TW201720687A - Energy charge controller, energy charge controlling system and method thereof - Google Patents

Energy charge controller, energy charge controlling system and method thereof Download PDF

Info

Publication number
TW201720687A
TW201720687A TW104140350A TW104140350A TW201720687A TW 201720687 A TW201720687 A TW 201720687A TW 104140350 A TW104140350 A TW 104140350A TW 104140350 A TW104140350 A TW 104140350A TW 201720687 A TW201720687 A TW 201720687A
Authority
TW
Taiwan
Prior art keywords
energy
kinetic energy
recharging
value
energy storage
Prior art date
Application number
TW104140350A
Other languages
Chinese (zh)
Other versions
TWI597194B (en
Inventor
陳建安
林博煦
蔡錦峰
Original Assignee
財團法人車輛研究測試中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人車輛研究測試中心 filed Critical 財團法人車輛研究測試中心
Priority to TW104140350A priority Critical patent/TWI597194B/en
Publication of TW201720687A publication Critical patent/TW201720687A/en
Application granted granted Critical
Publication of TWI597194B publication Critical patent/TWI597194B/en

Links

Abstract

An energy charge controller is disclosed. The energy charge controller includes an estimation module and a control module. The estimation module includes a driver behavior judgment unit, a charge curve adjustment unit and an energy charge evaluation unit. The driver behavior judgment unit generates a driving mode signal by a vehicle speed, an accelerator pedal motion and a brake pedal motion. The charge curve adjustment unit is used to estimate a brake charge target datum according to the driving mode signal. The energy charge evaluation unit is used to estimate an energy charge value by the brake charge target datum and the vehicle speed. The control module is used to decide one of situational conditions by comparing the energy charge value and an energy chargeable value. Therefore, the energy can be adaptively adjusted to increase charge efficiency by comparing the energy charge value and the energy chargeable value, so that the invention can increase the length of working life of energy storage elements and reduce fuel consumption.

Description

動能回充控制器、動能回充控制系 統及其控制方法 Kinetic energy recharging controller, kinetic energy recharging control system System and its control method

本發明是關於一種動能回充控制器、動能回充控制系統及其控制方法,特別是關於一種可回充適應調節且可增加回收效益之動能回充控制器、動能回充控制系統及其控制方法。 The invention relates to a kinetic energy recharging controller, a kinetic energy recharging control system and a control method thereof, in particular to a kinetic energy recharging controller, a kinetic energy recharging control system and a control thereof capable of recharging adaptive adjustment and increasing recycling efficiency method.

近年由於油價攀升及節能減碳的意識逐年提高,各大廠商均加強研發電動車,而為了更加節省電動車的能源,如何讓電動車剎車時的能量能夠有效地回收再利用亦是重要發展目標。 In recent years, as the awareness of rising oil prices and energy conservation and carbon reduction has increased year by year, major manufacturers have strengthened the research and development of electric vehicles. In order to save energy for electric vehicles, how to effectively recycle and reuse energy when braking electric vehicles is also an important development goal. .

目前基於電池的大容量存儲特性和電容的大倍率充放電特性,電池、電容組合的混合動力車成為電動車節油系統的首選方案。然而,電容大倍率充放電的背後卻隱藏了其容量小的問題,當電池充飽時而單獨使用電容的狀況下,在電動車動能回收過程中容易導致無電剎車的問題。目前市場上的解決方案主要有兩種,一種為提前減小 剎車功率,另一種是將電容充滿後取消電剎車。第一種方案的剎車過程比較平滑,然而卻因為剎車功率很小,導致大部分的動能被氣剎車轉變成熱量而散失。而第二種方案的剎車過程雖然電容已為充滿狀態,但在高速時並不能吸收全部動能,而且會出現電剎車突然消失的狀況,進而影響剎車之舒適性。此外,傳統電動車輛進行動能回收時,皆需考慮電池狀態之回充時機及允許回充條件,因此其回收效益有限。 At present, based on the large-capacity storage characteristics of the battery and the large-rate charge-discharge characteristics of the capacitor, the hybrid vehicle of the battery and the capacitor combination becomes the preferred solution for the electric vehicle fuel-saving system. However, behind the large-capacity charge and discharge of the capacitor, the problem of small capacity is hidden. When the battery is fully charged and the capacitor is used alone, the problem of no electric brake is easily caused in the kinetic energy recovery process of the electric vehicle. There are two main solutions on the market today, one is to reduce in advance. Brake power, the other is to cancel the electric brake after filling the capacitor. The braking process of the first solution is relatively smooth, but because of the small braking power, most of the kinetic energy is lost by the air brake into heat. In the braking process of the second scheme, although the capacitance is already full, it can not absorb all the kinetic energy at high speed, and the electric brake suddenly disappears, which affects the comfort of the brake. In addition, when the conventional electric vehicle is subjected to kinetic energy recovery, it is necessary to consider the battery state back-filling timing and the allowable back-filling condition, so the recycling efficiency is limited.

另一種習知的動能回充方式是利用超級電容來實現電動車高回收功率之需求。然而,此種超級電容往往具有成本過高、重量過重以及體積過大之缺陷。由此可知,目前市場上缺乏一種成本低廉、架構簡易、可增加回收效益且能延長儲能元件之使用壽命的電動車用動能回充控制器、動能回充控制系統及其控制方法,故相關業者均在尋求其解決之道。 Another conventional kinetic energy recharging method is to use a super capacitor to achieve the high recovery power demand of the electric vehicle. However, such supercapacitors tend to be disadvantageous in that they are too costly, too heavy, and too bulky. It can be seen that there is a lack of a kinetic energy recharging controller for electric vehicles, a kinetic energy recharging control system and a control method thereof, which are low in cost, simple in structure, can increase recycling efficiency, and can prolong the service life of energy storage components. The industry is seeking its solution.

因此,本發明提供一種動能回充控制器、動能回充控制系統及動能回充控制方法,其可透過儲能元件的狀態來調整回充動能,並利用功率分配器進行動能回收功率之路徑分流,不但可增加動能回收的效益,還能延長儲能元件的壽命。此外,本發明之動能回充控制器、動能回充控制系統及動能回充控制方法可應用於各類型車輛上,尤其是大型運輸車輛或搭載多種汽車電器,能透過搭配車 載動能回收控制系統來延長車載儲能裝置的運作時間或減少儲能元件的搭載容量。再者,除了電動車之外,傳統車輛上亦可搭配電控離合器並結合動能回充控制方法來調節原車發電機之作動時機,繼而降低油耗與延長車載儲能裝置的運作時間。 Therefore, the present invention provides a kinetic energy recharging controller, a kinetic energy recharging control system, and a kinetic energy recharging control method, which can adjust the regenerative kinetic energy through the state of the energy storage component, and utilize the power splitter to perform path shunting of the kinetic energy recovery power. Not only can increase the efficiency of kinetic energy recovery, but also extend the life of energy storage components. In addition, the kinetic energy recharging controller, the kinetic energy recharging control system and the kinetic energy recharging control method of the present invention can be applied to various types of vehicles, in particular, large transportation vehicles or a variety of automobile electrical appliances, which can be coupled with vehicles. The load energy recovery control system is used to extend the operation time of the vehicle energy storage device or reduce the carrying capacity of the energy storage component. In addition, in addition to electric vehicles, traditional vehicles can also be equipped with electronically controlled clutches combined with kinetic energy recharge control methods to adjust the timing of the original vehicle generators, which in turn reduces fuel consumption and extends the operating time of the vehicle energy storage device.

依據本發明一態樣提供一種動能回充控制器,用以控制一車輛之電能以增加動能回收的效益。此動能回充控制器包含一估算模組與一控制模組,其中估算模組包含一駕駛行為判斷單元、一回充曲線調整單元以及一可回充動能估算單元。駕駛行為判斷單元接收並判斷一車速訊號、一油門踏板訊號及一剎車踏板訊號以產生一駕駛模式,且駕駛行為判斷單元輸出駕駛模式。再者,回充曲線調整單元電性連接駕駛行為判斷單元並接收駕駛模式。回充曲線調整單元根據駕駛模式估算出一剎車回充目標資料。而可回充動能估算單元則電性連接回充曲線調整單元並接收剎車回充目標資料與車速訊號,此可回充動能估算單元根據剎車回充目標資料與車速訊號估算出一可回充動能值。另外,控制模組電性連接估算模組並接收可回充動能值與至少一儲能可回收功率值。控制模組包含一控制決策單元與一記憶單元。記憶單元電性連接控制決策單元且儲存複數個作動情境資訊。此控制決策單元依據可回充動能值與儲能可回收功率值決策輸出其中一作動情境資訊至車輛中,以控制剎車動能的回收。 According to one aspect of the present invention, a kinetic energy recharging controller is provided for controlling the electrical energy of a vehicle to increase the efficiency of kinetic energy recovery. The kinetic energy recharging controller comprises an estimating module and a control module, wherein the estimating module comprises a driving behavior determining unit, a recharging curve adjusting unit and a refillable kinetic energy estimating unit. The driving behavior determining unit receives and determines a vehicle speed signal, an accelerator pedal signal, and a brake pedal signal to generate a driving mode, and the driving behavior determining unit outputs the driving mode. Furthermore, the recharge curve adjustment unit is electrically connected to the driving behavior determination unit and receives the driving mode. The recharge curve adjustment unit estimates a brake recharge target data according to the driving mode. The refillable kinetic energy estimating unit is electrically connected to the recharging curve adjusting unit and receives the brake recharging target data and the vehicle speed signal, and the reversible kinetic energy estimating unit estimates a reversible kinetic energy according to the brake recharging target data and the vehicle speed signal. value. In addition, the control module is electrically connected to the estimation module and receives the refillable kinetic energy value and the at least one stored energy recoverable power value. The control module includes a control decision unit and a memory unit. The memory unit is electrically connected to the control decision unit and stores a plurality of actuation situation information. The control decision unit outputs one of the actuation situation information to the vehicle according to the refillable kinetic energy value and the stored energy recyclable power value to control the recovery of the brake kinetic energy.

藉此,本發明之動能回充控制器可透過儲能元件的可回收功率狀態來調整回充的剎車動能,不但可增加動能回收的效益,還能延長儲能元件的壽命。此外,本發明可應用於各類型車輛上,尤其是大型的運輸車輛或搭載多種的汽車電器,均能透過搭配車載之動能回充控制器來延長車載儲能裝置的運作時間以及減少儲能元件的搭載容量。 Thereby, the kinetic energy recharging controller of the present invention can adjust the braking kinetic energy of the recharging through the regenerable power state of the energy storage component, thereby not only increasing the benefit of kinetic energy recovery, but also prolonging the life of the energy storage component. In addition, the present invention can be applied to various types of vehicles, especially large transportation vehicles or a variety of automotive electrical appliances, which can extend the operation time of the vehicle energy storage device and reduce the energy storage components through the vehicle kinetic energy recharging controller. Carry capacity.

依據前述之動能回充控制器,其中前述控制決策單元依據可回充動能值與儲能可回收功率值之一比對結果而從記憶單元決策出其中一作動情境資訊。此比對結果為可回充動能值大於儲能可回收功率值,或者為可回充動能值小於等於儲能可回收功率值。此外,前述剎車回充目標資料可包含隨時間變化的一目標車行速度,可回充動能估算單元根據目標車行速度與車速訊號估算出一可回充動能值。 According to the foregoing kinetic energy recharging controller, the foregoing control decision unit determines one of the actuation situation information from the memory unit according to the comparison result of the refillable kinetic energy value and the stored energy recoverable power value. The comparison result is that the reversible kinetic energy value is greater than the energy storage recoverable power value, or the reversible kinetic energy value is less than or equal to the energy storage recoverable power value. In addition, the foregoing brake recharging target data may include a target vehicle speed that changes with time, and the reversible kinetic energy estimating unit estimates a reversible kinetic energy value according to the target vehicle speed and the vehicle speed signal.

依據本發明另一態樣提供一種動能回充控制系統,其包含至少一功率分配器、一儲能裝置、一負載裝置以及一動能回充控制器。功率分配器接收一電能。儲能裝置電性連接功率分配器且輸出第一儲能可回收功率值。儲能裝置包含一第一儲能元件,且第一儲能元件對應第一儲能可回收功率值。負載裝置電性連接功率分配器。再者,動能回充控制器電性連接功率分配器與儲能裝置,動能回充控制器包含估算模組與控制模組。其中估算模組包含一駕駛行為判斷單元、一回充曲線調整單元以及一可回充動 能估算單元。駕駛行為判斷單元接收並判斷一車速訊號、一油門踏板訊號及一剎車踏板訊號以產生一駕駛模式,且駕駛行為判斷單元輸出駕駛模式。回充曲線調整單元電性連接駕駛行為判斷單元並接收駕駛模式,回充曲線調整單元根據駕駛模式估算出一剎車回充目標資料。另外,可回充動能估算單元電性連接回充曲線調整單元並接收剎車回充目標資料與車速訊號。可回充動能估算單元根據剎車回充目標資料與車速訊號估算出一可回充動能值。控制模組電性連接估算模組並接收可回充動能值與第一儲能可回收功率值,控制模組包含一控制決策單元與一記憶單元。記憶單元電性連接控制決策單元且儲存複數個作動情境資訊,控制決策單元依據可回充動能值與第一儲能可回收功率值決策輸出其中一作動情境資訊至功率分配器,致使功率分配器依據其中一作動情境資訊將電能分配至儲能裝置。 According to another aspect of the present invention, a kinetic energy recharging control system includes at least one power splitter, an energy storage device, a load device, and a kinetic energy chargeback controller. The power splitter receives an electrical energy. The energy storage device is electrically connected to the power splitter and outputs a first stored energy recoverable power value. The energy storage device includes a first energy storage component, and the first energy storage component corresponds to a first energy storage recoverable power value. The load device is electrically connected to the power splitter. Furthermore, the kinetic energy recharging controller is electrically connected to the power distributor and the energy storage device, and the kinetic energy recharging controller includes an estimation module and a control module. The estimation module includes a driving behavior judging unit, a recharging curve adjusting unit, and a reversible charging unit. Can estimate the unit. The driving behavior determining unit receives and determines a vehicle speed signal, an accelerator pedal signal, and a brake pedal signal to generate a driving mode, and the driving behavior determining unit outputs the driving mode. The recharge curve adjustment unit is electrically connected to the driving behavior judging unit and receives the driving mode, and the recharging curve adjusting unit estimates a brake recharging target data according to the driving mode. In addition, the reversible kinetic energy estimating unit is electrically connected to the recharging curve adjusting unit and receives the brake recharging target data and the vehicle speed signal. The refillable kinetic energy estimating unit estimates a reversible kinetic energy value according to the brake recharging target data and the vehicle speed signal. The control module is electrically connected to the estimation module and receives the refillable kinetic energy value and the first stored energy recoverable power value, and the control module comprises a control decision unit and a memory unit. The memory unit is electrically connected to the control decision unit and stores a plurality of actuation situation information, and the control decision unit outputs one of the actuation situation information to the power distributor according to the reversible kinetic energy value and the first energy storage recoverable power value, so that the power distributor The electric energy is distributed to the energy storage device according to one of the action situation information.

藉此,本發明之動能回充控制系統能透過功率分配器進行動能回收功率之路徑分流,同時配合剎車之可回收動能以及儲能裝置之儲能可回收功率值的比對條件,使動能回充控制系統可有效地回收動能,且能延長儲能裝置的壽命。 Thereby, the kinetic energy recharging control system of the present invention can perform the path diversion of the kinetic energy recovery power through the power distributor, and at the same time cooperate with the recoverable kinetic energy of the brake and the comparison condition of the energy storage recoverable power value of the energy storage device, so that the kinetic energy is returned. The charging control system can effectively recover kinetic energy and extend the life of the energy storage device.

依據前述之動能回充控制系統,其中前述之儲能裝置可包含第二儲能元件,此第二儲能元件電性連接功率分配器與控制決策單元。第二儲能元件對應產生第二儲能可回收功率值。儲能裝置可輸出第二儲能可回收功率值 至控制決策單元,且控制決策單元依據可回充動能值、第一儲能可回收功率值以及第二儲能可回收功率值決策輸出其中一作動情境資訊。此外,前述動能回充控制器可包含第一負載與第二負載,且第一負載與第二負載電性連接功率分配器。功率分配器會依據其中一作動情境資訊將電能分配至第二儲能元件、第一負載或第二負載。另外,前述作動情境資訊包含第一作動資訊、第二作動資訊、第三作動資訊、第四作動資訊以及第五作動資訊。其中第一作動資訊係指示電能分配給第一儲能元件與第二儲能元件。第二作動資訊係指示電能分配給第一儲能元件。第三作動資訊係指示電能分配給第一儲能元件與第二負載。第四作動資訊係指示電能分配給第二儲能元件與第一負載。第五作動資訊係指示電能分配給第一負載與第二負載。 According to the foregoing kinetic energy recharging control system, the foregoing energy storage device may include a second energy storage component, and the second energy storage component is electrically connected to the power distributor and the control decision unit. The second energy storage component correspondingly generates a second stored energy recoverable power value. The energy storage device can output the second energy storage recoverable power value And to the control decision unit, and the control decision unit outputs one of the action situation information according to the refillable kinetic energy value, the first stored energy recoverable power value, and the second stored energy recoverable power value. In addition, the foregoing kinetic energy recharging controller may include a first load and a second load, and the first load and the second load are electrically connected to the power splitter. The power splitter distributes power to the second energy storage component, the first load, or the second load based on one of the actuation context information. In addition, the foregoing actuation situation information includes first actuation information, second actuation information, third actuation information, fourth actuation information, and fifth actuation information. The first actuation information indicates that the electrical energy is distributed to the first energy storage component and the second energy storage component. The second actuation information indicates that electrical energy is distributed to the first energy storage component. The third actuation information indicates that the electrical energy is distributed to the first energy storage component and the second load. The fourth actuation information indicates that the electrical energy is distributed to the second energy storage component and the first load. The fifth actuation information indicates that the electrical energy is distributed to the first load and the second load.

依據本發明又一態樣提供一種動能回充控制方法,其使用在前述之動能回充控制器上。此動能回充控制方法包含一判斷駕駛行為步驟、一調整回充曲線步驟、一估算可回充動能步驟以及一控制步驟。其中判斷駕駛行為步驟係利用車速訊號、油門踏板訊號以及剎車踏板訊號估算出駕駛模式。調整回充曲線步驟係利用回充曲線調整單元依據駕駛模式估算出剎車回充目標資料。另外,估算可回充動能步驟係利用可回充動能估算單元依據剎車回充目標資料與車速訊號估算出一可回充動能值。而控制步驟則是利用控制模組依據可回充動能值與儲能可回收功率值決策輸出其中一作動情境資訊。 According to still another aspect of the present invention, a kinetic energy recharging control method is provided, which is used on the aforementioned kinetic energy recharging controller. The kinetic energy refill control method includes a step of determining a driving behavior, an adjusting a recharging curve step, an estimating refillable kinetic energy step, and a controlling step. The driving behavior step is to estimate the driving mode by using the speed signal, the accelerator pedal signal, and the brake pedal signal. The step of adjusting the recharge curve is to estimate the brake recharge target data according to the driving mode by using the recharge curve adjustment unit. In addition, the estimated refillable kinetic energy step uses the refillable kinetic energy estimating unit to estimate a reversible kinetic energy value according to the brake recharge target data and the vehicle speed signal. The control step is to use the control module to output one of the action situation information according to the reversible kinetic energy value and the energy storage recoverable power value decision.

藉此,本發明之動能回充控制方法結合動能回充控制器可以透過儲能元件的狀態來調整回充動能,並利用功率分配器進行動能回收功率之路徑分流,不但可增加動能回收的效益,還能延長儲能元件的壽命。再者,本方法可應用於各類型車輛上,無論是大型運輸車輛、搭載多種電器之車輛或者電動車,均能延長車載儲能裝置的運作時間以及減少儲能元件的搭載容量。 Thereby, the kinetic energy recharging control method of the present invention, combined with the kinetic energy recharging controller, can adjust the regenerative kinetic energy through the state of the energy storage component, and utilize the power splitter to perform the path shunting of the kinetic energy recovery power, thereby not only increasing the efficiency of kinetic energy recovery. It also extends the life of energy storage components. Furthermore, the method can be applied to various types of vehicles, whether it is a large transport vehicle, a vehicle equipped with a plurality of electric appliances, or an electric vehicle, which can extend the operation time of the vehicle energy storage device and reduce the carrying capacity of the energy storage component.

依據前述之動能回充控制方法,其中前述之控制步驟可包含一儲存資訊子步驟與一決策資訊子步驟。儲存資訊子步驟係利用一記憶單元儲存作動情境資訊。而決策資訊子步驟則是利用控制決策單元比對可回充動能值與儲能可回收功率值的大小並產生一比對結果。此決策資訊子步驟可從記憶單元決策輸出其中一作動情境資訊至一功率分配器。此外,前述動能回充控制方法可包含分配功率步驟,其係利用一功率分配器依據其中一作動情境資訊將一電能分配至一儲能裝置與一負載裝置上。 According to the foregoing kinetic energy recharge control method, the foregoing control step may include a storage information sub-step and a decision information sub-step. The store information sub-step uses a memory unit to store action context information. The decision information sub-step is to use the control decision unit to compare the reversible kinetic energy value with the energy storage recoverable power value and generate a comparison result. The decision information sub-step can output one of the action context information from the memory unit decision to a power splitter. In addition, the foregoing kinetic energy recharging control method may include the step of distributing power, which uses a power distributor to distribute an electric energy to an energy storage device and a load device according to one of the actuation situation information.

100‧‧‧動能回充控制系統 100‧‧‧ kinetic energy recharge control system

200‧‧‧動能回充控制器 200‧‧‧ kinetic energy recharge controller

210‧‧‧估算模組 210‧‧‧ Estimation module

212‧‧‧駕駛行為判斷單元 212‧‧‧ Driving Behavior Judging Unit

214‧‧‧回充曲線調整單元 214‧‧‧Recharge curve adjustment unit

216‧‧‧可回充動能估算單元 216‧‧‧Rechargeable kinetic energy estimation unit

220‧‧‧控制模組 220‧‧‧Control Module

222‧‧‧記憶單元 222‧‧‧ memory unit

224‧‧‧控制決策單元 224‧‧‧Control decision unit

232‧‧‧車速訊號 232‧‧‧speed signal

234‧‧‧油門踏板訊號 234‧‧‧Gas pedal signal

236‧‧‧剎車踏板訊號 236‧‧‧Brake pedal signal

242‧‧‧駕駛模式 242‧‧‧ Driving mode

244‧‧‧剎車回充目標資料 244‧‧‧Brake back to the target data

246‧‧‧可回充動能值 246‧‧‧Rechargeable kinetic energy

252‧‧‧作動情境資訊 252‧‧‧Action situation information

500‧‧‧負載裝置 500‧‧‧ load device

510‧‧‧第一負載 510‧‧‧First load

520‧‧‧第二負載 520‧‧‧second load

600a、600b‧‧‧動力系統 600a, 600b‧‧‧ power system

610‧‧‧馬達 610‧‧‧Motor

620‧‧‧直流/交流轉換器 620‧‧‧DC/AC converter

610b‧‧‧輪軸 610b‧‧·Axle

620b‧‧‧減速機構 620b‧‧‧Speed reduction mechanism

630b‧‧‧引擎 630b‧‧‧ engine

640b、650b‧‧‧電控離合器 640b, 650b‧‧‧Electric clutch

660b、670b‧‧‧發電機 660b, 670b‧‧‧ generator

700、700a‧‧‧動能回充控制方法 700, 700a‧‧‧ kinetic energy recharge control method

S11‧‧‧判斷駕駛行為步驟 S11‧‧‧Judgement of driving behavior steps

S12‧‧‧調整回充曲線步驟 S12‧‧‧Adjusting the recharge curve step

S13‧‧‧估算可回充動能步驟 S13‧‧‧ Estimated reversible kinetic steps

S14‧‧‧控制步驟 S14‧‧‧Control steps

300‧‧‧功率分配器 300‧‧‧Power splitter

400‧‧‧儲能裝置 400‧‧‧ energy storage device

410‧‧‧第一儲能元件 410‧‧‧First energy storage component

412‧‧‧第一儲能可回收功率值 412‧‧‧ First energy storage recoverable power value

420‧‧‧第二儲能元件 420‧‧‧Second energy storage component

422‧‧‧第二儲能可回收功率值 422‧‧‧Second energy storage recoverable power value

S21‧‧‧判斷駕駛行為步驟 S21‧‧‧Determination of driving behaviour steps

S22‧‧‧調整回充曲線步驟 S22‧‧‧Adjusting the recharge curve step

S23‧‧‧估算可回充動能步驟 S23‧‧‧ Estimated reversible kinetic steps

S24‧‧‧控制步驟 S24‧‧‧Control steps

S241‧‧‧儲存資訊子步驟 S241‧‧‧Storage information substeps

S242‧‧‧決策資訊子步驟 S242‧‧‧Decision information substeps

S25‧‧‧分配功率步驟 S25‧‧‧Power distribution steps

第1圖係繪示本發明一實施例之動能回充控制系統的方塊圖。 1 is a block diagram showing a kinetic energy recharging control system according to an embodiment of the present invention.

第2圖係繪示本發明一實施例之動能回充控制系統連接電動車之動力系統的方塊圖。 2 is a block diagram showing a power system of a kinetic energy recharging control system connected to an electric vehicle according to an embodiment of the present invention.

第3圖係繪示本發明一實施例之動能回充控制系統連接傳統汽車之動力系統的方塊圖。 3 is a block diagram showing a power system of a kinetic energy recharging control system connected to a conventional automobile according to an embodiment of the present invention.

第4圖係繪示本發明一實施例之動能回充控制方法的流程示意圖。 FIG. 4 is a schematic flow chart showing a kinetic energy recharging control method according to an embodiment of the present invention.

第5圖係繪示本發明另一實施例之動能回充控制方法的流程示意圖。 FIG. 5 is a schematic flow chart showing a kinetic energy recharging control method according to another embodiment of the present invention.

以下將參照圖式說明本發明之複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之;並且重複之元件將可能使用相同的編號表示之。 Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. For the sake of clarity, many practical details will be explained in the following description. However, it should be understood that these practical details are not intended to limit the invention. That is, in some embodiments of the invention, these practical details are not necessary. In addition, some of the conventional structures and elements are illustrated in the drawings in a simplified schematic manner, and the repeated elements may be represented by the same reference numerals.

第1圖係繪示本發明一實施例之動能回充控制系統100的方塊圖。此動能回充控制系統100係用以控制車輛的電能,能夠增加動能回收的效益。動能回充控制系統100包含動能回充控制器200、功率分配器300、儲能裝置400以及負載裝置500。 1 is a block diagram showing a kinetic energy recharging control system 100 in accordance with an embodiment of the present invention. The kinetic energy recharging control system 100 is used to control the electric energy of the vehicle, and can increase the efficiency of kinetic energy recovery. The kinetic energy recharging control system 100 includes a kinetic energy recharging controller 200, a power splitter 300, an energy storage device 400, and a load device 500.

動能回充控制器200電性連接功率分配器300與儲能裝置400。動能回充控制器200包含估算模組210與控制模組220,其中估算模組210包含駕駛行為判斷單元212、回充曲線調整單元214以及可回充動能估算 單元216。駕駛行為判斷單元212接收並判斷車速訊號232、油門踏板訊號234以及剎車踏板訊號236以產生一駕駛模式242,且駕駛行為判斷單元212輸出駕駛模式242至回充曲線調整單元214。詳細地說,車速訊號232指示一車行速度值,油門踏板訊號234指示一油門踏板深度值TPS,剎車踏板訊號236則指示一剎車踏板深度值B。而駕駛行為判斷單元212會進一步分析五種判斷訊號,分別為油門踏板深度值TPS、油門踏板深度值對應單位時間之變化量△TPS、剎車踏板深度值B、剎車踏板深度值對應單位時間之變化量△B以及車行速度值對應單位時間之變化量△V。再者,駕駛行為判斷單元212會透過上述五種判斷訊號的結果將駕駛行為分成四種模式,分別為加速模式、滑行加速模式、減速模式以及滑行減速模式,如表一所示。 The kinetic energy recharging controller 200 is electrically connected to the power splitter 300 and the energy storage device 400. The kinetic energy recharging controller 200 includes an estimating module 210 and a control module 220, wherein the estimating module 210 includes a driving behavior determining unit 212, a backfilling curve adjusting unit 214, and a reversible kinetic energy estimation Unit 216. The driving behavior determining unit 212 receives and determines the vehicle speed signal 232, the accelerator pedal signal 234, and the brake pedal signal 236 to generate a driving mode 242, and the driving behavior determining unit 212 outputs the driving mode 242 to the recharging curve adjusting unit 214. In detail, the vehicle speed signal 232 indicates a vehicle speed value, the accelerator pedal signal 234 indicates an accelerator pedal depth value TPS, and the brake pedal signal 236 indicates a brake pedal depth value B. The driving behavior judging unit 212 further analyzes the five kinds of judging signals, which are the pedal pedal depth value TPS, the accelerator pedal depth value corresponding to the unit time change amount ΔTPS, the brake pedal depth value B, and the brake pedal depth value corresponding to the unit time change. The amount ΔB and the vehicle speed value correspond to the amount of change ΔV per unit time. Furthermore, the driving behavior determining unit 212 divides the driving behavior into four modes through the results of the above five kinds of determining signals, namely, an acceleration mode, a coasting acceleration mode, a deceleration mode, and a coasting deceleration mode, as shown in Table 1.

其中油門預定值A1、油門變化預定值A2、剎車預定值C1、剎車變化預定值C2以及加速預定值B1、D1均為駕駛行為判斷單元212所預設的參數,而且駕駛行為判斷單 元212利用這些參數與判斷訊號作比對,可以判斷出駕駛行為所對應之的模式並輸出對應的滑行時間、開始車速值以及結束車速值。由於此駕駛行為判斷單元212之判斷方式為習知技術,故不再贅述。 The throttle predetermined value A1, the throttle change predetermined value A2, the brake predetermined value C1, the brake change predetermined value C2, and the acceleration predetermined values B1, D1 are all parameters preset by the driving behavior judging unit 212, and the driving behavior judging unit 212 uses these. The parameter is compared with the judgment signal, and the mode corresponding to the driving behavior can be judged and the corresponding taxi time, the starting vehicle speed value, and the ending vehicle speed value are output. Since the judgment manner of the driving behavior judging unit 212 is a conventional technique, it will not be described again.

此外,回充曲線調整單元214電性連接駕駛行為判斷單元212並接收駕駛模式242、滑行時間、開始車速值以及結束車速值。回充曲線調整單元214可根據駕駛模式242估算出一剎車回充目標資料244。詳細地說,回充曲線調整單元214根據滑行加速模式、滑行減速模式期間所對應的滑行時間、開始車速值及結束車速值得出對應的複數個加速度值,並運算出這些加速度值之平均值。此外,回充曲線調整單元214會預存一剎車回充參考資料,此剎車回充參考資料包含多個不同且追隨時間遞減的預設車行速度。然後,回充曲線調整單元214會根據平均值以及剎車回充參考資料運算出一剎車回充目標資料244,此剎車回充目標資料244包含追隨時間變化的目標車行速度。至於回充曲線調整單元214之調整方式為習知技術,故不再贅述。 Further, the recharge curve adjustment unit 214 is electrically connected to the driving behavior determination unit 212 and receives the driving mode 242, the taxi time, the starting vehicle speed value, and the ending vehicle speed value. The recharge curve adjustment unit 214 can estimate a brake refill target data 244 according to the driving mode 242. In detail, the recharge curve adjustment unit 214 derives a plurality of corresponding acceleration values based on the coasting time, the starting vehicle speed value, and the ending vehicle speed corresponding to the coasting acceleration mode and the coasting deceleration mode, and calculates an average value of the acceleration values. In addition, the recharge curve adjustment unit 214 prestores a brake refill reference data, and the brake refill reference data includes a plurality of different preset vehicle speeds that follow the decreasing time. Then, the recharge curve adjustment unit 214 calculates a brake refill target data 244 according to the average value and the brake recharge reference data, and the brake recharge target data 244 includes the target vehicle speed that follows the time change. The adjustment method of the recharge curve adjustment unit 214 is a conventional technique, and therefore will not be described again.

另外,可回充動能估算單元216電性連接回充曲線調整單元214並接收剎車回充目標資料244與車速訊號232。而且可回充動能估算單元216可根據剎車回充目標資料244與車速訊號232估算出一可回充動能值246。詳細地說,可回充動能估算單元216根據剎車回充目標資料244之目前車行速度以及目標車輛的車行速度值 可以估算出可回充動能E(t)以及對應之功率P(t),其分別符合式子(1)與式子(2): P(t)=E(t)/T (2);其中V1、V2分別代表目前車行速度與目標車輛的車行速度值,其中V1大於V2,M代表車輛的質量,而T則代表動能回充控制器200每次取樣車速之時間。可回充動能E(t)之數值大小即為可回充動能值246。 In addition, the refillable kinetic energy estimating unit 216 is electrically connected to the recharging curve adjusting unit 214 and receives the brake recharging target data 244 and the vehicle speed signal 232. Moreover, the refillable kinetic energy estimating unit 216 can estimate a reversible kinetic energy value 246 according to the brake recharging target data 244 and the vehicle speed signal 232. In detail, the refillable kinetic energy estimating unit 216 can estimate the reversible kinetic energy E(t) and the corresponding power P(t) according to the current vehicle speed of the brake refill target data 244 and the vehicle speed value of the target vehicle. , which respectively conform to the formula (1) and the formula (2): P(t)=E(t)/T (2); wherein V 1 and V 2 respectively represent the current speed of the vehicle and the speed of the target vehicle, wherein V 1 is greater than V 2 , and M represents the mass of the vehicle, and T represents the time at which the kinetic energy recharge controller 200 samples the vehicle speed each time. The magnitude of the reversible kinetic energy E(t) is the reversible kinetic energy value 246.

控制模組220電性連接估算模組210與儲能裝置400,並接收來自估算模組210的可回充動能值246以及來自儲能裝置400的第一儲能可回收功率值412、第二儲能可回收功率值422。控制模組220包含記憶單元222與控制決策單元224。記憶單元222電性連接控制決策單元224且儲存五個作動情境資訊252。控制決策單元224依據可回充動能值246、第一儲能可回收功率值412以及第二儲能可回收功率值422決策輸出其中一作動情境資訊252至功率分配器300,致使功率分配器300依據其中一作動情境資訊252將電能分配至儲能裝置400與負載裝置500。詳細地說,記憶單元222所儲存的五個作動情境資訊252分別為第一作動資訊、第二作動資訊、第三作動資訊、第四作動資訊以及第五作動資訊。換句話說,第一作動資訊代表功率分配器300對第一儲能元件410與第二儲能元件420同時充電,亦代表電能分配給第一儲能元件410與第二儲能元件420;第二作動資訊代表功率分配 器300僅對第一儲能元件410充電,亦代表電能分配給第一儲能元件410;第三作動資訊代表功率分配器300對第一儲能元件410充電,同時對第二負載520供電,也就是說,電能分配給第一儲能元件410與第二負載520;第四作動資訊代表功率分配器300對第二儲能元件420充電,同時對第一負載510供電,亦即電能分配給第二儲能元件420與第一負載510;第五作動資訊則代表功率分配器300對第一負載510與第二負載520同時供電,也就是電能分配給第一負載510與第二負載520。 The control module 220 is electrically connected to the estimation module 210 and the energy storage device 400, and receives the refillable kinetic energy value 246 from the estimation module 210 and the first energy storage recoverable power value 412 from the energy storage device 400, and the second The energy storage recoverable power value is 422. The control module 220 includes a memory unit 222 and a control decision unit 224. The memory unit 222 is electrically connected to the control decision unit 224 and stores five actuation context information 252. The control decision unit 224 decides to output one of the action context information 252 to the power splitter 300 according to the refillable kinetic energy value 246, the first stored energy recoverable power value 412, and the second stored energy recoverable power value 422, such that the power splitter 300 is caused. The electrical energy is distributed to the energy storage device 400 and the load device 500 in accordance with one of the actuation context information 252. In detail, the five actuation situation information 252 stored by the memory unit 222 are the first actuation information, the second actuation information, the third actuation information, the fourth actuation information, and the fifth actuation information. In other words, the first actuation information represents that the power distributor 300 simultaneously charges the first energy storage component 410 and the second energy storage component 420, and also represents the distribution of electrical energy to the first energy storage component 410 and the second energy storage component 420; Two actuation information represents power distribution The device 300 only charges the first energy storage component 410, and also represents the power distribution to the first energy storage component 410; the third actuation information represents the power distributor 300 charging the first energy storage component 410 while powering the second load 520. That is, the electric energy is distributed to the first energy storage component 410 and the second load 520; the fourth actuation information represents the power distributor 300 charging the second energy storage component 420, and simultaneously supplying power to the first load 510, that is, the power is distributed to The second energy storage component 420 and the first load 510; the fifth actuation information represents that the power distributor 300 simultaneously supplies power to the first load 510 and the second load 520, that is, the power is distributed to the first load 510 and the second load 520.

上列表二中之條件一係代表“可回充動能值246大於第一儲能可回收功率值412”;條件二係代表“第一儲能可回收功率值412等於0”;條件三係代表“可回充動能值246減去第一儲能可回收功率值412大於第二儲能可回收功率值422”;條件四則代表“第二儲能可回收功率值422等於0”。N代表不符合條件,Y則代表符合條件。舉例說明,若條件一為Y,則可回充動能值246大於第一儲能可回收功率值412;若條件一為N,則可回充動能值246小於等於第一儲能可回收功率值412。由表二與第1圖可知,本發明藉由上述四個條件產生十六種比對結果,而這十六種比對結果各自對應五個作動情境資訊252之其中一個,因此控制模組220能夠有效地讓功率分配器300在特定的條件下進行動能回收功率之路徑分流,不但可增加動能回收的效益,還能大幅地延長儲能元件的壽命。 The condition in the second list above represents “the refillable kinetic energy value 246 is greater than the first energy storage recoverable power value 412”; the second condition represents “the first energy storage recoverable power value 412 is equal to 0”; The "rechargeable kinetic energy value 246 minus the first stored energy recoverable power value 412 is greater than the second stored energy recoverable power value 422"; the condition four represents "the second stored energy recoverable power value 422 is equal to zero." N stands for non-conformity and Y stands for eligibility. For example, if the condition one is Y, the reversible kinetic energy value 246 is greater than the first energy storage recoverable power value 412; if the condition one is N, the refillable kinetic energy value 246 is less than or equal to the first stored energy retrievable power value. 412. It can be seen from Table 2 and FIG. 1 that the present invention generates sixteen comparison results by the above four conditions, and the sixteen comparison results respectively correspond to one of the five actuation situation information 252, and thus the control module 220 The utility model can effectively divide the path of the kinetic energy recovery power of the power distributor 300 under certain conditions, which not only increases the benefit of kinetic energy recovery, but also greatly prolongs the life of the energy storage component.

功率分配器300接收來自一動力系統(未示於圖中)的電能,此動力系統可應用於電動車或傳統汽車之中。另外,本實施例之電能為直流電能,而功率分配器300可以依據作動情境資訊252將直流電能有效地分配給第一儲能元件410、第二儲能元件420、第一負載510或第二負載520。值得一提的是,功率分配器300可包含第一功率分配模組與第二功率分配模組(未示於圖中)。其中第一功率分配模組可將電能分配至第一儲能元件410或第一負載510;第二功率分配模組則可將電能分配至第二儲能元件420或第一負載510,透過多個功率分配模組可以 讓系統的電能作更有效率地分配。此外,功率分配器300可以與直流/直流轉換器結合以控制電能的分配。至於功率分配器300與直流/直流轉換器之電路結構是運用習知技術,故不再贅述。 The power splitter 300 receives electrical energy from a power system (not shown) that can be used in an electric or conventional vehicle. In addition, the power of the embodiment is DC power, and the power distributor 300 can effectively distribute the DC power to the first energy storage component 410, the second energy storage component 420, the first load 510, or the second according to the actuation situation information 252. Load 520. It is worth mentioning that the power splitter 300 can include a first power distribution module and a second power distribution module (not shown). The first power distribution module can distribute the electrical energy to the first energy storage component 410 or the first load 510; the second power distribution module can distribute the electrical energy to the second energy storage component 420 or the first load 510. Power distribution modules can Let the system's power be distributed more efficiently. Additionally, power splitter 300 can be combined with a DC/DC converter to control the distribution of electrical energy. As for the circuit configuration of the power divider 300 and the DC/DC converter, conventional techniques are used, and therefore will not be described again.

儲能裝置400電性連接功率分配器300與控制模組220之控制決策單元224,儲能裝置400接收功率分配器300的電能且輸出第一儲能可回收功率值412及第二儲能可回收功率值422。值得一提的是,儲能裝置400亦可提供電能給功率分配器300,並傳送電能至動力系統中使用,因此動力系統、功率分配器300以及儲能裝置400可雙向傳輸電能。此外,儲能裝置400包含第一儲能元件410與第二儲能元件420,第一儲能元件410對應第一儲能可回收功率值412,而第二儲能元件420對應第二儲能可回收功率值422。本實施例之第一儲能元件410為高壓儲能元件,而第二儲能元件420為低壓儲能元件。藉此,本發明之控制決策單元224能依據可回充動能值246、第一儲能可回收功率值412以及第二儲能可回收功率值422決策輸出其中一作動情境資訊252至功率分配器300,然後使功率分配器300可依據此作動情境資訊252將電能分配至儲能裝置400或負載裝置500之中。另外,儲能裝置400可透過各儲能元件之充電狀態(SOC;State Of Charge)、健康狀態(SOH;State Of Health)、電壓、電流及溫度狀態以判定各儲能元件可接 收之電量大小。換句話說,第一儲能可回收功率值412與第二儲能可回收功率值422可由儲能元件的狀態推知。 The energy storage device 400 is electrically connected to the power splitter 300 and the control decision unit 224 of the control module 220. The energy storage device 400 receives the power of the power splitter 300 and outputs the first stored energy recoverable power value 412 and the second energy storage. The power value is recovered 422. It is worth mentioning that the energy storage device 400 can also supply power to the power splitter 300 and transfer the electrical energy to the power system for use, so that the power system, the power splitter 300, and the energy storage device 400 can transmit power in both directions. In addition, the energy storage device 400 includes a first energy storage component 410 and a second energy storage component 420. The first energy storage component 410 corresponds to a first energy storage recoverable power value 412, and the second energy storage component 420 corresponds to a second energy storage energy. The power value 422 can be recovered. The first energy storage component 410 of the present embodiment is a high voltage energy storage component, and the second energy storage component 420 is a low voltage energy storage component. Thereby, the control decision unit 224 of the present invention can output one of the action context information 252 to the power splitter according to the refillable kinetic energy value 246, the first stored energy recoverable power value 412, and the second stored energy recoverable power value 422. 300, and then the power splitter 300 can distribute the electrical energy to the energy storage device 400 or the load device 500 according to the actuation context information 252. In addition, the energy storage device 400 can determine the state of charge (SOC) of each energy storage component, state of health (SOH), voltage, current, and temperature state to determine that each energy storage component can be connected. The amount of electricity received. In other words, the first stored energy recoverable power value 412 and the second stored energy recoverable power value 422 can be inferred from the state of the energy storage element.

負載裝置500電性連接功率分配器300,其包含第一負載510與第二負載520。本實施例之第一負載510為高壓負載,而第二負載520為低壓負載。舉表二中比對結果6為例說明,當儲能裝置400的第一儲能元件410與第二儲能元件420均達飽和狀態時,亦即條件二與條件四均為Y時,功率分配器300可將過多的電能供給第一負載510與第二負載520使用,不但可避免電能的浪費,還能延長儲能元件的壽命。 The load device 500 is electrically connected to the power splitter 300, which includes a first load 510 and a second load 520. The first load 510 of the present embodiment is a high voltage load and the second load 520 is a low voltage load. Taking the comparison result 6 in Table 2 as an example, when the first energy storage component 410 and the second energy storage component 420 of the energy storage device 400 reach a saturated state, that is, when the condition 2 and the condition 4 are both Y, the power is The distributor 300 can supply excess electric energy to the first load 510 and the second load 520, which not only avoids waste of electric energy, but also prolongs the life of the energy storage element.

第2圖係繪示本發明一實施例之動能回充控制系統100連接電動車之動力系統600a的方塊圖。第3圖係繪示本發明一實施例之動能回充控制系統100連接傳統汽車之動力系統600b的方塊圖。如圖所示,動能回充控制系統100可應用於電動車或傳統汽車上。電動車之動力系統600a包含馬達610與直流/交流轉換器620,且直流/交流轉換器620連接馬達610與功率分配器300。此外,傳統汽車之動力系統600b包含輪軸610b、減速機構620b、引擎630b、電控離合器640b、650b以及發電機660b、670b。其中減速機構620b連接輪軸610b與電控離合器650b,發電機670b連接電控離合器650b與功率分配器300。而發電機660b則連接引擎630b、電控離合器640b以及功率分配器300。本發明透過動能回充控制系統100可以調節電動車之動力系統600a的作動時機, 而且在傳統汽車之動力系統600b中可搭配電控離合器640b、650b來調節原車發電機660b、670b之作動時機,繼而降低油耗與延長車載儲能裝置400的運作時間。 2 is a block diagram showing a power system 600a for connecting a kinetic energy recharging control system 100 to an electric vehicle according to an embodiment of the present invention. FIG. 3 is a block diagram showing a kinetic energy recharging control system 100 according to an embodiment of the present invention connected to a power system 600b of a conventional automobile. As shown, the kinetic energy recharging control system 100 can be applied to an electric vehicle or a conventional automobile. The electric vehicle power system 600a includes a motor 610 and a DC/AC converter 620, and a DC/AC converter 620 connects the motor 610 with the power splitter 300. Further, the conventional automobile power system 600b includes an axle 610b, a speed reduction mechanism 620b, an engine 630b, electronically controlled clutches 640b, 650b, and generators 660b, 670b. The speed reduction mechanism 620b is connected to the axle 610b and the electronically controlled clutch 650b, and the generator 670b is connected to the electronically controlled clutch 650b and the power distributor 300. The generator 660b is connected to the engine 630b, the electronically controlled clutch 640b, and the power splitter 300. The present invention can adjust the timing of the operation of the power system 600a of the electric vehicle through the kinetic energy recharging control system 100. Moreover, in the power system 600b of the conventional automobile, the electronically controlled clutches 640b and 650b can be used to adjust the timing of the operation of the original vehicle generators 660b and 670b, thereby reducing fuel consumption and extending the operation time of the vehicle-mounted energy storage device 400.

請一併參閱第1圖。第4圖係繪示本發明一實施例之動能回充控制方法700的流程示意圖。第5圖係繪示本發明另一實施例之動能回充控制方法700a的流程示意圖。如圖所示,動能回充控制方法700包含判斷駕駛行為步驟S11、調整回充曲線步驟S12、估算可回充動能步驟S13以及控制步驟S14。其中判斷駕駛行為步驟S11係利用車速訊號232、油門踏板訊號234以及剎車踏板訊號236估算出駕駛模式242。調整回充曲線步驟S12係利用回充曲線調整單元214依據駕駛模式242估算出剎車回充目標資料244。此外,估算可回充動能步驟S13係利用可回充動能估算單元216依據剎車回充目標資料244與車速訊號232估算出一可回充動能值246。而控制步驟S14則是利用控制模組220依據可回充動能值246、第一儲能可回收功率值412以及第二儲能可回收功率值422決策輸出其中一作動情境資訊252。另外,動能回充控制方法700a包含判斷駕駛行為步驟S21、調整回充曲線步驟S22、估算可回充動能步驟S23、控制步驟S24以及分配功率步驟S25。其中控制步驟S24包含儲存資訊子步驟S241與決策資訊子步驟S242。儲存資訊子步驟S241係利用記憶單元222儲存若干個作動情境資訊252。而決策資訊子步驟S242則是利用控制決策單元224比對可回充動能值246 與第一儲能可回收功率值412、第二儲能可回收功率值422的大小並產生一比對結果。此決策資訊子步驟S242可從記憶單元222決策輸出其中一作動情境資訊252至功率分配器300。分配功率步驟S25係利用功率分配器300依據其中一作動情境資訊252將電能分配至儲能裝置400或負載裝置500上。藉由本發明之動能回充控制方法700、700a結合動能回充控制器200可以各透過儲能元件的狀態來調整回充動能,並利用功率分配器300進行動能回收功率之路徑分流,不但可增加動能回收的效益,還能延長儲能元件的壽命。再者,本方法適合應用於各類型車輛上,尤其是大型運輸車輛或搭載多種汽車電器,如空調壓縮機、空壓機、水泵、燃油泵或液壓泵,均可透過動能回充控制方法700、700a搭配動能回充控制系統100來延長車載儲能裝置400之運作時間或減少儲能元件的搭載容量。 Please refer to Figure 1 together. FIG. 4 is a flow chart showing a kinetic energy recharging control method 700 according to an embodiment of the present invention. FIG. 5 is a schematic flow chart of a kinetic energy recharging control method 700a according to another embodiment of the present invention. As shown, the kinetic energy refill control method 700 includes a determination of the driving behavior step S11, an adjustment of the recharge curve step S12, an estimation of the refillable kinetic energy step S13, and a control step S14. The driving behavior step S11 is to estimate the driving mode 242 by using the vehicle speed signal 232, the accelerator pedal signal 234, and the brake pedal signal 236. Adjusting the recharge curve step S12 uses the recharge curve adjustment unit 214 to estimate the brake recharge target data 244 based on the driving mode 242. In addition, the estimated refillable kinetic energy step S13 uses the refillable kinetic energy estimating unit 216 to estimate a reversible kinetic energy value 246 based on the brake recharge target data 244 and the vehicle speed signal 232. In the control step S14, the control module 220 determines to output one of the action situation information 252 according to the refillable kinetic energy value 246, the first stored energy recoverable power value 412, and the second stored energy recoverable power value 422. Further, the kinetic energy refill control method 700a includes a judgment driving behavior step S21, an adjustment recharge curve step S22, an estimated refill kinetic energy step S23, a control step S24, and a distribution power step S25. The control step S24 includes a storage information sub-step S241 and a decision information sub-step S242. The storing information sub-step S241 uses the memory unit 222 to store a plurality of actuation context information 252. The decision information sub-step S242 is to use the control decision unit 224 to compare the reversible kinetic energy value 246. And comparing the size of the first stored energy recoverable power value 412 and the second stored energy recoverable power value 422 and generating a comparison result. The decision information sub-step S242 can determine from the memory unit 222 to output one of the actuation context information 252 to the power splitter 300. The power distribution step S25 utilizes the power splitter 300 to distribute power to the energy storage device 400 or the load device 500 in accordance with one of the actuation context information 252. The kinetic energy recharging control method 700, 700a of the present invention can be combined with the kinetic energy recharging controller 200 to adjust the regenerative energy through the state of the energy storage element, and the power splitter 300 can be used to perform the path shunting of the kinetic energy recovery power, which can not only increase The benefits of kinetic energy recovery also extend the life of energy storage components. Furthermore, the method is suitable for use in various types of vehicles, especially large transport vehicles or equipped with a variety of automotive electrical appliances, such as air conditioning compressors, air compressors, water pumps, fuel pumps or hydraulic pumps, all of which can pass the kinetic energy recharging control method 700. The 700a is combined with the kinetic energy recharging control system 100 to extend the operating time of the in-vehicle energy storage device 400 or to reduce the carrying capacity of the energy storage component.

由上述實施方式可知,本發明具有下列優點:其一,透過儲能元件的狀態來調整回充動能,並利用功率分配器進行動能回收功率之路徑分流,不但可增加動能回收的效益,還能延長儲能元件的壽命。其二,本發明之動能回充控制器、動能回充控制系統及動能回充控制方法可應用於各類型車輛上,尤其是大型運輸車輛或搭載多種汽車電器,能透過搭配車載動能回收控制系統來延長車載儲能裝置的運作時間或減少儲能元件的搭載容量。其三,除了電動車之外,傳統車輛上亦可搭配電控離合器並結合動 能回充控制方法來調節原車發電機之作動時機,繼而降低油耗與延長車載儲能裝置的運作時間。 It can be seen from the above embodiments that the present invention has the following advantages: First, the back kinetic energy is adjusted through the state of the energy storage element, and the power splitter is used to perform the path splitting of the kinetic energy recovery power, which not only increases the efficiency of kinetic energy recovery, but also Extend the life of the energy storage component. Secondly, the kinetic energy recharging controller, the kinetic energy recharging control system and the kinetic energy recharging control method of the invention can be applied to various types of vehicles, especially large transportation vehicles or equipped with various automobile electrical appliances, and can be matched with the vehicle kinetic energy recovery control system. To extend the operating time of the vehicle energy storage device or reduce the carrying capacity of the energy storage components. Third, in addition to electric vehicles, traditional vehicles can also be equipped with electronically controlled clutches and combined The charging control method can be recharged to adjust the timing of the original vehicle generator, thereby reducing fuel consumption and extending the operating time of the vehicle energy storage device.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

100‧‧‧動能回充控制系統 100‧‧‧ kinetic energy recharge control system

200‧‧‧動能回充控制器 200‧‧‧ kinetic energy recharge controller

210‧‧‧估算模組 210‧‧‧ Estimation module

212‧‧‧駕駛行為判斷單元 212‧‧‧ Driving Behavior Judging Unit

214‧‧‧回充曲線調整單元 214‧‧‧Recharge curve adjustment unit

300‧‧‧功率分配器 300‧‧‧Power splitter

400‧‧‧儲能裝置 400‧‧‧ energy storage device

410‧‧‧第一儲能元件 410‧‧‧First energy storage component

412‧‧‧第一儲能可回收功率值 412‧‧‧ First energy storage recoverable power value

420‧‧‧第二儲能元件 420‧‧‧Second energy storage component

216‧‧‧可回充動能估算單元 216‧‧‧Rechargeable kinetic energy estimation unit

220‧‧‧控制模組 220‧‧‧Control Module

222‧‧‧記憶單元 222‧‧‧ memory unit

224‧‧‧控制決策單元 224‧‧‧Control decision unit

232‧‧‧車速訊號 232‧‧‧speed signal

234‧‧‧油門踏板訊號 234‧‧‧Gas pedal signal

236‧‧‧剎車踏板訊號 236‧‧‧Brake pedal signal

242‧‧‧駕駛模式 242‧‧‧ Driving mode

244‧‧‧剎車回充目標資料 244‧‧‧Brake back to the target data

246‧‧‧可回充動能值 246‧‧‧Rechargeable kinetic energy

252‧‧‧作動情境資訊 252‧‧‧Action situation information

422‧‧‧第二儲能可回收功率值 422‧‧‧Second energy storage recoverable power value

500‧‧‧負載裝置 500‧‧‧ load device

510‧‧‧第一負載 510‧‧‧First load

520‧‧‧第二負載 520‧‧‧second load

Claims (10)

一種動能回充控制器,用以控制一車輛之電能以增加動能回收的效益,該動能回充控制器包含:一估算模組,包含:一駕駛行為判斷單元,接收並判斷一車速訊號、一油門踏板訊號及一剎車踏板訊號以產生一駕駛模式,且該駕駛行為判斷單元輸出該駕駛模式;一回充曲線調整單元,電性連接該駕駛行為判斷單元並接收該駕駛模式,該回充曲線調整單元根據該駕駛模式估算出一剎車回充目標資料;及一可回充動能估算單元,電性連接該回充曲線調整單元並接收該剎車回充目標資料與該車速訊號,該可回充動能估算單元根據該剎車回充目標資料與該車速訊號估算出一可回充動能值;以及一控制模組,電性連接該估算模組並接收該可回充動能值與至少一儲能可回收功率值,該控制模組包含一控制決策單元與一記憶單元,該記憶單元電性連接該控制決策單元且儲存複數作動情境資訊,該控制決策單元依據該可回充動能值與該儲能可回收功率值決策輸出其中一該作動情境資訊至該車輛。 A kinetic energy recharging controller for controlling the energy of a vehicle to increase the efficiency of kinetic energy recovery, the kinetic energy recharging controller comprising: an estimating module comprising: a driving behavior judging unit, receiving and judging a vehicle speed signal, a driving pedal signal and a brake pedal signal to generate a driving mode, and the driving behavior determining unit outputs the driving mode; a recharging curve adjusting unit electrically connecting the driving behavior determining unit and receiving the driving mode, the recharging curve The adjusting unit estimates a brake recharging target data according to the driving mode; and a reversible kinetic energy estimating unit electrically connecting the recharging curve adjusting unit and receiving the braking recharging target data and the vehicle speed signal, the refillable The kinetic energy estimating unit estimates a reversible kinetic energy value according to the brake recharging target data and the vehicle speed signal; and a control module electrically connecting the estimating module and receiving the reversible kinetic energy value and the at least one energy storage Recovering the power value, the control module includes a control decision unit and a memory unit, and the memory unit is electrically connected to the control decision sheet And storing a plurality of actuating the context information, the control according to the decision unit can be recycled back to the charge kinetic energy storage wherein a power output value of the decision-making context information to the actuator of the vehicle. 如申請專利範圍第1項所述之動能回充控制器,其中該控制決策單元依據該可回充動能值與該儲能可回收功率值之一比對結果而從該記憶單元決策出其中一該作動情境資訊,該比對結果為該可回充動能值大於該儲 能可回收功率值或者該可回充動能值小於等於該儲能可回收功率值。 The kinetic energy recharging controller according to claim 1, wherein the control decision unit determines one of the memory unit based on the comparison of the reversible kinetic energy value and the stored energy recoverable power value. The actuating situation information, the comparison result is that the reversible kinetic energy value is greater than the storage The recoverable power value or the reversible kinetic energy value is less than or equal to the stored energy recoverable power value. 如申請專利範圍第1項所述之動能回充控制器,其中該剎車回充目標資料包含隨時間變化的一目標車行速度,該可回充動能估算單元根據該目標車行速度與該車速訊號估算出一可回充動能值。 The kinetic energy recharging controller according to claim 1, wherein the brake recharging target data includes a target vehicle speed that changes with time, and the reversible kinetic energy estimating unit is based on the target vehicle speed and the vehicle speed. The signal estimates a reversible kinetic energy value. 一種動能回充控制系統,包含:一功率分配器,接收一電能;一儲能裝置,電性連接該功率分配器且輸出一第一儲能可回收功率值,該儲能裝置包含一第一儲能元件,且該第一儲能元件對應該第一儲能可回收功率值;一負載裝置,電性連接該功率分配器;以及一動能回充控制器,電性連接該功率分配器與該儲能裝置,該動能回充控制器包含:一估算模組,包含:一駕駛行為判斷單元,接收並判斷一車速訊號、一油門踏板訊號及一剎車踏板訊號以產生一駕駛模式,且該駕駛行為判斷單元輸出該駕駛模式;一回充曲線調整單元,電性連接該駕駛行為判斷單元並接收該駕駛模式,該回充曲線調整單元根據該駕駛模式估算出一剎車回充目標資料;及 一可回充動能估算單元,電性連接該回充曲線調整單元並接收該剎車回充目標資料與該車速訊號,該可回充動能估算單元根據該剎車回充目標資料與該車速訊號估算出一可回充動能值;及一控制模組,電性連接該估算模組並接收該可回充動能值與該第一儲能可回收功率值,該控制模組包含一控制決策單元與一記憶單元,該記憶單元電性連接該控制決策單元且儲存複數作動情境資訊,該控制決策單元依據該可回充動能值與該第一儲能可回收功率值決策輸出其中一該作動情境資訊至該功率分配器,致使該功率分配器依據其中一該作動情境資訊將該電能分配至該儲能裝置。 A kinetic energy recharging control system includes: a power splitter receiving an electrical energy; an energy storage device electrically connected to the power splitter and outputting a first stored energy recoverable power value, the energy storage device including a first An energy storage component, wherein the first energy storage component corresponds to a first stored energy recoverable power value; a load device electrically connected to the power splitter; and a kinetic energy recharge controller electrically connected to the power splitter The energy storage device includes: an estimation module, comprising: a driving behavior determining unit, receiving and determining a vehicle speed signal, an accelerator pedal signal and a brake pedal signal to generate a driving mode, and the driving device The driving behavior judging unit outputs the driving mode; a recharging curve adjusting unit electrically connecting the driving behavior judging unit and receiving the driving mode, wherein the recharging curve adjusting unit estimates a brake recharging target data according to the driving mode; a refillable kinetic energy estimating unit electrically connecting the recharging curve adjusting unit and receiving the brake recharging target data and the vehicle speed signal, wherein the reversible kinetic energy estimating unit estimates the vehicle refueling target data according to the braking recharge target data and the vehicle speed signal a reversible kinetic energy value; and a control module electrically connected to the estimation module and receiving the reversible kinetic energy value and the first stored energy recoverable power value, the control module comprising a control decision unit and a a memory unit, the memory unit is electrically connected to the control decision unit and stores a plurality of active situation information, and the control decision unit outputs one of the action situation information according to the reversible kinetic energy value and the first stored energy recoverable power value decision to The power splitter causes the power splitter to distribute the power to the energy storage device according to one of the actuation context information. 如申請專利範圍第4項所述之動能回充控制系統,其中該儲能裝置更包含:一第二儲能元件,電性連接該功率分配器與該控制決策單元,該第二儲能元件對應產生一第二儲能可回收功率值;其中儲能裝置輸出該第二儲能可回收功率值至該控制決策單元,該控制決策單元依據該可回充動能值、該第一儲能可回收功率值及該第二儲能可回收功率值決策輸出其中一該作動情境資訊。 The kinetic energy recharging control system of claim 4, wherein the energy storage device further comprises: a second energy storage component electrically connected to the power distributor and the control decision unit, the second energy storage component Correspondingly generating a second energy storage recoverable power value; wherein the energy storage device outputs the second energy storage recoverable power value to the control decision unit, and the control decision unit is configured according to the reversible kinetic energy value, the first energy storage The recovered power value and the second stored energy recoverable power value decision output one of the actuation situation information. 如申請專利範圍第5項所述之動能回充控制系統,其中該負載裝置包含一第一負載與一第二負載, 該第一負載與該第二負載電性連接該功率分配器,該功率分配器依據其中一該作動情境資訊將該電能分配至該第二儲能元件、該第一負載或該第二負載。 The kinetic energy recharging control system of claim 5, wherein the load device comprises a first load and a second load, The first load and the second load are electrically connected to the power splitter, and the power splitter distributes the power to the second energy storage component, the first load or the second load according to one of the actuation situation information. 如申請專利範圍第6項所述之動能回充控制系統,其中該些作動情境資訊包含:一第一作動資訊,係指示該電能分配給該第一儲能元件與該第二儲能元件;一第二作動資訊,係指示該電能分配給該第一儲能元件;一第三作動資訊,係指示該電能分配給該第一儲能元件與該第二負載;一第四作動資訊,係指示該電能分配給該第二儲能元件與該第一負載;以及一第五作動資訊,係指示該電能分配給該第一負載與該第二負載。 The kinetic energy recharge control system of claim 6, wherein the actuation situation information includes: a first actuation information indicating that the electrical energy is allocated to the first energy storage component and the second energy storage component; a second actuation information indicating that the electrical energy is allocated to the first energy storage component; a third actuation information indicating that the electrical energy is distributed to the first energy storage component and the second load; and a fourth actuation information Instructing the electrical energy to be distributed to the second energy storage component and the first load; and a fifth actuation information indicating that the electrical energy is distributed to the first load and the second load. 一種使用申請專利範圍第1項所述之動能回充控制器之動能回充控制方法,包含以下步驟:一判斷駕駛行為步驟,係利用該車速訊號、該油門踏板訊號及該剎車踏板訊號估算出該駕駛模式;一調整回充曲線步驟,係利用該回充曲線調整單元依據該駕駛模式估算出該剎車回充目標資料; 一估算可回充動能步驟,係利用該可回充動能估算單元依據該剎車回充目標資料與該車速訊號估算出一可回充動能值;以及一控制步驟,係利用該控制模組依據該可回充動能值與該儲能可回收功率值決策輸出其中一該作動情境資訊。 A kinetic energy recharging control method using the kinetic energy recharging controller according to claim 1 of the patent application scope includes the following steps: determining a driving behavior step by using the vehicle speed signal, the accelerator pedal signal, and the brake pedal signal to estimate The driving mode; the step of adjusting the recharging curve, using the recharging curve adjusting unit to estimate the braking recharge target data according to the driving mode; An estimated refillable kinetic energy step is to use the reversible kinetic energy estimating unit to estimate a reversible kinetic energy value according to the brake recharging target data and the vehicle speed signal; and a control step by using the control module The refillable kinetic energy value and the stored energy recyclable power value decision output one of the actuation situation information. 如申請專利範圍第8項所述之動能回充控制方法,其中該控制步驟包含:一儲存資訊子步驟,係利用一記憶單元儲存該些作動情境資訊;以及一決策資訊子步驟,係利用該控制決策單元比對該可回充動能值與該儲能可回收功率值的大小並產生一比對結果,且該決策資訊子步驟從該記憶單元決策輸出其中一該作動情境資訊至一功率分配器。 The kinetic energy recharging control method according to claim 8, wherein the controlling step comprises: a storing information sub-step, using a memory unit to store the actuating situation information; and a decision information sub-step, using the The control decision unit compares the reversible kinetic energy value with the stored energy recoverable power value and generates a comparison result, and the decision information substep outputs one of the actuation situation information to the power distribution from the memory unit decision Device. 如申請專利範圍第8項所述之動能回充控制方法,更包含一分配功率步驟,係利用一功率分配器依據其中一該作動情境資訊將一電能分配至一儲能裝置與一負載裝置。 The kinetic energy recharging control method according to claim 8 further includes a power distribution step of allocating an electric energy to an energy storage device and a load device according to one of the actuation situation information.
TW104140350A 2015-12-02 2015-12-02 Energy charge controller, energy charge controlling system and method thereof TWI597194B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104140350A TWI597194B (en) 2015-12-02 2015-12-02 Energy charge controller, energy charge controlling system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104140350A TWI597194B (en) 2015-12-02 2015-12-02 Energy charge controller, energy charge controlling system and method thereof

Publications (2)

Publication Number Publication Date
TW201720687A true TW201720687A (en) 2017-06-16
TWI597194B TWI597194B (en) 2017-09-01

Family

ID=59687432

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104140350A TWI597194B (en) 2015-12-02 2015-12-02 Energy charge controller, energy charge controlling system and method thereof

Country Status (1)

Country Link
TW (1) TWI597194B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110682797A (en) * 2018-07-05 2020-01-14 深圳市前海桔子绿能科技有限公司 Brake recharging control method of electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110682797A (en) * 2018-07-05 2020-01-14 深圳市前海桔子绿能科技有限公司 Brake recharging control method of electric vehicle

Also Published As

Publication number Publication date
TWI597194B (en) 2017-09-01

Similar Documents

Publication Publication Date Title
US8080971B2 (en) Active electrical power flow control system for optimization of power delivery in electric hybrid vehicles
US10131341B2 (en) Bandwidth-based methodology for controlling and optimally designing a hybrid power system
Niu et al. Design and analysis of an electric hydraulic hybrid powertrain in electric vehicles
DE102016102822A1 (en) Battery state shutdown threshold based on the predicted operation
US9533675B2 (en) Method for controlling battery of mild hybrid vehicle
CN109080461A (en) The distribution system and distribution method of automobile electrical power
CN101734251A (en) Stroke-increasing electric automobile control system and control method thereof
JP5163768B2 (en) VEHICLE POWER MANAGEMENT SYSTEM, VEHICLE POWER INFORMATION MANAGEMENT DEVICE, AND VEHICLE ELECTRIC LOAD
US20170137031A1 (en) Vehicle control apparatus for a regenerative braking system based on the battery input power
CN110194146A (en) The method and hybrid vehicle of onboard power system for operation of hybrid vehicle
Cai et al. Energy management and design optimization for a series-parallel PHEV city bus
CN111301221A (en) System and method for charging a battery
Pisanti et al. Energy management of through-the-road parallel hybrid vehicles
Walker et al. On friction braking demand with regenerative braking
Schiffer et al. Optimized energy management for fuelcell-supercap hybrid electric vehicles
KR20160038010A (en) Electricity-generation control device and electricity-generation control method
JP6112023B2 (en) Vehicle power supply system
CN106828114B (en) Kinetic energy recharges controller, kinetic energy recharges control system and its control method
TWI597194B (en) Energy charge controller, energy charge controlling system and method thereof
US9669716B1 (en) Energy charge controller, energy charge controlling system and method thereof
CN102582611B (en) Power generation control device and power generation control method for automobiles
Shahverdi et al. A hybrid electric vehicle with minimal energy storage system
WO2010023664A1 (en) Diesel electrical vehicle
US8909405B2 (en) Method and device for controlling an internal combustion engine
So et al. An improved energy management strategy for a battery/ultracapacitor hybrid energy storage system in electric vehicles