TW201721094A - Transmitter array, receiver, and positioning system - Google Patents

Transmitter array, receiver, and positioning system Download PDF

Info

Publication number
TW201721094A
TW201721094A TW105131545A TW105131545A TW201721094A TW 201721094 A TW201721094 A TW 201721094A TW 105131545 A TW105131545 A TW 105131545A TW 105131545 A TW105131545 A TW 105131545A TW 201721094 A TW201721094 A TW 201721094A
Authority
TW
Taiwan
Prior art keywords
visible light
light
emitting diodes
receiver
positioning
Prior art date
Application number
TW105131545A
Other languages
Chinese (zh)
Inventor
文德 鍾
吳德昊
陳晨
立華 謝
Original Assignee
南洋理工大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南洋理工大學 filed Critical 南洋理工大學
Publication of TW201721094A publication Critical patent/TW201721094A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/70Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using electromagnetic waves other than radio waves
    • G01S1/703Details
    • G01S1/7032Transmitters
    • G01S1/7038Signal details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2201/00Indexing scheme relating to beacons or beacon systems transmitting signals capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters
    • G01S2201/01Indexing scheme relating to beacons or beacon systems transmitting signals capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters adapted for specific applications or environments
    • G01S2201/02Indoor positioning, e.g. in covered car-parks, mining facilities, warehouses

Abstract

A positioning system may include a transmitter array including a plurality of visible light positioning units. Each visible light positioning unit may include light-emitting diodes. Each of the light-emitting diodes may be configured to emit a visible light including an identifier portion associating the visible light with the light-emitting diode, and a phase data portion. The positioning system may include a receiver including a detector configured to receive the visible lights emitted by the light-emitting diodes of each of the plurality of visible light positioning units. The receiver may be configured to select one visible light positioning unit of the plurality of visible light positioning units based on the identifier portions of the visible lights, and may be further configured to determine a position of the receiver based on the phase data portions of the visible lights emitted by light-emitting diodes of the selected visible light positioning unit.

Description

發送器陣列、接收器以及定位系統 Transmitter array, receiver and positioning system

本申請案係主張新加坡申請第10201508133X,申請於2015年9月30日,此優先權申請案的全部內容係藉由引用被包含於此。 This application is hereby incorporated by reference in its entirety by reference in its entirety in its entirety in the the the the the the the the the the

本發明一些實施例是有關於發送器陣列、接收器及/或定位系統。本發明一些實施例是有關於建構定位系統的方法。本發明一些實施例是有關於判定接收器之位置的方法。 Some embodiments of the invention are related to transmitter arrays, receivers, and/or positioning systems. Some embodiments of the invention are directed to methods of constructing a positioning system. Some embodiments of the invention are directed to methods of determining the position of a receiver.

目前急需具備高精確度(以公分為量級)以及低成本的室內定位(indoor positioning,亦可稱為indoor localization)系統。可以預期的是,具備上述特徵的系統,將被視為最令人期待以及廣受歡迎的次世代室內無線系統。上述室內定位的市場,經由ABI Research的預測,將在2018年達到五十億美金。關於室內定位資訊的消費者應用將具有近乎無限的潛力。現今室內定位之應用以及服務,僅屬於一開始的階段。 There is an urgent need for high accuracy (in centimeters) and low-cost indoor positioning (also known as indoor localization) systems. It is expected that systems with the above features will be considered the most anticipated and popular next generation indoor wireless systems. The above indoor positioning market, predicted by ABI Research, will reach $5 billion in 2018. Consumer applications for indoor location information will have near-infinite potential. Today's indoor positioning applications and services are only at the beginning.

相關應用遍及廣大的範圍,包括:(1)人類與機器人的導航:高精確度定位系統具有使用於不熟悉之室內環境的導航應用的潛力。一些範例可包括控制機器人,使上述機器人 沿著一準確的路徑移動;引導在機場或地鐵站內的旅客;以及幫助博物館、美術館、辦公大樓或購物廣場的拜訪者。(2)人或物的追蹤:在一範例中,可追蹤在一醫院內,不同之醫務人員或裝備的位置,藉此改善運作效率以及效益。其他可能的應用可包括追蹤在一倉庫內的物品,或在一組織中的一些資產。(3)工業應用:此類應用可包括室內汽車的導航、自動生產程序的精確操作等等。 Relevant applications span a wide range of applications, including: (1) Navigation of humans and robots: High-precision positioning systems have the potential to be used in navigation applications in unfamiliar indoor environments. Some examples may include controlling the robot to make the above robot Move along an accurate path; guide passengers at airports or subway stations; and visit visitors who help museums, art galleries, office buildings or shopping malls. (2) Tracking of people or things: In one example, the location of different medical staff or equipment in a hospital can be tracked to improve operational efficiency and effectiveness. Other possible applications may include tracking items in a warehouse, or some assets in an organization. (3) Industrial applications: Such applications may include navigation of indoor cars, precise operation of automated production processes, and the like.

隨著科技持續地改善並具備更好與更準確的定位資訊,新的以及更令人期待的應用可被開發,藉以服務和娛樂大眾消費市場。 As technology continues to improve and has better and more accurate positioning information, new and more desirable applications can be developed to serve and entertain the mass consumer market.

然而,現今室內定位系統無法達到高階定位準確度(positioning accuracy(PA))以及低成本的要求。全球定位系統(GPS)於西元1995年起已被廣泛地應用,現今已每天應用於全世界(經常透過新的以及意想不到的方式)。然而,GPS衛星對於建築物內部沒有直接的能見性,造成GPS接收器(Rxs)通常不能良好地運作於室內或地下室空間。 However, today's indoor positioning systems are unable to achieve high-order positioning accuracy (PA) and low cost requirements. The Global Positioning System (GPS) has been widely used since 1995 and is now used worldwide (always in new and unexpected ways). However, GPS satellites have no direct visibility into the interior of the building, causing GPS receivers (Rxs) to generally not function well in indoor or basement spaces.

即便GPS定位可被使用,對於許多室內應用而言,並不具備足夠的準確度(以公分為量級)。GPS對於上述情況的準確度相當低,一般以公尺為量級。現今室內定位技術(例如紅外線(infrared(IR))、超音波(ultrasound)、無線射頻識別(radio-frequency identification(RFID))、無線區域網路(wireless local area network(WLAN))(亦稱為WiFi)、藍芽(Bluetooth)、感測網路(sensor networks)以及超寬頻(ultra-wideband(UWB)))已被開發。然而,上述系統一方面具 備低準確度及/或另一方面需要高開發成本。 Even though GPS positioning can be used, for many indoor applications, there is not enough accuracy (on the order of centimeters). The accuracy of GPS for the above situation is quite low, generally in the order of meters. Today's indoor positioning technology (such as infrared (IR)), ultrasonic (ultrasound), radio-frequency identification (RFID), wireless local area network (WLAN) (also known as WiFi), Bluetooth, sensor networks, and ultra-wideband (UWB) have been developed. However, the above system has Low accuracy and/or high development costs on the other hand.

本發明之一些實施例提供一定位系統。該定位系統可包括一發送器陣列,該發送器陣列包括複數可見光定位(visible light positioning(VLP))單元。每一個上述可見光定位單元包括複數發光二極體(light-emitting diodes(LEDs))。每一個上述發光二極體被配置以發送一可見光,該可見光包括致使該可見光與該發光二極體相關聯的一識別部分,以及一相位資料部分。該定位系統可包括一接收器,該接收器可包括一偵測器。該偵測器被配置以接收每一個上述可見光定位單元之該等發光二極體所發送之該等可見光。該接收器可被配置以基於該等可見光之該等識別部分,選擇該等可見光定位單元其中之一可見光定位單元。該接收器更可被配置以基於該其中之一被選擇的可見光定位單元之該等發光二極體所發送之該等可見光之該等相位資料部分,判定該接收器之一位置。 Some embodiments of the present invention provide a positioning system. The positioning system can include an array of transmitters including a plurality of visible light positioning (VLP) units. Each of the above visible light positioning units includes a plurality of light-emitting diodes (LEDs). Each of the light emitting diodes is configured to transmit a visible light, the visible light comprising an identification portion that causes the visible light to be associated with the light emitting diode, and a phase data portion. The positioning system can include a receiver, which can include a detector. The detector is configured to receive the visible light transmitted by the light emitting diodes of each of the visible light positioning units. The receiver can be configured to select one of the visible light positioning units of the visible light positioning units based on the identification portions of the visible light. The receiver is further configurable to determine a position of the receiver based on the phase data portions of the visible light transmitted by the light emitting diodes of the selected one of the visible light positioning units.

本發明之一些實施例提供一發送器陣列。該發射機陣列可包括複數可見光定位單元。每一個上述可見光定位單元可包括複數發光二極體。每一個上述發光二極體可被配置以發送一可見光,該可見光包括致使該可見光與該發光二極體相關聯的一識別部分,以及一相位資料部分。每一個上述可見光定位單元之該等發光二極體所發送之該等可見光可被配置以被一接收器之一偵測器所接收。該等可見光之該等識別部分可被配置以被該接收器使用於選擇該等可見光定位單元其中之一可見光定位單元。該其中之一被選擇之可見光定位單元之該 等發光二極體所發送之該等可見光之該等相位資料部分,可被配置以被該接收器使用於判定該接收器之一位置。 Some embodiments of the invention provide a transmitter array. The transmitter array can include a plurality of visible light positioning units. Each of the above visible light positioning units may include a plurality of light emitting diodes. Each of the above-described light emitting diodes can be configured to transmit a visible light comprising an identification portion that causes the visible light to be associated with the light emitting diode, and a phase data portion. The visible light transmitted by the light emitting diodes of each of the visible light positioning units can be configured to be received by one of the receivers. The identification portions of the visible light can be configured to be used by the receiver to select one of the visible light positioning units. One of the selected visible light positioning units The portion of the phase data of the visible light transmitted by the illuminating diode can be configured to be used by the receiver to determine a position of the receiver.

本發明一些實施例提供一接收器。該接收器可包括一偵測器,該偵測器被配置以接收複數可見光定位單元之每一個可見光定位單元之複數發光二極體所發送之複數可見光。每一道上述可見光包括致使該可見光與該發光二極體相關聯的一識別部分,以及一相位資料部分。該接收器可被配置以基於該等可見光之該等識別部分,選擇該等可見光定位單元其中之一可見光定位單元。該接收器更可被配置以基於該其中之被選擇的一可見光定位單元之該等發光二極體所發送之該等可見光之該等相位資料部分,判定該接收器之一位置。 Some embodiments of the present invention provide a receiver. The receiver can include a detector configured to receive a plurality of visible light transmitted by a plurality of light emitting diodes of each of the visible light positioning units of the plurality of visible light positioning units. Each of the above visible lights includes an identification portion that causes the visible light to be associated with the light emitting diode, and a phase data portion. The receiver can be configured to select one of the visible light positioning units of the visible light positioning units based on the identification portions of the visible light. The receiver is further configurable to determine a position of the receiver based on the phase data portions of the visible light transmitted by the light emitting diodes of the selected one of the visible light positioning units.

本發明一些實施例提供建構一定位系統的方法。該方法包括提供一發送器陣列,該發送器陣列包括複數可見光定位單元,每一個上述可見光定位單元包括複數發光二極體。每一個上述發光二極體被配置以發送一可見光,該可見光包括致使該可見光與該發光二極體相關聯的一識別部分,以及一相位資料部分。該方法亦包括提供一接收器,該接收器包括一偵測器。該偵測器可被配置以接收每一個上述可見光定位單元之該等發光二極體所發送之該等可見光。該接收器可被配置以基於該等可見光之該等識別部分,選擇該等可見光定位單元其中之一可見光定位單元。該接收器更可被配置以基於該其中之被選擇的一可見光定位單元之該等發光二極體所發送之該等可見光之該等相位資料部分,判定該接收器之一位置。 Some embodiments of the invention provide a method of constructing a positioning system. The method includes providing a transmitter array, the transmitter array including a plurality of visible light positioning units, each of the visible light positioning units including a plurality of light emitting diodes. Each of the light emitting diodes is configured to transmit a visible light, the visible light comprising an identification portion that causes the visible light to be associated with the light emitting diode, and a phase data portion. The method also includes providing a receiver, the receiver including a detector. The detector can be configured to receive the visible light transmitted by the light emitting diodes of each of the visible light positioning units. The receiver can be configured to select one of the visible light positioning units of the visible light positioning units based on the identification portions of the visible light. The receiver is further configurable to determine a position of the receiver based on the phase data portions of the visible light transmitted by the light emitting diodes of the selected one of the visible light positioning units.

本發明一些實施例提供判定一接收器之一位置的 方法。該方法包括透過該接收器之一偵測器接收複數可見光定位單元之每一個可見光定位單元之複數發光二極體所發送之複數可見光,其中每一道上述可見光是透過一發光二極體所發送,且該可見光包括致使該可見光與該發光二極體相關聯的一識別部分,以及一相位資料部分。該方法可包括透過該接收器以基於該等可見光之該等識別部分,選擇該等可見光定位單元其中之一可見光定位單元。該方法亦包括透過該接收器以基於該其中之被選擇的一可見光定位單元之該等發光二極體所發送之該等可見光之該等相位資料部分,判定該接收器之該位置。 Some embodiments of the present invention provide for determining a location of a receiver method. The method includes receiving, by one of the receivers, a plurality of visible light transmitted by a plurality of light-emitting diodes of each visible light positioning unit of the plurality of visible light positioning units, wherein each of the visible light is transmitted through a light-emitting diode. And the visible light includes an identification portion that causes the visible light to be associated with the light emitting diode, and a phase data portion. The method can include selecting, by the receiver, one of the visible light positioning units based on the identification portions of the visible light. The method also includes determining, by the receiver, the location of the receiver based on the phase data portions of the visible light transmitted by the light emitting diodes of the selected one of the visible light positioning units.

100‧‧‧定位系統 100‧‧‧ Positioning System

102‧‧‧發送器陣列 102‧‧‧Transmitter array

104a、104b‧‧‧可見光定位單元 104a, 104b‧‧‧ visible light positioning unit

106a-106d‧‧‧發光二極體 106a-106d‧‧‧Lighting diode

108‧‧‧接收器 108‧‧‧ Receiver

110‧‧‧偵測器 110‧‧‧Detector

202‧‧‧發送器陣列 202‧‧‧Transmitter array

204a、204b‧‧‧可見光定位單元 204a, 204b‧‧‧ visible light positioning unit

206a-206d‧‧‧發光二極體 206a-206d‧‧‧Lighting diode

208‧‧‧接收器 208‧‧‧ Receiver

210‧‧‧偵測器 210‧‧‧Detector

300a‧‧‧示意圖 300a‧‧‧ Schematic

302、304‧‧‧步驟 302, 304‧‧‧ steps

300b‧‧‧示意圖 300b‧‧‧ Schematic

312-316‧‧‧步驟 312-316‧‧‧Steps

400‧‧‧定位系統 400‧‧‧ Positioning System

402‧‧‧發送器陣列 402‧‧‧Transmitter array

404a-404h‧‧‧可見光定位單元 404a-404h‧‧‧ Visible Positioning Unit

406‧‧‧發光二極體 406‧‧‧Lighting diode

408a-408d‧‧‧接收器 408a-408d‧‧‧ Receiver

‧‧‧輻照度角 ‧‧‧irradiance angle

θ‧‧‧入射角 θ ‧‧‧ incident angle

φ c ‧‧‧接收器的視場 Field of view of φ c ‧‧‧ receiver

d i ‧‧‧距離 d i ‧‧‧distance

x、y、z‧‧‧維度 x, y, z ‧ ‧ dimensions

d int‧‧‧距離 d int ‧‧‧distance

Rx(U x ,U y ,U z )‧‧‧接收器位置 Rx( U x , U y , U z )‧‧‧ Receiver position

500a‧‧‧資料框 500a‧‧‧ data frame

502‧‧‧識別資訊 502‧‧‧ Identification information

504‧‧‧連續正弦波 504‧‧‧Continuous sine wave

500b‧‧‧示意圖 500b‧‧‧ Schematic

f if 1-f 5‧‧‧頻率 f i , f 1 - f 5 ‧‧‧ frequency

c‧‧‧光速 c ‧‧‧Light speed

φ i ‧‧‧相位 Φ i ‧‧‧ phase

φ 0 ‧‧‧初始相位 the initial phase φ 0 ‧‧‧

600‧‧‧流程圖 600‧‧‧ Flowchart

602-608‧‧‧步驟 602-608‧‧‧Steps

N ave‧‧‧週期個數 ‧‧‧ cycle number N ave

CDF‧‧‧累積分配函數 CDF‧‧‧ cumulative distribution function

RMSE‧‧‧均方根誤差 RMSE‧‧‧ root mean square error

本發明可在考量所提供之非限制性實施例以及所附圖式時,透過參考本說明書之詳細描述而得到更佳的理解。本發明所附圖式如下:第1圖是依據本發明一些實施例之定位系統的示意圖。 The invention may be better understood by reference to the detailed description of the specification, which is considered in the <RTIgt; The drawings of the present invention are as follows: Figure 1 is a schematic illustration of a positioning system in accordance with some embodiments of the present invention.

第2A圖是依據本發明一些實施例之發送器陣列的示意圖。 Figure 2A is a schematic illustration of a transmitter array in accordance with some embodiments of the present invention.

第2B圖是依據本發明一些實施例之接收器的示意圖。 Figure 2B is a schematic illustration of a receiver in accordance with some embodiments of the present invention.

第3A圖是依據本發明一些實施例之建構一定位系統之方法的示意圖。 3A is a schematic illustration of a method of constructing a positioning system in accordance with some embodiments of the present invention.

第3B圖是依據本發明一些實施例之判定一接收器之位置之方法的示意圖。 Figure 3B is a schematic illustration of a method of determining the position of a receiver in accordance with some embodiments of the present invention.

第4圖是依據本發明一些實施例之定位系統的示意圖。 Figure 4 is a schematic illustration of a positioning system in accordance with some embodiments of the present invention.

第5A圖是依據本發明一些實施例之調變訊號之資料框的示意圖。 Figure 5A is a schematic illustration of a data frame of a modulated signal in accordance with some embodiments of the present invention.

第5B圖是依據本發明一些實施例之五個連續正弦波訊號的示意圖。 Figure 5B is a schematic illustration of five consecutive sinusoidal signals in accordance with some embodiments of the present invention.

第6圖是依據本發明一些實施例之在一接收器(Rx)之定位估算程序的流程圖。 Figure 6 is a flow diagram of a location estimation procedure at a receiver (Rx) in accordance with some embodiments of the present invention.

第7圖是依據本發明一些實施例之在一空間Ci(2.5x2.5x3m3)中第i個可見光定位單元之估計誤差的累積分配函數,以及一接收器位置之均方根誤差的關係圖。 Figure 7 is a graph showing the cumulative distribution function of the estimated error of the i-th visible light locating unit in a space C i (2.5 x 2.5 x 3 m 3 ) and the root mean square error of a receiver position, in accordance with some embodiments of the present invention. Figure.

以下詳細之描述內容可參考所附圖式(以說明之方式),藉以呈現本發明可實施之具體的細節以及範例。在此之各實施例皆描述足夠之細節,使本領域之技術人員可據以實現本發明之特徵。在不偏離本發明之範圍的情況下,其他實施例可被使用,且結構以及邏輯之變化可被採用。各種實施例不一定互相排斥,例如一些實施例可與其他一或多個實施例結合,藉以組成新的實施例。 The detailed description is set forth with reference to the claims, Each of the embodiments herein is described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized, and structural and logical changes may be employed without departing from the scope of the invention. The various embodiments are not necessarily mutually exclusive, and some embodiments may be combined with other one or more embodiments to form a new embodiment.

本說明書之各種方法或裝置其中之一所描述之各種實施例,可類似地有效於其他方法或裝置。相似地,本說明書之一方法所描述之各種實施例,可類似的有效於一裝置,反之亦然。 The various embodiments described in one of the various methods or apparatus of the present specification can be similarly effective to other methods or apparatus. Similarly, the various embodiments described in one of the methods of the present specification can be similarly effective for a device and vice versa.

本說明書之一實施例所描述之各特徵,可相應地適用於其他實施例之相同或相似的特徵。本說明書之一實施例所描述之各特徵,可相應地適用於其他實施例,即使沒有明確地在上述其他實施例中描述。此外,本說明書一實施例所描述之一特徵的添加及/或組合及/或替換,可相應地適用於其他實 施例之相同或相似的特徵。 Features described in one embodiment of the present specification may be applied to the same or similar features of other embodiments. The features described in one embodiment of the present specification may be applied to other embodiments as appropriate, even if not explicitly described in the other embodiments above. Furthermore, the addition and/or combination and/or replacement of one of the features described in one embodiment of the present specification may be applied to other realities accordingly. The same or similar features of the embodiment.

本說明書之各種實施例中,用於描述一特徵或元件的用詞:「一」以及「上述」,包括對一個或多個特徵或元件的參考。 In the various embodiments of the present specification, the words "a" and "the" are used to describe one or more features or elements.

本說明書之各種實施例中,用於描述一數值之術語:「約」或「近似」,包括精確值以及合理的差值。 In various embodiments of the present specification, the terms used to describe a numerical value: "about" or "approximate", includes the precise value and the reasonable difference.

本說明書所描述之用語:「及/或」,包括一或多個相關所列物件的任何一個以及所有組合。 The term "and/or" as used in this specification includes any and all combinations of one or more of the associated listed items.

本發明之一些實施例提供一定位系統。第1圖是依據本發明一些實施例之定位系統100的示意圖。 Some embodiments of the present invention provide a positioning system. 1 is a schematic illustration of a positioning system 100 in accordance with some embodiments of the present invention.

定位系統100可包括一發送器陣列102,發送器陣列102包括複數可見光定位單元(例如可見光定位單元104a、104b)。每一個可見光定位單元(例如可見光定位單元104a、104b)可包括複數發光二極體(例如可見光定位單元104a包括發光二極體106a、106b;可見光定位單元104b包括發光二極體106c、106d)。每一個發光二極體(例如發光二極體106a~106d)可被配置以發送一可見光,該可見光包括致使該可見光與該發光二極體相關聯的一識別部分,以及一相位資料部分。定位系統100可包括一接收器108,接收器108包括一偵測器110。偵測器110可被配置以接收每一個上述可見光定位單元(例如可見光定位單元104a、104b)之該等發光二極體(例如發光二極體106a~106d)所發送之該等可見光。接收器108可被配置以基於該等可見光之該等識別部分,選擇該等可見光定位單元(例如可見光定位單元104a、104b)其中之一可見光定位單元(例如可見光定位單 元104a)。接收器108更可被配置以基於所選擇之可見光定位單元(例如可見光定位單元104a)之該等發光二極體(例如發光二極體106a、106b)所發送之該等可見光之該等相位資料部分,判定接收器108之一位置。 The positioning system 100 can include a transmitter array 102 that includes a plurality of visible light positioning units (e.g., visible light positioning units 104a, 104b). Each of the visible light positioning units (eg, visible light positioning units 104a, 104b) may include a plurality of light emitting diodes (eg, visible light positioning unit 104a includes light emitting diodes 106a, 106b; visible light positioning unit 104b includes light emitting diodes 106c, 106d). Each of the light emitting diodes (e.g., light emitting diodes 106a-106d) can be configured to transmit a visible light comprising an identification portion that causes the visible light to be associated with the light emitting diode, and a phase data portion. The positioning system 100 can include a receiver 108 that includes a detector 110. The detector 110 can be configured to receive the visible light transmitted by the light emitting diodes (eg, the light emitting diodes 106a-106d) of each of the visible light positioning units (eg, visible light positioning units 104a, 104b). The receiver 108 can be configured to select one of the visible light positioning units (eg, the visible light positioning units 104a, 104b) based on the identification portions of the visible light (eg, visible light positioning units) Element 104a). The receiver 108 is further configurable to determine the phase data of the visible light transmitted by the light emitting diodes (eg, the light emitting diodes 106a, 106b) of the selected visible light positioning unit (eg, the visible light positioning unit 104a). In part, the position of one of the receivers 108 is determined.

換句話說,定位系統100可包括發光二極體(例如發光二極體106a~106d)的一陣列102,且可被分為複數可見光定位單元104a、104b。每一個上述發光二極體(例如發光二極體106a~106d)可發送一可見光,該可見光可包括一識別部分(該識別部分編碼有關於發送該特定可見光之來源發光二極體的資訊)以及一相位資料部分。定位系統100亦可包括接收器108(而接收器108包括偵測器110),接收來自該等發光二極體(例如發光二極體106a~106d)的該等可見光以及選擇一個可見光定位單元以執行進一步的處理。所選擇之可見光定位單元(例如可見光定位單元104a)之該等發光二極體(例如發光二極體106a、106b)所發送之該等可見光的該等相位資料部分,可被應用於判定接收器108的位置。 In other words, the positioning system 100 can include an array 102 of light emitting diodes (e.g., light emitting diodes 106a-106d) and can be divided into a plurality of visible light positioning units 104a, 104b. Each of the light-emitting diodes (eg, light-emitting diodes 106a-106d) can transmit a visible light, and the visible light can include an identification portion (the identification portion encodes information about a source of light-emitting diodes for transmitting the specific visible light) and A phase data section. The positioning system 100 can also include a receiver 108 (and the receiver 108 includes a detector 110) that receives the visible light from the light emitting diodes (eg, the light emitting diodes 106a-106d) and selects a visible light positioning unit to Perform further processing. The phase data portions of the visible light transmitted by the selected light-emitting diodes (eg, the light-emitting diodes 106a, 106b) of the selected visible light positioning unit (eg, the visible light positioning unit 104a) can be applied to the determination receiver 108 location.

本發明之一些實施例可用以減輕或解決受矚目的一或多個問題或事項。本發明之一些實施例可具備較低的複雜度,例如接收器108可以只依據所選擇之可見光定位單元(例如可見光定位單元104a)之該等發光二極體(例如發光二極體106a、106b)所提供的資訊來判定接收器108的位置,而不需依據整體發送器陣列102之發光二極體106a~106d。本發明之一些實施例可透過使用偵測來自複數發光二極體之可見光,提供比傳統系統更好的精準度,例如以超寬頻(ultra-wideband (UWB))、超音波(ultrasound)、紅外線(infrared(IR))為基礎的系統。本發明之一些實施例可使用已應用於提供室內照明的發光二極體,因此可以降低成本。本發明之一些實施例可不產生電磁干擾(electromagnetic interference(EMI)),有別於以傳統射頻(radio-frequency(RF))為基礎的定位系統。本發明之一些實施例可提供一安全且隱私的定位系統(基於光輻射不會穿透牆壁或不透明的物體)。 Some embodiments of the invention may be used to alleviate or solve one or more problems or items that are subject to the subject matter. Some embodiments of the present invention may have lower complexity. For example, the receiver 108 may only rely on the light-emitting diodes of the selected visible light positioning unit (eg, the visible light positioning unit 104a) (eg, the light-emitting diodes 106a, 106b). The information provided is used to determine the location of the receiver 108 without relying on the LEDs 106a-106d of the overall transmitter array 102. Some embodiments of the present invention can provide better precision than conventional systems by detecting visible light from a plurality of light-emitting diodes, for example, ultra-wideband (ultra-wideband) (UWB)), ultrasonic (infrared (IR)) based system. Some embodiments of the present invention may use a light-emitting diode that has been applied to provide indoor illumination, and thus may reduce cost. Some embodiments of the present invention may not generate electromagnetic interference (EMI), which is different from a conventional radio frequency (RF) based positioning system. Some embodiments of the present invention may provide a secure and privacy positioning system (based on optical radiation that does not penetrate walls or opaque objects).

第1圖是依據本發明一些實施例,提供定位系統100的一通用說明,不應對本發明產生任何限制。舉例而言,上述可見光定位單元的數量不需要被限制成兩個,且可以包括兩個以上的數量。舉例而言,可見光定位單元的數量可為兩個、三個、四個或多個。此外,每一個可見光定位單元內的發光二極體的數量,不需要被限制成兩個,且可以包括兩個以上的數量。 1 is a generalized illustration of a positioning system 100 in accordance with some embodiments of the present invention, and should not impose any limitation on the present invention. For example, the number of visible light positioning units described above need not be limited to two, and may include more than two numbers. For example, the number of visible light positioning units may be two, three, four or more. In addition, the number of light-emitting diodes in each visible light positioning unit need not be limited to two, and may include two or more numbers.

每一道可見光可被一個發光二極體所發送,而一特定可見光的識別部分可識別或提供發送該特定可見光之發光二極體的相關資訊。上述相位資料部分可包括或可為一重複訊號(例如一正弦訊號)。當可見光傳播並經過不同距離,上述相位資料部分的訊號可對應上述不同距離而處於不同相位。因此,上述相位資料部分可提供上述可見光傳播距離的資訊。 Each visible light can be transmitted by a light emitting diode, and the identification portion of a particular visible light can identify or provide information about the light emitting diode that transmits the particular visible light. The phase data portion may include or may be a repeated signal (eg, a sinusoidal signal). When the visible light propagates and passes through different distances, the signals of the phase data portion may be in different phases corresponding to the different distances. Therefore, the phase data portion can provide information on the above-mentioned visible light propagation distance.

在一些實施例中,每一個可見光定位單元(例如可見光定位單元104a、104b)可包括四個或五個發光二極體。 In some embodiments, each visible light location unit (eg, visible light location unit 104a, 104b) can include four or five light emitting diodes.

在一些實施例中,接收器108可以是偵測器110。偵測器110可為或可包括一光電二極體(photodiode)。 In some embodiments, the receiver 108 can be the detector 110. The detector 110 can be or can include a photodiode.

在一些實施例中,每一個可見光定位單元(例如可見光定位單元104a)之不同的發光二極體(例如發光二極體106a、106b)所發送之該等可見光的該等相位資料部分,可被調變為具備基本上相同的初始相位,以及具備基本上不同的(調變的)頻率。換句話說,一可見光定位單元內的不同發光二極體(例如發光二極體106a、106b)可被同步(synchronised),因此離開一第一發光二極體(例如發光二極體106a)的可見光以及離開一第二發光二極體(例如發光二極體106b)的可見光,可處於相同相位。然而,離開一第一發光二極體(例如發光二極體106a)的可見光以及離開一第二發光二極體(例如發光二極體106b)的可見光,可具備不同的(調變的)頻率。相同可見光定位單元內之複數發光二極體的本地同步(亦即本地同步)可減少同步複雜度,以及可排除接收器108需要包括一本地振盪器以量測不同相位偏移的需求。 In some embodiments, the phase data portions of the visible light transmitted by different light emitting diodes (eg, light emitting diodes 106a, 106b) of each visible light positioning unit (eg, visible light positioning unit 104a) may be The modulation is made to have substantially the same initial phase and to have substantially different (modulated) frequencies. In other words, different light-emitting diodes (e.g., light-emitting diodes 106a, 106b) within a visible light locating unit can be synchronized, thus leaving a first light-emitting diode (e.g., light-emitting diode 106a). The visible light and the visible light leaving a second light emitting diode (e.g., light emitting diode 106b) may be in the same phase. However, the visible light leaving a first light-emitting diode (for example, the light-emitting diode 106a) and the visible light leaving a second light-emitting diode (for example, the light-emitting diode 106b) may have different (modulated) frequencies. . Local synchronization (i.e., local synchronization) of the complex LEDs within the same visible light location unit can reduce synchronization complexity and eliminate the need for the receiver 108 to include a local oscillator to measure different phase offsets.

在一些實施例中,上述所選擇之可見光定位單元之不同的發光二極體所發送以及被偵測器110所接收之該等可見光的該等相位資料部分,可具備不同的相位偏移(對於彼此而言)。換句話說,上述所選擇之可見光定位單元之一第一發光二極體所發送之一可見光的相位資料部分可具備一第一相位偏移,上述所選擇之可見光定位單元之一第二發光二極體所發送之一可見光的相位資料部分可具備與該第一相位偏移不同的一第二相位偏移。上述相位偏移的差異可源於上述基本上相同的初始相位以及上述基本上不同的頻率。當相同的可見光定位單元(例如可見光定位單元104a)之不同的發光二極體所發 送的該等可見光,從上述發光二極體(例如發光二極體106a、106b)傳播不同的距離以到達偵測器110,該等可見光可基於所具備之一相同起始相位以及不同頻率,而具備不同的相位偏移。 In some embodiments, the phase data portions of the visible light received by the different light-emitting diodes of the selected visible light positioning unit and received by the detector 110 may have different phase offsets (for For each other). In other words, the phase data portion of one of the visible light transmitted by the first light-emitting diode of one of the selected visible light positioning units may have a first phase shift, and one of the selected visible light positioning units is the second light-emitting diode. The phase data portion of one of the visible light transmitted by the polar body may have a second phase offset different from the first phase offset. The difference in phase offset described above may be derived from substantially the same initial phase as described above and substantially different frequencies as described above. When different light-emitting diodes of the same visible light positioning unit (for example, visible light positioning unit 104a) are emitted The visible light is transmitted from the light-emitting diodes (eg, the light-emitting diodes 106a, 106b) to different distances to reach the detector 110, and the visible light may be based on one of the same initial phase and different frequencies. And with different phase offsets.

在一些實施例中,每一個發光二極體所發送之可見光的識別部分以及相位資料部分,可被調變為基本上相同頻率。一可見光之識別部分可被調變成與該可見光之相位資料部分相同的頻率。每一個發光二極體所發送之可見光的識別部分以及相位資料部分可被調變至一射頻。每一個發光二極體所發送之可見光的識別部分可被使用二元相移鍵控(binary phase shift keying(BPSK))之一識別資料所調變。上述識別資料對於每一個發光二極體而言是獨特的(且可有關於個別發光二極體的位置)。將一可見光之識別部分調變成與該可見光之相位資料部分相同的頻率,藉此使該識別部分以及該相位資料部分皆相較於在相同可見光定位單元之另一發光二極體的識別部分與相位資料部分,具有不同的頻率,藉此可允許源自相同可見光定位單元內之不同發光二極體的複數訊號/可見光,可更加容易地分化或獨立於彼此。 In some embodiments, the identification portion of the visible light and the phase data portion transmitted by each of the light-emitting diodes can be modulated to substantially the same frequency. The visible portion of a visible light can be modulated to the same frequency as the phase data portion of the visible light. The identification portion of the visible light transmitted by each of the light-emitting diodes and the phase data portion can be modulated to a radio frequency. The identification portion of the visible light transmitted by each of the light-emitting diodes can be modulated by one of the binary phase shift keying (BPSK) identification data. The above identification data is unique to each of the light-emitting diodes (and may have a position regarding the individual light-emitting diodes). Adjusting the identification portion of a visible light to the same frequency as the phase data portion of the visible light, whereby the identification portion and the phase data portion are compared with the identification portion of another light-emitting diode in the same visible light positioning unit The phase data portion has different frequencies, thereby allowing complex signals/visible light originating from different light-emitting diodes within the same visible light locating unit to be more easily differentiated or independent of each other.

在一些實施例中,接收器108可被配置以忽視或拒絕沒有被選擇之複數可見光定位單元(例如可見光定位單元104b)之複數發光二極體(例如發光二極體106c、106d)所發送之複數可見光之複數相位資料部分。接收器108可被配置成僅處理所選擇之可見光定位單元(例如可見光定位單元104a)之複數發光二極體(例如發光二極體106a、106b)所發送之複數可見 光,藉以判定接收器108之位置。沒有被選擇之該可見光定位單元(例如可見光定位單元104b)之該等發光二極體(例如發光二極體106c、106d)所發送之該等可見光,可不被處理。透過僅處理上述所選擇之可見光定位單元(例如可見光定位單元104a)之該等發光二極體(例如發光二極體106a、106b)所發送之該等可見光,複雜度可被降低。 In some embodiments, the receiver 108 can be configured to ignore or reject the plurality of light emitting diodes (eg, light emitting diodes 106c, 106d) that are not selected by the plurality of visible light positioning units (eg, visible light positioning unit 104b). The complex phase data portion of the complex visible light. The receiver 108 can be configured to process only the plurality of light emitting diodes (eg, the light emitting diodes 106a, 106b) of the selected visible light positioning unit (eg, the visible light positioning unit 104a) to be visible Light, by which the position of the receiver 108 is determined. The visible light transmitted by the light-emitting diodes (e.g., light-emitting diodes 106c, 106d) of the visible light positioning unit (e.g., visible light positioning unit 104b) that is not selected may not be processed. The complexity can be reduced by processing only the visible light transmitted by the light-emitting diodes (e.g., light-emitting diodes 106a, 106b) of the selected visible light positioning unit (e.g., visible light positioning unit 104a).

接收器108可被配置以擷取源自任何有效之鄰近可見光定位單元(例如可見光定位單元104a、104b)的訊號,進而選擇該等可見光定位單元(例如可見光定位單元104a、104b)中具備最高訊號雜訊比(signal-to-noise ratio(SNR))之複數發光二極體的一可見光定位單元(例如可見光定位單元104a),藉以在複數區域中,第一次判定以及選擇接收器108所在的一區域。每一個區域可相關於一可見光定位單元。接收器108更可被配置以處理有關於所選擇之區域之可見光定位單元之複數發光二極體所發送之複數可見光的複數相位資料部分,藉以識別或判定接收器108在上述所選擇之區域中的確切位置。 The receiver 108 can be configured to capture signals originating from any valid adjacent visible light location units (eg, visible light location units 104a, 104b), thereby selecting the highest signal in the visible light location units (eg, visible light location units 104a, 104b) a visible light locating unit (eg, visible light locating unit 104a) of a plurality of light-emitting diodes of a signal-to-noise ratio (SNR), whereby the first determination and selection of the receiver 108 are in the plurality of regions An area. Each zone can be associated with a visible light location unit. The receiver 108 is further configurable to process a complex phase data portion of the complex visible light transmitted by the plurality of light emitting diodes of the visible light positioning unit of the selected region, thereby identifying or determining that the receiver 108 is in the selected region The exact location.

在一些實施例中,所選擇之可見光定位單元(例如可見光定位單元104a)可包括複數發光二極體(例如發光二極體106a、106b),該等發光二極體所具備之訊號雜訊比,高於沒有被選擇之可見光定位單元(例如可見光定位單元104b)之複數發光二極體(例如發光二極體106c、106d)。換句話說,具備最高訊號雜訊比之複數發光二極體之可見光定位單元(例如可見光定位單元104a)可被選擇。接收器108可被配置以基於可見光之識別部分,判定每一個可見光定位單元之複數發光二極體的 訊號雜訊比。在一些實施例中,接收器108可被配置以判定每一個可見光定位單元(例如可見光定位單元104a、104b)之複數發光二極體的一平均訊號雜訊比。接收器108更可被配置以比較不同之可見光定位單元(例如可見光定位單元104a、104b)之複數發光二極體之複數平均訊號雜訊比,藉以從該等可見光定位單元(例如可見光定位單元104a、104b)選擇可見光定位單元(例如可見光定位單元104a)。所選擇之可見光定位單元(例如可見光定位單元104a)可包括複數發光二極體,該等發光二極體之平均訊號雜訊比,高於沒有被選擇之可見光定位單元(例如可見光定位單元104b)之複數發光二極體。 In some embodiments, the selected visible light positioning unit (eg, visible light positioning unit 104a) may include a plurality of light emitting diodes (eg, light emitting diodes 106a, 106b) having signal to noise ratios , a plurality of light emitting diodes (eg, light emitting diodes 106c, 106d) that are higher than the selected visible light positioning unit (eg, visible light positioning unit 104b). In other words, a visible light positioning unit (e.g., visible light positioning unit 104a) having a plurality of light emitting diodes having the highest signal noise ratio can be selected. The receiver 108 can be configured to determine the plurality of light emitting diodes of each of the visible light positioning units based on the identification portion of the visible light Signal noise ratio. In some embodiments, the receiver 108 can be configured to determine an average signal to noise ratio of the plurality of light emitting diodes of each of the visible light positioning units (eg, visible light positioning units 104a, 104b). The receiver 108 can be further configured to compare the complex average signal to noise ratios of the plurality of light-emitting diodes of the different visible light positioning units (eg, the visible light positioning units 104a, 104b), such as the visible light positioning unit 104a. 104b) Selecting a visible light positioning unit (eg, visible light positioning unit 104a). The selected visible light positioning unit (for example, the visible light positioning unit 104a) may include a plurality of light emitting diodes, and the average signal noise ratio of the light emitting diodes is higher than the selected visible light positioning unit (for example, the visible light positioning unit 104b). The plurality of light-emitting diodes.

接收器108更可在基於上述訊號雜訊比,從該等可見光定位單元(例如可見光定位單元104a、104b)選擇一可見光定位單元(例如可見光定位單元104a)之前,判定該等可見光定位單元(例如可見光定位單元104a、104b)之該等發光二極體(例如發光二極體106a~106d)之該等訊號雜訊比。 The receiver 108 may further determine the visible light positioning units (eg, before selecting a visible light positioning unit (eg, the visible light positioning unit 104a) from the visible light positioning units (eg, the visible light positioning units 104a, 104b) based on the signal noise ratio. The signal to noise ratios of the light-emitting diodes (e.g., light-emitting diodes 106a-106d) of the visible light positioning units 104a, 104b).

若上述所選擇之可見光定位單元之訊號雜訊比是處於或高於一預定閾值,接收器108可處理以判定接收器108之位置。上述所選擇之可見光定位單元(例如可見光定位單元104a)之訊號雜訊比,可以為上述所選擇之可見光定位單元(例如可見光定位單元104a)內所有發光二極體(例如發光二極體106a、106b)之一平均訊號雜訊比。另一方面,上述所選擇之可見光定位單元(例如可見光定位單元104a)之訊號雜訊比,可以為上述所選擇之可見光定位單元(例如可見光定位單元104a)內所有發光二極體(例如發光二極體106a、106b)之一最低訊號 雜訊比。換句話說,在接收器108之位置被判定以前,上述所選擇之可見光定位單元(例如可見光定位單元104a)之該等發光二極體(例如發光二極體106a、106b)可被要求以符合一預定訊號雜訊比閾值的條件。 If the signal to noise ratio of the selected visible light positioning unit is at or above a predetermined threshold, the receiver 108 can process to determine the position of the receiver 108. The signal noise ratio of the selected visible light positioning unit (for example, the visible light positioning unit 104a) may be all the light emitting diodes (for example, the light emitting diode 106a) in the selected visible light positioning unit (for example, the visible light positioning unit 104a). 106b) One of the average signal to noise ratios. On the other hand, the signal noise ratio of the selected visible light positioning unit (for example, the visible light positioning unit 104a) may be all the light emitting diodes (for example, the light emitting diode) in the selected visible light positioning unit (for example, the visible light positioning unit 104a). The lowest signal of one of the pole bodies 106a, 106b) Noise ratio. In other words, the light-emitting diodes (e.g., light-emitting diodes 106a, 106b) of the selected visible light positioning unit (e.g., visible light positioning unit 104a) may be required to conform to the position of the receiver 108 before being determined. A condition for a predetermined signal noise ratio threshold.

若上述所選擇之可見光定位單元(例如可見光定位單元104a)之訊號雜訊比低於該預定訊號雜訊比閾值,接收器108可在一預定時間之後,重複上述選擇程序。換句話說,若若上述所選擇之可見光定位單元(例如可見光定位單元104a)之訊號雜訊比低於該預定訊號雜訊比閾值,接收器108可被配置以在重新判定該等可見光定位單元(例如可見光定位單元104a、104b)之該等發光二極體(例如發光二極體106a~106d)之訊號雜訊比之前,等待一預定時間。接收器108可在基於訊號雜訊比從該等可見光定位單元(例如可見光定位單元104a、104b)選擇一可見光定位單元(例如可見光定位單元104a)之前,重新判定該等可見光定位單元(例如可見光定位單元104a、104b)之該等發光二極體(例如發光二極體106a~106d)之訊號雜訊比。 If the signal noise ratio of the selected visible light positioning unit (eg, visible light positioning unit 104a) is lower than the predetermined signal noise ratio threshold, the receiver 108 may repeat the selection procedure after a predetermined time. In other words, if the signal noise ratio of the selected visible light positioning unit (eg, visible light positioning unit 104a) is lower than the predetermined signal noise ratio threshold, the receiver 108 can be configured to re-determine the visible light positioning units. Waiting for a predetermined time before the signal noise ratio of the light-emitting diodes (e.g., light-emitting diodes 106a-106d) (e.g., visible light positioning units 104a, 104b). The receiver 108 may re-determine the visible light positioning units (eg, visible light positioning) before selecting a visible light positioning unit (eg, the visible light positioning unit 104a) from the visible light positioning units (eg, the visible light positioning units 104a, 104b) based on the signal noise ratio. The signal to noise ratio of the light emitting diodes (e.g., light emitting diodes 106a to 106d) of the cells 104a, 104b).

接收器108可被配置以在判定接收器108之位置前,判定上述訊號雜訊比。 Receiver 108 can be configured to determine the signal to noise ratio prior to determining the location of receiver 108.

在一些實施例中,接收器108可被配置以透過差分相移量測(differential phase shift measurement)及/或三邊測量演算法(trilateration algorithm)判定接收器的位置。 In some embodiments, the receiver 108 can be configured to determine the position of the receiver through a differential phase shift measurement and/or a trilateration algorithm.

一第一可見光定位單元之複數發光二極體所發送之複數可見光之相位資料部分,與一第二可見光定位單元之複 數發光二極體所發送之複數可見光之相位資料部分,可具有基本上不同之初始相位。換句話說,不同之可見光定位單元之複數發光二極體可為不同步的(unsynchronized)。 a phase portion of a plurality of visible light transmitted by a plurality of light-emitting diodes of a first visible light positioning unit, and a second visible light positioning unit The phase data portion of the plurality of visible light transmitted by the plurality of light-emitting diodes may have substantially different initial phases. In other words, the plurality of light-emitting diodes of different visible light positioning units can be unsynchronized.

在一些實施例中,該等發光二極體可為白發光二極體或配置為發送白光的二極體。在一些實施例中,該等發光二極體可為塗上黃色磷光質塗層的藍發光二極體(亦即被配置為發送藍光的二極體)。當該等藍發光二極體被塗上黃色磷光塗層時,該等發光二極體可被配置以發送白光。 In some embodiments, the light emitting diodes can be white light emitting diodes or diodes configured to emit white light. In some embodiments, the light emitting diodes can be blue light emitting diodes coated with a yellow phosphorescent coating (ie, diodes configured to emit blue light). When the blue light emitting diodes are coated with a yellow phosphorescent coating, the light emitting diodes can be configured to emit white light.

在一些實施例中,接收器108更可包括一解調器(例如基於差分相移量測之同相以及正交(in-phase and quadrature(I/Q))解調器,該解調器被配置以判定接收器108之位置。該解調器可被配置以判定偵測器110所接收之同相偏移差值(differences in phase shift)。該解調器可被配置以判定偵測器110所接收之一第一發光二極體所發送的可見光與一第二發光二極體所發送之可見光之間的同相偏移差值,該第一發光二極體以及該第二發光二極體屬於相同之可見光定位單元。該解調器可電性連接偵測器110。 In some embodiments, the receiver 108 may further include a demodulator (eg, an in-phase and quadrature (I/Q) based demodulator based on differential phase shift measurements, the demodulator being The configuration is configured to determine the location of the receiver 108. The demodulator can be configured to determine a difference in phase shift received by the detector 110. The demodulator can be configured to determine the detector 110 a difference in the in-phase offset between the visible light transmitted by the first light-emitting diode and the visible light emitted by the second light-emitting diode, the first light-emitting diode and the second light-emitting diode The same visible light positioning unit belongs to the same. The demodulator can be electrically connected to the detector 110.

在一些實施例中,接收器108更可包括一處理器或處理電路。該處理器或該處理電路可被配置以基於偵測器110所接收之(以及由所選擇的可見光定位單元(例如可見光定位單元104a)所發送之)複數可見光,判定接收器108之位置(例如透過差分相移量測及/或三邊量測演算法)。該處理器或該處理器電路可被配置以判定每一個可見光定位單元之複數發光二極體的訊號雜訊比。該處理器或處理器電路可被配置以選擇複數 可見光定位單元中具備最高訊號雜訊比之複數發光二極體的一可見光定位單元。該處理器或該處理器電路可被電性連接至上述偵測器及/或上述解調器。 In some embodiments, the receiver 108 can further include a processor or processing circuitry. The processor or the processing circuit can be configured to determine the location of the receiver 108 based on the plurality of visible light received by the detector 110 (and transmitted by the selected visible light positioning unit (eg, visible light positioning unit 104a) (eg, Through differential phase shift measurement and / or trilateration algorithm). The processor or the processor circuit can be configured to determine a signal to noise ratio of the plurality of light emitting diodes of each of the visible light positioning units. The processor or processor circuit can be configured to select a plurality A visible light positioning unit of the plurality of light emitting diodes having the highest signal noise ratio in the visible light positioning unit. The processor or the processor circuit can be electrically connected to the detector and/or the demodulator.

在一些實施例中,接收器108更可包括偵測器110之一濾波器。該濾波器可被配置以允許藍光通過並抵達偵測器110m,且可阻擋或濾除源自複數發光二極體106之可見光的其他成分。 In some embodiments, the receiver 108 can further include a filter of the detector 110. The filter can be configured to allow blue light to pass through and reach the detector 110m, and can block or filter out other components of the visible light originating from the plurality of light emitting diodes 106.

在一些實施例中,接收器108可包括一後等化器電路配置(post-equalization circuit arrangement),被配置以電性連接至偵測器110。該等化器電路配置可被配置以放寬該等發光二極體之調變頻寬的要求(實際上等同於增加該等發光二極體之調變頻寬)。 In some embodiments, the receiver 108 can include a post-equalization circuit arrangement configured to be electrically coupled to the detector 110. The equalizer circuit configuration can be configured to relax the modulation width requirements of the light emitting diodes (actually equivalent to increasing the modulation width of the light emitting diodes).

在一些實施例中,定位系統100可達到少於約100公分、少於約20公分、少於約10公分、少於約7公分或少於約5公分的定位精確度。接收器108可被配置以少於約100公分、少於約20公分、少於約10公分、少於約7公分或少於約5公分的定位精確度,判定接收器108之位置。 In some embodiments, the positioning system 100 can achieve a positioning accuracy of less than about 100 centimeters, less than about 20 centimeters, less than about 10 centimeters, less than about 7 centimeters, or less than about 5 centimeters. The receiver 108 can be configured to determine the position of the receiver 108 with a positioning accuracy of less than about 100 centimeters, less than about 20 centimeters, less than about 10 centimeters, less than about 7 centimeters, or less than about 5 centimeters.

本發明之一些實施例可提供一發送器陣列。第2A圖是依據本發明一些實施例之發送器陣列202的示意圖。 Some embodiments of the invention may provide a transmitter array. 2A is a schematic diagram of a transmitter array 202 in accordance with some embodiments of the present invention.

發送器陣列202可包括複數可見光定位單元(例如可見光定位單元204a、204b)。每一個可見光定位單元(例如可見光定位單元204a、204b)可包括複數發光二極體(例如發光二極體206a~206d)。每一個發光二極體(例如發光二極體206a~206d)可被配置以發送一可見光,該可見光包括致使該可 見光與該發光二極體相關聯的一識別部分,以及一相位資料部分。每一個可見光定位單元(例如可見光定位單元204a、204b)之複數發光二極體(例如發光二極體206a~206d)所發送之複數可見光可被配置以被一接收器之一偵測器所接收。該等可見光之該等識別部分可被配置以供該接收器使用,藉以選擇該等可見光定位單元(例如可見光定位單元204a、204b)其中之一可見光定位單元(例如可見光定位單元204a)。被選擇之可見光定位單元(例如可見光定位單元204a)之該等發光二極體(例如發光二極體206a、206b)所發送之該等可見光之該等相位資料部分可被配置以供該接收器使用,藉以判定該接收器之一位置。 Transmitter array 202 can include a plurality of visible light location units (e.g., visible light location units 204a, 204b). Each of the visible light positioning units (eg, visible light positioning units 204a, 204b) may include a plurality of light emitting diodes (eg, light emitting diodes 206a-206d). Each of the light emitting diodes (eg, light emitting diodes 206a-206d) can be configured to transmit a visible light that includes causing the See an identification portion of the light associated with the light emitting diode, and a phase data portion. The plurality of visible light transmitted by the plurality of light-emitting diodes (eg, light-emitting diodes 206a-206d) of each of the visible light positioning units (eg, visible light positioning units 204a, 204b) can be configured to be received by one of the receivers of the receiver . The identification portions of the visible light can be configured for use by the receiver to select one of the visible light location units (eg, visible light location units 204a, 204b) (eg, visible light location unit 204a). The phase data portions of the visible light transmitted by the selected light-emitting diodes (eg, light-emitting diodes 206a, 206b) of the selected visible light positioning unit (eg, visible light positioning unit 204a) may be configured for the receiver Used to determine the location of one of the receivers.

第2A圖是依據本發明一些實施例,提供發送器陣列202的一通用說明,不應對本發明產生任何限制。舉例而言,上述可見光定位單元的數量不需要被限制成兩個,且可以包括兩個以上的數量。舉例而言,可見光定位單元的數量可為兩個、三個、四個或多個。此外,每一個可見光定位單元內的發光二極體的數量,不需要被限制成兩個,且可以包括兩個以上的數量。 2A is a general illustration of a transmitter array 202 in accordance with some embodiments of the present invention and should not impose any limitation on the present invention. For example, the number of visible light positioning units described above need not be limited to two, and may include more than two numbers. For example, the number of visible light positioning units may be two, three, four or more. In addition, the number of light-emitting diodes in each visible light positioning unit need not be limited to two, and may include two or more numbers.

本發明一些實施例提供一接收器。第2B圖是依據本發明一些實施例之接收器208的示意圖。 Some embodiments of the present invention provide a receiver. Figure 2B is a schematic illustration of a receiver 208 in accordance with some embodiments of the present invention.

接收器208可包括一偵測器210,偵測器210可被配置以接收每一個可見光定位單元之複數發光二極體所發送之複數可見光。每一道可見光可包括致使該可見光與一發光二極體相關聯的一識別部分,以及一相位資料部分。 The receiver 208 can include a detector 210 that can be configured to receive the plurality of visible light transmitted by the plurality of light emitting diodes of each of the visible light positioning units. Each visible light may include an identification portion that causes the visible light to be associated with a light emitting diode, and a phase data portion.

接收器208可為一光接收器(optical receiver)。接收 器208可被配置以基於該等可見光之該等識別部分,選擇該等可見光定位單元的其中之一可見光定位單元。接收器208可被配置以基於該等可見光之該等識別部分,判定每一個可見光定位單元之該等發光二極體的複數訊號雜訊比。 Receiver 208 can be an optical receiver. receive The 208 can be configured to select one of the visible light locating units of the visible light locating units based on the identification portions of the visible light. The receiver 208 can be configured to determine a complex signal to noise ratio of the light emitting diodes of each of the visible light positioning units based on the identification portions of the visible light.

所選擇之可見光定位單元可包括複數發光二極體,該等發光二極體所具備之訊號雜訊比,高於沒有被選擇之可見光定位單元之複數發光二極體。接收器208更可被配置以基於所選擇之可見光定位單元之該等發光二極體所發送之複數可見光之複數相位資料部分,判定接收器208之一位置。 The selected visible light positioning unit may comprise a plurality of light emitting diodes, wherein the light emitting diodes have a higher signal to noise ratio than the plurality of light emitting diodes of the selected visible light positioning unit. The receiver 208 is further configurable to determine a position of the receiver 208 based on a plurality of complex phase data portions of the plurality of visible light transmitted by the light emitting diodes of the selected visible light positioning unit.

第2B圖是依據本發明一些實施例,提供接收器208的一通用說明,不應對本發明產生任何限制。 FIG. 2B is a general illustration of a receiver 208 provided in accordance with some embodiments of the present invention and should not impose any limitation on the present invention.

本發明一些實施例提供建構一定位系統的方法。第3A圖是依據本發明一些實施例之建構一定位系統之方法的示意圖300a。該方法包括:在步驟302中,提供一發送器陣列,該發送器陣列包括複數可見光定位單元,每一個上述可見光定位單元包括複數發光二極體。每一個上述發光二極體被配置以發送一可見光,該可見光包括致使該可見光與該發光二極體相關聯的一識別部分,以及一相位資料部分。該方法亦可包括:在步驟304中,提供一接收器,該接收器包括一偵測器。該偵測器可被配置以接收每一個上述可見光定位單元之該等發光二極體所發送之該等可見光。該接收器可被配置以基於該等可見光之該等識別部分,選擇該等可見光定位單元其中之一可見光定位單元。該接收器更可被配置以基於所選擇之可見光定位單元之該等發光二極體所發送之該等可見光之該等相位資料 部分,判定該接收器之一位置。 Some embodiments of the invention provide a method of constructing a positioning system. 3A is a schematic diagram 300a of a method of constructing a positioning system in accordance with some embodiments of the present invention. The method includes, in step 302, providing a transmitter array, the transmitter array including a plurality of visible light positioning units, each of the visible light positioning units including a plurality of light emitting diodes. Each of the light emitting diodes is configured to transmit a visible light, the visible light comprising an identification portion that causes the visible light to be associated with the light emitting diode, and a phase data portion. The method can also include, in step 304, providing a receiver, the receiver including a detector. The detector can be configured to receive the visible light transmitted by the light emitting diodes of each of the visible light positioning units. The receiver can be configured to select one of the visible light positioning units of the visible light positioning units based on the identification portions of the visible light. The receiver is further configurable to determine the phase data of the visible light transmitted by the light emitting diodes of the selected visible light positioning unit In part, the position of one of the receivers is determined.

換句話說,建構一定位系統的方法可包括提供一發送器陣列,該發送器陣列包括複數可見光定位單元之複數發光二極體群組。每一個可見光定位單元可包括一數量之發光二極體。該方法亦可包括提供一接收器,該接收器包括一偵測器。該偵測器接收該等發光二極體所發送之複數可見光。在接收該等可見光之後,該接收器可判定要進一步處理哪一個特定的可見光定位單元。該接收器透過處理該等發光二極體所發送之該等可見光的該等識別部分來進行上述判定。每一道可見光可被一發光二極體所發送,且一特定可見光之識別部分可識別或提供發送該特定可見光之一發光二極體的相關資訊。在上述判定之後,該接收器可基於該特定之可見光定位單元之複數發光二極體所發送之該等可見光的相位資料部分,進一步判定本身的位置。 In other words, a method of constructing a positioning system can include providing a transmitter array that includes a plurality of light emitting diode groups of a plurality of visible light positioning units. Each of the visible light positioning units may include a number of light emitting diodes. The method can also include providing a receiver, the receiver including a detector. The detector receives the plurality of visible light transmitted by the light emitting diodes. After receiving the visible light, the receiver can determine which particular visible light positioning unit to process further. The receiver performs the above determination by processing the identification portions of the visible light transmitted by the light emitting diodes. Each visible light can be transmitted by a light emitting diode, and a specific visible portion of the visible light can identify or provide information about transmitting one of the specific visible light emitting diodes. After the above determination, the receiver can further determine the position of itself based on the phase data portion of the visible light transmitted by the plurality of light-emitting diodes of the specific visible light positioning unit.

在一些實施例中,每一個可見光定位單元之不同的發光二極體所發送之複數可見光的複數相位資料部分,可被調變為具備基本上相同的初始相位,以及具備基本上不同的頻率。 In some embodiments, the complex phase data portions of the complex visible light transmitted by the different light emitting diodes of each of the visible light positioning units can be modulated to have substantially the same initial phase and have substantially different frequencies.

在一些實施例中,所選擇之可見光定位單元之不同的發光二極體所發送以及被上述偵測器所接收之複數可見光的複數相位資料部分,可具備不同的相位偏移。 In some embodiments, the complex phase data portions of the plurality of visible light transmitted by the different light-emitting diodes of the selected visible light positioning unit and received by the detector may have different phase offsets.

在一些實施例中,每一個發光二極體所發送之可見光的識別部分以及相位資料部分,可被調變為基本上相同頻率。每一個發光二極體所發送之可見光的識別部分可被使用二 元相移鍵控(binary phase shift keying(BPSK))之一識別資料所調變。 In some embodiments, the identification portion of the visible light and the phase data portion transmitted by each of the light-emitting diodes can be modulated to substantially the same frequency. The identification portion of the visible light transmitted by each of the light-emitting diodes can be used One of the binary phase shift keying (BPSK) identifies the data to be modulated.

上述接收器可被配置以忽視或拒絕沒有被選擇之複數可見光定位單元之複數發光二極體所發送之複數可見光之複數相位資料部分。 The receiver can be configured to ignore or reject the complex phase data portion of the complex visible light transmitted by the plurality of light-emitting diodes of the plurality of visible light positioning units that are not selected.

上述接收器可被配置以基於該等可見光之該等識別部分,判定每一個可見光定位單元之複數發光二極體的復數訊號雜訊比。上述接收器更可被配置以在從該等可見光定位單元中選擇一可見光定位單元之前,判定該等可見光定位單元之該等發光二極體之該等訊號雜訊比。上述接收器可被配置以基於該等訊號雜訊比,從該等可見光定位單元中選擇一可見光定位單元。所選擇之可見光定位單元之複數發光二極體的訊號雜訊比,可高於沒有被選擇之可見光定位單元之複數發光二極體的訊號雜訊比。上述接收器更可被配置以在判定該接收器的位置之前,判定該等訊號雜訊比。 The receiver may be configured to determine a complex signal to noise ratio of the plurality of LEDs of each of the visible light positioning units based on the identification portions of the visible light. The receiver is further configured to determine the signal to noise ratios of the LEDs of the visible light positioning units before selecting a visible light positioning unit from the visible light positioning units. The receiver can be configured to select a visible light positioning unit from the visible light positioning units based on the signal noise ratios. The signal-to-noise ratio of the plurality of light-emitting diodes of the selected visible light positioning unit may be higher than the signal-to-noise ratio of the plurality of light-emitting diodes of the selected visible light positioning unit. The receiver is further configurable to determine the signal to noise ratio prior to determining the location of the receiver.

上述接收器之位置可透過差分相移量測以及三邊測量演算法來判定。 The position of the receiver can be determined by differential phase shift measurement and trilateration algorithm.

不同之可見光定位單元之複數發光二極體所發送之複數可見光可為不同步的。一第一可見光定位單元之複數發光二極體所發送之複數可見光之相位資料部分與一第二可見光定位單元之複數發光二極體所發送之複數可見光之相位資料部分,可具備基本上不同之初始相位。 The plurality of visible light transmitted by the plurality of light-emitting diodes of the different visible light positioning units may be asynchronous. The phase data portion of the plurality of visible light transmitted by the plurality of light-emitting diodes of the first visible light positioning unit and the phase data portion of the plurality of visible light signals transmitted by the plurality of light-emitting diodes of the second visible light positioning unit may be substantially different. Initial phase.

一些目前的研究已驗證可見光定位單元之不同應用的可行性。在Microsoft Indoor Localization Competition-IPSN 2014中,報導大約20個不同之低成本室內定位系統。然而,這些即時(real-time)或近似即時的定位系統之中,仍然沒有一個系統可達到不僅低成本,亦可提供公分級的精確度。成本、複雜度、準確度、涵蓋範圍及/或穩定性皆為目前室內定位系統之主要的研究挑戰。 Some current studies have validated the feasibility of different applications of visible light positioning units. In Microsoft Indoor Localization In Competition-IPSN 2014, approximately 20 different low-cost indoor positioning systems were reported. However, among these real-time or near-instant positioning systems, there is still no system that can achieve not only low cost but also the accuracy of the public rating. Cost, complexity, accuracy, coverage and/or stability are the main research challenges of today's indoor positioning systems.

為克服上述挑戰以及符合目前室內定位系統之要求,本發明可一些實施例可提供一低成本、室內公分級之定位系統,並在不需要複雜且昂貴之基礎設施的情況下提供高精確度定位。在一些實施例中,可包括白色的照明發光二極體。白色的照明發光二極體可額外做為一定位工具,藉此提供一種公分級之定位分辨率之更加完整的方案。在一些實施例中之系統可包括將每一個發光二極體透過本身的識別資訊與一預定頻率之連續正弦波訊號進行調變,並且週期性地發送上述訊號。每四個或五個發光二極體可被編組為一基本可見光定位單元,且每四或五個發光二極體可被本地同步相位。被編組為一可見光定位單元之發光二極體的數量,在不同的實施例中可不同或變化。一可見光定位單元接收器Rx可偵測源自任何一個上述可見光定位單元之訊號,藉以透過分析與處理所接收的訊號以及利用預定室內地圖來判定本身的位置。 To overcome the above challenges and to meet the requirements of current indoor positioning systems, embodiments of the present invention may provide a low cost, indoor public grading positioning system that provides high accuracy positioning without the need for complex and expensive infrastructure. . In some embodiments, a white illuminated light emitting diode can be included. The white illuminated LED can be additionally used as a positioning tool to provide a more complete solution for the positioning resolution of the public grade. The system in some embodiments may include modulating each of the light-emitting diodes through their own identification information with a continuous sine wave signal of a predetermined frequency and periodically transmitting the signals. Each of the four or five light emitting diodes can be grouped into a single visible light positioning unit, and each four or five light emitting diodes can be locally synchronized in phase. The number of light-emitting diodes that are grouped into a visible light locating unit can vary or vary in different embodiments. A visible light positioning unit receiver Rx can detect signals originating from any one of the visible light positioning units, thereby determining the position of itself by analyzing and processing the received signals and using a predetermined indoor map.

本發明之一些實施例提供判定一接收器之位置的方法。第3B圖是依據本發明一些實施例之判定一接收器之位置之方法的示意圖300b。該方法可包括:在步驟312中,透過該接收器之一偵測器接收複數可見光定位單元之每一個可見光定位單元之複數發光二極體所發送之複數可見光,其中每一道 上述可見光可透過一發光二極體所發送,且該可見光包括致使該可見光與該發光二極體相關聯的一識別部分,以及一相位資料部分。該方法包括:在步驟314中,透過該接收器以基於該等可見光之該等識別部分,選擇該等可見光定位單元其中之一可見光定位單元。該方法更可包括:在步驟316中,透過該接收器以基於所選擇之可見光定位單元之該等發光二極體所發送之該等可見光之該等相位資料部分,判定該接收器之該位置。 Some embodiments of the invention provide a method of determining the position of a receiver. Figure 3B is a schematic diagram 300b of a method of determining the position of a receiver in accordance with some embodiments of the present invention. The method may include, in step 312, receiving, by each of the receivers, a plurality of visible light transmitted by a plurality of light-emitting diodes of each visible light positioning unit of the plurality of visible light positioning units, wherein each of the channels The visible light is transmitted through a light emitting diode, and the visible light includes an identifying portion that causes the visible light to be associated with the light emitting diode, and a phase data portion. The method includes, in step 314, transmitting, by the receiver, one of the visible light positioning units based on the identification portions of the visible light. The method may further include: in step 316, determining, by the receiver, the location of the receiver based on the phase data portions of the visible light transmitted by the LEDs of the selected visible light positioning unit .

換句話說,透過一接收器之一偵測器偵測不同之可見光定位單元之複數發光二極體所發送的複數可見光,該接收器之位置可被判定。每一道可見光可來自一發光二極體。該可見光可包括一識別部分以及一相位資料部分。該接收器可基於該識別部分從複數可見光定位單元中選擇一可見光定位單元。該接收器可進而基於所選擇之可見光定位單元之複數發光二極體所發送之複數可見光的相位資料部分,判定本身的位置。 In other words, the detector can detect the complex visible light transmitted by the plurality of LEDs of the different visible light positioning units through a detector of the receiver, and the position of the receiver can be determined. Each visible light can come from a light emitting diode. The visible light can include an identification portion and a phase data portion. The receiver may select a visible light positioning unit from the plurality of visible light positioning units based on the identification portion. The receiver can further determine its position based on the phase data portion of the plurality of visible light transmitted by the plurality of light-emitting diodes of the selected visible light positioning unit.

該方法可包括:透過該接收器以基於該等可見光之該等識別資料部分,判定每一個可見光定位單元之該等發光二極體之訊號雜訊比。在一些實施例中,所選擇之可見光定位單元可包括複數發光二極體,該等發光二極體之訊號雜訊比,高於沒有被選擇之可見光定位單元之複數發光二極體。 The method can include: determining, by the receiver, a signal to noise ratio of the light emitting diodes of each of the visible light positioning units based on the portions of the identification data of the visible light. In some embodiments, the selected visible light positioning unit may include a plurality of light emitting diodes having a higher signal to noise ratio than the plurality of light emitting diodes of the selected visible light positioning unit.

在一些實施例中,該接收器可被固定或連接至一物件(例如一機器人、一設備等等)。在一些實施例中,該接收器可被保持或連接至一人類或一動物。因此該物件、該人類或 該動物之位置可被判定。 In some embodiments, the receiver can be fixed or connected to an item (eg, a robot, a device, etc.). In some embodiments, the receiver can be held or connected to a human or an animal. So the object, the human or The location of the animal can be determined.

第4圖是依據本發明一些實施例之定位系統400的示意圖。定位系統400可為一室內可見光定位系統。定位系統400可使用白發光二極體406。為了避免雜亂以及改善第4圖之清晰度,並非每一個發光二極體406皆有被標示。發光二極體406可被安裝於一室內環境之天花板以提供照明。 Figure 4 is a schematic illustration of a positioning system 400 in accordance with some embodiments of the present invention. The positioning system 400 can be an indoor visible light positioning system. The positioning system 400 can use a white light emitting diode 406. In order to avoid clutter and to improve the sharpness of Figure 4, not every LED 406 is labeled. The light emitting diode 406 can be mounted to the ceiling of an indoor environment to provide illumination.

如第4圖所示,發光二極體406可被分為複數可見光定位單元404a~404h(亦可被當做定位單元)。每一個可見光定位單元404a~404h可包括五個發光二極體(以實心矩形表示於每一個可見光定位單元404a~404h中)。在一些實施例中,每一個可見光定位單元404a~404h可包括四個發光二極體。一可見光定位單元之每一個發光二極體所發送之可見光可被調變,藉以使調變後之可見光包括一獨特的識別部分(可被當作發光二極體位置識別(ID),且對每一個發光二極體而言具有獨特性)以及相位資料部分,例如一預定頻率fi之一段連續正弦波。可見光定位單元404a~404h可組成發送器(Tx)陣列402。 As shown in FIG. 4, the light emitting diode 406 can be divided into a plurality of visible light positioning units 404a to 404h (which can also be regarded as positioning units). Each of the visible light positioning units 404a-404h may include five light emitting diodes (shown in solid rectangles in each of the visible light positioning units 404a-404h). In some embodiments, each of the visible light positioning units 404a-404h can include four light emitting diodes. The visible light transmitted by each of the light-emitting diodes of a visible light positioning unit can be modulated, so that the modulated visible light includes a unique identification portion (which can be regarded as a light-emitting diode position identification (ID), and Each of the light-emitting diodes is unique and a phase data portion, such as a continuous sine wave of a predetermined frequency fi. The visible light positioning units 404a-404h may form a transmitter (Tx) array 402.

被調變之可見光之資料框(data ffame)的一範例如第5A圖所示。第5A圖是依據本發明一些實施例之調變訊號之資料框500a的示意圖。資料框500a可包括發光二極體位置識別資訊502,伴隨一段連續正弦波504。 An example of the data ffame of the modulated visible light is shown in FIG. 5A. Figure 5A is a schematic illustration of a data frame 500a of a modulated signal in accordance with some embodiments of the present invention. The data frame 500a can include light-emitting diode position identification information 502 with a continuous sine wave 504.

每一個發光二極體406之已調變訊號可被週期性地發送。為了便於獨立或區分由一可見光定位單元(404a~404h)之五個發光二極體406所發送的不同訊號,每一個發光二極體406之位置識別可第一個被調變至一射頻訊號,該射頻訊號與 上述伴隨之正弦波具有相同的頻率。上述調變可使用二元相移鍵控之調變形式。在每一個可見光定位單元中,頻率不同之五個連續正弦波訊號可被本地同步相位(locally synchronized in phase),亦即,所發送之該等可見光可具備相同的初始相位。第5B圖是依據本發明一些實施例之五個連續正弦波訊號的示意圖500b。 The modulated signal of each of the light-emitting diodes 406 can be periodically transmitted. In order to facilitate the independent or distinguishing different signals sent by the five LEDs 406 of a visible light positioning unit (404a~404h), the position recognition of each LED 406 can be first modulated to an RF signal. , the RF signal and The accompanying sine waves have the same frequency. The above modulation can be adjusted using a binary phase shift keying. In each visible light positioning unit, five consecutive sinusoidal signals of different frequencies may be locally synchronized in phase, that is, the transmitted visible light may have the same initial phase. Figure 5B is a schematic diagram 500b of five consecutive sinusoidal signals in accordance with some embodiments of the present invention.

應該注意的是,不同可見光定位單元404a~404h之發光二極體406可不須全體地同步,藉此顯著地簡化同步的問題。可見光定位單元接收器(Rx)408a~408d可偵測上述訊號(亦即源自任何一個可見光定位單元404a~404h之發光二極體406之已調變可見光),且可拒絕或忽視源自其他鄰近之可見光定位單元404a~404h之發光二極體406的訊號。每一個接收器的位置可透過分析與處理所接收的訊號以及使用一預定室內地圖,進而被判定。在一些實施例中,一可見光定位單元404a~404h內的一組五個發光二極體406,可被用於估算該接收器的位置,藉以解決發送器402與每個接收器408a~408d之間的精確同步問題。上述問題可透過在發送器402側使用本地同步來解決。一接收器408a~408d可接收五個輸入訊號(每一個訊號相關於一射頻f i )。每一個發光二極體406與接收器408a~408d之間的距離(d i )可透過一差分相移量測來獲得,進而該接收器408a~408d之定位可被估算(例如三邊測量演算法)。應該注意的是,接收器408a~408d側之該等訊號的相位是取決於距離的。一發送訊號與其相對應之被接收的訊號之間的相位量測差值,可被轉換成相對應之傳送距離。如下文所述,一輸入正弦 訊號(由發光二極體406所發送)之初始相位,可被定義為φ 0 (範圍為0至2π)。在傳播經過一距離d i 後,所接收之訊號(亦即一接收器408a~408d所接收的訊號)的相位,可增加至φ i It should be noted that the light-emitting diodes 406 of the different visible light positioning units 404a-404h may not need to be fully synchronized, thereby significantly simplifying the problem of synchronization. The visible light positioning unit receivers (Rx) 408a-408d can detect the above signals (that is, the modulated visible light from the light emitting diodes 406 of any one of the visible light positioning units 404a to 404h), and can reject or ignore the other signals. The signals of the LEDs 406 of the adjacent visible light positioning units 404a-404h. The location of each receiver can be determined by analyzing and processing the received signals and using a predetermined indoor map. In some embodiments, a set of five light emitting diodes 406 within a visible light positioning unit 404a-404h can be used to estimate the position of the receiver to address the transmitter 402 and each of the receivers 408a-408d. Exact synchronization problem between. The above problem can be solved by using local synchronization on the transmitter 402 side. A receiver 408a-408d can receive five input signals (each signal is associated with a radio frequency f i ). The distance ( d i ) between each of the LEDs 406 and the receivers 408a to 408d can be obtained by a differential phase shift measurement, and the positioning of the receivers 408a to 408d can be estimated (for example, a trilateration calculation) law). It should be noted that the phases of the signals on the sides of the receivers 408a-408d are distance dependent. The phase difference value between a transmitted signal and its corresponding received signal can be converted into a corresponding transmission distance. As described below, the initial phase of an input sinusoidal signal (sent by the light-emitting diode 406) can be defined as φ 0 (ranging from 0 to 2π). After a distance d i has been transmitted, the phase of the received signal (i.e., the signal received by a receiver 408a-408d) can be increased to φ i .

一接收器408a~408d所接收之訊號的相位(φ i )可為:φ i =φ 0 φ i (1)其中Δφ i 為頻率是f i 之被發送的正弦訊號的相位偏移。在一些實施例中,一基於差分相移量測之同相以及正交(in-phase and quadrature(I/Q))解調器可被採用,藉以量測Δφ i The phase ( φ i ) of the signal received by a receiver 408a-408d can be: φ i = φ 0 + Δ φ i (1) where Δ φ i is the phase offset of the transmitted sinusoidal signal of frequency f i . In some embodiments, an in-phase and quadrature (I/Q) demodulator based on differential phase shift measurements can be employed to measure Δ φ i .

如上所述,相同之可見光定位單元404a~404h之不同發光二極體406所發送之複數可見光可具備相同之初始相位φ 0 。由於該等可見光(由相同之可見光定位單元404a~404h之不同發光二極體406所發送)傳播經過不同的距離d i 以及不同的頻率f i ,該等可見光可具備不同之相位偏移Δφ i ,導致一接收器408a~408d所接收之該等可見光可具備不同的相位φ i As described above, the plurality of visible light transmitted by the different light-emitting diodes 406 of the same visible light positioning units 404a-404h may have the same initial phase φ 0 . Since the visible light (sent by the different light-emitting diodes 406 of the same visible light positioning units 404a-404h) propagates through different distances d i and different frequencies f i , the visible light can have different phase offsets Δ φ i , causing the visible lights received by a receiver 408a-408d to have different phases φ i .

基於上述方法,一輸入正弦訊號的初始相位φ 0 可被最終估計算式所取消。因此,該接收器408a~408d可不需要被同步至該等可見光定位單元404a~404h,且僅需要下行鏈接(downlinks)以估算該接收器408a~408d的位置,藉此可顯著地降低系統的複雜度。每一個可見光定位單元404a~404h之本地同步可被要求,藉以提供每一個可見光定位單元404a~404h之不同正弦波訊號之相同的初始相位(取代所有可見光定位單元404a~404h之全體同步)。在一些實施例中,每一個可見光定位單元404a~404h之發光二極體406的數量可為五個。若兩個射頻 頻率被調變至該等發光二極體406其中之一,則每一個可見光定位單元404a~404h之發光二極體406的數量可被減少至四個。 Based on the above method, the initial phase φ 0 of an input sinusoidal signal can be cancelled by the final estimation formula. Therefore, the receivers 408a-408d need not be synchronized to the visible light positioning units 404a-404h, and only downlinks are needed to estimate the position of the receivers 408a-408d, thereby significantly reducing the complexity of the system. degree. Local synchronization of each of the visible light positioning units 404a-404h may be required to provide the same initial phase of the different sinusoidal signals of each of the visible light positioning units 404a-404h (instead of all of the visible light positioning units 404a-404h). In some embodiments, the number of light-emitting diodes 406 of each of the visible light positioning units 404a-404h can be five. If the two RF frequencies are modulated to one of the LEDs 406, the number of LEDs 406 of each of the visible light positioning units 404a-404h can be reduced to four.

第6圖是依據本發明一些實施例之在一接收器(Rx)之定位估算程序的流程圖600。在狀態1(步驟602)中,該接收器可開始偵測是否有源自任何一個可見光定位單元之一視線(line-of-sight(LOS))下行鏈接,用以進一步之定位運作。在裝態2(步驟604)中,在接收一定位要求之後,系統(亦即該接收器)可開始讀取從一可見光定位單元所接收之複數發光二極體的位置識別資訊(識別部分),接著更新該等發光二極體的位置資訊至一預定使用者地圖。在狀態3(步驟606)中,該接收器可開始擷取源自每一個發光二極體之不同的相移資訊。該接收器進而可運算有關於每一個發光二極體之訊號雜訊比,藉以判定所接收之訊號的可靠度。在確認所接收之訊號為可靠的之後(例如訊號雜訊比大於13.6dB),該接收器之位置可透過狀態4(步驟608)之一演算法來估算。若該等訊號並不可靠,則該等訊號會被忽視,且一新的擷取操作可被執行。在狀態4(步驟608)之後,一決定操作可判定上述定位操作是否重新執行或終止。上述定位實施例之採集速率(acquisition rate)可被相應地設計,藉以使該決定操作適應不同的應用以支持用戶端的移動性。 Figure 6 is a flow diagram 600 of a location estimation procedure at a receiver (Rx) in accordance with some embodiments of the present invention. In state 1 (step 602), the receiver can begin to detect if there is a line-of-sight (LOS) downlink from any of the visible light location units for further positioning operations. In the state 2 (step 604), after receiving a positioning request, the system (ie, the receiver) can start reading the position identification information (identification part) of the plurality of light-emitting diodes received from a visible light positioning unit. And then updating the location information of the LEDs to a predetermined user map. In state 3 (step 606), the receiver can begin to retrieve different phase shift information from each of the light emitting diodes. The receiver is further operable to calculate a signal to noise ratio for each of the light emitting diodes to determine the reliability of the received signal. After confirming that the received signal is reliable (eg, the signal to noise ratio is greater than 13.6 dB), the location of the receiver can be estimated by an algorithm of state 4 (step 608). If the signals are not reliable, the signals will be ignored and a new capture operation can be performed. After state 4 (step 608), a decision operation can determine whether the location operation is re-executed or terminated. The acquisition rate of the above positioning embodiment can be designed accordingly to adapt the decision operation to different applications to support the mobility of the client.

在定位相關應用中量測距離的一通常策略,是計算一訊號的填檔時間(time of flight(TOF))。然而,針對一室內的情境,當訊號以光速傳播且傳播距離非常小(僅幾公尺)時,直接量測該填檔時間(以奈秒(ns)為量級)應屬困難,且可能具備低準確度。在一些實施例中,一差分相移量測方法可被採用 且一平均技術可被使用,藉以達成一更加準確的估算。在一些實施例之定位系統中,該接收器的位置可基於該差分相移量測方法以及該平均技術來獲取。 A common strategy for measuring distance in positioning related applications is to calculate the time of flight (TOF) of a signal. However, for an indoor situation, when the signal propagates at the speed of light and the propagation distance is very small (only a few meters), it is difficult and straightforward to measure the time (in nanoseconds (ns)). Low accuracy. In some embodiments, a differential phase shift measurement method can be employed And an averaging technique can be used to achieve a more accurate estimate. In some embodiments of the positioning system, the position of the receiver can be obtained based on the differential phase shift measurement method and the averaging technique.

d i 定義為發送器Txi以及接收器Rx之間的距離,且將τ i 定義為相對應之傳播時間:d i =τ i c (2)其中c為光速。 Define d i as the distance between the transmitter T xi and the receiver R x and define τ i as the corresponding propagation time: d i = τ i c (2) where c is the speed of light.

τ i 可為: 其中Δφ i 是所發送之正弦訊號(頻率為f i )的相位偏移。應該注意的是,d i 可具備基於該頻率f i 的一無歧異之距離範圍(依據該正弦之2π週期)。舉例而言,若f i 為10MHz,則d i 之相對應的無歧異之距離範圍可為約7.5公尺。如第4圖所示,將S t i(t)設為調變至第i個發光二極體之輸入正弦訊號,亦可表示為:S t i (t)=S sin(2πf i t+φ 0) (4)其中S以及φ 0 分別為該輸入正弦訊號之振幅峰值以及初始相位。在透過一室內光無線頻道(indoor optical wireless(OW)channel)傳播之後,被偵測以及通過一射頻帶通濾波器,所接收之訊號S r i(t)可為:S r i (t)=RP T H i (0)sin(2πf i tφ i +φ 0)+n i (t) (5)其中R為光偵測器(photodetector(PD))之反應率 (responsivity)、P T為發送光功率且n i (t)為加成性白高斯雜訊(additive white Gaussian noise(AWGN))。 τ i can be: Where Δ φ i is the phase offset of the transmitted sinusoidal signal (frequency f i ). It should be noted that d i may have an indistinguishable range of distances based on the frequency f i (according to the 2π period of the sine). For example, if f i is 10 MHz, the corresponding undisturbed distance of d i may range from about 7.5 meters. As shown in Fig. 4, S t i (t) is set to the input sinusoidal signal of the ith LED, which can also be expressed as: S t i ( t )= S sin(2 πf i t + φ 0 ) (4) where S and φ 0 are the amplitude peaks and the initial phase of the input sinusoidal signal, respectively. After being transmitted through an indoor optical wireless (OW) channel, detected and passed through an RF bandpass filter, the received signal S r i (t) can be: S r i ( t ) = RP T H i (0) sin(2 πf i tφ i + φ 0 )+ n i ( t ) (5) where R is the photoresponder (PD) response rate (responsivity) P T is the transmitted optical power and n i (t) is the additive white Gaussian noise (AWGN).

H i (0)為上述光無線通道的直流增益,可表示為: 其中m為發送器(Tx)之朗伯特係數(Lambertian order)、為輻照度角(irradiance angle)、θ為接收器(Rx)的入射角。A R為接收器之偵測表面積、T s(θ)為光濾波器的增益、g(θ)為聚光(鏡頭)增益(optical concentrator(lens)gain)以及φ c 為接收器的視場(field of view(FOV,semi-angle))。 H i (0) is the DC gain of the above optical wireless channel, which can be expressed as: Where m is the Lambertian order of the transmitter (Tx), It is the irradiance angle and θ is the incident angle of the receiver (Rx). A R is the detection surface area of the receiver, T s ( θ ) is the gain of the optical filter, g( θ ) is the optical concentrator (lens) gain, and φ c is the field of view of the receiver. (field of view (FOV, semi-angle)).

如第(5)式所示,所接收之光訊號S r i(t)可包括一數量的正弦訊號週期。為了改善所接收之訊號的訊號雜訊比,一種有效的方法為使用一平均技術。該平均方法可基於一原理,該原理為每一個上述訊號的週期具備相同的相移資訊(雖然這些訊號週期可能被上述加成性白高斯雜訊n i (t)所模糊)。當雜訊n i (t)被加入時,其平均趨近於零。在此假設S r i(t)包括N ave個週期的一正弦波。雜訊n i (t)之平均為零且具備變異數σ2。在k個週期後的時間點t所接收的訊號為:S r i (t-kT)=r i (t-kT)+n i (t-kT) (7)其中:r i (t-kT)=RP T H i (0)sin(2πf i (t-kT)+Δφ i +φ 0) (8) As shown in the equation (5), the received optical signal S r i (t) may include a number of sinusoidal signal periods. In order to improve the signal to noise ratio of the received signal, an effective method is to use an averaging technique. The averaging method can be based on a principle that the same phase shift information is provided for each of the above-mentioned signal periods (although these signal periods may be obscured by the additive white Gaussian noise n i (t)). When the noise n i (t) is added, its average approaches zero. It is assumed here that S r i (t) includes a sine wave of N ave cycles. The noise n i (t) has an average of zero and has a variation σ 2 . The signal received at time t after k cycles is: S r i ( t - kT ) = r i ( t - kT ) + n i ( t - kT ) (7) where: r i ( t - kT ) = RP T H i (0 ) sin (2 πf i (t - kT) + Δ φ i + φ 0) (8)

在組合上述正弦訊號之N ave週期後,平均訊號(t)可為: After the combination of the sinusoidal signal period of the N ave, the average signal ( t ) can be:

由於r i(t)是時變(time invariant)的,第(9)式可被重新表示為: Since r i (t) is time invariant, equation (9) can be re-represented as:

(t)為r i(t)的一估計值。(t)的期望值(expected value)為: this (T) is an estimate r i (t) values. The expected value of ( t ) is:

由於E{n i (t)}=0,可以得出: Since E{ n i (t)}=0, we can get:

因此,(t)為r i(t)的一無偏估計(unbiased estimator)。(t)之變異數為: therefore, ( t ) is an unbiased estimator of r i (t). The variation of ( t ) is:

由於加成性白高斯雜訊與所接收之正弦訊號無關,共變異數(covariance terms)可為零。此外,在1j N ave時,n i (t-kT)與n i [t-(k+j)T]無關,因此: Since the additive white Gaussian noise is independent of the received sinusoidal signal, the covariance terms can be zero. Also, at 1 j When N ave , n i ( t - kT ) is independent of n i [ t -( k + j ) T ], therefore:

由於雜訊變異數為常數,第(14)式可被重新表示為: 由於Var[r i(t)]=0,可以得出: Since the number of noise variations is constant, Equation (14) can be re-expressed as: Since Var [ r i (t)] = 0, you can get:

在平均之前,Var[S r i(t)]=Var[n i (t)]。如第(16)式所示,在平均之後,上述變異數降低了N ave的一因子,因此所接收之訊號的訊號雜訊比被改善了N ave的一因子。 Before averaging, Var [ S r i (t)] = Var [ n i (t)]. As shown in the equation (16), after averaging, the above-mentioned variation number is reduced by a factor of N ave , so the signal-to-noise ratio of the received signal is improved by a factor of N ave .

為了量測Δφ i ,一I/Q(In phase and Quadrature)解調器可被需要。本發明之一些實施例可能需要一本地振盪器(local oscillator(LO))產生頻率為f i 之一參考訊號,並以一鎖相迴路(phase locked loop(PLL))電路解碼該相位偏移Δφ i 。此本地振盪器可能須要精確地同步至所發送之正弦訊號,可能顯著地增加系統之複雜度以及影響量測精確度(因為有複數個可見光定位單元)。在一些實施例中,可使用基於無本地振盪器之差分相移量測來獲得Δφ i ,進而可使用於三邊測量演算法以進行定位估算。第(5)式可被重新表示為: 其中K i 為衰減因數,d i 為發送器(Txi)與接收器(Rx)之間的距離。為了從第(17)式取得d i ,一差分相移量測方法可被使用。將Sr 1(t)與Sr 2(t)相乘,可得出: 其中n12(t)為加成性雜訊。在經過一低通濾波器後以及忽視上 述雜訊,可得出: 相似地: In order to measure Δ φ i , an I/Q (In phase and Quadrature) demodulator can be required. Some embodiments of the present invention may require a local oscillator (local oscillator (LO)) to generate a frequency reference signal f i is one, and with a phase-locked loop (phase locked loop (PLL)) of the decoding circuit is phase offset Δ φ i . This local oscillator may need to be accurately synchronized to the transmitted sinusoidal signal, which may significantly increase the complexity of the system and affect the accuracy of the measurement (because there are multiple visible light positioning units). In some embodiments, differential phase shift measurements based on a local oscillator can be used to obtain Δ φ i , which in turn can be used for trilateration algorithms for position estimation. Equation (5) can be re-expressed as: Where K is the attenuation factor of i, d i is the distance between the transmitter (i the Tx) and receiver (Rx). In order to obtain d i from the equation (17), a differential phase shift measurement method can be used. Multiplying S r 1 (t) by S r 2 (t) yields: Where n 12 (t) is an additive noise. After passing through a low-pass filter and ignoring the above noise, it can be concluded that: Similarly:

假設ω i -ω i-1 ω(i=2、3、4、5)。透過將第(19)式與第(20)式相乘: Let ω i - ω i-1 = Δ ω (i = 2, 3, 4, 5). By multiplying equations (19) and (20):

在透過一低通濾波器將第(23)式之高頻部分濾除後: 對第(24)式執行希伯特轉換(Hilbert transform): After filtering the high frequency portion of equation (23) through a low pass filter: Perform a Hilbert transform on Equation (24):

基於第(24)式以及第(25)式,可得出: Based on equations (24) and (25), it can be concluded that:

相似地: Similarly:

基於第(26)式以及第(28)式,可得出: Based on equations (26) and (28), it can be concluded that:

個別定義(xi,yi,zi)以及(U x ,U y ,U z )為發送器與接收器之位置。進而d i 可被計算為: The individual definitions (x i , y i , z i ) and ( U x , U y , U z ) are the locations of the transmitter and receiver. Further d i can be calculated as:

接收器之位置(U x ,U y ,U z )可基於第(29)式以及第(30)式來獲得。可見光定位系統之接收器位置的均方根誤差(root mean square error(RMSE))可被表示為: 其中(,,)為第l個接收器的估計位置;(,,)為實際位置;以及N為量測的總數量。 The position ( U x , U y , U z ) of the receiver can be obtained based on the equations (29) and (30). The root mean square error (RMSE) of the receiver position of the visible light positioning system can be expressed as: among them( , , ) is the estimated position of the lth receiver; , , ) is the actual position; and N is the total number of measurements.

以下將呈現數值模擬以及結果。如第4圖所示,每一個可見光定位單元404a~404h可在頂部具備五個發光二極體406,且這些發光二極體可被安排成正方形(亦即四個發光二極體可分別被設置在該正方形的四個角落,且一個發光二極體可被設置在該正方形的中央)。一角落之發光二極體與中央之發 光二極體之間的距離,可被標註為d int (參考第4圖)。有關於頻率f i 之所接收的訊號可包括正弦訊號的複數週期。假設雜訊之平均為零,該所接收之訊號的訊號雜訊比可透過平均技術而得到改善,如前文內容所述。用於平均之週期數量以N ave表示,且Ci表示第i個可見光定位單元所涵蓋的面積。Komine et al.("Fundamental analysis for visible-light communication system using LED lights",Consumer Electronics,IEEE Transactions on,Vol.50,pp.100-107,2004)所述之相關設置將在下文中描述(在此作為參考資料),在一面積Ci中之第i個可見光定位單元的定位誤差已被模擬以及表示。在此模擬中,不同頻率之五個射頻訊號分別被調變至一可見光定位單元之五個發光二極體。第一頻率f 1 被設置為20MHz,且鄰近的兩個頻率之間的差值被設置為100KHz。第7圖是依據本發明一些實施例之在一空間Ci(2.5×2.5×3m3(長×寬×高))中第i個可見光定位單元之估計誤差的累積分配函數(cumulative distribution function(CDF)),以及一接收器位置之均方根誤差的關係圖700。依據第(29)式至第(31)式之估算計算式,第7圖描繪三種不同情況之均方根誤差。其結果表示均方根誤差隨著d int N ave的增加而有顯著地改善。在一可見光定位單元內之複數發光二極體的排列形式,可對定位誤差的表現產生顯著的影響。在一些實施例中可包括一可見光定位單元內之複數發光二極體的一安排,該安排是從一群組中選擇出來,該群組由一正方形、一矩形、具備一中央發光二極體之一形狀以及具備依中央發光二極體之一矩形所組成。 Numerical simulations and results are presented below. As shown in FIG. 4, each of the visible light positioning units 404a to 404h may have five light emitting diodes 406 at the top, and the light emitting diodes may be arranged in a square shape (ie, four light emitting diodes may be respectively respectively It is disposed at four corners of the square, and one light emitting diode can be disposed at the center of the square). The distance between the light-emitting diode of a corner and the central light-emitting diode can be labeled as d int (refer to Figure 4). The received signal for the frequency f i may include a complex period of the sinusoidal signal. Assuming that the average of the noise is zero, the signal-to-noise ratio of the received signal can be improved by the averaging technique, as described in the foregoing. The number of periods used for averaging is denoted by N ave , and C i represents the area covered by the ith visible light positioning unit. The related settings described in Komine et al. ("Fundamental analysis for visible-light communication system using LED lights", Consumer Electronics, IEEE Transactions on, Vol. 50, pp. 100-107, 2004) will be described below (here As a reference, the positioning error of the i-th visible light locating unit in an area C i has been simulated and represented. In this simulation, five RF signals of different frequencies are respectively modulated to five light-emitting diodes of a visible light positioning unit. The first frequency f 1 is set to 20 MHz, and the difference between the adjacent two frequencies is set to 100 KHz. Figure 7 is a cumulative distribution function of the estimated error of the i-th visible light locating unit in a space C i (2.5 x 2.5 x 3 m 3 (length x width x height) in accordance with some embodiments of the present invention. CDF)), and a plot 700 of the root mean square error of the receiver position. Based on the estimation formulas of equations (29) through (31), Figure 7 depicts the root mean square error for three different cases. The result indicates that the root mean square error is significantly improved as d int or N ave increases. The arrangement of the plurality of light-emitting diodes in a visible light positioning unit can have a significant influence on the performance of the positioning error. In some embodiments, an arrangement of a plurality of light emitting diodes in a visible light positioning unit can be included, the arrangement being selected from a group consisting of a square, a rectangle, and a central light emitting diode One shape and one rectangular shape according to one of the central light-emitting diodes.

為了達到公分級的精確度,一些實施例可採用一些技術,詳細描述如下。 In order to achieve the accuracy of the public grading, some embodiments may employ some techniques, which are described in detail below.

後等化(post-equalization)技術。已知的是,基於發光二極體之定位系統的精確度與光子裝置(photonic device)具有強大的關聯。光發送功率以及調變頻寬為兩項關鍵參數,可限制系統的定位精確度。透過使用具備較高發送功率以及較高調變頻寬的發光二極體,可見光定位系統之精確度可被顯著地提升。然而,一些實施例可使用一般照明系統,具備例如從一範圍約300 lx至約1500 lx中選擇的一照明等級。因此,加強發光二極體之調變頻寬可為達成公分級精確度的主要方法。已知的是,具備一後等化技術時,白發光二極體之3dB頻寬可從幾個MHz增加至約25MHz或甚至更高。依據目前所知,此技術可能未在室內可見光定位系統中採用。另一方面,預先等化(pre-equalization)技術亦可被使用於增加發光二極體之調變頻寬。然而,預先等化可能需要額外的元件以被安裝在每一個發光二極體。為了最大化減低系統的複雜度以及成本,一些實施例可包括一後等化電路配置。上述接收器可包括一後等化電路配置以電性連接至上述偵測器。上述等化器電路配置可被設置以放寬上述發光二極體之一調變頻寬要求。上述內容實際上等同增加上述發光二極體之調變頻寬。 Post-equalization technique. It is known that the accuracy of a positioning system based on a light-emitting diode has a strong correlation with a photonic device. The optical transmit power and the variable width are two key parameters that limit the positioning accuracy of the system. By using a light-emitting diode with a higher transmission power and a higher modulation width, the accuracy of the visible light positioning system can be significantly improved. However, some embodiments may use a general illumination system having, for example, an illumination level selected from a range of about 300 lx to about 1500 lx. Therefore, strengthening the modulation width of the light-emitting diode can be the main method for achieving the accuracy of the public classification. It is known that with a post-equalization technique, the 3dB bandwidth of a white light-emitting diode can be increased from a few MHz to about 25 MHz or even higher. As is currently known, this technique may not be employed in indoor visible light positioning systems. On the other hand, a pre-equalization technique can also be used to increase the modulation width of the light-emitting diode. However, pre-equalization may require additional components to be mounted on each of the light-emitting diodes. To maximize the complexity and cost of the system, some embodiments may include a post-equalization circuit configuration. The receiver may include a post-equalization circuit configuration to electrically connect to the detector. The equalizer circuit configuration described above can be configured to relax one of the above-described LEDs. The above content is actually equivalent to increasing the modulation width of the above-mentioned light-emitting diode.

差分相移量測方法。用於可見光定位系統之一些技術性方法已在近期被研究。大多數之上述研究是基於接收訊號強度指標(received signal strength indicator(RSSI))量測。當發送器陣列(Tx)與接收器(Rx)之間的距離增加時,所接收之訊 號的功率可能降低。然而,物件阻擋以及反射方法的影響,其距離以及RSSI之間的關係可能無法被預測,此特性可能顯著地限制定位準確度(positioning accuracy(PA))。此外,相關研究亦假設每個發光二極體所發送之光功率是被準確地掌握。不幸的是,上述情況可能與現實狀況不符。上述所發送之光功率可能非常難以預測。所發送之光功率可能基於特定發光二極體以及調光的程度。因此,實際上僅位置之粗略估算可使用RSSI方法。抵達時間(time-of-arrival(TOA))以及抵達時間差(time-difference-of-arrival(TDOA))方法為更加精準的方法以估算位置。然而,用於室內可見光定位系統,具有兩個主要挑戰以達成公分級精確度。首先,直接量測極精準的抵達時間或抵達時間差是非常困難的,因為發送器以及接收器之間的距離可能非常小(約10公尺的範圍)(在訊號以光速傳播的情況下)。其他問題為時間的量測可能需要發送器與接收器之間的高精確度同步。因此,對於一經濟的光接收器,在一些實施例中可使用差分相移量測。對於將一連續正弦波調變至一可見光定位單元之四個或五個發光二極體之每一個發光二極體,每一個發光二極體以及接收器之間的距離,可透過量測所發送之正弦波訊號與所接收之正弦波訊號之間的相位差值來獲得。 Differential phase shift measurement method. Some technical methods for visible light positioning systems have been studied in the near future. Most of the above studies are based on received signal strength indicator (RSSI) measurements. When the distance between the transmitter array (Tx) and the receiver (Rx) increases, the received message The power of the number may be reduced. However, the effects of object blocking and reflection methods, the relationship between distance and RSSI may not be predicted, and this characteristic may significantly limit the positioning accuracy (PA). In addition, the related research also assumes that the optical power transmitted by each of the light-emitting diodes is accurately grasped. Unfortunately, the above situation may not match the reality. The optical power transmitted above may be very difficult to predict. The transmitted optical power may be based on the particular light-emitting diode and the degree of dimming. Therefore, in practice, only a rough estimate of the location can use the RSSI method. The time-of-arrival (TOA) and time-difference-of-arrival (TDOA) methods are more accurate methods to estimate position. However, for indoor visible light positioning systems, there are two main challenges to achieve a public classification accuracy. First of all, it is very difficult to directly measure the extremely accurate arrival time or arrival time difference, because the distance between the transmitter and the receiver may be very small (about 10 meters) (in the case where the signal propagates at the speed of light). Other problems with time measurement may require high precision synchronization between the transmitter and the receiver. Thus, for an economical optical receiver, differential phase shift measurements can be used in some embodiments. For modulating a continuous sine wave to each of the four or five light-emitting diodes of a visible light locating unit, the distance between each of the light-emitting diodes and the receiver is permeable to the measurement Obtained by the phase difference between the transmitted sine wave signal and the received sine wave signal.

藍色過濾(blue filtering)。目前,大多數用於照明的裝置,是使用一藍發光二極體塗上一層黃色磷光質塗層以產生白發射光。由於此黃磷光質塗層,發光二極體之調變頻寬可能基本上被限制於約3MHz。如前文所述,白發光二極體之3dB調變頻寬可顯著地影響可見光定位系統之定位準確度。因此, 在一些實施例中可在光接收器之設計中包括光學藍色過濾,藉以濾除發射光之慢反應的磷光成分,留下較快之直接調變的藍色發射光。在一些實施例中,上述接收器可包括上述偵測器的一濾波器。該濾波器可被配置以允許藍光通過至該偵測器。為了進一步增加上述調變頻寬,藍色濾波器技術與簡單接收器後等化電路之組合可被採用於一些實施例中,藉以允許將商業之白發光二極體調變至100MHz訊號。因此,系統之定位精準度可被改善約5公分。 Blue filtering. Currently, most devices used for illumination use a blue light-emitting diode coated with a yellow phosphorescent coating to produce white-emitting light. Due to this yellow phosphorescent coating, the modulation width of the light-emitting diode may be substantially limited to about 3 MHz. As mentioned above, the 3dB modulation width of the white LED can significantly affect the positioning accuracy of the visible light positioning system. therefore, Optical blue filtering may be included in the design of the light receiver in some embodiments to filter out the slow-reacting phosphorescent component of the emitted light, leaving a relatively fast, directly modulated blue emission. In some embodiments, the receiver can include a filter of the detector described above. The filter can be configured to allow blue light to pass to the detector. To further increase the above-described modulation width, a combination of blue filter technology and a simple receiver post-equalization circuit can be employed in some embodiments to allow commercial white LEDs to be modulated to 100 MHz signals. Therefore, the positioning accuracy of the system can be improved by about 5 cm.

一些實施例可能與基於室內白發光二極體之可見光定位系統有關。一些實施例可能與一低成本室內公分級定位系統有關。 Some embodiments may be associated with a visible light positioning system based on an indoor white light emitting diode. Some embodiments may be associated with a low cost indoor public grading system.

在一些實施例中可採用現有的白色照明發光二極體,且可能不用依賴複雜的基礎設施。此外,發光二極體用於發光以及定位之雙重應用,可提供室內定位系統之轉化綠能解決方案。基於白發光二極體之照明系統的照光,一般被限制在介於300 lx至約1500 lx之間。此照明等級可提供良好的訊號雜訊比,可在定位系統中達到30dB。透過採用一雜訊消除技術(noise cancelation technique),少於10公分之公分級定位精確度可在一般室內照明環境內達成。 Existing white illuminated light emitting diodes may be employed in some embodiments and may not rely on complex infrastructure. In addition, the LEDs are used in both lighting and positioning applications to provide a converted green energy solution for indoor positioning systems. Illumination of illumination systems based on white light-emitting diodes is generally limited to between 300 lx and about 1500 lx. This level of illumination provides a good signal-to-noise ratio that can reach 30dB in the positioning system. By using a noise cancelation technique, a public positioning accuracy of less than 10 cm can be achieved in a general indoor lighting environment.

相較於一些基於射頻之定位系統(例如WiFi、Bluetooth、RFID或GSM),一些實施例可使用光輻射(optical radiation)以及視線(line-of-sight(LOS))傳輸,其可減輕由多途徑所引進的干擾以及可改善精確度。另一方面,相較於其他公分級定位系統(例如UWB、Ultrasound以及IR為基礎的系統)透 過使用已存在的發光二極體照明設施,本發明之一些實施例可顯著地降低用於室內環境之廣大應用的安裝成本。 Some embodiments may use optical radiation and line-of-sight (LOS) transmission, which may be mitigated by more than some RF-based positioning systems (eg, WiFi, Bluetooth, RFID, or GSM). The interference introduced by the route and the accuracy can be improved. On the other hand, compared to other public hierarchical positioning systems (such as UWB, Ultrasound and IR-based systems) By using existing light-emitting diode lighting facilities, some embodiments of the present invention can significantly reduce installation costs for a wide range of applications for indoor environments.

在定位應用中用以量測距離的常見策略是計算一訊號的填檔時間(TOF)。然而,當該訊號以光速傳播且範圍距離很小時(以公尺為量級),直接量測上述填檔時間可能變得不可行(若要求高定位精確度)。在一些實施例中可使用或採用一種方法,該方法透過量測所發送之訊號的相位變化來量測距離,藉以達成公分級的定位精確度。透過調變至一可見光定位單元之四或五個發光二極體的一連續正弦波,介於每一個發光二極體與接收器之間的距離可被獲取,進一步地,該接收器之空間定位可被估算。組成一可見光定位單元的發光二極體數量,在不同實施例中可以有不同的數量。 A common strategy for measuring distance in a positioning application is to calculate the fill time (TOF) of a signal. However, when the signal propagates at the speed of light and the range is small (in meters), it may not be feasible to directly measure the above-mentioned filling time (if high positioning accuracy is required). In some embodiments, a method can be used or employed that measures the distance by measuring the phase change of the transmitted signal to achieve a publicly graded positioning accuracy. By modulating a continuous sine wave of four or five light-emitting diodes of a visible light positioning unit, the distance between each of the light-emitting diodes and the receiver can be obtained, and further, the space of the receiver Positioning can be estimated. The number of light-emitting diodes constituting a visible light locating unit can be different in different embodiments.

在一些實施例中可包括一本地同步方案(a local synchronization scheme),藉此可減低或縮小系統的複雜度。在天花板之發光二極體燈泡可被分組成為複數個基本定位單元(可理解為可見光定位單元),每一個基本定位單元可包括四或五個發光二極體燈泡。只有在一可見光定位單元內的發光二極體燈泡可被同步,藉此可顯著地降低同步複雜度。換句話說,在一些實施例中可採用一可見光定位單元內之複數發光二極體的本地同步。相較於每一個可見光定位單元由(或包括)三個發送器或發光二極體所組成的實施例,具備四或五個發光二極體的一些實施例,可不需要在接收器端的一本地振盪器來量測差分相位偏移。在此情況下,上述接收器可從任何下行鏈接之有效單元擷取差分相位偏移資訊來估算本身位置,且可不需 要發送器與接收器之間的同步,藉此可顯著地改善系統的定位精確度。 In some embodiments, a local synchronization scheme may be included whereby the complexity of the system may be reduced or reduced. The light-emitting diode bulbs on the ceiling can be grouped into a plurality of basic positioning units (which can be understood as visible light positioning units), and each of the basic positioning units can include four or five light-emitting diode bulbs. Only the light-emitting diode bulbs in a visible light positioning unit can be synchronized, whereby the synchronization complexity can be significantly reduced. In other words, local synchronization of a plurality of light emitting diodes within a visible light locating unit can be employed in some embodiments. In contrast to embodiments in which each visible light locating unit consists of (or includes) three transmitters or light emitting diodes, some embodiments having four or five light emitting diodes may not require a local at the receiver end. The oscillator measures the differential phase offset. In this case, the receiver can extract the differential phase offset information from the active unit of any downlink link to estimate its position, and may not need Synchronization between the transmitter and the receiver is required, which can significantly improve the positioning accuracy of the system.

相較於以射頻為基礎的定位系統,一些實施例可不產生電磁干擾(EMI),並可成為在射頻限制或禁止之區域中的理想應用方案,例如機場、海港、醫院以及危險環境(例如發電廠,礦山)。其他優點為光輻射可不穿透牆壁或不透明物件。因此,一些實施例可有關於一安全以及隱私定位系統。 Some embodiments may not generate electromagnetic interference (EMI) compared to radio frequency based positioning systems and may be ideal applications in areas where radio frequency is restricted or prohibited, such as airports, seaports, hospitals, and hazardous environments (eg, power generation) Factory, mine). A further advantage is that the light radiation does not penetrate walls or opaque objects. Accordingly, some embodiments may be related to a security and privacy location system.

目前已有各種用於室內定位估算的室內定位系統被提出以及研究。其皆為基於射頻(Wi-Fi、Bluetooth、RFID、GSM以及UWB),超音波(Ultrasound)、紅外線(IR)以及可見光技術。已知的是,上述基於射頻之定位系統(Wi-Fi、Bluetooth、RFID以及GSM)有相對的低成本。然而,上述系統之精確度可能是以公尺為量級(從1至3公尺),對於精確控制以及導航室內機器人、UAV或載具而言可能太低。另一方面,其他一些基於UWB、超音波以及紅外線技術的室內定位系統可提供高定位精確度,但部署基本設施可能會太昂貴,因此並沒有適用於廣大的應用。 Various indoor positioning systems for indoor positioning estimation have been proposed and studied. They are based on radio frequency (Wi-Fi, Bluetooth, RFID, GSM and UWB), Ultrasound, Infrared (IR) and Visible light technologies. It is known that the above radio frequency based positioning systems (Wi-Fi, Bluetooth, RFID and GSM) have relatively low cost. However, the accuracy of the above system may be on the order of meters (from 1 to 3 meters), which may be too low for precise control and navigation of indoor robots, UAVs or vehicles. On the other hand, other indoor positioning systems based on UWB, ultrasonic and infrared technology provide high positioning accuracy, but the deployment infrastructure may be too expensive and therefore not suitable for a wide range of applications.

在過去幾年中,已進行一些研究以探索可見光定位。此大多數可見光定位系統可基於所接收之訊號強度(received signal strength(RSS))量測。然而,這些量測可能因為無法預測之傳輸光功率以及使用者的移動性,而在現實中不理想,進而顯著地限制該系統的定位精確度。另一方面,一些抵達角度(angle of arrival(AOA))為基礎的方法也已在先前被提出以達成一高精確度可見光定位系統。然而,其需要具備大 量像素之影像感測器以做為偵測器。相較於傳統的光電二極體,一影像偵測器可能具備較高成本以及較低偵測率。為了達成一可靠的定位精確度以及克服移動率影響,一些相移量測為基礎之定位系統已被提出以及研究。然而,該等系統假設發送器(Txs)以及接收器(Rxs)皆理想地同步,在現實中可能很難達成,或者基於紅外線與複數接收器上行鏈接以達成公分級定位精確度,其無法被整合至基於下行鏈接之照明設施。到目前為止,沒有可靠、低成本、提供公分級定位精確度以及支援特定移動率之商業上可行的室內定位系統。 In the past few years, some research has been conducted to explore visible light localization. Most of these visible light location systems can be measured based on received signal strength (RSS). However, these measurements may be unrealistic in reality due to unpredictable transmitted optical power and user mobility, which in turn significantly limits the positioning accuracy of the system. On the other hand, some angle of arrival (AOA) based methods have also been proposed previously to achieve a high precision visible light positioning system. However, it needs to have a large The image sensor of the pixel is used as a detector. Compared to conventional photodiodes, an image detector may have higher cost and lower detection rate. In order to achieve a reliable positioning accuracy and overcome the impact of mobility, some phase shift measurement based positioning systems have been proposed and studied. However, these systems assume that both the transmitter (Txs) and the receiver (Rxs) are ideally synchronized, which may be difficult to achieve in reality, or based on infrared and complex receiver uplinks to achieve a high level of positioning accuracy, which cannot be Integration into lighting facilities based on downlinks. To date, there are no commercially viable indoor positioning systems that are reliable, low cost, provide high level of positioning accuracy, and support specific mobility rates.

一些實施例可解決兩種問題,也就是成本及/或精準度。一些實施例可有關於低成本、高精確度以及穩定之一室內定位系統(透過使用發光二極體照明設施)。公分級可見光定位系統可提供特定移動率,例如機器人或其他各種應用。透過上述技術的幫助,更多的以高精確度定位為基礎之應用可被開發用於大量消費者市場。如同GPS系統之發明者可能不曾設想目前使用之廣大範圍的GPS應用,預測一公分級可見光定位系統之所有未來的應用是不可能的。 Some embodiments address two issues, namely cost and/or precision. Some embodiments may be related to low cost, high accuracy, and stability of an indoor positioning system (through the use of a light-emitting diode lighting facility). The public grade visible light location system provides a specific mobility rate, such as a robot or other various applications. With the help of the above technologies, more applications based on high-precision positioning can be developed for a large number of consumer markets. As the inventors of GPS systems may not have envisioned a wide range of GPS applications currently in use, it is impossible to predict all future applications of a public-grade visible light location system.

一本地同步以及一連續正弦波調變方案可被採用以最小化系統的複雜度。透過上述技術,接收器(Rx)可不需要與複數發送器(Tx)同步,且可只使用所接收之下行鏈接訊號來估算定位資訊。由於複數發送器與接收器之間不需要同步,系統之複雜度可被顯著地降低。 A local sync and a continuous sine wave modulation scheme can be employed to minimize system complexity. Through the above technology, the receiver (Rx) does not need to be synchronized with the complex transmitter (Tx), and can only use the received downlink link signal to estimate the positioning information. Since no synchronization is required between the complex transmitter and receiver, the complexity of the system can be significantly reduced.

相較於目前以射頻為基礎之定位系統,一些實施例可成為適用在射頻限制或禁止之區域中的應用,例如機場、 海港以及醫院。其他優點為光輻射可不穿透牆壁或不透明物件。因此,一些實施例可適用於一安全以及隱私定位系統。 Some embodiments may be suitable for applications in areas where radio frequency is restricted or prohibited, such as airports, compared to current radio frequency based positioning systems. Harbour and hospital. A further advantage is that the light radiation does not penetrate walls or opaque objects. Therefore, some embodiments are applicable to a secure and privacy location system.

基於在不久的將來,發光二極體照明系統在建築物以及地下空間之可預期的廣大應用,一些實施例(有關於白發光二極體為基礎之可見光定位技術)可提供室內高精確度(以公分為量級)之機器人導航以及其他各種啟用定位之應用的一解決方案。可設想的是,公分定位精確度可成為下個世代室內定位以及導航系統之一必要部分,用於室內機器人、自主車輛、UAVs、UGVs等等。封裝以及商業化可能不是問題,因為所有所需裝置皆相對便宜以及在市場上可購得,且運作原理可相對地簡單。另一方面,利用現有的照明發光二極體之雙重功能亦可顯著地降低所提出之系統的成本。全部所需之元件可為低成本商業電子裝置。 Based on the wide-ranging applications of light-emitting diode lighting systems in buildings and underground spaces in the near future, some embodiments (with white light-emitting diode-based visible light positioning technology) can provide high indoor accuracy ( A solution for robotic navigation and other various positioning-enabled applications in the order of centimeters. It is conceivable that the accuracy of the cent positioning can be an essential part of the next generation of indoor positioning and navigation systems for indoor robots, autonomous vehicles, UAVs, UGVs and the like. Packaging and commercialization may not be a problem, as all required devices are relatively inexpensive and commercially available, and the principles of operation can be relatively simple. On the other hand, the dual function of the existing illumination LEDs can also significantly reduce the cost of the proposed system. All required components can be low cost commercial electronic devices.

在一些實施例中包括不昂貴的裝置,可允許具有成本效益的大量生產。用於室內位置資訊的消費者應用可能是沒有限制的。上述應用包括不只用於室內機器人、自主載具、無人飛行載具(unmanned aviation vehicles(UAVs))、無人地面載具(unmanned ground vehicles(UGVs))的導航以及定位,亦可包括一些高精確度定位為基礎的工業應用。 Including some inexpensive devices in some embodiments may allow for cost effective mass production. Consumer applications for indoor location information may be unlimited. These applications include navigation and positioning not only for indoor robots, autonomous vehicles, unmanned aviation vehicles (UAVs), unmanned ground vehicles (UGVs), but also some high precision. Positioning based industrial applications.

一些研究結果更可刺激次世代室內高精確度定位以及導航系統領域的科學研究。一些實施例可提供用於室內定位系統內之精確度、成本以及可靠性之未來開發的堅強的基礎。 Some research results can stimulate the next generation of indoor high-precision positioning and scientific research in the field of navigation systems. Some embodiments may provide a strong foundation for future development of accuracy, cost, and reliability within an indoor positioning system.

當本發明以特定之方式呈現以及藉由特定之實施 例進行描述時,熟知此領域之人士應可理解在不偏離本發明之精神與範圍(如所附之申請專利範圍)的前提下,各種變化以及細節可被採用。本發明之範圍如所附申請專利範圍所述,且所附申請專利範圍之等同物的含義和範圍之所有變化皆為本發明所涵蓋的範圍。 When the invention is presented in a specific manner and by specific implementation Various changes and details may be employed without departing from the spirit and scope of the invention, as set forth in the appended claims. The scope of the present invention is intended to be included within the scope of the appended claims.

100‧‧‧定位系統 100‧‧‧ Positioning System

102‧‧‧發送器陣列 102‧‧‧Transmitter array

104a、104b‧‧‧可見光定位單元 104a, 104b‧‧‧ visible light positioning unit

106a-106d‧‧‧發光二極體 106a-106d‧‧‧Lighting diode

108‧‧‧接收器 108‧‧‧ Receiver

110‧‧‧偵測器 110‧‧‧Detector

Claims (21)

一種定位系統,包括:一發送器陣列,包括複數可見光定位單元,每一個上述可見光定位單元包括複數發光二極體,每一個上述發光二極體被配置以發送一可見光,該可見光包括致使該可見光與該發光二極體相關聯的一識別部分,以及一相位資料部分;以及一接收器,包括一偵測器,該偵測器被配置以接收每一個上述可見光定位單元之該等發光二極體所發送之該等可見光;其中,該接收器被配置以基於該等可見光之該等識別部分,選擇該等可見光定位單元其中之一可見光定位單元;以及其中,該接收器更被配置以基於該被選擇的可見光定位單元之該等發光二極體所發送之該等可見光之該等相位資料部分,判定該接收器之一位置。 A positioning system comprising: a transmitter array comprising a plurality of visible light positioning units, each of the visible light positioning units comprising a plurality of light emitting diodes, each of the light emitting diodes configured to transmit a visible light, the visible light comprising causing the visible light An identification portion associated with the light emitting diode, and a phase data portion; and a receiver including a detector configured to receive the light emitting diodes of each of the visible light positioning units The visible light transmitted by the body; wherein the receiver is configured to select one of the visible light positioning units based on the identification portions of the visible light; and wherein the receiver is further configured to be based on The phase data portions of the visible light transmitted by the light-emitting diodes of the selected visible light positioning unit determine a position of the receiver. 如申請專利範圍第1項所述之定位系統,其中,每一個上述可見光定位單元之不同的發光二極體所發送之該等可見光的該等相位資料部分,被調變以具備基本上相同的初始相位以及具備基本上不同的頻率。 The positioning system of claim 1, wherein the phase data portions of the visible light transmitted by different light-emitting diodes of each of the visible light positioning units are modulated to have substantially the same The initial phase and the substantially different frequencies. 如申請專利範圍的2項所述之定位系統,其中,該被選擇的可見光定位單元之不同的發光二極體所發送、以及被該偵測器所接收之該等可見光的該等相位資料部分,具備不同的相位偏移。 The positioning system of claim 2, wherein the phase portions of the visible light that are transmitted by the different light-emitting diodes of the selected visible light positioning unit and the visible light received by the detector are With different phase offsets. 如申請專利範圍第1項至第3項其中任一項所述之定位系統,其中,每一個上述發光二極體所發送之該可見光之該識別部分以及該相位資料部分,被調變為基本上相同的頻率。 The positioning system according to any one of claims 1 to 3, wherein the identification portion of the visible light and the phase data portion transmitted by each of the light-emitting diodes are converted into basic On the same frequency. 如申請專利範圍第1項至第4項其中任一項所述之定位系統,其中,每一個上述發光二極體所發送之該可見光之該識別部分,被使用二元相移鍵控之一識別資料所調變。 The positioning system according to any one of claims 1 to 4, wherein the identification portion of the visible light transmitted by each of the light-emitting diodes is one of binary phase shift keying Identification data is modulated. 如申請專利範圍第1項至第5項其中任一項所述之定位系統,其中,該接收器被配置以忽視沒有被選擇之該等可見光定位單元之該等發光二極體所發送之該等可見光之該等相位資料部分。 The positioning system of any one of clauses 1 to 5, wherein the receiver is configured to ignore the transmission of the light-emitting diodes of the visible light positioning units that are not selected The phase data portion of the visible light. 如申請專利範圍第1項至第6項其中任一項所述之定位系統,其中,該接收器更被配置以在基於複數訊號雜訊比選擇該等可見光定位單元之該被選擇的可見光定位單元之前判定該等可見光定位單元之該等發光二極體之該等訊號雜訊比。 The positioning system of any one of clauses 1 to 6, wherein the receiver is further configured to select the selected visible light location of the visible light positioning units based on the complex signal noise ratio The signal noise ratios of the light-emitting diodes of the visible light positioning units are determined before the unit. 如申請專利範圍第7項所述之定位系統,其中,該接收器更被配置以在判定該接收器之該位置之前,判定該等訊號雜訊比。 The positioning system of claim 7, wherein the receiver is further configured to determine the signal to noise ratios before determining the position of the receiver. 如申請專利範圍第7項或第8項所述之定位系統,其中,該被選擇的可見光定位單元之該等發光二極體之該等訊號雜訊比,高於沒有被選擇之該等可見光定位單元之該等發光二極體之該等訊號雜訊比。 The positioning system of claim 7 or claim 8, wherein the signal to noise ratio of the light emitting diodes of the selected visible light positioning unit is higher than the selected visible light The signal to noise ratios of the light emitting diodes of the positioning unit. 如申請專利範圍第1項至第9項其中任一項所述之定位系 統,其中,該接收器被配置以透過差分相移量測以及三邊測量演算法,判定該接收器之該位置。 The positioning system as described in any one of claims 1 to 9 The receiver is configured to determine the location of the receiver by differential phase shift measurement and a trilateration algorithm. 如申請專利範圍第1項至第10項其中任一項所述之定位系統,其中,一第一可見光定位單元之複數發光二極體所發送之複數可見光之相位資料部分與一第二可見光定位單元之複數發光二極體所發送之複數可見光之相位資料部分,具有基本上不同之初始相位。 The positioning system according to any one of claims 1 to 10, wherein a plurality of visible light phase data portions and a second visible light position transmitted by the plurality of light emitting diodes of the first visible light positioning unit are used. The phase data portion of the plurality of visible light transmitted by the plurality of light-emitting diodes of the unit has substantially different initial phases. 如申請專利範圍第1項至第11項其中任一項所述之定位系統,其中,該偵測器是一光電二極體。 The positioning system of any one of clauses 1 to 11, wherein the detector is a photodiode. 一種發送器陣列,包括:複數可見光定位單元,每一個上述可見光定位單元包括複數發光二極體,每一個上述發光二極體被配置以發送一可見光,該可見光包括致使該可見光與該發光二極體相關聯的一識別部分,以及一相位資料部分;其中,每一個上述可見光定位單元之該等發光二極體所發送之該等可見光被配置以被一接收器之一偵測器所接收;其中,該等可見光之該等識別部分被配置以被該接收器使用於選擇該等可見光定位單元其中之一可見光定位單元;以及其中,該被選擇的可見光定位單元之該等發光二極體所發送之該等可見光之該等相位資料部分,被配置以被該接收器使用於判定該接收器之一位置。 A transmitter array includes: a plurality of visible light positioning units, each of the visible light positioning units includes a plurality of light emitting diodes, each of the light emitting diodes configured to transmit a visible light, the visible light comprising causing the visible light and the light emitting diode An identification portion associated with the body, and a phase data portion; wherein the visible light transmitted by the light emitting diodes of each of the visible light positioning units is configured to be received by one of the receivers; The identifying portions of the visible light are configured to be used by the receiver to select one of the visible light positioning units of the visible light positioning units; and wherein the light emitting diodes of the selected visible light positioning unit are The phase data portions of the transmitted visible light are configured to be used by the receiver to determine a location of the receiver. 一接收器,包括:一偵測器,被配置以接收複數可見光定位單元之每一個可 見光定位單元之複數發光二極體所發送之複數可見光,每一道上述可見光包括致使該可見光與一發光二極體相關聯的一識別部分,以及一相位資料部分;其中,該接收器被配置以基於該等可見光之該等識別部分,選擇該等可見光定位單元其中之一可見光定位單元;其中,該接收器更被配置以基於該被選擇的可見光定位單元之該等發光二極體所發送之該等可見光之該等相位資料部分,判定該接收器之一位置。 A receiver includes: a detector configured to receive each of a plurality of visible light positioning units Seeing a plurality of visible light transmitted by the plurality of light emitting diodes of the light positioning unit, each of the visible light includes an identification portion that causes the visible light to be associated with a light emitting diode, and a phase data portion; wherein the receiver is configured Selecting one of the visible light positioning units based on the identification portions of the visible light; wherein the receiver is further configured to transmit based on the light emitting diodes of the selected visible light positioning unit The phase data portions of the visible light determine a position of the receiver. 一種建構一定位系統的方法,包括:提供一發送器陣列,該發送器陣列包括複數可見光定位單元,每一個上述可見光定位單元包括複數發光二極體,每一個上述發光二極體被配置以發送一可見光,該可見光包括致使該可見光與該發光二極體相關聯的一識別部分,以及一相位資料部分;以及提供一接收器,該接收器包括一偵測器,該偵測器被配置以接收每一個上述可見光定位單元之該等發光二極體所發送之該等可見光;其中,該接收器被配置以基於該等可見光之該等識別部分,選擇該等可見光定位單元其中之一可見光定位單元;以及其中,該接收器更被配置以基於該被選擇的可見光定位單元之該等發光二極體所發送之該等可見光之該等相位資料部分,判定該接收器之一位置。 A method of constructing a positioning system, comprising: providing a transmitter array, the transmitter array comprising a plurality of visible light positioning units, each of the visible light positioning units comprising a plurality of light emitting diodes, each of the light emitting diodes configured to transmit a visible light comprising: an identification portion that causes the visible light to be associated with the light emitting diode, and a phase data portion; and a receiver, the receiver including a detector configured to Receiving the visible light transmitted by the light emitting diodes of each of the visible light positioning units; wherein the receiver is configured to select one of the visible light positioning units for visible light positioning based on the identification portions of the visible light And wherein the receiver is further configured to determine a position of the receiver based on the phase data portions of the visible light transmitted by the light emitting diodes of the selected visible light positioning unit. 如申請專利範圍第15項所述之建構一定位系統的方法,其 中,每一個上述可見光定位單元之不同的發光二極體所發送之該等可見光的該等相位資料部分,被調變以具備基本上相同的初始相位以及具備基本上不同的頻率。 A method of constructing a positioning system as described in claim 15 of the patent application, The portions of the phase data of the visible light transmitted by the different light emitting diodes of each of the visible light positioning units are modulated to have substantially the same initial phase and have substantially different frequencies. 如申請專利範圍第15項或地16項所述之建構一定位系統的方法,其中,該被選擇的可見光定位單元之不同的發光二極體所發送以及被該偵測器所接收之該等可見光的該等相位資料部分,具備不同的相位偏移。 The method of constructing a positioning system according to claim 15 or claim 16, wherein the different light-emitting diodes of the selected visible light positioning unit transmit and receive the same by the detector The phase data portions of visible light have different phase offsets. 如申請專利範圍第15項至第17項其中任一項所述之建構一定位系統的方法,其中,每一個上述發光二極體所發送之該可見光之該識別部分以及該相位資料部分,被調變為基本上相同的頻率。 The method for constructing a positioning system according to any one of claims 15 to 17, wherein the identification portion of the visible light and the phase data portion transmitted by each of the light-emitting diodes are Tune to essentially the same frequency. 如申請專利範圍第15項至第18項其中任一項所述之建構一定位系統的方法,其中,每一個上述發光二極體所發送之該可見光之該識別部分,被使用二元相移鍵控之一識別資料所調變。 The method for constructing a positioning system according to any one of claims 15 to 18, wherein the identification portion of the visible light transmitted by each of the light-emitting diodes is subjected to a binary phase shift. One of the keying identifies the data to be modulated. 如申請專利範圍第15項至第19項其中任一項所述之建構一定位系統的方法,其中,該接收器被配置以忽視沒有被選擇之該等可見光定位單元之該等發光二極體所發送之該等可見光之該等相位資料部分。 The method of constructing a positioning system according to any one of claims 15 to 19, wherein the receiver is configured to ignore the light-emitting diodes of the visible light positioning units that are not selected. The phase data portions of the visible light transmitted. 一種判定一接收器之一位置的方法,包括:透過該接收器之一偵測器接收複數可見光定位單元之每一個可見光定位單元之複數發光二極體所發送之複數可見光,其中每一道上述可見光是透過一發光二極體所發送,且該可見光包括致使該可見光與該發光二極體相關聯的一 識別部分,以及一相位資料部分;透過該接收器以基於該等可見光之該等識別部分,選擇該等可見光定位單元其中之一可見光定位單元;以及透過該接收器以基於該被選擇的可見光定位單元之該等發光二極體所發送之該等可見光之該等相位資料部分,判定該接收器之該位置。 A method for determining a position of a receiver, comprising: receiving, by a detector of the receiver, a plurality of visible light transmitted by a plurality of light-emitting diodes of each visible light positioning unit of the plurality of visible light positioning units, wherein each of the visible light Is transmitted through a light emitting diode, and the visible light includes a light that causes the visible light to be associated with the light emitting diode Identifying a portion, and a phase data portion; selecting, by the receiver, one of the visible light positioning units based on the identification portions of the visible light; and transmitting, by the receiver, based on the selected visible light The phase data portions of the visible light transmitted by the light-emitting diodes of the unit determine the position of the receiver.
TW105131545A 2015-09-30 2016-09-30 Transmitter array, receiver, and positioning system TW201721094A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SG10201508133X 2015-09-30

Publications (1)

Publication Number Publication Date
TW201721094A true TW201721094A (en) 2017-06-16

Family

ID=58427779

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105131545A TW201721094A (en) 2015-09-30 2016-09-30 Transmitter array, receiver, and positioning system

Country Status (2)

Country Link
TW (1) TW201721094A (en)
WO (1) WO2017058107A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676043B (en) * 2018-11-08 2019-11-01 立積電子股份有限公司 Ultra-wideband radar transceiver and operating method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11703878B2 (en) 2017-09-07 2023-07-18 Signify Holding B.V. Indoor positioning system for mobile objects
CN109324311B (en) * 2018-09-29 2022-08-19 中山大学 Dual-mode LED positioning method and system based on different Lambertian radiation lobe moduli
US11558949B2 (en) 2018-10-26 2023-01-17 Current Lighting Solutions, Llc Identification of lighting fixtures for indoor positioning using color band code
CN110133591B (en) * 2019-04-28 2022-08-05 天津大学 Indoor double-light-source flight target positioning method based on white light LED
CN112394322B (en) * 2020-05-27 2023-06-20 南京邮电大学 Method for realizing accurate positioning of indoor visible light communication system based on two-step method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388677B (en) * 2009-04-08 2017-08-08 飞利浦灯具控股公司 Efficient address distribution in the illuminator of coding
US8411258B2 (en) * 2010-12-22 2013-04-02 Intel Corporation Systems and methods for determining position using light sources
CN103713292B (en) * 2014-01-17 2016-02-24 清华大学 A kind of accurate trailer-mounted radar based on visible light communication and target carriage localization method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676043B (en) * 2018-11-08 2019-11-01 立積電子股份有限公司 Ultra-wideband radar transceiver and operating method thereof
US11415665B2 (en) 2018-11-08 2022-08-16 Richwave Technology Corp. Ultra-wideband radar transceiver and operating method thereof

Also Published As

Publication number Publication date
WO2017058107A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
CN106483500B (en) Visible light communication three-dimensional positioning method based on CDMA modulation
Luo et al. Indoor positioning systems based on visible light communication: State of the art
TW201721094A (en) Transmitter array, receiver, and positioning system
Cai et al. Indoor high precision three-dimensional positioning system based on visible light communication using particle swarm optimization
Jung et al. TDOA-based optical wireless indoor localization using LED ceiling lamps
Yang et al. Indoor location estimation based on LED visible light communication using multiple optical receivers
Lv et al. High accuracy VLC indoor positioning system with differential detection
Naz et al. PDOA based indoor positioning using visible light communication
Iliev et al. Review and comparison of spatial localization methods for low-power wireless sensor networks
CN103809157B (en) Two-dimensional dynamic indoor locating system and method for visible lights based on direction of receiver
CN103823203A (en) Indoor visible light three-dimensional positioning system and method based on direction of receiver
CN103813448A (en) Indoor positioning method based on RSSI
Bergen et al. Design and implementation of an optical receiver for angle-of-arrival-based positioning
CN103644905A (en) Situation-related indoor positioning method and system
Yasir et al. Indoor localization using visible light and accelerometer
Karmy et al. Performance Enhancement of an Indoor Localization System Based on Visible Light Communication Using RSSI/TDOA Hybrid Technique.
Dawood et al. A comparative analysis of localization algorithms for visible light communication
CN109039458A (en) A kind of indoor locating system and method
CN106017479B (en) The three-dimensional real-time tracing method and system of indoor moving target
Zhang et al. Beacon LED coordinates estimator for easy deployment of visible light positioning systems
CN107167767A (en) High-precision locating method in a kind of visible ray room based on SC FDMA
Savić et al. Constrained localization: A survey
Chen et al. A survey on visible light positioning from software algorithms to hardware
CN203416427U (en) Ad hoc network positioning system based on ZigBee technology
Liu et al. Indoor visible light applications for communication, positioning, and security