TW201711032A - Memory device for resistance drift recovery and operating method thereof - Google Patents

Memory device for resistance drift recovery and operating method thereof Download PDF

Info

Publication number
TW201711032A
TW201711032A TW104136543A TW104136543A TW201711032A TW 201711032 A TW201711032 A TW 201711032A TW 104136543 A TW104136543 A TW 104136543A TW 104136543 A TW104136543 A TW 104136543A TW 201711032 A TW201711032 A TW 201711032A
Authority
TW
Taiwan
Prior art keywords
memory cells
resistance value
resistance
pulse
range
Prior art date
Application number
TW104136543A
Other languages
Chinese (zh)
Other versions
TWI581265B (en
Inventor
柯文昇
蘇資翔
吳昭誼
李祥邦
張孟凡
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Publication of TW201711032A publication Critical patent/TW201711032A/en
Application granted granted Critical
Publication of TWI581265B publication Critical patent/TWI581265B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5678Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using amorphous/crystalline phase transition storage elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0033Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0092Write characterized by the shape, e.g. form, length, amplitude of the write pulse

Abstract

A method is provided for operating a memory device including an array of memory cells including programmable resistive memory elements. Memory cells in the array are programmed to store data by applying program pulses to the memory cells to establish resistance levels within a number N of specified ranges of resistance, where each of the specified ranges corresponds to a particular data value. A drift recovery process is executed to the memory cells, including applying a recovery pulse having a pulse shape to a set of programmed memory cells, where memory cells in the set have resistance levels within two or more of the specified resistance ranges.

Description

電阻飄移復原的記憶裝置及其操作方法Memory device for resisting drift recovery and operation method thereof

本發明係關於基於可程式化電阻性記憶材料的高密度記憶體裝置及其操作方法。The present invention relates to a high density memory device based on a programmable resistive memory material and a method of operating the same.

在相變記憶體(Phase Change Memory, PCM)中,各記憶胞包括一相變記憶元件。相變記憶元件係由相變材料所組成,其在結晶態(低電阻值)和非結晶態(高電阻值)間具有高電阻值對比。相變材料可包括合金材料,例如鍺(Ge)、銻(Sb)、碲(Te)、鎵(Ga)、銦(In)、銀(Ag)、硒(Se)、鉈(TI)、鉍(Bi)、錫(Sn)、銅(Cu)、鈀(Pd)、鉛(Pb)、硫(S)和金(Au)。In Phase Change Memory (PCM), each memory cell includes a phase change memory element. The phase change memory element is composed of a phase change material having a high resistance value comparison between a crystalline state (low resistance value) and an amorphous state (high resistance value). The phase change material may include an alloy material such as germanium (Ge), antimony (Sb), tellurium (Te), gallium (Ga), indium (In), silver (Ag), selenium (Se), germanium (TI), germanium. (Bi), tin (Sn), copper (Cu), palladium (Pd), lead (Pb), sulfur (S), and gold (Au).

在相變記憶元件的操作上,電流脈衝通過相變記憶胞可設定或重設相變記憶元件的電阻狀態。為了將記憶元件重設為非晶態,可利用高振幅、短時間的電流脈衝來將記憶元件的主動區加熱至一熔點溫度,接著快速地使其冷卻以固化在非晶態。為了將記憶元件設定為結晶態,可利用中等振幅的電流脈衝來使其加熱至一結晶溫度,並藉由長時間冷卻來讓主動區固化在結晶狀態。為了讀取記憶元件的狀態,可將小電壓施加至所選的記憶胞,並感測電流結果。In the operation of the phase change memory element, the current pulse can set or reset the resistance state of the phase change memory element through the phase change memory cell. In order to reset the memory element to an amorphous state, a high amplitude, short time current pulse can be utilized to heat the active region of the memory element to a melting point temperature, which is then rapidly cooled to solidify in an amorphous state. In order to set the memory element to a crystalline state, a medium amplitude current pulse can be used to heat it to a crystallization temperature, and the active region is solidified in a crystalline state by cooling for a long time. To read the state of the memory element, a small voltage can be applied to the selected memory cell and the current result sensed.

電阻值飄移是PCM中著名的現象。記憶胞的電阻值會隨著時間增加,並遵循冪次關係: 其中R0 為初始時間t0 時的初始電阻值,R(t)為時間t > t0 時的電阻值,而γ為電阻飄移係數。 The drift of the resistance value is a well-known phenomenon in PCM. The resistance value of the memory cell increases with time and follows the power relationship: where R 0 is the initial resistance value at the initial time t 0 , R(t) is the resistance value at time t > t 0 , and γ is the resistance Drift coefficient.

為了復原PCM記憶裝置的電阻飄移,一種方法係利用類動態隨機存取記憶體(Dynamic Random-Access Memory, DRAM)刷新方案來再度程式化多層單元(Multiple Levels of Cells, MLC) PCM記憶胞的多個狀態。在DRAM記憶胞中,儲存在儲存電容中的電荷會逐漸地透過存取電晶體散失。因此,為了維持資料的完整性,儲存在DRAM記憶胞中的資料值必須週期性地讀出,並在所存的電荷衰減至無法分辨的位準之前,再次將其儲存至其個別的完整電壓位準。DRAM刷新需針對不同邏輯位準進行不同的動作,而所需的動作次數係等同邏輯位準的數量。In order to restore the resistance drift of the PCM memory device, one method uses a Dynamic Random-Access Memory (DRAM) refresh scheme to reprogram multiple Multiple Levels of Cells (MLC) PCM memory cells. Status. In DRAM memory cells, the charge stored in the storage capacitor is gradually dissipated through the access transistor. Therefore, in order to maintain the integrity of the data, the data values stored in the DRAM memory cells must be periodically read out and stored again to their individual complete voltage levels before the stored charge decays to an indistinguishable level. quasi. DRAM refresh requires different actions for different logic levels, and the number of actions required is equal to the number of logic levels.

然而,利用類DRAM刷新方案來復原PCM記憶裝置中的電阻值飄移不但耗時且會消耗耐受度,尤其是針對MLC PCM裝置。舉例來說,針對一256兆位元(Mega-Bit, Mb)的PCM晶片,整個晶片的估計刷新時間可計算如下: 其中係忽略對MLC記憶胞程式化的驗證時間。因此,單是刷新時間(例如:11.5秒)就大約佔了整個刷新間隔的13.4%(例如86秒),刷新間隔係設為到產生錯誤的時間。However, using a DRAM-like refresh scheme to recover the resistance value drift in a PCM memory device is time consuming and consumes tolerance, especially for MLC PCM devices. For example, for a 256 megabit (Mega-Bit, Mb) PCM wafer, the estimated refresh time for the entire wafer can be calculated as follows: where the verification time for MLC memory cell programming is ignored. Therefore, the refresh time alone (for example, 11.5 seconds) accounts for approximately 13.4% of the entire refresh interval (for example, 86 seconds), and the refresh interval is set to the time when the error is generated.

此外,利用類DRAM刷新,耐受度會因週期的刷新而減損。對於單層單元(Single Level Cell, SLC)記憶胞,10年內耗損的總耐受量可估計如下: In addition, with DRAM-like refresh, the tolerance is degraded by the periodic refresh. For single-level cell (SLC) memory cells, the total tolerated loss in 10 years can be estimated as follows:

對於MLC記憶胞,10年內耗損的總耐受量可估計如下: For MLC memory cells, the total tolerated dose in 10 years can be estimated as follows:

類DRAM刷新的另一個缺點,在於無法更正錯誤的記憶胞電阻值位準。若一記憶胞飄移至一錯誤狀態,類DRAM刷新只會單純地將記憶胞再度程式化至錯誤狀態。故保守起見,類DRAM刷新的刷新間隔需比產生錯誤的時間(例如86秒)來的短,如第1B圖所示,期間內係發生第一錯誤狀態。因此,較短的刷新間隔會同時降低性能並增加耐受性的損失。Another disadvantage of DRAM-like refresh is the inability to correct the wrong memory cell resistance level. If a memory cell drifts to an error state, the DRAM-like refresh will simply reprogram the memory cell to an error state. Therefore, for the sake of conservatism, the refresh interval of the DRAM-like refresh is shorter than the time when the error is generated (for example, 86 seconds). As shown in FIG. 1B, the first error state occurs during the period. Therefore, a shorter refresh interval will simultaneously reduce performance and increase the loss of tolerance.

因此,有需要提供可以復原電阻值飄移而不會有類DRAM刷新所造成的性能及耐受性損失的MLC PCM裝置。Therefore, there is a need to provide an MLC PCM device that can restore the resistance value drift without the performance and tolerance loss caused by DRAM-like refresh.

本發明描述一種針對具有多位準記憶胞的相變記憶體的電阻值飄移復原處理。該處理相較於類DRAM刷新方案可減少損耗、延遲以及電源消耗。該處理並不像類DRAM刷新方案一般,需要針對個別電阻值位準進行不同的復原處理。如本文所述,施加至程式化記憶胞的至少一復原脈衝可以獨立於程式化記憶胞的資料值。The present invention describes a resistance value drift recovery process for a phase change memory having a multi-level memory cell. This process reduces losses, delays, and power consumption compared to a DRAM-like refresh scheme. This processing is not like a DRAM-like refresh scheme, and different restoration processing is required for individual resistance value levels. As described herein, at least one reset pulse applied to the stylized memory cell can be independent of the data value of the stylized memory cell.

一種操作記憶裝置的方法,該記憶裝置包括一記憶胞陣列,該記憶胞陣列包括多個可程式化電阻記憶元件。透過施加多個程式化脈衝至記憶胞,以於N個電阻值指定範圍中建立電阻值位準,藉此程式化陣列中的該些記憶胞以儲存資料,其中各電阻值指定範圍係對應於一特定資料值。對陣列中的該些記憶胞執行電阻值飄移復原處理,其包括:施加具有一脈衝波形的復原脈衝至一程式化記憶胞組,其中該组程式化記憶胞中的記憶胞被施加具有該脈衝波形的復原脈衝,使其在二或多個電阻值指定範圍中具有電阻值位準。電阻值飄移復原處理可回應於外部指令而中斷。A method of operating a memory device, the memory device comprising an array of memory cells, the memory cell array comprising a plurality of programmable resistive memory elements. By applying a plurality of stylized pulses to the memory cells, a resistance level is established in a specified range of N resistance values, thereby stabilizing the memory cells in the array to store data, wherein each resistance value specified range corresponds to A specific data value. Performing a resistance value drift recovery process on the memory cells in the array, comprising: applying a recovery pulse having a pulse waveform to a stylized memory cell group, wherein the memory cells in the set of stylized memory cells are applied with the pulse The recovery pulse of the waveform has a resistance level in a specified range of two or more resistance values. The resistance value drift recovery process can be interrupted in response to an external command.

N個指定範圍包括一高電阻值範圍以及一低電阻值範圍,在高電阻值範圍中,記憶胞包括具有一第一體積之非晶態材料的主動區,在低電阻值範圍中,記憶胞包括具有一第二體積之非晶態材料的主動區,第二體積係小於第一體積。脈衝波形係用來使在高電阻值範圍中的記憶胞主動區的溫度高於一熔點,並使得在低電阻值範圍中的記憶胞主動區的溫度低於該熔點。該N個電阻值指定範圍可包括一或多個中間電阻值範圍,在該一或多個中間電阻值範圍中,記憶胞包括具有體積介於第一體積和第二體積之間之非晶態材料的主動區,該一或多個中間電阻值範圍係介於高電阻值範圍和低電阻值範圍之間。數字N可大於2,且程式化記憶胞組中的該些記憶胞在該N個電阻值指定範圍中皆具有電阻值位準。The N specified ranges include a high resistance range and a low resistance range. In the high resistance range, the memory cell includes an active region having a first volume of amorphous material, and in the low resistance range, the memory cell An active region having a second volume of amorphous material is included, the second volume being less than the first volume. The pulse waveform is used to bring the temperature of the active region of the memory cell in the range of high resistance values above a melting point and to cause the temperature of the active region of the memory cell in the range of low resistance values to be lower than the melting point. The N resistance value specification ranges may include one or more intermediate resistance value ranges, and in the one or more intermediate resistance value ranges, the memory cell includes an amorphous state having a volume between the first volume and the second volume The active region of the material, the one or more intermediate resistance values ranging between a range of high resistance values and a range of low resistance values. The number N can be greater than 2, and the memory cells in the stylized memory cell group have resistance value levels in the specified range of the N resistance values.

該方法可包括對記憶胞組中的記憶胞施加一復原脈衝組,其包括具有第一脈衝波形的第一復原脈衝以及具有第二脈衝波形的第二復原脈衝,第二脈衝波形對應記憶胞組中記憶胞的決定電阻值位準。第一脈衝波形可以和第二脈衝波形相同,或者與其相異。The method can include applying a set of recovery pulses to the memory cells in the memory cell group, including a first restoration pulse having a first pulse waveform and a second restoration pulse having a second pulse waveform corresponding to the memory cell group The middle memory cell determines the resistance level. The first pulse waveform may be the same as or different from the second pulse waveform.

該方法可包括讀取記憶胞組中的記憶胞以決定記憶胞組中記憶胞的電阻值位準,並用來對記憶胞組中位於決定之電阻值位準的記憶胞施加復原脈衝,復原脈衝之脈衝波形各自對應於決定之電阻值位準。該方法可包括讀取記憶胞組中的記憶胞以決定記憶胞組中記憶胞的電阻值位準,並用來對記憶胞組中位於二或多個決定之電阻值位準的記憶胞施加具有相同脈衝波形的復原脈衝。該方法可包括對記憶胞組中位在多個電阻值位準的記憶胞施加具有相同脈衝波形的復原脈衝,而不用先讀取記憶胞組中的記憶胞以決定記憶胞組中記憶胞的電阻值位準。The method may include reading a memory cell in the memory cell group to determine a resistance level of the memory cell in the memory cell group, and applying a recovery pulse to the memory cell at the determined resistance value level in the memory cell group, the recovery pulse The pulse waveforms each correspond to a determined resistance value level. The method can include reading a memory cell in the memory cell group to determine a resistance level of the memory cell in the memory cell group, and applying the memory cell in the memory cell group at two or more determined resistance value levels A recovery pulse of the same pulse waveform. The method may include applying a recovery pulse having the same pulse waveform to a memory cell having a plurality of resistance values in the memory cell group, without first reading the memory cell in the memory cell group to determine the memory cell in the memory cell group. The resistance value level.

本文亦描述依據該方法所提供之一種記憶裝置。A memory device provided in accordance with the method is also described herein.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

本技術的實施例細節描述係搭配圖示說明。可理解本技術並不限於具體揭露的結構實施例及方法,其亦可利用其他特徵、元件、方法及實施例來實施。所載之較佳實施例係被用來說明本技術,但不用以限制申請專利範圍所定義之範疇。本領域具有通常知識者將可瞭解以下敘述的多種等效變形。該些實施例中相似的元件係使用相同的元件標號。Detailed descriptions of embodiments of the present technology are provided with illustrations. It is understood that the present technology is not limited to the specific disclosed embodiments and methods, and may be implemented by other features, elements, methods and embodiments. The preferred embodiments are described to illustrate the technology, but are not intended to limit the scope of the scope of the claims. A variety of equivalent variations described below will be apparent to those of ordinary skill in the art. Similar elements in these embodiments use the same element numbers.

第1A圖繪示多層單元(Multi-Level Cell, MLC)記憶胞在一範圍內的電阻飄移係數實驗結果。第1B圖繪示針對PCM記憶胞的4個電阻值目標(例如,100k歐姆、200k歐姆、400k歐姆、800k歐姆,其中k歐姆係表示千歐姆)在電阻飄移後的電阻值分布。一電阻值目標(例如100k歐姆、200k歐姆、400k歐姆、800k歐姆)的電阻值分布隨時間變化係分別落在下限(例如110、120、130以及140)和上限(例如115、125、135以及145)之間。在時間=1秒,約20%的電阻值邊緣係存在於鄰近的電阻值分布之間。當記憶胞的電阻值隨時間增加,各電阻值分布變寬,而相鄰電阻值分布間的電阻值邊緣減少。Figure 1A shows the experimental results of the resistance drift coefficient of a multi-level cell (MLC) memory cell in a range. FIG. 1B illustrates the distribution of resistance values after resistance drift for four resistance value targets (eg, 100 k ohms, 200 k ohms, 400 k ohms, 800 k ohms, where k ohms represent kilo ohms) for PCM memory cells. The resistance value distribution of a resistance value target (eg, 100k ohm, 200k ohm, 400k ohm, 800k ohm) varies with time at the lower limit (eg, 110, 120, 130, and 140) and the upper limit (eg, 115, 125, 135, and 145) between. At time = 1 second, approximately 20% of the edge of the resistance value exists between adjacent resistance value distributions. When the resistance value of the memory cell increases with time, the distribution of the resistance values becomes wider, and the edge of the resistance value between adjacent resistance value distributions decreases.

各電阻值分布代表MLC PCM記憶胞的一個邏輯位準。如果電阻值分布夠寬,可利用一動態參考來區分代表MLC PCM記憶胞之兩邏輯位準的兩個電阻值分布。在記憶胞生命週期內,在記憶胞的兩電阻值分布之間放置動態參考的難度會隨著電阻值分布的加寬而提高,因為兩電阻值分布間的電阻值邊緣會在記憶胞的生命週期內減少。如第1B圖所示的例子,在產生錯誤的時間=86秒時,針對電阻值目標800k歐姆的電阻值分布下限140和針對電阻值目標400k歐姆的電阻值分布上限135重疊。如此一來,將不可能區分電阻值目標800k歐姆及400k歐姆之電阻值分布所代表的邏輯位準。Each resistance value distribution represents a logical level of the MLC PCM memory cell. If the resistance value distribution is sufficiently wide, a dynamic reference can be utilized to distinguish between the two resistance value distributions representing the two logic levels of the MLC PCM memory cell. In the memory cell life cycle, the difficulty of placing a dynamic reference between the two resistance values of the memory cell increases with the widening of the resistance value distribution, because the edge of the resistance value between the two resistance values will be in the life of the memory cell. Reduced during the cycle. As in the example shown in FIG. 1B, at the time when the error is generated = 86 seconds, the lower limit of the resistance value distribution 140 for the resistance value target 800 k ohm and the upper limit 135 of the resistance value distribution for the resistance value target 400 k ohm are overlapped. As a result, it is impossible to distinguish the logic level represented by the resistance value distribution of the resistance value target of 800 k ohms and 400 k ohms.

類似地,在錯誤發生的時間,針對電阻值目標400k歐姆的電阻值分布下限130和針對電阻值目標200k歐姆的電阻值分布上限125重疊。如此一來,將不可能區分電阻值目標400k歐姆及200k歐姆之電阻值分布所代表的邏輯位準。在錯誤發生的時間,針對電阻值目標200k歐姆的電阻值分布下限120和針對電阻值目標100k歐姆的電阻值分布上限115重疊。如此一來,將不可能區分電阻值目標200k歐姆及100k歐姆之電阻值分布所代表的邏輯位準。Similarly, at the time when the error occurs, the lower limit of resistance value distribution 130 for the resistance value target 400 k ohm and the upper limit 125 of the resistance value distribution for the resistance value target 200 k ohm overlap. As a result, it is impossible to distinguish the logic level represented by the resistance value distribution of the resistance value target 400k ohm and 200k ohm. At the time when the error occurs, the lower limit of the resistance value distribution 120 for the resistance value target 200 k ohm and the upper limit 115 of the resistance value distribution for the resistance value target 100 k ohm overlap. As a result, it is impossible to distinguish the logic level represented by the resistance value distribution of the resistance value target 200k ohm and 100k ohm.

第2A、2B、2C、2D及2E圖繪示電阻飄移下的兩狀態。縱軸表示比率R(t)/R0 ,其中R0 為初始時間t0 時的初始電阻值,R(t)為時間t > t0時的電阻值。橫軸表示電阻值飄移之時間,其刻度為log。第2A、2B、2C、2D及2E圖繪示在850 C、1250 C、1500 C、1800 C及2000 C的韌化(annealing)溫度下,針對設定狀態所計算並量測的資料。Figures 2A, 2B, 2C, 2D, and 2E show two states under resistance drift. The vertical axis represents the ratio R(t)/R 0 , where R 0 is the initial resistance value at the initial time t 0 , and R(t) is the resistance value at the time t > t0. The horizontal axis represents the time when the resistance value drifts, and its scale is log. 2A, 2B, 2C, 2D, and 2E are plotted and measured for the set state at an annealing temperature of 85 0 C, 125 0 C, 150 0 C, 180 0 C, and 200 0 C. data of.

如這些圖所示,電阻值飄移包括一飄移階段以及隨後的一衰減階段。最大電阻值Rmax 及對應的時間tmax 係出現在飄移階段與衰減階段之間的轉換處。如第2A及2B圖所示,在相對低溫時(例如850 C及1250 C),電阻值飄移係由飄移階段所主導。舉例來說,如第2A圖所示,在850 C時,電阻值飄移係由飄移階段所主導。如第2B圖所示,在1250 C,衰減階段大約起始於時間=106.7 秒。As shown in these figures, the resistance value drift includes a drift phase and a subsequent decay phase. The maximum resistance value R max and the corresponding time t max appear at the transition between the drift phase and the decay phase. As shown in Figures 2A and 2B, at relatively low temperatures (e.g., 85 0 C and 125 0 C), the resistance drift is dominated by the drift phase. For example, as shown in Figure 2A, at 85 0 C, the resistance value drift based dominated by phase drift. As shown in Figure 2B, at 125 0 C, the decay phase begins approximately at time = 10 6.7 seconds.

如第2C及2D圖所示,在中間溫度時(例如1500 C及1800 C),飄移階段結束且衰減階段始於時間tmax ,而最大電阻值Rmax 係發生在時間tmax 。當溫度增加,tmax 縮短。舉例來說,如第2C圖所示,在1500 C時,飄移階段結束而衰減階段約起始於時間=105.3 秒。如第2D圖所示,在1800 C時,飄移階段結束而衰減階段約起始於時間=103.8 秒。如第2E圖所示,在2000 C時,飄移階段結束而衰減階段約起始於時間=103.2 秒,因而衰減階段主導了電阻飄移。As shown in Figures 2C and 2D, at intermediate temperatures (e.g., 150 0 C and 180 0 C), the drift phase ends and the decay phase begins at time tmax , while the maximum resistance value Rmax occurs at time tmax . When the temperature increases, t max is shortened. For example, as shown on FIG. 2C, at 150 0 C, and attenuated phase drift phase ends at time = 10 starting from about 5.3 seconds. As shown in FIG. 2D, at 180 0 C, and attenuated phase drift phase ends at time = 10 starting from about 3.8 seconds. As shown on FIG. 2E, at 200 0 C, and attenuated phase drift phase ends at time = 10 starting from about 3.2 seconds, and thus dominate the decay phase drift resistance.

第3圖繪示一例示的流程圖300,用以對記憶裝置中記憶胞陣列的一或多組記憶胞進行電阻飄移復原處理。該陣列可包括多個記憶胞區塊,各區塊可包括多個記憶胞頁,而一區塊中的各個頁可包括多個記憶胞。此處所使用的一組記憶胞可以是一區塊的記憶胞、多區塊的記憶胞、一區塊中一頁的記憶胞、一區塊中多頁的記憶胞、二或多個區塊中的多頁記憶胞或其組合。FIG. 3 illustrates an exemplary flow chart 300 for performing a resistance drift recovery process on one or more sets of memory cells of the memory cell array in the memory device. The array can include a plurality of memory cells, each of the blocks can include a plurality of memory cell pages, and each page in a block can include a plurality of memory cells. A group of memory cells used herein may be a block of memory cells, a multi-block memory cell, a page of memory cells in a block, a multi-page memory cell in a block, or two or more blocks. Multi-page memory cells or combinations thereof.

在步驟310,透過施加多個程式化脈衝至記憶胞,以於N個電阻值指定範圍中建立多個電阻值位準,藉此程式化陣列中的記憶胞以儲存資料,其中,各指定範圍係對應一特定資料值。N個指定範圍包括一高電阻值範圍以及一低電阻值範圍,在高電阻值範圍中,記憶胞包括具有一第一體積之非晶態材料的主動區,在低電阻值範圍中,記憶胞包括具有一第二體積之非晶態材料的主動區,第二體積係小於第一體積。In step 310, by applying a plurality of stylized pulses to the memory cells, a plurality of resistance value levels are established in the N resistance value specified ranges, thereby stabilizing the memory cells in the array to store data, wherein each specified range Corresponds to a specific data value. The N specified ranges include a high resistance range and a low resistance range. In the high resistance range, the memory cell includes an active region having a first volume of amorphous material, and in the low resistance range, the memory cell An active region having a second volume of amorphous material is included, the second volume being less than the first volume.

該N個指定範圍包括一或多個中間電阻值範圍,在該一或多個中間電阻值範圍中,記憶胞包括具有一體積介於第一體積和第二體積之間之非晶態材料的主動區,其中,該一或多個中間電阻值範圍係介於高電阻值範圍和低電阻值範圍之間。數值N可以大於2,且在一組程式化記憶胞中的記憶胞在該N個指定範圍中皆具有電阻值位準。The N specified ranges include one or more intermediate resistance value ranges, and in the one or more intermediate resistance value ranges, the memory cell includes an amorphous material having a volume between the first volume and the second volume. An active region, wherein the one or more intermediate resistance value ranges are between a high resistance value range and a low resistance value range. The value N can be greater than two, and the memory cells in a set of stylized memory cells have resistance values in the N specified ranges.

在步驟320,決定是否對一或多組的記憶胞觸發電阻飄移復原處理。電阻飄移復原處理可例如被週期性地觸發,舉例來說,可以50秒為週期,或是回應於一事件而被觸發。事件可例如是當記憶裝置從待命模式切換至啟動模式時、當錯誤更正碼(Error Correcting Code, ECC)機制偵測到錯誤時、或是當陣列中至少部分的記憶胞達到指定的飄移電阻閥值時。At step 320, it is determined whether the resistance drift recovery process is triggered for one or more sets of memory cells. The resistance drift recovery process can be triggered, for example, periodically, for example, for a period of 50 seconds, or triggered in response to an event. The event may be, for example, when the memory device switches from the standby mode to the startup mode, when an error is detected by an Error Correcting Code (ECC) mechanism, or when at least a portion of the memory cells in the array reach a specified drift resistance valve When the value is.

當所述的事件發生時,可立即採取電阻飄移復原處理,或者,若有更緊急的工作要在記憶裝置上執行,可將其排程至一稍後的時間,此係由控制記憶體裝置的系統所決定。當電阻飄移復原處理需要在多組的記憶胞上執行,系統可基於資料緊急程度來區分執行的優先次序,例如,對於相較其他組損耗(worn out)較嚴重的記憶胞組,將需要優先進行電阻飄移復原處理。系統亦可基於哪組記憶胞存有較其他組記憶胞重要的資料來區分執行電阻飄移復原處理的優先次序。舉例來說,當系統電源開啟,典型地啟動碼(boot code)會先被存取,因此,電阻飄移復原處理會優先用於啟動碼。When the event occurs, the resistance drift recovery process can be taken immediately, or if more urgent work is to be performed on the memory device, it can be scheduled to a later time, which is controlled by the memory device. The system is determined. When the resistance drift recovery process needs to be performed on multiple sets of memory cells, the system can prioritize execution based on the degree of urgency of the data. For example, for memory cells that are more severe than other groups, the priority will be prioritized. Perform resistance drift recovery processing. The system can also prioritize the implementation of resistance drift recovery processing based on which sets of memory cells have data that are more important than other sets of memory cells. For example, when the system power is turned on, the boot code is typically accessed first, so the resistance drift recovery process is prioritized for the boot code.

若決定對一或多組記憶胞觸發電阻飄移復原處理,接著在步驟330,會決定是否已經自記憶裝置的外部源接收到中斷(interrupt)或暫停(suspend)的指令。若已接收到中斷或暫停的指令,將停止電阻飄移復原處理,並可在之後電阻飄移復原處理再度被觸發時恢復。If one or more sets of memory cells are determined to trigger a resistance drift recovery process, then at step 330, a determination is made as to whether an interrupt or suspend instruction has been received from an external source of the memory device. If an interrupt or pause command has been received, the resistance drift recovery process will be stopped and can be resumed after the resistance drift recovery process is triggered again.

若未收到中斷或暫停的指令,接著在步驟340,對陣列中的記憶胞執行電阻值飄移復原處理。電阻值飄移復原處理包括施加具有一脈衝波形的一復原脈衝至一组被程式化的記憶胞,其中該组程式化記憶胞中的記憶胞在二或多於二個的電阻值指定範圍中具有電阻值位準。該脈衝波形用來使在高電阻值範圍中的記憶胞主動區的溫度高於一熔點,進一步描述請搭配參照第7A、7B及7C圖,並使得在低電阻值範圍中的記憶胞主動區的溫度低於該熔點,進一步描述請搭配參照第6A、6B及6C圖。脈衝波形的進一步描述請搭配參照第12A圖及第12B圖。電阻值飄移復原處理的進一步描述請搭配參照第4圖及第5圖。If an interrupt or pause command has not been received, then at step 340, a resistance value wrap recovery process is performed on the memory cells in the array. The resistance value drift recovery process includes applying a reset pulse having a pulse waveform to a set of programmed memory cells, wherein the memory cells in the set of stylized memory cells have a specified range of two or more resistance values The resistance value level. The pulse waveform is used to make the temperature of the active region of the memory cell in the high resistance range higher than a melting point. For further description, please refer to the figures 7A, 7B and 7C, and make the active region of the memory in the low resistance range. The temperature is lower than the melting point. For further description, please refer to Figures 6A, 6B and 6C. For a further description of the pulse waveform, please refer to Figures 12A and 12B. For a further description of the resistance value drift recovery process, please refer to Figure 4 and Figure 5.

在對一組記憶胞執行電阻值飄移復原處理之後,可對更多組的記憶胞執行電阻值飄移復原處理,直到從記憶裝置的外部源接收到中斷或暫停的指令,或是直到完成對該一或多組記憶胞的電阻值飄移復原處理。After performing a resistance value drift recovery process on a group of memory cells, resistance value drift recovery processing may be performed on more groups of memory cells until an interrupt or pause instruction is received from an external source of the memory device, or until the completion of the The resistance value of one or more sets of memory cells is drifted and restored.

第4圖繪示一例示的流程圖400,用以對記憶胞陣列中的一組記憶胞執行電阻值飄移復原處理,其係對應第3圖中的方塊340。在步驟410,一組程式化記憶胞中的記憶胞係被讀取以決定該組中記憶胞的電阻值位準。舉例來說,所決定的電阻值位準可以是在復原前的電阻範圍內(例如,813、823、833),或是超出感測範圍(例如840)的一上限(例如,5000k歐姆),如第8圖所示。FIG. 4 illustrates an exemplary flow diagram 400 for performing a resistance value drift recovery process on a set of memory cells in a memory cell array, which corresponds to block 340 in FIG. At step 410, the memory cell lines in a set of stylized memory cells are read to determine the resistance level of the memory cells in the group. For example, the determined resistance value level may be within the resistance range before restoration (eg, 813, 823, 833), or an upper limit (eg, 5000 k ohms) beyond the sensing range (eg, 840), As shown in Figure 8.

在步驟420~450,施加復原脈衝至該組中位於決定之電阻值位準的記憶胞,該些復原脈衝個別的脈衝波形係對應於決定之電阻值位準。舉例來說,復原脈衝A、B及(N-2)可分別被施加至在決定之電阻值位準A、位準B及位準(N-2)的記憶胞。復原脈衝(N-1)可被施加至位在決定之電阻值位準(N-1)及N的記憶胞。In steps 420-450, a reset pulse is applied to the memory cells in the set at the determined resistance level, and the individual pulse waveforms of the reset pulses correspond to the determined resistance level. For example, the recovery pulses A, B, and (N-2) can be applied to the memory cells at the determined resistance level A, level B, and level (N-2), respectively. The recovery pulse (N-1) can be applied to the memory cell at the determined resistance level (N-1) and N.

復原脈衝的脈衝波形可變化其對應於決定之電阻值位準的電流振幅以及時間長度。舉例來說,復原脈衝A、B、(N-2)及(N-1)可具有脈衝波形50uA-30ns、80uA-30ns、80uA-50ns以及100uA-50ns,其中uA標示微安培(microampere)而ns表示奈秒(nanosecond)。復原脈衝之脈衝波形的進一步描述請搭配參照第12A圖及第12B圖。The pulse waveform of the recovery pulse can vary its current amplitude and length of time corresponding to the determined resistance value level. For example, the recovery pulses A, B, (N-2), and (N-1) may have pulse waveforms of 50uA-30ns, 80uA-30ns, 80uA-50ns, and 100uA-50ns, where uA is labeled microampere. Ns represents nanosecond. For a further description of the pulse shape of the recovery pulse, please refer to Figures 12A and 12B.

具有相同脈衝波形的復原脈衝可被施加至該組中位在二或多個決定之電阻值位準的記憶胞。舉例來說,如第4圖所示,具有相同脈衝波形的復原脈衝(例如,復原脈衝(N-1))可被施加至位在決定之電阻值位準(N-1)及位準N的記憶胞。舉例來說(未繪於第4圖),有相同脈衝波形的復原脈衝(例如,復原脈衝B)可被施加至位在決定之電阻值位準A及位準B的記憶胞。舉例來說(未繪於第4圖),有相同脈衝波形的復原脈衝(例如,復原脈衝B)可被施加至位在決定之電阻值位準A、位準B及位準(N-1)的記憶胞。因此,對於被施加至程式化記憶胞組的復原脈衝,其不同脈衝波形的數量係少於記憶胞被程式化後所在的電阻值位準數量。A recovery pulse having the same pulse waveform can be applied to the memory cells of the group at two or more determined resistance values. For example, as shown in FIG. 4, a reset pulse having the same pulse waveform (for example, a reset pulse (N-1)) can be applied to the determined resistance level (N-1) and level N. Memory cell. For example (not depicted in Figure 4), a recovery pulse (e.g., recovery pulse B) having the same pulse waveform can be applied to a memory cell at a determined resistance level A and level B. For example (not shown in Figure 4), a recovery pulse (e.g., recovery pulse B) having the same pulse waveform can be applied to the determined resistance level A, level B, and level (N-1). ) memory cells. Therefore, for the reset pulse applied to the stylized memory cell group, the number of different pulse waveforms is less than the number of resistance value levels at which the memory cell is programmed.

第5圖繪示一例示的流程圖500,用以對記憶胞陣列中的一組記憶胞執行電阻值飄移復原處理,其係對應第3圖中的方塊340。在步驟510,具有相同脈衝波形的的復原脈衝,像是80uA-50ns的復原脈衝,可被施加至程式化記憶胞組中位在多個電阻值位準上的記憶胞,而不用先讀取該組中的記憶胞以決定該組中記憶胞的電阻值位準。因此,被施加至程式化記憶胞的至少一復原脈衝可以獨立於程式化記憶胞的資料值,其中,該些資料值係由程式化記憶胞的電阻值位準所表示。將具有相同脈衝波形的復原脈衝施加至位在多個電阻值位準的記憶胞,此種電阻值飄移復原處理的實驗結果說明請搭配參考第8、9、10、11A、11B、11C、11D、11E及11F圖。FIG. 5 is a flow chart 500 showing an example of performing a resistance value drift recovery process on a group of memory cells in a memory cell array, which corresponds to block 340 in FIG. In step 510, a reset pulse having the same pulse waveform, such as a reset pulse of 80uA-50ns, can be applied to a memory cell in a stylized memory cell group at a plurality of resistance value levels without first reading. The memory cells in the group determine the resistance level of the memory cells in the group. Thus, the at least one reset pulse applied to the stylized memory cell can be independent of the data value of the stylized memory cell, wherein the data values are represented by the resistance level of the stylized memory cell. The recovery pulse having the same pulse waveform is applied to the memory cells located at a plurality of resistance value levels. The experimental results of the resistance value drift recovery processing are described with reference to the eighth, 9, 10, 11A, 11B, 11C, and 11D. , 11E and 11F maps.

以下之表1係說明非晶形與晶形GST(GeSbTe)間的熱導率差異,其節錄自Ciocchini, N.; Palumbo, E.; Borghi, M.; Zuliani, P.; Annunziata, R.; Ielmini, D.等人於期刊Electron Devices, IEEE Transactions on , vol.61, no.6, pp.2136,2144, June 2014所發表之名為"Modeling Resistance Instabilities of Set and Reset States in Phase Change Memory With Ge-Rich GeSbTe"之文獻。 Table 1 below shows the difference in thermal conductivity between amorphous and crystalline GST (GeSbTe), excerpted from Ciocchini, N.; Palumbo, E.; Borghi, M.; Zuliani, P.; Annunziata, R.; Ielmini D. et al., "Modeling Resistance Instabilities of Set and Reset States in Phase Change Memory With Ge", published in the journal Electron Devices, IEEE Transactions on , vol.61, no.6, pp.2136, 2144, June 2014 -Rich GeSbTe" literature.

其中面心立方(face-centered cubic, fcc)結晶狀態及六方密堆積(hexagonally close-packed, hcp)結晶狀態係較非晶形GST有更大的熱導率。The face-centered cubic (fcc) crystalline state and the hexagonally close-packed (hcp) crystalline state have greater thermal conductivity than the amorphous GST.

非晶形GST的較低熱導率可幫助捕捉更多的熱能並增加記憶胞溫度。這允許以一較弱的程式化脈衝(例如,80uA/30ns)來熔化一部分的非晶形區域,以達到對非晶形區域作電阻飄移復原。另一方面,對於結晶的GST記憶胞,較高的熱導率使得熱可以透過大體積來消散,而不會使記憶胞溫度高到足以到達臨界(critical)熔點。The lower thermal conductivity of amorphous GST helps capture more heat and increase memory cell temperature. This allows a portion of the amorphous region to be melted with a weaker stylized pulse (e.g., 80 uA / 30 ns) to achieve resistive drift recovery of the amorphous region. On the other hand, for crystalline GST memory cells, the higher thermal conductivity allows heat to be dissipated through large volumes without the memory cell temperature being high enough to reach a critical melting point.

第6A圖繪示記憶胞中包括具有主動區的記憶元件,該主動區中包括結晶態材料。記憶元件可例如包括GST(GeSbTe)材料。記憶胞具有延伸穿過介質612的第一電極611、包括結晶態材料的記憶元件613、以及在記憶元件613上的第二電極614。舉例來說,記憶元件613的高度可以是100nm(奈米)、寬度可以是100nm。第一電極611耦接存取裝置(未繪示)的一端,存取裝置像是二極體或電晶體。第二電極614耦接位元線且可以是位元線的一部分(未繪示)。第一電極611的寬度可小於第二電極614和記憶元件613的寬度,其在相變材料主體和第一電極611之間建立一小對比區域,並在相變材料主體和第二電極614之間建立一相對高比區域,以通過記憶元件613達到具有小電流絕對值的高電流密度。因為這個在第一電極611處的較小對比區域,在操作時,電流密度在鄰近於第一電極611的區域中為最大,造成如第6A圖所示的「蕈狀」主動區域615。該較小對比區域可稱之為加熱器(如620),因為該較小對比區域中的高電流密度可產生高溫。舉例來說,該加熱器的高度約10nm。FIG. 6A illustrates that the memory cell includes a memory element having an active region, and the active region includes a crystalline material. The memory element can, for example, comprise a GST (GeSbTe) material. The memory cell has a first electrode 611 extending through the medium 612, a memory element 613 comprising a crystalline material, and a second electrode 614 on the memory element 613. For example, the memory element 613 may have a height of 100 nm (nano) and a width of 100 nm. The first electrode 611 is coupled to one end of an access device (not shown), and the access device is like a diode or a transistor. The second electrode 614 is coupled to the bit line and may be part of the bit line (not shown). The width of the first electrode 611 may be smaller than the width of the second electrode 614 and the memory element 613, which establishes a small contrast region between the phase change material body and the first electrode 611, and is between the phase change material body and the second electrode 614. A relatively high ratio region is established to achieve a high current density with a small current absolute value through the memory element 613. Because of this small contrast region at the first electrode 611, the current density is maximized in the region adjacent to the first electrode 611 during operation, resulting in a "skull" active region 615 as shown in FIG. 6A. This smaller contrast zone can be referred to as a heater (e.g., 620) because the high current density in the smaller contrast zone can produce high temperatures. For example, the heater has a height of about 10 nm.

在這例子中,具有脈衝波形80uA-30ns的復原脈衝被施加至包括記憶元件的記憶胞,該記憶元件包括具有結晶態材料的主動區。In this example, a reset pulse having a pulse waveform of 80uA-30ns is applied to a memory cell including a memory element including an active region having a crystalline material.

第6B圖繪示通過記憶元件613中心的溫度剖面640,包括通過具有結晶態材料的主動區域615中心,如虛線630所標示。溫度剖面640是基於對包括記憶元件613的記憶胞的熱模擬。如第6B圖所示,在記憶元件613垂直距離開始約10nm處,加熱器620中的溫度停在約3000 K,並在記憶元件613垂直距離約40nm處升至約5000 K,而在記憶元件613垂直距離約100nm處降回至約3000 K。由於熔點650大約是6000 K,且具有80uA-30ns脈衝波形的復原脈衝為弱脈衝,其並不足以讓具有結晶態材料的主動區的溫度升高超過熔點650。Figure 6B illustrates a temperature profile 640 through the center of memory element 613, including through the center of active region 615 having a crystalline material, as indicated by dashed line 630. Temperature profile 640 is based on thermal simulation of memory cells including memory element 613. As shown in FIG. 6B, at about 10 nm from the beginning of the vertical distance of the memory element 613, the temperature in the heater 620 is stopped at about 300 0 K, and rises to about 500 0 K at a vertical distance of the memory element 613 of about 40 nm. The memory element 613 is lowered back to about 300 0 K at a vertical distance of about 100 nm. Since the melting point 650 is approximately 600 0 K, and the recovery pulse having a pulse waveform of 80 uA - 30 ns is a weak pulse, it is not sufficient to raise the temperature of the active region having the crystalline material beyond the melting point 650.

第6C圖為對應於第6A及6B圖之記憶元件之熱圖(heat map)。如第6C圖所示,記憶元件中具有結晶態材料之主動區在沿著高度的垂直距離約30nm到40nm之間、沿著寬度的水平距離約45nm到60nm之間的溫度約達到5000 K,並低於6000 K的熔點。Figure 6C is a heat map corresponding to the memory elements of Figures 6A and 6B. As shown in FIG. 6C, the active region having the crystalline material in the memory element has a vertical distance along the height of between about 30 nm and 40 nm, a horizontal distance along the width of between about 45 nm and 60 nm, and a temperature of about 500 0 K. And below the melting point of 600 0 K.

第7A圖繪示包括記憶元件之記憶胞,該記憶元件包括具有非晶態材料之主動區。第7A圖中的相似元件係參照使用第6A圖中的相似參考標號。搭配第6A圖關於記憶胞的描述一般適用於第7A圖。FIG. 7A illustrates a memory cell including a memory element including an active region having an amorphous material. Similar elements in Fig. 7A are referred to using similar reference numerals in Fig. 6A. The description of the memory cell in conjunction with Figure 6A is generally applicable to Figure 7A.

在這例子中,具有脈衝波形80uA-30ns的復原脈衝被施加至包括記憶元件的記憶胞,該記憶元件包括具有結晶態材料的主動區。80uA-30ns的脈衝波形係和第6A圖中所述之施加至包括具有結晶態材料之主動區的記憶胞的復原脈衝相同。In this example, a reset pulse having a pulse waveform of 80uA-30ns is applied to a memory cell including a memory element including an active region having a crystalline material. The pulse waveform of 80uA-30ns is the same as the recovery pulse applied to the memory cell including the active region having the crystalline material as described in FIG. 6A.

第7B圖繪示通過記憶元件613中心的溫度剖面740,包括通過具有非晶態材料的主動區域(例如715)中心,如虛線630所標示。溫度剖面740是基於對包括記憶元件613的記憶胞的熱模擬。如第7B圖所示,在記憶元件613垂直距離開始約10nm處,加熱器620中的溫度停在約3000 K,並在記憶元件613垂直距離約20nm處升至約7000 K,而在記憶元件613垂直距離約100nm處降回至約3000 K。Figure 7B illustrates a temperature profile 740 through the center of memory element 613, including through the center of the active region (e.g., 715) having an amorphous material, as indicated by dashed line 630. Temperature profile 740 is based on thermal simulation of memory cells including memory element 613. As shown on FIG. 7B, the memory device 613 starts the vertical distance of about 10nm, the temperature of the heater 620 is stopped at about 300 0 K, and increased to about 700 0 K at about 20nm memory element 613 from the vertical, and in The memory element 613 is lowered back to about 300 0 K at a vertical distance of about 100 nm.

由於熔點650大約是6000 K,在沿著高度的垂直距離約15nm到25nm之間,具有80uA-30ns脈衝波形的復原脈衝會將具有非晶態材料之主動區的溫度升高至超過熔點。相較之下,具有80uA-30ns脈衝波形的復原脈衝並不足以讓具有結晶態材料的主動區的溫度升高超過熔點650。Since the melting point 650 is approximately 600 0 K, a recovery pulse having a pulse waveform of 80 uA - 30 ns raises the temperature of the active region having the amorphous material beyond the melting point between about 15 nm and 25 nm along the vertical distance of the height. In contrast, a recovery pulse having a pulse waveform of 80 uA - 30 ns is not sufficient to raise the temperature of the active region having a crystalline material above the melting point 650.

第7C圖為對應於第7A及7B圖之記憶元件之熱圖。如第7C圖所示,記憶元件中具有非晶態材料之主動區在沿著高度的垂直距離約15nm到25nm之間、沿著寬度的水平距離約35nm和65nm之間的溫度係超過熔點。Figure 7C is a heat map corresponding to the memory elements of Figures 7A and 7B. As shown in FIG. 7C, the active region having the amorphous material in the memory element has a temperature between about 15 nm and 25 nm along the vertical distance of the height, and a horizontal distance along the width of between about 35 nm and 65 nm exceeds the melting point.

第8圖繪示利用具有80uA-30ns脈衝波形的一例復原脈衝進行阻值飄移復原的實驗結果。所示為三組電阻值範圍,其中各組包括初始範圍、復原前範圍以及復原後範圍。舉例來說,初始範圍與復原前範圍之間的時間為3天。針對這三組的箭頭表示因電阻值飄移復原處理所產生的電阻值範圍移動。在各組中,復原後範圍(例如,812、822及832)係較復原前範圍(例如,813、823及833)更接近初始範圍(例如,811、821及831)。第四組電阻值範圍在感測範圍的上限(例如5000k歐姆)係繪示成垂直線(如840),因為第四組中的電阻值範圍超出了記憶裝置的感測範圍上限。四組電阻值範圍中的各組係對應一MLC記憶胞的特定資料值。舉例來說,4階記憶胞可包括資料值00、01、11以及10。Fig. 8 is a graph showing experimental results of resistance drift recovery using an example of a recovery pulse having a pulse waveform of 80 uA to 30 ns. Three sets of resistance values are shown, with each set including an initial range, a pre-recovery range, and a post-recovery range. For example, the time between the initial range and the pre-recovery range is 3 days. The arrows for these three groups indicate the range of resistance values generated by the resistance value drift recovery processing. In each group, the post-recovery range (eg, 812, 822, and 832) is closer to the initial range (eg, 811, 821, and 831) than the pre-recovery range (eg, 813, 823, and 833). The fourth set of resistance values ranges from the upper limit of the sensing range (eg, 5000 k ohms) to a vertical line (eg, 840) because the range of resistance values in the fourth set exceeds the upper limit of the sensing range of the memory device. Each of the four sets of resistance values corresponds to a specific data value of an MLC memory cell. For example, a fourth-order memory cell can include data values 00, 01, 11, and 10.

第9圖繪示記憶胞的錯誤電阻值位準可被電阻值飄移復原處理修正,其利用具有80uA-30ns脈衝波形的一例復原脈衝。第9圖中的相似元件係參照使用第8圖中的相似參考標號。Figure 9 shows that the error resistance level of the memory cell can be corrected by the resistance value drift recovery process, which uses an example of a recovery pulse having a pulse waveform of 80 uA - 30 ns. Similar elements in Fig. 9 are referred to using similar reference numerals in Fig. 8.

如第9圖的例子所示,錯誤的電阻值位準發生在第二組電阻值範圍中的復原前範圍(如823)與第三組電阻值範圍(如831、832、833)的重疊處,如圈框920所示,而那些錯誤的電阻值位準係修正於第二組電阻值範圍中的復原後範圍(如822),使得第二組電阻值範圍中的復原後範圍(如822)不會和第三組電阻值範圍重疊。As shown in the example of Fig. 9, the erroneous resistance level occurs at the overlap of the pre-recovery range (e.g., 823) in the second set of resistance values and the third set of resistance values (e.g., 831, 832, 833). As indicated by circle 920, and those erroneous resistance levels are corrected in the restored range of the second set of resistance values (e.g., 822) such that the second set of resistance values are in the restored range (e.g., 822). ) does not overlap with the third set of resistance values.

錯誤的電阻值位準發生在第三組電阻值範圍中的復原前範圍(如833)至少部分超出感測範圍的上限,如圈框930所示,而那些錯誤的電阻值位準係修正於第三組電阻值範圍中的復原後範圍(如832),使得第三組電阻值範圍中的復原後範圍(如832)係低於感測範圍的上限。The erroneous resistance level occurs in the third set of resistance values before the pre-recovery range (eg, 833) at least partially beyond the upper limit of the sensing range, as indicated by circle 930, and those erroneous resistance levels are corrected The post-recovery range (eg, 832) in the third set of resistance values ranges such that the post-recovery range (eg, 832) in the third set of resistance values is below the upper limit of the sensing range.

相較之下,透過類DRAM刷新方案,錯誤的電阻值位準將被重新程式化至相同的錯誤電阻值位準,而非被修正。In contrast, through the DRAM-like refresh scheme, the wrong resistor value level will be reprogrammed to the same error resistor level instead of being corrected.

第10圖繪示在採用及不採用此處所述之電阻值飄移復原處理的情況下,實驗資料中的第一錯誤,其中電阻值飄移復原處理係使用具有80uA-30ns脈衝波形的一例復原脈衝。若不採用電阻值飄移復原處理,第一錯誤發生在5000秒。相較之下,若採用電阻值飄移復原處理,第一錯誤則是發生在第140天,整體改善2400倍。針對時段(1)、(2)、(3)、(4)、(5)、(6)的電阻值範圍,將分別繪示於第11A、11B、11C、11D、11E及11F圖。Figure 10 is a diagram showing the first error in the experimental data with and without the resistance value drift recovery process described herein, wherein the resistance value drift recovery process uses a recovery pulse having a pulse waveform of 80 uA - 30 ns. . If the resistance value drift recovery process is not used, the first error occurs in 5000 seconds. In contrast, if the resistance value drift recovery process is used, the first error occurs on the 140th day, and the overall improvement is 2400 times. The resistance value ranges for the periods (1), (2), (3), (4), (5), and (6) are shown in the 11A, 11B, 11C, 11D, 11E, and 11F, respectively.

第11A、11B、11C、11D、11E及11F圖繪示對應於第10圖中時段(1)、(2)、(3)、(4)、(5)、(6)的電阻值飄移復原處理實驗結果,其使用具有80uA-30ns脈衝波形的一例復原脈衝。時段(1)、(2)、(3)、(4)、(5)、(6)大致上分別對應於30、1,600、7,000、16,000、30,000及60,000千秒。11A, 11B, 11C, 11D, 11E, and 11F are diagrams showing the resistance value drift recovery corresponding to the periods (1), (2), (3), (4), (5), and (6) in FIG. The experimental results were processed using an example of a recovery pulse having a pulse waveform of 80 uA - 30 ns. The periods (1), (2), (3), (4), (5), (6) generally correspond to 30, 1, 600, 7,000, 16,000, 30,000, and 60,000 kiloseconds, respectively.

三組電阻值範圍如第11A圖所示,其中各組係包括一初始範圍、一復原前範圍以及一復原後範圍。該三組中的第一組電阻範圍對應一低電阻值範圍,其包括對應於繪示於第11A圖之上、下方圖中約介於10k歐姆到20k歐姆之間的初始範圍1111、繪示於下方圖的復原前範圍1113,以及繪示於上方圖的復原後範圍1112。The three sets of resistance values are as shown in Fig. 11A, wherein each group includes an initial range, a pre-recovery range, and a post-recovery range. The first set of resistance ranges in the three groups corresponds to a low resistance value range, which includes an initial range 1111 corresponding to the image shown above FIG. 11A and between about 10k ohms and 20k ohms in the lower graph. The pre-recovery range 1113 in the lower graph and the post-recovery range 1112 in the upper graph.

類似地,該三組中的第二組電阻範圍對應一中間電阻值範圍,其包括對應於繪示於第11A圖之上、下方圖中約介於50k歐姆到200k歐姆之間的初始範圍1121、繪示於下方圖的復原前範圍1123,以及繪示於上方圖的復原後範圍1122。該三組中的第三組電阻範圍對應一高電阻值範圍,其包括對應於繪示於第11A圖之上、下方圖中約介於500k歐姆到2000k歐姆之間的初始範圍1131、繪示於下方圖的復原前範圍1133A,以及繪示於上方圖的復原後範圍1132A。Similarly, the second set of resistance ranges in the three groups corresponds to an intermediate resistance value range including an initial range 1121 corresponding to between about 50 k ohms and 200 k ohms, which is shown above the 11A map and in the lower graph. The pre-recovery range 1123 shown in the lower figure and the post-recovery range 1122 shown in the upper figure are shown. The third set of resistance ranges in the three groups corresponds to a high resistance value range, which includes an initial range 1131 corresponding to between about 500 k ohms and 2000 k ohms, which is shown above the 11A map and in the lower graph. The pre-restoration range 1133A in the lower graph and the post-recovery range 1132A in the upper graph.

一般而言,電阻值飄移復原處理所造成的電阻值範圍移動會使復原後範圍相較於復原前範圍往初始範圍移動。第一組電阻值範圍相較於第二組電阻值範圍及第三組電阻值範圍呈現較少的移動量。第四組電阻值範圍在感測範圍的上限(例如5000k歐姆)係繪示成垂直線(如1140),因為第四組中的電阻值範圍超出了記憶裝置的感測範圍上限。In general, the range of resistance values caused by the resistance value drift recovery process causes the restored range to move toward the initial range compared to the pre-recovery range. The first set of resistance values exhibits less movement than the second set of resistance values and the third set of resistance values. The fourth set of resistance values ranges from the upper limit of the sensing range (eg, 5000 k ohms) to a vertical line (eg, 1140) because the range of resistance values in the fourth set exceeds the upper limit of the sensing range of the memory device.

如第11A圖的下方圖所示,錯誤的電阻值位準可發生在第三組電阻值範圍中的復原前範圍(如1133A)至少部分超出感測範圍的上限,如圈框1150A所示。如第11A圖的上方圖所示,那些錯誤的電阻值位準係修正於第三組電阻值範圍中的復原後範圍,使得第三組電阻值範圍中的復原後範圍(如1132A)低於感測範圍的上限。As shown in the lower diagram of Figure 11A, the erroneous resistance level can occur in the third set of resistance values before the pre-recovery range (e.g., 1133A) at least partially beyond the upper limit of the sensing range, as indicated by circle 1150A. As shown in the upper graph of Figure 11A, those erroneous resistance levels are corrected in the restored range of the third set of resistance values, such that the restored range (eg, 1132A) in the third set of resistance values is lower than The upper limit of the sensing range.

類似地,如第11B圖中的下方圖所示,錯誤的電阻值位準可發生在第三組電阻值範圍中的復原前範圍(如1133B)至少部分超出感測範圍的上限,如圈框1150B所示。如第11B圖的上方圖所示,那些錯誤的電阻值位準係修正於第三組電阻值範圍中的復原後範圍,使得第三組電阻值範圍中的復原後範圍(如1132B)低於感測範圍的上限。Similarly, as shown in the lower diagram in FIG. 11B, the erroneous resistance level may occur in the third set of resistance values before the pre-recovery range (eg, 1133B) at least partially beyond the upper limit of the sensing range, such as a circle frame. 1150B is shown. As shown in the upper graph of Figure 11B, those erroneous resistance levels are corrected in the restored range of the third set of resistance values such that the restored range (e.g., 1132B) in the third set of resistance values is lower than The upper limit of the sensing range.

如第11C圖中的下方圖所示,錯誤的電阻值位準可發生在第三組電阻值範圍中的復原前範圍(如1133C)至少部分超出感測範圍的上限,如圈框1150C所示。如第11C圖的上方圖所示,那些錯誤的電阻值位準係修正於第三組電阻值範圍中的復原後範圍,使得第三組電阻值範圍中的復原後範圍(如1132C)低於感測範圍的上限。As shown in the lower diagram of FIG. 11C, the erroneous resistance level may occur in the third set of resistance values in the pre-restoration range (eg, 1133C) at least partially beyond the upper limit of the sensing range, as indicated by circle 1150C. . As shown in the upper graph of Figure 11C, those erroneous resistance levels are corrected in the post-recovery range of the third set of resistance values, such that the post-recovery range (eg, 1132C) in the third set of resistance values is lower. The upper limit of the sensing range.

如第11D圖中的下方圖所示,錯誤的電阻值位準可發生在第三組電阻值範圍中的復原前範圍(如1133D)至少部分超出感測範圍的上限,如圈框1150D所示。如第11D圖的上方圖所示,那些錯誤的電阻值位準係修正於第三組電阻值範圍中的復原後範圍,使得第三組電阻值範圍中的復原後範圍(如1132D)低於感測範圍的上限。As shown in the lower diagram in Figure 11D, the erroneous resistance level may occur in the third set of resistance values before the pre-recovery range (eg, 1133D) at least partially beyond the upper limit of the sensing range, as indicated by circle 1150D. . As shown in the upper graph of Figure 11D, those erroneous resistance levels are corrected in the restored range of the third set of resistance values such that the restored range (eg, 1132D) in the third set of resistance values is lower than The upper limit of the sensing range.

如第11E及11F圖之下方圖所示之超過140天的期間(5)及(6),錯誤的電阻值位準可發生在第四組電阻值範圍中的復原前範圍(如1143E及1143F)至少部分超出感測範圍的上限,如圈框1150E及1150F所示。搭配參考第2A、2B、2C、2D及2F圖,因為電阻飄移中的衰減階段,錯誤的電阻值位準亦可發生在第四組電阻值範圍中的復原前範圍(如1143E及1143F)至少部分在感測範圍內但與第三組電阻值範圍重疊的區域。如第11E及11F圖的上方圖所示,錯誤的電阻值位準在超過140天的期間(5)及(6)內不會被修正。For periods longer than 140 days (5) and (6) as shown in the lower panel of Figures 11E and 11F, the wrong resistance level can occur in the pre-recovery range of the fourth set of resistance values (eg 1143E and 1143F). ) at least partially beyond the upper limit of the sensing range, as indicated by circle 1150E and 1150F. With reference to the 2A, 2B, 2C, 2D and 2F diagrams, the erroneous resistance level can also occur in the pre-recovery range (eg 1143E and 1143F) in the fourth set of resistance values due to the attenuation phase in the resistance drift. An area that is partially within the sensing range but overlaps the third set of resistance values. As shown in the upper graph of Figures 11E and 11F, the erroneous resistance level will not be corrected during the period of more than 140 days (5) and (6).

因此,第11A、11B、11C、11D、11E、11F圖說明了在採用本文所述之電阻值飄移復原處理時,140天內才發生第一錯誤,其相較於在未採用本文所述之電阻值飄移復原處理時,第一錯誤發生在5000秒,產生了2400倍的改善。Thus, the 11A, 11B, 11C, 11D, 11E, 11F diagram illustrates that the first error occurs within 140 days when the resistance value drift recovery process described herein is employed, as compared to the absence of this description. When the resistance value drift recovery process, the first error occurred in 5000 seconds, resulting in a 2400-fold improvement.

第12A及12B圖繪示適用於本文所述之電阻值飄移復原處理之復原脈衝之脈衝波形。舉例來說,脈衝波形可包括矩形脈衝波形(如1210)、斜上(ramp-up)脈衝波形(如1220)以及L型脈衝波形(如1230),如第12A所示。脈衝波形可由包括電壓大小、電流大小、功率大小、溫度大小或時間長度的參數來定義。Figures 12A and 12B illustrate pulse waveforms of a recovery pulse suitable for use in the resistance value drift recovery process described herein. For example, the pulse waveform may include a rectangular pulse waveform (e.g., 1210), a ramp-up pulse waveform (e.g., 1220), and an L-type pulse waveform (e.g., 1230), as shown in Fig. 12A. The pulse waveform can be defined by parameters including voltage magnitude, current magnitude, power magnitude, temperature magnitude, or length of time.

矩形脈衝波形(如1210)可在一上升緣(如1213)由低振幅(如1211)轉態至高振幅(如1212),並在一下降緣(如1214)由高振幅轉態至低振幅,且在上升緣和下降緣之間具有一時間長度(如1215)。矩形脈衝波形可例如具有不同的電流振幅及時間長度變化:50uA-30ns、80uA-30ns、80uA-50ns及100uA-50ns,其中uA表示微安培,ns表示奈秒。在實現上,具有不同脈衝波形的復原脈衝可被施加至位於不同決定之電阻值位準的記憶胞。A rectangular pulse waveform (eg, 1210) can transition from a low amplitude (eg, 1211) to a high amplitude (eg, 1212) at a rising edge (eg, 1213) and from a high amplitude to a low amplitude at a falling edge (eg, 1214), And there is a length of time between the rising edge and the falling edge (such as 1215). Rectangular pulse waveforms may, for example, have different current amplitude and time length variations: 50uA-30ns, 80uA-30ns, 80uA-50ns, and 100uA-50ns, where uA represents microamperes and ns represents nanoseconds. In practice, recovery pulses with different pulse waveforms can be applied to memory cells at different determined resistance levels.

三角脈衝波形(如1220)可在一上升坡(如1223)由低振幅(如1221)轉態至高振幅(如1222),並接著在一下降緣(如1224)由高振幅轉態至低振幅。三角脈衝波形的時間長度(如1225)可包括上升坡的上升時間以及下降緣的下降時間。該上升時間可實質上長於下降時間,並可包括至少50%的三角脈衝。A triangular pulse waveform (eg, 1220) can transition from a low amplitude (eg, 1221) to a high amplitude (eg, 1222) on a rising slope (eg, 1223), and then transition from a high amplitude to a low amplitude at a falling edge (eg, 1224) . The length of the triangular pulse waveform (eg, 1225) may include the rise time of the rising ramp and the fall time of the falling edge. The rise time can be substantially longer than the fall time and can include at least 50% of the triangular pulses.

在第12B圖的例子中,在電阻值飄移復原處理中,一組復原脈衝包括具有第一脈衝波形(如1210)的復原脈衝,以及具有第二脈衝波形的第二復原脈衝可被施加至記憶胞,其中該第二脈衝波形係對應於該組中記憶胞的決定電阻位準。第一脈衝波形在振幅及/或時間長度上可相同或相異於第二脈衝波形。In the example of Fig. 12B, in the resistance value drift recovery processing, a set of reset pulses includes a reset pulse having a first pulse waveform (e.g., 1210), and a second reset pulse having a second pulse waveform can be applied to the memory. The cell, wherein the second pulse waveform corresponds to a determined resistance level of the memory cells in the group. The first pulse waveform may be the same or different from the second pulse waveform in amplitude and/or length of time.

舉例來說,第一脈衝波形(如1210)可如第12A圖所描述,而第二脈衝波形(如1240)可以是矩形脈衝波形。第二脈衝波形(如1240)可在一上升緣(如1243)由低振幅(如1211)轉態至高振幅(如1242),並在一下降緣(如1244)由高振幅轉態至低振幅,且在上升緣和下降緣之間具有一時間長度(如1245)。For example, the first pulse waveform (eg, 1210) can be as depicted in FIG. 12A, and the second pulse waveform (eg, 1240) can be a rectangular pulse waveform. The second pulse waveform (eg, 1240) can transition from a low amplitude (eg, 1211) to a high amplitude (eg, 1242) at a rising edge (eg, 1243) and transition from a high amplitude to a low amplitude at a falling edge (eg, 1244) And has a length of time between the rising edge and the falling edge (such as 1245).

舉例來說,第一脈衝波形和第二脈衝波形皆可包括50uA-30ns或100uA-50ns。或者,第一脈衝波形和第二脈衝波形可分別包括80uA-30ns及80uA-50ns,或分別包括80uA-50ns及100uA-50ns。在實現上,具有不同脈衝波形的第一及第二復原脈衝可被施加至位在不同決定之電阻值位準的記憶胞上。For example, both the first pulse waveform and the second pulse waveform may include 50uA-30ns or 100uA-50ns. Alternatively, the first pulse waveform and the second pulse waveform may include 80uA-30ns and 80uA-50ns, respectively, or 80uA-50ns and 100uA-50ns, respectively. In practice, the first and second reset pulses having different pulse waveforms can be applied to memory cells located at different determined resistance levels.

第13圖繪示針對相變記憶胞之設定、重設、讀取以及復原脈衝之例子。復原脈衝可被用在本文所述的電阻值飄移復原處理當中。重設、設定、復原以及讀取脈衝(例如分別為1310、1320、1330及1340)可由包括電壓、電流或功率大小以及時間長度的參數來描述。為了比較施加至記憶胞上不同型態的脈衝,所示之設定、重設、讀取以及復原脈衝係從時間0開始。在寫入(例如設定或重設)、讀取以及飄移復原操作中,設定、重設、讀取以及復原脈衝在不同的時間被施加。如此處所使用的,術語「程式化脈衝」可以是指施加至一記憶胞以將該記憶胞重設至非晶態的重設脈衝,以及施加至一記憶胞以將該記憶胞設定至結晶態的設定脈衝。Figure 13 shows an example of setting, resetting, reading, and restoring pulses for phase change memory cells. The recovery pulse can be used in the resistance value drift recovery process described herein. Reset, set, reset, and read pulses (eg, 1310, 1320, 1330, and 1340, respectively) may be described by parameters including voltage, current, or power magnitude and length of time. In order to compare the pulses applied to different types of memory cells, the set, reset, read, and reset pulses shown begin at time zero. In write (eg, set or reset), read, and wander recovery operations, set, reset, read, and reset pulses are applied at different times. As used herein, the term "stylized pulse" may refer to a reset pulse applied to a memory cell to reset the memory cell to an amorphous state, and applied to a memory cell to set the memory cell to a crystalline state. Set pulse.

復原脈衝可具有低於重設脈衝且高於讀取脈衝的振幅,並具有短於重設脈衝且長於讀取脈衝的時間長度。舉例來說,復原脈衝的振幅可小於重設脈衝的一半,並具有約設定脈衝五分之一的時間長度。復原脈衝的描述可進一步搭配第6A、6B、6C、7A、7B及7C圖。The reset pulse may have an amplitude lower than the reset pulse and higher than the read pulse, and has a length of time shorter than the reset pulse and longer than the read pulse. For example, the amplitude of the healing pulse can be less than half of the reset pulse and have a length of time that is about one-fifth of the set pulse. The description of the recovery pulse can be further combined with the 6A, 6B, 6C, 7A, 7B and 7C diagrams.

在包括相變記憶元件之記憶胞的操作中,通過記憶胞的電性脈衝可設定或重設相變記憶元件的電阻狀態。為將記憶元件重設至非晶態,可利用高振幅、短時間的重設脈衝(如1310)來將記憶元件的主動區加熱至一熔點溫度(如1350),接著快速地使其冷卻以固化在非晶態。為將記憶元件設定為結晶態,可利用中等振幅的設定脈衝(如1320)來使其加熱至一結晶溫度(如1360),並藉由長時間冷卻來讓主動區固化在結晶狀態。為讀取記憶元件的狀態,可將具有小振幅、短時間的讀取脈衝(如1340)施加至所選的記憶胞,並感測電流結果。In the operation of a memory cell including a phase change memory element, the resistance state of the phase change memory element can be set or reset by an electrical pulse of the memory cell. To reset the memory element to an amorphous state, a high-amplitude, short-time reset pulse (such as 1310) can be used to heat the active region of the memory element to a melting point temperature (eg, 1350), followed by rapid cooling. Cured in an amorphous state. To set the memory element to a crystalline state, a medium amplitude set pulse (e.g., 1320) can be used to heat it to a crystallization temperature (e.g., 1360) and the active region is allowed to solidify in a crystalline state by prolonged cooling. To read the state of the memory element, a small amplitude, short time read pulse (e.g., 1340) can be applied to the selected memory cell and the current result sensed.

舉例來說,復原脈衝可具有介於50uA至100uA之間的電流振幅(如1335)以及介於30ns至50ns之間的時間長度(如T2)。設定脈衝可具有介於100uA至200uA之間的電流振幅(如1325)以及介於100ns至500ns之間的時間長度(如T4)。重設脈衝可具有約介於400uA的電流振幅(如1315)以及介於50ns至100ns之間的時間長度(如T3)。讀取脈衝可具有約30uA的電流振幅(如1345)以及約50ns的時間長度(如T1)。For example, the reset pulse can have a current amplitude (eg, 1335) between 50uA and 100uA and a length of time between 30ns and 50ns (eg, T2). The set pulse can have a current amplitude (eg, 1325) between 100 uA and 200 uA and a length of time between 100 ns and 500 ns (eg, T4). The reset pulse can have a current amplitude of about 400 uA (such as 1315) and a length of time between 50 ns and 100 ns (such as T3). The read pulse can have a current amplitude of about 30 uA (such as 1345) and a time length of about 50 ns (such as T1).

第14圖為記憶裝置(如1400)的簡化方塊圖。記憶裝置包括一陣列的記憶胞(如1460),該些記憶胞包括可程式化電阻記憶元件。在部分實施例中,陣列1460可包括多個SLC。在部分實施例中,陣列1460可包括多個MLC。Figure 14 is a simplified block diagram of a memory device (e.g., 1400). The memory device includes an array of memory cells (e.g., 1460), the memory cells including programmable resistive memory elements. In some embodiments, array 1460 can include multiple SLCs. In some embodiments, array 1460 can include multiple MLCs.

記憶裝置1400包括耦接陣列的控制器(如1410)。控制器1410例如由狀態機實現,可提供訊號以控制由電壓供應器或方塊1420所產生或提供的供電偏壓配置,以完成各種不同的操作,包括對記憶胞的寫入、讀取、抹除以及飄移復原操作。控制器可利用習知的特殊用途邏輯電路來實現。在一替代實施例中,控制器包括一般用途處理器,其可實現在相同的積體電路上,執行電腦程式以控制裝置的操作。又一實施例中,特殊用途邏輯電路以及一般用途處理器可用來實現控制器。Memory device 1400 includes a controller (e.g., 1410) coupled to the array. Controller 1410 is implemented, for example, by a state machine that can provide signals to control the power supply bias configuration generated or provided by voltage supply or block 1420 to perform various different operations, including writing, reading, and wiping memory cells. In addition to drifting recovery operations. The controller can be implemented using conventional special purpose logic circuits. In an alternate embodiment, the controller includes a general purpose processor that can be implemented on the same integrated circuit to execute a computer program to control the operation of the device. In yet another embodiment, a special purpose logic circuit and a general purpose processor can be used to implement the controller.

控制器1410用以程式化陣列中的記憶胞,透過對記憶胞施加程式化脈衝以於N個電阻值指定範圍中建立電阻值位準來儲存資料,其中各指定範圍對應一特定資料值,控制器1410並對陣列中的記憶胞執行電阻值飄移復原處理,包括對程式化記憶胞組施加具有脈衝波形的復原脈衝,其中程式化記憶胞組中的記憶胞係被施加具脈衝波形的復原脈衝,使其的電阻值位準在二或多個電阻值指定範圍內。電阻值飄移復原處理可回應於外部指令而中斷,像是來自記憶裝置1400外部源的指令。The controller 1410 is configured to program the memory cells in the array, and store the data by applying a stylized pulse to the memory cells to establish a resistance value level in a specified range of the N resistance values, wherein each specified range corresponds to a specific data value, and the control is performed. The device 1410 performs a resistance value drift recovery process on the memory cells in the array, including applying a recovery pulse having a pulse waveform to the stylized memory cell group, wherein the memory cell in the stylized memory cell group is applied with a recovery pulse having a pulse waveform. , so that its resistance value level is within the specified range of two or more resistance values. The resistance value drift recovery process can be interrupted in response to an external command, such as an instruction from an external source of the memory device 1400.

N個指定範圍包括一高電阻值範圍以及一低電阻值範圍,在高電阻值範圍中,記憶胞包括具有一第一體積之非晶態材料的主動區,在低電阻值範圍中,記憶胞包括具有一第二體積之非晶態材料的主動區,第二體積係小於第一體積。脈衝波形係用來使在高電阻值範圍中的記憶胞主動區的溫度高於一熔點,並使得在低電阻值範圍中的記憶胞主動區的溫度低於該熔點。該N個電阻值指定範圍可包括一或多個中間電阻值範圍,在該一或多個中間電阻值範圍中,記憶胞包括具有體積介於第一體積和第二體積之間之非晶態材料的主動區,該一或多個中間電阻值範圍係介於高電阻值範圍和低電阻值範圍之間。數字N可大於2,且程式化記憶胞組中的該些記憶胞在該N個電阻值指定範圍中皆具有電阻值位準。The N specified ranges include a high resistance range and a low resistance range. In the high resistance range, the memory cell includes an active region having a first volume of amorphous material, and in the low resistance range, the memory cell An active region having a second volume of amorphous material is included, the second volume being less than the first volume. The pulse waveform is used to bring the temperature of the active region of the memory cell in the range of high resistance values above a melting point and to cause the temperature of the active region of the memory cell in the range of low resistance values to be lower than the melting point. The N resistance value specification ranges may include one or more intermediate resistance value ranges, and in the one or more intermediate resistance value ranges, the memory cell includes an amorphous state having a volume between the first volume and the second volume The active region of the material, the one or more intermediate resistance values ranging between a range of high resistance values and a range of low resistance values. The number N can be greater than 2, and the memory cells in the stylized memory cell group have resistance value levels in the specified range of the N resistance values.

控制器1410可用來對記憶胞組中的記憶胞施加一復原脈衝組,其包括具有第一脈衝波形的第一復原脈衝以及具有第二脈衝波形的第二復原脈衝,第二脈衝波形對應記憶胞組中記憶胞的決定電阻值位準。第一脈衝波形可以和第二脈衝波形相同,或者與其相異。The controller 1410 can be configured to apply a reset pulse group to the memory cells in the memory cell group, including a first reset pulse having a first pulse waveform and a second reset pulse having a second pulse waveform corresponding to the memory cell The memory cell in the group determines the resistance level. The first pulse waveform may be the same as or different from the second pulse waveform.

控制器1410可用來讀取記憶胞組中的記憶胞以決定記憶胞組中記憶胞的電阻值位準,並用來對記憶胞組中位於決定之電阻值位準的記憶胞施加復原脈衝,復原脈衝之脈衝波形各自對應於決定之電阻值位準。控制器1410可用來讀取記憶胞組中的記憶胞以決定記憶胞組中記憶胞的電阻值位準,並用來對記憶胞組中位於二或多個決定之電阻值位準的記憶胞施加具有相同脈衝波形的復原脈衝。控制器1410可用來對記憶胞組中位在多個電阻值位準的記憶胞施加具有相同脈衝波形的復原脈衝,而不用先讀取記憶胞組中的記憶胞以決定記憶胞組中記憶胞的電阻值位準。The controller 1410 can be used to read the memory cells in the memory cell group to determine the resistance level of the memory cells in the memory cell group, and to apply a recovery pulse to the memory cells in the memory cell group at the determined resistance value level. The pulse waveforms of the pulses each correspond to a determined resistance value level. The controller 1410 can be used to read the memory cells in the memory cell group to determine the resistance level of the memory cells in the memory cell group, and to apply to the memory cells in the memory cell group at two or more determined resistance value levels. A recovery pulse having the same pulse waveform. The controller 1410 can be used to apply a recovery pulse having the same pulse waveform to the memory cells in the memory cell group at a plurality of resistance value levels, without first reading the memory cells in the memory cell group to determine the memory cells in the memory cell group. The resistance value level.

本文所述之至少一復原脈衝可獨立於程式化記憶胞的資料值。The at least one reset pulse described herein can be independent of the data value of the stylized memory cell.

在部分實施例中,記憶陣列可包括多個SLC。在其他實施例中,陣列1460可包括多個MLC。字元線解碼器1440耦接於記憶陣列1460中排成列的多條字元線1445。位元線解碼器1470經由全域(global)位元線1465耦接至記憶陣列1460。全域位元線1465耦接於記憶陣列1460中排列成行的邏輯位元線(未繪示)。匯流排1430上的位址係被提供至位元線解碼器1470(行位址)以及字元線解碼器1440(列位址)。方塊1480中的感測電路/資料輸入結構,包括用以寫入、讀取、抹除以及電阻飄移復原處理等操作的電壓及/或電流源,係透過資料匯流排1475耦接至位元線解碼器1470。透過線1485,資料係提供至/自積體電路上的其他電路1490,像是一般用途處理器或特殊用途應用電路,或是可提供記憶裝置1400所支持的系統上晶片(system-on-a-chip)功能的模組組合。其他電路1490可例如包括輸入/輸出埠。In some embodiments, the memory array can include multiple SLCs. In other embodiments, array 1460 can include multiple MLCs. The word line decoder 1440 is coupled to the plurality of word lines 1445 arranged in columns in the memory array 1460. Bit line decoder 1470 is coupled to memory array 1460 via global bit line 1465. The global bit line 1465 is coupled to logical bit lines (not shown) arranged in a row in the memory array 1460. The address on bus 1430 is provided to bit line decoder 1470 (row address) and word line decoder 1440 (column address). The sensing circuit/data input structure in block 1480 includes voltage and/or current sources for operations such as writing, reading, erasing, and resistance drift recovery processing, coupled to the bit line through the data bus 1475 Decoder 1470. Through line 1485, the data is provided to other circuits 1490 on the integrated circuit, such as a general purpose processor or a special purpose application circuit, or a system on chip (system-on-a) supported by the memory device 1400. -chip) Function module combination. Other circuits 1490 may, for example, include input/output ports.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

110、120、130、140‧‧‧下限
115、125、135、145‧‧‧上限
Rmax‧‧‧最大電阻值
tmax‧‧‧時間
300、400、500‧‧‧流程圖
310、320、330、340、410、420、430、440、450、510‧‧‧步驟
611‧‧‧第一電極
612‧‧‧介質
613‧‧‧記憶元件
614‧‧‧第二電極
615、715‧‧‧主動區域
620‧‧‧加熱器
630‧‧‧虛線
640、740‧‧‧溫度剖面
650‧‧‧熔點
812、822、832、1112、1122、1132A、1132B、1132C、1132D‧‧‧復原後範圍
813、823、833、1113、1123、1133A、1133B、1133C、1133D、1143E、1143F‧‧‧復原前範圍
811、821、831、1111、1121、1131‧‧‧初始範圍
840、1140‧‧‧垂直線
920、930、1150A、1150B、1150C、1150D、1150E、1150F‧‧‧圈框
(1)、(2)、(3)、(4)、(5)、(6)‧‧‧時段
1210‧‧‧矩形脈衝波形
1211、1221‧‧‧低振幅
1212、1222、1242‧‧‧高振幅
1213、1243‧‧‧上升緣
1223‧‧‧上升坡
1214、1224、1244‧‧‧下降緣
1215、1225、1245‧‧‧時間長度
1220‧‧‧斜上脈衝波形
1230‧‧‧L型脈衝波形
1240‧‧‧第二脈衝波形
1310‧‧‧重設脈衝
1320‧‧‧設定脈衝
1330‧‧‧復原脈衝
1340‧‧‧讀取脈衝
1350‧‧‧熔點溫度
1360‧‧‧結晶溫度
1315、1325、1335、1345‧‧‧電流振幅
T1、T2、T3、T4‧‧‧時間長度
1400‧‧‧記憶裝置
1410‧‧‧控制器
1420、1480‧‧‧方塊
1430‧‧‧匯流排
1440‧‧‧字元線解碼器
1445‧‧‧字元線
1460‧‧‧記憶陣列
1465‧‧‧全域位元線
1470‧‧‧位元線解碼器
1475‧‧‧資料匯流排
1485‧‧‧線
1490‧‧‧其他電路
110, 120, 130, 140‧‧‧ lower limit
115, 125, 135, 145 ‧ ‧ upper limit
R max ‧‧‧maximum resistance
t max ‧‧‧ time
300, 400, 500‧‧‧ flow chart
310, 320, 330, 340, 410, 420, 430, 440, 450, 510 ‧ ‧ steps
611‧‧‧first electrode
612‧‧‧Media
613‧‧‧ memory components
614‧‧‧second electrode
615, 715‧‧ ‧ active area
620‧‧‧heater
630‧‧‧ dotted line
640, 740‧‧ ‧ temperature profile
650‧‧‧ melting point
812, 822, 832, 1112, 1122, 1132A, 1132B, 1132C, 1132D‧‧‧Recovered range
813, 823, 833, 1113, 1123, 1133A, 1133B, 1133C, 1133D, 1143E, 1143F‧‧‧
811, 821, 831, 1111, 1121, 1131 ‧ ‧ initial range
840, 1140‧‧ vertical lines
920, 930, 1150A, 1150B, 1150C, 1150D, 1150E, 1150F‧‧‧ circle
(1), (2), (3), (4), (5), (6) ‧ ‧ hours
1210‧‧‧Rectangular pulse waveform
1211, 1221‧‧‧ low amplitude
1212, 1222, 1242‧‧‧ high amplitude
1213, 1243‧‧‧ rising edge
1223‧‧‧Uphill
1214, 1224, 1244‧‧‧ falling edge
1215, 1225, 1245‧‧ ‧ length of time
1220‧‧‧ oblique pulse waveform
1230‧‧‧L type pulse waveform
1240‧‧‧second pulse waveform
1310‧‧‧Reset pulse
1320‧‧‧Set pulse
1330‧‧‧Recovery pulse
1340‧‧‧Read pulse
1350‧‧‧ melting point temperature
1360‧‧ crystallization temperature
1315, 1325, 1335, 1345‧‧‧ Current amplitude
T1, T2, T3, T4‧‧‧ length of time
1400‧‧‧ memory device
1410‧‧‧ Controller
1420, 1480‧‧‧ squares
1430‧‧‧ Busbar
1440‧‧‧ character line decoder
1445‧‧‧ character line
1460‧‧‧ memory array
1465‧‧‧Global bit line
1470‧‧‧ bit line decoder
1475‧‧‧ data bus
Line 1485‧‧
1490‧‧‧Other circuits

第1A圖繪示MLC PCM記憶胞在一電阻值範圍的電阻值飄移係數。 第1B圖繪示PCM記憶胞隨時間電阻值飄移後的電阻值分布。 第2A、2B、2C、2D及2E圖繪示電阻值飄移下的兩狀態。 第3圖繪示一例示的流程圖,用以對記憶裝置中記憶胞陣列的一或多組記憶胞進行電阻值飄移復原處理。 第4圖繪示一例示的流程圖,用以對記憶胞陣列中的一組記憶胞執行電阻值飄移復原處理,當中使用具有不同脈衝波形的復原脈衝。 第5圖繪示一例示的流程圖,用以對記憶胞陣列中的一組記憶胞執行電阻值飄移復原處理,當中使用具有相同脈衝波形的復原脈衝。 第6A圖繪示具有記憶元件的記憶胞,記憶元件包括具有結晶態材料的主動區。 第6B圖繪示通過對應第6A圖之記憶元件中心的溫度剖面。 第6C圖為對應於第6A及6B圖之記憶元件之熱圖。 第7A圖繪示包括記憶元件之記憶胞,該記憶元件包括具有非晶態材料之主動區。 第7B圖繪示通過對應第7A圖之記憶元件中心的溫度剖面。 第7C圖為對應於第7A及7B圖之記憶元件之熱圖。 第8圖繪示利用例示之復原脈衝進行電阻值飄移復原的實驗結果。 第9圖繪示記憶胞的錯誤電阻值位準可被電阻值飄移復原處理修正。 第10圖繪示在採用及不採用本文所述之電阻值飄移復原處理的情況下,實驗資料中的第一錯誤。 第11A、11B、11C、11D、11E及11F圖繪示對應於第10圖中時段(1)、(2)、(3)、(4)、(5)、(6)的電阻值飄移復原處理實驗結果。 第12A及12B圖繪示適用於本文所述之電阻值飄移復原處理之復原脈衝之脈衝波形。 第13圖繪示針對相變記憶胞之設定、重設、讀取以及復原脈衝之例子。 第14圖為記憶電路的簡化方塊圖。FIG. 1A illustrates the resistance value drift coefficient of the MLC PCM memory cell in a range of resistance values. Figure 1B shows the distribution of resistance values after the PCM memory cell drifts with time. Figures 2A, 2B, 2C, 2D, and 2E show two states under the drift of the resistance value. FIG. 3 is a flow chart showing an example of performing a resistance value drift recovery process on one or more sets of memory cells of the memory cell array in the memory device. FIG. 4 is a flow chart showing an example of performing a resistance value drift recovery process on a group of memory cells in a memory cell array, wherein recovery pulses having different pulse waveforms are used. FIG. 5 is a flow chart showing an example of performing a resistance value drift recovery process on a group of memory cells in a memory cell array, wherein a recovery pulse having the same pulse waveform is used. Figure 6A illustrates a memory cell having a memory element that includes an active region having a crystalline material. Fig. 6B is a view showing a temperature profile passing through the center of the memory element corresponding to Fig. 6A. Figure 6C is a heat map corresponding to the memory elements of Figures 6A and 6B. FIG. 7A illustrates a memory cell including a memory element including an active region having an amorphous material. Fig. 7B is a view showing a temperature profile passing through the center of the memory element corresponding to Fig. 7A. Figure 7C is a heat map corresponding to the memory elements of Figures 7A and 7B. Fig. 8 is a graph showing experimental results of recovery of resistance value drift using an exemplary recovery pulse. Figure 9 shows that the error resistance level of the memory cell can be corrected by the resistance value drift recovery process. Figure 10 illustrates the first error in the experimental data with and without the resistance value drift recovery process described herein. 11A, 11B, 11C, 11D, 11E, and 11F are diagrams showing the resistance value drift recovery corresponding to the periods (1), (2), (3), (4), (5), and (6) in FIG. Process the experimental results. Figures 12A and 12B illustrate pulse waveforms of a recovery pulse suitable for use in the resistance value drift recovery process described herein. Figure 13 shows an example of setting, resetting, reading, and restoring pulses for phase change memory cells. Figure 14 is a simplified block diagram of the memory circuit.

300‧‧‧流程圖 300‧‧‧ Flowchart

310、320、330、340‧‧‧步驟 310, 320, 330, 340‧ ‧ steps

Claims (15)

一種操作記憶裝置的方法,該記憶裝置包括一陣列的複數個記憶胞,該方法包括: 透過施加複數個程式化脈衝至該些記憶胞,以於N個電阻值指定範圍中建立複數個電阻值位準,藉此程式化該陣列中的該些記憶胞以儲存資料;以及 對該陣列中的該些記憶胞執行一電阻值飄移復原處理,包括: 施加具有一脈衝波形的一復原脈衝至一組程式化記憶胞,其中該组程式化記憶胞中的該些記憶胞在至少二個的該些電阻值指定範圍中具有電阻值位準。A method of operating a memory device, the memory device comprising an array of a plurality of memory cells, the method comprising: applying a plurality of stylized pulses to the memory cells to establish a plurality of resistance values in a specified range of N resistance values Leveling, thereby stabilizing the memory cells in the array to store data; and performing a resistance value drift recovery process on the memory cells in the array, comprising: applying a reset pulse having a pulse waveform to a The group of stylized memory cells, wherein the memory cells in the set of stylized memory cells have resistance level levels in at least two of the specified ranges of resistance values. 如申請專利範圍第1項所述之方法,其中該N個電阻值指定範圍包括一高電阻值範圍以及一低電阻值範圍,在該高電阻值範圍中,該些記憶胞包括具有一第一體積之非晶態材料的主動區,在該低電阻值範圍中,該些記憶胞包括具有一第二體積之非晶態材料的主動區,該第二體積小於該第一體積,且該脈衝波形係用來使在該高電阻值範圍中的該些記憶胞的該些主動區的溫度高於一熔點,並使在該低電阻值範圍中的該些記憶胞的該些主動區的溫度低於該熔點,其中N大於2。The method of claim 1, wherein the N resistance value specification ranges include a high resistance value range and a low resistance value range, and in the high resistance value range, the memory cells include a first An active region of a volume of amorphous material, wherein the memory cells comprise an active region having a second volume of amorphous material, the second volume being smaller than the first volume, and the pulse The waveform is used to cause the temperature of the active regions of the memory cells in the high resistance range to be higher than a melting point, and to cause the temperature of the active regions of the memory cells in the low resistance range Below this melting point, where N is greater than 2. 如申請專利範圍第2項所述之方法,其中該N個電阻值指定範圍包括一或多個中間電阻值範圍,在該一或多個中間電阻值範圍中,該些記憶胞包括具有體積介於該第一體積和該第二體積之間之非晶態材料的主動區,該一或多個中間電阻值範圍係介於該高電阻值範圍和該低電阻值範圍之間,其中N大於2。The method of claim 2, wherein the N resistance value specification ranges include one or more intermediate resistance value ranges, and in the one or more intermediate resistance value ranges, the memory cells include a volume And an active region of the amorphous material between the first volume and the second volume, the one or more intermediate resistance values ranging between the high resistance value range and the low resistance value range, wherein N is greater than 2. 如申請專利範圍第1項所述之方法,更包括: 施加一组復原脈衝,該组復原脈衝包括具有該脈衝波形的該復原脈衝以及具有一第二脈衝波形的一第二復原脈衝,該第二脈衝波形對應於該組程式化記憶胞中一記憶胞的一決定的電阻位準。The method of claim 1, further comprising: applying a set of recovery pulses, the set of recovery pulses comprising the reset pulse having the pulse waveform and a second reset pulse having a second pulse waveform, the The two pulse waveform corresponds to a determined resistance level of a memory cell in the set of stylized memory cells. 如申請專利範圍第1項所述之方法,更包括: 讀取該組程式化記憶胞中的該些記憶胞以決定該組程式化記憶胞中的該些記憶胞的電阻值位準;以及 施加複數個復原脈衝至該組程式化記憶胞中位於該決定的電阻值位準的記憶胞,該些復原脈衝的脈衝波形係各別對應於該決定的電阻值位準。The method of claim 1, further comprising: reading the memory cells in the set of stylized memory cells to determine a resistance level of the memory cells in the set of stylized memory cells; A plurality of restoration pulses are applied to the memory cells of the set of stylized memory cells at the determined resistance level, and the pulse waveforms of the restoration pulses respectively correspond to the determined resistance value level. 如申請專利範圍第1項所述之方法,更包括: 讀取該組程式化記憶胞中的該些記憶胞以決定該組程式化記憶胞中的該些記憶胞的電阻值位準;以及 施加複數個復原脈衝至該組程式化記憶胞中位於該多個決定的電阻值位準的記憶胞,該些復原脈衝具有一相同脈衝波形。The method of claim 1, further comprising: reading the memory cells in the set of stylized memory cells to determine a resistance level of the memory cells in the set of stylized memory cells; A plurality of reset pulses are applied to the memory cells of the set of stylized memory cells at the plurality of determined resistance value levels, the reset pulses having an identical pulse waveform. 如申請專利範圍第1項所述之方法,包括: 施加複數個復原脈衝至該組程式化記憶胞中位於多個電阻值位準的記憶胞,該些復原脈衝具有一相同脈衝波形。The method of claim 1, comprising: applying a plurality of restoration pulses to the memory cells of the set of stylized memory cells at a plurality of resistance value levels, the restoration pulses having an identical pulse waveform. 一種記憶裝置,包括: 一陣列的複數個記憶胞,該些記憶胞具有一可程式化電阻記憶元件;以及 一控制器,耦接該陣列,透過施加複數個程式化脈衝至該些記憶胞,以於N個電阻值指定範圍中建立複數個電阻值位準,藉此程式化該陣列中的該些記憶胞以儲存資料,並對該陣列中的該些記憶胞執行一電阻值飄移復原處理,其中該電阻值飄移復原處理包括: 施加具有一脈衝波形的一復原脈衝至一组程式化記憶胞,其中該组程式化記憶胞中的該些記憶胞在至少二個以上的該些電阻值指定範圍中具有電阻值位準。A memory device comprising: an array of a plurality of memory cells having a programmable resistive memory element; and a controller coupled to the array by applying a plurality of stylized pulses to the memory cells, Establishing a plurality of resistance value levels in the specified range of the N resistance values, thereby stabilizing the memory cells in the array to store data, and performing a resistance value drift recovery processing on the memory cells in the array The resistance value drift recovery process includes: applying a reset pulse having a pulse waveform to a set of stylized memory cells, wherein the memory cells in the set of stylized memory cells have at least two of the resistance values The resistance value level is specified in the specified range. 如申請專利範圍第8項所述之記憶裝置,其中該N個電阻值指定範圍包括一高電阻值範圍以及一低電阻值範圍,該高電阻值範圍中的該些記憶胞包括具有一第一體積之非晶態材料的主動區,該低電阻值範圍中的該些記憶胞包括具有一第二體積之非晶態材料的主動區,該第二體積小於該第一體積,且該脈衝波形係用來使在該高電阻值範圍中的該些記憶胞的該些主動區的溫度高於一熔點,並使在該低電阻值範圍中的該些記憶胞的該些主動區的溫度低於該熔點,其中N大於2。The memory device of claim 8, wherein the N resistance value specification ranges include a high resistance value range and a low resistance value range, and the memory cells in the high resistance value range include a first An active region of a volume of amorphous material, the memory cells in the low resistance range comprising an active region having a second volume of amorphous material, the second volume being smaller than the first volume, and the pulse waveform The temperature of the active regions of the memory cells in the high resistance range is higher than a melting point, and the temperature of the active regions of the memory cells in the low resistance range is low. At the melting point, wherein N is greater than 2. 如申請專利範圍第9項所述之記憶裝置,其中該N個電阻值指定範圍包括一或多個中間電阻值範圍,在該一或多個中間電阻值範圍中的該些記憶胞包括具有體積介於該第一體積和該第二體積之間之非晶態材料的主動區,該一或多個中間電阻值範圍係介於該高電阻值範圍和低電阻值範圍之間,其中N大於2。The memory device of claim 9, wherein the N resistance value specified ranges include one or more intermediate resistance value ranges, and the memory cells in the one or more intermediate resistance value ranges include a volume An active region of the amorphous material between the first volume and the second volume, the one or more intermediate resistance values ranging between the high resistance value range and the low resistance value range, wherein N is greater than 2. 如申請專利範圍第8項所述之記憶裝置,其中該控制器用以施加一组復原脈衝,該组復原脈衝包括具有該脈衝波形的該復原脈衝以及具有一第二脈衝波形的一第二復原脈衝,該第二脈衝波形對應於該組程式化記憶胞中一記憶胞的一決定的電阻位準。The memory device of claim 8, wherein the controller is configured to apply a set of reset pulses, the set of reset pulses including the reset pulse having the pulse waveform and a second reset pulse having a second pulse waveform The second pulse waveform corresponds to a determined resistance level of a memory cell in the set of stylized memory cells. 如申請專利範圍第8項所述之記憶裝置,其中各該電阻值指定範圍係對應一特定資料值。The memory device of claim 8, wherein each of the resistance value specified ranges corresponds to a specific data value. 如申請專利範圍第8項所述之記憶裝置,其中該控制器用以: 讀取該組程式化記憶胞中的該些記憶胞以決定該組程式化記憶胞中的該些記憶胞的電阻值位準;以及      施加複數個復原脈衝至該組程式化記憶胞中位於該決定的電阻值位準的記憶胞,該些復原脈衝的脈衝波形係各別對應於該決定的電阻值位準。The memory device of claim 8, wherein the controller is configured to: read the memory cells in the set of stylized memory cells to determine resistance values of the memory cells in the set of stylized memory cells; And applying a plurality of resetting pulses to the memory cells of the set of stylized memory cells at the determined resistance level, the pulse waveforms of the restored pulses respectively corresponding to the determined resistance value level. 如申請專利範圍第8項所述之記憶裝置,其中該控制器用以:      讀取該組程式化記憶胞中的該些記憶胞以決定該組程式化記憶胞中的該些記憶胞的電阻值位準;以及      施加複數個復原脈衝至該組程式化記憶胞中位於該多個決定的電阻值位準的記憶胞,該些復原脈衝具有一相同脈衝波形。The memory device of claim 8, wherein the controller is configured to: read the memory cells in the set of stylized memory cells to determine resistance values of the memory cells in the set of stylized memory cells; And applying a plurality of reset pulses to the memory cells of the set of stylized memory cells at the plurality of determined resistance value levels, the reset pulses having an identical pulse waveform. 如申請專利範圍第8項所述之記憶裝置,其中該控制器用以施加複數個復原脈衝至該組程式化記憶胞中位於多個電阻值位準的記憶胞,該些復原脈衝具有一相同脈衝波形。The memory device of claim 8, wherein the controller is configured to apply a plurality of recovery pulses to the memory cells of the set of stylized memory cells at a plurality of resistance levels, the restoration pulses having the same pulse Waveform.
TW104136543A 2015-09-04 2015-11-05 Memory device for resistance drift recovery and operating method thereof TWI581265B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/846,393 US9558823B1 (en) 2015-09-04 2015-09-04 Resistance drift recovery method for MLC PCM

Publications (2)

Publication Number Publication Date
TW201711032A true TW201711032A (en) 2017-03-16
TWI581265B TWI581265B (en) 2017-05-01

Family

ID=57867551

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104136543A TWI581265B (en) 2015-09-04 2015-11-05 Memory device for resistance drift recovery and operating method thereof

Country Status (3)

Country Link
US (1) US9558823B1 (en)
CN (1) CN106504785B (en)
TW (1) TWI581265B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779768B (en) * 2020-12-29 2022-10-01 南亞科技股份有限公司 Method for characterizing resistance state of programmable element

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10373679B1 (en) * 2016-05-24 2019-08-06 SK Hynix Inc. Electronic device and method for reading data of resistive memory cell including drift recovery
KR20180043431A (en) * 2016-10-19 2018-04-30 에스케이하이닉스 주식회사 Resistive memory device and memory system including the same
FR3066308B1 (en) 2017-05-09 2021-07-30 Commissariat Energie Atomique PROCESS FOR MANAGING THE ENDURANCE OF A NON-VOLATILE REWRITING MEMORY AND DEVICE FOR PROGRAMMING SUCH A MEMORY
US10706920B2 (en) 2017-11-02 2020-07-07 Samsung Electronics Co., Ltd. Memory device
KR102157358B1 (en) * 2019-01-07 2020-09-18 삼성전자 주식회사 Phase change random access memory element for improving resistance drift and dynamic resistance drift compensation method of the same
US10943657B1 (en) 2019-08-19 2021-03-09 Micron Technology, Inc. Mitigation of voltage threshold drift associated with power down condition of non-volatile memory device
JP2021039816A (en) * 2019-09-05 2021-03-11 キオクシア株式会社 Semiconductor storage device
US11195999B2 (en) 2019-11-13 2021-12-07 International Business Machines Corporation Phase change material with reduced reset state resistance drift
US10964385B1 (en) * 2019-11-14 2021-03-30 Micron Technology, Inc. Restoring memory cell threshold voltages
US11121319B2 (en) 2019-12-11 2021-09-14 International Business Machines Corporation Phase-change memory with no drift
US11164628B2 (en) 2020-02-21 2021-11-02 International Business Machines Corporation Compensating PCM drift for neuromorphic applications
US11302390B2 (en) * 2020-07-10 2022-04-12 Micron Technology, Inc. Reading a multi-level memory cell
US11410722B2 (en) 2020-10-21 2022-08-09 Samsung Electronics Co., Ltd. Phase-change memory device for improving resistance drift and dynamic resistance drift compensation method of the same
DE102021121750A1 (en) * 2021-08-23 2023-02-23 Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Körperschaft des öffentlichen Rechts Method of operating an electrically programmable memory cell with a chalcogenide for multi-level data storage

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6914801B2 (en) * 2003-05-13 2005-07-05 Ovonyx, Inc. Method of eliminating drift in phase-change memory
KR101469831B1 (en) * 2007-04-30 2014-12-09 삼성전자주식회사 Multi-level phase change memory device with improved read performance
US7940552B2 (en) * 2007-04-30 2011-05-10 Samsung Electronics Co., Ltd. Multiple level cell phase-change memory device having pre-reading operation resistance drift recovery, memory systems employing such devices and methods of reading memory devices
KR101308549B1 (en) * 2007-07-12 2013-09-13 삼성전자주식회사 Multi-level phase change memory device and write method thereof
TWI375224B (en) * 2009-11-20 2012-10-21 Ind Tech Res Inst Voltage compensation circuit, multi-level memory device with the same, and voltage compensation method for reading the multi-level memory device
US8779777B2 (en) * 2010-06-04 2014-07-15 Linear Technology Corporation Dynamic compensation of aging drift in current sense resistor
US9208871B2 (en) * 2012-01-30 2015-12-08 HGST Netherlands B.V. Implementing enhanced data read for multi-level cell (MLC) memory using threshold voltage-drift or resistance drift tolerant moving baseline memory data encoding
KR20140080945A (en) * 2012-12-21 2014-07-01 에스케이하이닉스 주식회사 Non-volatile memory apparatus
JP2014211937A (en) * 2013-04-03 2014-11-13 パナソニック株式会社 Writing method of resistance-change type nonvolatile memory element and resistance-change type nonvolatile memory device
KR20150040605A (en) * 2013-10-07 2015-04-15 에스케이하이닉스 주식회사 Semiconductor Memory Apparatus and Refresh Method Thereof, and System Having the Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779768B (en) * 2020-12-29 2022-10-01 南亞科技股份有限公司 Method for characterizing resistance state of programmable element

Also Published As

Publication number Publication date
TWI581265B (en) 2017-05-01
CN106504785A (en) 2017-03-15
CN106504785B (en) 2019-07-05
US9558823B1 (en) 2017-01-31

Similar Documents

Publication Publication Date Title
TWI581265B (en) Memory device for resistance drift recovery and operating method thereof
JP4282612B2 (en) Memory device and refresh method thereof
JP5478861B2 (en) How to program phase change materials
TWI261752B (en) Refreshing memory cells of a phase change material memory device
JP5321928B2 (en) Management of readout distribution of phase change memory
KR101904209B1 (en) Apparatus and methods for sensing hard bit and soft bits
KR102483922B1 (en) Methods and systems for detecting degradation of resistive memory device
KR101025053B1 (en) Semiconductor device
TWI609374B (en) Memory device and operation method thereof
JP2009054274A (en) Resistance variable memory device, operation method thereof and resistance variable memory system
US10409676B1 (en) SRAM bit-flip protection with reduced overhead
US10777270B2 (en) Methods and systems for compensating for degradation of resistive memory device
US9208876B1 (en) Verify pulse delay to improve resistance window
US9336874B2 (en) Mixed mode programming for phase change memory
JP2023516346A (en) Counter-based sense amplifier method for memory cells
KR20210036249A (en) Techniques to generate and adjust program current pulses for cross-point nonvolatile memory
KR102651129B1 (en) Data rewriting method of memory device, memory controller controlling the memory device and controlling method of the memory controller
TW201628003A (en) Memory circuit and operating method thereof
TWI751495B (en) Semiconductor memory device
CN112447205B (en) Semiconductor memory device with a memory cell having a memory cell with a memory cell having a memory cell
CN114514579A (en) Voltage distribution for reducing read disturb in memory cells
JP2015185191A (en) Resistance type memory
TW202340961A (en) Memory device and memory control method
CN115527571A (en) Cross-point memory read techniques to mitigate drift errors
JP2013118042A (en) Semiconductor device