TW201713088A - Methods for resource allocation of an OFDMA WLAN system - Google Patents

Methods for resource allocation of an OFDMA WLAN system Download PDF

Info

Publication number
TW201713088A
TW201713088A TW105121739A TW105121739A TW201713088A TW 201713088 A TW201713088 A TW 201713088A TW 105121739 A TW105121739 A TW 105121739A TW 105121739 A TW105121739 A TW 105121739A TW 201713088 A TW201713088 A TW 201713088A
Authority
TW
Taiwan
Prior art keywords
length
duration
sta
data
ofdm symbol
Prior art date
Application number
TW105121739A
Other languages
Chinese (zh)
Inventor
國棟 張
樓漢卿
阿格翰柯梅 歐泰瑞
曉飛 王
辛方俊
羅伯特 奧勒森
法蘭克 拉席塔
莫尼沙 赫許
Original Assignee
內數位專利控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 內數位專利控股公司 filed Critical 內數位專利控股公司
Publication of TW201713088A publication Critical patent/TW201713088A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system

Abstract

Systems, methods, and instrumentalities are disclosed for SIG Design for OFDMA in WLAN Systems. A protocol data unit (PDU),e.g., a medium access control (MAC) PDU, may be transmitted. Data may be mapped to a plurality of OFDM symbols of the PDU. Each of the plurality of OFDM symbols may be associated with a first duration and a first length of data. A second length of data to be transmitted in a last OFDM symbol of the plurality of OFDM symbols may be determined to be less than the first length of data. The last OFDM symbol may be modified, for example, based on the second length of data, from the first duration to a second duration. The second duration may be 1/4, 1/2, or 3/4 of the first duration. An indication of the second duration of the last OFDM symbol may be sent.

Description

OFDMA WLAN系統資源分配方法OFDMA WLAN system resource allocation method

相關申請的交叉引用 本申請要求2015年7月10日提交的美國臨時專利申請No. 62/191,078,以及2015年11月3日提交的美國臨時專利申請No. 62/250,438的優先權,其全部內容通過援引結合於此。CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims priority to U.S. Provisional Patent Application No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No The content is hereby incorporated by reference.

無線區域網路(WLAN)可具有多種操作模式,如基礎結構基本服務集(BSS)模式和/或獨立BSS(IBSS)模式。基礎結構BSS模式中的WLAN可具有用於BSS的存取點(AP)。一個或多個無線發送接收單元(WTRU),如站(STA),可與AP關聯。AP可具有分發系統(DS)或其他類型的攜帶BSS內以及BSS外的訊務的有線/無線網路的存取和/或介面。源自BSS外的到STA的訊務可通過AP而到達,其可將訊務傳送到STA。在某些WLAN系統中,可發生STA到STA的通信。在某些WLAN系統中,AP可扮演STA的角色。WLAN裝置可使用波束成形(beamforming)。現有波束成形技術可能受限。可在WLAN中分配資源。A wireless local area network (WLAN) can have multiple modes of operation, such as an infrastructure basic service set (BSS) mode and/or an independent BSS (IBSS) mode. A WLAN in an infrastructure BSS mode may have an access point (AP) for a BSS. One or more wireless transmit and receive units (WTRUs), such as stations (STAs), may be associated with the AP. The AP may have a distribution system (DS) or other type of access and/or interface that carries wired/wireless networks within the BSS and outside of the BSS. The traffic from the outside of the BSS to the STA can be reached through the AP, which can transmit the traffic to the STA. In some WLAN systems, STA to STA communication can occur. In some WLAN systems, an AP can play the role of an STA. The WLAN device can use beamforming. Existing beamforming techniques may be limited. Resources can be allocated in the WLAN.

揭露了用於動態封裝的系統、方法和工具,如,WLAN系統中的正交分頻多重存取存取(OFDMA)。協定資料單元(PDU),如,媒體存取控制(MAC)PDU,可被傳送。PDU可以是實體層會聚過程(PLCP)PDU(PPDU)。資料可被映射到PDU的多個OFDM符號。多個OFDM符號中的每一個可與第一持續時間和/或資料的第一長度關聯。資料的第一長度可與多個OFDM符號中的每一個內攜帶的資料長度(如,最大資料長度)相關聯。多個OFDM符號的最後一個OFDM符號中傳送的資料的第二長度可被確定小於第一長度。例如,資料的第二長度可被確定為資料的第一長度的¼、½ 或 ¾。最後的OFDM符號可被從第一持續時間修改到第二持續時間,例如,基於資料的第二長度。第二持續時間可為第一持續時間的¼、½ 或 ¾。當資料的第二長度小於或等於資料的第一長度的¼時,最後的OFDM符號可被修改成第一持續時間的¼。當資料的第二長度大於資料的第一長度的¼並且小於或等於資料的第一長度的½時,最後的OFDM符號可被修改成第一持續時間的½。當資料的第二長度大於資料的第一長度的½並且小於或等於資料的第一長度的¾時,最後的OFDM符號可被修改成第一持續時間的¾。資料的第一長度和/或資料的第二長度可與多個可用載波相關聯。Systems, methods and tools for dynamic encapsulation are disclosed, such as orthogonal frequency division multiple access (OFDMA) in WLAN systems. Protocol Data Units (PDUs), such as Media Access Control (MAC) PDUs, can be transmitted. The PDU may be a Physical Layer Convergence Procedure (PLCP) PDU (PPDU). The data can be mapped to multiple OFDM symbols of the PDU. Each of the plurality of OFDM symbols can be associated with a first duration and/or a first length of material. The first length of the data may be associated with a length of data (eg, a maximum data length) carried within each of the plurality of OFDM symbols. The second length of the material transmitted in the last OFDM symbol of the plurality of OFDM symbols may be determined to be less than the first length. For example, the second length of the material can be determined to be 1⁄4, 1⁄2 or 3⁄4 of the first length of the material. The last OFDM symbol can be modified from the first duration to a second duration, for example, based on the second length of the data. The second duration can be 1⁄4, 1⁄2 or 3⁄4 of the first duration. When the second length of the material is less than or equal to 1⁄4 of the first length of the material, the last OFDM symbol can be modified to 1⁄4 of the first duration. When the second length of the material is greater than 1⁄4 of the first length of the material and less than or equal to 1⁄2 of the first length of the material, the last OFDM symbol can be modified to 1⁄2 of the first duration. When the second length of the material is greater than 1⁄2 of the first length of the material and less than or equal to 3⁄4 of the first length of the material, the last OFDM symbol can be modified to 3⁄4 of the first duration. The first length of the data and/or the second length of the data may be associated with a plurality of available carriers.

最後的OFDM符號的第二持續時間的指示可被發送。該指示可指出最後的OFDM符號的第二持續時間是第一持續時間的¼、½ 或 ¾。最後的OFDM符號的第二長度的指示可經由PHY標頭或MAC標頭被指示成¼、½ 或 ¾。指示可指出當資料的第二長度大於資料的第一長度的¾時第二持續時間等於第一持續時間。可基於最後的OFDM符號的第二長度生成週期性符號。通過使用快速傅立葉變換(FFT)/反FFT(IFFT)關係移除過多的填充,最後的OFDM符號可從第一長度減小到第二長度。將最後的OFDM符號從第一持續時間修改到第二持續時間可包括移除一個或多個由於使用IFFT關係導致的冗餘週期。An indication of the second duration of the last OFDM symbol can be transmitted. The indication may indicate that the second duration of the last OFDM symbol is 1⁄4, 1⁄2 or 3⁄4 of the first duration. The indication of the second length of the last OFDM symbol can be indicated as 1⁄4, 1⁄2 or 3⁄4 via the PHY header or MAC header. The indication may indicate that the second duration is equal to the first duration when the second length of the data is greater than 3⁄4 of the first length of the data. A periodic symbol can be generated based on the second length of the last OFDM symbol. By removing too much padding using a Fast Fourier Transform (FFT) / Inverse FFT (IFFT) relationship, the last OFDM symbol can be reduced from the first length to the second length. Modifying the last OFDM symbol from the first duration to the second duration may include removing one or more redundancy periods due to the use of the IFFT relationship.

現在將結合多個附圖描述示意性實施方式的詳細說明,雖然該描述提供了可能實施的具體實例,但應注意到這些細節只是示範性的並不限制本申請的範圍。The detailed description of the exemplary embodiments will be described with reference to the accompanying drawings.

第1A圖示出了示例性無線區域網路(WLAN)裝置。一個或多個裝置可被用於實施一個或多個在此描述的特徵。WLAN可包括,但不限於,存取點(AP)102、站(STA)110和站112。站110和112可以與AP 102相關聯。WLAN可被配置以實施一個或多個IEEE 802.11通信標準協定,其可包括通道存取方案,如DSSS、OFDM、OFDMA等。WLAN可在模式中操作,如基礎結構模式、ad-hoc模式等。Figure 1A shows an exemplary wireless local area network (WLAN) device. One or more devices can be used to implement one or more of the features described herein. The WLAN may include, but is not limited to, an access point (AP) 102, a station (STA) 110, and a station 112. Stations 110 and 112 can be associated with AP 102. The WLAN may be configured to implement one or more IEEE 802.11 communication standard protocols, which may include channel access schemes such as DSSS, OFDM, OFDMA, and the like. The WLAN can operate in modes such as infrastructure mode, ad-hoc mode, and the like.

操作在基礎結構模式中的WLAN可包含與一個或多個關聯的STA通信的一個或多個AP。AP和與AP相關聯的STA(一個或多個)可包含基本服務集(BSS)。例如,AP 102、站110和站112可包含BSS 122。擴展服務集(ESS)可包含一個或多個AP(具有一個或多個BSS)和與AP相關聯的STA(一個或多個)。AP可具有到分發系統(DS)116的存取和/或介面,該分發系統可為有線和/或無線的並且可攜帶到AP和/或攜帶來自AP的訊務。源自WLAN外的到WLAN中STA的訊務可在WLAN中的AP處被接收,其可向WLAN中的STA發送該訊務。源自WLAN中STA的到WLAN之外目的地(如到伺服器118)的訊務可被發送到WLAN中的AP,其可將訊務發送到目的地,如經由DS 116到網路114以被發送到伺服器118。WLAN內STA間的訊務可通過一個或多個AP而被發送。例如,源STA(如,STA 110)可具有針對目的STA(如,STA 112)的訊務。STA 110可向AP 102發送訊務,並且,AP 102可向STA 112發送訊務。A WLAN operating in infrastructure mode may include one or more APs in communication with one or more associated STAs. The AP and the STA(s) associated with the AP may include a Basic Service Set (BSS). For example, AP 102, station 110, and station 112 can include BSS 122. An extended service set (ESS) may include one or more APs (having one or more BSSs) and STAs (one or more) associated with the APs. The AP may have access and/or interfaces to a distribution system (DS) 116, which may be wired and/or wireless and may be carried to and/or carry traffic from the AP. Traffic originating from the WLAN outside the WLAN to the STA in the WLAN may be received at the AP in the WLAN, which may send the traffic to the STAs in the WLAN. Traffic originating from STAs in the WLAN to destinations other than the WLAN (e.g., to the server 118) can be sent to the AP in the WLAN, which can send the traffic to the destination, such as via the DS 116 to the network 114. It is sent to the server 118. The traffic between STAs in the WLAN can be sent through one or more APs. For example, a source STA (e.g., STA 110) may have traffic for a destination STA (e.g., STA 112). The STA 110 can send traffic to the AP 102, and the AP 102 can send traffic to the STA 112.

WLAN可操作在ad-hoc模式。ad-hoc模式WLAN可被稱為獨立基本服務集(IBBS)。在ad-hoc模式WLAN中,STA彼此可直接通信(如,STA 110可與STA 112通信,而無需通過AP路由的通信)。The WLAN can operate in ad-hoc mode. The ad-hoc mode WLAN may be referred to as an Independent Basic Service Set (IBBS). In an ad-hoc mode WLAN, STAs can communicate directly with one another (e.g., STA 110 can communicate with STAs 112 without the need for communication routed through the AP).

IEEE 802.11裝置(如,BSS中的IEEE 802.11 AP)可使用信標訊框來宣佈WLAN網路的存在。AP,如AP 102,可在通道(如,固定通道,諸如主通道)上發送信標。STA可使用通道(如主通道)建立與AP的連接。An IEEE 802.11 device (eg, an IEEE 802.11 AP in a BSS) can use a beacon frame to announce the presence of a WLAN network. An AP, such as AP 102, can transmit a beacon on a channel (eg, a fixed channel, such as a primary channel). The STA can establish a connection with the AP using a channel such as a primary channel.

STA(一個或多個)和/或AP(一個或多個)可使用載波偵聽多重存取/衝突避免(CSMA/CA)通道存取機制。在CSMA/CA中,STA和/或AP可偵聽主通道。例如,如果STA有資料要發送,STA可偵聽主通道。如果主通道被檢測到處於繁忙狀態,STA可回退。例如,WLAN或其部分可被配置以使一個STA可在給定時間(如給定BSS中)被傳送。通道存取可包括RTS和/或CTS傳訊。例如,發送請求(RTS)訊框的交換可由發送裝置傳送,且允許發送(clear to send,CTS)訊框可由接收裝置發送。例如,如果AP有資料要發送到STA,則AP可向STA發送RTS訊框。如果STA準備好接收資料,STA可以CTS訊框作為回應。CTS訊框可包括時間值,該時間值可提醒其他STA在初始化RTS的AP可能傳送其資料的時候推遲存取媒介。一旦從STA接收到CTS訊框,AP可向STA發送資料。The STA (one or more) and/or AP(s) may use a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) channel access mechanism. In CSMA/CA, STAs and/or APs can listen to the primary channel. For example, if the STA has data to send, the STA can listen to the primary channel. If the primary channel is detected to be busy, the STA can roll back. For example, a WLAN or portion thereof can be configured such that one STA can be transmitted at a given time, such as in a given BSS. Channel access can include RTS and/or CTS messaging. For example, an exchange of a transmission request (RTS) frame may be transmitted by a transmitting device, and a clear to send (CTS) frame may be transmitted by the receiving device. For example, if the AP has data to send to the STA, the AP may send an RTS frame to the STA. If the STA is ready to receive data, the STA can respond with a CTS frame. The CTS frame may include a time value that may alert other STAs to defer access to the medium when the AP that initialized the RTS may transmit its data. Upon receiving the CTS frame from the STA, the AP may send the data to the STA.

裝置可經由網路分配向量(NAV)欄位來預留頻譜。例如,在IEEE 802.11訊框中,NAV欄位可被用於針對時間週期而預留通道。希望傳送資料的STA可設置NAV為其可能希望使用通道的時間。當STA設置NAV時,NAV可以針對相關聯的WLAN或其子集(如,BSS)而被設置。其他STA可倒數NAV到0。當計數器到達0值時,NAV功能可指示其他STA現在通道可用。The device can reserve the spectrum via a Network Allocation Vector (NAV) field. For example, in the IEEE 802.11 frame, the NAV field can be used to reserve a channel for a time period. STAs wishing to transmit data can set the time at which the NAV may wish to use the channel. When the STA sets the NAV, the NAV can be set for the associated WLAN or a subset thereof (eg, BSS). Other STAs can count down NAV to 0. When the counter reaches a value of 0, the NAV function can indicate that other STAs are now available.

WLAN中的裝置,如AP或STA,可包括如下中的一個或多個:處理器、記憶體、無線接收機/發射機(如,其可結合在收發器中)、一個或多個天線(如,第1A圖中的天線106)等。處理器功能可包含一個或多個處理器。例如,處理器可包括通用處理器、專用處理器(如,基帶處理器、MAC處理器等)、數位訊號處理器(DSP)、特定用途積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、任何其他類型的積體電路(IC)、狀態機等等中的一者或多者。一個或多個處理器可互相整合或不整合。處理器(如,一個或多個處理器或其子集)可與一個或多個其他功能(如,諸如記憶體的其它功能)整合。處理器可執行信號解碼、資料處理、功率控制、輸入/輸出處理、調變、解調和/或使裝置在無線環境(如,第1A圖的WLAN)中能操作的任何其它功能。處理器可被配置以執行處理器可執行代碼(如,指令),包括,例如,軟體和/或韌體指令。例如,處理器可被配置以執行一個或多個處理器(如,包含記憶體和處理器的晶片組)或記憶體中包含的電腦可讀指令。指令的執行可引起裝置執行一個或多個在此描述的功能。A device in a WLAN, such as an AP or a STA, may include one or more of the following: a processor, a memory, a wireless receiver/transmitter (eg, which may be incorporated in a transceiver), one or more antennas ( For example, the antenna 106) in Fig. 1A and the like. A processor function can include one or more processors. For example, the processor may include a general purpose processor, a special purpose processor (eg, a baseband processor, a MAC processor, etc.), a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array ( One or more of an FPGA) circuit, any other type of integrated circuit (IC), state machine, and the like. One or more processors may or may not be integrated with one another. A processor (eg, one or more processors or a subset thereof) can be integrated with one or more other functions, such as other functions such as memory. The processor may perform signal decoding, data processing, power control, input/output processing, modulation, demodulation, and/or any other functionality that enables the device to operate in a wireless environment (eg, WLAN of FIG. 1A). The processor can be configured to execute processor executable code (eg, instructions) including, for example, software and/or firmware instructions. For example, the processor can be configured to execute one or more processors (eg, a chipset containing memory and a processor) or computer readable instructions embodied in the memory. Execution of the instructions may cause the device to perform one or more of the functions described herein.

裝置可包括一個或多個天線。裝置可採用多輸入多輸出(MIMO)技術。一個或多個天線可接收無線電信號。處理器可接收無線電信號,如,經由一個或多個天線。一個或多個天線可傳送無線電信號(如,基於從處理器發送的信號)。The device can include one or more antennas. The device can employ multiple input multiple output (MIMO) technology. One or more antennas can receive radio signals. The processor can receive radio signals, such as via one or more antennas. One or more antennas may transmit radio signals (eg, based on signals transmitted from the processor).

裝置可具有記憶體,該記憶體包括一個或多個用於儲存程式和/或資料(如,處理器可執行代碼或指令(如,軟體、韌體等)、電子資料、資料庫或其他數位資訊)的裝置。記憶體可包括一個或多個儲存單元。一個或多個儲存單元可與一個或多個其他功能(如,諸如處理器裝置中所包含的其他功能)整合。記憶體可包括用於儲存資訊的唯讀記憶體(ROM)(如,可擦可程式設計唯讀記憶體(EPROM)、電可擦可程式設計記憶體(EEPROM)等)、隨機記憶體(RAM)、磁片儲存媒體、光儲存媒體、快閃記憶體裝置和/或其他非永久性電腦可讀媒體。處理器可與一個或多個記憶體實體進行通信,如,經由系統匯流排、直接地等。The device can have a memory that includes one or more programs for storing programs and/or data (eg, processor executable code or instructions (eg, software, firmware, etc.), electronic materials, databases, or other digits). Information) device. The memory can include one or more storage units. One or more storage units may be integrated with one or more other functions, such as other functions included in a processor device. The memory may include read only memory (ROM) for storing information (eg, erasable programmable read only memory (EPROM), electrically erasable programmable memory (EEPROM), etc.), random memory ( RAM), disk storage media, optical storage media, flash memory devices, and/or other non-permanent computer readable media. The processor can communicate with one or more memory entities, such as via a system bus, directly, and the like.

第1B圖是可以實施一個或多個揭露的特徵的示例性通信系統100的圖式。例如,無線網路(如,包括通信系統100的一個或多個元件的無線網路)可被配置以使延伸到無線網路之外(如,與無線網路相關聯的具有圍牆的花園之外)的承載可被指定QoS特性。FIG. 1B is a diagram of an exemplary communication system 100 that can implement one or more of the disclosed features. For example, a wireless network (eg, a wireless network including one or more components of communication system 100) can be configured to extend beyond a wireless network (eg, a walled garden associated with a wireless network) The bearer of the outer) can be assigned a QoS characteristic.

通信系統100可以是向多個無線使用者提供諸如語音、資料、視訊、消息、廣播等內容的多重存取系統。該通信系統100通過共用包括無線頻寬在內的系統資源來允許多個無線使用者存取此類內容。例如,通信系統100可使用一個或多個通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交分頻多重存取(OFDMA)、單載波頻分多重存取(SC-FDMA)等等。Communication system 100 may be a multiple access system that provides content to a plurality of wireless users, such as voice, data, video, messaging, broadcast, and the like. The communication system 100 allows multiple wireless users to access such content by sharing system resources including wireless bandwidth. For example, communication system 100 can use one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal frequency division multiple memory. Take (OFDMA), Single-Carrier Frequency Division Multiple Access (SC-FDMA), and so on.

如第1B圖所示,通信系統100可包括至少一個無線發射/接收單元(WTRU),如多個WTRU,例如WTRU 102a、102b、102c和102d,無線存取網路(RAN)104,核心網路106,公共交換電話網路(PSTN)108,網際網路110和其他網路112,但是應該瞭解,所揭露的實施方式設想了任何數量的WTRU、基地台、網路和/或網路元件。WTRU 102a、102b、102c、102d中的每一個可以是被配置成在無線環境中操作和/或通信的任何類型的裝置。舉例說明,WTRU 102a、102b、102c、102d可被配置以發射和/或接收無線信號並且可包括使用者設備(UE)、移動站(如,WLAN STA)、固定或移動使用者單元、傳呼機、行動電話、個人數位助理(PDA)、智慧型電話、膝上電腦、隨身型易網機、個人電腦、無線感測器、消費類電子產品等。As shown in FIG. 1B, communication system 100 can include at least one wireless transmit/receive unit (WTRU), such as multiple WTRUs, such as WTRUs 102a, 102b, 102c, and 102d, a wireless access network (RAN) 104, a core network. Path 106, Public Switched Telephone Network (PSTN) 108, Internet 110 and other networks 112, but it should be understood that the disclosed embodiments contemplate any number of WTRUs, base stations, networks, and/or network elements . Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. By way of example, the WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals and may include user equipment (UE), mobile stations (eg, WLAN STAs), fixed or mobile subscriber units, pagers , mobile phones, personal digital assistants (PDAs), smart phones, laptops, portable Internet devices, personal computers, wireless sensors, consumer electronics and more.

通信系統100也可包括基地台114a和基地台114b。基地台114a和114b中每一個可以是被配置成通過與WTRU 102a、102b、102c、102d中至少一個有無線介面以便於存取一個或多個通信網路的任意類型的裝置(該通信網路如核心網路106、網際網路110和或網路112)。舉例說明,基地台114a、114b可以是基地收發台(BTS)、節點B、e節點B、家庭節點B、家庭演進節點B、基地控制器、存取點(AP)、無線路由器等等。雖然每一個基地台114a、114b都被描述成單獨組件,但是應該瞭解,基地台114a、114b可包括任何數量的互連基地台和/或網路元件。Communication system 100 can also include base station 114a and base station 114b. Each of the base stations 114a and 114b can be any type of device configured to have access to one or more communication networks through a wireless interface with at least one of the WTRUs 102a, 102b, 102c, 102d (the communication network) Such as core network 106, internet 110, and or network 112). By way of example, base stations 114a, 114b may be base transceiver stations (BTS), Node Bs, eNodeBs, home Node Bs, home evolved Node Bs, base controllers, access points (APs), wireless routers, and the like. While each of the base stations 114a, 114b is depicted as a separate component, it should be understood that the base stations 114a, 114b can include any number of interconnected base stations and/or network elements.

基地台114a可以是RAN 104的一部分,RAN 104還可包括其他基地台和/或網路元件(未示出),如基地台控制器(BSC)、無線網路控制器(RNC)、中繼節點等等。基地台114a和/或基地台114b可配置成在特定地理區域內發射和/或接收無線信號,該特定地理區域被稱為胞元(未示出)。胞元可進一步被分成胞元扇區。例如,與基地台114a相關聯的胞元可被分成三個扇區。因此,在一個實施方式中,基地台114a可包括三個收發器,也就是說,胞元的每一個有一個。在另一個實施方式中,基地台114a可使用多輸入多輸出(MIMO)技術,並因此可以針對胞元的每個扇區使用多個收發器。The base station 114a may be part of the RAN 104, which may also include other base stations and/or network elements (not shown), such as a base station controller (BSC), a radio network controller (RNC), a relay. Nodes and so on. Base station 114a and/or base station 114b may be configured to transmit and/or receive wireless signals within a particular geographic area, which is referred to as a cell (not shown). Cells can be further divided into cell sectors. For example, a cell associated with base station 114a can be divided into three sectors. Thus, in one embodiment, base station 114a may include three transceivers, that is, one for each of the cells. In another embodiment, base station 114a may use multiple input multiple output (MIMO) technology, and thus multiple transceivers may be used for each sector of a cell.

基地台114a、114b可通過空中介面116與無線發射/接收單元WTRU 102a、102b、102c、102d中的一個或多個進行通信,該空中介面可以是任何合適的無線通訊連結(如,射頻(RF)、微波、紅外線(IR)、紫外線(UV)、可視光等)。可使用適合的無線存取技術(RAT)建立空中介面116。The base stations 114a, 114b may communicate with one or more of the wireless transmit/receive units WTRUs 102a, 102b, 102c, 102d via an empty intermediation plane 116, which may be any suitable wireless communication link (eg, radio frequency (RF) ), microwave, infrared (IR), ultraviolet (UV), visible light, etc.). The empty mediation plane 116 can be established using a suitable radio access technology (RAT).

更具體地說,正如前面提及的,通信系統100可以是多重存取存取系統,並且可以採用一個或多個通道存取方案,如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。例如,RAN 104中的基地台114a和無線發射/接收單元WTRU 102a、102b、102c可執行無線電技術,如通用移動通信系統(UMTS)陸地無線電存取(UTRA),並且該技術可使用寬頻CDMA(WCDMA)建立空中介面116。WCDMA可包含諸如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)之類的通信協定。HSPA可包括高速下行鏈路封包存取(HSDPA)和/或高速封包上行鏈路封包存取(HSUPA)。More specifically, as previously mentioned, communication system 100 can be a multiple access system and can employ one or more channel access schemes such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, base station 114a and wireless transmit/receive unit WTRUs 102a, 102b, 102c in RAN 104 may perform radio technologies, such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), and the technology may use wideband CDMA ( WCDMA) establishes an empty intermediary plane 116. WCDMA may include communication protocols such as High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High Speed Downlink Packet Access (HSDPA) and/or High Speed Packet Uplink Packet Access (HSUPA).

在另一實施方式中,基地台114a和無線發射/接收單元WTRU 102a、102b、102c可實施無線電技術,如演進UMTS陸地無線存取(E-UTRA),該技術可使用長期演進(LTE)和/或高級LTE(LTE-A)來建立空中介面116。In another embodiment, the base station 114a and the wireless transmit/receive unit WTRUs 102a, 102b, 102c may implement a radio technology, such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and / or LTE-Advanced (LTE-A) to establish an empty media plane 116.

在其他實施方式中,基地台114a和無線發射/接收單元WTRU 102a、102b、102c可實施無線電技術,如IEEE 802.16(全球互通微波存取(WIMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球移動通信系統(GSM)、用於GSM增強資料速率演進(EDGE)、GSM EDGE(GERAN)等等。In other embodiments, base station 114a and wireless transmit/receive unit WTRUs 102a, 102b, 102c may implement radio technologies such as IEEE 802.16 (Worldwide Interoperability for Microwave Access (WIMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, Interim Standard 2000 (IS-2000), Provisional Standard 95 (IS-95), Provisional Standard 856 (IS-856), Global System for Mobile Communications (GSM), GSM Enhanced Data Rate Evolution (EDGE), GSM EDGE (GERAN) )and many more.

作為示例,第1B圖中的基地台114b可以是無線路由器、家庭節點B、家庭e節點B或存取點,並且可以利用任何適合的RAT來促成局部區域中的無線連接,例如,營業場所、住宅、交通工具、校園等等。在一個實施方式中,基地台114b和WTRU 102c、102d可實施如IEEE 802.11的無線電技術以建立無線區域網路(WLAN)。在另一個實施方式中,基地台114b和WTRU 102c、102d可實施如IEEE 802.15的無線技術以建立無線個人區域網路(WPAN)。在另一個實施方式中,基地台114b和WTRU 102c、102d可利用基於胞元的RAT(如,WCDMA、CDMA2000、GSM、 LTE、LTE-A等)建立微微胞元或毫微微胞元。如第1B圖所示,基地台114b可以與網際網路110有直接連接。因此,基地台114b無需通過核心網路106來存取網際網路110。As an example, base station 114b in FIG. 1B may be a wireless router, a home Node B, a home eNodeB, or an access point, and may utilize any suitable RAT to facilitate wireless connectivity in a local area, such as a business location, Housing, transportation, campus, etc. In one embodiment, base station 114b and WTRUs 102c, 102d may implement a radio technology such as IEEE 802.11 to establish a wireless local area network (WLAN). In another embodiment, base station 114b and WTRUs 102c, 102d may implement wireless technologies such as IEEE 802.15 to establish a wireless personal area network (WPAN). In another embodiment, base station 114b and WTRUs 102c, 102d may establish picocells or femtocells using a cell based RAT (eg, WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.). As shown in FIG. 1B, the base station 114b can be directly connected to the Internet 110. Therefore, the base station 114b does not need to access the Internet 110 through the core network 106.

RAN 104可與核心網路106進行通信,核心網路106可以是被配置成為WTRU 102a、102b、102c、102d中的一個或多個提供語音、資料、應用和/或網際網路協定語音(VOIP)服務的任何類型的網路。例如,核心網路106可提供呼叫控制、記帳服務、基於移動位置的服務、預付費呼叫、網際網路連接、視訊分發等等,和/或執行用戶認證之類的高級安全功能。雖然未在第1B圖中示出,但是應該瞭解,RAN 104和/或核心網路106可以與其他那些使用與RAN 104相同或不同RAT的RAN進行直接或間接的通信。例如,除了與使用E-UTRA無線電技術的RAN 104連接之外,核心網路106還可以與其他採用GSM無線技術的RAN(未示出)通信。The RAN 104 can communicate with the core network 106, which can be configured to provide voice, data, application, and/or internet protocol voice (VOIP) to one or more of the WTRUs 102a, 102b, 102c, 102d. ) Any type of network that serves. For example, core network 106 may provide call control, billing services, mobile location based services, prepaid calling, internet connectivity, video distribution, etc., and/or perform advanced security functions such as user authentication. Although not shown in FIG. 1B, it should be appreciated that the RAN 104 and/or the core network 106 can communicate directly or indirectly with other RANs that use the same or different RATs as the RAN 104. For example, in addition to being connected to the RAN 104 using E-UTRA radio technology, the core network 106 can also communicate with other RANs (not shown) employing GSM wireless technology.

核心網路106還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可包括使用公用通信協定的全球性互聯電腦網路和裝置系統,該協定可以是傳輸控制協定(TCP)/網際協定(IP)互連網協定族中的TCP、使用者資料包通訊協定(UDP)和IP。網路112可包括由其他服務提供者擁有和/或營運的有線或無線通訊網路。例如,網路112可以包括與一個或多個RAN連接的另一個核心網路,該一個或多個RAN可以使用與RAN 104相同或不同的RAT。The core network 106 can also serve as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include a circuit switched telephone network that provides Plain Old Telephone Service (POTS). The Internet 110 may include a global interconnected computer network and device system using a public communication protocol, which may be TCP in the Transmission Control Protocol (TCP)/Internet Protocol (IP) Internet Protocol family, User Datagram Protocol (UDP) and IP. Network 112 may include a wired or wireless communication network that is owned and/or operated by other service providers. For example, network 112 may include another core network connected to one or more RANs, which may use the same or a different RAT as RAN 104.

通信系統100中的WTRU 102a、102b、102c、102d中的部分或全部可以包含多模式能力,換言之,WTRU 102a、102b、102c、102d可以包含通過不同無線鏈路與不同無線網路通信的多個收發器。例如,如第1B圖所示WTRU 102c可被配置成與使用基於胞元的無線電技術的基地台114a通信,以及與可以使用IEEE802無線電技術的基地台114b進行通信。Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities, in other words, the WTRUs 102a, 102b, 102c, 102d may include multiple communications with different wireless networks over different wireless links. transceiver. For example, the WTRU 102c, as shown in FIG. 1B, can be configured to communicate with a base station 114a that uses a cell-based radio technology, and with a base station 114b that can use an IEEE 802 radio technology.

第1C圖描述了示例性無線發送/接收單元WTRU 102。WTRU可為使用者設備(UE)、移動站、WLAN STA、固定或移動使用者單元、傳呼機、行動電話、個人數位助理(PDA)、智慧型電話、膝上電腦、上網筆記型電腦、個人電腦、無線感測器、消費類電子產品等。WTRU 102可用於在此描述的通信系統中的一個或多個。如第1C圖所示,WTRU 102可以包括處理器118、收發器120、發送/接收單元122、揚聲器/麥克風124、數字鍵盤126、顯示器/觸控板128、不可移除記憶體130、可移除記憶體132、電源134、全球定位系統(GPS)晶片組 136和其他週邊設備138。應該瞭解的是,在保持符合實施方式的同時,WTRU 102還可以包括前述部件的任意子組合。FIG. 1C depicts an exemplary wireless transmit/receive unit WTRU 102. The WTRU may be a User Equipment (UE), a mobile station, a WLAN STA, a fixed or mobile subscriber unit, a pager, a mobile phone, a personal digital assistant (PDA), a smart phone, a laptop, an internet laptop, a personal Computers, wireless sensors, consumer electronics, etc. The WTRU 102 may be used with one or more of the communication systems described herein. As shown in FIG. 1C, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive unit 122, a speaker/microphone 124, a numeric keypad 126, a display/touchpad 128, a non-removable memory 130, and a removable In addition to memory 132, power source 134, global positioning system (GPS) chipset 136, and other peripheral devices 138. It should be appreciated that the WTRU 102 may also include any sub-combination of the aforementioned components while remaining consistent with the embodiments.

處理器118可以是通用處理器、專用處理器、傳統處理器、數位訊號處理器DSP、多個微處理器、與DSP核心關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任意類型的積體電路(IC)、狀態機等等。處理器118可執行信號解碼、資料處理、功率控制、輸入/輸出處理和/或其它任何賦能WTRU102在無線環境中進行操作的功能。處理器118可耦合到收發器120,收發器120可耦合到發射/接收元件122。第1C圖描述了處理器118和收發器120作為分別的元件,但是應該瞭解,處理器118和收發器120可以整合在電子元件或晶片中。The processor 118 can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor DSP, a plurality of microprocessors, one or more microprocessors associated with a DSP core, a controller, a microcontroller, and a dedicated Integrated circuit (ASIC), field programmable gate array (FPGA) circuits, any other type of integrated circuit (IC), state machine, and more. The processor 118 may perform signal decoding, data processing, power control, input/output processing, and/or any other functionality that enables the WTRU 102 to operate in a wireless environment. The processor 118 can be coupled to a transceiver 120 that can be coupled to the transmit/receive element 122. Figure 1C depicts processor 118 and transceiver 120 as separate components, but it should be understood that processor 118 and transceiver 120 can be integrated into an electronic component or wafer.

發射/接收元件122可被配置成經由空中介面116向基地台(如,基地台114a)發送信號或從該基地台接收信號。例如,在一個實施方式中,發射/接收元件122可以是被配置成發射和/或接收RF信號的天線。在另一個實施方式中,例如,發射/接收元件122可以是被配置成發射和/或接收IR、UV或可視光信號的發射器/檢測器。在另一個實施方式中,發射/接收元件122可被配置以發射和接收RF和光信號。應當瞭解的是,發射/接收元件122可被配置以發射和/或接收無線信號的任何組合。The transmit/receive element 122 can be configured to transmit signals to or receive signals from a base station (e.g., base station 114a) via an empty intermediate plane 116. For example, in one embodiment, the transmit/receive element 122 can be an antenna configured to transmit and/or receive RF signals. In another embodiment, for example, the transmit/receive element 122 can be a transmitter/detector configured to transmit and/or receive IR, UV or visible light signals. In another embodiment, the transmit/receive element 122 can be configured to transmit and receive RF and optical signals. It should be appreciated that the transmit/receive element 122 can be configured to transmit and/or receive any combination of wireless signals.

此外,雖然在第1C圖中將發射/接收元件122描述成是單獨元件,但WTRU 102可包括任何數量的發射/接收元件122。更具體地說,WTRU 102可使用MIMO技術。因此,在一個實施方式中,WTRU 102可包含兩個或更多個經由空中介面116發射和接收無線信號之發射/接收元件122(例如,多天線)。Moreover, although the transmit/receive element 122 is depicted as a separate element in FIG. 1C, the WTRU 102 may include any number of transmit/receive elements 122. More specifically, the WTRU 102 may use MIMO technology. Thus, in one embodiment, the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) that transmit and receive wireless signals via the null intermediaries 116.

收發器120可被配置以對發射/接收元件122將要發射的信號進行調變,以及對發射/接收元件122接收的信號進行解調。正如前面提及的,WTRU 102多模式能力,因此,收發器120可包括多個收發器以允許WTRU 102藉由諸如UTRA和IEEE 802.11之類的多種RAT進行通信。The transceiver 120 can be configured to modulate a signal to be transmitted by the transmit/receive element 122 and to demodulate a signal received by the transmit/receive element 122. As mentioned previously, the WTRU 102 is multi-mode capable, and thus, the transceiver 120 may include multiple transceivers to allow the WTRU 102 to communicate over multiple RATs such as UTRA and IEEE 802.11.

WTRU 102的處理器118可耦合到揚聲器/麥克風124、數字鍵盤126和/或顯示器/觸控板128(如,液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元),並可以接收來自這些部件的使用者輸入資料。處理器118還可將使用者資料輸出到揚聲器/麥克風124、數字鍵盤126和/或顯示器/觸控板128。此外,處理器118可以存取諸如不可移除記憶體130和/或可移除記憶體132任何類型記憶體中的資訊,並可以將資料儲存到這些記憶體中。不可移除記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或任何其他類型存放裝置。可移除記憶體132可以包括訂戶身份身份模組(SIM)卡、記憶棒、安全數位(SD)記憶卡等等。在其他實施方式中,處理器118可存取記憶體中資訊,並可以將資料儲存到該記憶體中,該記憶體不被實體地設置在WTRU 102上,如設置在伺服器或家用電腦(未示出)上。The processor 118 of the WTRU 102 can be coupled to a speaker/microphone 124, a numeric keypad 126, and/or a display/touchpad 128 (eg, a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit), and User input data from these components can be received. The processor 118 can also output user data to the speaker/microphone 124, the numeric keypad 126, and/or the display/touchpad 128. In addition, the processor 118 can access information in any type of memory, such as the non-removable memory 130 and/or the removable memory 132, and can store the data in these memories. Non-removable memory 130 may include random access memory (RAM), read only memory (ROM), hard disk, or any other type of storage device. Removable memory 132 may include a Subscriber Identity Module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 can access information in the memory and can store the data in the memory, the memory not being physically disposed on the WTRU 102, such as on a server or a home computer ( Not shown).

處理器118可從電源134中接收電力,並可以被配置以分發電力到WTRU 102的其他組件並控制WTRU 102的其他組件的電力。電源134可以是任何適合向WTRU 102供電的裝置。例如,電源134可包括一個或多個乾電池組(如鎳鉻(NiCd)、鎳鋅(NiZn)、鎳氫(NiMH)、鋰離子(Li-ion)等等)、太陽能電池、燃料電池等等。The processor 118 can receive power from the power source 134 and can be configured to distribute power to other components of the WTRU 102 and control power to other components of the WTRU 102. Power source 134 can be any device suitable for powering WTRU 102. For example, the power source 134 can include one or more dry battery packs (eg, nickel chromium (NiCd), nickel zinc (NiZn), nickel metal hydride (NiMH), lithium ion (Li-ion), etc.), solar cells, fuel cells, and the like. .

處理器118還可耦合到GPS晶片組136,GPS晶片組136可以被配置以提供關於WTRU 102當前位置的定位資訊(如,經度和緯度)。WTRU 102可通過空中介面116接收加上或取代GPS晶片組136資訊之來自基地台(如,基地台114a、114b)的定位資訊,和/或根據從附近的兩個或更多基地台接收的信號定時來確定其位置。應該瞭解的是,在保持符合實施方式的同時,WTRU102可以藉由任何合適的定位方法來獲取位置資訊。Processor 118 may also be coupled to GPS chipset 136, which may be configured to provide positioning information (e.g., longitude and latitude) with respect to the current location of WTRU 102. The WTRU 102 may receive positioning information from a base station (e.g., base station 114a, 114b) that adds or replaces GPS chipset 136 information through empty intermediaries 116, and/or from two or more base stations in the vicinity. Signal timing to determine its position. It should be appreciated that the WTRU 102 may obtain location information by any suitable positioning method while remaining consistent with the implementation.

處理器118可進一步地耦合到其他週邊設備138,週邊設備138可包括提供附加特徵、功能和/或有線或無線連接的一個或多個軟體和/或硬體模組。例如,週邊設備138可包括加速度計、電子指南針、衛星收發器、數位相機(用於照片或視訊)、通用序列匯流排(USB)埠、震動裝置、電視收發器、免持耳機、藍芽®模組、調頻無線電單元、數位音樂播放機、媒體播放機、視訊遊戲玩家模組、網際網路瀏覽器等等。The processor 118 can be further coupled to other peripheral devices 138, which can include one or more software and/or hardware modules that provide additional features, functionality, and/or wired or wireless connections. For example, peripheral device 138 may include an accelerometer, an electronic compass, a satellite transceiver, a digital camera (for photo or video), a universal serial bus (USB) port, a vibrating device, a television transceiver, a hands-free headset, Bluetooth® Modules, FM radio units, digital music players, media players, video game player modules, Internet browsers, and more.

系統、方法以及工具被揭露以用於WLAN系統中的OFDMA的SIG設計。在OFDMA WLAN中,RU可被有效的分配及用信號發送以支援IoT/MTC。RU分配可在HE SIG欄位中用信號發送。例如,從每個RU的角度可用信號發送RU分配。RU分配可以在每個STA用信號發送,例如,以支持分散式RU分配,例如,當分配給STA的RU在整個頻帶上可以被均勻分佈時。RU排程資訊可例如在每個STA被信號發送,例如,以支持連續的RU分配。分配給STA的RU可以是實體上相鄰的(如,連續的)。RU分配傳訊可以在整個頻寬上或者頻寬大於20 MHz的頻段上是均勻的(uniform)。允許的RU分配型態可被限制,該方案可減少傳訊的複雜度和開銷。AP可將資源分配宣佈於資源分配訊框中,或宣佈為之前傳輸的一部分,如A-MDPU或A-MSDU中的PPDU。RU分配傳訊可支援IoT。最少數量的資源可用於IoT操作,如中間26個音。SIG欄位可被攜帶在對稱RU分配內,例如,以減少由於OFDMA中的RF I/Q不平衡導致的干擾。在基於OFDMA的WLAN系統中,限制可被應用於RU分配規則,例如,以將系統限制到對稱RU分配。動態封裝(如,填充)以及相關聯的傳訊可改進效率並減少傳訊開銷。Systems, methods, and tools are disclosed for SIG design of OFDMA in WLAN systems. In an OFDMA WLAN, RUs can be efficiently allocated and signaled to support IoT/MTC. The RU allocation can be signaled in the HE SIG field. For example, the RU allocation can be signaled from the perspective of each RU. The RU allocation may be signaled at each STA, for example, to support distributed RU allocation, for example, when the RUs assigned to the STAs may be evenly distributed over the entire frequency band. The RU schedule information may be signaled, for example, at each STA, for example, to support continuous RU allocation. The RUs assigned to the STAs may be physically contiguous (e.g., contiguous). The RU allocation communication can be uniform over the entire bandwidth or in a frequency band greater than 20 MHz. The allowed RU allocation type can be limited, which reduces the complexity and overhead of messaging. The AP may announce the resource allocation in the resource allocation frame or announce it as part of the previous transmission, such as a PPDU in the A-MDPU or A-MSDU. The RU allocation message can support IoT. The minimum number of resources is available for IoT operations, such as the middle 26 tones. The SIG field can be carried within a symmetric RU allocation, for example, to reduce interference due to RF I/Q imbalance in OFDMA. In an OFDMA-based WLAN system, restrictions can be applied to RU allocation rules, for example, to limit the system to symmetric RU allocation. Dynamic encapsulation (eg, padding) and associated messaging can improve efficiency and reduce messaging overhead.

無線區域網路(WLAN)可具有多種操作模式,如,基礎結構基本服務集(BSS)模式以及獨立BSS(IBSS)模式。基礎結構BSS模式中的WLAN可具有用於BSS的存取點(AP)。一個或多個站(STA)可與AP相關聯。AP可具有到分發系統(DS)或其他類型的攜帶BSS中和BSS外的訊務的有線和/或無線網路的存取和/或介面。源自BSS外的到STA的訊務可通過AP到達,AP可向STA傳送訊務。源自STA並到達BSS外目的地的訊務可被發送到AP,AP可將訊務傳送到各自的目的地。BSS內STA之間的訊務可通過AP發送,例如,從源STA到AP以及從AP到目的STA。BSS內STA之間的訊務可為對等訊務。對等訊務可在源STA和目的STA之間直接發送,例如,通過使用802.11e DLS 或 802.11z 隧道化 DLS(TDLS)的直接連接建立(DLS)。獨立BSS(IBSS)模式中的WLAN可不具有AP,並且STA可彼此直接通信。IBSS模式的通信可被稱為“ad-hoc”模式的通信。A wireless local area network (WLAN) can have multiple modes of operation, such as an Infrastructure Basic Service Set (BSS) mode and an Independent BSS (IBSS) mode. A WLAN in an infrastructure BSS mode may have an access point (AP) for a BSS. One or more stations (STAs) may be associated with the AP. The AP may have access and/or interfaces to a distribution system (DS) or other type of wired and/or wireless network that carries traffic outside of the BSS and outside the BSS. The traffic from the outside of the BSS to the STA can be reached through the AP, and the AP can transmit the traffic to the STA. Traffic originating from the STA and arriving at a destination outside the BSS can be sent to the AP, which can transmit the traffic to its respective destination. Traffic between STAs within the BSS can be sent by the AP, for example, from the source STA to the AP and from the AP to the destination STA. The traffic between STAs in the BSS can be peer-to-peer. Peer-to-peer traffic can be sent directly between the source STA and the destination STA, for example, by using 802.11e DLS or 802.11z Tunneled DLS (TDLS) Direct Connection Establishment (DLS). A WLAN in an Independent BSS (IBSS) mode may not have an AP, and STAs may directly communicate with each other. Communication in IBSS mode can be referred to as "ad-hoc" mode communication.

AP可在固定通道(如,主通道)上傳送信標,例如,在802.11ac基礎結構模式的操作中。通道可為例如20 MHz寬。通道可為BSS的操作通道。STA可使用通道,例如,建立與AP的連接。802.11系統中的通道存取機制是有衝突避免之載波偵聽多重存取(CSMA/CA)。包括AP的STA可偵聽主通道,如,在CSMA/CA模式的操作中。例如,當通道被檢測到處於繁忙使得只有一個STA可在該時間上在給定BSS中進行傳送時,STA可回退。The AP can transmit beacons on fixed channels (eg, primary channels), for example, in the operation of the 802.11ac infrastructure mode. The channel can be, for example, 20 MHz wide. The channel can be the operating channel of the BSS. The STA can use the channel, for example, to establish a connection with the AP. The channel access mechanism in 802.11 systems is Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). The STA including the AP can listen to the primary channel, for example, in the CSMA/CA mode of operation. For example, when a channel is detected to be busy such that only one STA can transmit in a given BSS at that time, the STA may fall back.

高吞吐量(HT)STA可使用例如40 MHz寬的通道進行通信,如在802.11n中。主20 MHz通道可與相鄰的20 MHz通道結合形成40 MHz寬的連續通道。High throughput (HT) STAs can communicate using, for example, a 40 MHz wide channel, as in 802.11n. The main 20 MHz channel can be combined with an adjacent 20 MHz channel to form a 40 MHz wide continuous channel.

極高吞吐量(VHT)STA可支援例如20 MHz、40 MHz、80 MHz以及160 MHz寬的通道,如,在802.11ac中。40 MHz和80 MHz通道可通過例如將連續的20 MHz通道結合而形成。160 MHz通道可通過例如將8個連續的20 MHz通道結合而形成或通過將兩個非連續的80 MHz通道結合而形成,這可被稱為80+80配置。80+80配置可通過將資料分成兩個串流的段解析器,如,在通道編碼之後。例如,可分別在每個串流進行快速傅立葉逆變換和時域處理。串流可被映射到兩個通道上。資料可在兩個通道上傳送。接收機可對發射機的機制內的編碼過程進行逆向處理。接收機可重新結合多個通道上傳送的資料。重新結合的資料可被發送到媒體存取控制(MAC)。Very high throughput (VHT) STAs support channels such as 20 MHz, 40 MHz, 80 MHz, and 160 MHz wide, as in 802.11ac. The 40 MHz and 80 MHz channels can be formed by, for example, combining successive 20 MHz channels. A 160 MHz channel can be formed by, for example, combining eight consecutive 20 MHz channels or by combining two non-contiguous 80 MHz channels, which can be referred to as an 80+80 configuration. The 80+80 configuration can be split into two stream segment parseres, for example, after channel encoding. For example, inverse fast Fourier transform and time domain processing can be performed separately for each stream. Streams can be mapped to two channels. Data can be transferred on both channels. The receiver can reverse the encoding process within the mechanism of the transmitter. The receiver can recombine the data transmitted on multiple channels. The recombined material can be sent to the Media Access Control (MAC).

例如可通過802.11af和802.11ah支持Sub-GHz(如,MHz)模式的操作。通道操作頻寬和載波可被減少,例如,802.11n和 802.11ac中使用的相關的頻寬和載波。802.11af可支援例如電視白色空間(TVWS)頻譜中的5 MHz、10 MHz和20 MHz頻寬。802.11ah可支援例如非TVWS頻譜中的1 MHz、2 MHz、4 MHz、8 MHz 和16 MHz頻寬。802.11ah使用實例的例子可被支援來用於巨集覆蓋區中的儀錶式控制(Meter Type Control,MTC)裝置。MTC裝置可以具有有限的能力(如,有限頻寬)並可被設計成具有很長的電池壽命。Sub-GHz (eg, MHz) mode operation is supported, for example, by 802.11af and 802.11ah. The channel operation bandwidth and carrier can be reduced, for example, the associated bandwidth and carrier used in 802.11n and 802.11ac. 802.11af supports 5 MHz, 10 MHz, and 20 MHz bandwidths in, for example, the Television White Space (TVWS) spectrum. 802.11ah supports, for example, 1 MHz, 2 MHz, 4 MHz, 8 MHz, and 16 MHz bandwidths in the non-TVWS spectrum. An example of an 802.11ah use case can be supported for use with a Meter Type Control (MTC) device in a macro coverage area. MTC devices can have limited capabilities (eg, limited bandwidth) and can be designed to have very long battery life.

WLAN系統(如,802.11n、802.11ac、802.11af和802.11ah系統)可支援多通道和通道寬度,如被指定為主通道的通道。主通道可例如具有與BSS中的STA支持的最大公共操作頻寬相等的頻寬。主通道的頻寬可由支援最小頻寬操作模式的STA限制。在802.11ah的示例中,主通道可為1 MHz寬,例如,當存在支援1 MHz模式的一個或多個STA(如,MTC類型裝置)時,同時AP和其他STA支援2 MHz、4 MHz、8 MHz、16 MHz或其他通道頻寬操作模式。載波偵聽和NAV設置可依賴於主通道的狀態。舉例來說,所有可用頻帶可被認為繁忙並且保持閒置,儘管是可用的,例如,當由於支援1 MHz操作模式的STA在主通道向AP進行傳送而使主通道處於繁忙狀態時。WLAN systems (eg, 802.11n, 802.11ac, 802.11af, and 802.11ah systems) can support multiple channels and channel widths, such as channels designated as primary channels. The primary channel may, for example, have a bandwidth that is equal to the maximum common operating bandwidth supported by the STAs in the BSS. The bandwidth of the main channel can be limited by STAs that support the minimum bandwidth mode of operation. In the 802.11ah example, the primary channel can be 1 MHz wide, for example, when there are one or more STAs (eg, MTC type devices) that support 1 MHz mode, while the AP and other STAs support 2 MHz, 4 MHz, 8 MHz, 16 MHz or other channel bandwidth mode of operation. Carrier sense and NAV settings can depend on the state of the primary channel. For example, all available frequency bands may be considered busy and remain idle, although available, for example, when the primary channel is busy due to STAs supporting the 1 MHz mode of operation transmitting to the AP on the primary channel.

可用頻帶可在不同區域之間發生變化。舉例來說,在美國,802.11ah使用的可用頻帶可為在美國的902 MHz到928 MHz、在韓國的917.5 MHz到923.5 MHz以及在日本的916.5 MHz到927.5 MHz。可用的總頻寬可在不同區域間發生變化。舉例來說,依據國家代碼,802.11ah的可用的總頻寬可為6 MHz到26 MHz。The available frequency bands can vary between different regions. For example, in the United States, the available frequency bands used by 802.11ah can range from 902 MHz to 928 MHz in the United States, 917.5 MHz to 923.5 MHz in Korea, and 916.5 MHz to 927.5 MHz in Japan. The total bandwidth available can vary from region to region. For example, depending on the country code, the total available bandwidth for 802.11ah can range from 6 MHz to 26 MHz.

例如,在相同符號的時間訊框中,如,在下行鏈路OFDM符號期間,可以通過到多個STA的下行鏈路多用戶多輸入/多輸出(MU-MIMO)傳輸來改進頻譜效率。例如,可在802.11ac 和802.11ah中實施下行鏈路MU-MIMO。當下行鏈路MU-MIMO使用到多個STA的相同符號定時時,可避免到多個STA的波形傳輸的干擾。例如,當涉及與AP的MU-MIMO傳輸的STA使用相同的通道或頻帶時,MU-MIMO傳輸的操作頻寬可被限制到由與AP的MU-MIMO傳輸中的STA支援的最小通道頻寬。For example, in time frames of the same symbol, such as during downlink OFDM symbols, spectral efficiency may be improved by downlink multi-user multiple input/multiple output (MU-MIMO) transmissions to multiple STAs. For example, downlink MU-MIMO can be implemented in 802.11ac and 802.11ah. When downlink MU-MIMO uses the same symbol timing to multiple STAs, interference to waveform transmissions of multiple STAs can be avoided. For example, when a STA involving a MU-MIMO transmission of an AP uses the same channel or frequency band, the operation bandwidth of the MU-MIMO transmission can be limited to the minimum channel bandwidth supported by the STA in the MU-MIMO transmission with the AP. .

可被稱為高效(HE)的 IEEE 802.11™高效WLAN(HEW)可增強多個使用場景(如,2.4GHz和5GHz頻帶中的AP和STA的高密度部署)中的無線使用者經歷的服務品質(QoS)。HE WLAN無線電資源管理(RRM)技術可支援多種應用或使用場景,如用於體育場賽事的資料傳遞,諸如火車站或企業/零售環境的高使用者密度場景,視訊傳遞和醫療應用的無線服務。IEEE 802.11TM High Efficiency WLAN (HEW), which can be referred to as High Efficiency (HE), enhances the quality of service experienced by wireless users in multiple usage scenarios, such as high-density deployment of APs and STAs in the 2.4 GHz and 5 GHz bands. (QoS). HE WLAN Radio Resource Management (RRM) technology supports a variety of applications or usage scenarios, such as data transfer for stadium events, such as high user density scenarios in train stations or corporate/retail environments, wireless services for video delivery and medical applications.

可由網路應用生成的短封包可適用於多種應用,如,虛擬辦公室、TPC確認(ACK)、視訊串流化ACK、裝置/控制器(如,滑鼠、數字鍵盤、遊戲機)、存取(如,探測請求/回應)、網路選擇(如,探測請求、存取網路查詢協定(ANQP))以及網路管理(如,控制訊框)。Short packets that can be generated by web applications can be applied to a variety of applications, such as virtual office, TPC acknowledgment (ACK), video streaming ACK, device/controller (eg, mouse, numeric keypad, game console), access (eg, probe request/response), network selection (eg, probe request, access network query protocol (ANQP)), and network management (eg, control frame).

可在WLAN中實施MU特徵,如,上行鏈路(UL)和下行鏈路(DL)正交分頻多重存取(OFDMA)及UL與DL MU-MIMO。回應UL MU傳輸發送的DL確認可被多工。MU features such as uplink (UL) and downlink (DL) orthogonal frequency division multiple access (OFDMA) and UL and DL MU-MIMO may be implemented in the WLAN. The DL acknowledgement sent in response to the UL MU transmission can be multiplexed.

可提供用於HEW的OFDMA命理學。OFDMA構件(building block)可為,例如,20 MHz、40 MHz和80 MHz。OFDMA numerology for HEW is available. The OFDMA building blocks can be, for example, 20 MHz, 40 MHz, and 80 MHz.

第2圖是20 MHz構件的OFDMA命理學200的示例。例如,20 MHz OFDMA構件可被定義為具有2個導頻的26音、具有4個導頻的52音和具有4個導頻的106音。例如,可存在7個DC空值(DC NULL)和(6,5)保護音(如,左手側6個保護音和右手側5個保護音),在如第2圖中所示位置。OFDMA PPDU可攜帶242音單元邊界內的不同音單元大小的混合。Figure 2 is an example of an OFDMA numerology 200 for a 20 MHz component. For example, a 20 MHz OFDMA component can be defined as 26 tones with 2 pilots, 52 tones with 4 pilots, and 106 tones with 4 pilots. For example, there may be 7 DC nulls (DC NULL) and (6, 5) guard tones (eg, 6 guard tones on the left hand side and 5 guard tones on the right hand side), as shown in FIG. 2 . An OFDMA PPDU can carry a mix of different tone unit sizes within a boundary of 242 tone units.

第3圖是40 MHz構件的OFDMA命理學300的示例。例如,40 MHz OFDMA構件可被定義為具有2個導頻的26音、具有4個導頻的52音、具有4個導頻的106音和具有8個導頻的242音。例如,可存在5個DC空值和(12,11)保護音,在如第3圖中所示位置。Figure 3 is an example of an OFDMA numerology 300 for a 40 MHz component. For example, a 40 MHz OFDMA component can be defined as 26 tones with 2 pilots, 52 tones with 4 pilots, 106 tones with 4 pilots, and 242 tones with 8 pilots. For example, there may be 5 DC nulls and (12, 11) guard tones, as shown in Figure 3.

第4圖是80 MHz構件的OFDMA命理學400的示例。例如,80 MHz OFDMA構件可被定義為具有2個導頻的26音、具有4個導頻的52音、具有4個導頻的106音、具有8個導頻的242音和具有16個導頻的484音。例如,可存在7個DC空值和(12,11)保護音,在如第4圖中所示位置。Figure 4 is an example of an OFDMA numerology 400 for an 80 MHz component. For example, an 80 MHz OFDMA component can be defined as 26 tones with 2 pilots, 52 tones with 4 pilots, 106 tones with 4 pilots, 242 tones with 8 pilots, and 16 guides. Frequency 484 sound. For example, there may be 7 DC nulls and (12, 11) guard tones, as shown in Figure 4.

可提供傳統短訓練欄位(STF)、長訓練欄位(LTF)和信號(SIG)欄位中的一個或多個。可提供高效(HE)SIG-A和SIG-B設計。One or more of the traditional Short Training Field (STF), Long Training Field (LTF), and Signal (SIG) fields may be provided. Efficient (HE) SIG-A and SIG-B designs are available.

HE PLCP(實體層會聚協定)協定資料單元(PPDU)可包括傳統(L)前導碼(如,L-STF、L-LTF和L-SIG),其可在每個20 MHz塊上被複製,例如,以用於與傳統裝置的向後相容。The HE PLCP (Physical Layer Convergence Protocol) Protocol Data Unit (PPDU) may include legacy (L) preambles (eg, L-STF, L-LTF, and L-SIG) that may be replicated on each 20 MHz block, For example, for backward compatibility with conventional devices.

HE-SIG-A欄位可在每個20 MHz塊上被複製,例如,在傳統前導碼之後以指示公共控制資訊。舉例來說,HE-SIG-A欄位可使用3.2 us 的離散傅立葉變化(DFT)週期和間隔312.5KHz的子載波來實施。The HE-SIG-A field can be copied on each 20 MHz block, for example, after the traditional preamble to indicate common control information. For example, the HE-SIG-A field can be implemented using a 3.2 us discrete Fourier transform (DFT) period and a subcarrier with an interval of 312.5 kHz.

例如,HE-SIG-B欄位可使用其他技術中的3.2 us 的DFT週期和312.5KHz資源分配之載波間隔來實施。For example, the HE-SIG-B field can be implemented using a 3.2 us DFT period and a 312.5 KHz resource allocation carrier spacing in other technologies.

MAC標頭可包括接收地址(RA)和/或目的地地址(DA)。MAC標頭中的RA可指示在例如單用戶802.11中接收訊框的無線媒體上的下一緊接STA的MAC地址。DA可指示接收訊框的最終目的地的MAC地址。The MAC header may include a Receive Address (RA) and/or a Destination Address (DA). The RA in the MAC header may indicate the MAC address of the next immediate STA on the wireless medium receiving the frame in, for example, single user 802.11. The DA may indicate the MAC address of the final destination of the received frame.

資源分配資訊可被設置在實體層(PHY)標頭(如,VHT-SIG-A1)中,作為,例如802.11ac中的來自48位元BSSID的部分關聯識別符(AID)和STA(一個或多個)的16位元AID。可在VHT SIG-A中用信號發送群組ID,例如,以使得其可以被STA使用來確定MU PPDU是否意味用於它以及識別DL-MU-MIMO傳輸中的哪些空時串流要解調。STA到群組的指派可由群組ID管理訊框來管理。The resource allocation information may be set in a physical layer (PHY) header (eg, VHT-SIG-A1) as, for example, a partial association identifier (AID) and a STA (a) from a 48-bit BSSID in 802.11ac. Multiple) 16-bit AID. The group ID can be signaled in the VHT SIG-A, for example, such that it can be used by the STA to determine if the MU PPDU means for it and which of the DL-MU-MIMO transmissions are to be demodulated . The assignment of the STA to the group can be managed by the group ID management frame.

與OFDM系統相比,在使用OFDMA的BSS中的資源分配可更加複雜。例如,具有80 MHz頻寬的BSS可具有37個RU並且可以同時分配給多個STA。有效的RU分配傳訊可指示分配的RU和/或相關聯的STA,例如,以賦能WLAN系統中的OFDMA操作。傳訊方案在不同系統頻寬間可以是可縮放的,如20、40、80、160或80 + 80 MHz。Resource allocation in BSS using OFDMA can be more complicated than OFDM systems. For example, a BSS with a bandwidth of 80 MHz may have 37 RUs and may be assigned to multiple STAs simultaneously. A valid RU allocation message may indicate the assigned RU and/or associated STA, for example, to enable OFDMA operation in the WLAN system. The messaging scheme can be scalable between different system bandwidths, such as 20, 40, 80, 160 or 80 + 80 MHz.

HE WLAN中可支援低成本MTC和/或IoT類型裝置。低成本MTC和/或IoT裝置可使用窄頻寬(如,5 MHz)。RU分配傳訊和/或基於RU的回饋可賦能低成本MTC和IoT裝置的有效操作。Low-cost MTC and/or IoT type devices can be supported in HE WLANs. Low bandwidth MTC and/or IoT devices can use narrow bandwidth (eg, 5 MHz). RU allocation messaging and/or RU based feedback can enable efficient operation of low cost MTC and IoT devices.

OFDMA中的RF I/Q不均衡可導致干擾。在基於OFDMA的系統中,以子通道形式呈現的一個或多個頻率資源可被指派給可能在上行鏈路方向或下行鏈路方向中的不同的無線鏈路。由於RF I/Q幅度和/或相位不平衡,在相對於中心頻率的通道的一側上分配的子通道上傳送的信號可對通道另一側產生干擾,該干擾做為原始信號的影像。RF I/Q imbalance in OFDMA can cause interference. In an OFDMA-based system, one or more frequency resources presented in the form of subchannels may be assigned to different wireless links that may be in the uplink direction or the downlink direction. Due to the RF I/Q amplitude and/or phase imbalance, the signal transmitted on the subchannel allocated on one side of the channel relative to the center frequency can cause interference to the other side of the channel as an image of the original signal.

第5圖是具有RF I/Q不平衡的部分載入OFDM信號的示例性功率譜密度。第5圖描述了20 MHz通道中具有256個子載波的示例。具有子載波199至224的子通道(顯示為子通道(SC)A)可裝載資料。RF I/Q不平衡可在具有子載波-199至-224的子通道(顯示為SC B)的影像中產生接近23dBr的干擾。Figure 5 is an exemplary power spectral density of a partially loaded OFDM signal with RF I/Q imbalance. Figure 5 depicts an example with 256 subcarriers in a 20 MHz channel. Subchannels with subcarriers 199 through 224 (shown as subchannel (SC) A) can load data. The RF I/Q imbalance can produce interference close to 23dBr in images with sub-carriers -199 to -224 sub-channels (shown as SC B).

在單BSS場景中,例如,在OFDMA DL中,干擾可能不會很顯著,例如,由於每個STA處所有子通道上的發射(Tx)功率與這些子通道上的Rx功率相同。然而,在OFDMA UL中,例如當沒有功率控制或功率控制不精確時,影像子通道(如,SC B)處的干擾可能是顯著的。與使用通道A的STA相比,使用子通道B的STA可能距離AP更遠。In a single BSS scenario, for example, in OFDMA DL, the interference may not be significant, for example, since the transmit (Tx) power on all subchannels at each STA is the same as the Rx power on these subchannels. However, in OFDMA UL, for example when there is no power control or power control is inaccurate, the interference at the image sub-channel (eg, SC B) may be significant. STAs using subchannel B may be farther away from the AP than STAs using channel A.

第6圖是被干擾信號的誤碼率(BER)性能的示例。第6圖示出了子通道B上傳送的信號的示例性BER性能,子通道B遭受由於具有I/Q不平衡的子通道A上的傳輸導致的干擾。dP指定的線可代表子通道A和B之間的功率差異。dP > 0可指示SC B上的信號功率低於SC A上的信號功率。如第6圖所示,例如,當功率沒有被很好控制時,可能會出現顯著的性能損失。Figure 6 is an example of the bit error rate (BER) performance of the interfered signal. Figure 6 shows an exemplary BER performance of a signal transmitted on sub-channel B, which suffers from interference due to transmissions on sub-channel A with I/Q imbalance. The line specified by dP can represent the power difference between sub-channels A and B. dP > 0 indicates that the signal power on SC B is lower than the signal power on SC A. As shown in Figure 6, for example, when power is not well controlled, significant performance penalty can occur.

例如,上行鏈路OFDMA情景中的RU分配可導致和/或補償I/Q不平衡的影響。可設計RU分配傳訊以,例如,阻止由於I/Q不平衡導致的系統損害。For example, RU allocation in an uplink OFDMA scenario may result in and/or compensate for the effects of I/Q imbalance. The RU can be designed to distribute communications to, for example, prevent system damage due to I/Q imbalance.

RU可在基於OFDMA的無線區域網路(WLAN)中被有效分配和/或用信號發送以支援物聯網(IoT)和MTC(機器類型通信)。The RU can be efficiently allocated and/or signaled in an OFDMA-based wireless local area network (WLAN) to support Internet of Things (IoT) and MTC (Machine Type Communication).

可通過多種方式(如,技術、實現)來實施HE WLAN或類似的HE系統。技術可具有多個子集(如,變體)技術。技術和/或子集可被結合和/或修改。The HE WLAN or similar HE system can be implemented in a variety of ways (eg, technology, implementation). Technology can have multiple subsets (eg, variants) techniques. Techniques and/or subsets may be combined and/or modified.

RU分配可在PLCH標頭中用信號發送。可提供HE SIG和/或傳統SIG中的RU分配傳訊的示例。The RU assignment can be signaled in the PLCH header. An example of RU allocation messaging in the HE SIG and/or legacy SIG may be provided.

第一個示例中,RU分配可,例如,從每個RU的角度而使用信號發送。若干RU分配傳訊技術可為從每個RU角度用信號發送RU分配的變體。In the first example, the RU allocation can be, for example, signaled from the perspective of each RU. Several RU allocation messaging techniques may be a variant of signaling RU assignments from each RU perspective.

可對20 MHz頻寬系統用信號發送RU分配。針對20 MHz頻寬用信號發送RU分配可包括如下內容中的一個或多個。The RU assignment can be signaled for a 20 MHz bandwidth system. Signaling the RU allocation for a 20 MHz bandwidth may include one or more of the following.

資源分配中的STA ID可用信號發送或例如由AID/PAID或預指派的群組ID和群組內STA位置來代表。群組ID可例如在SIG-A(如,IEEE 802.11ac SIG-A)中用信號發送。可在HE SIG-A和/或HE SIG-B之前傳送SIG-A。可在HE SIG-A和/或 HE SIG-B前導碼中用信號發送SIG-A。群組ID欄位可具有N個位元。群組可包括多達K個STA。STA(例如每個STA)可具有在群組中相應的STA位置。The STA ID in the resource allocation may be signaled or represented, for example, by AID/PAID or pre-assigned group ID and intra-group STA location. The group ID can be signaled, for example, in SIG-A (eg, IEEE 802.11ac SIG-A). SIG-A can be transmitted before HE SIG-A and/or HE SIG-B. The SIG-A can be signaled in the HE SIG-A and / or HE SIG-B preambles. The group ID field can have N bits. A group can include up to K STAs. The STA (e.g., each STA) may have a corresponding STA location in the group.

RU分配資訊可在HE SIG-B中用信號發送或在HE SIG-A和HE SIG-B之間分割。RU分配欄位可被用於攜帶RU分配資訊。已分配的STA ID可針對每個最小大小RU(如,802.11ax中的26個音)用信號發送,例如,使用群組中的STA位置或AID/PAID。在有些情況下,不是所有的RU可以被分配。可使用預定義的碼字(如,所有的 0或所有的1)來提出針對未分配給BSS中任何STA的RU的“未分配”的情況。The RU allocation information can be signaled in the HE SIG-B or split between the HE SIG-A and the HE SIG-B. The RU allocation field can be used to carry the RU allocation information. The assigned STA ID may be signaled for each minimum size RU (eg, 26 tones in 802.11ax), for example, using the STA location or AID/PAID in the group. In some cases, not all RUs can be assigned. A predefined codeword (e.g., all 0s or all 1s) may be used to present an "unallocated" condition for RUs that are not assigned to any of the STAs in the BSS.

第7圖是RU分配欄位702的示例性格式。RU分配欄位702可使用如第7圖所示格式,例如,當分配的STA可能使用不同的調變和解碼方案(MCS)以及可能在每個分配的RU上具有不同數量的空間串流時。示例性RU分配欄位702可包括STA ID 704、MCS 706和/或NStS 708。FIG. 7 is an exemplary format of the RU allocation field 702. The RU allocation field 702 can use the format shown in Figure 7, for example, when the assigned STAs may use different modulation and decoding schemes (MCS) and may have different numbers of spatial streams on each assigned RU. . Exemplary RU allocation field 702 can include STA ID 704, MCS 706, and/or N StS 708.

第8圖是RU分配欄位802的示例性格式。RU分配欄位802可使用如第8圖所示格式,例如,當分配的STA可被限制使用相同的MCS以及可以在BSS內的所有分配的RU上具有相同數量的空間串流的時候。分配的STA資訊欄位的順序可基於一個或多個RU分配的先前的欄位來確定(如,隱含決定)。示例性RU分配欄位802可包括MCS 804和/或NStS 806。Figure 8 is an exemplary format of the RU allocation field 802. The RU allocation field 802 can use the format shown in Figure 8, for example, when the assigned STAs can be restricted to use the same MCS and can have the same number of spatial streams on all assigned RUs within the BSS. The order of the assigned STA information fields may be determined based on previous fields assigned by one or more RUs (eg, implicit decisions). The exemplary RU allocation field 802 can include an MCS 804 and/or an N StS 806.

RU分配可針對大於20 MHz的頻寬而用信號發送。大於20 MHz的頻寬可由20 MHz的p倍來表示(如,p x 20 MHz)。20 MHz RU分配傳訊可被擴展,如線性地。針對大於20 MHz的頻寬,可使用一個或多個變化來擴展20 MHz RU分配傳訊。這種RU分配傳訊可包括如下內容中的一個或多個。The RU allocation can be signaled for bandwidths greater than 20 MHz. A bandwidth greater than 20 MHz can be represented by p times 20 MHz (eg, p x 20 MHz). 20 MHz RU allocation messaging can be extended, such as linearly. For bandwidths greater than 20 MHz, one or more variations can be used to extend 20 MHz RU allocation messaging. Such RU allocation messaging may include one or more of the following.

資源分配中的STA ID可用信號發送或例如由AID/PAID或預指派的群組ID和群組內STA位置來代表。當群組ID被使用時,可使用多種方式處理頻寬大於20 MHz OFDMA的群組管理。例如,一個群組可被用於在整個頻寬上分配的所有STA。單個群組ID可在SIG-A(如,IEEE 802.11ac SIG-A)中用信號發送,SIG-A可以以如下方式中的一個或多個被傳送:在HE SIG-A 及 HE SIG-B之前,在HE SIG-A中和/或在HE SIG-B中作為前導碼的一部分。作為另一示例,一個群組可被用於整個頻寬中的每一個20 MHz頻帶。可能有p個群組ID用信號發送給STA。p個群組ID可例如在HE SIG-A 和/或 HE SIG-B中以相關聯的20 MHz頻帶的順序而依序地用信號發送。第一個20 MHz的群組ID首先有信號發送,隨後是第二個20 MHz的群組ID,以此類推。在一個示例中,20 MHz頻寬的相應群組ID可在HE SIG-B中以信號發送,例如,當非複製HE SIG-B在每個20 MHz頻帶上被傳送時。The STA ID in the resource allocation may be signaled or represented, for example, by AID/PAID or pre-assigned group ID and intra-group STA location. When group IDs are used, group management with bandwidths greater than 20 MHz OFDMA can be handled in a variety of ways. For example, a group can be used for all STAs allocated across the entire bandwidth. A single group ID can be signaled in SIG-A (eg, IEEE 802.11ac SIG-A), and SIG-A can be transmitted in one or more of the following ways: in HE SIG-A and HE SIG-B Previously, it was part of the preamble in HE SIG-A and/or in HE SIG-B. As another example, a group can be used for each of the 20 MHz bands in the entire bandwidth. There may be p group IDs signaled to the STA. The p group IDs may be sequentially signaled, for example, in HE SIG-A and/or HE SIG-B in the order of the associated 20 MHz bands. The first 20 MHz group ID is signaled first, followed by the second 20 MHz group ID, and so on. In one example, a respective group ID of 20 MHz bandwidth may be signaled in HE SIG-B, for example, when non-replicating HE SIG-B is transmitted on each 20 MHz band.

針對大於20 MHz之頻寬的RU分配欄位可以是一個或多個20 MHz頻寬RU分配欄位格式的線性擴展。STA ID子欄位可添加個位元以用信號發送p個群組ID中相應的群組ID被用於整個頻寬,例如,當如下條件中的一個或多個為真時:群組ID和/或群組中STA位置可被用於表徵分配的STA ID;一個公共HE SIG-B可被用於整個頻寬上或公共HE SIG-B可在每個20 MHz頻帶上被複製;或者p個群組ID可被用於整個頻寬(如,針對每個20 MHz頻帶之一個群組)。The RU allocation field for bandwidths greater than 20 MHz may be a linear extension of one or more 20 MHz bandwidth RU allocation field formats. STA ID subfield can be added The bits are signaled for the corresponding group ID of the p group IDs to be used for the entire bandwidth, for example, when one or more of the following conditions are true: the group ID and/or the STA in the group The location can be used to characterize the assigned STA ID; one common HE SIG-B can be used for the entire bandwidth or the common HE SIG-B can be replicated on each 20 MHz band; or p group IDs can be Used for the entire bandwidth (eg, for one group per 20 MHz band).

20、40及80 MHz頻帶的數值分析可提供如下傳訊開銷的估計:例如,用於群組ID索引和群組大小的N個位元(如,802.11ac中的6位元)可允許多達9個STA。36位元公共RU分配欄位可許可4位元來用信號發送每20 MHz頻帶具有9個RU的群組中的STA位置。對於20 MHz頻帶來說總開銷可能為N + 36位元,對於60 MHz來說總開銷可能為N + (5*28)位元,對於80 MHz來說總開銷可能為N + (6*37)位元。群組ID管理訊框可包含320位元(如,2^N(群組陣列)+2^N*4 (位置陣列)=320 位元)、384位元(如,2^N(群組陣列)+2^N*5 (位置陣列) = 384 位元)或448位元(如,2^N(群組陣列)+2^N*6 (位置陣列) = 448 bits),例如,以支援群組,其允許多達9個STA。Numerical analysis of the 20, 40 and 80 MHz bands provides an estimate of the following communication overhead: for example, N bits for group ID index and group size (eg, 6 bits in 802.11ac) can allow up to 9 STAs. The 36-bit common RU allocation field may permit 4 bits to signal the location of STAs in a group of 9 RUs per 20 MHz band. The total overhead may be N + 36 bits for the 20 MHz band, N + (5 * 28) bits for 60 MHz, and N + (6 * 37 for 80 MHz) ) bit. The group ID management frame can contain 320 bits (eg, 2^N (group array) + 2^N*4 (position array) = 320 bits), 384 bits (eg, 2^N (group) Array) +2^N*5 (position array) = 384 bits) or 448 bits (eg, 2^N (group array) + 2^N*6 (position array) = 448 bits), for example, Support group, which allows up to 9 STAs.

RU分配可針對下行鏈路操作而用信號發送,例如,根據如下內容中的一個或多個。The RU allocation may be signaled for downlink operation, for example, according to one or more of the following.

AP可執行兩個或更多STA的群組管理,該兩個或更多STA能夠使用群組管理訊框進行基於OFDMA的傳輸和接收,例如,當群組ID被用於RU分配傳訊中的STA ID。The AP may perform group management of two or more STAs capable of performing OFDMA-based transmission and reception using a group management frame, for example, when a group ID is used in the RU allocation communication STA ID.

AP可監視BSS的條件(如,AP處緩衝的下行鏈路資料的量、功率節省/休眠週期等)。例如,當一個或多個條件保證OFDMA傳輸時,AP可確定執行OFDMA傳輸。作為示例,若干STA可具有足夠的在AP處緩衝的下行鏈路資料,以使資料的量可以允許有效的OFDMA資源利用。The AP can monitor the conditions of the BSS (eg, the amount of downlink data buffered at the AP, power savings/sleep cycles, etc.). For example, when one or more conditions guarantee OFDMA transmission, the AP may determine to perform an OFDMA transmission. As an example, several STAs may have sufficient downlink data buffered at the AP such that the amount of data may allow for efficient OFDMA resource utilization.

AP可選擇一個或多個STA用於DL傳輸。例如,根據合適的排程演算法,AP可針對一個或多個STA選擇相應的資源分配和/或傳輸參數,如分配的RU、MCS、MIMO參數、將要傳送的資料的量等等。The AP may select one or more STAs for DL transmission. For example, according to a suitable scheduling algorithm, the AP may select corresponding resource allocation and/or transmission parameters for one or more STAs, such as the assigned RU, MCS, MIMO parameters, the amount of data to be transmitted, and the like.

相應地,AP可執行下行鏈路OFDMA傳輸。在OFDMA傳輸中AP可在PLCP標頭中設置一個或多個RU分配和/或DL傳輸參數,例如,使用在此描述的RU分配傳訊。Accordingly, the AP can perform downlink OFDMA transmission. In an OFDMA transmission, the AP may set one or more RU allocation and/or DL transmission parameters in the PLCP header, for example, using the RU allocation communication described herein.

STA可解碼檢測到的PLCP標頭(如,傳統SIG、HE SIG-A、HE SIG-B)並可以解釋接收到的PLCP標頭,例如,根據在此描述的RU分配傳訊中指定的格式。The STA may decode the detected PLCP header (eg, legacy SIG, HE SIG-A, HE SIG-B) and may interpret the received PLCP header, eg, according to the format specified in the RU allocation message described herein.

STA可將其接收機調諧到分配的RU(一個或多個)以根據接收的SIG(如,傳統SIG、HE SIG-A和SIG-B)中的一個或多個參數接收和解碼其下行鏈路資料。The STA may tune its receiver to the assigned RU(s) to receive and decode its downlink according to one or more parameters of the received SIG (eg, legacy SIG, HE SIG-A, and SIG-B). Road information.

第9圖是20 MHz頻帶的音規劃和RU單元標記的示例。STA可根據分配的RU來確定一個或多個音規劃(如,包括導頻和DC空值)。作為示例,第9圖中標記為“單元10”的RU單元可被分配給STA,例如,當接收到之RU分配傳訊指示RU單元1和2被分配給STA的時候。Figure 9 is an example of tone planning and RU unit marking in the 20 MHz band. The STA may determine one or more tone plans (eg, including pilot and DC null values) based on the assigned RUs. As an example, the RU unit labeled "Unit 10" in Figure 9 may be assigned to the STA, for example, when the received RU allocation message indicates that RU units 1 and 2 are assigned to the STA.

例如,根據如下內容中的一個或多個,可提供上行鏈路中的RU分配傳訊。For example, RU allocation messaging in the uplink may be provided in accordance with one or more of the following.

AP可執行STA的群組管理,STA能夠使用群組管理訊框進行基於OFDMA的傳輸和接收,例如,當群組ID被用於RU分配傳訊中的STA ID時。The AP may perform group management of the STA, and the STA can perform OFDMA-based transmission and reception using the group management frame, for example, when the group ID is used for the STA ID in the RU allocation communication.

AP可監視BSS的條件(如,STA處緩衝的上行鏈路資料的量、功率節省/休眠週期、路徑損耗或在AP處單個STA的接收功率)。例如,當條件保證傳輸時,AP可確定執行上行鏈路OFDMA傳輸。例如,若干STA可具有足夠的上行鏈路資料,資料的量可以允許有效的OFDMA資源利用,在AP處,若干STA具有相似的接收功率等。The AP may monitor conditions of the BSS (eg, amount of uplink data buffered at the STA, power save/sleep period, path loss, or received power of a single STA at the AP). For example, when the condition guarantees transmission, the AP may determine to perform uplink OFDMA transmission. For example, several STAs may have sufficient uplink data, the amount of data may allow for efficient OFDMA resource utilization, at the AP, several STAs have similar received power, and the like.

AP可選擇一個或多個STA用於UL傳輸。例如,根據合適的排程演算法,AP可針對STA選擇相應的資源分配和/或傳輸參數,如分配的RU、MCS、MIMO參數、將要傳輸的資料的量。The AP may select one or more STAs for UL transmission. For example, based on a suitable scheduling algorithm, the AP may select corresponding resource allocation and/or transmission parameters for the STA, such as the assigned RU, MCS, MIMO parameters, amount of data to be transmitted.

AP可觸發徵求來自選擇的STA的UL MU PPDU的傳輸的訊框。AP可使用之前描述的RU分配傳訊在觸發訊框中設置RU分配和DL傳輸參數。The AP may trigger a frame requesting transmission of UL MU PPDUs from the selected STA. The AP may set the RU allocation and DL transmission parameters in the trigger frame using the previously described RU allocation message.

STA可以例如根據之前描述的RU分配傳訊中的指定的格式來解譯(interpret)接收到的觸發訊框中的RU分配傳訊,例如,在接收到具有針對其的RU分配的有效觸發訊框後。The STA may interpret the RU allocation message in the received trigger frame, for example, according to the format specified in the previously described RU allocation message, for example, after receiving a valid trigger frame with the RU assignment for it. .

STA可根據在觸發訊框中接收到的RU分配和傳輸參數來傳送UL MU PPDU以作為觸發訊框的立即回應。The STA may transmit the UL MU PPDU as an immediate response to the trigger frame according to the RU allocation and transmission parameters received in the trigger frame.

STA可根據分配的RU來確定音規劃(如,包括導頻和DC空值)。例如,第9圖中標記為單元“10”的RU單元可被分配給STA,例如,當接收到的RU分配傳訊指示RU單元1和2被分配給STA的時候。The STA may determine the tone plan (eg, including pilot and DC null values) based on the assigned RU. For example, the RU unit labeled as unit "10" in Fig. 9 may be assigned to the STA, for example, when the received RU allocation message indicates that RU units 1 and 2 are assigned to the STA.

可在每個STA用信號發送RU分配,例如,以支持所分散RU分配,比如當分配給STA的RU在整個頻帶上均勻分佈的時候。The RU allocation may be signaled at each STA, for example, to support the distributed RU allocation, such as when the RUs assigned to the STAs are evenly distributed over the entire frequency band.

第10圖是具有固定STA資訊大小的分散式RU傳訊的示例。可如第10圖所示設計RU傳訊欄位。可存在N個STA資訊欄位1010(如,STA資訊1到N)。‘k’(例如,1到N)STA資訊欄位可攜帶用於第k個STA的RU排程和其他資訊。STA資訊欄位可包括一個或多個欄位,如STA ID欄位1012、RU起始位置欄位1014、RU間隔欄位1016、MCS欄位1018和/或Nsts 欄位1020。Figure 10 is an example of decentralized RU messaging with fixed STA information size. The RU communication field can be designed as shown in Figure 10. There may be N STA information fields 1010 (eg, STA information 1 to N). The 'k' (eg, 1 to N) STA information field may carry the RU schedule and other information for the kth STA. The STA information field may include one or more fields, such as STA ID field 1012, RU start location field 1014, RU interval field 1016, MCS field 1018, and/or N sts field 1020.

STA ID欄位1012可被用於攜帶STA識別。STA ID可以是例如群組ID和群組內STA位置的組合。作為示例,STA ID可指示位置L之群組內的STA,如[群組M,位置L]。傳訊欄位內的STA ID可不被限制到特別群組。STA ID可以是例如關聯ID(AID)和BSSID的壓縮版本。STA ID可以為例如AID的壓縮版本。作為示例,BSSID或BSS身份的其他類型可在公共SIG欄位中用信號發送。The STA ID field 1012 can be used to carry STA identification. The STA ID may be, for example, a combination of a group ID and an STA location within a group. As an example, the STA ID may indicate an STA within a group of locations L, such as [Group M, Location L]. The STA ID in the messaging field may not be restricted to a special group. The STA ID may be, for example, a compressed version of an Association ID (AID) and a BSSID. The STA ID can be, for example, a compressed version of the AID. As an example, other types of BSSID or BSS identity may be signaled in the common SIG field.

RU起始位置欄位1014可被用於指示指派給STA的第一個RU的位置。例如,可使用整個通道上的RU索引或使用頻帶索引和那個頻帶上的RU偏移來用信號發送該位置。在80 MHz的總頻寬的實施例中,可利用兩個位元指示4個20 MHz子帶以及可使用k位元以用信號發送多達2k個RU偏移位置,其中,每個20 MHz子帶可支援多達2k個RU。The RU Start Location field 1014 can be used to indicate the location of the first RU assigned to the STA. For example, the location can be signaled using the RU index on the entire channel or using the band index and the RU offset on that band. In an embodiment of a total bandwidth of 80 MHz, two bits can be used to indicate four 20 MHz sub-bands and that k bits can be used to signal up to 2k RU offset locations, where each 20 MHz The subband can support up to 2k RUs.

RU間隔欄位1016可被用於指示指派的RU之間的間隔(如,以RU為單位)。The RU Interval field 1016 can be used to indicate the interval between the assigned RUs (eg, in RU).

MCS欄位1018可指示指派給STA的MCS。一個MCS可被指派給分配給STA的RU(如,所有RU)。The MCS field 1018 may indicate the MCS assigned to the STA. One MCS can be assigned to an RU (eg, all RUs) assigned to the STA.

Nsts 欄位1020可指示指派給STA的空時串流的數量。The N sts field 1020 may indicate the number of space-time streams assigned to the STA.

RU排程可以是分散式的。第11圖是分散式RU排程的示例。在第11圖所示示例中,虛線下的RU可被指派給STA。這些RU之間的距離可被指示為RU間隔。The RU schedule can be decentralized. Figure 11 is an example of a distributed RU schedule. In the example shown in Fig. 11, the RU under the dotted line can be assigned to the STA. The distance between these RUs can be indicated as an RU interval.

RU分配可為上行鏈路和下行鏈路操作而用信號發送,例如,根據第一示例中的用於上行鏈路和下行鏈路操作的上行鏈路和下行鏈路RU分配傳訊。The RU allocation may be signaled for uplink and downlink operations, for example, according to the uplink and downlink RU allocations for uplink and downlink operations in the first example.

RU傳訊欄位可被插入到SIG-A欄位、SIG-B欄位或SIG-A/SIG-B欄位。插入到SIG-A/SIG-B欄位的RU傳訊欄位可被分割成兩部分,到SIG-A欄位的第一部分以及到SIG-B欄位的第二部分。The RU message field can be inserted into the SIG-A field, the SIG-B field, or the SIG-A/SIG-B field. The RU message field inserted into the SIG-A/SIG-B field can be split into two parts, the first part of the SIG-A field and the second part of the SIG-B field.

RU傳訊欄位可在OFDMA傳輸週期之前傳送的控制訊框中被攜帶。例如,RU傳訊欄位可被攜帶在觸發訊框中,該觸發訊框可被用於初始化上行鏈路OFDMA傳輸。The RU communication field can be carried in the control frame transmitted before the OFDMA transmission period. For example, the RU communication field can be carried in the trigger frame, and the trigger frame can be used to initialize the uplink OFDMA transmission.

RU排程資訊可在每個STA用信號發送,例如,以支持連續的RU分配。分配給STA的RU可以是實體上相鄰的。RU schedule information can be signaled at each STA, for example, to support continuous RU allocation. The RUs assigned to the STAs may be physically contiguous.

第12圖是具有固定STA資訊大小的連續性RU傳訊的示例。例如,可如第12圖中所示來設計RU傳訊欄位。可存在N個STA資訊欄位1210(如,STA資訊1到N)。‘k’(例如,1到N)STA資訊欄位1210可攜帶用於第k個STA的RU排程和其他資訊。STA資訊欄位1210可包括一個或多個欄位,如STA ID欄位1212、RU起始位置欄位1214、RU數量欄位1216、MCS欄位1218或Nsts 欄位1220。Figure 12 is an example of a continuous RU message with a fixed STA information size. For example, the RU messaging field can be designed as shown in FIG. There may be N STA information fields 1210 (eg, STA information 1 to N). The 'k' (eg, 1 to N) STA information field 1210 may carry the RU schedule and other information for the kth STA. The STA information field 1210 may include one or more fields, such as a STA ID field 1212, an RU start location field 1214, an RU quantity field 1216, an MCS field 1218, or an N sts field 1220.

STA ID欄位1212可被用於攜帶STA的識別。STA ID可以是例如群組ID和群組內STA位置的組合。作為示例,STA ID可指示有位置L之群組M中的STA,如[群組M,位置L]。傳訊欄位中的STA ID可不被限制到特別群組。STA ID可以是例如關聯ID(AID)和BSSID的壓縮版本。STA ID可以是例如AID的壓縮版本。作為示例,BSSID或BSS身份的其他類型可在公共SIG欄位中用信號發送。The STA ID field 1212 can be used to carry the identification of the STA. The STA ID may be, for example, a combination of a group ID and an STA location within a group. As an example, the STA ID may indicate a STA in the group M with the location L, such as [Group M, Location L]. The STA ID in the messaging field may not be restricted to the special group. The STA ID may be, for example, a compressed version of an Association ID (AID) and a BSSID. The STA ID can be, for example, a compressed version of the AID. As an example, other types of BSSID or BSS identity may be signaled in the common SIG field.

RU起始位置欄位1214可被用於指示指派給STA的第一個RU的位置。例如,可使用整個通道上的RU索引的方式用信號發送指派給STA的第一個RU的位置。可使用頻帶索引和那個頻帶上的RU偏移而用信號發送指派給STA的第一個RU的位置。在對於80 MHz的總頻寬的示例中,可利用兩個位元指示4個20 MHz子帶以及可使用k位元用信號發送多達2k個RU偏移位置,其中,每個20 MHz子帶可支援多達2k個RU。The RU Start Location field 1214 can be used to indicate the location of the first RU assigned to the STA. For example, the location of the first RU assigned to the STA can be signaled using the RU index on the entire channel. The location of the first RU assigned to the STA can be signaled using the band index and the RU offset on that band. In the example for a total bandwidth of 80 MHz, two bits can be used to indicate four 20 MHz sub-bands and up to 2k RU offset locations can be signaled using k-bits, where each 20 MHz sub-segment The belt can support up to 2k RUs.

RU數量欄位1216可被用於指示指派給STA的連續RU的數量。The RU Quantity field 1216 can be used to indicate the number of consecutive RUs assigned to the STA.

MCS欄位1218可指示指派給STA的MCS。MCS可被指派給分配給STA的一個或多個(如,所有)RU。The MCS field 1218 may indicate the MCS assigned to the STA. The MCS can be assigned to one or more (eg, all) RUs assigned to the STA.

Nsts 欄位1220可指示指派給STA的空間串流的數量。The N sts field 1220 may indicate the number of spatial streams assigned to the STA.

第13圖是連續性RU排程的示例。兩個或更多RU可被連續地分配。Figure 13 is an example of a continuous RU schedule. Two or more RUs can be allocated continuously.

第14圖是具有多個RU集的連續性RU分配的示例。STA可被指派多個RU集。RU集可被認為是連續地分配的。Figure 14 is an example of a contiguous RU allocation with multiple RU sets. A STA may be assigned multiple RU sets. The RU set can be considered to be continuously allocated.

第15A圖和第15B圖是具有可變STA資訊大小的連續性RU傳訊欄位設計的示例。例如,當指派給STA的RU集的數量可變時,STA資訊欄位1510可具有不同的大小。例如,可在另一個傳訊欄位中用信號發送指派給STA的RU集的數量,其可以在RU傳訊欄位之前被傳送。在另一個示例中,可在每個STA資訊欄位添加STA分隔符號,以使STA檢測分隔符號以及STA資訊欄位的開始。STA分隔符號可為預確定的序列或發射機與接收機約定的(如,ad hoc)。CRC保護可被應用到STA分隔符號。Figures 15A and 15B are examples of continuous RU messaging field designs with variable STA information sizes. For example, when the number of RU sets assigned to a STA is variable, the STA information field 1510 may have different sizes. For example, the number of RU sets assigned to the STA may be signaled in another messaging field, which may be transmitted before the RU communication field. In another example, a STA delimiter may be added in each STA information field to cause the STA to detect the delimiter and the beginning of the STA information field. The STA delimiter may be a predetermined sequence or a transmitter-receiver (e.g., ad hoc). CRC protection can be applied to STA delimiters.

第15A圖示出了具有每個STA MCS指派的傳訊欄位的設計。例如,可如第15A圖或第15B圖所示設計RU傳訊欄位。可存在N個STA資訊欄位(如,STA資訊1到N)。‘k’(例如,1到N)STA資訊欄位可攜帶用於第k個STA的RU排程和其他資訊。STA資訊欄位可包括如下中的一個或多個:STA分隔符號欄位1512、STA ID欄位 1514、一個或多個RU集欄位1520、MCS欄位1522或Nsts 欄位1524。Figure 15A shows the design of a messaging field with each STA MCS assignment. For example, the RU communication field can be designed as shown in FIG. 15A or FIG. 15B. There may be N STA information fields (eg, STA information 1 to N). The 'k' (eg, 1 to N) STA information field may carry the RU schedule and other information for the kth STA. The STA information field may include one or more of the following: STA Separation Symbol Field 1512, STA ID Field 1514, One or more RU Set Fields 1520, MCS Field 1522, or N sts Field 1524.

可提供STA分隔符號欄位1512。STA分隔符號欄位1512可以是可選的,例如,當每個STA資訊欄位1510的大小在RU傳訊欄位之前在SIG欄位中用信號發送時。The STA Separation Symbol field 1512 is available. The STA Separation Symbol field 1512 may be optional, for example, when the size of each STA information field 1510 is signaled in the SIG field prior to the RU communication field.

STA ID欄位1514可被用於攜帶STA識別。STA ID可以是例如群組ID和群組內STA位置的組合。作為範例,STA ID可指示有位置L之群組M中的STA,如[群組M,位置L]。傳訊欄位中的STA ID可不被限制到特別群組。STA ID可以是例如關聯ID(AID)和BSSID的壓縮版本。STA ID可以是例如AID的壓縮版本。作為示例,BSSID或BSS身份的其他類型可在公共SIG欄位中用信號發送。The STA ID field 1514 can be used to carry STA identification. The STA ID may be, for example, a combination of a group ID and an STA location within a group. As an example, the STA ID may indicate a STA in the group M with the location L, such as [Group M, Location L]. The STA ID in the messaging field may not be restricted to the special group. The STA ID may be, for example, a compressed version of an Association ID (AID) and a BSSID. The STA ID can be, for example, a compressed version of the AID. As an example, other types of BSSID or BSS identity may be signaled in the common SIG field.

RU集欄位1520(如,RU集1到RU集k)可被用於指示連續的RU集分配。RU集欄位1520可包含RU起始位置欄位1526和/或RU數量欄位1528。RU起始位置欄位1526可被用於指示指派給STA的第一個RU的位置。RU數量欄位1528可被用於指示指派給STA的連續RU的數量。The RU set field 1520 (eg, RU set 1 to RU set k) can be used to indicate a continuous RU set allocation. The RU set field 1520 may include an RU start location field 1526 and/or an RU quantity field 1528. The RU Start Location field 1526 can be used to indicate the location of the first RU assigned to the STA. The RU Quantity field 1528 can be used to indicate the number of consecutive RUs assigned to the STA.

MCS欄位1522可指示指派給STA的MCS。MCS可被指派給分配給STA的一個或多個(如,所有)RU。The MCS field 1522 may indicate the MCS assigned to the STA. The MCS can be assigned to one or more (eg, all) RUs assigned to the STA.

Nsts 欄位1524可指示指派給STA的空時串流的數量。The N sts field 1524 may indicate the number of space time streams assigned to the STA.

第15B圖示出了每個RU集MCS指派的傳訊欄位設計。例如,一個或多個RU集資訊欄位1520可包括MCS欄位1532和/或Nsts 欄位1534。Figure 15B shows the communication field design for each RU set MCS assignment. For example, one or more of the RU set information fields 1520 can include an MCS field 1532 and/or an N sts field 1534.

RU分配可為上行鏈路和下行鏈路操作而用信號發送,例如,根據在此描述的用於上行鏈路和/或下行鏈路操作的上行鏈路和下行鏈路RU分配傳訊。The RU allocation may be signaled for uplink and downlink operations, for example, according to the uplink and downlink RU allocations described herein for uplink and/or downlink operation.

RU傳訊欄位可被插入到SIG-A欄位、SIG-B欄位或SIG-A/SIG-B欄位。插入到SIG-A/SIG-B欄位的RU傳訊欄位可被分成兩部分,到SIG-A欄位的第一部分以及到SIG-B欄位的第二部分。The RU message field can be inserted into the SIG-A field, the SIG-B field, or the SIG-A/SIG-B field. The RU message field inserted into the SIG-A/SIG-B field can be divided into two parts, the first part of the SIG-A field and the second part of the SIG-B field.

RU傳訊欄位可在OFDMA傳輸之前傳送的控制訊框中被攜帶。例如,RU傳訊訊框欄位可在觸發訊框中被攜帶。該觸發訊框可被用於初始化上行鏈路OFDMA傳輸。The RU communication field can be carried in the control frame transmitted before the OFDMA transmission. For example, the RU message frame field can be carried in the trigger frame. The trigger frame can be used to initialize an uplink OFDMA transmission.

RU分配可包括用於頻寬大於20 MHz(如40 MHz、80 MHz、和/或160 (或80 + 80) MHz)的平整RU分配傳訊。與包含用於大於20 MHz之頻寬的基於20 MHz的分級RU分配的第一示例相比,跨越整個頻寬或大於20 MHz之頻段(如,160 (80+80) MHz)的平整RU分配可被用於用信號發送RU分配。The RU allocation may include flat RU allocation messaging for bandwidths greater than 20 MHz, such as 40 MHz, 80 MHz, and/or 160 (or 80 + 80) MHz. Flat RU allocation across the entire bandwidth or a band greater than 20 MHz (eg, 160 (80+80) MHz) compared to the first example containing 20 MHz based hierarchical RU allocation for bandwidths greater than 20 MHz Can be used to signal the RU allocation.

第16圖是平整RU分配傳訊的示例。Figure 16 is an example of flattening RU allocation messaging.

資源分配中的STA ID例如可通過AID/PAID用信號發送或代表。資源分配中的STA ID或預指派的群組ID以及群組中的STA位置。例如,當群組ID和跨越大於20 MHz的整個頻寬的平整RU分配一起使用的時候,一個群組可被用於在整個頻寬中分配的一個或多個(如,全部)STA。在前導碼中,群組ID(如,IEEE 802.11ac群組ID)可在HE SIG-A 和HE SIG-B之前用信號發送。群組ID欄位可具有N位元,每個群組可包含多達K個STA並且每個STA可在群組中具有相應的STA位置。例如,重用N=6位元及K=4、5和6位元的802.11ac群組ID欄位可在20 MHz、40 MHz和80 MHz的群組中分別支持多達9、18和37個STA。The STA ID in the resource allocation can be signaled or represented, for example, by AID/PAID. The STA ID in the resource allocation or the pre-assigned group ID and the STA location in the group. For example, when a group ID is used with a flat RU allocation that spans the entire bandwidth greater than 20 MHz, one group can be used for one or more (eg, all) STAs allocated throughout the bandwidth. In the preamble, the group ID (eg, IEEE 802.11ac group ID) can be signaled before HE SIG-A and HE SIG-B. The group ID field may have N bits, each group may contain up to K STAs and each STA may have a corresponding STA location in the group. For example, the 802.11ac group ID field that reuses N=6 bits and K=4, 5, and 6 bits can support up to 9, 18, and 37 in groups of 20 MHz, 40 MHz, and 80 MHz, respectively. STA.

RU分配資訊可用信號發送。RU分配資訊可在HE SIG-A、HE SIG-B中用信號發送或在HE SIG-A和HE SIG-B之間被分割。通過如下三個示例和/或其他實施中的一個或任何組合,RU排程資訊可在每個STA用信號發送。The RU allocation information can be signaled. The RU allocation information can be signaled in HE SIG-A, HE SIG-B or split between HE SIG-A and HE SIG-B. The RU schedule information can be signaled at each STA by one or any combination of the following three examples and/or other implementations.

一維(1D)最小RU M-點陣圖(1D min_RU點陣圖)可被用於針對每個STA用信號發送RU分配,其中,M可代表用於給定頻寬(或頻段)的最小大小的RU的總數量。作為示例,9-點陣圖、18-點陣圖以及37-點陣圖可被用於分別針對20 MHz、40 MHz以及80 MHz (或160(80+80)MHz)的每個STA用信號發送RU分配。點陣圖中的位元可為二進位(如,1或0),例如,以指示相應的最小大小(最小化的)的RU是否被分配給STA。例如,1可表示最小化的RU分配給STA,而0可表示沒有為STA分配。37-點陣圖可被用於針對80 MHz用信號發送RU分配。例如,點陣圖中的第1和第37位元等於1可指示第一和最後(例如,第37個)26音RU被分配給STA。A one-dimensional (1D) minimum RU M-dot map (1D min_RU bitmap) can be used to signal the RU allocation for each STA, where M can represent the minimum for a given bandwidth (or band) The total number of RUs in size. As an example, 9-dot, 18-dot, and 37-dot can be used to signal each STA for 20 MHz, 40 MHz, and 80 MHz (or 160 (80+80) MHz), respectively. Send the RU assignment. The bits in the bitmap may be binary (eg, 1 or 0), for example, to indicate whether the corresponding minimum size (minimized) RU is assigned to the STA. For example, 1 may indicate that the minimized RU is assigned to the STA, and 0 may indicate that the STA is not allocated. The 37-map can be used to signal the RU assignment for 80 MHz. For example, the 1st and 37th bits in the bitmap may be equal to 1 to indicate that the first and last (eg, 37th) 26-tone RUs are assigned to the STA.

與點陣圖RU分配相關聯的RU大小可用信號發送(如,顯式地用信號發送)給STA用於解調和解碼。例如, 三位元(3bit)RU大小指示(如,RU大小指示)可指示6種不同的RU大小,如26音RU、52音RU、106音RU、242音RU、484音RU以及996音RU。6種RU大小與3位元大小指示之間的映射可以是預定義的或以任何格式指規。一數量(如,T)的3位元RU大小指示可用信號發送,例如,依據分配給STA的RU的總數量(如,T)。T個3位元RU大小指示可在例如1D min_RU點陣圖之後用信號發送。The RU size associated with the bitmap RU assignment may be signaled (e.g., explicitly signaled) to the STA for demodulation and decoding. For example, a three-bit (3 bit) RU size indication (eg, a RU size indication) may indicate six different RU sizes, such as 26 tone RU, 52 tone RU, 106 tone RU, 242 tone RU, 484 tone RU, and 996 tone. RU. The mapping between the 6 RU sizes and the 3-bit size indications may be predefined or in any format. A number (eg, T) of 3-bit RU size indications may be signaled, eg, based on the total number of RUs assigned to the STA (eg, T). T 3-bit RU size indications may be signaled after, for example, a 1D min_RU bitmap.

與點陣圖RU分配相關聯的RU大小可用信號發送(如,隱式地用信號發送)給STA用於解調和解碼,例如,當可以預定義或假設單個“1”位元表示RU分配大於最小大小RU(如,26音RU大小)。在37點陣圖被用於針對80 MHz用信號發送RU分配的示例中,點陣圖的第1和第2位元等於1可用信號發送第一52音RU被分配給STA。不同RU大小的隱式傳訊可被用於跨越整個頻帶分配不同大小的RU。The RU size associated with the bitmap RU assignment may be signaled (e.g., implicitly signaled) to the STA for demodulation and decoding, for example, when a single "1" bit may be predefined or assumed to indicate that the RU allocation is greater than The minimum size RU (eg, 26 tone RU size). In the example where the 37-dot pattern is used to signal the RU allocation for 80 MHz, the first and second bits of the bitmap are equal to one. The first 52-tone RU is available for signal transmission to the STA. Implicit messaging of different RU sizes can be used to allocate different sized RUs across the entire frequency band.

在37點陣圖用於針對80 MHz用信號發送RU分配的示例中,例如,如第16圖所示的,點陣圖的第1、2、3、4、5位元等於1可用信號指示兩個52音RU或一個106音RU加一個26音RU(第5位元)被分配給STA。在一個示例中,只有第5個26音可被分配,例如,由於52音和106音RU不能被分配給如第16圖所示示例中指示的第5個26音位置。In the example where the 37 dot pattern is used to signal the RU allocation for 80 MHz, for example, as shown in FIG. 16, the 1, 2, 3, 4, and 5 bits of the bitmap are equal to 1 available signal indication. Two 52-tone RUs or one 106-tone RU plus one 26-tone RU (5th bit) are assigned to the STA. In one example, only the 5th 26-tone can be assigned, for example, since the 52-tone and the 106-tone RU cannot be assigned to the 5th 26-tone position as indicated in the example shown in FIG.

L個位元可被用於用信號發送跨越整個頻寬(如,頻段)的可配置RU分配。L可受制於跨越整個頻寬(或頻段)的可配置RU分配的總數量,如,2L >=跨越整個頻寬(或頻段)的可配置RU分配的總數量。對於20 MHz、40 MHz和80 MHz的示例,可以存在例如16、33和68個可配置RU分配,其中L等於4、6和7位元可被分別用於向STA用信號發送可配置RU的分配。可配置RU位置和L-位元指示之間的映射可為預定義的和/或以任何格式指定。L個位元可用信號發送哪個可配置RU被分配給STA,例如,當每個STA被分配一個RU時。分配給STA的RU的總數量(如,T個RU)可用信號發送,例如,當多於一個的RU可被分配給STA時。T個RU分配的L-位元索引可跟隨RU分配傳訊。L bits can be used to signal a configurable RU allocation across the entire bandwidth (eg, frequency band). L may be subject to a total number of configurable RU allocations across the entire bandwidth (or frequency band), eg, 2 L >= total number of configurable RU allocations across the entire bandwidth (or frequency band). For the examples of 20 MHz, 40 MHz, and 80 MHz, there may be, for example, 16, 33, and 68 configurable RU allocations, where L equals 4, 6, and 7 bits may be used to signal the configurable RU to the STA, respectively. distribution. The mapping between configurable RU locations and L-bit indications can be predefined and/or specified in any format. The L bits can signal which configurable RU is assigned to the STA, for example, when each STA is assigned an RU. The total number of RUs assigned to the STA (eg, T RUs) may be signaled, for example, when more than one RU can be assigned to the STA. The L-bit index assigned by the T RUs can follow the RU allocation communication.

二維(2-D)RU點陣圖可用信號發送跨越整個頻寬(或頻段)的RU分配的位置。2D RU點陣圖的第一維可用信號發送RU大小,其可以對應於RU構件的列,如第16圖中所示。列1、2、3、4、5和6可分別指示26音RU、52音RU、106音RU、242音RU、484音RU和996音RU。2D RU點陣圖的第二維可用信號發送用於給定列或分配給期望STA的RU大小的RU的索引。不同的1D點陣圖的大小可被用於不同的RU大小。例如,2D大小可為[1,37]、[2,16]、[3,8]、[4,4]、[5,2]和/或 [6,1]。例如,可根據頻寬,針對STA的RU分配用信號發送一個或多個1D RU點陣圖。作為示例,4、5和6 2D RU點陣圖可例如分別針對20 MHz、40 MHz和80 MHz用信號通知。A two-dimensional (2-D) RU bitmap can signal the location of the RU allocation across the entire bandwidth (or band). The first dimension of the 2D RU bitmap can signal the RU size, which can correspond to the columns of RU components, as shown in FIG. Columns 1, 2, 3, 4, 5, and 6 may indicate 26 tone RU, 52 tone RU, 106 tone RU, 242 tone RU, 484 tone RU, and 996 tone RU, respectively. The second dimension of the 2D RU bitmap can signal the index of the RU for a given column or RU size assigned to the desired STA. The size of the different 1D bitmaps can be used for different RU sizes. For example, the 2D size can be [1, 37], [2, 16], [3, 8], [4, 4], [5, 2], and/or [6, 1]. For example, one or more 1D RU bitmaps may be signaled for the RU allocation of the STA based on the bandwidth. As an example, 4, 5, and 6 2D RU bitmaps may be signaled, for example, for 20 MHz, 40 MHz, and 80 MHz, respectively.

RU傳訊欄位可被用於攜帶如下RU分配資訊中的一個或多個。The RU messaging field can be used to carry one or more of the following RU allocation information.

STA資訊k欄位可攜帶用於第k個STA的RU排程和/或其他資訊。STA資訊欄位可包含例如STA分隔符號、STA ID和/或一個或多個RU分配欄位中的一者或多者。The STA information k field may carry the RU schedule and/or other information for the kth STA. The STA information field may include, for example, one or more of a STA delimiter, a STA ID, and/or one or more RU allocation fields.

可對每個STA資訊欄位添加STA分隔符號,例如,以許可STA檢測分隔符號和/或STA資訊欄位的開始。STA分隔符號可以是指定的序列或發射機與接收機約定的(如,ad hoc)。CRC保護可被應用到STA分隔符號。例如,當指派給STA的RU的數量可以不同時,STA分隔符號欄位可具有不同的大小。STA分隔符號欄位可以是可選的,例如,當STA資訊欄位的大小可以在RU傳訊欄位之前在SIG欄位中用信號發送時。A STA delimiter may be added to each STA information field, for example, to permit the STA to detect the beginning of the delimiter and/or STA information field. The STA delimiter may be a specified sequence or a transmitter-receiver (eg, ad hoc). CRC protection can be applied to STA delimiters. For example, when the number of RUs assigned to a STA may be different, the STA Separation Symbol fields may have different sizes. The STA Separation Symbol field may be optional, for example, when the size of the STA information field can be signaled in the SIG field before the RU communication field.

STA ID欄位可被用於攜帶STA識別資訊。STA ID資訊可包括例如AID/PAID或預指派的群組ID和群組中STA位置。The STA ID field can be used to carry STA identification information. The STA ID information may include, for example, an AID/PAID or a pre-assigned group ID and a STA location in the group.

一個或多個RU分配欄位可被用於指示一個或多個分配給STA的RU。RU欄位可包括如下子欄位中的一個或多個,例如,依賴於RU分配實施。One or more RU allocation fields may be used to indicate one or more RUs assigned to the STA. The RU field may include one or more of the following subfields, for example, depending on the RU allocation implementation.

第17A圖和第17B圖是平整RU傳訊的示例。1D min_RU點陣圖欄位1716可被用於針對每個STA用信號發送RU分配。1D min_RU點陣圖可以為例如分別針對20 MHz、40 MHz和80 MHz(或160(80+80)MHz)的9-點陣圖、18-點陣圖和37-點陣圖。點陣圖中的位元可為二進位(如,1或0)以指示相應的最小大小RU是否被分配給STA。Figures 17A and 17B are examples of flattening RU communications. The 1D min_RU bitmap field 1716 can be used to signal the RU allocation for each STA. The 1D min_RU bitmap may be, for example, 9-dot, 18-dot, and 37-dot for 20 MHz, 40 MHz, and 80 MHz (or 160 (80+80) MHz, respectively). The bits in the bitmap may be binary (eg, 1 or 0) to indicate whether the corresponding minimum size RU is assigned to the STA.

RU大小指示欄位1720可以是例如3位元以指示6個不同RU大小中的一個,6個不同RU大小如,26音RU、52音RU、106音RU、242音RU、484音RU和996音RU。The RU size indication field 1720 may be, for example, 3 bits to indicate one of 6 different RU sizes, 6 different RU sizes such as 26 tone RU, 52 tone RU, 106 tone RU, 242 tone RU, 484 tone RU, and 996 tone RU.

第17A圖示出了用於分配給STA的每個RU的具有一個(如,公共的)MCS欄位1722和Nsts 欄位1724的RU傳訊的示例。例如,每個STA資訊欄位1710可包括用於STA的一個MCS欄位1722和一個Nsts 欄位1724。第17B圖示出了具有每個RU MCS和Nsts指派的RU傳訊的示例,其中,具有不同RU大小的不同RU可攜帶其自己的MCS和Nsts。每個STA資訊欄位1710可包括多個MCS欄位1722和/或多個Nsts欄位1724。例如,每個STA資訊欄位1710可包括多個RU大小指示欄位1720。多個RU大小指示欄位1720中的每一者可包括MCS欄位1722和/或Nsts欄位1724。Figure 17A shows an example of RU messaging with one (e.g., common) MCS field 1722 and Nsts field 1724 for each RU assigned to the STA. For example, each STA information field 1710 may include one MCS field 1722 and one N sts field 1724 for the STA. Figure 17B shows an example of RU messaging with each RU MCS and Nsts assignment, where different RUs with different RU sizes may carry their own MCS and Nsts. Each STA information field 1710 can include a plurality of MCS fields 1722 and/or a plurality of Nsts fields 1724. For example, each STA information field 1710 can include a plurality of RU size indication fields 1720. Each of the plurality of RU size indication fields 1720 can include an MCS field 1722 and/or an Nsts field 1724.

第18A圖和第18B圖是平整RU傳訊的示例。每個STA資訊欄位1810可包括RU欄位1816的總數量和/或一個或多個RU欄位1820的索引。RU欄位1816的總數量可指示分配給STA的RU的數量。一個或多個RU欄位1820的索引可使用L個位元的長度指示RU的索引。例如,L=4、6和7位元可分別代表針對20 MHz、40 MHz和80 MHz的16、33和68個RU分配。Figures 18A and 18B are examples of flattening RU messaging. Each STA information field 1810 may include a total number of RU fields 1816 and/or an index of one or more RU fields 1820. The total number of RU fields 1816 may indicate the number of RUs assigned to the STA. The index of one or more RU fields 1820 may indicate the index of the RU using the length of the L bits. For example, L=4, 6, and 7 bits can represent 16, 33, and 68 RU allocations for 20 MHz, 40 MHz, and 80 MHz, respectively.

第18A圖示出了用於分配給STA的所有RU的具有一個(如,公共的)MCS欄位1822和Nsts欄位1824的RU傳訊的示例。例如,每個STA資訊欄位1810可包括用於STA的一個MCS欄位1822和一個Nsts 欄位1824。第18B圖示出了具有每個RU MCS和Nsts指派的RU傳訊的示例,其中,具有不同RU大小的不同RU可攜帶其自己的MCS和Nsts。每個STA資訊欄位1810可包括多個MCS欄位1822和/或多個Nsts 欄位1824。例如,每個STA資訊欄位1810可包括多個RU之索引的欄位1820。多個RU索引之欄位1820中的每一個可包括MCS欄位1822和/或Nsts 欄位1824。Figure 18A shows an example of RU messaging with one (e.g., common) MCS field 1822 and Nsts field 1824 for all RUs assigned to the STA. For example, each STA information field 1810 may include one MCS field 1822 and one N sts field 1824 for the STA. Figure 18B shows an example of RU messaging with each RU MCS and Nsts assignment, where different RUs with different RU sizes may carry their own MCS and Nsts. Each STA information field 1810 can include a plurality of MCS fields 1822 and/or a plurality of N sts fields 1824. For example, each STA information field 1810 can include a field 1820 of multiple RU indexes. Each of the plurality of RU index fields 1820 can include an MCS field 1822 and/or an N sts field 1824.

第19A圖和第19B圖是平整RU傳訊的示例。每個STA資訊欄位1910可包括多個2D RU點陣圖欄位1920。2D RU點陣圖欄位1920可以例如視頻寬而定而用信號發送具有不同大小(如,[1,37]、[2,16]、[3,8]、[4,4]、[5,2]和[6,1])的六個2D RU點陣圖,例如以指示STA的RU分配。Figures 19A and 19B are examples of flattening RU communication. Each STA information field 1910 may include a plurality of 2D RU bitmap fields 1920. The 2D RU bitmap field 1920 may be signaled to have different sizes (eg, [1, 37], depending on the video width). Six 2D RU dot patterns of [2, 16], [3, 8], [4, 4], [5, 2], and [6, 1], for example, to indicate the RU allocation of the STA.

第19A圖示出了用於分配給STA的每一個RU的具有一個(如,公共的)MCS欄位1922和Nsts 欄位1924的RU傳訊的示例。例如,每個STA資訊欄位1910可包括用於STA的一個MCS欄位1922和一個Nsts欄位1924。第19B圖示出了具有每個RU MCS和Nsts指派的RU傳訊的示例,其中,具有不同RU大小的不同RU可攜帶其自己的MCS和Nsts。每個STA資訊欄位1910可包括多個MCS欄位1922和/或多個Nsts 欄位1924。例如,每個STA資訊欄位1910可包括多個2D RU點陣圖欄位1920。多個2D RU點陣圖欄位1920中的每一個可包括MCS欄位1922和/或Nsts 欄位1924。Figure 19A shows an example of RU messaging with one (e.g., common) MCS field 1922 and Nsts field 1924 for each RU assigned to the STA. For example, each STA information field 1910 may include one MCS field 1922 and one Nsts field 1924 for the STA. Figure 19B shows an example of RU messaging with each RU MCS and Nsts assignment, where different RUs with different RU sizes may carry their own MCS and Nsts. Each STA information field 1910 may include a plurality of MCS fields 1922 and/or a plurality of N sts fields 1924. For example, each STA information field 1910 can include a plurality of 2D RU bitmap fields 1920. Each of the plurality of 2D RU bitmap fields 1920 may include an MCS field 1922 and/or an N sts field 1924.

MCS欄位1922可指示指派給STA的MCS。相同或不同的MCS可被指派給分配給STA的所有RU。The MCS field 1922 may indicate the MCS assigned to the STA. The same or different MCS can be assigned to all RUs assigned to the STA.

Nsts 欄位1924可指示指派給STA的空時串流的數量。空時串流的數量對於分配給STA的每個RU可以是相同的或不同的。The N sts field 1924 may indicate the number of space-time streams assigned to the STA. The number of space-time streams may be the same or different for each RU assigned to the STA.

平整RU分配傳訊可支援靈活的排程,例如支持任何頻寬(或頻段)上向任何STA進行任何連續的或非連續的RU分配,包括當針對整個頻寬(或頻段)不是所有RU都被分配。平整分配傳訊可適用於任何頻寬,如,大於、小於或等於20 MHz。Flattening RU allocation messaging can support flexible scheduling, such as supporting any continuous or non-contiguous RU allocation to any STA on any bandwidth (or band), including when not all RUs for the entire bandwidth (or band) distribution. Flattening assignments can be applied to any bandwidth, such as greater than, less than, or equal to 20 MHz.

RU分配可為上行鏈路和下行鏈路操作而用信號發送,例如,根據在此描述的用於上行鏈路和下行鏈路操作的上行鏈路和下行鏈路RU分配傳訊。The RU allocation may be signaled for uplink and downlink operations, for example, according to the uplink and downlink RU allocations described herein for uplink and downlink operations.

一個或多個RU分配型態可被限制,這可減少傳訊複雜度和/或開銷。例如,在20 MHz頻寬中,RU分配型態可被限制(如,被限制到如第20圖中所示的RU分配型態)。One or more RU allocation patterns can be limited, which can reduce communication complexity and/or overhead. For example, in a 20 MHz bandwidth, the RU allocation pattern can be limited (eg, limited to the RU allocation pattern as shown in FIG. 20).

第20圖是針對20 MHz頻帶的有限RU分配的示例。更大的頻寬,如大於40 MHz的連續頻寬,諸如60和80 MHz,可包含與第20圖中所示示例性RU分配型態相關的額外的26音RU。Figure 20 is an example of a limited RU allocation for the 20 MHz band. Larger bandwidths, such as continuous bandwidths greater than 40 MHz, such as 60 and 80 MHz, may include additional 26-tone RUs associated with the exemplary RU allocation pattern shown in FIG.

類型1傳訊可被揭露。RU分配可在每個STA用信號發送。在示例中,每個STA可被分配20 MHz頻寬中的單元(如,1到16)。STA ID和RU單元索引可被發送以向STA指派資源。Type 1 messaging can be revealed. The RU allocation can be signaled at each STA. In an example, each STA may be assigned a unit (eg, 1 to 16) in a 20 MHz bandwidth. The STA ID and RU unit index may be sent to assign resources to the STA.

資源分配中的STA ID可用信號發送或由AID/PAID代表。資源分配中的STA ID可用信號發送或由預指派的群組ID和群組中的STA位置代表。群組ID可在傳統 802.11ac SIG-A(如,其可在HE SIG-A和/或HE SIG-B之前傳送)、HE SIG-A前導碼中或HE SIG-B前導碼中用信號發送。群組ID欄位可具有N位元。群組可包括多達K個STA。STA可在群組中具有相應的STA位置。The STA ID in the resource allocation can be signaled or represented by AID/PAID. The STA ID in the resource allocation may be signaled or represented by a pre-assigned group ID and a STA location in the group. The group ID can be signaled in a legacy 802.11ac SIG-A (eg, it can be transmitted before HE SIG-A and/or HE SIG-B), in an HE SIG-A preamble, or in a HE SIG-B preamble . The group ID field can have N bits. A group can include up to K STAs. The STA may have a corresponding STA location in the group.

RU分配資訊可用信號發送。RU分配資訊可在HE SIG-B中用信號發送。RU分配資訊可在HE SIG-A和HE SIG-B之間被分割。RU分配欄位可被用於攜帶RU分配資訊,例如,RU單元索引(如,1到16可以由4位元來指示)。The RU allocation information can be signaled. The RU allocation information can be signaled in the HE SIG-B. The RU allocation information can be split between HE SIG-A and HE SIG-B. The RU allocation field can be used to carry RU allocation information, for example, a RU unit index (eg, 1 to 16 can be indicated by 4 bits).

可計算傳訊開銷,例如分配的STA的數量* (STA ID + 4)。在示例中,最大開銷可為9 * (STA ID + 4)。The communication overhead can be calculated, such as the number of assigned STAs* (STA ID + 4). In the example, the maximum overhead can be 9 * (STA ID + 4).

第21圖是顯式地用信號發送STA數量的類型1傳訊的示例。Figure 21 is an example of type 1 messaging that explicitly signals the number of STAs.

第22圖是顯式地用信號發送STA數量的類型1傳訊的示例。Figure 22 is an example of type 1 messaging that explicitly signals the number of STAs.

在示例中,分配中的STA的數量可用信號發送並且STA ID和RU分配欄位可用信號發送,例如,在STA數量之後。在示例中,分隔符號,如[0000],可被放置在STA ID之後,例如,以指示分配的STA的總數量。In an example, the number of STAs in the allocation can be signaled and the STA ID and RU allocation fields can be signaled, for example, after the number of STAs. In an example, a separator, such as [0000], may be placed after the STA ID, for example, to indicate the total number of STAs allocated.

類型2傳訊可被揭露。分配的RU單元的點陣圖(如,16位元)可被發送,例如,以指示分配的資源。分配中的STA的數量可被隱式地用信號發送。STA ID可以,例如,以正(positive)點陣圖的順序被發送。在示例中,分別獨的點陣圖可被發送給多個STA中的每一個以指示分配的資源。在示例中,單個點陣圖可被發送給多個(如,所有的)STA以指示特定的分配。當單個點陣圖被發送以指示多個STA的分配時,STA ID順序隱式地映射到分配的資源。單個STA可具有多個分配。資源分配中的STA ID可用信號發送或由AID/PAID代表。資源分配中的STA ID可用信號發送或由預指派的群組ID和群組中STA位置來代表。RU分配資訊可在HE SIG-B中用信號發送。RU分配資訊可在HE SIG-A和HE SIG-之間被分割。RU分配欄位可被用於攜帶RU分配資訊,例如,像是RU單元索引。Type 2 messaging can be revealed. A bitmap (e.g., 16 bits) of the assigned RU unit can be sent, for example, to indicate the allocated resources. The number of STAs in the allocation can be implicitly signaled. The STA IDs may, for example, be sent in the order of positive bitmaps. In an example, separate bitmaps may be sent to each of the plurality of STAs to indicate the allocated resources. In an example, a single bitmap may be sent to multiple (eg, all) STAs to indicate a particular assignment. When a single bitmap is sent to indicate the allocation of multiple STAs, the STA ID is implicitly mapped to the allocated resources. A single STA can have multiple assignments. The STA ID in the resource allocation can be signaled or represented by AID/PAID. The STA ID in the resource allocation may be signaled or represented by a pre-assigned group ID and a STA location in the group. The RU allocation information can be signaled in the HE SIG-B. The RU allocation information can be split between HE SIG-A and HE SIG-. The RU allocation field can be used to carry RU allocation information, such as, for example, a RU unit index.

可計算傳訊開銷,例如分配的STA的數量*STA ID + 16。在一個示例中,最大開銷可為9 *STA ID + 16。The communication overhead can be calculated, for example, the number of assigned STAs *STA ID + 16. In one example, the maximum overhead can be 9 *STA ID + 16.

第23圖是隱式地用信號發送STA數量的類型2傳訊的示例。Figure 23 is an example of type 2 messaging that implicitly signals the number of STAs.

第24圖是隱式地用信號發送STA數量的類型2傳訊的示例。Figure 24 is an example of type 2 messaging that implicitly signals the number of STAs.

第25圖是隱式地用信號發送STA數量的類型2傳訊的示例。Figure 25 is an example of type 2 messaging that implicitly signals the number of STAs.

在一個示例性場景中,[1, 2, 5, 11, 15]可被分配並且STA ID可為6位元。類型1傳訊可包含50位元,而類型2傳訊可包含46位元。In an exemplary scenario, [1, 2, 5, 11, 15] can be assigned and the STA ID can be 6 bits. Type 1 messaging can include 50 bits, while Type 2 messaging can include 46 bits.

例如,當AP和STA約定最小允許的允許頻寬和/或限制的允許頻寬數(如,僅一個頻寬),可減少開銷。DC處的或20 MHz頻帶(如通道5)之間的26 RU通道可(如,總是)被分配。For example, when the AP and STA agree on the minimum allowed allowed bandwidth and/or the allowed allowed bandwidth (eg, only one bandwidth), the overhead can be reduced. The 26 RU channel between the DC or 20 MHz band (such as channel 5) can be assigned (eg, always).

第26圖是最小允許頻寬的示例。在一個示例中,在最小允許頻寬為52個音以及分配基於具有索引為[5,10,11,12,13,14,15,16]的RU的情況下,可提供三位元傳訊。Figure 26 is an example of the minimum allowable bandwidth. In one example, three-bit messaging may be provided with a minimum allowed bandwidth of 52 tones and an allocation based on RUs with indices of [5, 10, 11, 12, 13, 14, 15, 16].

第27圖是有限數量的允許頻寬的示例。在一個示例中,當唯一允許的頻寬為104音以及分配是基於[5,14,15]時,可提供2位元傳訊。Figure 27 is an example of a limited number of allowed bandwidths. In one example, 2-bit messaging is provided when the only allowed bandwidth is 104 and the allocation is based on [5, 14, 15].

產生的點陣圖可與以上討論的類型1和類型2 RA傳訊一起使用。The resulting bitmap can be used with the Type 1 and Type 2 RA packets discussed above.

RU分配可為上行鏈路和下行鏈路操作而用信號發送,例如,根據在此描述的用於上行鏈路和下行鏈路操作的上行鏈路和下行鏈路RU分配傳訊。The RU allocation may be signaled for uplink and downlink operations, for example, according to the uplink and downlink RU allocations described herein for uplink and downlink operations.

AP可在資源分配訊框中宣佈資源分配。AP可將資源分配作為之前傳輸的一部分來宣佈,例如,A-MSDU中的PPDU或A-MDPU。分配的資源可與索引相關聯。前導碼,如資源的SIG-A或SIG-B,可包含索引。索引可指示分配給STA的資源。The AP can announce the resource allocation in the resource allocation frame. The AP may announce the resource allocation as part of the previous transmission, for example, a PPDU or an A-MDPU in the A-MSDU. The allocated resources can be associated with an index. The preamble, such as the SIG-A or SIG-B of the resource, can contain an index. The index may indicate the resources allocated to the STA.

第28圖是資源分配訊框格式的示例。Figure 28 is an example of a resource allocation frame format.

資源分配訊框可包含PLCP標頭2802、MAC標頭2804、一個或多個會話資訊欄位2806或FCS欄位2808中的一個或多個。The resource allocation frame can include one or more of a PLCP header 2802, a MAC header 2804, one or more session information fields 2806, or an FCS field 2808.

PLCP標頭2802可包含指示該訊框是資源分配訊框的資訊。The PLCP header 2802 may include information indicating that the frame is a resource allocation frame.

MAC標頭2804可包含指示該訊框是資源分配訊框的資訊(如,類型或子類型)。The MAC header 2804 may contain information (e.g., type or subtype) indicating that the frame is a resource allocation frame.

會話資訊欄位2806可包括關於一個或多個會話(如,從會話1到會話N)的信息。資源分配訊框可包括多個會話資訊欄位2806。例如。每個會話可具有相應的會話資訊欄位2806。會話資訊欄位可包括如下關於會話的資訊項目中的一個或多個,該會話之期間,AP或一個或多個STA可傳送UL和/或DL訊務。如下中的一個或多個可適用會話號碼欄位2810可識別某個時間週期內的會話,如,相同TXOP內的或多個時間單元內的,如微秒(ms)。Session information field 2806 may include information about one or more sessions (eg, from session 1 to session N). The resource allocation frame can include a plurality of session information fields 2806. E.g. Each session may have a corresponding session information field 2806. The session information field may include one or more of the following information items regarding the session during which the AP or one or more STAs may transmit UL and/or DL traffic. One or more of the applicable session number fields 2810 can identify sessions within a certain time period, such as within a plurality of time units within the same TXOP, such as microseconds (ms).

定時偏移欄位2812可識別會話開始的偏移。偏移可從當前訊框的傳輸或某一時間參考來定義。Timing offset field 2812 identifies the offset at which the session begins. The offset can be defined from the transmission of the current frame or a reference to a time.

會話類型欄位2814例如可以為UL、DL、UL/DL、隨機存取、基於內容或以上項的組合。Session type field 2814 may be, for example, UL, DL, UL/DL, random access, content based, or a combination of the above.

持續時間欄位2816可指定會話的大約持續時間。The duration field 2816 can specify an approximate duration of the session.

群組ID欄位2818可識別涉及會話的STA的群組。The group ID field 2818 can identify a group of STAs involved in the session.

分配數量欄位2820可包括在會話資訊欄位2806中。分配數量欄位2820可指示有多少分配提供給會話。The assigned amount field 2820 can be included in the session information field 2806. The Allocation Amount field 2820 can indicate how many allocations are provided to the session.

一個或多個分配欄位2822可包含在會話資訊欄位2806中。一個或多個分配欄位2822中的每一個可包括分配給一個或多個STA的資訊,如索引欄位2824、STA資訊欄位2826和/或資源欄位2828。如下中的一個或多個可適用。索引欄位2824可被用於識別一個或多個分配給一個或多個STA的資源。STA資訊欄位2826例如可通過STA MAC地址、AID和/或其他識別符來識別一個或多個STA。資源欄位2828可指示STA資訊欄位2826中識別的分配給一個或多個STA的一個或多個資源。例如,一個或多個資源可由點陣圖識別。點陣圖中指示的“1”可與分配給一個或多個STA的資源塊(RB)關聯。點陣圖的大小可由頻寬指定。資源欄位2828可包括RB大小的指示。資源可由與RB相關聯的數字識別。One or more allocation fields 2822 may be included in the session information field 2806. Each of the one or more allocation fields 2822 may include information assigned to one or more STAs, such as index field 2824, STA information field 2826, and/or resource field 2828. One or more of the following may apply. Index field 2824 can be used to identify one or more resources assigned to one or more STAs. The STA information field 2826 may identify one or more STAs, for example, by STA MAC address, AID, and/or other identifiers. Resource field 2828 may indicate one or more resources assigned to one or more STAs identified in STA information field 2826. For example, one or more resources may be identified by a bitmap. The "1" indicated in the bitmap may be associated with a resource block (RB) assigned to one or more STAs. The size of the bitmap can be specified by the bandwidth. Resource field 2828 may include an indication of the RB size. Resources can be identified by the number associated with the RB.

資源分配訊框的部分的集合或子集可被實施為資訊元素、活動訊框、NDP訊框、控制、管理、資料或擴展訊框、MAC或PLCP標頭等的一部分。The collection or subset of portions of the resource allocation frame can be implemented as part of an information element, an activity frame, an NDP frame, control, management, data or extension frame, MAC or PLCP header, and the like.

AP可宣佈用於一個或多個會話(如,不久之未來即將到來的會話)的資源分配,例如,使用資源分配訊框,作為其他訊框的一部分,作為TXOP的一部分、作為A-MPDU的一部分、作為M-DSDU訊框的一部分和/或作為觸發訊框的一部分。資源分配可與會話號碼、群組ID或索引的一者或多者相關聯。The AP may announce resource allocations for one or more sessions (eg, upcoming upcoming sessions in the near future), for example, using resource allocation frames as part of other frames, as part of the TXOP, as an A-MPDU. Part of it, as part of the M-DSDU frame and/or as part of the trigger frame. The resource allocation can be associated with one or more of a session number, a group ID, or an index.

第29圖是資源分配訊框宣佈的參數來指示將來會話中的資源分配的示例。第29圖闡述了在資源分配訊框中宣佈的參數如何被包含在未來的會話的傳輸中的示例。Figure 29 is an example of a resource allocation frame announced parameter to indicate resource allocation in a future session. Figure 29 illustrates an example of how the parameters announced in the resource allocation frame are included in the transmission of future sessions.

會話號碼可以例如包含在會話中的一個或多個傳輸的公共部分,例如,STA的UL和/或DL傳輸的SIG-A中。The session number may, for example, be included in a common portion of one or more transmissions in the session, such as in the SIG-A of the UL and/or DL transmission of the STA.

群組ID可以例如包含在會話中的一個或多個傳輸的公共部分,例如,在會話中分配的STA的UL和/或DL傳輸的SIG-A中,例如,當STA的群組已經被分配了特別定通道的所有資源。群組ID可包含在SIG-B中(如,在與分配給STA組的RB相關聯的SIG-B中),例如,當STA的群組已被分配給通道的一部分。The group ID may for example comprise a common part of one or more transmissions in the session, for example in the SIG-A of the UL and/or DL transmission of the STA allocated in the session, for example when the group of STAs has been assigned All the resources of the special channel. The group ID may be included in SIG-B (eg, in SIG-B associated with the RB assigned to the STA group), for example, when a group of STAs has been assigned to a portion of the channel.

索引可以例如包含在會話中的一個或多個傳輸的部分中,例如,與在資源分配訊框中識別的分配給一個或多個STA的RB相關聯的SIG-B中。The index may, for example, be included in a portion of one or more transmissions in the session, for example, in SIG-B associated with an RB assigned to one or more STAs identified in the resource allocation frame.

AP可以在用於資源分配的前導碼中的DL傳輸中不包括額外指示。例如,當AP已經使用資源分配訊框宣佈資源分配時,AP可以在DL傳輸前導碼中不包括額外指示。The AP may not include an additional indication in the DL transmission in the preamble for resource allocation. For example, when the AP has announced resource allocation using the resource allocation frame, the AP may not include an additional indication in the DL transmission preamble.

STA可在時間偏移確定的時間醒來。時間偏移可與STA已經被分配了資源所在的會話相關聯,例如,當STA已經接收到資源分配訊框。當處於醒來狀態,例如通過從AP接收DL傳輸,STA可搜索合適的群組ID和/或前導碼中的索引(如,SIG-A和SIG-B),例如,以尋找合適的分配給自己的資源。索引和/或群組ID可識別多於一個的STA。識別的STA可解碼傳輸的剩餘部分(remainder),諸如MAC標頭,例如,以識別資源是否分配給其自己或資源是否作為群組傳輸而被分配。The STA can wake up at the time determined by the time offset. The time offset may be associated with a session in which the STA has been assigned a resource, for example, when the STA has received a resource allocation frame. When in a awake state, such as by receiving a DL transmission from an AP, the STA may search for an appropriate group ID and/or an index in the preamble (eg, SIG-A and SIG-B), for example, to find a suitable assignment to Your own resources. The index and/or group ID can identify more than one STA. The identified STA may decode the remainder of the transmission, such as a MAC header, for example, to identify whether the resource is allocated to itself or whether the resource is allocated as a group transmission.

AP可在觸發訊框中包含UL情況中的會話號碼、群組ID或索引中的一個或多個。STA可接收觸發訊框並且STA可搜索在UL會話中分配給STA的資源。STA可根據識別的資源向AP傳送一個或多個UL傳輸。STA可包括資源分配資訊,例如在前導碼的SIG-A和/或SIG-B部分或其他部分。資源分配資訊可在上行傳輸中包括會話號碼、群組ID或索引中的一個或多個。The AP may include one or more of a session number, a group ID, or an index in the UL case in the trigger frame. The STA may receive the trigger frame and the STA may search for resources allocated to the STA in the UL session. The STA may transmit one or more UL transmissions to the AP according to the identified resources. The STA may include resource allocation information, such as SIG-A and/or SIG-B portions or other portions of the preamble. The resource allocation information may include one or more of a session number, a group ID, or an index in the uplink transmission.

IRU分配傳訊可支援IoT。低成本MTC可被賦能,例如,通過MTC類型裝置的資源分配和/或排程的有效技術和/或低成本。例如,IoT裝置可不需要大量用於IoT操作的資源和/或頻寬。可使用最小數量的資源用於IoT操作。例如,IoT操作可使用中間26個音。IRU allocation messaging can support IoT. Low cost MTCs can be enabled, for example, by efficient techniques and/or low cost of resource allocation and/or scheduling by MTC type devices. For example, an IoT device may not require a large amount of resources and/or bandwidth for IoT operations. A minimum amount of resources can be used for IoT operations. For example, an IoT operation can use the middle 26 tones.

第30圖是IoT操作的窄頻帶分配的示例。Figure 30 is an example of narrow band allocation for IoT operation.

在示例中,無線電可針對資料操作在僅2.5 MHz頻譜上支援操作。例如,通過在20 MHz頻寬上發送前導碼和用信號發送欄位來賦能向後相容。HE PPDU可不包括傳統前導碼(如,L-STF、L-LTF和L-SIG),例如,在使用UL-OFDMA的窄頻帶(<20 MHz)上行鏈路傳輸中,諸如所呈現之IoT示例。In the example, the radio can support operation on the 2.5 MHz spectrum for data manipulation. For example, backward compatibility is enabled by transmitting a preamble on the 20 MHz bandwidth and signaling the field. The HE PPDU may not include legacy preambles (eg, L-STF, L-LTF, and L-SIG), for example, in narrowband (<20 MHz) uplink transmissions using UL-OFDMA, such as the presented IoT example .

SIG-B可被用於指示窄頻帶操作,諸如用於UL-OFD MA。如下中的一個或多個可被指示以用於窄頻帶資料傳輸,控制功率、傳輸功率、發送的導頻數量的控制、發送的導頻的位置的控制、向其他STA指示窄頻帶操作正在進行或可支援的MCS的指示。SIG-B can be used to indicate narrowband operation, such as for UL-OFD MA. One or more of the following may be indicated for narrowband data transmission, control power, transmission power, control of the number of transmitted pilots, control of the location of the transmitted pilot, indication to other STAs that narrowband operation is in progress Or an indication of the MCS that can be supported.

SIG可具有對稱RU分配。對稱RU分配可例如減少OFDMA中RF I/Q不平衡導致的干擾。一個或多個限制可被應用到基於OFDMA的WLAN系統中的RU分配規則。例如,系統可被限制到對稱RU分配。The SIG can have a symmetric RU allocation. Symmetric RU allocation may, for example, reduce interference caused by RF I/Q imbalance in OFDMA. One or more restrictions may be applied to RU allocation rules in an OFDMA-based WLAN system. For example, the system can be limited to symmetric RU allocation.

第31圖是對稱RU分配的示例。例如,如第31圖所示,第一RU(如,RU1)可與最後一個RU(如RU9)配對以形成對稱。對稱RU對1(如,SRU1)可指示RU1和RU9的對稱配對,如,SRU1=[RU1,RU9]。相似的,SRU2可指示RU2和RU8的對稱配對(如,[RU2,RU8]),SRU3可指示RU3和RU7的對稱配對(如,[RU3,RU7]),以及SRU4可指示RU4和RU6的對稱配對(如,[RU4,RU6])。Figure 31 is an example of symmetric RU allocation. For example, as shown in FIG. 31, the first RU (e.g., RU1) can be paired with the last RU (e.g., RU9) to form a symmetry. A symmetric RU pair 1 (eg, SRU1) may indicate a symmetric pairing of RU1 and RU9, eg, SRU1=[RU1, RU9]. Similarly, SRU2 may indicate symmetric pairing of RU2 and RU8 (eg, [RU2, RU8]), SRU3 may indicate symmetric pairing of RU3 and RU7 (eg, [RU3, RU7]), and SRU4 may indicate symmetry of RU4 and RU6 Pairing (eg, [RU4, RU6]).

公共傳訊欄位(如,HE-SIG-A或HE-SIG-B欄位)可使用一個或多個位元以指示對稱RU分配。SRU索引(如,RU索引的替代)可被使用,例如,在詳細的RU分配傳訊部分,以減少傳訊開銷。A public messaging field (eg, HE-SIG-A or HE-SIG-B field) may use one or more bits to indicate a symmetric RU allocation. SRU indexes (eg, alternatives to RU indexes) can be used, for example, to distribute the messaging portion in a detailed RU to reduce messaging overhead.

RU分配傳訊欄位在OFDM傳輸前可被攜帶控制訊框中,如觸發訊框。對稱RU分配在OFDM傳輸前可在控制訊框中用信號發送。一個或多個SRU索引可被用於RU分配傳訊。The RU allocation communication field can be carried in the control frame, such as the trigger frame, before the OFDM transmission. Symmetric RU allocations can be signaled in the control frame prior to OFDM transmission. One or more SRU indexes can be used for RU allocation messaging.

配對的RU可被指派給相同的STA。SRU上的RU資訊可代表兩個配對的RU上的RU資訊。揭露的技術可被應用到對稱RU分配技術或與對稱RU分配技術一起應用,例如,通過使用SRU索引代替RU索引。對稱RU分配可減輕RF I/Q不平衡的干擾效果。Paired RUs can be assigned to the same STA. The RU information on the SRU can represent the RU information on the two paired RUs. The disclosed techniques can be applied to or applied with symmetric RU allocation techniques, for example, by using SRU indexes instead of RU indexes. Symmetric RU assignments mitigate the effects of RF I/Q imbalance.

可提供動態封裝和關聯的傳訊。動態封裝可改進效率和/或減少傳訊開銷。Dynamic packaging and associated messaging are available. Dynamic packaging improves efficiency and/or reduces messaging overhead.

多個OFDM符號可經由MAC PDU發送。多個OFDM符號中的每一個可與資料的第一長度和/或第一持續時間相關聯。第一持續時間可與多個OFDM符號的OFDM符號內指派給STA的調變符號之數量相關聯。資料的第一長度可與資料的長度(如,最大長度)相關聯,其可由STA攜帶在多個OFDM符號中的每一個中。資料可映射到多個OFDM符號。Multiple OFDM symbols can be sent via the MAC PDU. Each of the plurality of OFDM symbols can be associated with a first length and/or a first duration of the material. The first duration may be associated with the number of modulation symbols assigned to the STA within the OFDM symbols of the plurality of OFDM symbols. The first length of the data may be associated with the length of the material (eg, the maximum length), which may be carried by the STA in each of the plurality of OFDM symbols. The data can be mapped to multiple OFDM symbols.

系統可支援一個或多個最後的OFDM符號格式。最後的OFDM符號格式可以例如基於留給最後的OFDM符號的調變的資料符號的大小和/或在最後的OFDM符號中傳送的資料的長度(如,資料的第二長度)。The system can support one or more last OFDM symbol formats. The final OFDM symbol format may be based, for example, on the size of the modulated data symbols left for the last OFDM symbol and/or the length of the data transmitted in the last OFDM symbol (eg, the second length of the material).

在第一格式(如,格式1)中,多個OFDM符號中的最後一個OFDM符號可具有除了GI的3.2 us的持續時間,例如,當調變的符號的大小和/或用於最後的OFDM符號的資料的第二長度等於或小於資料的第一長度的¼時。In a first format (eg, Format 1), the last OFDM symbol of the plurality of OFDM symbols may have a duration of 3.2 us in addition to the GI, eg, when the size of the modulated symbol is and/or for the last OFDM The second length of the symbol's material is equal to or less than 1⁄4 of the first length of the material.

在第二格式(如,格式2)中,多個OFDM符號中的最後一個OFDM符號可具有除了GI的6.4 us的持續時間,例如,當調變的符號的大小和/或用於最後的OFDM符號的資料的第二長度等於或小於資料的第一長度的½但大於資料的第一長度的¼時。In a second format (eg, Format 2), the last one of the plurality of OFDM symbols may have a duration of 6.4 us in addition to the GI, eg, when the size of the modulated symbol is and/or for the last OFDM The second length of the symbol's material is equal to or less than 1⁄2 of the first length of the material but greater than 1⁄4 of the first length of the material.

在第三格式(如,格式3)中,多個OFDM符號中的最後一個OFDM符號可具有除了GI的9.6 us的持續時間,例如,當調變的符號的大小和/或用於最後的OFDM符號的資料的第二長度等於或小於資料的第一長度的¾但大於資料的第一長度的½時。In a third format (eg, Format 3), the last OFDM symbol of the plurality of OFDM symbols may have a duration of 9.6 us in addition to the GI, eg, when the size of the modulated symbol is and/or for the last OFDM The second length of the symbol's material is equal to or less than 3⁄4 of the first length of the material but greater than 1⁄2 of the first length of the material.

在第四格式(如,格式4)中,多個OFDM符號中的最後一個OFDM符號可具有除了GI的12.8 us的持續時間,例如,當調變的符號的大小和/或用於最後的OFDM符號的資料的第二長度大於資料的第一長度的¾時。In a fourth format (eg, Format 4), the last OFDM symbol of the plurality of OFDM symbols may have a duration of 12.8 us in addition to the GI, eg, when the size of the modulated symbol is and/or for the last OFDM The second length of the symbol's data is greater than 3⁄4 of the first length of the data.

資料的第一長度可為通過一個OFDM符號指派給STA的調變的符號的數量。當考慮GI時,最後的符號的持續時間可為[3.2,6.4,9.6,12.8]+GI us,其中GI可為0.8 us、1.6 us或3.2 us。The first length of the data may be the number of modulated symbols assigned to the STA by one OFDM symbol. When considering GI, the duration of the last symbol can be [3.2, 6.4, 9.6, 12.8] + GI us, where GI can be 0.8 us, 1.6 us, or 3.2 us.

可確定資料的第二長度,例如,在最後的OFDM符號中傳送的資料長度。例如,可確定在最後的OFDM符號中傳送的資料的第二長度小於資料的第一長度。最後的OFDM符號可與傳輸持續時間,如第一持續時間相關聯。例如,發射機可測量最後的符號中傳送的資料的長度。在最後的OFDM符號中傳送的資料長度(如,第二長度)可與在最後的OFDM中可用資料載波的長度(如第一長度)相比。第二長度可被確定小於第一長度。最後的OFDM符號可基於第二長度而被修改(例如,使用第二長度與第一長度的比率)。例如,最後的OFDM符號可視第二長度而定而被修改成第一持續時間的¼、½或 ¾。例如,當最後的OFDM符號中的資料的第二長度小於或等於資料的第一長度的¼時,最後的OFDM符號可被修改成第一持續時間的¼。在另一個示例中,當資料的第二長度小於或等於資料的第一長度的½但大於資料的第一長度的¼時,最後的OFDM符號可被修改成第一持續時間的½。在另一個示例中,當資料的第二長度小於或等於資料的第一長度的¾但大於資料的第一長度的½時,最後的OFDM符號可被修改成第一持續時間的¾。在另一個示例中,當資料的第二長度大於資料的第一長度的¾時,最後的OFDM符號可不被修改。最後的OFDM符號的第二持續時間可經由PHY標頭或MAC標頭來指示。在另一個示例中,資料的第二長度與資料的第一長度的比率可經由PHY標頭或MAC標頭來指示。The second length of the data can be determined, for example, the length of the data transmitted in the last OFDM symbol. For example, it may be determined that the second length of the material transmitted in the last OFDM symbol is less than the first length of the material. The last OFDM symbol can be associated with a transmission duration, such as a first duration. For example, the transmitter can measure the length of the data transmitted in the last symbol. The length of the data (eg, the second length) transmitted in the last OFDM symbol may be compared to the length of the available data carrier (eg, the first length) in the last OFDM. The second length can be determined to be less than the first length. The last OFDM symbol can be modified based on the second length (eg, using a ratio of the second length to the first length). For example, the last OFDM symbol can be modified to be 1⁄4, 1⁄2 or 3⁄4 of the first duration depending on the second length. For example, when the second length of the material in the last OFDM symbol is less than or equal to 1⁄4 of the first length of the material, the last OFDM symbol can be modified to 1⁄4 of the first duration. In another example, when the second length of the material is less than or equal to 1⁄2 of the first length of the material but greater than 1⁄4 of the first length of the material, the last OFDM symbol can be modified to 1⁄2 of the first duration. In another example, when the second length of the material is less than or equal to 3⁄4 of the first length of the material but greater than 1⁄2 of the first length of the material, the last OFDM symbol can be modified to 3⁄4 of the first duration. In another example, when the second length of the material is greater than 3⁄4 of the first length of the material, the last OFDM symbol may not be modified. The second duration of the last OFDM symbol can be indicated via a PHY header or a MAC header. In another example, the ratio of the second length of the material to the first length of the material may be indicated via a PHY header or a MAC header.

子載波映射可被改變以賦能週期性符號的產生以及週期性符號的一個週期可被傳送,例如,當資料量小於符號的長度(如,在20 MHz通道被指派給STA的情況下使用802.11ax命理學的64個符號或128個符號)的¼或 ½時。可基於最後的OFDM符號的第二長度產生週期性符號。The subcarrier mapping can be changed to enable the generation of periodic symbols and one period of periodic symbols can be transmitted, for example, when the amount of data is less than the length of the symbol (eg, using 802.11 if a 20 MHz channel is assigned to the STA) 1⁄4 or 1⁄2 of the 64 symbols or 128 symbols of ax numerology. A periodic symbol can be generated based on the second length of the last OFDM symbol.

接收機可通過多種方法確定最後的OFDM符號的長度。作為示例,可在PHY或MAC標頭中用信號發送最後的OFDM符號的長度。例如,接收機可估計(如,以盲方式)最後的OFDM符號的長度,例如基於最後的OFDM符號的不同長度可能(如,四種),如¼、½、¾以及1 OFDM符號。例如,L-SIG中的長度欄位可被重新解譯以指示OFDM符號的片段。例如,可使用OFDM符號持續時間4 us來計算L-SIG中定義的長度欄位。802.11ax可支援兩種基本的符號持續時間,如3.2 us+GI 以及12.8 us+GI。如等式1中所指示的,四(4) us可被視為3.2 us符號持續時間加0.8 us GI: 等式 1 其中,TXTime可為us的封包的總傳輸持續時間。當¼或½ OFDM符號持續時間被用於最後的符號時,可基於¼ 或 ½ OFDM符號持續時間計算TX_Time。T_Lpreamble可為微秒的傳統前導碼的持續時間(例如包括L-STF、L-LTF和L-SIG)。比率可為L-SIG欄位中用信號發送的每個編碼的符號的位元。Nsym可為傳統模式中使用的OFDM系統攜帶的解碼的符號的數量,如,48個解碼的符號。The receiver can determine the length of the last OFDM symbol by a variety of methods. As an example, the length of the last OFDM symbol can be signaled in the PHY or MAC header. For example, the receiver can estimate (e.g., in a blind manner) the length of the last OFDM symbol, e.g., based on different lengths of the last OFDM symbol (e.g., four), such as 1⁄4, 1⁄2, 3⁄4, and 1 OFDM symbols. For example, the length field in the L-SIG can be re-interpreted to indicate a segment of the OFDM symbol. For example, the length field defined in the L-SIG can be calculated using an OFDM symbol duration of 4 us. 802.11ax supports two basic symbol durations, such as 3.2 us+GI and 12.8 us+GI. As indicated in Equation 1, four (4) us can be considered as 3.2 us symbol duration plus 0.8 us GI: Equation 1 where TXTime can be the total transmission duration of the packet of us. When the 1⁄4 or 1⁄2 OFDM symbol duration is used for the last symbol, TX_Time can be calculated based on the 1⁄4 or 1⁄2 OFDM symbol duration. The T_Lpreamble can be the duration of a microsecond traditional preamble (eg, including L-STF, L-LTF, and L-SIG). The ratio can be a bit of each encoded symbol signaled in the L-SIG field. Nsym can be the number of decoded symbols carried by an OFDM system used in legacy mode, such as 48 decoded symbols.

發射機可將資料映射到訊框中的多個OFDM符號。發射機可測量將被映射到最後的OFDM符號的剩餘資料符號的數量。The transmitter can map the data to multiple OFDM symbols in the frame. The transmitter can measure the number of remaining data symbols to be mapped to the last OFDM symbol.

第32圖是在每個第四子載波(1/4資料)中動態填充的示例。多個OFDM符號可具有第一持續時間。多個OFDM符號可與資料的第一長度相關聯。例如,多個OFDM符號中的每一個可傳送資料的第一長度。資料可被放置在每個第四載波中,例如,當資料長度(如,第二長度)小於或等於最後的OFDM符號3102的長度的¼時。例如,資料的第二長度可針對最後的OFDM符號3102而被確定小於資料的第一長度。在進行最後的OFDM符號的IFFT時,產生的時域符號可以是具有四個週期的週期性。最後三個週期可被移除並且可發送修改後的最後的OFDM符號3104。修改後的最後的OFDM符號3104可為最後的OFDM符號的3104的¼。例如,最後的OFDM符號3102可基於資料的第二長度而被修改(如,減小)到修改的最後的OFDM符號3104。最後的OFDM符號3102可基於使用FFT/IFFT關係移除過度的填充而從第一持續時間減小到第二持續時間(如,修改的OFDM符號3104)。使用的循環前綴的長度對於整個子訊框可以是相同的。Figure 32 is an example of dynamic padding in each of the fourth subcarriers (1/4 data). The plurality of OFDM symbols can have a first duration. A plurality of OFDM symbols can be associated with a first length of material. For example, each of the plurality of OFDM symbols can transmit a first length of the material. The data may be placed in each of the fourth carriers, for example, when the data length (e.g., the second length) is less than or equal to 1⁄4 of the length of the last OFDM symbol 3102. For example, the second length of the material may be determined to be less than the first length of the material for the last OFDM symbol 3102. When the IFFT of the last OFDM symbol is performed, the generated time domain symbol may be a periodicity having four periods. The last three cycles can be removed and the modified last OFDM symbol 3104 can be sent. The modified last OFDM symbol 3104 may be 1⁄4 of the last OFDM symbol. For example, the last OFDM symbol 3102 can be modified (eg, reduced) to the modified last OFDM symbol 3104 based on the second length of the material. The last OFDM symbol 3102 may be reduced from a first duration to a second duration (eg, modified OFDM symbol 3104) based on removing excessive padding using an FFT/IFFT relationship. The length of the cyclic prefix used can be the same for the entire subframe.

第33圖是在每個第二子載波(1/2資料)中動態填充的示例。多個OFDM符號可具有第一持續時間。多個OFDM符號可與資料的第一長度關聯。例如,多個OFDM符號中的每一個可傳送資料的第一長度。資料可被放置在每個第二載波中,例如,當資料長度(如,第二長度)大於最後的OFDM符號3202的第一持續時間的長度的¼並小於或等於最後的OFDM符號3202的持續時間的½。在進行OFDM符號的IFFT時,產生的時域符號可以是具有兩個週期的週期性。第二週期可被移除並且可發送修改後的符號持續時間3204。修改後的符號3204可為最後的OFDM符號3202的½。例如,最後的OFDM符號3202可基於資料的長度而被從第一持續時間修改到第二持續時間(如,修改的OFDM符號3204)。最後的OFDM符號3202可基於使用FFT/IFFT關係移除過度的填充而從全OFDM符號持續時間減少到部分OFDM符號持續時間(如,修改的符號3204)。使用的循環前綴的長度對於整個子訊框可以是相同的。Figure 33 is an example of dynamic padding in each second subcarrier (1/2 data). The plurality of OFDM symbols can have a first duration. A plurality of OFDM symbols can be associated with a first length of material. For example, each of the plurality of OFDM symbols can transmit a first length of the material. Data may be placed in each second carrier, for example, when the data length (e.g., the second length) is greater than the length of the first duration of the last OFDM symbol 3202 and less than or equal to the duration of the last OFDM symbol 3202. 1⁄2 of time. When performing IFFT of an OFDM symbol, the generated time domain symbol may be a periodicity having two periods. The second period can be removed and the modified symbol duration 3204 can be sent. The modified symbol 3204 can be 1⁄2 of the last OFDM symbol 3202. For example, the last OFDM symbol 3202 can be modified from a first duration to a second duration (eg, modified OFDM symbol 3204) based on the length of the material. The last OFDM symbol 3202 may be reduced from a full OFDM symbol duration to a partial OFDM symbol duration (eg, modified symbol 3204) based on removing excessive padding using FFT/IFFT relationships. The length of the cyclic prefix used can be the same for the entire subframe.

資料可被正常傳送,例如,當資料長度大於最後的OFDM符號3202中傳送的資料的第一長度的½時。The data can be transmitted normally, for example, when the data length is greater than 1⁄2 of the first length of the material transmitted in the last OFDM symbol 3202.

第34圖是持續時間的¼及持續時間的½的兩個截斷的OFDM符號被傳送(如,3/4資料)的動態填充的示例。持續時間的¼及持續時間的½的兩個截斷的OFDM符號可被傳送,例如,當資料大於最後的OFDM符號3302的第一長度的½但小於或等於最後的OFDM符號3302的第一長度的¾時。等於最後的OFDM符號3302的長度的½的資料可被放置在每個第二子載波中。在進行OFDM符號的IFFT時,產生的時域符號可以是具有兩個週期的週期性。第二週期可被移除並且可發送½的符號持續時間3304。剩餘的資料可被放置在每個第四子載波中。在進行OFDM符號的IFFT時,產生的時域符號可以是具有四個週期的週期性。後三個週期可被移除並且可發送¼的符號持續時間3306。例如,最後的OFDM符號3302的½持續時間和¼持續時間的兩個符號可被傳送。使用的循環前綴的長度對於整個子訊框可以是相同的。Figure 34 is an example of dynamic padding of two truncated OFDM symbols transmitted (e.g., 3/4 data) for a duration of 1⁄4 and duration. Two truncated OFDM symbols of duration 1⁄2 and duration may be transmitted, for example, when the data is greater than the first length of the last OFDM symbol 3302 but less than or equal to the first length of the last OFDM symbol 3302 3⁄4 hours. A data equal to 1⁄2 of the length of the last OFDM symbol 3302 can be placed in each of the second subcarriers. When performing IFFT of an OFDM symbol, the generated time domain symbol may be a periodicity having two periods. The second period can be removed and a symbol duration of 3304 can be sent. The remaining data can be placed in each of the fourth subcarriers. When the IFFT of the OFDM symbol is performed, the generated time domain symbol may be a period having four periods. The last three cycles can be removed and a symbol duration of 3306 can be sent. For example, the 1⁄2 duration of the last OFDM symbol 3302 and the two symbols of the 1⁄4 duration may be transmitted. The length of the cyclic prefix used can be the same for the entire subframe.

在盲估計的示例中,接收機可基於MAC或PHY標頭中的訊框的長度來估計最後OFDM符號的持續時間。在傳訊的示例中,接收機可在訊框中獲得最後OFDM符號的長度。In an example of blind estimation, the receiver may estimate the duration of the last OFDM symbol based on the length of the frame in the MAC or PHY header. In the example of messaging, the receiver can obtain the length of the last OFDM symbol in the frame.

接收機可將接收到的資料映射到256長度的符號,如,通過四次複製接收到的信號,例如,當資料長度小於資料的第一長度的¼時。對符號進行FFT時,得到的頻域符號可複製原始傳送的信號。接收機還可對接收到的信號進行64點的FFT並將其在頻域中映射到每個第四子載波。The receiver can map the received data to a 256-length symbol, such as by four times copying the received signal, for example, when the data length is less than 1⁄4 of the first length of the data. When the symbol is FFT, the resulting frequency domain symbol can replicate the original transmitted signal. The receiver can also perform a 64-point FFT on the received signal and map it to each fourth subcarrier in the frequency domain.

接收機可將接收到的資料映射到256長度的符號,如,通過兩次複製接收到的信號,例如,當資料長度小於最後OFDM符號的長度的½時。對符號進行FFT時,得到的頻域符號可複製原始傳送的信號。接收機還可對接收到的信號進行128點的FFT並將其在頻域中映射到每個第二子載波。The receiver can map the received data to 256-length symbols, such as by copying the received signal twice, for example, when the data length is less than 1⁄2 of the length of the last OFDM symbol. When the symbol is FFT, the resulting frequency domain symbol can replicate the original transmitted signal. The receiver can also perform a 128-point FFT on the received signal and map it to each second subcarrier in the frequency domain.

接收機可正常處理資料,例如當資料長度大於OFDM符號長度的½時。The receiver can process the data normally, for example when the data length is greater than 1⁄2 of the length of the OFDM symbol.

第35圖是在OFDMA傳輸中動態填充的示例。揭露的技術可被用於OFDMA傳輸,例如,當OFDMA傳輸中的STA具有之前討論的長度中的一個的最後傳輸時,例如,最大長度。Figure 35 is an example of dynamic padding in an OFDMA transmission. The disclosed techniques can be used for OFDMA transmission, for example, when a STA in an OFDMA transmission has a last transmission of one of the previously discussed lengths, for example, a maximum length.

用於傳輸的更少數量的子載波和/或低調變和解碼方案可限制最大的允許PSDU大小。例如,可利用9個位元在802.11ah 1 MHz頻寬格式(如,26個可用子載波)中用信號發送SIG欄位中的長度。9個位元可被用於用信號發送多達511個位元組或511個 OFDM符號的PSDU。511個OFDM符號可攜帶多於511個位元組或小於511個位元組,例如,視使用的調變和解碼方案而定。511 OFDM符號可攜帶多於511個位元組,例如,當MCS值是高的以及每個OFDM符號攜帶大量的資訊位元時。511個OFDM符號可攜帶少於511個位元組,例如,當MCS值是低的以及每個OFDM符號攜帶有限數量的資訊位元時。最大允許的PSDU大小可被限制到511個位元組(如,在這些情況下)並且TCP封包可包含大約1500個位元組,例如,PSDU大小可小於(如,顯著地小於)TCP封包大小。A smaller number of subcarriers and/or low modulation and decoding schemes for transmission may limit the maximum allowed PSDU size. For example, 9 bits can be used to signal the length in the SIG field in an 802.11ah 1 MHz bandwidth format (eg, 26 available subcarriers). 9 bits can be used to signal a PSDU of up to 511 bytes or 511 OFDM symbols. 511 OFDM symbols may carry more than 511 bytes or less than 511 bytes, for example, depending on the modulation and decoding scheme used. A 511 OFDM symbol can carry more than 511 bytes, for example, when the MCS value is high and each OFDM symbol carries a large number of information bits. 511 OFDM symbols may carry less than 511 bytes, for example, when the MCS value is low and each OFDM symbol carries a limited number of information bits. The maximum allowed PSDU size can be limited to 511 bytes (eg, in these cases) and the TCP packet can contain approximately 1500 bytes, eg, the PSDU size can be less than (eg, significantly less than) the TCP packet size .

最大允許的PSDU大小可被限制(如,限制為特定數字)。示例可以是當OFDMA被使用時以及最小RU具有26個子載波時。The maximum allowed PSDU size can be limited (eg, limited to a specific number). An example may be when OFDMA is used and when the smallest RU has 26 subcarriers.

長度欄位可被攜帶在SIG欄位中(如,在PLCP報中)。長度欄位可以位元組為單位或以OFDM符號為單位來定義PSDU(如,當前PSDU)的長度。最大允許PSDU大小可受到長度欄位的設計限制,例如,由於SIG欄位的有限大小。The length field can be carried in the SIG field (eg, in the PLCP report). The length field may define the length of the PSDU (eg, current PSDU) in units of bytes or in units of OFDM symbols. The maximum allowed PSDU size can be limited by the design of the length field, for example, due to the limited size of the SIG field.

可提供一個或多個長度欄位設計。長度欄位可在SIG-A和/或SIG-B欄位中用信號發送。可通過使用一個或多個其他欄位來擴展長度欄位。例如,SIG欄位可包括長度欄位、MCS欄位和/或聚合欄位。長度欄位可為多個位元組,例如,當聚合欄位關閉(OFF)時。長度欄位可為多個OFDM符號,例如,當聚合欄位打開(ON)時。One or more length field designs are available. The length field can be signaled in the SIG-A and/or SIG-B fields. The length field can be extended by using one or more other fields. For example, the SIG field can include a length field, an MCS field, and/or an aggregate field. The length field can be multiple bytes, for example, when the aggregate field is off (OFF). The length field can be multiple OFDM symbols, for example, when the aggregate field is turned "ON".

在示例中,可應用如下內容中的一個或多個。兩個或更多MCS集(如,MCS集1和MCS集2)可被定義。MCS集1可對應於高MCS值。MCS集2可對應於低MCS值。MCS集1和MCS集2可不重疊。MCS集1和MCS集2可(如,通過MCS集1和MCS集2的聯合)覆蓋系統中使用的MCS值(如,所有MCS值)。In an example, one or more of the following may be applied. Two or more MCS sets (eg, MCS Set 1 and MCS Set 2) can be defined. MCS set 1 may correspond to a high MCS value. MCS set 2 may correspond to a low MCS value. MCS Set 1 and MCS Set 2 may not overlap. MCS Set 1 and MCS Set 2 may (e.g., by a combination of MCS Set 1 and MCS Set 2) override the MCS values used in the system (e.g., all MCS values).

聚合欄位的值可依賴於使用的MCS集。例如,針對MCS集1,聚合欄位可被設置為打開。針對MCS集2,聚合欄位可被設置為關閉。聚合欄位可被用作長度擴展欄位,例如,當接收機隱式地從MCS值中獲取聚合的值。接收機可隱式地從MCS值中獲取聚合的值,例如,當使用MCS集-聚合設置映射(如,在此描述的)和/或用信號發送MCS值時。與原始長度欄位一一起用於聚合欄位的位元(一個或多個)可被用於指示PSDU大小的範圍(如,PSDU大小的更寬範圍)。The value of the aggregation field can depend on the set of MCS used. For example, for MCS Set 1, the aggregation field can be set to On. For MCS Set 2, the aggregation field can be set to off. The aggregation field can be used as a length extension field, for example, when the receiver implicitly obtains the aggregated value from the MCS value. The receiver may implicitly obtain aggregated values from the MCS values, for example, when using MCS set-aggregation setup mapping (as described herein) and/or signaling MCS values. The bit(s) used to aggregate the fields along with the original length field may be used to indicate a range of PSDU sizes (eg, a wider range of PSDU sizes).

網路分配向量(NAV)可包括虛擬載波偵聽。訊框中的MAC標頭可包括持續時間欄位。持續時間欄位可指定訊框需求的所指定傳輸時間。無線媒體可能處於繁忙,例如,在傳輸時間期間。通過無線媒體監聽的STA可讀取持續時間欄位並設置其NAV(如,根據持續時間欄位)。NAV可指示STA推遲(如,必須推遲)多長時間存取無線媒體。The Network Allocation Vector (NAV) may include virtual carrier sensing. The MAC header in the frame may include a duration field. The Duration field specifies the specified transmission time for the frame request. Wireless media may be busy, for example, during transmission time. STAs listening via wireless media can read the duration field and set its NAV (eg, based on the duration field). The NAV can instruct the STA to postpone (e.g., must delay) how long to access the wireless medium.

多於一個MAC訊框可被同時傳送,例如,當存在DL MU傳輸(如,OFDMA傳輸)時。每個MAC標頭可包括持續時間欄位。STA可檢測包含SIG-A和/或SIG-B欄位的PHY標頭。STA可確定其是否是傳輸的潛在接收機。在STA不是此DL MU傳輸之所欲的接收機的情況下,例如,代替拒絕接收傳輸並且轉到功率節省模式,STA可能需要(如,必須)檢測該MU傳輸中攜帶的每個MAC訊框並相應的設置其NAV。該NAV設置過程可降低功率效率。非所欲的STA可確定其推遲(如,必須推遲)多長時間而未檢測每個MAC訊框。More than one MAC frame can be transmitted simultaneously, for example, when there is a DL MU transmission (eg, OFDMA transmission). Each MAC header can include a duration field. The STA may detect a PHY header containing the SIG-A and/or SIG-B fields. The STA can determine if it is a potential receiver for transmission. In the case where the STA is not the desired receiver for this DL MU transmission, for example, instead of rejecting the reception transmission and going to the power save mode, the STA may need (eg, must) detect each MAC frame carried in the MU transmission. And set its NAV accordingly. This NAV setup process reduces power efficiency. An undesired STA can determine how long it has delayed (eg, must be deferred) without detecting each MAC frame.

可提供虛擬載波偵聽。對於當前DL MU傳輸的多於一個的期望的回應訊框可與MU傳輸存在。一個或多個非預期的STA可利用具有最長OFDM符號持續時間的回應訊框,例如,以設置他們的MU分配向量(MAV)。MAV可指示STA推遲(如,必須推遲)多長時間存取通道媒體。PLCP標頭(如,(HE)SIG-A和/或SIG-B欄位)可攜帶MU回應指示(MRID),例如利用DL MU傳輸。一個或多個非預期的STA可使用MRID來設置MAV。例如,如下內容中的一個或多個可應用在AP側和/或STA側。Virtual carrier sensing is available. More than one desired response frame for the current DL MU transmission may exist with the MU transmission. One or more unintended STAs may utilize response frames having the longest OFDM symbol duration, for example, to set their MU Allocation Vector (MAV). The MAV can instruct the STA to delay (eg, must delay) how long to access the channel media. The PLCP header (eg, (HE) SIG-A and/or SIG-B fields) may carry a MU Response Indication (MRID), such as with a DL MU transmission. One or more unintended STAs may use the MRID to set the MAV. For example, one or more of the following may be applied to the AP side and/or the STA side.

對於AP,如下內容中的一個或多個可應用。DL MU傳輸的PLCP標頭可包含MRID值。MRID值集可被定義以分類不同的可能的回應訊框。回應訊框可包括如下中的一個或多個:UL資料訊框;UL管理訊框,如,探測請求、(重)認證請求、(重)關聯請求等;或UL控制訊框,如,PS-輪詢、(MU-)CTS、CF-結束(CF-End)、ACK、塊ACK等。基於潛在的回應訊框的大小,N個MRID值可被定義。N個MRID值中的每一個可被用於指示持續時間範圍。持續時間範圍可以微秒之單元或微秒之倍數來變化。MRID值可線性地代表持續時間範圍。例如,MRID = 0可指示持續時間範圍[0,D-1],MRID=1可指示持續時間範圍[D,2D-1]等。MRID值可以指數的形式代表持續時間範圍。例如,MRID=0可指示持續時間範圍[0,2^D-1],MRID=1可指示持續時間範圍[2^D,2^(2D)-1]等等。利用MU傳輸,AP可排程一個或多個UL MU回應訊框。利用MU傳輸,AP可估計回應訊框的大小。AP可從UL用戶(如,每個UL用戶)識別最長傳送持續時間。最長傳送持續時間可為回應訊框大小、指派或建議給UL訊框傳輸的MCS和/或分配給UL訊框傳輸的資源的函數。AP可通過對最長傳送持續時間與持續時間範圍進行比較來確定MRID值。For the AP, one or more of the following can be applied. The PLCP header transmitted by the DL MU may contain the MRID value. The MRID value set can be defined to classify different possible response frames. The response frame may include one or more of the following: UL data frame; UL management frame, such as probe request, (re)authentication request, (re)association request, etc.; or UL control frame, eg, PS - Polling, (MU-) CTS, CF-End (CF-End), ACK, Block ACK, etc. Based on the size of the potential response frame, N MRID values can be defined. Each of the N MRID values can be used to indicate a duration range. The duration range can vary by units of microseconds or multiples of microseconds. The MRID value can linearly represent the duration range. For example, MRID = 0 may indicate a duration range [0, D-1], and MRID = 1 may indicate a duration range [D, 2D-1], and the like. The MRID value can represent the duration range in the form of an exponent. For example, MRID=0 may indicate a duration range [0, 2^D-1], and MRID=1 may indicate a duration range [2^D, 2^(2D)-1], and the like. With MU transmission, the AP can schedule one or more UL MU response frames. With MU transmission, the AP can estimate the size of the response frame. The AP can identify the longest transmission duration from UL users (eg, each UL user). The longest transmission duration may be a function of the response frame size, the MCS assigned or suggested for the UL frame transmission, and/or the resources allocated for the UL frame transmission. The AP can determine the MRID value by comparing the longest transmission duration to the duration range.

對於STA側,可應用如下內容中的一個或多個。STA可接收PLCP標頭中的資源分配資訊,例如,當STA是DL MU 傳輸的預期接收機時。因此STA可在一個或多個指派的Rus上接收和/或檢測TCP封包。STA可檢查PLCP標頭中的MRID值,如,當STA不是DL MU傳輸的預期接收機時。MRID計數器可在DL MU傳輸的結尾處開始。DL MU PPDU(一個或多個)可包括一個或多個PSDU,其中,每個PSDU可包括其自己的持續時間欄位(如,在對應的MAC標頭中)。如下中的一個或多個可被應用(如,當MU PPDU攜帶的PSDU(一個或多個)包含其自己的持續時間欄位時):STA可基於最長NAV值而推遲,如,當STA成功檢測PSDU中的每一個;或STA可基於MAV而推遲並且忽略獲得的NAV,如,當STA未檢測DL MU傳輸中的每個PSDU。For the STA side, one or more of the following may be applied. The STA may receive resource allocation information in the PLCP header, for example, when the STA is the intended receiver for the DL MU transmission. Thus the STA can receive and/or detect TCP packets on one or more assigned Rus. The STA may check the MRID value in the PLCP header, such as when the STA is not the intended receiver for the DL MU transmission. The MRID counter can begin at the end of the DL MU transmission. The DL MU PPDU(s) may include one or more PSDUs, where each PSDU may include its own duration field (eg, in a corresponding MAC header). One or more of the following may be applied (eg, when the PSDU(s) carried by the MU PPDU contains its own duration field): the STA may be postponed based on the longest NAV value, eg, when the STA succeeds Each of the PSDUs is detected; or the STA may postpone and ignore the obtained NAV based on the MAV, such as when the STA does not detect each of the PSDUs in the DL MU transmission.

在此描述的過程和工具可以任何組合來應用,可應用於其他無線技術和其他服務。The processes and tools described herein can be applied in any combination and can be applied to other wireless technologies and other services.

雖然揭露的特徵、元素和技術(如,揭露的技術)是以多個具有多個組合的示例而被描述,但是每個特徵、元素或技術可單獨實施以及與其他描述的特徵、元素和技術結合和不結合的不同組合而被實施。Although the disclosed features, elements, and techniques (eg, disclosed techniques) are described in a plurality of examples with multiple combinations, each feature, element or technique can be implemented separately and with other described features, elements and techniques. It is implemented with different combinations of combinations and non-bindings.

雖然示例相關於802.11來呈現,但揭露的技術可適用於其他無線系統和協定。While the examples are presented in relation to 802.11, the disclosed techniques are applicable to other wireless systems and protocols.

雖然示例以短訊框間間隔(SIFS)形式呈現以指示多種訊框間間隔,但是揭露的技術可與其他訊框間間隔應用,如,減少的訊框間間隔(RIFS)或其他約定的時間間隔。Although the examples are presented in Inter-Short Interframe Space (SIFS) format to indicate multiple inter-frame spacing, the disclosed techniques can be applied to other inter-frame spacing applications, such as reduced inter-frame spacing (RIFS) or other agreed time. interval.

WTRU可指實體裝置的身份或使用者的身份,諸如與訂閱相關的身份,如MSISDN、SIP URI,等。WTRU可指基於應用的身份,如,在每個應用可以使用的用戶名。A WTRU may refer to the identity of an entity device or the identity of a user, such as an identity associated with a subscription, such as an MSISDN, SIP URI, and the like. A WTRU may refer to an application based identity, such as a username that can be used in each application.

以上描述的過程可以以由電腦或處理器執行的包含在電腦可讀媒體中的電腦程式、軟體或韌體來實施。電腦可讀媒體的示例包括,但不限於,電子信號(通過有線和/或無線連接傳送)和/或電腦可讀儲存媒體。電腦可讀儲存媒體包括,但不限於,唯讀記憶體(ROM)、隨機記憶體(RAM)、暫存器、快取記憶體、半導體存放裝置、磁性媒體(諸如但不限於內置硬碟和抽取式磁碟)、磁光媒體和/或光媒體(諸如CD-ROM磁片和/或數位多用光碟(DVD))。與軟體相關聯的處理器可被用於實施WTRU、UE、終端、基地台、RNC或任何主機電腦中使用的射頻收發器。The processes described above can be implemented in a computer program, software or firmware embodied on a computer readable medium, executed by a computer or processor. Examples of computer readable media include, but are not limited to, electronic signals (transmitted over wired and/or wireless connections) and/or computer readable storage media. Computer readable storage media includes, but is not limited to, read only memory (ROM), random access memory (RAM), scratchpad, cache memory, semiconductor storage devices, magnetic media (such as but not limited to internal hard drives and A removable disk), a magneto-optical medium, and/or an optical medium (such as a CD-ROM disk and/or a digital versatile disk (DVD)). A processor associated with the software can be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host computer.

BER‧‧‧誤碼率
BSS‧‧‧基本服務集
MAC‧‧‧媒體存取控制
MCS、706、804‧‧‧調變和解碼方案
OFDMA‧‧‧正交分頻多重存取
PLCP‧‧‧實體層會聚過程
RF‧‧‧射頻
SC‧‧‧子通道
100‧‧‧通信系統
102‧‧‧存取點(AP)
102a、102b、102c、102d‧‧‧WTRU(無線發送接收單元)
104‧‧‧無線存取網路(RAN)
1069‧‧‧核心網路
108‧‧‧公共交換電話網路(PSTN)
110、112‧‧‧站(STA)
114‧‧‧網路
114a、114b‧‧‧基地台
116‧‧‧空中介面
118‧‧‧處理器
120‧‧‧收發器
122‧‧‧發送/接收單元
124‧‧‧揚聲器/麥克風
126‧‧‧數字鍵盤
128‧‧‧顯示器/觸控板
130‧‧‧不可移除記憶體
132‧‧‧可移除記憶體
134‧‧‧電源
136‧‧‧全球定位系統(GPS)晶片組
138‧‧‧週邊設備
200‧‧‧20 MHz構件的OFDMA命理學
300‧‧‧40 MHz構件的OFDMA命理學
400‧‧‧80 MHz構件的OFDMA命理學
702、802‧‧‧RU分配欄位
708、806‧‧‧NStS
1010、1210、1510、1710、1810、1910、2826‧‧‧STA資訊欄位
704、1012、1212、1514‧‧‧STA ID欄位
1014、1214、1526‧‧‧RU起始位置欄位
1016‧‧‧RU間隔欄位
1018、1218、1522、1532、1722、1822、1922‧‧‧MCS欄位
1020、1220、1524、1534、1724、1824、1924‧‧‧Nsts欄位
1216、1528‧‧‧RU數量欄位
1512‧‧‧STA分隔符號欄位
1520‧‧‧RU集欄位
1716‧‧‧1D min_RU點陣圖欄位
1720‧‧‧RU大小指示欄位
1816、1820‧‧‧RU欄位
1920‧‧‧2D RU點陣圖欄位
2802‧‧‧PLCP標頭
2804‧‧‧MAC標頭
2806‧‧‧會話資訊欄位
2808‧‧‧FCS欄位
2810‧‧‧會話號碼欄位
2812‧‧‧定時偏移欄位
2814‧‧‧會話類型欄位
2816‧‧‧持續時間欄位
2818‧‧‧群組ID欄位
2820‧‧‧分配數量欄位
2822‧‧‧一個或多個分配欄位
2824‧‧‧索引欄位
2828‧‧‧資源欄位
3302‧‧‧最後的OFDM符號
3204‧‧‧修改的OFDM符號
BER‧‧‧Bit rate
BSS‧‧‧Basic Service Set
MAC‧‧‧Media Access Control
MCS, 706, 804‧‧‧ modulation and decoding scheme
OFDMA‧‧ Orthogonal Frequency Division Multiple Access
PLCP‧‧‧ physical layer convergence process
RF‧‧‧RF
SC‧‧‧Subchannel
100‧‧‧Communication system
102‧‧‧Access Point (AP)
102a, 102b, 102c, 102d‧‧‧WTRU (wireless transmitting and receiving unit)
104‧‧‧Wireless Access Network (RAN)
1069‧‧‧ Core Network
108‧‧‧Public Switched Telephone Network (PSTN)
110, 112‧‧‧ Station (STA)
114‧‧‧Network
114a, 114b‧‧‧ base station
116‧‧‧Intermediate mediation
118‧‧‧Processor
120‧‧‧ transceiver
122‧‧‧Send/receive unit
124‧‧‧Speaker/Microphone
126‧‧‧Digital keyboard
128‧‧‧Display/Touchpad
130‧‧‧Cannot remove memory
132‧‧‧Removable memory
134‧‧‧Power supply
136‧‧‧Global Positioning System (GPS) chipset
138‧‧‧ Peripherals
OFDMA numerology of 200‧‧‧20 MHz components
OFDMA numerology of 300‧‧.40 MHz components
OFDMA numerology of 400‧‧80 MHz components
702, 802‧‧‧RU allocation field
708, 806‧‧‧N StS
1010, 1210, 1510, 1710, 1810, 1910, 2826‧‧‧ STA information fields
704, 1012, 1212, 1514‧‧‧ STA ID field
1014, 1214, 1526‧‧‧RU starting position field
1016‧‧‧RU interval field
1018, 1218, 1522, 1532, 1722, 1822, 1922‧‧‧ MCS fields
1020, 1220, 1524, 1534, 1724, 1824, 1924‧‧‧N sts fields
1216, 1528‧‧‧RU quantity field
1512‧‧‧STA separated symbol field
1520‧‧‧RU field
1716‧‧‧1D min_RU bitmap field
1720‧‧‧RU size indication field
1816, 1820‧‧‧RU field
1920‧‧‧2D RU dot matrix field
2802‧‧‧PLCP header
2804‧‧‧MAC header
2806‧‧‧Session information field
2808‧‧‧FCS field
2810‧‧‧session number field
2812‧‧‧Time offset field
2814‧‧‧Session type field
2816‧‧‧ Duration field
2818‧‧‧Group ID field
2820‧‧‧ assigned number field
2822‧‧‧One or more allocation fields
2824‧‧‧ Index field
2828‧‧‧ Resource field
3302‧‧‧Last OFDM symbol
3204‧‧‧Modified OFDM symbols

第1A圖示出了示例性無線區域網路(WLAN)裝置。 第1B圖是可在其中實施一個或多個揭露的特徵的示例性通信系統的圖式。 第1C圖描述了示例性無線發送/接收單元WTRU。 第2圖是20 MHz構件的OFDMA命理學(numerology)的示例。 第3圖是40 MHz構件的OFDMA命理學的示例。 第4圖是80 MHz構件的OFDMA命理學的示例。 第5圖是RF I/Q不均衡的部分載入的OFDM信號的示例性功率譜密度。 第6圖是被干擾信號的誤碼率(BER)性能的示例。 第7圖是RU分配域的示例性格式。 第8圖是RU分配域的示例性格式。  第9圖是20 MHz頻帶的音規劃(tone plan)和RU單元標籤的示例。 第10圖是具有固定STA資訊大小的分散式RU傳訊的示例。 第11圖是分散式RU排程的示例。 第12圖是具有固定STA資訊大小的連續性RU傳訊的示例。 第13圖是連續性RU排程的示例。 第14圖是具有多個RU集的連續性RU分配的示例。 第15A圖和第15B圖是具有可變STA資訊大小的連續性RU傳訊域設計的示例。 第16圖是平整(flat)RU傳訊的示例。 第17A圖和第17B圖是平整RU傳訊的示例。 第18A圖和第18B圖是平整RU傳訊的示例。 第19A圖和第19B圖是平整RU傳訊的示例。 第20圖是20 MHz頻帶的有限RU分配的示例。 第21圖是顯式地用信號發送STA數量的類型1傳訊的示例。 第22圖是顯式地用信號發送STA數量的類型1傳訊的示例。 第23圖是隱式地用信號發送STA數量的類型2傳訊的示例。 第24圖是隱式地用信號發送STA數量的類型2傳訊的示例。 第25圖是隱式地用信號發送STA數量的類型2傳訊的示例。 第26圖是最小允許頻寬的示例。 第27圖是有限數量的允許頻寬的示例。 第28圖是資源分配訊框格式的示例。 第29圖是的資源分配訊框宣佈的參數指示將來會話的資源分配的示例。 第30圖是物聯網(IoT)操作的窄頻帶分配的示例。 第31圖是對稱RU分配的示例。 第32圖是在每個第四子載波(1/4資料)中動態填充的示例。 第33圖是在每個第二子載波(1/2資料)中動態填充的示例。 第34圖是長度¼及長度½的兩個截斷(truncated)的OFDM符號被傳送(3/4資料)的動態填充的示例。 第35圖是在OFDMA傳輸中動態填充的示例。Figure 1A shows an exemplary wireless local area network (WLAN) device. FIG. 1B is a diagram of an exemplary communication system in which one or more of the disclosed features may be implemented. FIG. 1C depicts an exemplary wireless transmit/receive unit WTRU. Figure 2 is an example of OFDMA numerology for a 20 MHz component. Figure 3 is an example of OFDMA numerology for a 40 MHz component. Figure 4 is an example of OFDMA numerology for an 80 MHz component. Figure 5 is an exemplary power spectral density of a partially loaded OFDM signal with RF I/Q imbalance. Figure 6 is an example of the bit error rate (BER) performance of the interfered signal. Figure 7 is an exemplary format of a RU allocation domain. Figure 8 is an exemplary format of a RU allocation domain. Figure 9 is an example of a tone plan and RU unit tag for the 20 MHz band. Figure 10 is an example of decentralized RU messaging with fixed STA information size. Figure 11 is an example of a distributed RU schedule. Figure 12 is an example of a continuous RU message with a fixed STA information size. Figure 13 is an example of a continuous RU schedule. Figure 14 is an example of a contiguous RU allocation with multiple RU sets. Figures 15A and 15B are examples of a continuous RU messaging domain design with variable STA information size. Figure 16 is an example of flat RU messaging. Figures 17A and 17B are examples of flattening RU communications. Figures 18A and 18B are examples of flattening RU messaging. Figures 19A and 19B are examples of flattening RU communication. Figure 20 is an example of a limited RU allocation for the 20 MHz band. Figure 21 is an example of type 1 messaging that explicitly signals the number of STAs. Figure 22 is an example of type 1 messaging that explicitly signals the number of STAs. Figure 23 is an example of type 2 messaging that implicitly signals the number of STAs. Figure 24 is an example of type 2 messaging that implicitly signals the number of STAs. Figure 25 is an example of type 2 messaging that implicitly signals the number of STAs. Figure 26 is an example of the minimum allowable bandwidth. Figure 27 is an example of a limited number of allowed bandwidths. Figure 28 is an example of a resource allocation frame format. Figure 29 is an example of the resource allocation frame announced parameters indicating resource allocation for future sessions. Figure 30 is an example of a narrow band allocation for Internet of Things (IoT) operations. Figure 31 is an example of symmetric RU allocation. Figure 32 is an example of dynamic padding in each of the fourth subcarriers (1/4 data). Figure 33 is an example of dynamic padding in each second subcarrier (1/2 data). Figure 34 is an example of dynamic padding of two truncated OFDM symbols of length 1⁄4 and length 1⁄2 transmitted (3/4 data). Figure 35 is an example of dynamic padding in an OFDMA transmission.

MAC‧‧‧媒體存取控制 MAC‧‧‧Media Access Control

3202‧‧‧最後的OFDM符號 3202‧‧‧Last OFDM symbol

3204‧‧‧修改的OFDM符號 3204‧‧‧Modified OFDM symbols

Claims (22)

一種傳送一協定資料單元(PDU)的方法,該方法包括: 將資料映射到該PDU的多個OFDM符號,其中,該多個OFDM符號中的每一者與第一持續時間相關聯,以及其中,該多個OFDM符號中的每一者與資料的一第一長度相關聯; 確定該多個OFDM符號的一最後一個OFDM符號中傳送的資料的一第二長度小於或等於該資料的該第一長度的¼、½或¾; 基於資料的一第二長度,將該最後一個OFDM符號從該第一持續時間修改為一第二持續時間,其中,該第二持續時間是該第一持續時間的¼、½或¾;以及 在一PHY標頭中發送與該最後一個OFDM符號相關聯的該第二持續時間的一指示,其中,該指示指示該第二持續時間是該第一持續時間的¼、½或¾。A method of transmitting a protocol data unit (PDU), the method comprising: mapping data to a plurality of OFDM symbols of the PDU, wherein each of the plurality of OFDM symbols is associated with a first duration, and wherein And each of the plurality of OFDM symbols is associated with a first length of the data; determining that a second length of the data transmitted in a last OFDM symbol of the plurality of OFDM symbols is less than or equal to the first portion of the data a length of 1⁄4, 1⁄2 or 3⁄4; based on a second length of the data, modifying the last OFDM symbol from the first duration to a second duration, wherein the second duration is the first duration And transmitting an indication of the second duration associated with the last OFDM symbol in a PHY header, wherein the indication indicates that the second duration is the first duration 1⁄4, 1⁄2 or 3⁄4. 如申請專利範圍第1項所述方法,其中,當資料的該第二長度小於或等於資料的該第一長度的¼時,該最後的OFDM符號被修改為該第一持續時間的¼。The method of claim 1, wherein the last OFDM symbol is modified to be 1⁄4 of the first duration when the second length of the data is less than or equal to 1⁄4 of the first length of the material. 如申請專利範圍第1項所述的方法,其中,當資料的該第二長度大於資料的該第一長度的¼並且小於或等於資料的該第一長度的½時,該最後的OFDM符號被修改為該第一持續時間的½。The method of claim 1, wherein the last OFDM symbol is when the second length of the material is greater than 1⁄4 of the first length of the material and less than or equal to 1⁄2 of the first length of the material. Modified to 1⁄2 of the first duration. 如申請專利範圍第1項所述方法,其中,當資料的該第二長度大於資料的該第一長度的½並且小於或等於資料的該第一長度的¾時,該最後的OFDM符號被修改為該第一持續時間的¾The method of claim 1, wherein the last OFDM symbol is modified when the second length of the material is greater than 1⁄2 of the first length of the material and less than or equal to 3⁄4 of the first length of the material. For the first duration of 3⁄4 如申請專利範圍第1項所述方法,其中,將該最後的OFDM符號從該第一持續時間修改為該第二持續時間包括使用一反FFT(IFFT)關係在該時域上為該最後的OFDM符號產生該第二持續時間。The method of claim 1, wherein modifying the last OFDM symbol from the first duration to the second duration comprises using an inverse FFT (IFFT) relationship for the last in the time domain. The OFDM symbol produces the second duration. 如申請專利範圍第5項所述方法,其中,將該最後的OFDM符號從該第一持續時間修改為該第二持續時間進一步包括移除由於使用該IFFT關係導致的一個或多個冗餘週期。The method of claim 5, wherein modifying the last OFDM symbol from the first duration to the second duration further comprises removing one or more redundancy periods due to using the IFFT relationship . 如申請專利範圍第1項所述方法,其中,該方法進一步包括基於該最後的OFDM符號的該第二持續時間生成一週期性符號。The method of claim 1, wherein the method further comprises generating a periodic symbol based on the second duration of the last OFDM symbol. 如申請專利範圍第1項所述的方法,其中,資料的該第一長度與一個OFDM符號中攜帶的一最大資料長度相關聯。The method of claim 1, wherein the first length of the data is associated with a maximum data length carried in an OFDM symbol. 如申請專利範圍第1項所述的方法,其中,該PDU是一實體層彙聚過程(PLCP)PDU(PPDU)。The method of claim 1, wherein the PDU is a Physical Layer Convergence Procedure (PLCP) PDU (PPDU). 如申請專利範圍第1項所述的方法,其中,資料的該第一長度和資料的該第二長度與可用載波之一數量相關聯。The method of claim 1, wherein the first length of the material and the second length of the material are associated with one of the available carriers. 如申請專利範圍第1項所述的方法,其中,當資料的該第二長度大於資料的該第一長度的¾時,該指示指示該第二持續時間等於該第一持續時間。The method of claim 1, wherein the indication indicates that the second duration is equal to the first duration when the second length of the material is greater than 3⁄4 of the first length of the data. 一種存取點(AP),該存取點包括: 一處理器,被配置以: 將資料映射到一協定資料單元(PDU)的多個OFDM符號,其中,該多個OFDM符號中的每一者與一第一持續時間相關聯,以及其中,該多個OFDM符號中的每一者與資料的一第一長度相關聯; 確定該多個OFDM符號的一最後一個OFDM符號中傳送的資料的一第二長度小於或等於資料的該第一長度的¼、½或¾; 基於資料的該第二長度,將該最後一個OFDM符號從該第一持續時間修改為一第二持續時間,其中,該第二持續時間是該第一持續時間的¼、½或¾;以及 在一PHY標頭中發送與該最後一個OFDM符號相關聯的該第二持續時間的一指示,其中,該指示指示該第二持續時間是該第一持續時間的¼、½或¾。An access point (AP), the access point comprising: a processor configured to: map data to a plurality of OFDM symbols of a protocol data unit (PDU), wherein each of the plurality of OFDM symbols Associated with a first duration, and wherein each of the plurality of OFDM symbols is associated with a first length of data; determining data transmitted in a last OFDM symbol of the plurality of OFDM symbols a second length less than or equal to 1⁄4, 1⁄2 or 3⁄4 of the first length of the data; based on the second length of the data, modifying the last OFDM symbol from the first duration to a second duration, wherein The second duration is 1⁄4, 1⁄2 or 3⁄4 of the first duration; and transmitting an indication of the second duration associated with the last OFDM symbol in a PHY header, wherein the indication indicates the The second duration is 1⁄4, 1⁄2 or 3⁄4 of the first duration. 如申請專利範圍第12項所述的AP,其中,當資料的該第二長度小於或等於資料的該第一長度的¼時,該最後的OFDM符號被修改為該第一持續時間的¼。The AP of claim 12, wherein when the second length of the data is less than or equal to 1⁄4 of the first length of the material, the last OFDM symbol is modified to be 1⁄4 of the first duration. 如申請專利範圍第12項所述的AP,其中,當資料的該第二長度大於資料的該第一長度的¼並且小於或等於資料的該第一長度的½時,該最後的OFDM符號被修改為該第一持續時間的½。The AP of claim 12, wherein when the second length of the material is greater than 1⁄4 of the first length of the material and less than or equal to 1⁄2 of the first length of the material, the last OFDM symbol is Modified to 1⁄2 of the first duration. 如申請專利範圍第12項所述的AP,其中,當資料的該第二長度大於資料的該第一長度的½並且小於或等於資料的該第一長度的¾時,該最後的OFDM符號被修改為該第一持續時間的¾。The AP of claim 12, wherein when the second length of the data is greater than 1⁄2 of the first length of the material and less than or equal to 3⁄4 of the first length of the material, the last OFDM symbol is Modified to 3⁄4 of the first duration. 如申請專利範圍第12項所述的AP,其中,配置以將該最後的OFDM符號從該第一持續時間修改為該第二持續時間包括使用一反快速傅立葉變換(IFFT)關係,以在該時域上為該最後的OFDM符號產生該第二持續時間。The AP of claim 12, wherein configuring to modify the last OFDM symbol from the first duration to the second duration comprises using an inverse fast Fourier transform (IFFT) relationship to The second duration is generated for the last OFDM symbol in the time domain. 如申請專利範圍第16項所述的AP,其中,被配置以將該最後的OFDM符號從該第一持續時間修改為該第二持續時間進一步包括被配置以移除由於使用該IFFT關係導致的一個或多個冗餘週期。The AP of claim 16, wherein the being configured to modify the last OFDM symbol from the first duration to the second duration further comprises being configured to remove due to use of the IFFT relationship One or more redundancy cycles. 如申請專利範圍第12項所述的AP,其中,該處理器進一步被配置以基於該最後的OFDM符號的一第二持續時間生成一週期性符號。The AP of claim 12, wherein the processor is further configured to generate a periodic symbol based on a second duration of the last OFDM symbol. 如申請專利範圍第12項所述的AP,其中,資料的該第一長度與一個OFDM符號中攜帶的一最大資料長度相關聯。The AP of claim 12, wherein the first length of the data is associated with a maximum data length carried in one OFDM symbol. 如申請專利範圍第12項所述的AP,其中,該PDU是一實體層彙聚過程(PLCP)PDU(PPDU)。The AP of claim 12, wherein the PDU is a Physical Layer Convergence Procedure (PLCP) PDU (PPDU). 如申請專利範圍第12項所述的AP,其中,資料的該第一長度和資料的該第二長度與可用載波之一數目相關聯。The AP of claim 12, wherein the first length of the material and the second length of the data are associated with a number of available carriers. 如申請專利範圍第12項所述的AP,其中,當資料的該第二長度大於資料的該第一長度的¾時,該指示指示該第二持續時間等於該第一持續時間。The AP of claim 12, wherein when the second length of the material is greater than 3⁄4 of the first length of the data, the indication indicates that the second duration is equal to the first duration.
TW105121739A 2015-07-10 2016-07-11 Methods for resource allocation of an OFDMA WLAN system TW201713088A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562191078P 2015-07-10 2015-07-10
US201562250438P 2015-11-03 2015-11-03

Publications (1)

Publication Number Publication Date
TW201713088A true TW201713088A (en) 2017-04-01

Family

ID=56557896

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105121739A TW201713088A (en) 2015-07-10 2016-07-11 Methods for resource allocation of an OFDMA WLAN system

Country Status (2)

Country Link
TW (1) TW201713088A (en)
WO (1) WO2017011274A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016173103A1 (en) 2015-04-30 2016-11-03 华为技术有限公司 Resource indication method and apparatus for wlan system
TWI755478B (en) 2017-02-21 2022-02-21 美商松下電器(美國)知識產權公司 Communication device, communication method and integrated circuit
US11153808B2 (en) * 2017-03-23 2021-10-19 Zte Corporation Using multiple beacon types in wireless communication
US11109278B2 (en) * 2017-10-20 2021-08-31 Qualcomm Incorporated Multiplexing clients of different generations in trigger-based transmissions
CN110708148A (en) * 2018-07-09 2020-01-17 华为技术有限公司 Signaling field indication method and device
US11271691B2 (en) * 2018-07-09 2022-03-08 Huawei Technologies Canada Co. Ltd. Dynamic spectrum spreading of data symbols for multiple access transmission
US20210360628A1 (en) * 2020-05-15 2021-11-18 Samsung Electronics Co., Ltd. Apparatus and method of communication based on extended bandwidth and multi-resource unit in wireless local area network system
US20220141052A1 (en) * 2020-11-02 2022-05-05 Avago Technologies International Sales Pte. Limited Ltf sequences for 320 mhz wifi channels

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040081131A1 (en) * 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
WO2009125708A1 (en) * 2008-04-08 2009-10-15 日本電気株式会社 Wireless communication system, wireless communication device, wireless communication method, and program

Also Published As

Publication number Publication date
WO2017011274A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
JP7379288B2 (en) Control and operation in wireless local area networks
US11678382B2 (en) Methods for concurrent link setup and downlink data retrieval for high efficiency WLAN
US11750323B2 (en) Method and system for wireless local area network (WLAN) long symbol duration migration
US10536979B2 (en) Wireless communication method using OFDMA random access and wireless communication terminal using same
JP6827412B2 (en) Preamble selection for simultaneous transmission in wireless local area network (WLAN) systems
JP2021158691A (en) Bss-color enhanced transmission in wlans (bss-cet)
TWI602414B (en) Multi-user parallel channel access in wlan systems
TW201713088A (en) Methods for resource allocation of an OFDMA WLAN system
JP2024515101A (en) Multi-AP channel sounding feedback procedure for a WLAN system - Patents.com