汲極43d分別位於金屬氧化物半導體層27的兩側上之絕緣層31b上,並經由穿過絕緣層31b之通孔連接至金屬氧化物半導體層之兩側上。源極43s與汲極43d之材質可為金屬,且其形成方法可為微影蝕刻絕緣層31b形成開口後,沉積金屬於開口中並成層於絕緣層31b上,再以微影蝕刻製程圖案化金屬層以形成源極43s與汲極43d。絕緣層31c位於源極43s、汲極43d、金屬氧化物半導體層27、與絕緣層31b上。絕緣層31c之材料可為氧化矽,其形成方法可為CVD。絕緣層31a、31b、與31c具有開口33對應開口區11o,其形成方法可為微影蝕刻製程。在某些實施例中,開口33可進一步向下穿過絕緣層35a、層間介電層25、層間介電層23、緩衝層19a、甚至緩衝層15。 The source 43s and the drain 43d are respectively located on the insulating layer 31b on both sides of the metal oxide semiconductor layer 27, and are connected to both sides of the metal oxide semiconductor layer via via holes penetrating the insulating layer 31b. The material of the source 43s and the drain 43d may be metal, and the forming method may be: after the lithography etching insulating layer 31b is formed with an opening, depositing a metal in the opening and layering on the insulating layer 31b, and then patterning by a micro-etching process. The metal layer forms a source 43s and a drain 43d. The insulating layer 31c is located on the source electrode 43s, the drain electrode 43d, the metal oxide semiconductor layer 27, and the insulating layer 31b. The material of the insulating layer 31c may be ruthenium oxide, which may be formed by CVD. The insulating layers 31a, 31b, and 31c have openings 33 corresponding to the opening regions 11o, and the forming method thereof may be a photolithography etching process. In some embodiments, the opening 33 can further pass down through the insulating layer 35a, the interlayer dielectric layer 25, the interlayer dielectric layer 23, the buffer layer 19a, or even the buffer layer 15.

絕緣層35b位於絕緣層31c以及開口33內,並接觸絕緣層35a。有機絕緣層37位於絕緣層35b上,而絕緣層41位於有機絕緣層37上。源極線45L1與汲極線45L2位於絕緣層41上,其材料可為可為金屬、合金、或其他導電材料。多晶矽電晶體11n之源極線45L1位於左側之接點29c上,兩者之間以穿過絕緣層41、有機絕緣層37、絕緣層35b、絕緣層31c、絕緣層31b、絕緣層31a、與絕緣層35a的通孔45h連接。多晶矽電晶體11n之汲極線45L2位於右側之接點29c上,兩者之間以穿過絕緣層41、有機絕緣層37、絕緣層35b、絕緣層31c、絕緣層31b、絕緣層31a、與絕緣層35a的通孔 45h連接。金屬氧化電晶體之源極線45L3位於源極43s上,兩者之間以穿過絕緣層41、有機絕緣層37、絕緣層35b、與絕緣層31c之通孔45h連接。金屬氧化電晶體之汲極線45L4位於汲極43d上,兩者之間以穿過絕緣層41、有機絕緣層37、絕緣層35b、與絕緣層31c之通孔45h連接。 The insulating layer 35b is located inside the insulating layer 31c and the opening 33 and contacts the insulating layer 35a. The organic insulating layer 37 is on the insulating layer 35b, and the insulating layer 41 is on the organic insulating layer 37. The source line 45L1 and the drain line 45L2 are located on the insulating layer 41, and the material thereof may be a metal, an alloy, or other conductive material. The source line 45L1 of the polycrystalline germanium transistor 11n is located on the left contact 29c with the insulating layer 41, the organic insulating layer 37, the insulating layer 35b, the insulating layer 31c, the insulating layer 31b, the insulating layer 31a, and The through holes 45h of the insulating layer 35a are connected. The drain line 45L2 of the polycrystalline germanium transistor 11n is located on the contact 29c on the right side, passing between the insulating layer 41, the organic insulating layer 37, the insulating layer 35b, the insulating layer 31c, the insulating layer 31b, the insulating layer 31a, and Through hole of insulating layer 35a 45h connection. The source line 45L3 of the metal oxide transistor is located on the source electrode 43s, and is connected between the insulating layer 41, the organic insulating layer 37, the insulating layer 35b, and the through hole 45h of the insulating layer 31c. The drain line 45L4 of the metal oxide transistor is located on the drain electrode 43d, and is connected between the insulating layer 41, the organic insulating layer 37, the insulating layer 35b, and the via hole 45h of the insulating layer 31c.

第8圖中多晶矽電晶體11n屬於頂閘極結構,而金屬氧化物電晶體11a屬於底閘極結構。在第8圖中,夾設於金屬氧化物半導體層27與閘極29g之間的閘極絕緣層中的氧化矽層(如絕緣層31a),與金屬氧化物半導體層27上的氧化矽層(如絕緣層31b與31c)具有開口33對應開口區11o,以減少開口區11o中氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構100g的光穿透度。 In Fig. 8, the polycrystalline germanium transistor 11n belongs to the top gate structure, and the metal oxide transistor 11a belongs to the bottom gate structure. In Fig. 8, a ruthenium oxide layer (e.g., insulating layer 31a) interposed in the gate insulating layer between the metal oxide semiconductor layer 27 and the gate electrode 29g, and a ruthenium oxide layer on the metal oxide semiconductor layer 27 (e.g., the insulating layers 31b and 31c) have openings 33 corresponding to the opening regions 11o to reduce the number of interfaces between the yttrium oxide layer and the tantalum nitride layer in the opening region 11o, thereby improving the light transmittance of the array substrate structure 100g.

在一實施例中,陣列基板結構100i之製程剖視圖如第9A至9J圖所示。在第9A圖中,陣列基板結構100a分為多個畫素區10a與驅動電路10b。每一畫素區10a具有金屬氧化物電晶體11a與開口區11o,而驅動電路10b包含n型的多晶矽電晶體11n與p型的多晶矽電晶體11p。在其他實施例中,驅動電路10b可只具有n型的多晶矽電晶體11n,或只具有p型的多晶矽電晶體11p,端視需要而定。遮光層14形成於基板13上,且分別對應多晶矽電晶體11n與11p之多晶矽層17與金屬氧化物電晶體11a之金屬氧化物半導體層27。接著形成緩衝層15於遮光層14上,再形成緩衝層19a於緩衝層15上。 In one embodiment, a cross-sectional view of the array substrate structure 100i is shown in FIGS. 9A-9J. In Fig. 9A, the array substrate structure 100a is divided into a plurality of pixel regions 10a and a driving circuit 10b. Each of the pixel regions 10a has a metal oxide transistor 11a and an open region 11o, and the driving circuit 10b includes an n-type polycrystalline germanium transistor 11n and a p-type polycrystalline germanium transistor 11p. In other embodiments, the driver circuit 10b may have only an n-type polysilicon transistor 11n, or a p-type polysilicon transistor 11p, as desired. The light shielding layer 14 is formed on the substrate 13 and corresponds to the polysilicon layer 17 of the polycrystalline germanium transistors 11n and 11p and the metal oxide semiconductor layer 27 of the metal oxide transistor 11a, respectively. Next, a buffer layer 15 is formed on the light shielding layer 14, and a buffer layer 19a is formed on the buffer layer 15.

如第9B圖所示,形成多晶矽電晶體11n與11p之多晶矽層17於緩衝層19a上,且對應多晶矽電晶體11n與11p。接著可移除多晶矽層17未覆蓋之緩衝層19A。在其他實施例中,可保留緩 衝層19A於所有的緩衝層15上。在一實施例中,形成多晶矽層17後可採用微影製程形成之遮光光阻圖案(未圖示)保護中間的通道區17c,再佈植離子至通道區17c兩側以定義源極區17s/汲極區17d。之後可視情況移除遮光光阻圖案,移除方法可為濕式或乾式剝除。 As shown in Fig. 9B, the polysilicon layer 17 of the polycrystalline germanium transistors 11n and 11p is formed on the buffer layer 19a, and corresponds to the polycrystalline germanium transistors 11n and 11p. The buffer layer 19A not covered by the polysilicon layer 17 can then be removed. In other embodiments, it may be retained The stamp layer 19A is on all of the buffer layers 15. In one embodiment, after forming the polysilicon layer 17, the opaque photoresist pattern (not shown) formed by the lithography process can be used to protect the intermediate channel region 17c, and ions are implanted on both sides of the channel region 17c to define the source region 17s. / bungee area 17d. The shading photoresist pattern can then be removed as appropriate, either by wet or dry stripping.

如第9C圖所示,形成緩衝層19b於多晶矽層17與緩衝層15上,再形成金屬層於緩衝層19B上。接著以微影蝕刻製程定義閘極21對應多晶矽電晶體11n與11p之通道區17c,以及金屬氧化物電晶體11a之遮光層14上,再移除閘極21未遮罩之緩衝層19b。對多晶矽電晶體11n與11p而言,閘極21對應通道區17c,而通道區17c與閘極21之間的閘極絕緣層為緩衝層19b。 As shown in Fig. 9C, a buffer layer 19b is formed on the polysilicon layer 17 and the buffer layer 15, and a metal layer is formed on the buffer layer 19B. Next, the channel region 17c of the gate 21 corresponding to the polysilicon transistors 11n and 11p, and the light shielding layer 14 of the metal oxide transistor 11a are defined by a photolithography process, and the buffer layer 19b not covered by the gate 21 is removed. For the polysilicon transistors 11n and 11p, the gate 21 corresponds to the channel region 17c, and the gate insulating layer between the channel region 17c and the gate 21 is the buffer layer 19b.

如第9D圖所示,形成層間介電層23於閘極21、緩衝層15、源極區17s、與源極區17d上。接著形成層間介電層25於層間介電層23上。如第9E圖所示,形成金屬氧化物半導體層27於層間介電層25上,並對應金屬氧化物電晶體11a之閘極21。對金屬氧化物電晶體11a而言,通道區(金屬氧化物半導體層27)與閘極21之間的閘極絕緣層為層間介電層23與25。 As shown in Fig. 9D, an interlayer dielectric layer 23 is formed on the gate 21, the buffer layer 15, the source region 17s, and the source region 17d. An interlayer dielectric layer 25 is then formed over the interlayer dielectric layer 23. As shown in Fig. 9E, a metal oxide semiconductor layer 27 is formed on the interlayer dielectric layer 25 and corresponds to the gate 21 of the metal oxide transistor 11a. For the metal oxide transistor 11a, the gate insulating layer between the channel region (metal oxide semiconductor layer 27) and the gate 21 is the interlayer dielectric layers 23 and 25.

如第9F圖所示,以微影蝕刻製程形成開口穿過層間介電層23與25後,將金屬填入開口形成通孔29h並成層於層間介電層25上。接著以微影蝕刻等製程圖案化金屬層,以定義源極線29L1、汲極線29L2、源極29s、與汲極29d於層間介電層25上。源極線29L1位於源極區17s上,兩者之間以穿過層間介電層25、層間介電層23、與緩衝層19b的通孔29h連接。汲極線29L2位於汲極區17d上,兩者之間以穿過層間介電層25、層間介電層23、與緩衝層 19b的通孔29h連接。源極29s與汲極29d分別位於金屬氧化物半導體層27之兩側上。 As shown in FIG. 9F, after the openings are formed through the interlayer dielectric layers 23 and 25 by the photolithography etching process, the metal is filled in the openings to form the via holes 29h and layered on the interlayer dielectric layer 25. Then, the metal layer is patterned by a process such as photolithography to define a source line 29L1, a drain line 29L2, a source 29s, and a drain 29d on the interlayer dielectric layer 25. The source line 29L1 is located on the source region 17s, and is connected between the interlayer dielectric layer 25, the interlayer dielectric layer 23, and the via hole 29h of the buffer layer 19b. The drain line 29L2 is located on the drain region 17d with the interlayer dielectric layer 25, the interlayer dielectric layer 23, and the buffer layer therebetween. The through holes 29h of 19b are connected. The source 29s and the drain 29d are respectively located on both sides of the metal oxide semiconductor layer 27.

如第9G圖所示,接著形成絕緣層31於層間介電層25、金屬氧化物半導體層27、源極線29L1、汲極線29L2、源極29s、與汲極29d上。之後形成光阻層於絕緣層31上,並以背面曝光製程32及顯影製程圖案化光阻層,以形成光阻圖案30。上述背面曝光製程不需額外光罩,其採用遮光層14、源極區17s、汲極區17d、源極29s、與汲極29d作為遮罩。 As shown in Fig. 9G, an insulating layer 31 is subsequently formed on the interlayer dielectric layer 25, the metal oxide semiconductor layer 27, the source line 29L1, the drain line 29L2, the source 29s, and the drain 29d. Thereafter, a photoresist layer is formed on the insulating layer 31, and the photoresist layer is patterned by a backside exposure process 32 and a development process to form the photoresist pattern 30. The back surface exposure process does not require an additional mask, and the light shielding layer 14, the source region 17s, the drain region 17d, the source 29s, and the drain 29d are used as masks.

如第9H圖所示,以光阻圖案30作為蝕刻製罩,蝕刻移除光阻圖案30未遮罩之絕緣層31與層間介電層25,以形成開口33。如第9H圖所示,開口33主要對應開口區11o,但亦可對應其他光阻圖案30未遮罩的部份。如第9H圖所示,保留之絕緣層31與層間介電層25之邊緣對準遮罩(如源極區17s、汲極區17d、源極29s、與汲極9d)的邊緣。在某些實施例中,開口33可進一步往下延伸穿過層間介電層23,甚至緩衝層15。 As shown in FIG. 9H, the photoresist pattern 30 is used as an etching mask, and the insulating layer 31 and the interlayer dielectric layer 25 which are not covered by the photoresist pattern 30 are removed by etching to form the opening 33. As shown in FIG. 9H, the opening 33 mainly corresponds to the opening area 11o, but may also correspond to the unmasked portion of the other photoresist pattern 30. As shown in Fig. 9H, the edges of the remaining insulating layer 31 and the interlayer dielectric layer 25 are aligned with the edges of the mask (e.g., source region 17s, drain region 17d, source 29s, and drain 9d). In some embodiments, the opening 33 can extend further down through the interlayer dielectric layer 23, or even the buffer layer 15.

如第9I圖所示,接著移除光阻圖案30後形成絕緣層35於絕緣層31與開口33內,使絕緣層35接觸層間介電層23。接著形成有機絕緣層37於絕緣層35上。如第9H圖所示,接著形成共同電極39於有機絕緣層37上,其主要對應畫素區10a。接著形成絕緣層41於共同電極39與有機絕緣層37上,再微影與蝕刻絕緣層41、有機絕緣層37、絕緣層35、與絕緣層31後形成孔洞。將透明導電物如ITO填入孔洞中並成層於絕緣層41上,再以微影蝕刻等製程圖案化ITO層以定義畫素電極43p。至此即完成陣列基板結構100i。 As shown in FIG. 9I, the photoresist layer 30 is removed to form an insulating layer 35 in the insulating layer 31 and the opening 33, so that the insulating layer 35 contacts the interlayer dielectric layer 23. An organic insulating layer 37 is then formed on the insulating layer 35. As shown in Fig. 9H, a common electrode 39 is then formed on the organic insulating layer 37, which mainly corresponds to the pixel region 10a. Next, the insulating layer 41 is formed on the common electrode 39 and the organic insulating layer 37, and the holes are formed by lithography and etching the insulating layer 41, the organic insulating layer 37, the insulating layer 35, and the insulating layer 31. A transparent conductive material such as ITO is filled in the hole and layered on the insulating layer 41, and the ITO layer is patterned by a process such as photolithography to define the pixel electrode 43p. The array substrate structure 100i is thus completed.

第9J圖的驅動電路10b之多晶矽電晶體11n與11p屬於 頂閘極結構,而金屬氧化物電晶體11a屬於底閘極結構。在第9J圖中,位於金屬氧化物半導體層27上的氧化矽層(如絕緣層31),與夾設於金屬氧化物半導體層27與閘極21之間的閘極絕緣層中的氧化矽層(如層間介電層25)具有開口33對應開口區11o,以減少開口區11o中氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構100i的光穿透度。 The polysilicon transistors 11n and 11p of the driving circuit 10b of Fig. 9J belong to The top gate structure, and the metal oxide transistor 11a belongs to the bottom gate structure. In Fig. 9J, a ruthenium oxide layer (e.g., insulating layer 31) on the metal oxide semiconductor layer 27, and ruthenium oxide interposed in the gate insulating layer interposed between the metal oxide semiconductor layer 27 and the gate electrode 21 The layer (such as the interlayer dielectric layer 25) has an opening 33 corresponding to the opening region 11o to reduce the number of interfaces between the yttrium oxide layer and the tantalum nitride layer in the opening region 11o, thereby improving the light transmittance of the array substrate structure 100i.

在一實施例中,陣列基板結構100j之製程剖視圖如第10A至10C圖所示。第10A圖接續第9G圖之結構,以光阻圖案30作為蝕刻製罩,蝕刻移除光阻圖案30未遮罩之絕緣層31、層間介電層25,層間介電層23、與緩衝層15以形成開口33露出部份基板13。如第10A圖所示,開口33主要對應開口區11o。如第10B圖所示,接著形成絕緣層35於絕緣層31與開口33內,且絕緣層35接觸基板13。接著形成有機絕緣層37於絕緣層35上。如第10C圖所示,形成共同電極39於有機絕緣層37上,其主要對應畫素區10a。接著形成絕緣層41於共同電極39與有機絕緣層37上,再微影與蝕刻絕緣層41、有機絕緣層37、絕緣層35、與絕緣層31後形成孔洞。將透明導電物如ITO填入孔洞中並成層於絕緣層41上,再以微影蝕刻等製程圖案化ITO層以定義畫素電極43p。至此即完成陣列基板結構100j。 In one embodiment, a cross-sectional view of the array substrate structure 100j is shown in FIGS. 10A through 10C. 10A is a structure according to FIG. 9G, in which the photoresist pattern 30 is used as an etching mask, and the insulating layer 31, the interlayer dielectric layer 25, the interlayer dielectric layer 23, and the buffer layer which are not covered by the photoresist pattern 30 are removed by etching. 15 forms an opening 33 to expose a portion of the substrate 13. As shown in Fig. 10A, the opening 33 mainly corresponds to the opening area 11o. As shown in FIG. 10B, an insulating layer 35 is then formed in the insulating layer 31 and the opening 33, and the insulating layer 35 contacts the substrate 13. An organic insulating layer 37 is then formed on the insulating layer 35. As shown in Fig. 10C, a common electrode 39 is formed on the organic insulating layer 37, which mainly corresponds to the pixel region 10a. Next, the insulating layer 41 is formed on the common electrode 39 and the organic insulating layer 37, and the holes are formed by lithography and etching the insulating layer 41, the organic insulating layer 37, the insulating layer 35, and the insulating layer 31. A transparent conductive material such as ITO is filled in the hole and layered on the insulating layer 41, and the ITO layer is patterned by a process such as photolithography to define the pixel electrode 43p. The array substrate structure 100j is thus completed.

第10c圖的驅動電路10b之多晶矽電晶體11n與11p屬於頂閘極結構,而金屬氧化物電晶體11a屬於底閘極結構。在第10c圖中,位於金屬氧化物半導體層27上的氧化矽層(如絕緣層31),與夾設於金屬氧化物半導體層27與閘極21之間的閘極絕緣層中的氧化矽層(如層間介電層25)具有開口33對應開口區11o,以減少開 口區11o中氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構100j的光穿透度。 The polysilicon transistors 11n and 11p of the driving circuit 10b of Fig. 10c belong to the top gate structure, and the metal oxide transistor 11a belongs to the bottom gate structure. In Fig. 10c, a hafnium oxide layer (e.g., insulating layer 31) on the metal oxide semiconductor layer 27, and a hafnium oxide layer interposed in the gate insulating layer interposed between the metal oxide semiconductor layer 27 and the gate electrode 21 The layer (such as the interlayer dielectric layer 25) has an opening 33 corresponding to the opening area 11o to reduce opening The number of interfaces between the ruthenium oxide layer and the tantalum nitride layer in the opening region 11o, thereby improving the light transmittance of the array substrate structure 100j.

在一實施例中,陣列基板結構100k之製程剖視圖如第11A至11B圖所示。第11A圖接續第10A圖之結構,形成有機絕緣層37於絕緣層31與開口33內,且有機絕緣層37接觸基板13。如第10B圖所示,形成共同電極39於有機絕緣層37上,其主要對應畫素區10a。接著形成絕緣層41於共同電極39與有機絕緣層37上,再微影與蝕刻絕緣層41、有機絕緣層37、與絕緣層31後形成孔洞。將透明導電物如ITO填入孔洞中並成層於絕緣層41上,再以微影蝕刻等製程圖案化ITO層以定義畫素電極43p。至此即完成陣列基板結構100k。 In one embodiment, a cross-sectional view of the array substrate structure 100k is shown in FIGS. 11A-11B. 11A is a structure in which the organic insulating layer 37 is formed in the insulating layer 31 and the opening 33, and the organic insulating layer 37 is in contact with the substrate 13. As shown in Fig. 10B, a common electrode 39 is formed on the organic insulating layer 37, which mainly corresponds to the pixel region 10a. Next, the insulating layer 41 is formed on the common electrode 39 and the organic insulating layer 37, and the holes are formed by lithography and etching the insulating layer 41, the organic insulating layer 37, and the insulating layer 31. A transparent conductive material such as ITO is filled in the hole and layered on the insulating layer 41, and the ITO layer is patterned by a process such as photolithography to define the pixel electrode 43p. The array substrate structure 100k is thus completed.

第11B圖的驅動電路10b之多晶矽電晶體11n與11p屬於頂閘極結構,而金屬氧化物電晶體11a屬於底閘極結構。在第10c圖中,位於金屬氧化物半導體層27上的氧化矽層(如絕緣層31),與夾設於金屬氧化物半導體層27與閘極21之間的閘極絕緣層中的氧化矽層(如層間介電層25)具有開口33對應開口區11o,令開口區11o中不存在氧化矽層以降低全反射的發生,進而改善陣列基板結構100k的光穿透度。 The polysilicon transistors 11n and 11p of the driving circuit 10b of Fig. 11B belong to the top gate structure, and the metal oxide transistor 11a belongs to the bottom gate structure. In Fig. 10c, a hafnium oxide layer (e.g., insulating layer 31) on the metal oxide semiconductor layer 27, and a hafnium oxide layer interposed in the gate insulating layer interposed between the metal oxide semiconductor layer 27 and the gate electrode 21 The layer (such as the interlayer dielectric layer 25) has an opening 33 corresponding to the opening region 11o, so that the yttrium oxide layer is not present in the opening region 11o to reduce the occurrence of total reflection, thereby improving the light transmittance of the array substrate structure 100k.

在一實施例中,陣列基板結構100l之剖視圖如第12圖所示。在第12圖中,畫素區10a、驅動電路10b、金屬氧化物電晶體11a、開口區11o、多晶矽電晶體11n與11p之相對位置與第1圖類似。遮光層14位於基板13上,且分別對應多晶矽電晶體11n與11p之多晶矽層17與金屬氧化物電晶體11a之金屬氧化物半導體層27。 In an embodiment, a cross-sectional view of the array substrate structure 100l is shown in FIG. In Fig. 12, the relative positions of the pixel region 10a, the driving circuit 10b, the metal oxide transistor 11a, the opening region 11o, and the polysilicon transistors 11n and 11p are similar to those of Fig. 1. The light shielding layer 14 is located on the substrate 13 and corresponds to the polysilicon layer 17 of the polycrystalline germanium transistors 11n and 11p and the metal oxide semiconductor layer 27 of the metal oxide transistor 11a, respectively.

金屬氧化物半導體層位於金屬氧化物電晶體11a之遮光層14上。緩衝層19a位於多晶矽電晶體11n與11p之遮光層14、基板13、與金屬氧化物半導體層27上。緩衝層15位於緩衝層19a上。多晶矽層17(如源極區17s、通道區17c、與汲極區17d)位於緩衝層15上且對應多晶矽電晶體11n與11p。緩衝層19b位於通道區17c與金屬氧化物電晶體11a之緩衝層15上。閘極21位於緩衝層19b上。對多晶矽電晶體11n與11p而言,閘極21對應通道區17c,而通道區17c與閘極21之間的閘極絕緣層為緩衝層19b。對金屬氧化物電晶體11a而言,閘極21對應通道區(金屬氧化物半導體層27),且兩者之間的閘極絕緣層為緩衝層19b、15、與19。 The metal oxide semiconductor layer is on the light shielding layer 14 of the metal oxide transistor 11a. The buffer layer 19a is located on the light shielding layer 14, the substrate 13, and the metal oxide semiconductor layer 27 of the polycrystalline germanium transistors 11n and 11p. The buffer layer 15 is located on the buffer layer 19a. The polysilicon layer 17 (e.g., the source region 17s, the channel region 17c, and the drain region 17d) is located on the buffer layer 15 and corresponds to the polysilicon transistors 11n and 11p. The buffer layer 19b is located on the channel region 17c and the buffer layer 15 of the metal oxide transistor 11a. The gate 21 is located on the buffer layer 19b. For the polysilicon transistors 11n and 11p, the gate 21 corresponds to the channel region 17c, and the gate insulating layer between the channel region 17c and the gate 21 is the buffer layer 19b. For the metal oxide transistor 11a, the gate 21 corresponds to the channel region (metal oxide semiconductor layer 27), and the gate insulating layer therebetween is the buffer layers 19b, 15, and 19.

緩衝層15與19a具有開口對應開口區11o,其形成方法可為微影蝕刻製程。值得注意的是,上述微影製程中的曝光步驟可由下方向上曝光,且此曝光步驟採用遮光層14、源極線29L1、與汲極線29L2作為遮罩,即可省略一道光罩而節省成本。在此曝光方向之微影與蝕刻製程後,緩衝層19b與19a(氧化矽層)之邊緣將對準上述遮罩之邊緣。 The buffer layers 15 and 19a have openings corresponding to the opening regions 11o, which may be formed by a photolithography process. It should be noted that the exposure step in the above lithography process can be upwardly exposed from below, and the exposure step uses the light shielding layer 14, the source line 29L1, and the drain line 29L2 as a mask, thereby omitting a mask and saving cost. . After the lithography and etching process in this exposure direction, the edges of the buffer layers 19b and 19a (yttria layer) will be aligned with the edges of the mask.

層間介電層23位於閘極21、源極區17s、汲極區17d、與緩衝層15上,且層間介電層23經由開口直接接觸基板13。源極線29L1、汲極線29L2、與接點29c位於層間介電層23上。多晶矽電晶體11n與11p之源極線29L1位於源極區17s上,兩者之間以穿過層間介電層23的通孔29h連接。多晶矽電晶體11n與11p之汲極線29L2位於汲極區17d上,兩者之間以穿過層間介電層23的通孔29h連接。金屬氧化物電晶體11a之源極線29L1位於金屬氧化物半導體層27之一側上,兩者之間以穿過層間介電層23、緩衝層15、與緩 衝層19a的通孔29h連接。金屬氧化物電晶體11a之接點29c位於金屬氧化物半導體層27之另一側上,兩者之間以穿過層間介電層23、緩衝層15、與緩衝層19a的通孔29h連接。 The interlayer dielectric layer 23 is located on the gate 21, the source region 17s, the drain region 17d, and the buffer layer 15, and the interlayer dielectric layer 23 directly contacts the substrate 13 via the opening. The source line 29L1, the drain line 29L2, and the contact 29c are located on the interlayer dielectric layer 23. The source lines 29L1 of the polysilicon transistors 11n and 11p are located on the source region 17s, and are connected between the through holes 29h passing through the interlayer dielectric layer 23. The gate lines 29L2 of the polycrystalline germanium transistors 11n and 11p are located on the drain region 17d, and are connected to each other with a via 29h passing through the interlayer dielectric layer 23. The source line 29L1 of the metal oxide transistor 11a is located on one side of the metal oxide semiconductor layer 27 with the interlayer dielectric layer 23, the buffer layer 15, and the like interposed therebetween. The through holes 29h of the punch layer 19a are connected. The contact 29c of the metal oxide transistor 11a is located on the other side of the metal oxide semiconductor layer 27, and is connected between the interlayer dielectric layer 23, the buffer layer 15, and the via hole 29h of the buffer layer 19a.

絕緣層35位於層間介電層層23以及源極線29L1、汲極線29L2、與接點29c上。有機絕緣層37位於絕緣層35上。共同電極39位於有機絕緣層37上,主要對應畫素區10a。絕緣層41位於共同電極39與有機絕緣層37上。畫素電極43p位於絕緣層41上。部份畫素電極43p位於接點29c上,兩者之間以穿過絕緣層41、有機絕緣層37、與絕緣層35的通孔43h連接。第12圖中驅動電路10b之多晶矽電晶體11n與11p屬於頂閘極結構,而金屬氧化物電晶體11a屬於頂閘極結構。在第12圖中,夾設於金屬氧化物半導體層27與閘極21之間的閘極絕緣層中的氧化矽層(如緩衝層19a)具有開口對應開口區11o,以減少開口區11o中氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構100l的光穿透度。 The insulating layer 35 is located on the interlayer dielectric layer 23 and the source line 29L1, the drain line 29L2, and the contact 29c. The organic insulating layer 37 is located on the insulating layer 35. The common electrode 39 is located on the organic insulating layer 37, and mainly corresponds to the pixel region 10a. The insulating layer 41 is located on the common electrode 39 and the organic insulating layer 37. The pixel electrode 43p is located on the insulating layer 41. The partial pixel electrode 43p is located on the contact 29c, and is connected between the insulating layer 41, the organic insulating layer 37, and the through hole 43h of the insulating layer 35. The polycrystalline germanium transistors 11n and 11p of the driving circuit 10b in Fig. 12 belong to the top gate structure, and the metal oxide transistor 11a belongs to the top gate structure. In Fig. 12, a ruthenium oxide layer (e.g., buffer layer 19a) interposed between the MOS insulating layer 27 and the gate insulating layer 21 has an opening corresponding opening area 11o to reduce the opening area 11o. The number of interfaces between the ruthenium oxide layer and the tantalum nitride layer improves the light transmittance of the array substrate structure 1001.

在一實施例中,陣列基板結構100m之剖視圖如第13圖所示。在第13圖中,畫素區10a、驅動電路10b、金屬氧化物電晶體11a、開口區11o、多晶矽電晶體11n與11p之相對位置與第1圖類似。遮光層14位於基板13上,且分別對應多晶矽電晶體11n與11p之多晶矽層17與金屬氧化物電晶體11a之金屬氧化物半導體層27。 In one embodiment, a cross-sectional view of the array substrate structure 100m is shown in FIG. In Fig. 13, the relative positions of the pixel region 10a, the driving circuit 10b, the metal oxide transistor 11a, the opening region 11o, and the polysilicon transistors 11n and 11p are similar to those of Fig. 1. The light shielding layer 14 is located on the substrate 13 and corresponds to the polysilicon layer 17 of the polycrystalline germanium transistors 11n and 11p and the metal oxide semiconductor layer 27 of the metal oxide transistor 11a, respectively.

緩衝層15a位於多晶矽電晶體11n與11p之遮光層14、基板13、與金屬氧化物半導體層27上,其材質可為氮化矽,且其形成方法可為CVD。緩衝層19a位於緩衝層15a上。多晶矽層17(如源極區17s、通道區17c、與汲極區17d)位於緩衝層19a上,且對應 多晶矽電晶體11n與11p。金屬氧化物半導體層27位於緩衝層19a上,且對應金屬氧化物電晶體11a。緩衝層19b位於通道區17c與金屬氧化物半導體層27上。緩衝層15b位於緩衝層19b上,其材質可為氮化矽,且其形成方法可為CVD。閘極21位於緩衝層15b上。對多晶矽電晶體11n與11p而言,閘極21對應通道區17c,而通道區17c與閘極21之間的閘極絕緣層為緩衝層15b與19b。對金屬氧化物電晶體11a而言,閘極21對應通道區(金屬氧化物半導體層27),且兩者之間的閘極絕緣層為緩衝層15b與19b。 The buffer layer 15a is located on the light shielding layer 14, the substrate 13, and the metal oxide semiconductor layer 27 of the polycrystalline germanium transistors 11n and 11p, and may be made of tantalum nitride, and may be formed by CVD. The buffer layer 19a is located on the buffer layer 15a. The polysilicon layer 17 (such as the source region 17s, the channel region 17c, and the drain region 17d) is located on the buffer layer 19a, and corresponds to Polycrystalline germanium transistors 11n and 11p. The metal oxide semiconductor layer 27 is on the buffer layer 19a and corresponds to the metal oxide transistor 11a. The buffer layer 19b is located on the channel region 17c and the metal oxide semiconductor layer 27. The buffer layer 15b is located on the buffer layer 19b and may be made of tantalum nitride, and may be formed by CVD. The gate 21 is located on the buffer layer 15b. For the polysilicon transistors 11n and 11p, the gate 21 corresponds to the channel region 17c, and the gate insulating layer between the channel region 17c and the gate 21 is the buffer layers 15b and 19b. For the metal oxide transistor 11a, the gate 21 corresponds to the channel region (metal oxide semiconductor layer 27), and the gate insulating layer therebetween is the buffer layers 15b and 19b.

緩衝層15b、19b、19a、與19b具有開口對應開口區11o,其形成方法可為微影蝕刻製程。層間介電層23位於基板13、閘極21、源極區17s、汲極區17d、與金屬氧化物半導體層27之兩側上。源極線29L1、汲極線29L2、與接點29c位於層間介電層23上。多晶矽電晶體11n與11p之源極線29L1位於源極區17s上,兩者之間以穿過層間介電層23的通孔29h連接。多晶矽電晶體11n與11p之汲極線29L2位於汲極區17d上,兩者之間以穿過層間介電層23的通孔29h連接。金屬氧化物電晶體11a之源極線29L1位於金屬氧化物半導體層27之一側上,兩者之間以穿過層間介電層23的通孔29h連接。金屬氧化物電晶體11a之接點29c位於金屬氧化物半導體層27之另一側上,兩者之間以穿過層間介電層23的通孔29h連接。 The buffer layers 15b, 19b, 19a, and 19b have openings corresponding to the opening regions 11o, which may be formed by a photolithography process. The interlayer dielectric layer 23 is located on the substrate 13, the gate 21, the source region 17s, the drain region 17d, and both sides of the metal oxide semiconductor layer 27. The source line 29L1, the drain line 29L2, and the contact 29c are located on the interlayer dielectric layer 23. The source lines 29L1 of the polysilicon transistors 11n and 11p are located on the source region 17s, and are connected between the through holes 29h passing through the interlayer dielectric layer 23. The gate lines 29L2 of the polycrystalline germanium transistors 11n and 11p are located on the drain region 17d, and are connected to each other with a via 29h passing through the interlayer dielectric layer 23. The source line 29L1 of the metal oxide transistor 11a is located on one side of the metal oxide semiconductor layer 27, and is connected between the holes 29h passing through the interlayer dielectric layer 23. The contact 29c of the metal oxide transistor 11a is located on the other side of the metal oxide semiconductor layer 27, and is connected between the through holes 29h passing through the interlayer dielectric layer 23.

絕緣層35位於層間介電層層23以及源極線29L1、汲極線29L2、與接點29c上。有機絕緣層37位於絕緣層35上。共同電極39位於有機絕緣層37上,主要對應畫素區10a。絕緣層41位於共同電極39與有機絕緣層37上。畫素電極43p位於絕緣層41上。部份畫素電極43p位於接點29c上,兩者之間以穿過絕緣層41、有機 絕緣層37、與絕緣層35的通孔43h連接。第13圖中驅動電路10b之多晶矽電晶體11n與11p屬於頂閘極結構,而金屬氧化物電晶體11a屬於頂閘極結構。在第13圖中,夾設於金屬氧化物半導體層27與閘極21之間的閘極絕緣層中的氧化矽層(如緩衝層19b)具有開口對應開口區11o,以減少開口區11o中氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構100m的光穿透度。 The insulating layer 35 is located on the interlayer dielectric layer 23 and the source line 29L1, the drain line 29L2, and the contact 29c. The organic insulating layer 37 is located on the insulating layer 35. The common electrode 39 is located on the organic insulating layer 37, and mainly corresponds to the pixel region 10a. The insulating layer 41 is located on the common electrode 39 and the organic insulating layer 37. The pixel electrode 43p is located on the insulating layer 41. Part of the pixel electrode 43p is located on the contact 29c, passing between the insulating layer 41 and the organic The insulating layer 37 is connected to the through hole 43h of the insulating layer 35. The polycrystalline germanium transistors 11n and 11p of the driving circuit 10b in Fig. 13 belong to the top gate structure, and the metal oxide transistor 11a belongs to the top gate structure. In Fig. 13, a ruthenium oxide layer (e.g., buffer layer 19b) interposed between the MOS insulating layer 27 and the gate insulating layer 21 has an opening corresponding opening area 11o to reduce the opening area 11o. The number of interfaces between the ruthenium oxide layer and the tantalum nitride layer improves the light transmittance of the array substrate structure by 100 m.

第14圖之陣列基板結構100n與第12圖類似,差別在於絕緣層35與層間介電層23亦具有開口(對準緩衝層15與19a之開口),因此有機絕緣層37經由開口接觸基板13。 The array substrate structure 100n of FIG. 14 is similar to that of FIG. 12 except that the insulating layer 35 and the interlayer dielectric layer 23 also have openings (the openings of the alignment buffer layers 15 and 19a), so that the organic insulating layer 37 contacts the substrate 13 via the opening. .

第15圖之陣列基板結構100o與第12圖類似,差別在於層間絕緣層23亦具有開口(對準緩衝層15與19a之開口),因此絕緣層35經由開口接觸基板13。 The array substrate structure 100o of Fig. 15 is similar to that of Fig. 12 except that the interlayer insulating layer 23 also has an opening (the opening of the alignment buffer layers 15 and 19a), so that the insulating layer 35 contacts the substrate 13 via the opening.

在一實施例中,陣列基板結構100p之剖視圖如第16圖所示。在第16圖中,畫素區10a、驅動電路10b、金屬氧化物電晶體11a、開口區11o、多晶矽電晶體11n與11p之相對位置與第1圖類似。遮光層14位於基板13上,且分別對應多晶矽電晶體11n與11p之多晶矽層17與金屬氧化物電晶體11a之金屬氧化物半導體層27。在此實施例中,金屬氧化物電晶體之遮光層14同時作為閘極,因此遮光層14之材質必需為金屬等導電材料,其形成方法可為沉積成層後以微影蝕刻等製程圖案化。 In an embodiment, a cross-sectional view of the array substrate structure 100p is shown in FIG. In Fig. 16, the relative positions of the pixel region 10a, the driving circuit 10b, the metal oxide transistor 11a, the opening region 11o, and the polysilicon transistors 11n and 11p are similar to those of Fig. 1. The light shielding layer 14 is located on the substrate 13 and corresponds to the polysilicon layer 17 of the polycrystalline germanium transistors 11n and 11p and the metal oxide semiconductor layer 27 of the metal oxide transistor 11a, respectively. In this embodiment, the light-shielding layer 14 of the metal oxide transistor serves as a gate at the same time. Therefore, the material of the light-shielding layer 14 must be a conductive material such as metal, and the formation method can be performed by depositing a layer and then patterning by a process such as photolithography.

緩衝層15位於基板13與遮光層14上,緩衝層19a位於緩衝層15上,而多晶矽層17(如源極區17s、通道區17c、與汲極區17d)位於緩衝層19a上且對應多晶矽電晶體11n與11p。緩衝層19b位於多晶矽層17與緩衝層19a上,而閘極21與閘極線21'位於緩 衝層19b上。對多晶矽電晶體11n與11p而言,閘極21位於通道區17c上,且兩者之間隔有閘極絕緣層如緩衝層19b。在金屬氧化物電晶體11a中,閘極線21’與遮光層14之間以穿過緩衝層19b、19a、與15之通孔21h相連。緩衝層19a與19b具有開口對應開口區11o。層間介電層23位於閘極21、閘極線21’、與緩衝層19b上,並經由緩衝層19a與19b之開口直接接觸緩衝層15。 The buffer layer 15 is located on the substrate 13 and the light shielding layer 14, the buffer layer 19a is located on the buffer layer 15, and the polysilicon layer 17 (such as the source region 17s, the channel region 17c, and the drain region 17d) is located on the buffer layer 19a and corresponds to the polysilicon layer. The transistors 11n and 11p. The buffer layer 19b is located on the polysilicon layer 17 and the buffer layer 19a, and the gate 21 and the gate line 21' are located at a slow level. Punching layer 19b. For the polysilicon transistors 11n and 11p, the gate 21 is located on the channel region 17c with a gate insulating layer such as a buffer layer 19b. In the metal oxide transistor 11a, the gate line 21' and the light shielding layer 14 are connected to each other through the buffer holes 19b, 19a and the through holes 21h of 15. The buffer layers 19a and 19b have openings corresponding to the opening regions 11o. The interlayer dielectric layer 23 is located on the gate 21, the gate line 21', and the buffer layer 19b, and directly contacts the buffer layer 15 via the openings of the buffer layers 19a and 19b.

層間介電層25位於層間介電層23上。金屬氧化物半導體層27位於層間介電層25上,並對應金屬氧化物電晶體11a之閘極(遮光層14)。對金屬氧化物電晶體11a而言,通道區(金屬氧化物半導體層27)與閘極(遮光層14)之間的閘極絕緣層為層間介電層25、層間介電層23、緩衝層19b、緩衝層19a、與緩衝層15。源極線29L1、汲極線29L2、源極29s、與汲極29d位於層間介電層25上。源極線29L1位於源極區17s上,兩者之間以穿過層間介電層25、層間介電層23、與緩衝層19b的通孔29h連接。汲極線29L2位於汲極區17d上,兩者之間以穿過層間介電層25、層間介電層23、與緩衝層19b的通孔29h連接。源極29s與汲極29d分別位於金屬氧化物半導體層27之兩側上。 The interlayer dielectric layer 25 is on the interlayer dielectric layer 23. The metal oxide semiconductor layer 27 is on the interlayer dielectric layer 25 and corresponds to the gate of the metal oxide transistor 11a (light shielding layer 14). For the metal oxide transistor 11a, the gate insulating layer between the channel region (metal oxide semiconductor layer 27) and the gate (light shielding layer 14) is an interlayer dielectric layer 25, an interlayer dielectric layer 23, and a buffer layer. 19b, buffer layer 19a, and buffer layer 15. The source line 29L1, the drain line 29L2, the source 29s, and the drain 29d are located on the interlayer dielectric layer 25. The source line 29L1 is located on the source region 17s, and is connected between the interlayer dielectric layer 25, the interlayer dielectric layer 23, and the via hole 29h of the buffer layer 19b. The drain line 29L2 is located on the drain region 17d, and is connected between the interlayer dielectric layer 25, the interlayer dielectric layer 23, and the via hole 29h of the buffer layer 19b. The source 29s and the drain 29d are respectively located on both sides of the metal oxide semiconductor layer 27.

絕緣層31位於源極線29L1、汲極線29L2、源極29s、汲極29d、金屬氧化物半導體層27、與層間介電層25上。絕緣層35位於絕緣層31上。絕緣層35、絕緣層31、與層間介電層25具有開口對應開口區11o,其形成方法可為微影蝕刻製程。值得注意的是,上述微影製程中的曝光步驟可由下方向上曝光,且此曝光步驟採用遮光層14、源極線29L1、與汲極線29L2、與源極29s作為遮罩,即可省略一道光罩而節省成本。在此曝光方向之微影與蝕 刻製程後,絕緣層31與層間介電層25(氧化矽層)之邊緣將對準上述遮罩之邊緣。 The insulating layer 31 is located on the source line 29L1, the drain line 29L2, the source 29s, the drain 29d, the metal oxide semiconductor layer 27, and the interlayer dielectric layer 25. The insulating layer 35 is on the insulating layer 31. The insulating layer 35, the insulating layer 31, and the interlayer dielectric layer 25 have openings corresponding to the opening regions 11o, and the forming method thereof may be a photolithography etching process. It should be noted that the exposure step in the above lithography process can be upwardly exposed from below, and the exposure step uses the light shielding layer 14, the source line 29L1, the drain line 29L2, and the source 29s as a mask, which can be omitted. Photomasks save costs. Lithography and eclipse in this exposure direction After the engraving process, the edges of the insulating layer 31 and the interlayer dielectric layer 25 (yttria layer) will be aligned with the edges of the mask.

有機絕緣層37位於絕緣層35上,並經由絕緣層35、絕緣層31、與層間介電層25之開口接觸層間介電層23。共同電極39位於有機絕緣層37上,主要對應畫素區10a。絕緣層41位於共同電極39與有機絕緣層37上。畫素電極43p位於絕緣層41上。部份畫素電極43p位於汲極29d上,兩者之間以穿過絕緣層41、有機絕緣層37、絕緣層35、與絕緣層31的通孔43h連接。第16圖中驅動電路10b之多晶矽電晶體11n與11p屬於頂閘極結構,而金屬氧化物電晶體11a屬於底閘極結構。在第16圖中,夾設於金屬氧化物半導體層27與閘極(遮光層14)之間的閘極絕緣層中的氧化矽層(如層間介電層25、緩衝層19a、與緩充層9b),與金屬氧化物半導體層27上的氧化矽層(如絕緣層31)具有開口對應開口區11o,以減少開口區11o中氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構100p的光穿透度。 The organic insulating layer 37 is located on the insulating layer 35, and contacts the interlayer dielectric layer 23 via the insulating layer 35, the insulating layer 31, and the opening of the interlayer dielectric layer 25. The common electrode 39 is located on the organic insulating layer 37, and mainly corresponds to the pixel region 10a. The insulating layer 41 is located on the common electrode 39 and the organic insulating layer 37. The pixel electrode 43p is located on the insulating layer 41. The partial pixel electrode 43p is located on the drain electrode 29d, and is connected between the insulating layer 41, the organic insulating layer 37, the insulating layer 35, and the through hole 43h of the insulating layer 31. The polycrystalline germanium transistors 11n and 11p of the driving circuit 10b in Fig. 16 belong to the top gate structure, and the metal oxide transistor 11a belongs to the bottom gate structure. In Fig. 16, a ruthenium oxide layer (such as an interlayer dielectric layer 25, a buffer layer 19a, and a buffer) interposed between the MOS insulating layer 27 and the gate insulating layer (the light-shielding layer 14) The layer 9b) has an opening corresponding to the opening region 11o with the yttrium oxide layer (such as the insulating layer 31) on the metal oxide semiconductor layer 27 to reduce the number of interfaces between the yttrium oxide layer and the tantalum nitride layer in the opening region 11o, thereby improving the array. Light transmittance of the substrate structure 100p.

在一實施例中,陣列基板結構100q之剖視圖如第17圖所示。在第17圖中,畫素區10a、驅動電路10b、金屬氧化物電晶體11a、開口區11o、多晶矽電晶體11n與11p之相對位置與第1圖類似。遮光層14位於基板13上,且分別對應多晶矽電晶體11n與11p之多晶矽層17與金屬氧化物電晶體11a之金屬氧化物半導體層27。在此實施例中,金屬氧化物電晶體之遮光層14同時作為閘極,因此遮光層14之材質必需為金屬等導電材料。 In an embodiment, a cross-sectional view of the array substrate structure 100q is shown in FIG. In Fig. 17, the relative positions of the pixel region 10a, the driving circuit 10b, the metal oxide transistor 11a, the opening region 11o, and the polysilicon transistors 11n and 11p are similar to those of Fig. 1. The light shielding layer 14 is located on the substrate 13 and corresponds to the polysilicon layer 17 of the polycrystalline germanium transistors 11n and 11p and the metal oxide semiconductor layer 27 of the metal oxide transistor 11a, respectively. In this embodiment, the light shielding layer 14 of the metal oxide transistor serves as a gate at the same time, and therefore the material of the light shielding layer 14 must be a conductive material such as metal.

緩衝層15位於基板13與遮光層14上,而緩衝層19a位於緩衝層15上。多晶矽層17(如源極區17s、通道區17c、與汲極 區17d)位於緩衝層19a上且對應多晶矽電晶體11n與11p。金屬氧化物半導體層27位於緩衝層19a上,並對應金屬氧化物電晶體11a之閘極(遮光層14)。緩衝層19b位於多晶矽層17、金屬氧化物半導體層27、與緩衝層19a上。閘極21與閘極線21'位於緩衝層19b上,而源極21s與汲極21d穿過緩衝層19b以接觸金屬氧化物半導體層27之兩側。對多晶矽電晶體11n與11p而言,閘極21位於通道區17c上,且兩者之間隔有閘極絕緣層如緩衝層19b。對金屬氧化物電晶體11a而言,通道區(金屬氧化物半導體層27)與閘極(遮光層14)之間的閘極絕緣層為緩衝層19a與緩衝層15。在金屬氧化物電晶體11a中,閘極線21’與遮光層14之間以穿過緩衝層19b、19a、與15之通孔21h相連。緩衝層19a與19b具有開口對應開口區11o。層間介電層23位於閘極21、閘極線21’、與緩衝層19b上,並經由緩衝層19a與19b之開口直接接觸緩衝層15。 The buffer layer 15 is located on the substrate 13 and the light shielding layer 14, and the buffer layer 19a is located on the buffer layer 15. Polycrystalline germanium layer 17 (such as source region 17s, channel region 17c, and drain The region 17d) is located on the buffer layer 19a and corresponds to the polycrystalline germanium transistors 11n and 11p. The metal oxide semiconductor layer 27 is on the buffer layer 19a and corresponds to the gate of the metal oxide transistor 11a (light shielding layer 14). The buffer layer 19b is located on the polysilicon layer 17, the metal oxide semiconductor layer 27, and the buffer layer 19a. The gate 21 and the gate line 21' are located on the buffer layer 19b, and the source 21s and the drain 21d pass through the buffer layer 19b to contact both sides of the metal oxide semiconductor layer 27. For the polysilicon transistors 11n and 11p, the gate 21 is located on the channel region 17c with a gate insulating layer such as a buffer layer 19b. For the metal oxide transistor 11a, the gate insulating layer between the channel region (metal oxide semiconductor layer 27) and the gate (light shielding layer 14) is the buffer layer 19a and the buffer layer 15. In the metal oxide transistor 11a, the gate line 21' and the light shielding layer 14 are connected to each other through the buffer holes 19b, 19a and the through holes 21h of 15. The buffer layers 19a and 19b have openings corresponding to the opening regions 11o. The interlayer dielectric layer 23 is located on the gate 21, the gate line 21', and the buffer layer 19b, and directly contacts the buffer layer 15 via the openings of the buffer layers 19a and 19b.

層間介電層25位於層間介電層23上。源極線29L1、汲極線29L2、與接點29c位於層間介電層25上。多晶矽電晶體11n與11p之源極線29L1位於源極區17s上,兩者之間以穿過層間介電層25、層間介電層23、與緩衝層19b的通孔29h連接。多晶矽電晶體11n與11p之汲極線29L2位於汲極區17d上,兩者之間以穿過層間介電層25、層間介電層23、與緩衝層19b的通孔29h連接。金屬氧化物電晶體11a之源極線29L1位於源極21s上,兩者之間以穿過層間介電層25與層間介電層23的通孔29h連接。金屬氧化物電晶體11a之接點29c位於汲極21d上,兩者之間以穿過層間介電層25與層間介電層23的通孔29h連接。 The interlayer dielectric layer 25 is on the interlayer dielectric layer 23. The source line 29L1, the drain line 29L2, and the contact 29c are located on the interlayer dielectric layer 25. The source lines 29L1 of the polysilicon transistors 11n and 11p are located on the source region 17s, and are connected between the interlayer dielectric layer 25, the interlayer dielectric layer 23, and the via hole 29h of the buffer layer 19b. The gate lines 29L2 of the polycrystalline germanium transistors 11n and 11p are located on the drain region 17d, and are connected between the interlayer dielectric layer 25, the interlayer dielectric layer 23, and the via hole 29h of the buffer layer 19b. The source line 29L1 of the metal oxide transistor 11a is located on the source 21s, and is connected between the interlayer via holes 29h passing through the interlayer dielectric layer 25 and the interlayer dielectric layer 23. The contact 29c of the metal oxide transistor 11a is located on the drain 21d, and is connected between the interlayer via hole 29h passing through the interlayer dielectric layer 25 and the interlayer dielectric layer 23.

絕緣層35位於層間介電層層25上。絕緣層35與層間 介電層25具有開口對應開口區11o,其形成方法可為微影蝕刻製程。值得注意的是,上述微影製程中的曝光步驟可由下方向上曝光,且此曝光步驟採用遮光層14、源極線29L1、與汲極線29L2作為遮罩,即可省略一道光罩而節省成本。在此曝光方向之微影與蝕刻製程後,層間介電層25(氧化矽層)之邊緣將對準上述遮罩之邊緣。 The insulating layer 35 is on the interlayer dielectric layer 25. Insulating layer 35 and interlayer The dielectric layer 25 has an opening corresponding to the opening region 11o, and the forming method thereof may be a photolithography etching process. It should be noted that the exposure step in the above lithography process can be upwardly exposed from below, and the exposure step uses the light shielding layer 14, the source line 29L1, and the drain line 29L2 as a mask, thereby omitting a mask and saving cost. . After the lithography and etching process in this exposure direction, the edges of the interlayer dielectric layer 25 (yttria layer) will be aligned with the edges of the mask.

有機絕緣層37位於絕緣層35上,並經由絕緣層35與層間介電層25之開口接觸層間介電層23。共同電極39位於有機絕緣層37上,主要對應畫素區10a。絕緣層41位於共同電極39與有機絕緣層37上。畫素電極43p位於絕緣層41上。部份畫素電極43p位於汲極29d上,兩者之間以穿過絕緣層41、有機絕緣層37、與絕緣層35的通孔43h連接。第17圖中驅動電路10b之多晶矽電晶體11n與11p屬於頂閘極結構,而金屬氧化物電晶體11a屬於底閘極結構。在第17圖中,夾設於金屬氧化物半導體層27與閘極(遮光層14)之間的閘極絕緣層中的氧化矽層(如緩衝層19a),與金屬氧化物半導體層27上的氧化矽層(如層間介電層25與緩衝層19b)具有開口對應開口區11o,以減少開口區11o中氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構100q的光穿透度。 The organic insulating layer 37 is located on the insulating layer 35 and contacts the interlayer dielectric layer 23 via the insulating layer 35 and the opening of the interlayer dielectric layer 25. The common electrode 39 is located on the organic insulating layer 37, and mainly corresponds to the pixel region 10a. The insulating layer 41 is located on the common electrode 39 and the organic insulating layer 37. The pixel electrode 43p is located on the insulating layer 41. The partial pixel electrode 43p is located on the drain electrode 29d, and is connected between the insulating layer 41, the organic insulating layer 37, and the through hole 43h of the insulating layer 35. The polycrystalline germanium transistors 11n and 11p of the driving circuit 10b in Fig. 17 belong to the top gate structure, and the metal oxide transistor 11a belongs to the bottom gate structure. In Fig. 17, a ruthenium oxide layer (e.g., buffer layer 19a) interposed in the gate insulating layer between the metal oxide semiconductor layer 27 and the gate (light shielding layer 14), and the metal oxide semiconductor layer 27 The yttrium oxide layer (such as the interlayer dielectric layer 25 and the buffer layer 19b) has an opening corresponding opening region 11o to reduce the number of interfaces between the yttrium oxide layer and the tantalum nitride layer in the opening region 11o, thereby improving light transmission of the array substrate structure 100q. Permeability.

第18圖之陣列基板結構100r與第16圖類似,差別在於緩衝層15、緩衝層19a、緩衝層19b、層間介電層23、層間介電層25、絕緣層31、與絕緣層35均具有開口對應開口區11o,因此形成於絕緣層35上之有機絕緣層37經由開口接觸基板13。在第18圖中,開口區11o中不具有氧化矽層與氮化矽層之界面,因此可改善陣列基板結構100r的光穿透度。 The array substrate structure 100r of FIG. 18 is similar to that of FIG. 16, except that the buffer layer 15, the buffer layer 19a, the buffer layer 19b, the interlayer dielectric layer 23, the interlayer dielectric layer 25, the insulating layer 31, and the insulating layer 35 have The opening corresponds to the opening region 11o, and thus the organic insulating layer 37 formed on the insulating layer 35 contacts the substrate 13 via the opening. In Fig. 18, the opening region 11o does not have an interface between the ruthenium oxide layer and the tantalum nitride layer, so that the light transmittance of the array substrate structure 100r can be improved.

第19圖係一實施例中,多晶矽電晶體11n與金屬氧化物電晶體11a均採用底閘極之設計。閘極21位於基板13上,且各自對應晶矽電晶體11n與金屬氧化物電晶體11a。緩衝層15位於閘極21與基板上,緩衝層19a位於緩衝層15上,而多晶矽層17(如源極區17s、通道區17c、與汲極區17d)位於緩衝層19a上。緩衝層19b位於多晶矽層17與緩衝層19a上。源極線29L1、汲極線29L2、源極29s、與汲極29d位於緩衝層19b上。源極線29L1位於源極區17s上,兩者之間以穿過緩衝層19b之通孔29h連接。汲極線29L2位於汲極區17d上,兩者之間以穿過緩衝層19b之通孔29h連接。源極29s與源極29d位於金屬氧化物半導體層之兩側上。緩衝層19a與19b具有開口對應開口區11o。至於其餘元件如畫素電極與共同電極,可參考前述實施例。在第19圖中,金屬氧化物半導體層27與閘極21之間的閘極絕緣層中的氧化矽層(如緩衝層19a與19b)具有開口對應開口區11o,可減少氧化矽層與氮化矽層之界面數目,進而改善陣列基板結構的光穿透度。 In the first embodiment, the polycrystalline germanium transistor 11n and the metal oxide transistor 11a are both designed with a bottom gate. The gate 21 is located on the substrate 13, and each corresponds to the germanium transistor 11n and the metal oxide transistor 11a. The buffer layer 15 is located on the gate 21 and the substrate, the buffer layer 19a is on the buffer layer 15, and the polysilicon layer 17 (such as the source region 17s, the channel region 17c, and the drain region 17d) is located on the buffer layer 19a. The buffer layer 19b is located on the polysilicon layer 17 and the buffer layer 19a. The source line 29L1, the drain line 29L2, the source 29s, and the drain 29d are located on the buffer layer 19b. The source line 29L1 is located on the source region 17s, and is connected between the two via holes 29h passing through the buffer layer 19b. The drain line 29L2 is located on the drain region 17d, and is connected between the two via holes 29h passing through the buffer layer 19b. The source 29s and the source 29d are located on both sides of the metal oxide semiconductor layer. The buffer layers 19a and 19b have openings corresponding to the opening regions 11o. As for the remaining elements such as the pixel electrode and the common electrode, reference may be made to the foregoing embodiment. In Fig. 19, the ruthenium oxide layer (e.g., buffer layers 19a and 19b) in the gate insulating layer between the MOS layer 27 and the gate electrode 21 has openings corresponding to the opening regions 11o, which can reduce the yttrium oxide layer and nitrogen. The number of interfaces of the ruthenium layer improves the light transmittance of the array substrate structure.

在一實施例中,多晶矽電晶體11n(或11p)之多晶矽層17之兩側上可蓋有非晶矽層51,而掺雜矽層53位於非晶矽層51上,如第20圖所示。 In one embodiment, the polysilicon layer 11 of the polycrystalline germanium transistor 11n (or 11p) may be covered with an amorphous germanium layer 51 on both sides, and the doped germanium layer 53 is on the amorphous germanium layer 51, as shown in FIG. Show.

在一實施例中,顯示裝置200包含陣列基板結構210a、對向基板結構210c、與夾設於上述兩者之間的顯示介質210b。陣列基板結構可為前述任一實施例中的陣列基板結構。顯示介質210b可為液晶層或有機發光層。對向基板結構210c可為彩色濾光基板或是透明基板。 In one embodiment, the display device 200 includes an array substrate structure 210a, a counter substrate structure 210c, and a display medium 210b interposed between the two. The array substrate structure may be the array substrate structure in any of the foregoing embodiments. The display medium 210b may be a liquid crystal layer or an organic light emitting layer. The opposite substrate structure 210c may be a color filter substrate or a transparent substrate.

雖然本發明已以數個實施例揭露如上,然其並非用 以限定本發明,任何本技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed above in several embodiments, it is not In order to limit the invention, any person skilled in the art can make any modifications and refinements without departing from the spirit and scope of the invention, and therefore the scope of the invention is defined by the appended claims. The definition is subject to change.

14‧‧‧遮光層 14‧‧‧Lighting layer

10a‧‧‧畫素區 10a‧‧‧Photo District

10b‧‧‧驅動電路 10b‧‧‧Drive circuit

11a‧‧‧金屬氧化物電晶體 11a‧‧‧Metal oxide crystal

11n、11p‧‧‧多晶矽電晶體 11n, 11p‧‧‧ polycrystalline germanium transistors

11o‧‧‧開口區 11o‧‧‧Open area

13‧‧‧基板 13‧‧‧Substrate

15、19a、19b、19c‧‧‧緩衝層 15, 19a, 19b, 19c‧‧‧ buffer layer

17‧‧‧多晶矽層 17‧‧‧Polysilicon layer

17c‧‧‧通道區 17c‧‧‧Channel area

17d‧‧‧汲極區 17d‧‧‧Bungee Area

17s‧‧‧源極區 17s‧‧‧ source area

21‧‧‧閘極 21‧‧‧ gate

23、25‧‧‧層間介電層 23, 25‧‧‧ Interlayer dielectric layer

27‧‧‧金屬氧化物半導體層 27‧‧‧Metal oxide semiconductor layer

29d‧‧‧汲極 29d‧‧‧Bungee

29h、43h‧‧‧通孔 29h, 43h‧‧‧through hole

29L1‧‧‧源極線 29L1‧‧‧ source line

29L2‧‧‧汲極線 29L2‧‧‧汲polar line

29s‧‧‧源極 29s‧‧‧ source

31、35、41‧‧‧絕緣層 31, 35, 41‧‧‧ insulation

33‧‧‧開口 33‧‧‧ openings

37‧‧‧有機絕緣層 37‧‧‧Organic insulation

39‧‧‧共同電極 39‧‧‧Common electrode

43p‧‧‧畫素電極 43p‧‧‧ pixel electrodes

100a‧‧‧陣列基板結構 100a‧‧‧Array substrate structure

Claims (17)

一種顯示裝置,包含:一基板結構,包括:一基板,具有一畫素,且該畫素具有一開口區;一金屬氧化物電晶體,設置在該基板上且包括;一金屬氧化物半導體層,具有一第一通道區;一第一閘極,對應該第一通道區;以及一氧化矽絕緣層,位於該金屬氧化物半導體層上,其中該氧化矽絕緣層具有一開口,且該開口對應該開口區設置;以及一多晶矽電晶體,設置在該基板上;一對向基板結構;以及一顯示介質,位於該基板結構與該對向基板結構之間。 A display device comprising: a substrate structure comprising: a substrate having a pixel, and the pixel has an open region; a metal oxide transistor disposed on the substrate and including: a metal oxide semiconductor layer Having a first channel region; a first gate corresponding to the first channel region; and a tantalum oxide insulating layer on the metal oxide semiconductor layer, wherein the yttrium oxide insulating layer has an opening and the opening And corresponding to the open area; and a polycrystalline germanium transistor disposed on the substrate; a pair of substrate structures; and a display medium between the substrate structure and the opposite substrate structure. 如申請專利範圍第1項所述之顯示裝置,其中該多晶矽電晶體位於該基板結構的一驅動電路中,該金屬氧化物電晶體位於該畫素中,且該多晶矽電晶體驅動該金屬氧化物電晶體。 The display device of claim 1, wherein the polycrystalline germanium transistor is located in a driving circuit of the substrate structure, the metal oxide transistor is located in the pixel, and the polycrystalline germanium transistor drives the metal oxide Transistor. 如申請專利範圍第1項所述之顯示裝置,其中該多晶矽電晶體包括:一多晶矽半導體層,具有一第二通道區;以及一第二閘極,對應該第二通道區;其中該多晶矽半導體層位於該基板與該第二閘極之間, 且該金屬氧化物半導體層位於該基板與該第一閘極上。 The display device of claim 1, wherein the polycrystalline germanium transistor comprises: a polysilicon semiconductor layer having a second channel region; and a second gate corresponding to the second channel region; wherein the polysilicon semiconductor a layer is between the substrate and the second gate, And the metal oxide semiconductor layer is located on the substrate and the first gate. 如申請專利範圍第3項所述之顯示裝置,其中該基板結構更包括一遮光層設置於該多晶矽半導體層與該基板之間。 The display device of claim 3, wherein the substrate structure further comprises a light shielding layer disposed between the polysilicon semiconductor layer and the substrate. 如申請專利範圍第4項所述之顯示裝置,其中該第一閘極位於該金屬氧化物半導體層與該基板之間,且該第一閘極與該遮光層同層。 The display device of claim 4, wherein the first gate is located between the metal oxide semiconductor layer and the substrate, and the first gate is in the same layer as the light shielding layer. 如申請專利範圍第3項所述之顯示裝置,其中該多晶矽電晶體包括一非晶矽層位於該多晶矽半導體層上。 The display device of claim 3, wherein the polycrystalline germanium transistor comprises an amorphous germanium layer on the poly germanium semiconductor layer. 如申請專利範圍第1項所述之顯示裝置,其中該基板結構更包括一氮化矽絕緣層位於該金屬氧化物電晶體與該多晶矽電晶體上,其中在該開口區中該氮化矽絕緣層直接接觸該基板。 The display device of claim 1, wherein the substrate structure further comprises a tantalum nitride insulating layer on the metal oxide transistor and the polysilicon transistor, wherein the tantalum nitride is insulated in the open region The layer is in direct contact with the substrate. 如申請專利範圍第1項所述之顯示裝置,其中該基板結構更包括一有機絕緣層位於該金屬氧化物電晶體與該多晶矽電晶體上,且在該開口區中該有機絕緣層直接接觸該基板。 The display device of claim 1, wherein the substrate structure further comprises an organic insulating layer on the metal oxide transistor and the polysilicon transistor, and the organic insulating layer directly contacts the opening region Substrate. 如申請專利範圍第1項所述之顯示裝置,其中該氧化矽絕緣層之邊緣對準該第一閘極之邊緣,或對準一第一源極與一第一汲極之邊緣,其中該第一源極與該第一汲極位於該第一通道區兩側。 The display device of claim 1, wherein an edge of the yttrium oxide insulating layer is aligned with an edge of the first gate or an edge of a first source and a first drain, wherein the The first source and the first drain are located on both sides of the first channel region. 如申請專利範圍第1項所述之顯示裝置,其中該多晶矽電晶體之一第二閘極位於該多晶矽電晶體之一多晶矽半導 體層與該基板之間,且該金屬氧化物電晶體之該第一閘極位於該金屬氧化物半導體層與該基板之間。 The display device of claim 1, wherein a second gate of the polycrystalline germanium transistor is located in one of the polycrystalline germanium transistors The bulk layer is between the substrate and the first gate of the metal oxide transistor is between the metal oxide semiconductor layer and the substrate. 如申請專利範圍第1項所述之顯示裝置,其中該金屬氧化半導體電晶體包含一閘極絕緣層位於該金屬氧化物半導體層與該第一閘極之間,該閘極絕緣層包括一第一氧化矽層,且該第一氧化矽層具有一開口對應開口區。 The display device of claim 1, wherein the metal oxide semiconductor transistor comprises a gate insulating layer between the metal oxide semiconductor layer and the first gate, the gate insulating layer comprising a first An osmium oxide layer, and the first ruthenium oxide layer has an opening corresponding to the open region. 一種顯示裝置,包含:一基板結構,包括:一基板,具有一畫素,且該畫素具有一開口區;一金屬氧化物電晶體,設置在該基板上且包括;一金屬氧化物半導體層,具有一第一通道區;一第一閘極,對應該第一通道區;以及一閘極絕緣層,位於該第一閘極與該金屬氧化物半導體層之間,其中該閘極絕緣層包含一第一氮化矽層與一第一氧化矽層,該第一氧化矽層位於該第一氮化矽層與該金屬氧化物半導體層之間;一多晶矽電晶體,設置在該基板上;以及一氮化矽絕緣層,位於該金屬氧化物電晶體與該多晶矽電晶體上,其中在該開口區中該氮化矽絕緣層直接接觸該第一氮化矽層;一對向基板結構;以及一顯示介質,位於該基板結構與該對向基板結構之間。 A display device comprising: a substrate structure comprising: a substrate having a pixel, and the pixel has an open region; a metal oxide transistor disposed on the substrate and including: a metal oxide semiconductor layer Having a first channel region; a first gate corresponding to the first channel region; and a gate insulating layer between the first gate and the metal oxide semiconductor layer, wherein the gate insulating layer a first tantalum nitride layer and a first tantalum oxide layer are disposed between the first tantalum nitride layer and the metal oxide semiconductor layer; a polycrystalline germanium transistor is disposed on the substrate And a tantalum nitride insulating layer on the metal oxide transistor and the polycrystalline germanium transistor, wherein the tantalum nitride insulating layer directly contacts the first tantalum nitride layer in the open region; a pair of substrate structures And a display medium between the substrate structure and the opposite substrate structure. 如申請專利範圍第12項所述之顯示裝置,其中該多晶矽電晶體包括:一多晶矽半導體層,具有一第二通道區;以及一第二閘極,對應該第二通道區;其中該多晶矽半導體位於該基板與該第二閘極之間,該金屬氧化物半導體層位於該基板與該第一閘極上。 The display device of claim 12, wherein the polycrystalline germanium transistor comprises: a polysilicon semiconductor layer having a second channel region; and a second gate corresponding to the second channel region; wherein the polysilicon semiconductor Located between the substrate and the second gate, the metal oxide semiconductor layer is located on the substrate and the first gate. 如申請專利範圍第13項所述之顯示裝置,其中該多晶矽電晶體還包括一非晶矽層位於該多晶矽半導體層上。 The display device of claim 13, wherein the polycrystalline germanium transistor further comprises an amorphous germanium layer on the poly germanium semiconductor layer. 如申請專利範圍第12項所述之顯示裝置,其中該基板結構更包括一遮光層設置於該多晶矽半導體層與該基板之間,且該第一閘極位於IGZO層與該基板之間並與該遮光層同層。 The display device of claim 12, wherein the substrate structure further comprises a light shielding layer disposed between the polysilicon semiconductor layer and the substrate, and the first gate is located between the IGZO layer and the substrate and The light shielding layer is in the same layer. 如申請專利範圍第13項所述之顯示裝置,其中該氧化矽絕緣層之邊緣對準該第一閘極之邊緣,或對準一第一源極與一第一汲極之邊緣,其中該第一通道區位於該第一源極與該第一汲極之間。 The display device of claim 13, wherein an edge of the yttrium oxide insulating layer is aligned with an edge of the first gate or an edge of a first source and a first drain, wherein the The first channel region is located between the first source and the first drain. 如申請專利範圍第12項所述之顯示裝置,其中該多晶矽電晶體之一第二閘極位於該多晶矽電晶體之一多晶矽半導體層與該基板之間,且該金屬氧化物電晶體之該第一閘極位於該金屬氧化物半導體層與該基板之間。 The display device of claim 12, wherein a second gate of the polycrystalline germanium transistor is located between the polycrystalline germanium semiconductor layer of the polycrystalline germanium transistor and the substrate, and the metal oxide transistor is A gate is located between the metal oxide semiconductor layer and the substrate.
TW105115275A 2015-12-03 2016-05-18 Display device TWI608610B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/363,289 US9911762B2 (en) 2015-12-03 2016-11-29 Display device
US15/876,383 US10312268B2 (en) 2015-12-03 2018-01-22 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562262430P 2015-12-03 2015-12-03
US201562387213P 2015-12-24 2015-12-24

Publications (2)

Publication Number Publication Date
TW201721863A true TW201721863A (en) 2017-06-16
TWI608610B TWI608610B (en) 2017-12-11

Family

ID=59687189

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105115144A TW201721623A (en) 2015-12-03 2016-05-17 Driving circuit of active-matrix organic light-emitting diode with hybrid transistors
TW105115275A TWI608610B (en) 2015-12-03 2016-05-18 Display device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW105115144A TW201721623A (en) 2015-12-03 2016-05-17 Driving circuit of active-matrix organic light-emitting diode with hybrid transistors

Country Status (1)

Country Link
TW (2) TW201721623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692857B (en) * 2019-01-25 2020-05-01 世界先進積體電路股份有限公司 Semiconductor device and biometric identification apparatus
TWI694294B (en) * 2017-07-25 2020-05-21 友達光電股份有限公司 Array substrate
TWI815873B (en) * 2018-03-27 2023-09-21 美商康寧公司 Methods for forming thin film transistors on a glass substrate and liquid crystal displays formed therefrom

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668494B (en) * 2018-05-07 2019-08-11 友達光電股份有限公司 Display panel
TWI671727B (en) * 2018-10-05 2019-09-11 友達光電股份有限公司 Display panel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW554538B (en) * 2002-05-29 2003-09-21 Toppoly Optoelectronics Corp TFT planar display panel structure and process for producing same
WO2011010545A1 (en) * 2009-07-18 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8115883B2 (en) * 2009-08-27 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
KR101707260B1 (en) * 2009-09-24 2017-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI423437B (en) * 2010-04-07 2014-01-11 Au Optronics Corp Pixel structure of organic light emitting diode display and manufacturing method thereof
TWI500161B (en) * 2011-06-02 2015-09-11 Au Optronics Corp Hybrid thin film transistor and manufacturing method thereof and display panel
TWI469360B (en) * 2012-09-06 2015-01-11 Innocom Tech Shenzhen Co Ltd Display panel and display apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI694294B (en) * 2017-07-25 2020-05-21 友達光電股份有限公司 Array substrate
TWI815873B (en) * 2018-03-27 2023-09-21 美商康寧公司 Methods for forming thin film transistors on a glass substrate and liquid crystal displays formed therefrom
US12013619B2 (en) 2018-03-27 2024-06-18 Corning Incorporated Methods for forming thin film transistors on a glass substrate and liquid crystal displays formed therefrom
TWI692857B (en) * 2019-01-25 2020-05-01 世界先進積體電路股份有限公司 Semiconductor device and biometric identification apparatus

Also Published As

Publication number Publication date
TW201721623A (en) 2017-06-16
TWI608610B (en) 2017-12-11

Similar Documents

Publication Publication Date Title
CN106920801B (en) Display device
US10312268B2 (en) Display device
CN106684202B (en) A kind of photosensory assembly, fingerprint recognition panel and device
US9201276B2 (en) Process architecture for color filter array in active matrix liquid crystal display
TWI608610B (en) Display device
CN108598089B (en) TFT substrate manufacturing method and TFT substrate
CN106802519B (en) Liquid crystal display device and method for manufacturing the same
CN106531692A (en) Array substrate and preparation method therefor, and display apparatus
US9947691B2 (en) Array substrate, manufacturing method thereof and display panel
CN104576747A (en) Thin film transistor, display panel having the same and method of manufacturing the same
KR20190131582A (en) TFT substrate manufacturing method and TFT substrate
CN103681514B (en) Array base palte and preparation method thereof, display unit
CN113568230B (en) Array substrate, manufacturing method and display panel
CN113467145B (en) Array substrate, manufacturing method and display panel
WO2018090496A1 (en) Array substrate and preparation method therefor, and liquid crystal display panel
US10957713B2 (en) LTPS TFT substrate and manufacturing method thereof
GB2546667A (en) Manufacturing method and device for thin flim transistor substrate
CN111129033B (en) Array substrate and preparation method thereof
CN113540126B (en) Array substrate and manufacturing method
WO2023197363A1 (en) Array substrate, manufacturing method therefor, and display panel
CN113867053B (en) Display panel and preparation method thereof
WO2023108608A1 (en) Array substrate and manufacturing method therefor, and display panel
KR20090115449A (en) Thin film transistor array panel and manufacturing method of the same
CN101409262A (en) Pixel structure and manufacturing method thereof
KR20080048726A (en) Array substrate for liquid crystal display device and method of fabricating the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees