TW201720073A - Method for downlink channel estimation - Google Patents

Method for downlink channel estimation Download PDF

Info

Publication number
TW201720073A
TW201720073A TW105121571A TW105121571A TW201720073A TW 201720073 A TW201720073 A TW 201720073A TW 105121571 A TW105121571 A TW 105121571A TW 105121571 A TW105121571 A TW 105121571A TW 201720073 A TW201720073 A TW 201720073A
Authority
TW
Taiwan
Prior art keywords
radio frequency
pilot signal
base station
time
channel estimation
Prior art date
Application number
TW105121571A
Other languages
Chinese (zh)
Inventor
ke-ying Wu
Lu Wu
Original Assignee
Alcatel Lucent
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent filed Critical Alcatel Lucent
Publication of TW201720073A publication Critical patent/TW201720073A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a method for downlink channel estimation in a base station of a Multiple-Input Multiple-Output wireless communication system, wherein a base station of the Multiple-Input Multiple-Output wireless communication system has NT antennas and NFFT sub-carriers, the method comprising: precoding a pilot signal originated from each radio frequency link by means of a first analog precoding matrix associated with the each radio frequency link to obtain a first pilot signal; and mapping the precoded first pilot signal to all antennas connected to the each radio frequency link, and transmitting the precoded first pilot signal by the antennas.

Description

用於下行鏈路通道估計的方法 Method for downlink channel estimation

本發明涉及無線網路技術,尤其是,涉及一種在多入多出無線通訊系統的基地台中用於下行鏈路通道估計的方法、一種在多入多出無線通訊系統中用於下行鏈路通道估計的基地台、一種在多入多出無線通訊系統的用戶設備中用於下行鏈路通道估計的方法以及一種在多入多出無線通訊系統中用於下行鏈路通道估計的用戶設備。 The present invention relates to wireless network technologies, and more particularly to a method for downlink channel estimation in a base station of a multiple input multiple output wireless communication system, and a downlink channel in a multiple input multiple output wireless communication system An estimated base station, a method for downlink channel estimation in a user equipment of a multiple input multiple output wireless communication system, and a user equipment for downlink channel estimation in a multiple input multiple output wireless communication system.

由於其在降低射頻鏈路的數量並且同時實現完全的波束成形/分集增益方面的卓越的能力,混合的類比/數位預編碼為多入多出MIMO技術提供了一種低成本並且高效率的解決方案。與傳統的純數位預編碼(在其中每個天線元件必須配備單獨的射頻鏈路)相比較,混合的預編碼能夠顯著地降低射頻鏈路的數量並且同時實現相似的性能。混合的預編碼的另一個重要的優點在於其具有非常低的訓練和回饋開銷,與全數位預編碼相比較的話,這一點在分頻多工FDD之中非常有用。由於對基於純數位預編碼的多入多出MIMO系統來說,其所需的訓練和回饋開銷隨著天 線數量的增加而線性地增長,從而使得基於數位預編碼的多入多出MIMO系統在FDD之下難於實現。借助於混合預編碼,該問題得以解決。在混合預編碼之中,空間的信號處理操作被分割成高維度的類比預編碼和低維度的數位預編碼。類比的預編碼使用低成本的射頻相移器網路來實現,該相移器網路能夠以不同的結構來實現。基於混合預編碼演算法,類比預編碼被設計成與通道空間相關矩陣相匹配,並且數位預編碼被設計成與類比預編碼之後的有效通道相匹配。該演算法使得混合預編碼適於分頻多工FDD系統,因為類比預編碼矩陣的計算只需要慢變化的寬頻通道相關矩陣資訊,其所需的訓練和回饋大小僅隨著射頻鏈路數量線性增長,而不是隨著天線數線性增長。由於射頻鏈路數量遠小於天線數量,所需的訓練和回饋開銷大大降低。 Hybrid analog/digital precoding provides a low-cost and efficient solution for MIMO technology due to its superior ability to reduce the number of RF links and achieve full beamforming/diversity gain. . Compared to traditional pure digital precoding (where each antenna element must be equipped with a separate RF link), hybrid precoding can significantly reduce the number of RF links and achieve similar performance at the same time. Another important advantage of mixed precoding is that it has very low training and feedback overhead, which is very useful in crossover multiplex FDD compared to full digital precoding. Due to the multi-input and multi-output MIMO system based on pure digital precoding, the required training and feedback overhead with the day The number of lines increases linearly, which makes the multi-input and multi-output MIMO system based on digital precoding difficult to implement under FDD. This problem is solved by means of hybrid precoding. In hybrid precoding, spatial signal processing operations are partitioned into high dimensional analog precoding and low dimensional digital precoding. Analog precoding is achieved using a low cost RF phase shifter network that can be implemented in different configurations. Based on the hybrid precoding algorithm, the analog precoding is designed to match the channel spatial correlation matrix, and the digital precoding is designed to match the effective channel after the analog precoding. This algorithm makes hybrid precoding suitable for frequency division multiplexing FDD systems, because the calculation of analog precoding matrix only requires slow varying broadband channel correlation matrix information, and the required training and feedback size is only linear with the number of RF links. Growth, not linear growth with the number of antennas. Since the number of RF links is much smaller than the number of antennas, the required training and feedback overhead is greatly reduced.

為了在FDD系統之下實現混合預編碼,下行鏈路物理通道估計對於用戶來說是需要的,以便其估計並且回饋空間的相關矩陣。傳統的物理通道估計技術允許不同的天線在不同的時頻資源之上傳輸導頻,因此不同天線的導頻間沒有干擾。然而在混合預編碼架構下,由於相移器網路的使用,這種傳統的導頻傳輸技術並不適用。連接到相同射頻鏈路的天線必須使用相同的時頻資源來傳輸導頻,造成了不同天線的導頻間的干擾。 In order to implement hybrid precoding under the FDD system, downlink physical channel estimation is needed for the user to estimate and feed back the spatial correlation matrix. Traditional physical channel estimation techniques allow different antennas to transmit pilots over different time-frequency resources, so there is no interference between pilots of different antennas. However, under the hybrid precoding architecture, this traditional pilot transmission technique is not suitable due to the use of the phase shifter network. Antennas connected to the same RF link must use the same time-frequency resources to transmit pilots, causing interference between pilots of different antennas.

根據上述對先前技術以及存在的技術問題的理解,在本發明之中將會討論針對混合的類比/數位預編碼系統的下行鏈路(DL)通道估計問題。由於混合預編碼的特定的硬體結構的緣故,傳統的下行鏈路通道估計技術使用的不同天線間相互正交的導頻用於在此並不適用了。由於下行鏈路物理通道估計以及用戶回饋對於基地台來獲得通道狀態資訊用於預編碼至關重要,尤其是在FDD模式之下,其也為混合預編碼的關鍵技術之一。在本發明之中將會解決該問題並且提出一種高級的導頻傳輸和通道估計技術,以便解決具有任意射頻移相網路結構的混合預編碼中下行鏈路物理通道估計的問題。 Based on the above understanding of the prior art and the technical problems that exist, the downlink (DL) channel estimation problem for mixed analog/digital precoding systems will be discussed in the present invention. Due to the specific hardware structure of the hybrid precoding, the pilots of the mutually orthogonal antennas used by the conventional downlink channel estimation techniques are not applicable here. Since downlink physical channel estimation and user feedback are important for base station to obtain channel state information for precoding, especially under FDD mode, it is also one of the key technologies for hybrid precoding. This problem will be solved in the present invention and an advanced pilot transmission and channel estimation technique is proposed to solve the problem of downlink physical channel estimation in hybrid precoding with any radio frequency phase shifting network structure.

本發明的第一態樣提出了一種在多入多出無線通訊系統的基地台中用於下行鏈路通道估計的方法,其中,所述多入多出無線通訊系統的基地台之中具有NT個天線和NFFT個子載波,所述方法包括:- 將源自每個射頻鏈路的導頻信號借助於與所述每個射頻鏈路相關聯的第一類比預編碼矩陣進行預編碼以得到第一導頻信號;以及- 將經過預編碼的第一導頻信號映射至與所述每個射頻鏈路連接的所有天線並且由所述天線進行傳輸。 A first aspect of the present invention provides a method for downlink channel estimation in a base station of a multiple input multiple output wireless communication system, wherein the base station of the multiple input multiple output wireless communication system has N T Antennas and N FFT subcarriers, the method comprising: - precoding a pilot signal originating from each radio frequency link by means of a first analog precoding matrix associated with each radio frequency link to obtain a first pilot signal; and - mapping the precoded first pilot signal to and from all antennas connected to each of the radio frequency links.

在本發明的一個實施例之中,源自不同的射頻鏈路的導頻信號借助於不同的OFDM符號來進行傳輸。 In one embodiment of the invention, pilot signals originating from different radio frequency links are transmitted by means of different OFDM symbols.

在本發明的一個實施例之中,經過預編碼的第一導頻信號將由與所述每個射頻鏈路相連接的所有天線同時進行 傳輸。 In one embodiment of the invention, the precoded first pilot signal is simultaneously carried out by all antennas connected to each of the radio frequency links transmission.

在本發明的一個實施例之中,由該基地台所使用的射頻鏈路的數量S小於天線的數量NT。 In one embodiment of the invention, the number S of radio frequency links used by the base station is less than the number NT of antennas.

在本發明的一個實施例之中,由該基地台從其所使用的射頻鏈路的數量S中選擇數量為sS個射頻鏈路用於導頻信號的傳輸。 In one embodiment of the invention, the base station selects the number s from the number S of radio frequency links it uses. S radio frequency links are used for transmission of pilot signals.

在本發明的一個實施例之中,所述方法進一步包括:- 對包含T個OFDM符號和NFFT個子載波的時頻資源進行分區以得到包含相同數量的時頻資源單元的時頻資源塊;- 對每個時頻資源塊之中的導頻信號採用與所述時頻資源塊相關聯的第二類比預編碼矩陣進行預編碼以得到第二導頻信號;以及- 將經過預編碼的第二導頻信號映射至與所述每個射頻鏈路連接的所有天線並且由所述天線進行傳輸。 In an embodiment of the present invention, the method further includes: - partitioning a time-frequency resource including T OFDM symbols and N FFT subcarriers to obtain a time-frequency resource block including the same number of time-frequency resource units; - precoding the pilot signal in each time-frequency resource block with a second analog precoding matrix associated with the time-frequency resource block to obtain a second pilot signal; and - the pre-coded first The two pilot signals are mapped to and transmitted by all of the antennas connected to each of the radio frequency links.

在本發明的一個實施例之中,所述第二類比預編碼矩陣中的對應不同天線的每行相互之間相互正交。 In an embodiment of the invention, each row of the corresponding different antenna in the second analog precoding matrix is orthogonal to each other.

本發明的第二態樣提出了一種在多入多出無線通訊系統中用於下行鏈路通道估計的基地台,其中,所述基地台的特徵在於實施根據本發明的第一態樣所描述的方法。 A second aspect of the present invention provides a base station for downlink channel estimation in a multiple input multiple output wireless communication system, wherein the base station is characterized by implementing the first aspect of the present invention Methods.

本發明的協力廠商態樣提出了一種在多入多出無線通訊系統的用戶設備中用於下行鏈路通道估計的方法,所述方法包括:- 從與所述用戶設備連接的基地台接收第一導頻信 號,其中,所述第一導頻信號源自每個射頻鏈路,借助於與所述每個射頻鏈路相關聯的第一類比預編碼矩陣進行預編碼、被映射至與所述每個射頻鏈路連接的所有天線並且由所述天線進行傳輸;以及- 所述用戶設備根據所述第一導頻信號進行時延估計。 The third party aspect of the present invention proposes a method for downlink channel estimation in a user equipment of a multiple input multiple output wireless communication system, the method comprising: - receiving a first base station connected to the user equipment a pilot letter No. wherein the first pilot signal is derived from each radio frequency link, precoded by means of a first analog precoding matrix associated with each radio frequency link, mapped to each of said each All antennas connected by the radio frequency link are transmitted by the antenna; and - the user equipment performs time delay estimation based on the first pilot signal.

在本發明的一個實施例之中,所述方法進一步包括:- 從與所述用戶設備連接的基地台接收第二導頻信號,其中,所述第二導頻信號為對包含T個OFDM符號和NFFT個子載波的時頻資源進行分塊以得到包含相同數量的時頻資源單元的時頻資源塊並且對每個時頻資源塊之中的導頻信號採用與所述時頻資源塊相關聯的第二類比預編碼矩陣進行預編碼、被映射至與所述每個射頻鏈路連接的所有天線並且由所述天線進行傳輸而得到第二導頻信號;以及- 所述用戶設備根據所述第二導頻信號進行通道估計。 In an embodiment of the invention, the method further comprises: - receiving a second pilot signal from a base station connected to the user equipment, wherein the second pilot signal is a pair comprising T OFDM symbols And time-frequency resources of the N FFT sub-carriers are partitioned to obtain time-frequency resource blocks including the same number of time-frequency resource units and the pilot signals in each time-frequency resource block are associated with the time-frequency resource blocks. a second type of precoding matrix is precoded, mapped to all antennas connected to each of the radio frequency links and transmitted by the antenna to obtain a second pilot signal; and - the user equipment is The second pilot signal is used for channel estimation.

在本發明的一個實施例之中,所述用戶設備還根據所述時延估計來輔助通道估計。 In an embodiment of the invention, the user equipment further assists channel estimation based on the delay estimate.

本發明的第四態樣提出了一種在多入多出無線通訊系統中用於下行鏈路通道估計的用戶設備,其中,所述基地台的特徵在於實施根據本發明的協力廠商面所描述的方法。 A fourth aspect of the present invention provides a user equipment for downlink channel estimation in a multiple input multiple output wireless communication system, wherein the base station is characterized by implementing a vendor described in accordance with the present invention. method.

如上所述,現有的通道估計技術設計用於全數位預編 碼系統,其並不能適用於帶有相移器網路的混合預編碼系統,因為相移器的引入。而依據本發明的技術能夠成功地解決以上問題並且達到與使用相同的導頻開銷的現有的通道估計一樣的性能。 As mentioned above, existing channel estimation techniques are designed for full digital pre-programming The code system, which does not apply to hybrid precoding systems with phase shifter networks, is the introduction of phase shifters. The technique according to the present invention can successfully solve the above problems and achieve the same performance as existing channel estimation using the same pilot overhead.

100‧‧‧在時延估計階段的導頻傳輸解決方案的示意圖 100‧‧‧ Schematic diagram of the pilot transmission solution in the delay estimation phase

200‧‧‧在通道估計階段的導頻傳輸解決方案的示意圖 200‧‧‧ Schematic diagram of the pilot transmission solution during the channel estimation phase

透過參照圖式閱讀以下所作的對非限制性實施例的詳細描述,本發明的其它特徵、目的和優點將會變得更明顯。 Other features, objects, and advantages of the present invention will become apparent from the Detailed Description of the Description.

圖1示出了在時延估計階段的導頻傳輸解決方案的示意圖100;以及 圖2示出了在通道估計階段的導頻傳輸解決方案的示意圖200。 Figure 1 shows a schematic diagram 100 of a pilot transmission solution during a delay estimation phase; Figure 2 shows a schematic diagram 200 of a pilot transmission solution during the channel estimation phase.

在圖中,貫穿不同的示圖,相同或類似的圖式符號說明表示相同或相似的裝置(模組)或步驟。 Throughout the drawings, the same or similar drawing symbols indicate the same or similar devices (module) or steps.

為了更好地說明本發明的方法和裝置以及使用依據本發明的方法或包括依據本發明的裝置的應用於無線通訊網路的用戶設備和基地台,以下首先介紹本發明所使用到的兩項重要現有技術,分別為調製寬頻轉換器技術和迴圈特性檢測技術。以下參照圖式及相關公式做簡單介紹。 In order to better illustrate the method and apparatus of the present invention and the user equipment and base station for use in a wireless communication network using the method according to the invention or the apparatus according to the invention, the following two important aspects of the invention are first introduced. The prior art is a modulation broadband converter technology and a loop characteristic detection technique, respectively. The following is a brief introduction with reference to the drawings and related formulas.

在以下較佳的實施例的具體描述中,將參考構成本發明一部分的所附的圖式。所附的圖式透過示例的方式示出 了能夠實現本發明的特定的實施例。示例的實施例並不旨在窮盡根據本發明的所有實施例。可以理解,在不偏離本發明的範圍的前提下,可以利用其他實施例,也可以進行結構性或者邏輯性的修改。因此,以下的具體描述並非限制性的,且本發明的範圍由所附的申請專利範圍所限定。 In the detailed description of the preferred embodiments that follow, reference is made to the accompanying drawings that form a part of the invention. The attached drawings are shown by way of example Particular embodiments of the invention are possible. The exemplary embodiments are not intended to be exhaustive of all embodiments in accordance with the invention. It is to be understood that other embodiments may be utilized and structural or logical modifications may be made without departing from the scope of the invention. Therefore, the following detailed description is not to be construed as limiting the scope of the invention.

以下將考慮一個多入多出MIMO的OFDM系統具有NT個基地台天線、單天線用戶以及NFFT個子載波。其中基地台使用S(S<<NT)個射頻鏈路,並採用混合預編碼技術進行預編碼。混合預編碼能夠採用任意結構的相移器網路。所提議的下行鏈路物理通道估計技術包括兩個階段,分別為時延估計階段和通道估計階段。接下來將分別介紹這兩個階段。 The following will be considered a multi-input multiple-output MIMO-OFDM system with N T antennas of base stations, and a single-antenna user N FFT subcarriers. The base station uses S (S<<N T ) radio frequency links and uses precoding with hybrid precoding technology. Hybrid precoding can employ a phase shifter network of any configuration. The proposed downlink physical channel estimation technique includes two phases, a delay estimation phase and a channel estimation phase. These two phases will be introduced separately.

首先介紹時延估計階段,在該階段,射頻鏈路中的所有的射頻鏈路或者一部分的射頻鏈路被用於傳輸導頻以便用戶估計時延。源自不同的射頻鏈路的導頻在不同的OFDM符號之中加以傳輸。在每個OFDM符號之中僅僅傳輸來自一個射頻鏈路的導頻。對於每個射頻鏈路來說,導頻被非連續等間隔地插入到整個頻寬之上。源自一個射頻鏈路的導頻首先由相應於該射頻鏈路的類比預編碼矩陣進行預編碼,然後映射到與該射頻鏈路相連接的所有的天線之上並且加以傳輸。不同的射頻鏈路使用不同的類比預編碼矩陣。在該階段的一個導頻傳輸的示例如圖1所示,其中,x表示導頻信號並且cs(s=1~S)表示用於第s個射頻鏈路的NT*1的類比的預編碼矩陣。經過預編碼的源自一 個射頻鏈路的導頻從所有連接至該射頻鏈路的天線同時傳輸。 First, the delay estimation phase is introduced, in which all radio links or a part of the radio link in the radio link are used to transmit pilots for the user to estimate the delay. Pilots originating from different radio frequency links are transmitted among different OFDM symbols. Only pilots from one radio frequency link are transmitted among each OFDM symbol. For each RF link, the pilots are inserted non-continuously over the entire bandwidth. The pilot originating from one radio frequency link is first precoded by an analog precoding matrix corresponding to the radio frequency link, then mapped onto all antennas connected to the radio frequency link and transmitted. Different RF links use different analog precoding matrices. An example of a pilot transmission at this stage is shown in Figure 1, where x represents the pilot signal and c s (s = 1~S) represents the analogy of NT *1 for the sth radio link. Precoding matrix. The precoded pilots originating from one radio link are simultaneously transmitted from all antennas connected to the radio link.

經過基地台側的這樣的預編碼處理之後,用戶將會從射頻鏈路接收到時域的導頻,其測量在每個時延之上的功率,然後平均化源自所有射頻鏈路的導頻信號的功率並且找出具有超過預先限定的閾值的功率的時延作為所估計的時延。在該階段,用戶並不需要知道在基地台側所使用的類比的預編碼矩陣。 After such precoding processing on the base station side, the user will receive pilots in the time domain from the radio link, which measures the power above each delay and then averages the leads from all RF links. The power of the frequency signal and the time delay with power exceeding a predefined threshold is found as the estimated time delay. At this stage, the user does not need to know the analog precoding matrix used on the base station side.

以下將介紹信道估計階段。假定該通道在Tcoh個OFDM符號和Wcoh個子載波上是基本平坦的。從中選擇W和T個相應的資源,從而使得Wmin(Wcoh,S)和NT/WTTcoh。S個射頻鏈路中的W個被用於在T個連續的OFDM符號之中傳輸導頻。T個OFDM符號上的時頻資源由W個射頻鏈路以正交的方式來共用。來自一個射頻鏈路的導頻首先由與該射頻鏈路相對應的類比預編碼矩陣來加以預編碼、映射到所有與該射頻鏈路相連接的天線並且然後加以傳輸。不同的射頻鏈路在不同的OFDM符號之中使用不同的類比預編碼矩陣。在圖2之中示出了在該通道估計階段的導頻傳輸方案,其中,x表示導頻信號並且c s,t(s=1~S)表示第s個射頻鏈路在第t個OFDM符號之中所使用的類比預編碼矩陣。在該圖之中,不同的射頻鏈路在不同的子載波之上傳輸導頻。 The channel estimation phase will be described below. It is assumed that the channel is substantially flat on T coh OFDM symbols and W coh subcarriers. Select W and T corresponding resources to make W Min(W coh ,S) and N T /W T T coh . W of the S radio links are used to transmit pilots among T consecutive OFDM symbols. The time-frequency resources on the T OFDM symbols are shared by the W radio frequency links in an orthogonal manner. The pilot from one radio frequency link is first precoded by an analog precoding matrix corresponding to the radio frequency link, mapped to all antennas connected to the radio frequency link, and then transmitted. Different RF links use different analog precoding matrices among different OFDM symbols. A pilot transmission scheme at the channel estimation stage is shown in FIG. 2, where x represents a pilot signal and c s,t (s=1~S) represents the sth radio link in the tth OFDM The analog precoding matrix used in the symbols. In this figure, different radio frequency links transmit pilots on different subcarriers.

如上所述,連接至相同的射頻鏈路的天線將會使用相同的時頻資源用於傳輸導頻,這將在接收端帶來天線之間 的干擾。因此,在該通道估計階段所使用的類比的預編碼矩陣必須小心地加以設計從而有利於天線間干擾的消除。鑒於此目的,本發明將T個OFDM符號上的時頻資源分為NFFT/W個時頻資源塊,每個時頻資源塊包括W個連續的子載波和T個連續OFDM符號。由於WWcoh並且TTcoh,所以在每個時頻資源塊上的通道可以被認為是平坦的。該類比預編碼矩陣被設計使得連接至同一射頻鏈路的不同的天線在每個時頻資源塊上經歷的類比預編碼向量之間相互正交。例如,假設所有的天線被分為L個層,相同層內的天線連接至相同的射頻鏈路,並且不同層內的天線被連接至不同的射頻鏈路。假定S(1)表示連接至在第1個層之中的天線的射頻鏈路的索引集並且假定W=S。那麼在圖2之中所使用的類比的預編碼矩陣必須被設計為使得由{cs,t | sS(1),t=1~T}為列所組成的矩陣具有相互正交的行。 As mentioned above, antennas connected to the same RF link will use the same time-frequency resources for transmitting pilots, which will cause interference between the antennas at the receiving end. Therefore, the analog precoding matrix used in the channel estimation phase must be carefully designed to facilitate the elimination of inter-antenna interference. In view of this purpose, the present invention divides time-frequency resources on T OFDM symbols into N FFT /W time-frequency resource blocks, and each time-frequency resource block includes W consecutive sub-carriers and T consecutive OFDM symbols. Due to W W coh and T T coh , so the channel on each time-frequency resource block can be considered flat. The analog precoding matrix is designed such that different antennas connected to the same radio frequency link are orthogonal to each other between analog precoding vectors experienced on each time-frequency resource block. For example, assume that all antennas are divided into L layers, antennas within the same layer are connected to the same RF link, and antennas in different layers are connected to different RF links. It is assumed that S(1) represents the index set of the radio frequency link connected to the antenna among the first layers and assumes W=S. Then the analog precoding matrix used in Figure 2 must be designed such that {c s,t | s S(1), t=1~T} is a matrix composed of columns having mutually orthogonal rows.

用戶接收到T個OFDM符號上的來自所有射頻鏈路的導頻後,用戶將會實施MMSE通道估計。在第一階段所產生的時延估計將被用於估計該通道的頻域相關矩陣,估計出的頻域相關矩陣將被用於增強MMSE通道估計。借助於類比預編碼矩陣的正交設計的能夠成功地在MMSE通道估計之中消除天線間的干擾。 After the user receives pilots from all radio links on T OFDM symbols, the user will implement MMSE channel estimation. The delay estimate generated in the first phase will be used to estimate the frequency domain correlation matrix of the channel, and the estimated frequency domain correlation matrix will be used to enhance the MMSE channel estimate. Inter-antenna interference can be successfully eliminated in the MMSE channel estimation by means of the orthogonal design of the analog precoding matrix.

在該通道估計階段,需要知道被用於傳輸導頻的類比預編碼矩陣。這樣的資訊在之前的方案之中並不需要,因為不同的基地台能夠使用不同的類比預編碼矩陣。類比預 編碼矩陣的結構取決於所使用的混合預編碼中相移網路的結構。因此,基地台必須透過下行信令來通知用戶自己所使用的類比預編碼矩陣。所涉及的信令開銷是非常小的,因為僅僅需要指示該混合的由基地台所使用的預編碼相移網路的結構便可,並且其並不隨時間和頻率而變化。 In the channel estimation phase, the analog precoding matrix used to transmit the pilots needs to be known. Such information is not needed in previous scenarios because different base stations can use different analog precoding matrices. Analogy pre The structure of the coding matrix depends on the structure of the phase-shifted network in the hybrid precoding used. Therefore, the base station must inform the user of the analog precoding matrix used by the downlink signaling. The signaling overhead involved is very small, as only the structure of the precoded phase shifting network used by the base station for the hybrid needs to be indicated, and it does not vary with time and frequency.

以下將借助於公式進一步闡述本發明的構思。 The concept of the invention will be further elucidated below by means of a formula.

以下公式基於以下前提,即OFDM MIMO系統具有NFFT個子載波,基地台裝備有NT個天線並且配備S<NT的S個射頻鏈路。所有天線被分成L個層,每層包含NT/L個天線。同一層的天線被連接至相同的射頻鏈路上,在不同層的天線被連接至不同的射頻鏈路。 The following formula is based on the premise that OFDM MIMO system with N FFT subcarriers, the base station is equipped with N T antennas and is equipped S <N T S is a radio frequency link. All antennas are divided into L layers, each layer containing N T /L antennas. Antennas of the same layer are connected to the same RF link, and antennas at different layers are connected to different RF links.

在時延估計階段,使用以上所提及的導頻傳輸技術,S個射頻鏈路中的M個射頻鏈路被用於在M個不同的OFDM符號之中傳輸導頻。不失一般性地,假定前M個射頻鏈路被用於傳輸導頻,假定J表示用於每個射頻鏈路的導頻傳輸的子載波的索引集並且使得J=|J|,在此假定所有的射頻鏈路使用相同的J。用戶接收到的來自第s個射頻鏈路(在第s個OFDM符號之中)的導頻在頻域上表示為: In the delay estimation phase, using the pilot transmission techniques mentioned above, M radio links in the S radio links are used to transmit pilots among M different OFDM symbols. Without loss of generality, it is assumed that the first M radio links are used to transmit pilots, assuming J denotes the index set of subcarriers for pilot transmission for each radio link and makes J=|J|, here Assume that all RF links use the same J. The pilot received by the user from the sth radio link (in the sth OFDM symbol) is represented in the frequency domain as:

其中,ys表示接收到的來自第s個射頻鏈路的導頻信號,它是一個大小為J*1的列向量,H表示NT*NFFT維的 頻域通道矩陣,H(:,J)表示包括具有索引為J的列的H子矩陣,x表示導頻信號並且cs(s=1~S)表示用於第s個射頻鏈路的NT*1維的類比預編碼矩陣。然後,用戶對於ys進行離散傅裡葉變換(DFT)從而將其從頻域轉換成時域為: Where y s represents the received pilot signal from the sth radio link, which is a column vector of size J*1, and H represents the frequency domain channel matrix of the N T *N FFT dimension, H(:, J) denotes a H submatrix comprising a column with an index of J, x denotes a pilot signal and c s (s=1~S) denotes an analog precoding matrix for the NT *1 dimension of the sth radio link . The user then performs a discrete Fourier transform (DFT) on y s to convert it from the frequency domain to the time domain:

其中, y s 的時域表示, F N FFT -階的傅裡葉矩陣,為該通道的N T ×N FFT 維時域脈衝回應矩陣並且。眾所周知,具有集中式天線的無線通道在所有的天線之上通常具有稀疏的並且相同的時延,所以僅僅具有非常少的非零列並且由此使得 h s 也是稀疏向量。 h s 中非零元素的位置表示通道的時延,可以用下式來估計: among them, For the time domain representation of y s , F is the N FFT - order Fourier matrix, The N T × N FFT dimension time domain impulse response matrix for the channel and . It is well known that wireless channels with centralized antennas typically have sparse and identical delays over all antennas, so There are only very few non-zero columns and thus h s is also a sparse vector. The position of the non-zero element in h s represents the delay of the channel and can be estimated by:

其中,為時延的估計,的第d個元素並且Thred為預先限定的閾值。在此應當注意,所估計的時延必須小於導頻長度J。這是由當使用非連續等間隔插入的導頻時 F *(:,) F T (:,)之中的元素的重複性所造成的。因此,導頻長度必須被選擇以使得J>dmax,其中,dmax為最大時延擴展。 among them, For the estimation of delay, for The dth element and Thred is a predefined threshold. It should be noted here that the estimated delay must be less than the pilot length J. This is caused by the use of non-continuously spaced pilots when F * (:, ) F T (:, Caused by the repeatability of the elements in ). Therefore, the pilot length must be chosen such that J > dmax, where dmax is the maximum delay spread.

接下來介紹信道估計,其中,Rs={(t,w)}表示第s個射頻鏈路用來傳輸導頻的OFDM符號和子載波對的索引集合,即在僅當(t,w) Rs時,第s個射頻鏈路在第t個OFDM符號的第w個子載波之上所傳輸導頻。那麼在第t個OFDM符號的第w個子載波之上所接收到的導頻表示為: Next, the channel estimation is introduced, where Rs={(t, w)} represents the index set of the OFDM symbol and the subcarrier pair used by the sth radio link to transmit the pilot, that is, only when (t, w) In Rs, the sth radio frequency link transmits pilots on the wth subcarrier of the tth OFDM symbol. Then the pilot received above the wth subcarrier of the tth OFDM symbol is represented as:

其中,hw is為H的第w列,Ct=[c1,t...cs,t...cS,t],bt,w為S×1維的向量,其第s個元素bt,w(s)指示第s個射頻鏈路在第t個OFDM符號的第w個子載波之上是否傳輸的導頻,即: 考慮所有T個OFDM符號,公式(4)能夠重寫為(假定在T(TTcoh)個OFDM符號之上的通道平坦) Where h w is the wth column of H, Ct=[c 1,t ...c s,t ...c S,t ], b t,w is a vector of S×1 dimension, its s The elements b t,w (s) indicate whether the pilot of the sth radio link is transmitted over the wth subcarrier of the tth OFDM symbol, ie: Considering all T OFDM symbols, equation (4) can be rewritten as (assuming T(T) T coh ) The channel above the OFDM symbol is flat)

其中, A w =[ C 1 b 1,w C T b T,w ] (7) Where A w =[ C 1 b 1, w ... C T b T , w ] (7)

將在所有子載波之上所接收到的導頻疊加入一個大的 矩陣,從而得到: Add the pilot stack received on all subcarriers to a large matrix, resulting in:

其中, among them,

以及 as well as

接收到之後,用戶使用MMSE通道估計技術來估計通道矩陣H,,定義: received After that, the user uses the MMSE channel estimation technique to estimate the channel matrix H, which defines:

以及 as well as

其中,σ2為雜訊方差。在公式(11)和(12)之中,Rh被定義為: Where σ 2 is the noise variance. Among the formulas (11) and (12), R h is defined as:

其中,D=diag(d),d為使用時延估計結果而得到的通道的功率時延屬性(PDP)。然後,使用MMSE得到為: Where D=diag(d), d is the power delay property (PDP) of the channel obtained by using the delay estimation result. Then, use MMSE to get for:

然後將的估值從向量形式變換為矩陣形式得到通道矩陣H的估值。 followed by Valuation The estimate of the channel matrix H is obtained by transforming from vector form to matrix form.

接下來介紹用於通道估計的類比預編碼矩陣的設計: Next, we introduce the design of an analog precoding matrix for channel estimation:

在該部分將討論如何設計類比預編碼矩陣{Ct,t=1~T}以便在用戶側便利化天線間干擾消除。為了簡化起見,假定NFFT/W為整數。T個OFDM符號中的NFFT個子載波被分為NFFT/W個資源塊,每個資源塊包含W個子載波和T個OFDM符號。在每個W乘T的資源塊上的通道能夠被認為是平坦的。 In this section we will discuss how to design an analog precoding matrix {C t , t = 1~T} to facilitate inter-antenna interference cancellation on the user side. For the sake of simplicity, assume that N FFT /W is an integer. The N FFT subcarriers in the T OFDM symbols are divided into N FFT / W resource blocks, and each resource block includes W subcarriers and T OFDM symbols. The channel on each W by T resource block can be considered flat.

假設類比相移器網路被分成L個層,每個層包含一個(S/L)×(NT/L)維的子網路。在相同的層之中的天線被連接至相同的射頻鏈路,不同層的天線連接至不同的射頻鏈路。其中,類比預編碼矩陣Ct必須遵循以下塊對角線結構: Assume that the analog phase shifter network is divided into L layers, each layer containing a subnetwork of (S/L) × (N T /L) dimensions. Antennas in the same layer are connected to the same radio frequency link, and antennas of different layers are connected to different radio frequency links. Among them, the analog precoding matrix C t must follow the following block diagonal structure:

其中,Ct,1(l=1~L)為相應於第1層的(NT/L)×(S/L)維的類比預編碼矩陣。以相同的方式來處理bt,w從而得到: Where C t,1 (l=1~L) is an analog precoding matrix corresponding to the (N T /L)×(S/L) dimension of the first layer. Process b t,w in the same way to get:

其中,bt,w,1為由第1層在第t個OFDM符號的第w個 子載波之上所使用的映射序列,它是一個S/L×1維的向量。該映射序列{bt,w,1}是遵循以下規則設計的: Where b t,w,1 is a mapping sequence used by the first layer above the wth subcarrier of the tth OFDM symbol, which is an S/L×1 dimensional vector. The mapping sequence {b t,w,1 } is designed according to the following rules:

W個射頻鏈路以正交的方式平均地共用每個大小為W乘T的資源塊。 Each of the W radio frequency links equally shares each resource block of size W by T in an orthogonal manner.

該相同的映射規則在所有的大小為W乘T的資源塊中加以重複。 This same mapping rule is repeated in all resource blocks of size W by T.

遵循以上兩點規則來設計映射序列。用Rs,j表示第s個(sW)的射頻鏈路在第j個資源塊之中用於傳輸導頻的OFDM符號和子載波對的索引集合,那麼{Rs,j}設計成如下形式,即: Follow the above two rules to design the mapping sequence. Use R s,j to denote the sth (s The RF link of W) is used to transmit the index set of the pilot OFDM symbol and the subcarrier pair among the jth resource blocks, then {R s,j } is designed in the following form, namely:

以及 as well as

基於公式(15)和(16),在公式(4)的第t個OFDM符號之中的第w個子載波之上所接收到的導頻能夠以以下公式來表示,即: Based on equations (15) and (16), the pilot received above the wth subcarrier among the tth OFDM symbols of equation (4) can be expressed by the following formula, namely:

其中,hw,1為hw的相應於在第1層的天線的(NT/L)×1的子向量,即: Where h w,1 is the sub-vector of h W corresponding to (N T /L)×1 of the antenna at layer 1, ie:

由於在不同的層之中的天線被連接至不同的射頻鏈路並且不同的射頻鏈路在不同的時頻資源之上傳輸導頻,所以在不同層的天線之間不存在干擾。那麼,公式(20)能夠針對特定的層簡化為: Since antennas among different layers are connected to different radio frequency links and different radio frequency links transmit pilots over different time-frequency resources, there is no interference between antennas of different layers. Then, equation (20) can be simplified for a specific layer:

在公式(22)之中表示由第1層的射頻鏈路用來傳輸導頻的OFDM符號和子載波對的索引集合,其中,S(1)為在第1個層之中的射頻鏈路的索引集。考慮到所有的在T個OFDM符號之中的所有子載波,從第1層所接收的導頻能夠表示為: In formula (22) An index set representing OFDM symbols and subcarrier pairs used by the radio link of layer 1 to transmit pilots, where S(1) is the index set of the radio frequency links among the first layers. Considering all of the subcarriers among the T OFDM symbols, the pilot received from the layer 1 can be expressed as:

其中, A w,l =[ C 1,l b 1,w,l C t, l b t,w,l C T,l b T,w,l ] (24) Where A w , l =[ C 1, l b 1, w , l ... C t , l b t , w , l ... C T , l b T , w , l ] (24)

為了便於消除不同層中天線間的干擾,{Ct,1,t}被設計成使得源自相同的層的天線的導頻在每個大小為W乘T的資源塊上使用相互正交的類比預編碼向量來進行類比預編碼,從而在接收段可以使用匹配濾波器來方便地去除天線間干擾。考慮第j個(j=1~NFFT/W)個資源塊。在第j個資源塊上相應於第1層的類比預編碼矩陣為: In order to facilitate the elimination of interference between antennas in different layers, {C t,1 , t} is designed such that pilots of antennas originating from the same layer use analogy precoding with mutually orthogonal analog precoding vectors on each resource block of size W by T, so that matching can be used in the receiving segment Filters to easily remove inter-antenna interference. Consider the jth (j=1~N FFT /W) resource blocks. The analog precoding matrix corresponding to layer 1 on the jth resource block is:

使用公式(17)至(19)之中的映射規則,L層均勻地以正交的方式共用在每個資源塊之中的時頻資源,因此,僅僅具有TW/L個非零的列。(W必須為L的倍數),設定的非零列組成的(NT/L)×(TW/L)維的子矩陣。透過合理設計{Ct,1,t}從而使得具有正交的行,即: Using the mapping rules among the equations (17) to (19), the L layer uniformly shares the time-frequency resources among each resource block in an orthogonal manner, and therefore, There are only TW/L non-zero columns. (W must be a multiple of L), set for The sub-matrices of the (N T /L) × (TW/L) dimension composed of non-zero columns. Through reasonable design {C t,1 , Thus making Have orthogonal rows, ie:

(注意:公式(26)僅僅在NT/WT下才可行),為了滿足公式(26)的要求,如此地設計{Ct,1}:定義U為(TW/L)×(TW/L)維的單位陣。用{cs,t,1,s=1~S}表示Ct,1的列,以如下方式設計cs,t,1,即: (Note: Equation (26) is only at N T /W In order to satisfy the requirement of equation (26), {C t,1 } is designed such that U is a unit matrix of (TW/L)×(TW/L) dimension. Let {c s,t,1 ,s=1~S} denote the column of C t,1 and design c s,t,1 as follows:

在公式(27)之中,[cs,t,1 |(t,w)R1]為滿足(t,w)R1的cs,t,1作為列所組成的矩陣。將由公式(17)至(19)所產生的映射序列和由公式(27)和(28)所產生的類比預編碼矩陣相結合能夠很簡單地看出公式(26)的要求得以滿足了。 In the formula (27), [c s,t,1 |(t,w) R 1 ] is satisfied (t, w) c s,t,1 of R 1 is a matrix composed of columns. Combining the mapping sequence produced by equations (17) through (19) with the analog precoding matrix produced by equations (27) and (28) makes it easy to see that the requirements of equation (26) are satisfied.

為了簡化起見,將類比預編碼矩陣和映射序列的設計規則總結為以下幾點:選擇W和T使得Wmin(Wcoh,S)並且NT/WTTcoh並且W還應該為L的整數倍;對L層使用公式(17)至(19)來產生映射序列{bt,w,1};以及使用公式(27)和(28)來對L層計算類比預編碼矩陣{Ct,1}。 For the sake of simplicity, the design rules for the analog precoding matrix and the mapping sequence are summarized as follows: Select W and T to make W Min(W coh ,S) and N T /W T T coh and W should also be an integer multiple of L; use the formulas (17) to (19) for the L layer to generate the mapping sequence {b t, w, 1 }; and use equations (27) and (28) to L The layer calculates the analog precoding matrix {C t,1 }.

對於本領域中通常知識者而言,顯然本發明不限於上述示範性實施例的細節,而且在不背離本發明的精神或基本特徵的情況下,能夠以其他的具體形式實現本發明。因此,無論如何來看,均應將實施例看作是示範性的,而且是非限制性的。此外,明顯的,“包括”一詞不排除其他元素和步驟,並且措辭“一個”不排除複數。裝置申請專利範圍中陳述的多個元件也可以由一個元件來實現。第一,第二等詞語用來表示名稱,而並不表示任何特定的順序。 It is obvious to those skilled in the art that the present invention is not limited to the details of the above-described exemplary embodiments, and the present invention can be embodied in other specific forms without departing from the spirit or essential characteristics of the invention. Therefore, the embodiments are to be considered as illustrative and not limiting in any way. In addition, it is obvious that the word "comprising" does not exclude other elements and steps, and the word "a" does not exclude the plural. A plurality of elements recited in the scope of the device application patent may also be implemented by one element. The first, second, etc. words are used to denote names and do not denote any particular order.

100‧‧‧在時延估計階段的導頻傳輸解決方案的示意圖 100‧‧‧ Schematic diagram of the pilot transmission solution in the delay estimation phase

Claims (12)

一種在多入多出無線通訊系統的基地台中用於下行鏈路通道估計的方法,其中,該多入多出無線通訊系統的基地台之中具有NT個天線和NFFT個子載波,該方法包括:- 將源自每個射頻鏈路的導頻信號借助於與該每個射頻鏈路相關聯的第一類比預編碼矩陣進行預編碼以得到第一導頻信號;以及- 將經過預編碼的第一導頻信號映射至與該每個射頻鏈路連接的所有天線並且由該天線進行傳輸。 A method in MIMO wireless communication system base station for downlink channel estimation, wherein, in the MIMO wireless communication system base station having N T antennas and N FFT subcarriers, the method The method includes: - precoding a pilot signal originating from each radio frequency link by means of a first analog precoding matrix associated with each radio frequency link to obtain a first pilot signal; and - will be precoded The first pilot signal is mapped to and transmitted by all antennas connected to each of the radio frequency links. 根據請求項1所述的方法,其中,源自不同的射頻鏈路的導頻信號借助於不同的OFDM符號來進行傳輸。 The method of claim 1, wherein the pilot signals originating from different radio frequency links are transmitted by means of different OFDM symbols. 根據請求項1所述的方法,其中,經過預編碼的第一導頻信號將由與該每個射頻鏈路相連接的所有天線同時進行傳輸。 The method of claim 1, wherein the precoded first pilot signal is simultaneously transmitted by all of the antennas connected to each of the radio frequency links. 根據請求項1所述的方法,其中,由該基地台所使用的射頻鏈路的數量S小於天線的數量NTThe method of claim 1, wherein the number S of radio frequency links used by the base station is less than the number N T of antennas. 根據請求項4所述的方法,其中,由該基地台從其所使用的射頻鏈路的數量S中選擇數量為sS個射頻鏈路用於導頻信號的傳輸。 The method of claim 4, wherein the number of the radio frequency links used by the base station is selected by the base station as s S radio frequency links are used for transmission of pilot signals. 根據請求項1所述的方法,其中,該方法進一步包括:- 對包含T個OFDM符號和NFFT個子載波的時頻資源進行分區以得到包含相同數量的時頻資源單元的時頻資 源塊;- 對每個時頻資源塊之中的導頻信號採用與該時頻資源塊相關聯的第二類比預編碼矩陣進行預編碼以得到第二導頻信號;以及- 將經過預編碼的第二導頻信號映射至與該每個射頻鏈路連接的所有天線並且由該天線進行傳輸。 The method of claim 1, wherein the method further comprises: - partitioning time-frequency resources including T OFDM symbols and N FFT subcarriers to obtain a time-frequency resource block including the same number of time-frequency resource units; - precoding the pilot signal in each time-frequency resource block with a second analog precoding matrix associated with the time-frequency resource block to obtain a second pilot signal; and - a second pre-coded signal The pilot signals are mapped to and transmitted by all of the antennas connected to each of the radio frequency links. 根據請求項6所述的方法,其中,該第二類比預編碼矩陣中的對應不同天線的每行相互之間相互正交。 The method of claim 6, wherein each row of the corresponding different antenna in the second analog precoding matrix is orthogonal to each other. 一種在多入多出無線通訊系統中用於下行鏈路通道估計的基地台,其中,該基地台的特徵在於實施根據請求項1至7中任意一項所述的方法。 A base station for downlink channel estimation in a multiple input multiple output wireless communication system, wherein the base station is characterized by implementing the method according to any one of claims 1 to 7. 一種在多入多出無線通訊系統的用戶設備中用於下行鏈路通道估計的方法,該方法包括:- 從與該用戶設備連接的基地台接收第一導頻信號,其中,該第一導頻信號源自每個射頻鏈路,借助於與該每個射頻鏈路相關聯的第一類比預編碼矩陣進行預編碼、被映射至與該每個射頻鏈路連接的所有天線並且由該天線進行傳輸;以及- 該用戶設備根據該第一導頻信號進行時延估計。 A method for downlink channel estimation in a user equipment of a multiple input multiple output wireless communication system, the method comprising: - receiving a first pilot signal from a base station connected to the user equipment, wherein the first pilot a frequency signal originating from each radio frequency link, precoded by means of a first analog precoding matrix associated with each radio frequency link, mapped to all antennas connected to each radio frequency link and by the antenna Transmitting; and - the user equipment performs a time delay estimation based on the first pilot signal. 根據請求項9所述的方法,其中,該方法進一步包括:- 從與該用戶設備連接的基地台接收第二導頻信號,其中,該第二導頻信號為對包含T個OFDM符號和NFFT個子載波的時頻資源進行分塊以得到包含相同數量的時頻 資源單元的時頻資源塊並且對每個時頻資源塊之中的導頻信號採用與該時頻資源塊相關聯的第二類比預編碼矩陣進行預編碼、被映射至與該每個射頻鏈路連接的所有天線並且由該天線進行傳輸而得到第二導頻信號;以及- 該用戶設備根據該第二導頻信號進行通道估計。 The method of claim 9, wherein the method further comprises: - receiving a second pilot signal from a base station connected to the user equipment, wherein the second pilot signal is a pair comprising T OFDM symbols and N The time-frequency resources of the FFT subcarriers are partitioned to obtain a time-frequency resource block including the same number of time-frequency resource units, and the pilot signal among each time-frequency resource block is associated with the time-frequency resource block. The second class is precoded with a precoding matrix, mapped to all antennas connected to each of the radio frequency links, and transmitted by the antenna to obtain a second pilot signal; and - the user equipment performs according to the second pilot signal Channel estimation. 根據請求項10所述的方法,其中,該用戶設備還根據該時延估計來輔助通道估計。 The method of claim 10, wherein the user equipment further assists channel estimation based on the delay estimate. 在多入多出無線通訊系統中用於下行鏈路通道估計的用戶設備,其中,該基地台的特徵在於實施根據請求項9至11中任意一項所述的方法。 A user equipment for downlink channel estimation in a MIMO communication system, wherein the base station is characterized by implementing the method according to any one of claims 9 to 11.
TW105121571A 2015-07-31 2016-07-07 Method for downlink channel estimation TW201720073A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510466291.8A CN106411794B (en) 2015-07-31 2015-07-31 Method for Downlink channel estimation

Publications (1)

Publication Number Publication Date
TW201720073A true TW201720073A (en) 2017-06-01

Family

ID=56800309

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105121571A TW201720073A (en) 2015-07-31 2016-07-07 Method for downlink channel estimation

Country Status (3)

Country Link
CN (1) CN106411794B (en)
TW (1) TW201720073A (en)
WO (1) WO2017021775A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631834B (en) * 2017-03-24 2020-12-04 电信科学技术研究院 Method and device for transmitting diversity in multi-antenna communication system
CN113300745B (en) * 2021-05-18 2022-06-03 西安电子科技大学 Method for eliminating depolarization effect interference of dual-polarization dual-frequency fusion system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101328281B1 (en) * 2007-01-12 2013-11-14 삼성전자주식회사 Method and apparatus for operating control channel in multiple input multiple output system
US8233559B2 (en) * 2008-03-12 2012-07-31 Lg Electronics Inc. Method and apparatus for transmitting a pilot in multi-antenna system
KR101499255B1 (en) * 2008-03-12 2015-03-06 엘지전자 주식회사 Method of transmitting pilot in multiple antenna system
US20110075752A1 (en) * 2009-09-25 2011-03-31 Hongming Zheng Non-unitary precoding scheme for wireless communications
US9124475B2 (en) * 2011-09-19 2015-09-01 Alcatel Lucent Method and apparatus for interference cancellation for antenna arrays
CN104486044B (en) * 2014-12-30 2017-08-04 北京航空航天大学 A kind of broadband modulus mixing preprocess method in extensive mimo system

Also Published As

Publication number Publication date
CN106411794B (en) 2019-09-13
WO2017021775A1 (en) 2017-02-09
CN106411794A (en) 2017-02-15

Similar Documents

Publication Publication Date Title
CN107836089B (en) Hybrid beamforming multiple antenna wireless system
CN108886826B (en) Hybrid beamforming method for wireless multi-antenna and frequency division duplex system
JP4431578B2 (en) OFDM channel estimation and tracking of multiple transmit antennas
JP5180299B2 (en) Transmission method using delay diversity and space-frequency diversity
JP4884508B2 (en) Radio channel estimation apparatus
JP5392723B2 (en) Transmission path information feedback system, feedback signal transmission apparatus, feedback signal reception apparatus, and transmission path information feedback method
EP2156588A2 (en) Cdd precoding for open loop su mimo
JP2014099901A5 (en)
KR20100016023A (en) Multiple antennas transmit diversity scheme
WO2017219389A1 (en) Methods for sending and receiving synchronization signals and signals subjected to perfect omnidirectional pre-coding in large-scale mimo system
CN105519029A (en) OFDM communication system and method and device for receiving and transmitting signals
JP5602097B2 (en) Method for encoding data symbols having pilot symbols implicitly embedded in a resource block of a wireless network
KR100782925B1 (en) Multiple Antenna Telecommunication System
CN106341362B (en) Pilot frequency sending method, pilot frequency receiving method and device thereof
KR20110107830A (en) Multiple-antenna signal processing system and method
CN101577968B (en) Method, system and device for obtaining descending channel information
TW201720073A (en) Method for downlink channel estimation
JP6344489B2 (en) Data communication method and MIMO base station
WO2017167386A1 (en) A transmitter for transmitting and a receiver for receiving a plurality of multicarrier modulation signals
CN104717045A (en) Pilot frequency configuration determination method and base station
EP4170921A1 (en) Method and apparatus for processing signal in mulit-antenna multicarrier system
JP6288314B2 (en) Method for calculating PMI and wireless communication system
CN105991496B (en) Pilot frequency sending method, pilot frequency receiving method and device thereof
KR20230057979A (en) Method and apparatus for processing signal in multi-antenna multicarrier system
Babu et al. LOW COMPLEXITY CHANNEL ESTIMATION USING RB AND RBG ALGORITHMS