TW201711053A - Method of measurement of physical irradiation for high purity zirconium-89 product obtaining an optimum plating thickness value by plotting a minimum attenuation position according to an interval irradiation power absorption range - Google Patents

Method of measurement of physical irradiation for high purity zirconium-89 product obtaining an optimum plating thickness value by plotting a minimum attenuation position according to an interval irradiation power absorption range Download PDF

Info

Publication number
TW201711053A
TW201711053A TW104127063A TW104127063A TW201711053A TW 201711053 A TW201711053 A TW 201711053A TW 104127063 A TW104127063 A TW 104127063A TW 104127063 A TW104127063 A TW 104127063A TW 201711053 A TW201711053 A TW 201711053A
Authority
TW
Taiwan
Prior art keywords
zirconium
sectional area
irradiation
curve
value
Prior art date
Application number
TW104127063A
Other languages
Chinese (zh)
Other versions
TWI591648B (en
Inventor
李銘忻
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to TW104127063A priority Critical patent/TWI591648B/en
Publication of TW201711053A publication Critical patent/TW201711053A/en
Application granted granted Critical
Publication of TWI591648B publication Critical patent/TWI591648B/en

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

A method of measurement of physical irradiation for a high purity zirconium-89 product includes steps of: plotting a function graph of incident power of yttrium-89(p,n)zirconium-89 and related nuclear species with respect to reaction cross-sectional areas; selecting a reaction probability or barn value as a horizontal line that intersects the Zr-89 curve at two intersection points; drawing a vertical line that intersects the X-axis to obtain two irradiation power values and taking the values into respective function formula of each curve; obtaining a set of reaction cross-sectional areas by integration; repeating the foregoing steps to generate at least another set of reaction cross-sectional areas; comparing the increase and decrease of each set of reaction cross-sectional areas; selecting a reaction cross-sectional area of a maximum Zr-89 and an tolerable Zr-88 average reaction cross-sectional area ; obtaining two corresponding intersection points by reverse tracking to be optimum irradiation power values; calculating an interval irradiation power absorption range thereof; plotting a function graph of a thickness of the Y-89(p,n)zirconium-89 with respect to attenuation of incident power; selecting an attenuation curve corresponding to the optimum power Eb; and plotting a minimum attenuation position according to the interval irradiation power absorption range to obtain an optimum plating thickness value.

Description

高純度鋯(Zr)-89產製物理照射量測方法High-purity zirconium (Zr)-89 production physical exposure measurement method

本發明是有關一種高純度鋯(Zr)-89產製物理照射量測方法,特別是指一種可得到主要核種最佳產生機率,且能盡量避免其他核種反應的物理照射量測方法。The invention relates to a method for measuring physical irradiation of high-purity zirconium (Zr)-89, in particular to a physical irradiation measuring method capable of obtaining the best generating probability of main nuclear species and avoiding other nuclear species reactions as much as possible.

一般在產製高純度鋯(Zr)-89的過程中,在電鍍穩定金屬釔(Y)-89金屬離子於固體靶(solid target)、壓實氧化態釔(Y)-89於固體靶或封裝釔(Y)-89薄膜(foil) 於固體靶之後,由於並未考慮照射能量大小與釔(Y)-89金屬電鍍厚度間的關係,因此僅能以試誤法(try and error)應用不同照射能量(MeV)照射該固體靶,再利用放射性活度量測儀測量其活度(activity),並用以計算照射後之產率(yields)。Generally, in the process of producing high-purity zirconium (Zr)-89, the metal ruthenium (Y)-89 metal ruthenium is solid-plated on a solid target, and the oxidized yttrium (Y)-89 is solid target or After packaging the yttrium (Y)-89 film (foil) after the solid target, since the relationship between the irradiation energy and the thickness of the yttrium (Y)-89 metal plating is not considered, it can only be applied by try and error. The solid target is irradiated with different irradiation energy (MeV), and the activity is measured by a radioactivity measuring instrument, and used to calculate the yield after irradiation.

而照射完之固體靶,若利用無機酸(如:鹽酸,HCl)將放射性核種釔(Y)-89自固體靶的靶體洗離,再以放射性活度量測儀量測活度後並直接利用有機與無機吸附劑吸附,可發現許多不純物(即其它核種)。此乃在不同照射能量(MeV)照射該固體靶時,會併行產生主要核反應以外之其它核種反應,與包含許多不純物產生;而此不純物因半衰期與主要核種半衰期相近,造成假性放射性劑量(Dose)值,並致使該發生器掏洗釔(Y)-89衰變後之鋯(Zr)-89金屬離子用於標幟(labeling)藥物時,該不純物中之金屬離子會干擾前處理效率與降低藥物標幟之產率。After the irradiated solid target, if the radioactive nucleus (Y)-89 is washed away from the target of the solid target by using a mineral acid (such as hydrochloric acid, HCl), the activity is measured by a radioactivity measuring instrument and then Many impurities (ie, other nuclear species) can be found by directly adsorbing organic and inorganic adsorbents. When the solid target is irradiated with different irradiation energy (MeV), other nuclear reactions other than the main nuclear reaction are generated in parallel, and a plurality of impurities are generated; and the impurity is caused by the half-life and the half-life of the main nucleus, resulting in a pseudo-radioactive dose (Dose). Value, and cause the generator to wash the ytterbium (Y)-89 after the zirconium (Zr)-89 metal ion is used for labeling the drug, the metal ions in the impurity interfere with the pretreatment efficiency and decrease The yield of the drug label.

有鑑於習見高純度鋯(Zr)-89的產製方法有上述缺點,發明人乃針對前述缺點研究改進之道,終於有本發明產生。In view of the above-mentioned shortcomings in the production method of high-purity zirconium (Zr)-89, the inventors have made research on the above-mentioned shortcomings, and finally the present invention has been produced.

本發明的主要目的在於提供一種高純度鋯(Zr)-89產製物理照射量測方法,其係經由89Y(p,n)89Zr核反應入射能量與反應截面積函數圖,以及89Y(p,n)89Zr靶厚度與入射能量衰減函數圖之基礎物理原理應用,可計算出放射性核種釔-89(Y-89)固體靶製程照射能量參數,且依此方式產生的製程參數所照射釔-89(Y-89)核種之品質穩定均一、不純物含量可獲科學方法預測與控制,並符合其應有之物理及化學性質。The main object of the present invention is to provide a high-purity zirconium (Zr)-89 production physical irradiation measurement method, which is a 89Y (p, n) 89Zr nuclear reaction incident energy and reaction cross-sectional area function diagram, and 89Y (p, n The application of the 89Zr target thickness and the fundamental physical principle of the incident energy attenuation function diagram can calculate the irradiation energy 參數 of the radioactive nucleus 89-89 (Y-89) solid target process, and the process 产生-89 ( Y-89) The quality of the nuclear species is stable and uniform, and the impurity content can be predicted and controlled by scientific methods and meets its physical and chemical properties.

為達成上述目的及功效,本發明所採行的技術手段包括:In order to achieve the above objects and effects, the technical means adopted by the present invention include:

一「畫出釔(Y)-89(p,n)鋯(Zr)-89及相關核種入射能量與反應截面積函數圖」步驟S11,係依原子物理特性,分別畫出釔(Y)-89(p,n)鋯(Zr)-89及相關鋯(Zr)-88、鋯(Zr)-87等核種的入射能量與反應截面積函數圖,同時計算出各曲線的函數方程式;"Drawing y(Y)-89(p,n) zirconium (Zr)-89 and related nuclear species incident energy and reaction cross-sectional area function map" step S11, according to the atomic physical properties, draw 钇(Y)- 89(p,n) zirconium (Zr)-89 and related zirconium (Zr)-88, zirconium (Zr)-87 and other nuclear species, the incident energy and the reaction cross-sectional area function graph, and calculate the function equation of each curve;

一「選取一靶(Barn)值,作一水平線與該鋯(Zr)-89入射能量與反應截面積曲線交於二交會點,由該二交會點分別畫一垂直線交於X軸,得到二照射能量值(E1,E2)」步驟S12,係選取一反應截面積的靶(Barn)值,於該靶(Barn)值作一水平線,該水平線交於放射性核種鋯(Zr)-89入射能量與反應截面積曲線上二交會點,由該二交會點分別畫一垂直線交於X軸,得到該二交會點的照射能量值(E1,E2);"Select a target (Barn) value, make a horizontal line and the zirconium (Zr)-89 incident energy and reaction cross-sectional area curve at the intersection point, draw a vertical line from the two intersection points to the X-axis, The second irradiation energy value (E1, E2) step S12 is to select a target (Barn) value of the reaction cross-sectional area, and make a horizontal line at the target (Barn) value, which is intersected with the radioactive nucleus zirconium (Zr)-89. The energy and the cross-sectional area of the reaction are two intersection points, and a vertical line is drawn from the two intersection points to the X-axis to obtain an irradiation energy value (E1, E2) of the two intersection points;

一「將上述二照射能量值(E1,E2)分別代入各入射能量與反應截面積曲線的函數公式,積分可得到一組各曲線於該二照射能量值(E1,E2)之間所對應的反應截面積」步驟 S13;"The above two illuminating energy values (E1, E2) are substituted into the function formula of each incident energy and the reaction cross-sectional area curve, and the integral can obtain a set of curves corresponding to the two illuminating energy values (E1, E2). Reaction cross-sectional area" step S13;

一「重複S12~S13步驟,另選一靶(Barn)值,並產生一組對應各曲線的反應截面積」步驟S14;a "repetition S12 ~ S13 step, another target (Barn) value, and generate a set of reaction cross-sectional area corresponding to each curve" step S14;

一「是否產生另一組反應截面積?」判斷步驟,係確認可供參考反應截面積的組數是否已達滿足數量,若為否定,則再執行該「重複S12~S13步驟,另選一靶(Barn)值,並產生一組對應各曲線的反應截面積」步驟S15, 若為肯定,則執行下一步驟;A determination step is to determine whether the number of groups available for reference cross-sectional area has reached the required number. If it is negative, then repeat the steps of S12~S13 a target value (Barn), and a set of reaction cross-sectional areas corresponding to each curve" step S15, if affirmative, the next step is performed;

一「比較各組反應截面積的消長;選取最大鋯(Zr)-89)反應截面積Aa-Zr89與可忍受之鋯(Zr)-88平均反應截面積Bb-Zr88,並反推取得該組反應截面積相對應的二交會點作為最佳照射能量數值(Ea,Eb),並可計算二交會點的區間照射能量吸收範圍ΔEi」步驟S16,係比較各組截面積,選取具有最大鋯(Zr)-89反應截面積Aa-Zr89與可忍受(盡可能小)之鋯(Zr)-88平均反應截面積Bb-Zr88的一組數據,並反推取得相對應的二交會點作為照射能量數值(Ea,Eb),然後,可計算出二交會點的區間照射能量吸收範圍ΔEi(MeV)=Eb(MeV)-Ea(MeV);"Comparing the growth and decline of the cross-sectional area of each group; selecting the maximum zirconium (Zr)-89) reaction cross-sectional area Aa-Zr89 and the tolerable zirconium (Zr)-88 average reaction cross-sectional area Bb-Zr88, and deducting the group The two intersection points corresponding to the cross-sectional area of the reaction are taken as the optimal irradiation energy value (Ea, Eb), and the interval irradiation energy absorption range ΔEi of the two intersection points can be calculated. Step S16, the cross-sectional area of each group is compared, and the maximum zirconium is selected. A set of data of the cross-sectional area Aa-Zr89 of Zr)-89 and the average cross-sectional area Bb-Zr88 of the zirconium (Zr)-88 which can withstand (as small as possible), and reversely obtain the corresponding two intersection points as the irradiation energy The value (Ea, Eb), then, the interval energy absorption range ΔEi(MeV)=Eb(MeV)-Ea(MeV) of the two intersection points can be calculated;

一「畫出釔(Y)-89(p,n)鋯(Zr)-89靶厚度與入射能量衰減函數圖,選取對應該最佳能量Eb的衰減曲線,並依該區間照射能量吸收範圍ΔEi畫出最低衰減位置以得到最佳電鍍厚度(d)值」步驟S17,係依原子物理特性畫出該釔(Y)-89(p,n)鋯(Zr)-89於不同入射能量相對於不同靶厚度的衰減曲線,選取對應該最佳能量Eb的衰減曲線,依該區間照射能量吸收範圍ΔEi可於Ea處畫一水平線與該最佳能量Eb衰減曲線相交於一下交會點,並於該下交會點畫一垂直線交於X軸,可取得最佳電鍍厚度(d)值。"Draw a graph of the yttrium (Y)-89(p,n) zirconium (Zr)-89 target thickness and incident energy attenuation function, select the attenuation curve corresponding to the optimal energy Eb, and illuminate the energy absorption range ΔEi according to the interval Draw the lowest attenuation position to obtain the optimum plating thickness (d) value. Step S17, according to the atomic physical properties, draw the ytterbium (Y)-89(p,n) zirconium (Zr)-89 at different incident energies with respect to The attenuation curve of different target thickness is selected, and the attenuation curve corresponding to the optimal energy Eb is selected. According to the interval, the energy absorption range ΔEi can draw a horizontal line at Ea and the attenuation curve of the optimal energy Eb intersects at the intersection point, and The lower intersection will draw a vertical line to the X-axis to obtain the optimum plating thickness (d) value.

為使本發明的上述目的、功效及特徵可獲得更具體的瞭解,依各附圖說明如下:In order to obtain a more specific understanding of the above objects, functions and features of the present invention, the following figures are illustrated as follows:

請參閱第1至5圖所示,可知本發明的方法依序包括:S11步 驟,係依原子物理特性分別標示釔(Y)-89(p,n)鋯(Zr)-89及相關鋯(Zr)- 88、鋯(Zr)-87等核種於不同反應截面積對應不同入射能量的對應點,再分 別畫出相對應的曲線A、B、C(如第2圖所示),同時計算出各曲線的函數方 程式如下: 曲線A:Zr-89ε(4,20)=-0.0115x2 +0.2829x-1.0542 R2 =0.9216 曲線B:Zr-88ε(10,40)=-0.0038x2 +0.1899x-1.6021 R2 =0.7915 曲線C:Zr-87ε(26,54)=-0.0016x2 +0.1275x-2.2649 R2 =0.8192Referring to Figures 1 to 5, it can be seen that the method of the present invention comprises, in order, the step S11, which is characterized by atomic physical properties of yttrium (Y)-89 (p, n) zirconium (Zr)-89 and related zirconium ( Zr)-88, zirconium (Zr)-87 and other nuclear species in different reaction cross-sectional areas corresponding to different incident energy corresponding points, and then draw the corresponding curves A, B, C (as shown in Figure 2), and calculate The equation for each curve is as follows: Curve A: Zr-89ε(4,20)=-0.0115x 2 +0.2829x-1.0542 R 2 =0.9216 Curve B: Zr-88ε(10,40)=-0.0038x 2 + 0.1899x-1.6021 R 2 =0.7915 Curve C: Zr-87ε(26,54)=-0.0016x 2 +0.1275x-2.2649 R 2 =0.8192

在第2圖中,該曲線B係位於曲線A與曲線C之間,且該曲線B係局部與曲線A、曲線C交錯,而該曲線A、曲線C係為相互分離。In the second figure, the curve B is located between the curve A and the curve C, and the curve B is partially interlaced with the curve A and the curve C, and the curve A and the curve C are separated from each other.

一S12步驟,係選取一反應截面積的靶(Barn)值,於該靶(Barn)值作一水平線,該水平線交於放射性核種鋯(Zr)-89入射能量與反應截面積曲線(即曲線A)上二交會點,由該二交會點分別畫一垂直線交於X軸,得到該二交會點的照射能量值(E1,E2)。In step S12, a target (Barn) value of a reaction cross-sectional area is selected, and a horizontal line is formed at the target (Barn) value, and the horizontal line is intersected with a radioactive nucleus zirconium (Zr)-89 incident energy and a reaction cross-sectional area curve (ie, a curve). A) The upper two intersection points, a vertical line is drawn from the two intersection points to the X axis, and the irradiation energy values (E1, E2) of the two intersection points are obtained.

實際量測時係將靶(Barn)值限制制於0.5與1之間,以便取得較接近實用的數據,以縮短量測時間。In actual measurement, the target (Barn) value is limited to between 0.5 and 1, in order to obtain data that is closer to practicality, so as to shorten the measurement time.

一S13步驟,係將該二照射能量值(E1,E2)分別代入鋯(Zr)-89與Zr)-88入射能量與反應截面積曲線的函數公式,積分可得到二反應截面積A1-Zr89與B1-Zr88,該反應截面積A1-Zr89係為該曲線A於二照射能量值(E1,E2)之間所涵蓋的面積,而該反應截面積B1-Zr88係為該曲線B於二照射能量值(E1,E2)之間所涵蓋的面積(如第3圖所示),該曲線C與曲線A相分離,因此不會有涵蓋的面積。In an S13 step, the two irradiation energy values (E1, E2) are respectively substituted into a function formula of zirconium (Zr)-89 and Zr)-88 incident energy and a reaction cross-sectional area curve, and the integral can obtain a two-reaction cross-sectional area A1-Zr89. With B1-Zr88, the reaction cross-sectional area A1-Zr89 is the area covered by the curve A between the two irradiation energy values (E1, E2), and the reaction cross-sectional area B1-Zr88 is the curve B for the second irradiation. The area covered by the energy values (E1, E2) (as shown in Figure 3), which is separated from curve A, so there is no area covered.

一S14步驟;係以相同的方式產生一組對應另一靶(Barn)值的反應截面積AX-Zr89與BX-Zr88(如第4圖所示)。An S14 step; generating a set of reaction cross-sectional areas AX-Zr89 and BX-Zr88 corresponding to another target (Barn) value in the same manner (as shown in Figure 4).

一S15步驟,若為肯定,則執行下一步驟。An S15 step, if yes, the next step is performed.

一S16步驟,係比較各組截面積,選取具有最大鋯(Zr)-89反應截面積Aa-Zr89與可忍受(盡可能小)之鋯(Zr)-88平均反應截面積Bb-Zr88的一組數據,並反推取得相對應的二交會點作為照射能量數值(Ea,Eb)(如第4圖所示),然後,可計算出二交會點的區間照射能量吸收範圍ΔEi(MeV)=Eb(MeV)-Ea(MeV);In step S16, the cross-sectional area of each group is compared, and one of the cross-sectional area Ab-Zr89 having the largest zirconium (Zr)-89 reaction cross-sectional area and the tolerable (as small as possible) zirconium (Zr)-88 average reaction cross-sectional area Bb-Zr88 is selected. Group data, and reversely obtain the corresponding two intersection points as the irradiation energy value (Ea, Eb) (as shown in Fig. 4), and then calculate the interval of the two intersection points, the irradiation energy absorption range ΔEi(MeV)= Eb(MeV)-Ea(MeV);

一S17步驟,係依原子物理特性畫出該釔(Y)-89(p,n)鋯(Zr)-89於不同入射能量相對於不同靶厚度的衰減曲線,選取對應該最佳能量Eb的衰減曲線,依該區間照射能量吸收範圍ΔEi可於Ea處畫一水平線與該最佳能量Eb衰減曲線相交於一下交會點P,並於該下交會點P畫一垂直線交於X軸,可取得最佳電鍍厚度(d)值。In step S17, the attenuation curve of the ytterbium (Y)-89(p,n) zirconium (Zr)-89 at different incident energies with respect to different target thicknesses is plotted according to the atomic physical properties, and the optimum energy Eb is selected. The attenuation curve, according to the interval, the energy absorption range ΔEi can draw a horizontal line at Ea and the optimal energy Eb attenuation curve intersects at the intersection point P, and draw a vertical line at the lower intersection point P to the X-axis. Get the best plating thickness (d) value.

在一個可行的實施例中:In a possible embodiment:

1.選取一反應截面積的靶(Barn)值為0.5作一水平線,該水平線交於放射性核種鋯(Zr)-89入射能量與反應截面積曲線(即曲線A)上二交會點,由該二交會點分別畫一垂直線交於X軸,得到該二交會點的照射能量值(E1,E2),如第3圖所示,該照射能量值(E1,E2)=(6.5,17.5)。1. Select a target cross-sectional area (Barn) value of 0.5 as a horizontal line, which is intersected at the intersection point of the radioactive nucleus zirconium (Zr)-89 incident energy and the reaction cross-sectional area curve (ie curve A). The second intersection point draws a vertical line to the X axis to obtain the irradiation energy value (E1, E2) of the two intersection points. As shown in Fig. 3, the irradiation energy value (E1, E2) = (6.5, 17.5) .

2.將該二照射能量值(E1,E2)=(6.5,17.5)分別代入鋯(Zr)-89與(Zr)-88入射能量與反應截面積曲線的函數公式,積分可得到該曲線A於二照射能量值(E1,E2)之間的反應截面積A1-Zr89與該曲線B於二照射能量值(E1,E2)之間的反應截面積B1-Zr88。2. Substituting the two irradiation energy values (E1, E2) = (6.5, 17.5) into the function formula of the incident energy and the cross-sectional area of the zirconium (Zr)-89 and (Zr)-88, respectively, and integrating the curve A The reaction cross-sectional area A1-Zr89 between the two irradiation energy values (E1, E2) and the reaction cross-sectional area B1-Zr88 between the two irradiation energy values (E1, E2).

3.另選一靶(Barn)值為0.6,重複上述步驟,以相同的方式產生另一組反應截面積AX-Zr89與BX-Zr88,如第4圖所示。3. Alternatively, the target (Barn) value is 0.6, and the above steps are repeated to generate another set of reaction cross-sectional areas AX-Zr89 and BX-Zr88 in the same manner, as shown in FIG.

4.判斷可供參考反應截面積的組數是否已達滿足數量,若不足,則再執行前述步驟,產生另一組反應截面積,若已滿足,則比較各組截面積,選出一組數據具有最大鋯(Zr)-89反應截面積Aa-Zr89與可忍受(盡可能小)之鋯(Zr)-88平均反應截面積Bb-Zr88,假設該Aa-Zr89=AX-Zr89且Bb-Zr88=BX-Zr88(即該AX-Zr89係為最大鋯-89反應截面積Aa-Zr89,而該BX-Zr88係為可忍受之鋯-88平均反應截面積Bb-Zr88)。4. Determine whether the number of groups available for reference reaction cross-sectional area has reached the required quantity. If it is insufficient, perform the above steps to generate another set of reaction cross-sectional area. If it is satisfied, compare the cross-sectional areas of each group and select a set of data. Has a maximum zirconium (Zr)-89 reaction cross-sectional area Aa-Zr89 and a tolerable (as small as possible) zirconium (Zr)-88 average reaction cross-sectional area Bb-Zr88, assuming that Aa-Zr89=AX-Zr89 and Bb-Zr88 =BX-Zr88 (i.e., the AX-Zr89 is the maximum zirconium-89 reaction cross-sectional area Aa-Zr89, and the BX-Zr88 is the tolerable zirconium-88 average reaction cross-sectional area Bb-Zr88).

然後,可由該Aa-Zr89與Bb-Zr88反推取得相對應的二交會點作為照射能量數值(Ea,Eb)=(8,16)(如第4圖所示),並可計算出二交會點的區間照射能量吸收範圍ΔEi=Eb-Ea=16-8=8(MeV)。Then, the corresponding two intersection points can be obtained by the Aa-Zr89 and Bb-Zr88 as the irradiation energy value (Ea, Eb) = (8, 16) (as shown in Fig. 4), and the second meeting can be calculated. The interval irradiation energy absorption range of the point ΔEi=Eb-Ea=16-8=8 (MeV).

5.於第5圖中,選取對應該最佳能量Eb為16(MeV)的衰減曲線,依該區間照射能量吸收範圍ΔEi=8(MeV)可於Ea=8(MeV)處畫一水平線與該最佳能量Eb為16(MeV)衰減曲線相交於一下交會點P,並於該下交會點P畫一垂直線交於X軸(若照射能量介於所顯示數值之間時,可利用內插法計算),最後取得最佳電鍍厚度d=700mm。5. In Fig. 5, select the attenuation curve corresponding to the optimal energy Eb of 16 (MeV). According to the interval, the energy absorption range ΔEi=8 (MeV) can draw a horizontal line at Ea=8 (MeV). The optimal energy Eb is a 16 (MeV) attenuation curve intersecting at the intersection point P, and a vertical line is drawn at the lower intersection point P to the X axis (if the illumination energy is between the displayed values, the inside can be utilized) Insertion calculation), and finally obtain the best plating thickness d = 700mm.

6.經由上述量測,可獲致一最佳照射能量參數為16 MeV,以及最佳電鍍厚度為700mm,加速器其它實際照射參數皆可依經驗值調整,最後各實際照射參數如下:   a. 照射能量:16 MeV   b. 加速粒子:質子(迴旋加速器之照射固定條件)   c. 射束電流:200 μA(迴旋加速器之照射固定條件)   d. 照射時間:60 hr(迴旋加速器之照射固定條件)   e. 照射角度:7度(迴旋加速器之照射固定條件)6. Through the above measurement, an optimal illumination energy parameter of 16 MeV can be obtained, and the optimal plating thickness is 700 mm. The other actual illumination parameters of the accelerator can be adjusted according to the empirical value. Finally, the actual illumination parameters are as follows: a. :16 MeV b. Accelerating particles: proton (fixed conditions for cyclotron irradiation) c. Beam current: 200 μA (fixed conditions for cyclotron irradiation) d. Irradiation time: 60 hr (fixed conditions for cyclotron irradiation) e. Irradiation angle: 7 degrees (radiation fixing condition of cyclotron)

利用迴旋加速器(cyclotron) 進行之照射,可獲得最佳產率與最低其它核種產生。The best yield and the lowest other nucleus production can be obtained by irradiation with a cyclotron.

本發明利用上述參數量測方法可計算出放射性核種釔-89(Y-89)固體靶製程各照射能量參數,且所照射產製的釔-89(Y-89)核種品質穩定均一、不純物含量可經由科學方法預測與控制,且符合其應有之物理及化學性質。The invention can calculate the irradiation energy parameters of the radioactive nuclear species 钇-89 (Y-89) solid target process by using the above-mentioned parameter measurement method, and the quality of the 钇-89 (Y-89) nuclear species produced by the irradiation is stable and uniform, and the impurity content is It can be predicted and controlled scientifically and conforms to its physical and chemical properties.

綜合以上所述,本發明的高純度鋯(Zr)-89產製物理照射量測方法確可達成提昇主要核種產生機率,同時盡量避免其他核種反應的功效,實為一具新穎性及進步性的發明,爰依法提出申請發明專利;惟上述說明的內容,僅為本發明的較佳實施例說明,舉凡依本發明的技術手段與範疇所延伸的變化、修飾、改變或等效置換者,亦皆應落入本發明的專利申請範圍內。In summary, the high-purity zirconium (Zr)-89 physical irradiation measurement method of the present invention can achieve the improvement of the main nuclear species production probability while avoiding the effects of other nuclear species reactions, which is a novelty and progress. The invention of the present invention is filed in accordance with the law; however, the above description is only for the preferred embodiment of the invention, and variations, modifications, alterations or equivalent substitutions of the technical means and scope of the invention are It is also within the scope of the patent application of the present invention.

A‧‧‧鋯(Zr)-89入射能量與反應截面積函數曲線
B‧‧‧鋯(Zr)-88入射能量與反應截面積函數曲線
C‧‧‧鋯(Zr)-87入射能量與反應截面積函數曲線
A1-Zr89、AX-Zr89‧‧‧鋯(Zr)-89的反應截面積
B1-Zr88、BX-Zr88‧‧‧鋯(Zr)-88的反應截面積
d‧‧‧電鍍厚度值
E1、E2、Ea、Eb‧‧‧.照射能量值
ΔEi‧‧‧區間照射能量吸收範圍
P‧‧‧下交會點
S11‧‧‧畫出釔(Y)-89(p,n)鋯(Zr)-89及相關核種入射能量與反應截面積函數圖
S12‧‧‧選取一靶(Barn)值,作一水平線與該鋯(Zr)-89入射能量與反應截面積曲線交於二交會點,由該二交會點分別畫一垂直線交於X軸,得到二照射能量值(E1,E2)
S13‧‧‧將上述二照射能量值(E1,E2)分別代入各入射能量與反應截面積曲線的函數公式,積分可得到一組各曲線於該二照射能量值(E1,E2)之間所對應的反應截面積
S14‧‧‧重複S12~S13步驟,另選一靶(Barn)值,並產生一組對應各曲線的反應截面積
S15‧‧‧是否產生另一組反應截面積?
S16‧‧‧比較各組反應截面積的消長;選取最大鋯(Zr)-89反應截面積Aa-Zr89與可忍受之鋯(Zr)-88平均反應截面積Bb-Zr88,並反推取得該組反應截面積相對應的二交會點作為最佳照射能量數值(Ea,Eb),並可計算二交會點的區間照射能量吸收範圍ΔEi
S17‧‧‧畫出釔(Y)-89(p,n)鋯(Zr)-89靶厚度與入射能量衰減函數圖,選取對應該最佳能量Eb的衰減曲線,並依該區間照射能量吸收範圍ΔEi畫出最低衰減位置以得到最佳電鍍厚度(d)值
A‧‧‧Zirconium (Zr)-89 incident energy and reaction cross-sectional area function curve
B‧‧‧Zirconium (Zr)-88 incident energy and reaction cross-sectional area function curve
C‧‧‧Zirconium (Zr)-87 incident energy and reaction cross-sectional area function curve
Reaction cross-sectional area of A1-Zr89, AX-Zr89‧‧‧ zirconium (Zr)-89
Reaction cross-sectional area of B1-Zr88, BX-Zr88‧‧‧ zirconium (Zr)-88
D‧‧‧ plating thickness value
E1, E2, Ea, Eb‧‧‧. Irradiation energy value ΔEi‧‧‧ interval irradiation energy absorption range
P‧‧‧
S11‧‧‧Draw a 數(Y)-89(p,n) zirconium (Zr)-89 and related nuclear species incident energy and reaction cross-sectional area
S12‧‧‧ Select a target (Barn) value, make a horizontal line and the zirconium (Zr)-89 incident energy and reaction cross-sectional area curve at the intersection point, draw a vertical line from the two intersection points to the X-axis , get the two irradiation energy values (E1, E2)
S13‧‧‧ The two illumination energy values (E1, E2) are respectively substituted into the function formulas of the incident energy and the reaction cross-sectional area curve, and the integral can obtain a set of curves between the two illumination energy values (E1, E2). Corresponding reaction cross-sectional area
S14‧‧‧ Repeat steps S12~S13, select another target (Barn) value, and generate a set of reaction cross-sectional areas corresponding to each curve
Does S15‧‧‧ generate another set of reaction cross-sectional areas?
S16‧‧‧Compare the growth and cross-sectional area of each group; select the maximum zirconium (Zr)-89 reaction cross-sectional area Aa-Zr89 and the tolerable zirconium (Zr)-88 average reaction cross-sectional area Bb-Zr88, and reverse the The two intersection points corresponding to the cross-sectional area of the reaction group are taken as the optimal irradiation energy enthalpy (Ea, Eb), and the interval irradiation energy absorption range ΔEi of the two intersection points can be calculated.
S17‧‧‧Draw a 數(Y)-89(p,n) zirconium (Zr)-89 target thickness and incident energy attenuation function diagram, select the attenuation curve corresponding to the optimal energy Eb, and illuminate the energy absorption according to the interval The range ΔEi draws the lowest attenuation position for the best plating thickness (d) value

第1圖係本發明的主要方法流程圖。Figure 1 is a flow chart of the main method of the present invention.

第2圖係本發明的釔(Y)-89(p,n)鋯(Zr)-89及相關核種入射能量與反應截面積函數圖。Fig. 2 is a graph showing the incident energy and reaction cross-sectional area of ytterbium (Y)-89(p,n) zirconium (Zr)-89 and related nucleus of the present invention.

第3圖係於第2圖中取一靶(Barn)值而 得到一組相對照射能量值的對應標識圖。Figure 3 is a diagram showing the corresponding identification of a set of relative illumination energy values by taking a target (Barn) value in Figure 2.

第4圖係於第2圖中取另一靶(Barn)值而 得到另一組相對照射能量值的對應標識圖。Fig. 4 is a diagram showing the corresponding identification value of another set of relative irradiation energy values by taking another target (Barn) value in Fig. 2.

第5圖係本發明的釔(Y)-89(p,n)鋯(Zr)-89靶厚度與入射能量衰減函數圖。Figure 5 is a graph of the yttrium (Y)-89 (p,n) zirconium (Zr)-89 target thickness and incident energy decay function of the present invention.

S11‧‧‧畫出釔(Y)-89(p,n)鋯(Zr)-89及相關核種入射能量與反應截面積函數圖 S11‧‧‧Draw a graph of incident energy and reaction cross-sectional area of yttrium (Y)-89(p,n) zirconium (Zr)-89 and related nuclear species

S12‧‧‧選取一靶(Barn)值,作一水平線與該鋯(Zr)-89入射能量與反應截面積曲線交於二交會點,由該二交會點分別畫一垂直線交於X軸,得到二照射能量值(E1,E2) S12‧‧‧ Select a target (Barn) value, make a horizontal line and the zirconium (Zr)-89 incident energy and reaction cross-sectional area curve at the intersection point, draw a vertical line from the two intersection points to the X-axis , get the two irradiation energy values (E1, E2)

S13‧‧‧將上述二照射能量值(E1,E2)分別代入各入射能量與反應截面積曲線的函數公式,積分可得到一組各曲線於該二照射能量值(E1,E2)之間所對應的反應截面積 S13‧‧‧Substituting the above two illumination energy values (E1, E2) into a function formula of each incident energy and the reaction cross-sectional area curve, the integral can obtain a set of curves between the two illumination energy values (E1, E2) Corresponding reaction cross-sectional area

S14‧‧‧重複S12~S13步驟,另選一靶(Barn)值,並產生一組對應各曲線的反應截面積 S14‧‧‧ Repeat steps S12~S13, select another target (Barn) value, and generate a set of reaction cross-sectional areas corresponding to each curve

S15‧‧‧是否產生另一組反應截面積? Does S15‧‧‧ generate another set of reaction cross-sectional areas?

S16‧‧‧比較各組反應截面積的消長;選取最大鋯(Zr)-89反應截面積Aa- Zr89與可忍受之鋯(Zr)-88平均反應截面積Bb-Zr88,並反推取得該組反應截面積相對應的二交會點作為最佳照射能量數值(Ea,Eb),並可計算二交會點的區間照射能量吸收範圍ΔEi S16‧‧‧Compare the growth and cross-sectional area of each group; select the maximum zirconium (Zr)-89 reaction cross-sectional area Aa- Zr89 and the tolerable zirconium (Zr)-88 average reaction cross-sectional area Bb-Zr88, and reversely obtain the two intersection points corresponding to the cross-sectional area of the reaction as the optimal irradiation energy value (Ea, Eb), and can calculate two Intersection illumination energy absorption range ΔEi

S17‧‧‧畫出釔(Y)-89(p,n)鋯(Zr)-89靶厚度與入射能量衰減函數圖,選取對應該最佳能量Eb的衰減曲線,並依該區間照射能量吸收範圍ΔEi畫出最低衰減位置以得到最佳電鍍厚度(d)值 S17‧‧‧Draw a graph of the yttrium (Y)-89(p,n) zirconium (Zr)-89 target thickness and incident energy attenuation function, select the attenuation curve corresponding to the optimal energy Eb, and illuminate the energy absorption according to the interval The range ΔEi draws the lowest attenuation position for the best plating thickness (d) value

Claims (2)

一種高純度鋯(Zr)-89產製物理照射量測方法,包括:    一S11步驟,係依原子物理特性,分別畫出釔(Y)-89(p,n)鋯(Zr)-89及相關鋯(Zr)-88、鋯(Zr)-87等核種的入射能量與反應截面積函數圖,同時計算出各曲線的函數方程式;   一S12步驟,係選取一反應截面積的靶(Barn)值,於該靶(Barn)值作一水平線,該水平線交於放射性核種鋯(Zr)-89入射能量與反應截面積曲線上二交會點,由該二交會點分別畫一垂直線交於X軸,得到該二交會點的照射能量值(E1,E2);   一S13步驟,係將上述二照射能量值(E1,E2)分別代入各入射能量與反應截面積曲線的函數公式,積分可得到一組各曲線於該二照射能量值(E1,E2)之間所對應的反應截面積;   一S14步驟,重複S12~S13步驟,另選一靶(Barn)值,並產生一組對應各曲線的反應截面積;   一S15判斷步驟,係確認可供參考反應截面積的組數是否已達滿足數量,若為否定,則再執行該「重複S12~S13步驟,另選一靶(Barn)值,並產生一組對應各曲線的反應截面積」步驟,若為肯定,則執行下一步驟;   一S16步驟,係比較各組截面積,選取具有最大鋯(Zr)-89反應截面積Aa-Zr89與可忍受(盡可能小)之鋯(Zr)-88平均反應截面積Bb-Zr88的一組數據,並反推取得相對應的二交會點作為照射能量數值(Ea,Eb),然後,可計算出二交會點的區間照射能量吸收範圍 ΔEi(MeV)=Eb(MeV)-Ea(MeV);   一S17步驟,係依原子物理特性畫出該釔(Y)-89(p,n)鋯(Zr)-89於不同入射能量相對於不同靶厚度的衰減曲線,選取對應該最佳能量Eb的衰減曲線,依該區間照射能量吸收範圍ΔEi可於Ea處畫一水平線與該最佳能量Eb衰減曲線相交於一下交會點,並於該下交會點畫一垂直線交於X軸,可取得最佳電鍍厚度(d)值。A method for measuring physical irradiation of high-purity zirconium (Zr)-89, comprising: an S11 step, according to atomic physical properties, drawing yttrium (Y)-89 (p, n) zirconium (Zr)-89 and Correlation diagram of the incident energy and reaction cross-sectional area of the nuclear species such as zirconium (Zr)-88 and zirconium (Zr)-87, and calculate the functional equation of each curve. One step S12 is to select a target with a cross-sectional area (Barn). The value is a horizontal line at the target (Barn) value, and the horizontal line is intersected with the intersection point of the radioactive nucleus zirconium (Zr)-89 incident energy and the reaction cross-sectional area curve, and a vertical line is drawn from the two intersection points to the X. The axis obtains the irradiation energy value (E1, E2) of the two intersection points; and in the step S13, the two irradiation energy values (E1, E2) are respectively substituted into a function formula of each incident energy and the reaction sectional area curve, and the integral is obtained. a set of reaction curves corresponding to the two irradiation energy values (E1, E2); an S14 step, repeating steps S12 to S13, selecting a target (Barn) value, and generating a set of corresponding curves Reaction cross-sectional area; an S15 judgment step, confirming the group available for reference reaction cross-sectional area Whether the quantity has been met, if it is negative, then execute the step of “repeat S12~S13, select another target (Barn) value, and generate a set of reaction cross-sectional areas corresponding to each curve”. If yes, execute The next step; an S16 step, comparing the cross-sectional areas of each group, selecting the cross-sectional area Bb of the zirconium (Zr)-88 with the largest zirconium (Zr)-89 reaction cross-sectional area Aa-Zr89 and the tolerable (as small as possible) a set of data of -Zr88, and reversely obtain the corresponding two intersection points as the irradiation energy value (Ea, Eb), and then calculate the interval of the second intersection point of the irradiation energy absorption range ΔEi(MeV)=Eb(MeV) -Ea(MeV); A step S17, based on the atomic physical properties, draws the attenuation curve of the ytterbium (Y)-89(p,n) zirconium (Zr)-89 at different incident energies with respect to different target thicknesses. The attenuation curve of the best energy Eb should be based on the energy absorption range ΔEi of the interval, and a horizontal line can be drawn at Ea and the attenuation curve of the best energy Eb intersects at the intersection point, and a vertical line is drawn at the lower intersection point. The optimum plating thickness (d) value can be obtained with the X axis. 根據第1項所述之高純度鋯(Zr)-89產製物理照射量測方法,其中靶(Barn)值係限制於0.5至1之間。The high-purity zirconium (Zr)-89 according to Item 1 is a physical irradiation measuring method in which a target (Barn) value is limited to between 0.5 and 1.
TW104127063A 2015-09-10 2015-09-10 Method of measurement of physical irradiation for high purity zirconium-89 product TWI591648B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104127063A TWI591648B (en) 2015-09-10 2015-09-10 Method of measurement of physical irradiation for high purity zirconium-89 product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104127063A TWI591648B (en) 2015-09-10 2015-09-10 Method of measurement of physical irradiation for high purity zirconium-89 product

Publications (2)

Publication Number Publication Date
TW201711053A true TW201711053A (en) 2017-03-16
TWI591648B TWI591648B (en) 2017-07-11

Family

ID=58774323

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104127063A TWI591648B (en) 2015-09-10 2015-09-10 Method of measurement of physical irradiation for high purity zirconium-89 product

Country Status (1)

Country Link
TW (1) TWI591648B (en)

Also Published As

Publication number Publication date
TWI591648B (en) 2017-07-11

Similar Documents

Publication Publication Date Title
Ledingham et al. Towards laser driven hadron cancer radiotherapy: A review of progress
Shrivastava et al. Role of the cluster structure of 7Li in the dynamics of fragment capture
Tárkányi et al. Recommended nuclear data for medical radioisotope production: diagnostic gamma emitters
Grevillot et al. Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4
Barberet et al. Monte-Carlo dosimetry on a realistic cell monolayer geometry exposed to alpha particles
CN104043203B (en) The method setting up irradiation source model based on clinac irradiation beam feature
BR112012019102B1 (en) method and device for making a first radioactive isotope and a second radioactive isotope
Belogianni et al. Observation of a soft photon signal in excess of QED expectations in pp interactions
Alabyad et al. Experimental measurements and theoretical calculations for proton, deuteron and α-particle induced nuclear reactions on calcium: special relevance to the production of 43, 44 Sc
Khandaker et al. Investigations of the natTi (p, x) 43, 44m, 44g, 46, 47, 48Sc, 48V nuclear processes up to 40 MeV
TW201711053A (en) Method of measurement of physical irradiation for high purity zirconium-89 product obtaining an optimum plating thickness value by plotting a minimum attenuation position according to an interval irradiation power absorption range
Biedroń et al. Rapidity-dependent spectra from a single-freeze-out model of relativistic heavy-ion collisions
Tajiri et al. Measurement of double differential neutron yields from thick carbon target irradiated by 5-MeV and 9-MeV deuterons
Tárkányi et al. Activation cross sections of α-particle induced nuclear reactions on hafnium and deuteron induced nuclear reaction on tantalum: Production of 178W/178mTa generator
Zaitsev et al. Dissociation of relativistic 10 B nuclei in nuclear track emulsion
Daraban et al. Study of the excitation function for the deuteron induced reaction on 64Ni (d, 2n) for the production of the medical radioisotope 64Cu
US8239159B2 (en) Method used to yield irradiation product with minimal impurity for solid target for gallium (Ga)-68/germanium (Ge)-68 generator
Saidi et al. Investigation of palladium-103 production and IR07-103Pd brachytherapy seed preparation
Morató et al. Experimental validation of neutron activation simulation of a varian medical linear accelerator
Takacs et al. Cross-sections for alpha particle produced radionuclides on natural silver
TWI408700B (en) A method for parameter evaluation of solid target process of gallium-68 and germanium-68 generator
Malinen et al. Radical formation in pyrimidine bases after X, proton and α-particle irradiation
Nakayama et al. Application of advanced nuclear emulsion technique to fusion neutron diagnostics
Assalmi et al. Effect of the Gaussian distribution parameters of the electron beam generated at the target on the simulated x-ray dose
Mastroserio Search for a Λnn bound state in Pb-Pb collisions with ALICE at the LHC