TW201710574A - Ballistic resistant composite material - Google Patents

Ballistic resistant composite material Download PDF

Info

Publication number
TW201710574A
TW201710574A TW105109292A TW105109292A TW201710574A TW 201710574 A TW201710574 A TW 201710574A TW 105109292 A TW105109292 A TW 105109292A TW 105109292 A TW105109292 A TW 105109292A TW 201710574 A TW201710574 A TW 201710574A
Authority
TW
Taiwan
Prior art keywords
component
composite
fibers
wax
crystalline component
Prior art date
Application number
TW105109292A
Other languages
Chinese (zh)
Inventor
亨瑞 亞蒂夫
羅爾夫 克林
達利亞 泰勒
Original Assignee
哈尼威爾國際公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尼威爾國際公司 filed Critical 哈尼威爾國際公司
Publication of TW201710574A publication Critical patent/TW201710574A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0471Layered armour containing fibre- or fabric-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0035Protective fabrics
    • D03D1/0052Antiballistic fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0471Layered armour containing fibre- or fabric-reinforced layers
    • F41H5/0485Layered armour containing fibre- or fabric-reinforced layers all the layers being only fibre- or fabric-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • B32B2571/02Protective equipment defensive, e.g. armour plates, anti-ballistic clothing
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

The present disclosure relates to a ballistic resistant composite 20 including a bimodal binder, the composite formable in a manner in which it is exposed to low pressure for a short duration of time and at a controlled temperature. More particularly, the bimodal binder of composite 20 allows the composite to be formed with a flat-bed laminator, for example, which may be less expensive than other processing methods, such as a steel belt press.

Description

防彈複合材料 Bulletproof composite 相關申請案之交叉參考Cross-reference to related applications

本申請案主張於2015年3月26日提出申請之序列號為62/138,548之同在申請中的美國臨時申請案之權益,該美國臨時申請案之揭示內容以全文引用之方式併入本文中。 The present application claims the benefit of the U.S. Provisional Application Serial No. 62/138,548, the entire disclosure of which is hereby incorporated by reference in its entirety in .

本發明係關於一種以雙模態黏結劑形成之複合物。特定而言,本發明係關於一種由複數個纖維及一雙模態黏結劑形成之防彈複合物及形成該防彈複合物之方法。 This invention relates to a composite formed from a bimodal binder. In particular, the present invention relates to a ballistic resistant composite formed from a plurality of fibers and a dual mode cement and a method of forming the ballistic resistant composite.

防彈物件可含有高強度纖維,該等高強度纖維可形成為各種物件,諸如背心、頭盔、運載工具面板、額外服裝物件以及抵抗子彈、彈片及彈殼穿透之用於軍事或警務應用之額外物項。例示性高強度纖維係聚乙烯纖維、芳綸纖維、石墨纖維、耐綸纖維、玻璃纖維及諸如此類。對於諸多應用(諸如防彈服裝物件)而言,該等纖維可用於織造或編織織物中。對於其他應用而言,該等纖維可封裝或嵌入於聚合基質材料中以形成織造或非織造複合物。 The ballistic resistant article may contain high strength fibers that may be formed into a variety of articles such as vests, helmets, vehicle panels, additional clothing items, and additional items for military or police applications that resist penetration of bullets, shrapnel, and cartridges. item. Exemplary high strength fibers are polyethylene fibers, aramid fibers, graphite fibers, nylon fibers, glass fibers, and the like. For many applications, such as ballistic apparel articles, such fibers can be used in woven or woven fabrics. For other applications, the fibers can be encapsulated or embedded in a polymeric matrix material to form a woven or nonwoven composite.

硬或剛性的身體裝甲提供良好防彈性,但可係笨重的且堅硬的。因此,身體裝甲衣服(諸如防彈背心)較佳地由撓性或軟的裝甲材料形成。然而,儘管此等撓性或軟的裝甲材料具有良好防彈品質,但此等材料亦可展現影響裝甲之耐久性之低耐磨性。另外,硬防彈物件 及軟防彈物件耐受可使材料之防彈性降級之環境條件係必要的。舉例而言,由於軍事應用之本質,防彈物件可曝露於可使材料降級之多種環境條件(諸如海水、汽油、槍潤滑劑及石油)。如此,防彈物件應形成為在曝露於環境條件或物質時抵抗此降級。 Hard or rigid body armor provides good ball resistance, but can be bulky and hard. Thus, body armored garments, such as bulletproof vests, are preferably formed from a flexible or soft armor material. However, although such flexible or soft armor materials have good ballistic quality, such materials can exhibit low abrasion resistance that affects the durability of the armor. In addition, hard bulletproof objects And the soft ballistic resistant material is necessary to degrade the material's anti-elasticity. For example, due to the nature of military applications, ballistic resistant articles can be exposed to a variety of environmental conditions (such as seawater, gasoline, gun lubricants, and petroleum) that can degrade materials. As such, the ballistic resistant article should be formed to resist this degradation when exposed to environmental conditions or materials.

參考圖1,一種用於產生軟防彈身體裝甲之方法係利用帶式壓機,諸如鋼帶式壓機2。以圖解說明方式,鋼帶式壓機2係等壓鋼帶式壓機或雙帶式壓機,其包含第一帶10、第二帶12、支撐第一帶10之第一複數個輥4、支撐第二帶12之第二複數個輥6及溫度單元8。如圖1中所展示,第一複數個輥4沿順時針方向旋轉且定位於第二複數個輥6上面。相反地,第二複數個輥6沿逆時針方向旋轉,其結合第一複數個輥4之順時針旋轉來使複合物14前進穿過鋼帶式壓機2。 Referring to Figure 1, a method for producing a soft bulletproof body armor utilizes a belt press, such as a steel belt press 2. By way of illustration, a steel belt press 2 is an equal pressure steel belt press or a double belt press comprising a first belt 10, a second belt 12, and a first plurality of rollers 4 supporting the first belt 10. The second plurality of rollers 6 and the temperature unit 8 supporting the second belt 12. As shown in FIG. 1, the first plurality of rollers 4 are rotated in a clockwise direction and positioned above the second plurality of rollers 6. Conversely, the second plurality of rollers 6 rotate in a counterclockwise direction in conjunction with the clockwise rotation of the first plurality of rollers 4 to advance the composite 14 through the steel belt press 2.

複合物14可由高效能纖維及黏結劑構成。黏結劑可至少部分地由聚合材料形成且可透過習用塗佈製程(例如,澆鑄、分散)而施加至纖維。 The composite 14 can be composed of high performance fibers and a binder. The binder can be formed at least in part from a polymeric material and can be applied to the fibers by conventional coating processes (eg, casting, dispersion).

當複合物14進入鋼帶式壓機2時,第一帶10及第二帶12經組態以在複合物14前進穿過鋼帶式壓機2時將高達大約70巴或1,000psi之連續壓力施加至複合物14。另外,複合物14通過包含加熱部分8a及冷卻部分8b之溫度單元8。如此,複合物14接收來自第一帶10及第二帶12之連續高壓力,同時既被加熱又被冷卻,此導致高度壓縮及複合物14中之空氣空隙之減少。據信,來自鋼帶式壓機2之壓縮移除複合物14內之空隙及其他間隙,藉此提供抵抗腐蝕及降級條件之平滑表面。 When the composite 14 enters the steel belt press 2, the first belt 10 and the second belt 12 are configured to be continuous up to about 70 bar or 1,000 psi as the composite 14 advances through the steel belt press 2. Pressure is applied to the composite 14. Further, the composite 14 passes through the temperature unit 8 including the heating portion 8a and the cooling portion 8b. As such, the composite 14 receives continuous high pressure from the first belt 10 and the second belt 12 while being both heated and cooled, which results in a high degree of compression and a reduction in air voids in the composite 14. It is believed that the compression from the strip press 2 removes voids and other gaps within the composite 14, thereby providing a smooth surface that resists corrosion and degradation conditions.

使用鋼帶式壓機2來產生防彈複合物14之一個缺點在於:由於鋼帶式壓機2之高費用,與產生複合物14相關聯之成本可係高的。然而,經組態以將壓力、熱量及冷卻施加至複合物14之其他較廉價處理技術不可經組態以施加類似位準之壓力及/或連續壓力。另外,藉由此等較廉價處理技術而產生之身體裝甲及其他防彈材料應經組態以在 不損害此等複合物之防彈性質之情況下耐受被認為會使其材料性質降級之環境條件(例如,燃料、鹽水、濕度等)。因此,需要一種產生可耐受各種環境條件之軟防彈物件之低成本方法。 One disadvantage of using the steel belt press 2 to create the ballistic resistant composite 14 is that the cost associated with producing the composite 14 can be high due to the high cost of the steel belt press 2. However, other less expensive processing techniques configured to apply pressure, heat, and cooling to the composite 14 may not be configured to apply a similar level of pressure and/or continuous pressure. In addition, body armor and other ballistic resistant materials produced by such relatively inexpensive processing techniques should be configured to Environmental conditions (eg, fuel, brine, humidity, etc.) that are believed to degrade material properties without compromising the ballistic properties of such composites. Therefore, there is a need for a low cost method of producing soft ballistic resistant articles that can withstand a variety of environmental conditions.

本發明提供一種包含複數個纖維及施加至該複數個纖維之雙模態黏結劑之防彈複合物。 The present invention provides a ballistic resistant composite comprising a plurality of fibers and a bimodal binder applied to the plurality of fibers.

在本發明之一個形式中,本發明提供一種防彈複合物,其包括複數個纖維及施加至該複數個纖維之雙模態黏結劑。該黏結劑包含具有熔化溫度之結晶組分及具有軟化溫度之非晶組分。該結晶組分及該非晶組分相對於彼此而具有以下性質中之至少一者:(1)該結晶組分之該熔化溫度小於該非晶組分之該軟化溫度;(2)在高於該結晶組分之該熔化溫度之溫度下,該結晶組分之黏度小於該非晶組分之黏度;及(3)在高於該結晶組分之該熔化溫度之溫度下,該結晶組分之表面能小於該非晶組分之表面能。 In one form of the invention, the invention provides a ballistic resistant composite comprising a plurality of fibers and a bimodal binder applied to the plurality of fibers. The binder contains a crystalline component having a melting temperature and an amorphous component having a softening temperature. The crystalline component and the amorphous component have at least one of the following properties with respect to each other: (1) the melting temperature of the crystalline component is less than the softening temperature of the amorphous component; (2) above the The viscosity of the crystalline component at a temperature at which the crystalline component is at a melting temperature is less than the viscosity of the amorphous component; and (3) the surface of the crystalline component at a temperature above the melting temperature of the crystalline component It can be smaller than the surface energy of the amorphous component.

在某些實施例中,該結晶組分係選自由以下各項組成之群組之蠟材料:棕櫚蠟、硬脂醯胺蠟、聚乙烯蠟、石蠟、聚烯烴蠟及微晶蠟,且該非晶組分係選自由以下各項組成之群組之聚合材料:丙烯酸、聚胺甲酸酯、腈橡膠、丙烯腈丁二烯共聚物及氟碳化合物。另外,該複數個纖維可由聚乙烯構成。 In certain embodiments, the crystalline component is selected from the group consisting of wax materials: palm wax, stearylamine wax, polyethylene wax, paraffin wax, polyolefin wax, and microcrystalline wax, and the non-crystalline The crystalline component is selected from the group consisting of polymeric materials consisting of acrylic acid, polyurethane, nitrile rubber, acrylonitrile butadiene copolymer, and fluorocarbon. Additionally, the plurality of fibers may be comprised of polyethylene.

在某些實施例中,該複數個纖維界定至少第一纖維疊層(ply)及與該第一纖維疊層成90度地定向之第二纖維疊層。 In certain embodiments, the plurality of fibers define at least a first fiber laminate and a second fiber laminate oriented 90 degrees from the first fiber laminate.

在某些實施例中,該非晶組分構成該雙模態黏結劑之60wt.%至95wt.%,且該結晶組分構成該雙模態黏結劑之5wt.%至40wt.%。 In certain embodiments, the amorphous component constitutes from 60 wt.% to 95 wt.% of the bimodal binder, and the crystalline component constitutes from 5 wt.% to 40 wt.% of the bimodal binder.

在某些實施例中,該結晶組分之該熔化溫度係約50℃至140℃。 In certain embodiments, the melting temperature of the crystalline component is between about 50 ° C and 140 ° C.

在本發明之另一形式中,本發明提供一種形成防彈複合物之方法,其包括:提供呈單向定向之第一複數個纖維;提供呈單向定向之 第二複數個纖維;及提供具有非晶組分及結晶組分之黏結劑。該方法進一步包括:用該黏結劑塗佈該第一複數個纖維;用該黏結劑塗佈該第二複數個纖維;以與該第二複數個纖維成90度之角定位該第一複數個纖維;將該第一及第二複數個纖維加熱至在該結晶組分之熔化溫度範圍內之溫度;當該第一及第二複數個纖維處於該結晶組分之熔點範圍內之溫度時,將小於1巴之壓力施加至該第一及第二複數個纖維;及使該第一及第二複數個纖維冷卻。 In another form of the invention, the invention provides a method of forming a ballistic resistant composite, comprising: providing a first plurality of fibers oriented in a unidirectional direction; providing a unidirectional orientation a second plurality of fibers; and a binder having an amorphous component and a crystalline component. The method further includes: coating the first plurality of fibers with the binder; coating the second plurality of fibers with the binder; positioning the first plurality of fibers at an angle of 90 degrees to the second plurality of fibers a fiber; heating the first and second plurality of fibers to a temperature within a melting temperature range of the crystalline component; and when the first and second plurality of fibers are at a temperature within a melting point of the crystalline component, Applying a pressure of less than 1 bar to the first and second plurality of fibers; and cooling the first and second plurality of fibers.

在某些實施例中,該壓力步驟係利用平床層壓機來進行。 In certain embodiments, the pressure step is performed using a flat bed laminator.

在某些實施例中,該施加步驟包含:在該加熱步驟期間將小於0.5psi之第一壓力施加至該複合物;及當該複合物處於該結晶組分之該熔點範圍內之該溫度時,施加10psi至300psi之第二壓力。 In certain embodiments, the applying step comprises: applying a first pressure of less than 0.5 psi to the composite during the heating step; and when the composite is at the temperature within the melting point of the crystalline component Apply a second pressure of 10 psi to 300 psi.

在某些實施例中,可將該複合物加熱及/或冷卻達少至0.01秒、0.50秒、1.0秒、1.5秒、2.0秒、2.5秒、3.0秒或者多達1分鐘、2分鐘、3分鐘、4分鐘或5分鐘或者由任一對前述值所限定之任一範圍。 In certain embodiments, the composite can be heated and/or cooled for as little as 0.01 seconds, 0.50 seconds, 1.0 seconds, 1.5 seconds, 2.0 seconds, 2.5 seconds, 3.0 seconds, or up to 1 minute, 2 minutes, 3 Minutes, 4 minutes, or 5 minutes or any range defined by any of the foregoing values.

亦提供一種形成防彈複合物之方法,其包括:提供包括複數個經單向定向之第一纖維之第一纖維疊層,其中該等第一纖維塗佈有包括非晶組分及結晶組分之第一雙模態黏結劑;提供包括複數個經單向定向之第二纖維之第二纖維疊層,其中該等第二纖維塗佈有包括非晶組分及結晶組分之第二雙模態黏結劑;將該第一纖維疊層及第二纖維疊層定位成堆疊式配置,將該第一纖維疊層及該第二纖維疊層加熱至在該結晶組分之熔化溫度範圍內之溫度;當該第一纖維疊層及該第二纖維疊層處於該結晶組分之該熔化溫度範圍內之溫度時,將小於1巴之壓力施加至該等疊層,藉以該第一纖維疊層及第二纖維疊層彼此附著且藉此形成防彈複合物;及使該第一纖維疊層及該第二纖維疊層冷卻。 There is also provided a method of forming a ballistic resistant composite, comprising: providing a first fiber laminate comprising a plurality of unidirectionally oriented first fibers, wherein the first fibers are coated with an amorphous component and a crystalline component a first bimodal binder; providing a second fiber stack comprising a plurality of unidirectionally oriented second fibers, wherein the second fibers are coated with a second pair comprising an amorphous component and a crystalline component a modal binder; positioning the first fiber laminate and the second fiber laminate in a stacked configuration, heating the first fiber laminate and the second fiber laminate to a melting temperature range of the crystalline component a temperature; when the first fiber laminate and the second fiber laminate are at a temperature within the melting temperature range of the crystalline component, a pressure of less than 1 bar is applied to the laminate, whereby the first fiber The laminate and the second fiber laminate are attached to each other and thereby form a ballistic resistant composite; and the first fiber laminate and the second fiber laminate are cooled.

2‧‧‧鋼帶式壓機 2‧‧‧Steel belt press

4‧‧‧第一複數個輥 4‧‧‧First multiple rolls

6‧‧‧第二複數個輥 6‧‧‧Second multiple rolls

8‧‧‧溫度單元 8‧‧‧Temperature unit

8a‧‧‧加熱部分 8a‧‧‧heating section

8b‧‧‧冷卻部分 8b‧‧‧cooling section

10‧‧‧第一帶 10‧‧‧First Belt

12‧‧‧第二帶 12‧‧‧Second belt

14‧‧‧複合物 14‧‧‧Complex

20‧‧‧防彈複合物/複合物 20‧‧‧Bulletproof composites/composites

20a‧‧‧纖維/纖維材料/例示性纖維材料 20a‧‧‧Fiber/fibrous material/exemplary fiber material

20b‧‧‧雙模態聚合基質/黏結劑材料/雙模態黏結劑材料/例示性黏結劑材料/黏結劑 20b‧‧‧Bimodal polymeric matrix/bonding material/dual mode binder material/exemplary binder material/bonding agent

30‧‧‧平床層壓機 30‧‧ ‧ flat bed laminating machine

32‧‧‧第一帶/上部帶/說明性第一帶/帶 32‧‧‧First belt/upper belt/illustrative first belt/belt

33‧‧‧輥 33‧‧‧roll

34‧‧‧第二帶/下部帶/帶 34‧‧‧Second belt/lower belt/belt

35‧‧‧輥 35‧‧‧roll

36‧‧‧通路 36‧‧‧ pathway

38‧‧‧加熱部分/加熱區 38‧‧‧heating section/heating zone

40‧‧‧冷卻部分/冷卻區 40‧‧‧Cooling section/cooling zone

42‧‧‧夾持輥/壓力輥/輥 42‧‧‧Clamping roller/pressure roller/roller

44‧‧‧塗佈裝置 44‧‧‧ Coating device

44a‧‧‧第一塗佈裝置/塗佈裝置 44a‧‧‧First coating device/coating device

44b‧‧‧第二塗佈裝置/塗佈裝置 44b‧‧‧Second coating device/coating device

46‧‧‧輥 46‧‧‧roll

50‧‧‧切線 50‧‧‧tangential

藉由參考連同附圖一起進行的對實施例之以下說明,本發明之上文所提及之特徵及優點以及其他特徵及優點以及獲得該等特徵及優點之方式將變得更顯而易見且將更佳地被理解:其中圖1係等壓鋼帶式壓機及形成於其中之複合材料之示意性剖面圖;圖2係平床層壓機之示意圖;及圖3係具有複數個塗佈裝置之經延伸平床層壓機之示意圖。 The above-mentioned features and advantages and other features and advantages of the present invention, as well as the manner in which the features and advantages are obtained, will become more apparent and BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic cross-sectional view of an isobaric steel belt press and a composite material formed therein; Figure 2 is a schematic view of a flat bed laminator; and Figure 3 is a plurality of coating devices Schematic of an extended flat bed laminator.

本發明係關於一種包含雙模態黏結劑之防彈複合物20,該複合物可以其中在短的持續時間內且在受控溫度下將該複合物曝露於低壓力之方式形成。更特定而言,複合物20之該雙模態黏結劑允許利用(舉例而言)可比其他處理方法(諸如鋼帶式壓機)廉價之平床層壓機來形成該複合物。 The present invention is directed to a ballistic resistant composite 20 comprising a bimodal binder which can be formed in such a manner that the composite is exposed to low pressure for a short duration of time and at a controlled temperature. More specifically, the bimodal binder of composite 20 allows for the formation of the composite using, for example, a flat bed laminator that is inexpensive compared to other processing methods, such as steel belt presses.

複合物20包含嵌入於雙模態聚合基質或黏結劑材料20b中之複數個纖維20a(圖3)。雙模態黏結劑材料20b包含非晶組分之第一模式及結晶組分之第二模式,如本文中所進一步詳述。更特定而言,非晶組分構成黏結劑材料20b之多數組分且可在化學及/或在物理上與結晶組分不相容。舉例而言,如本文中所進一步詳述,至少非晶組分之軟化溫度(或另一選擇係,玻璃轉變溫度)及材料結構不同於結晶組分之軟化溫度(或另一選擇係,玻璃轉變溫度)及材料結構。 Composite 20 comprises a plurality of fibers 20a (Fig. 3) embedded in a bimodal polymeric matrix or binder material 20b. The dual mode cement material 20b comprises a first mode of amorphous components and a second mode of crystalline components, as further detailed herein. More specifically, the amorphous component constitutes most of the components of the binder material 20b and may be chemically and/or physically incompatible with the crystalline component. For example, as further detailed herein, at least the softening temperature (or another choice, glass transition temperature) and material structure of the amorphous component is different from the softening temperature of the crystalline component (or another selection, glass). Transition temperature) and material structure.

A. 纖維材料 A. Fiber material

防彈複合物20包含嵌入有雙模態黏結劑材料20b之纖維材料20a。纖維材料20a由複數個纖維形成,該複數個纖維中之每一者具有一伸長主體,該伸長主體具有遠大於寬度及厚度之橫向尺寸之長度。纖維材料20a之纖維之剖面可係圓形的、平坦的或長橢圓形的。因此,術 語「纖維」包含具有規則或不規則剖面之細絲、絲帶、條帶及諸如此類。纖維材料20a中之每一纖維亦可具有自纖維之線性或縱向軸線突出之規則或不規則多瓣片剖面。 The ballistic resistant composite 20 comprises a fibrous material 20a embedded with a bimodal cement material 20b. The fibrous material 20a is formed from a plurality of fibers, each of the plurality of fibers having an elongated body having a length that is much greater than the transverse dimension of the width and thickness. The cross-section of the fibers of the fibrous material 20a can be round, flat or oblong. Therefore, surgery The term "fiber" includes filaments, ribbons, strips, and the like having a regular or irregular cross section. Each of the fibers 20a may also have a regular or irregular multi-lobed profile that protrudes from the linear or longitudinal axis of the fibers.

例示性纖維材料20a包括非織造、交叉疊層的單向織物。更特定而言,纖維材料20a包含以交叉疊層組態定向之複數個單向纖維疊層,在該交叉疊層組態中纖維材料20a之第一疊層與纖維之毗鄰第二疊層成90度地定向。每一疊層內之纖維係彼此毗鄰且彼此平行的,且因此,該等纖維以單向配置定向。在一項實施例中,每一纖維之直徑可係大約0.063英吋或1.588mm。 Exemplary fibrous material 20a comprises a nonwoven, cross-laminated unidirectional fabric. More specifically, the fibrous material 20a comprises a plurality of unidirectional fiber laminates oriented in a cross-laminate configuration in which the first laminate of fibrous material 20a is adjacent to the second laminate of fibers Oriented 90 degrees. The fibers within each laminate are adjacent to each other and parallel to each other, and thus, the fibers are oriented in a unidirectional configuration. In one embodiment, each fiber may be about 0.063 inches or 1.588 mm in diameter.

纖維材料20a可由聚乙烯纖維、芳綸纖維、石墨纖維、耐綸纖維、玻璃纖維及諸如此類構成。舉例而言,在一項實施例中,纖維材料20a由超高分子量聚乙烯(諸如Honeywell 1150-denier SPECTRA® Merge 95121 UHMWPE纖維及/或Honeywell 1300-denier SPECTRA® Merge 95159 UHMWPE纖維)構成。纖維材料20a中之每一纖維疊層可具有自約15g/m2至約250g/m2(通常係自約20g/m2至約100g/m2且經常係自約25g/m2至約70g/m2且最佳地係約35g/m2)之纖維面密度。纖維面密度係指每單位面積的僅纖維(亦即,不包含黏結劑)之重量。可在於2011年8月9日發佈之美國專利第7,994,075號及於2011年9月13日發佈之美國專利第8,017,530號中揭示纖維材料20a之額外細節,該等美國專利之完整揭示內容以引用方式明確地併入本文中。 The fibrous material 20a may be composed of polyethylene fiber, aramid fiber, graphite fiber, nylon fiber, glass fiber, and the like. For example, in one embodiment, the fibrous material 20a is comprised of ultra high molecular weight polyethylene (such as Honeywell 1150-denier SPECTRA ® Merge 95121 UHMWPE fiber and/or Honeywell 1300-denier SPECTRA ® Merge 95159 UHMWPE fiber). Each of the fibrous materials 20a can have a fiber layup of from about 15 g/m 2 to about 250 g/m 2 (typically from about 20 g/m 2 to about 100 g/m 2 and often from about 25 g/m 2 to about A fiber areal density of 70 g/m 2 and most preferably about 35 g/m 2 ). Fiber areal density refers to the weight of only fibers per unit area (ie, without the binder). Additional details of fiber material 20a are disclosed in U.S. Patent No. 7,994,075, issued on Aug. 9, 2011, and U.S. Pat. It is expressly incorporated herein.

B. 雙模態黏結劑材料 B. Bimodal binder material

將雙模態黏結劑材料20b施加至纖維材料20a以形成防彈複合物20。例示性黏結劑材料20b係由非晶組分(其具有可透過放大而辨別之非晶相)及結晶組分(其具有可透過放大而辨別之結晶相)構成之雙模態黏結劑,如熟習此項技術者已知。 The bimodal binder material 20b is applied to the fibrous material 20a to form the ballistic resistant composite 20. The exemplary binder material 20b is a bimodal binder composed of an amorphous component having an amorphous phase which is permeable to amplification and a crystalline component having a crystal phase which is identifiable by amplification, such as It is known to those skilled in the art.

1. 非晶組分 Amorphous component

黏結劑材料20b之非晶組分表徵為非晶的,此乃因其不具有係結晶材料之特性之長程有序性。長程有序性之缺少允許非晶組分係撓性的,此允許複合物20中之撓性且可在形成經組態以在穿戴時彎曲且移動之軟身體裝甲時係必要的。黏結劑材料20b之例示性非晶組分界定黏結劑材料20b之多數組分。舉例而言,非晶組分可構成黏結劑材料20b之總體重量之至少55%、60%、65%、70%、75%、80%、85%、90%、95%、99%或在由任一對前述值所限定之任一範圍內。 The amorphous component of the binder material 20b is characterized as amorphous because it does not have the long-range order of the properties of the crystalline material. The lack of long-range order allows the amorphous component to be flexible, which allows for flexibility in the composite 20 and can be necessary to form soft body armor that is configured to bend and move when worn. The exemplary amorphous component of the binder material 20b defines most of the components of the binder material 20b. For example, the amorphous component can constitute at least 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or at least the total weight of the binder material 20b. Any range defined by any of the foregoing values.

非晶組分可由液體或粉末樹脂構成,諸如聚胺甲酸酯樹脂、丙烯酸樹脂、腈橡膠樹脂、丙烯腈丁二烯共聚物樹脂、氟碳化合物樹脂、聚丁二烯樹脂、聚異戊二烯樹脂、乙烯-丙烯樹脂、多硫化物樹脂、聚丙烯酸酯樹脂、聚酯樹脂及/或聚醚樹脂。舉例而言,黏結劑材料20b之非晶組分可係以40%之固體供應之丙烯腈丁二烯共聚物之水性分散體(諸如TYLAC® 873,其可自夏洛特市((Charlotte),NC000000)之Mallard Creek Polymers購得)及/或氟碳化合物樹脂之水性分散體(諸如NUVA® 2040,其可自德國之Clariant GMBH公司購得)。 The amorphous component may be composed of a liquid or a powdered resin such as a polyurethane resin, an acrylic resin, a nitrile rubber resin, an acrylonitrile butadiene copolymer resin, a fluorocarbon resin, a polybutadiene resin, and a polyisoprene. An olefin resin, an ethylene-propylene resin, a polysulfide resin, a polyacrylate resin, a polyester resin, and/or a polyether resin. For example, the amorphous component of the binder material 20b can be an aqueous dispersion of an acrylonitrile butadiene copolymer supplied at 40% solids (such as TYLAC ® 873, available from Charlotte (Charlotte) , available from Mallard Creek Polymers of NC000000) and/or aqueous dispersions of fluorocarbon resins (such as NUVA ® 2040, available from Clariant GMBH, Germany).

當在結晶組分之熔化溫度內之溫度下時,黏結劑材料20b之例示性非晶組分具有比結晶組分大之黏度、表面能及/或軟化溫度。更特定而言,在一項實施例中,結晶組分及非晶組分經選擇使得結晶組分之熔化溫度小於非晶組分之軟化溫度,及/或當在高於結晶組分之熔化溫度之溫度下時,結晶組分之黏度小於非晶組分之黏度。另外,非晶組分及結晶組分可經選擇使得在高於結晶組分之熔化溫度之溫度下,結晶組分之表面能小於非晶組分之表面能。舉例而言,在一項實施例中,黏結劑材料20b之非晶組分之軟化溫度小於纖維材料20a之降解溫度但實質上大於結晶組分之熔化溫度,使得當結晶組分熔化並開始流動時,非晶組分不會明顯地熔化或經歷物理改變且可甚至展現流 動阻力。更特定而言,非晶材料可不具有相異熔點但將在軟化溫度範圍內開始軟化且將隨溫度增加而繼續軟化。相反地,結晶材料具有真實熔化溫度且在短得多的溫度範圍內自硬固體劇烈地改變為流體。以此方式,非晶組分與結晶組分不相容,此乃因在結晶組分之物理轉化期間,非晶組分不在物理上改質或在化學上與結晶組分反應。在一項實例中,Honeywell 1150-denier SPECTRA® Merge 95121 UHMWPE纖維及/或Honeywell 1300-denier SPECTRA® Merge 95159 UHMWPE纖維可具有約140℃之降解溫度,且結晶組分可具有高達140℃之熔化溫度,如本文中所進一步詳述。因此,非晶組分之軟化溫度可低至90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃或者高達200℃、210℃、220℃、230℃、240℃、250℃、260℃或更大或者可在由任一對前述值所限定之任一範圍內。 The exemplary amorphous component of the binder material 20b has a greater viscosity, surface energy, and/or softening temperature than the crystalline component when at a temperature within the melting temperature of the crystalline component. More particularly, in one embodiment, the crystalline component and the amorphous component are selected such that the melting temperature of the crystalline component is less than the softening temperature of the amorphous component, and/or when melting above the crystalline component At the temperature of the temperature, the viscosity of the crystalline component is less than the viscosity of the amorphous component. Further, the amorphous component and the crystalline component may be selected such that the surface energy of the crystalline component is less than the surface energy of the amorphous component at a temperature higher than the melting temperature of the crystalline component. For example, in one embodiment, the softening temperature of the amorphous component of the binder material 20b is less than the degradation temperature of the fibrous material 20a but substantially greater than the melting temperature of the crystalline component such that when the crystalline component melts and begins to flow At the time, the amorphous component does not significantly melt or undergo physical changes and may even exhibit flow resistance. More specifically, the amorphous material may not have a different melting point but will begin to soften in the softening temperature range and will continue to soften as the temperature increases. Conversely, crystalline materials have a true melting temperature and the hard solids change drastically into a fluid over a much shorter temperature range. In this manner, the amorphous component is incompatible with the crystalline component because the amorphous component does not physically modify or chemically react with the crystalline component during physical conversion of the crystalline component. In one example, Honeywell 1150-denier SPECTRA ® Merge 95121 UHMWPE fiber and/or Honeywell 1300-denier SPECTRA ® Merge 95159 UHMWPE fiber can have a degradation temperature of about 140 ° C, and the crystalline component can have a melting temperature of up to 140 ° C. , as further detailed herein. Therefore, the softening temperature of the amorphous component can be as low as 90 ° C, 100 ° C, 110 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C, 160 ° C, 170 ° C, 180 ° C, 190 ° C or up to 200 ° C, 210 °C, 220 ° C, 230 ° C, 240 ° C, 250 ° C, 260 ° C or more or may be within any of the ranges defined by any of the foregoing values.

另一選擇係,在一項實施例中,非晶組分之軟化溫度可小於結晶組分之熔化溫度。然而,由於當在結晶組分之熔化溫度內之溫度下時非晶組分之黏度及/或表面能大於結晶組分之黏度及/或表面能,因此非晶組分將保持為固體或高度黏性,且因此,結晶組分將在非晶組分周圍流動使得非晶組分與結晶組分不混合。可在於2011年8月9日發佈之美國專利第7,994,075號及於2011年9月13日發佈之美國專利第8,017,530號中揭示黏結劑材料20b之非晶組分之額外細節,該等美國專利之完整揭示內容以引用方式明確地併入本文中。 Alternatively, in one embodiment, the softening temperature of the amorphous component can be less than the melting temperature of the crystalline component. However, since the viscosity and/or surface energy of the amorphous component is greater than the viscosity and/or surface energy of the crystalline component when at a temperature within the melting temperature of the crystalline component, the amorphous component will remain solid or elevated. Viscosity, and therefore, the crystalline component will flow around the amorphous component such that the amorphous component does not mix with the crystalline component. Additional details of the amorphous component of the binder material 20b are disclosed in U.S. Patent No. 7,994,075, issued on Aug. 9, 2011, and U.S. Patent No. 8,017,530, issued on Sep. 13, 2011. The complete disclosure is expressly incorporated herein by reference.

2. 結晶組分 2. Crystallized components

黏結劑材料20b之結晶組分添加至非晶組分或摻雜至非晶組分中。黏結劑材料20b之結晶組分表徵為結晶的,此乃因其包含由晶格界定的高度有序之分子結構。結晶組分之晶格可透過放大而辨別,如熟習此項技術者已知。不同於非晶組分,結晶組分可具有較小撓性但包含於黏結劑材料20b中,此乃因其允許在具有經減小壓力之處理條 件下對複合物20之壓縮及緻密化,藉此增加複合物20之防彈性質。此外,如下文所進一步論述,在本發明複合物之處理期間,結晶材料經歷允許結晶材料相對於非晶材料流動之相變(諸如熔化)及後續重新凝固以提供所要性質(諸如平滑度及密度)增強以提供對腐蝕環境之抵抗。 The crystalline component of the binder material 20b is added to the amorphous component or doped to the amorphous component. The crystalline component of the binder material 20b is characterized as being crystalline because it contains a highly ordered molecular structure defined by the crystal lattice. The crystal lattice of the crystalline component can be discerned by amplification, as is known to those skilled in the art. Unlike the amorphous component, the crystalline component may have less flexibility but is included in the binder material 20b because it allows for a treated strip having reduced pressure The compression and densification of the composite 20 under the article thereby increasing the ballistic resistance of the composite 20. Moreover, as discussed further below, during processing of the composite of the present invention, the crystalline material undergoes a phase change (such as melting) that allows the flow of the crystalline material relative to the amorphous material and subsequent resolidification to provide desired properties (such as smoothness and density). Enhancement to provide resistance to corrosive environments.

黏結劑材料20b之結晶組分係黏結劑材料20b之少數組分。舉例而言,結晶組分可構成黏結劑材料20b之總體重量之45%、40%、35%、30%、25%、20%、15%、10%、5%、1%或可在由任一對前述值所限定之任一範圍內。 The crystalline component of the binder material 20b is a minority component of the binder material 20b. For example, the crystalline component may constitute 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 1% or more of the total weight of the binder material 20b. Any of the ranges defined by the foregoing values.

結晶組分可由與非晶組分不相容之任何結晶聚合物構成。更特定而言,結晶組分可與非晶組分不相容,使得該兩種組分不會混合或充當單一材料。舉例而言,本發明之結晶組分可係蠟材料,諸如棕櫚蠟、聚乙烯蠟、聚烯烴蠟、石蠟、硬脂醯胺蠟及/或微晶蠟。蠟通常界定為在室溫下係固體但在高於約40℃時熔化或軟化而不會分解之材料。蠟通常係有機的且在室溫下係不溶於水的,但其可係水可潤濕的且可在某些溶劑(諸如非極性有機溶劑)中形成膏體及凝膠。蠟之分子量可介於自約400g/mol至約25,000g/mol之範圍內且可具有介於自約40℃至約150℃之範圍內之熔點。蠟通常不像較高有序性聚合物一樣形成獨立膜且通常係相比油及油脂含有更多碳原子之脂肪族烴。 The crystalline component can be composed of any crystalline polymer that is incompatible with the amorphous component. More specifically, the crystalline component can be incompatible with the amorphous component such that the two components do not mix or act as a single material. For example, the crystalline component of the present invention can be a wax material such as palm wax, polyethylene wax, polyolefin wax, paraffin wax, stearin wax, and/or microcrystalline wax. Wax is generally defined as a material that is solid at room temperature but melts or softens above about 40 ° C without decomposition. Waxes are generally organic and water-insoluble at room temperature, but they may be water-wettable and may form pastes and gels in certain solvents, such as non-polar organic solvents. The wax may have a molecular weight ranging from about 400 g/mol to about 25,000 g/mol and may have a melting point ranging from about 40 °C to about 150 °C. Waxes generally do not form separate films like higher order polymers and are typically aliphatic hydrocarbons containing more carbon atoms than oils and oils.

蠟之黏度通常可取決於蠟之分子量及結晶度而介於自低至高之範圍內。蠟在高於其熔點時之黏度通常係低的。如本文中所使用,「低黏度蠟」闡述在140℃下具有小於或等於約500厘泊(cps)之熔化黏度之蠟。較佳地,低黏度蠟在140℃下具有小於約250cps之黏度,最佳地,低黏度蠟在140℃下具有小於約100cps之黏度。然而,某些線性聚乙烯蠟(約2,000g/mol至約10,000g/mol之分子量)及聚丙烯蠟可在熔化之後具有中至高黏度(亦即,高達10,000cps)。黏度值係使用此 項技術中眾所周知之技術來進行量測且可(舉例而言)使用毛細管流變計、旋轉流變計或移動體流變計來進行量測。較佳量測工具係布式(Brookfield)旋轉黏度計。 The viscosity of the wax can generally range from low to high depending on the molecular weight and crystallinity of the wax. The viscosity of a wax above its melting point is generally low. As used herein, "low viscosity wax" describes a wax having a melt viscosity of less than or equal to about 500 centipoise (cps) at 140 °C. Preferably, the low viscosity wax has a viscosity of less than about 250 cps at 140 ° C. Most preferably, the low viscosity wax has a viscosity of less than about 100 cps at 140 °C. However, certain linear polyethylene waxes (molecular weights of from about 2,000 g/mol to about 10,000 g/mol) and polypropylene waxes may have a medium to high viscosity (i.e., up to 10,000 cps) after melting. Viscosity value is used here Techniques are well known in the art for measurement and can be measured, for example, using a capillary rheometer, a rotating rheometer or a moving body rheometer. A preferred measuring tool is a Brookfield rotational viscometer.

適合蠟包含天然蠟及合成蠟兩者且非排他地包含:動物蠟(諸如蜂蠟、蟲蠟(Chinese wax)、蟲膠蠟、鯨蠟及羊毛蠟(羊毛脂));植物蠟(諸如月桂子蠟、小燭樹蠟、棕櫚蠟、蓖麻蠟、蘆葦蠟、木蠟(Japan wax)、荷荷芭油蠟、小冠椰子蠟、米糠蠟及大豆蠟);礦蠟(諸如純地蠟(ceresin wax)、褐煤蠟、地蠟(ozocerite wax)及泥煤蠟);石油蠟(諸如石蠟及微晶蠟);及合成蠟,其包含聚烯烴蠟、聚乙烯、聚丙烯蠟、費托蠟(Fischer-Tropsch wax)、硬脂醯胺蠟(包含乙烯雙硬脂醯胺蠟)、聚合α-烯烴蠟、取代醯胺蠟(例如經酯化或經皂化之取代醯胺蠟)以及其他在化學上改質之蠟。此外,在美國專利第4,544,694號中闡述適合蠟,該美國專利之完整揭示內容以引用方式明確地併入本文中。此等適合蠟中之較佳蠟包含石蠟、微晶蠟、費托蠟、分支及線性聚乙烯蠟、聚丙烯蠟、大顆粒大小聚乙烯蠟、棕櫚蠟、乙烯雙硬脂醯胺(EBS)蠟及其組合。 Suitable waxes include both natural and synthetic waxes and include, not exclusively, animal waxes (such as beeswax, Chinese wax, shellac wax, cetyl wax and wool wax (lanolin)); vegetable waxes (such as laurel) Wax, candelilla wax, palm wax, ramie wax, reed wax, Japan wax, jojoba oil wax, small crown coconut wax, rice bran wax and soybean wax); mineral wax (such as pure ceresin ( Ceresin wax), montan wax, ozocerite wax and peat wax; petroleum wax (such as paraffin wax and microcrystalline wax); and synthetic wax containing polyolefin wax, polyethylene, polypropylene wax, Fischer-Tropsch wax (Fischer-Tropsch wax), stearylamine wax (containing ethylenebisstearylamine wax), polymeric alpha-olefin wax, substituted guanamine wax (eg esterified or saponified substituted guanamine wax) and others Chemically modified wax. In addition, suitable waxes are set forth in U.S. Patent No. 4,544,694, the entire disclosure of which is expressly incorporated by reference. Preferred waxes for such suitable waxes include paraffin waxes, microcrystalline waxes, Fischer-Tropsch waxes, branched and linear polyethylene waxes, polypropylene waxes, large particle size polyethylene waxes, palm waxes, and ethylenebisstearylamines (EBS). Wax and combinations thereof.

舉例而言,黏結劑材料20b之例示性結晶材料可係:以35%之固體供應之棕櫚蠟之水性分散體(諸如HYDROCERTM EC-35蠟,其可自紐澤西州之紐瓦克市之Shamrock Technologies公司購得);以40%之固體供應之大顆粒大小聚乙烯蠟之水性分散體(諸如LL405,其可自俄亥俄州之辛辛那提市之Michelman公司購得);以35%之固體供應之高密度聚乙烯蠟之水性分散體(諸如Michelman公司之LL411);以32%之固體供應之石蠟之水性分散體(諸如Michelman公司之454);以40%之固體供應之微晶蠟之水性分散體(諸如Michelman公司之HL-480);及/或以40%之固體供應之費托聚乙烯蠟之水性分散體(諸如Michelman公司之ME98040)。 For example, exemplary crystalline material 20b of the binder material can be based: carnauba wax of an aqueous 35% solids supply of the dispersion (such as a wax HYDROCER TM EC-35, which is available from the New Jersey Newark An aqueous dispersion of a large particle size polyethylene wax (such as LL405 available from Michelman, Inc. of Cincinnati, Ohio) supplied as a 40% solids; supplied as a solid at 35% An aqueous dispersion of high density polyethylene wax (such as LL411 from Michelman); an aqueous dispersion of paraffin supplied at 32% solids (such as 454 from Michelman); water based on microcrystalline wax supplied at 40% solids A dispersion (such as HL-480 from Michelman); and/or an aqueous dispersion of Fischer Tropsch polyethylene wax (such as ME98040 from Michelman) supplied at 40% solids.

黏結劑材料20b之例示性結晶組分可具有低熔化黏度及以下熔化溫度:50℃、55℃、60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃、100℃、105℃、110℃、115℃、120℃、125℃、130℃、135℃、140℃或由任一對前述值所限定之任一範圍。更特定而言,棕櫚蠟可具有大約75℃至85℃之熔點及低熔化黏度。類似地,微晶蠟可能具有大約60℃至90℃之熔化溫度及低熔化黏度。另外,費托蠟可具有95℃至100℃之熔化溫度及低熔化黏度。此外,石蠟可具有50℃至70℃之熔化溫度及低熔化黏度。另外,聚乙烯蠟可具有90℃至140℃之熔化溫度且可取決於聚乙烯蠟之結構而具有低黏度、中黏度或高黏度。如此,結晶組分具有允許結晶組分熔化並迅速地冷卻的可僅橫跨約5℃至50℃之急劇熔化溫度範圍。 The exemplary crystalline component of the binder material 20b can have a low melt viscosity and a melting temperature of: 50 ° C, 55 ° C, 60 ° C, 65 ° C, 70 ° C, 75 ° C, 80 ° C, 85 ° C, 90 ° C, 95 ° C, 100 ° C, 105 ° C, 110 ° C, 115 ° C, 120 ° C, 125 ° C, 130 ° C, 135 ° C, 140 ° C or any range defined by any of the foregoing values. More specifically, the palm wax may have a melting point of about 75 ° C to 85 ° C and a low melt viscosity. Similarly, the microcrystalline wax may have a melting temperature of about 60 ° C to 90 ° C and a low melt viscosity. Further, the Fischer-Tropsch wax may have a melting temperature of 95 ° C to 100 ° C and a low melt viscosity. Further, the paraffin wax may have a melting temperature of 50 ° C to 70 ° C and a low melt viscosity. Further, the polyethylene wax may have a melting temperature of from 90 ° C to 140 ° C and may have a low viscosity, a medium viscosity or a high viscosity depending on the structure of the polyethylene wax. As such, the crystalline component has a sharp melting temperature range that can only span about 5 ° C to 50 ° C allowing the crystalline component to melt and rapidly cool.

如本文中所詳述,結晶組分之熔點及熔化黏度可不同於非晶組分之軟化溫度及黏度。以此方式,當結晶組分曝露於在其熔點範圍內之溫度時,該結晶組分迅速地熔化且開始在固體非晶組分周圍流動,該固體非晶組分在該結晶組分之熔點範圍內之溫度下不會明顯地熔化。然後熔化結晶組分能夠填充在經摻合黏結劑材料20b內之任何空隙且亦能夠填充在複合物20內之任何空隙。另外,當結晶組分曝露於小於其熔點範圍之溫度時,該結晶組分迅速地冷卻以再次形成固相。然而,由於結晶組分在處於其熔化溫度下時在固體非晶組分周圍流動,因此結晶組分一旦冷卻便嵌入有非晶組分且與非晶組分混合。 As detailed herein, the melting point and melt viscosity of the crystalline component can be different from the softening temperature and viscosity of the amorphous component. In this way, when the crystalline component is exposed to a temperature within its melting point, the crystalline component rapidly melts and begins to flow around the solid amorphous component at the melting point of the crystalline component. It does not melt significantly at temperatures within the range. The molten crystalline component can then fill any voids within the blended binder material 20b and can also fill any voids within the composite 20. In addition, when the crystalline component is exposed to a temperature less than its melting point range, the crystalline component is rapidly cooled to form a solid phase again. However, since the crystalline component flows around the solid amorphous component while being at its melting temperature, the crystalline component is embedded with an amorphous component and mixed with the amorphous component upon cooling.

舉例而言,若非晶合成橡膠界定黏結劑20b之非晶組分且結晶聚胺甲酸酯樹脂界定黏結劑20b之結晶組分,則黏結劑材料20b之澆鑄膜維持較大質量之非晶合成橡膠內之結晶聚胺甲酸酯樹脂之離散區域。當(舉例而言)在平床層壓機中將熱量施加至複合物20時,合成橡膠之非晶區域保持為固體,但聚胺甲酸酯樹脂之離散結晶區域熔化且流動至纖維材料20a內之空隙中,此藉由減小毛細管力且減小複合物20之 總有效表面積而改良複合物20之流體阻力。以此方式,複合物20由於非晶合成橡膠而保持撓性,但由於結晶聚胺甲酸酯樹脂而具有經改良防彈性。 For example, if the amorphous synthetic rubber defines the amorphous component of the binder 20b and the crystalline polyurethane resin defines the crystalline component of the binder 20b, the cast film of the binder material 20b maintains a relatively large mass of amorphous synthesis. A discrete region of the crystalline polyurethane resin in the rubber. When heat is applied to the composite 20, for example, in a flat bed laminator, the amorphous region of the synthetic rubber remains solid, but the discrete crystalline regions of the polyurethane resin melt and flow into the fibrous material 20a. In the gap, this reduces the capillary force and reduces the composite 20 The fluid resistance of the composite 20 is improved by the total effective surface area. In this way, the composite 20 maintains flexibility due to the amorphous synthetic rubber, but has improved ballistic resistance due to the crystalline polyurethane resin.

另一選擇係,在一項實施例中,非晶組分之軟化溫度可小於結晶組分之熔化溫度。然而,由於當在大於結晶組分之熔化溫度之溫度下時非晶組分之黏度及/或表面能大於結晶組分之黏度及/或表面能,因此非晶組分將保持為固體或高度黏性的,且因此結晶組分將在非晶組分周圍流動且非晶組分與結晶組分不混合。更特定而言,在一項實施例中,結晶組分及非晶組分經選擇使得結晶組分之熔化溫度小於非晶組分之軟化溫度及/或當在高於結晶組分之熔化溫度之溫度下時結晶組分之黏度小於非晶組分之黏度。另外,非晶組分及結晶組分可經選擇使得在高於結晶組分之熔化溫度之溫度下結晶組分之表面能小於非晶組分之表面能。可在於2011年8月9日發佈之美國專利第7,994,075號及於2011年9月13日發佈之美國專利第8,017,530號中揭示黏結劑材料20b之結晶組分之額外細節,該等美國專利之完整揭示內容以引用方式明確地併入本文中。 Alternatively, in one embodiment, the softening temperature of the amorphous component can be less than the melting temperature of the crystalline component. However, since the viscosity and/or surface energy of the amorphous component is greater than the viscosity and/or surface energy of the crystalline component when at a temperature greater than the melting temperature of the crystalline component, the amorphous component will remain solid or elevated. The viscous, and thus crystalline, component will flow around the amorphous component and the amorphous component will not mix with the crystalline component. More particularly, in one embodiment, the crystalline component and the amorphous component are selected such that the melting temperature of the crystalline component is less than the softening temperature of the amorphous component and/or when the melting temperature is higher than the crystalline component The viscosity of the crystalline component at the temperature is less than the viscosity of the amorphous component. Further, the amorphous component and the crystalline component may be selected such that the surface energy of the crystalline component is lower than the surface energy of the amorphous component at a temperature higher than the melting temperature of the crystalline component. Additional details of the crystalline component of the binder material 20b are disclosed in U.S. Patent No. 7,994,075, issued on Aug. 9, 2011, and U.S. Patent No. 8,017,530, issued on Sep. 13, 2011. The disclosure is expressly incorporated herein by reference.

C. 防彈複合物 C. Bulletproof composite

為了形成雙模態黏結劑材料20b,透過各種製程而將結晶組分與非晶組分混合在一起。 In order to form the bimodal binder material 20b, the crystalline component and the amorphous component are mixed together by various processes.

1. 製備雙模態黏結劑 1. Preparation of bimodal binder

在一項實施例中,可藉由形成濕摻合乳劑及/或濕摻合溶液而將結晶組分與非晶組分混合。更特定而言,濕摻合乳劑及/或濕摻合溶液包含其中非晶組分及結晶組分兩者皆可溶之溶劑。然後可將此濕摻合溶液及/或濕摻合乳劑澆鑄至乾燥膜中,在該乾燥膜中結晶組分及非晶組分維持於此乾燥膜中之離散區域中。 In one embodiment, the crystalline component can be mixed with the amorphous component by forming a wet blended emulsion and/or a wet blending solution. More specifically, the wet blended emulsion and/or wet blend solution comprises a solvent in which both the amorphous component and the crystalline component are soluble. This wet blending solution and/or wet blended emulsion can then be cast into a dried film in which the crystalline and amorphous components are maintained in discrete regions of the dried film.

亦可藉由將固體形式之結晶組分粗略地分散至非晶組分之水性 乳劑中或粗略地分散至非晶組分之基於溶劑之溶液中而混合黏結劑材料20b(圖3)。 It is also possible to roughly disperse the crystalline component in a solid form to the aqueous component of the amorphous component. The binder material 20b is mixed in the emulsion or roughly dispersed in a solvent-based solution of the amorphous component (Fig. 3).

2. 將雙模態黏結劑施加至纖維 2. Apply a bimodal binder to the fiber

一旦經混合,便將黏結劑材料20b施加至纖維材料20a以形成複合物20。透過各種製程(諸如,利用噴槍、纖維拉擠成型、纖維浸漬、熱熔擠出、凹版塗佈及/或其他滾筒塗佈方法)而將黏結劑材料20b施加至纖維材料20a。舉例而言,可使用纖維浸漬方法來將黏結劑材料20b施加至纖維材料20a。使用纖維浸漬方法,將黏結劑材料20b之過量水性乳劑或分散體施加至纖維材料20a。然後一系列固定條及壓力輥擠壓出過量黏結劑材料20b以形成複合物20。可然後將複合物20暫時地澆鑄至聚矽氧塗佈之離型紙上且藉由該聚矽氧塗佈之離型紙而輸送,且當水被乾燥時,將複合物20纏繞至滾筒上以用於進一步處理。 Once mixed, the binder material 20b is applied to the fibrous material 20a to form the composite 20. The binder material 20b is applied to the fibrous material 20a by various processes such as by means of a spray gun, fiber pultrusion, fiber impregnation, hot melt extrusion, gravure coating, and/or other roller coating methods. For example, a fiber impregnation method can be used to apply the binder material 20b to the fiber material 20a. An excess aqueous emulsion or dispersion of the binder material 20b is applied to the fibrous material 20a using a fiber impregnation method. A series of fixing strips and pressure rolls then extrude excess binder material 20b to form composite 20. The composite 20 can then be temporarily cast onto a polyoxynized coated release paper and conveyed by the polyoxynitrene coated release paper, and when the water is dried, the composite 20 is wound onto the drum to For further processing.

另外,可使用該等前述方法之組合來將黏結劑材料20b施加至纖維材料20a。舉例而言,可透過纖維浸漬方法而將非晶組分之單一水性乳劑施加至纖維材料20a。接下來,可藉助於靜電噴霧器以乾燥形式將結晶組分施加至複合物20之表面。可在來自非晶組分之水性乳劑之水乾燥之前或者之後將乾燥形式之結晶組分施加至纖維材料20a。 Additionally, a combination of these foregoing methods can be used to apply the binder material 20b to the fibrous material 20a. For example, a single aqueous emulsion of an amorphous component can be applied to the fibrous material 20a by a fiber impregnation process. Next, the crystalline component can be applied to the surface of the composite 20 in a dry form by means of an electrostatic sprayer. The dried crystalline component can be applied to the fibrous material 20a before or after the water from the aqueous emulsion of the amorphous component is dried.

另外,在一項實施例中,可使用前述纖維浸漬方法將非晶組分施加至纖維材料20a作為溶劑澆鑄膜。然後以乾燥形式將結晶組分施加至非晶組分之溶劑澆鑄膜之表面。 Further, in an embodiment, the amorphous component may be applied to the fibrous material 20a as a solvent cast film using the aforementioned fiber impregnation method. The crystalline component is then applied to the surface of the solvent cast film of the amorphous component in a dry form.

無論經選擇以將黏結劑材料20b施加至纖維材料20a之方法如何,在將黏結劑材料20b施加至纖維材料20a之前皆可用去離子水洗滌纖維材料20a並將其乾燥。然後可以50watts/ft2/min至80watts/ft2/min、較佳地67watts/ft2/min之能量通量來電漿處理纖維材料20a。隨後透過前述製程中之一或多者而將黏結劑材料20b施加至纖維材料20a以用於將纖維材料20a中之個別纖維黏附在一起且用於使纖維材料20a之各種疊 層彼此黏附。更特定而言,用處於5%至30%之樹脂含量且較佳地處於17%之樹脂含量之黏結劑材料20b塗佈纖維材料20a。一旦將黏結劑材料20b施加至纖維材料20a,便可將纖維材料20a滾動至捲軸上且儲存為若干捲直至進一步處理發生為止。 Regardless of the method selected to apply the binder material 20b to the fibrous material 20a, the fibrous material 20a may be washed with deionized water and dried before the binder material 20b is applied to the fibrous material 20a. The fibrous material 20a can then be plasma treated with an energy flux of from 50 watts/ft 2 /min to 80 watts/ft 2 /min, preferably 67 watts/ft 2 /min. The binder material 20b is then applied to the fibrous material 20a through one or more of the foregoing processes for adhering individual fibers of the fibrous material 20a together and for adhering the various laminates of the fibrous material 20a to each other. More specifically, the fibrous material 20a is coated with a binder material 20b at a resin content of 5% to 30% and preferably at a resin content of 17%. Once the binder material 20b is applied to the fibrous material 20a, the fibrous material 20a can be rolled onto the spool and stored in rolls until further processing occurs.

3. 平床層壓機 3. Flat bed laminating machine

參考圖2,在將黏結劑材料20b施加至纖維材料20a之後,將黏結劑材料20b施加至纖維材料20a之至少另一層以界定纖維之第二疊層。然後將纖維疊層之各種層定位成堆疊式配置且將每一疊層與毗鄰疊層定向成90度。在複合物20中可包含任何數目個疊層以適應複合物20之各種應用。 Referring to Figure 2, after applying the binder material 20b to the fibrous material 20a, the binder material 20b is applied to at least another layer of the fibrous material 20a to define a second laminate of fibers. The various layers of the fiber stack are then positioned in a stacked configuration and each stack is oriented at 90 degrees with the adjacent stack. Any number of laminates can be included in the composite 20 to accommodate the various applications of the composite 20.

然後可利用平床層壓機30形成複合物20,該平床層壓機包含可圍繞複數個輥33旋轉之第一帶或上部帶32及可圍繞複數個輥35旋轉之第二帶或下部帶34。第一帶32及第二帶34可塗佈有不黏塗層(舉例而言,基於含氟聚合物之材料(諸如TEFLON®,其可自德拉瓦州威明頓市之E.I.DuPont De Nemours and Company購得))。第一帶32及第二帶34藉由用於複合物20通過之通路36而彼此間隔開。如圖2中所展示,說明性第一帶32沿逆時針方向旋轉且第二帶34沿順時針方向旋轉,此使複合物20前進穿過平床層壓機30。在一項實施例中,第一帶32及第二帶34以1米/秒至15米/秒且較佳地以3米/秒之速度旋轉。以圖解說明方式,第一帶32及第二帶34具有大約相同之長度使得複合物20與第一帶32及第二帶34兩者接觸達大約相同之時間長度。 The composite 20 can then be formed using a flat bed laminator 30 comprising a first belt or upper belt 32 rotatable about a plurality of rollers 33 and a second belt or lower belt 34 rotatable about a plurality of rollers 35. . The first strip 32 and the second strip 34 may be coated with a non-stick coating (for example, a fluoropolymer-based material such as TEFLON ® , which is available from EI DuPont De Nemours and Company, Wilmington, Delaware. Purchased)). The first strip 32 and the second strip 34 are spaced apart from one another by passages 36 for the composite 20 to pass through. As shown in FIG. 2, the illustrative first belt 32 rotates in a counterclockwise direction and the second belt 34 rotates in a clockwise direction, which advances the composite 20 through the flat bed laminator 30. In one embodiment, the first belt 32 and the second belt 34 are rotated at a speed of from 1 meter per second to 15 meters per second and preferably at a speed of 3 meters per second. By way of illustration, the first strap 32 and the second strap 34 have approximately the same length such that the composite 20 is in contact with both the first strap 32 and the second strap 34 for approximately the same length of time.

圖2之平床層壓機30進一步包含加熱部分或加熱區38、冷卻部分或冷卻區40及定位於加熱部分38與冷卻部分40中間的複數個夾持輥或壓力輥42。隨著複合物20在平床層壓機30內前進,在加熱部分38中加熱複合物20。舉例而言,加熱部分38可經組態以用於在低至50℃、60℃、70℃、80℃或者高達90℃、100℃、110℃、120℃、130℃、140 ℃、150℃或由任一對前述值所限定之任一範圍之溫度下操作。加熱部分38之溫度在結晶組分之熔化溫度範圍內,使得黏結劑20b之結晶組分在加熱部分38中熔化。在一項實施例中,可將複合物20加熱達少至0.01秒、0.50秒、1.0秒、1.5秒、2.0秒、2.5秒、3.0秒或者多達1分鐘、2分鐘、3分鐘、4分鐘或5分鐘或者由任一對前述值所限定之任一範圍。加熱時間及溫度基於結晶組分之本質及其特定熔化溫度範圍。 The flat bed laminator 30 of FIG. 2 further includes a heating portion or heating zone 38, a cooling portion or cooling zone 40, and a plurality of nip rollers or pressure rollers 42 positioned intermediate the heating portion 38 and the cooling portion 40. As the composite 20 advances within the flat bed laminator 30, the composite 20 is heated in the heated portion 38. For example, the heating portion 38 can be configured for use at temperatures as low as 50 ° C, 60 ° C, 70 ° C, 80 ° C, or up to 90 ° C, 100 ° C, 110 ° C, 120 ° C, 130 ° C, 140 °C, 150 ° C or operated at any temperature within any of the ranges defined above. The temperature of the heating portion 38 is within the melting temperature range of the crystalline component, so that the crystalline component of the binder 20b is melted in the heating portion 38. In one embodiment, the composite 20 can be heated up to 0.01 seconds, 0.50 seconds, 1.0 seconds, 1.5 seconds, 2.0 seconds, 2.5 seconds, 3.0 seconds, or up to 1 minute, 2 minutes, 3 minutes, 4 minutes. Or 5 minutes or any range defined by any of the foregoing values. The heating time and temperature are based on the nature of the crystalline component and its specific melting temperature range.

隨著複合物20離開加熱部分38,在結晶組分被熔化時透過壓力輥42而將壓力施加至複合物20。壓力輥可由各種材料構成,諸如金屬(例如,鋼)、聚合物(例如,彈性橡膠)及/或陶瓷。另外,壓力輥42中之一者可具有固定位置且壓力輥42中之另一者可在將力施加至其時係可移動的,使得當將力施加至壓力輥42中之一者時,亦將力施加至複合物20。更特定而言,壓力輥42可將小於1巴之壓力施加至複合物20。舉例而言,壓力輥42可將10psi、30psi、50psi、70psi、90psi、110psi、130psi、150psi、170psi、190psi、210psi、230psi、250psi、270psi、290psi、310psi或由任一對前述值所限定之任一範圍內之夾持壓力施加至複合物20。在一項實施例中,壓力輥可將14psi之壓力施加至複合物20。施加至複合物20之最大壓力在與第一帶32及第二帶34平行的壓力輥42之切線50處發生。然而,由於壓力輥42之圓形剖面,當毗鄰切線50的壓力輥42之表面與複合物20接觸時將較小量之壓力施加至複合物20。舉例而言,當複合物20之一部分移動穿過平床層壓機30時,將增加量之壓力梯度地施加至複合物20,此乃因複合物20最初定位於壓力輥42之間。當複合物20朝向壓力輥42之切線50移動時,將較大壓力施加至複合物20,其中當複合物20直接在壓力輥42之切線50之間時將最大壓力施加至複合物20。另外,當複合物20移動經過切線50時,將減少量之壓力梯度地施加至複合物20直至複合物20不再定位於壓力輥42之間為止。 As the composite 20 exits the heating portion 38, pressure is applied to the composite 20 as it passes through the pressure roller 42 as the crystalline component is melted. The pressure roller can be constructed from a variety of materials such as metal (eg, steel), polymers (eg, elastomeric rubber), and/or ceramics. Additionally, one of the pressure rollers 42 may have a fixed position and the other of the pressure rollers 42 may be movable when a force is applied thereto such that when a force is applied to one of the pressure rollers 42, A force is also applied to the composite 20. More specifically, the pressure roller 42 can apply a pressure of less than 1 bar to the composite 20. For example, pressure roller 42 can be 10 psi, 30 psi, 50 psi, 70 psi, 90 psi, 110 psi, 130 psi, 150 psi, 170 psi, 190 psi, 210 psi, 230 psi, 250 psi, 270 psi, 290 psi, 310 psi, or as defined by any of the foregoing values. Clamping pressure in any range is applied to the composite 20. In one embodiment, the pressure roller can apply a pressure of 14 psi to the composite 20. The maximum pressure applied to the composite 20 occurs at a tangent 50 to the pressure roller 42 that is parallel to the first belt 32 and the second belt 34. However, due to the circular cross-section of the pressure roller 42, a small amount of pressure is applied to the composite 20 when the surface of the pressure roller 42 adjacent the tangential line 50 is in contact with the composite 20. For example, as one portion of the composite 20 moves through the flat bed laminator 30, an increased amount of pressure gradient is applied to the composite 20 because the composite 20 is initially positioned between the pressure rolls 42. When the composite 20 is moved toward the tangent 50 of the pressure roller 42, a greater pressure is applied to the composite 20, wherein the maximum pressure is applied to the composite 20 when the composite 20 is directly between the tangent 50 of the pressure roller 42. Additionally, as the composite 20 moves past the tangent 50, a reduced amount of pressure gradient is applied to the composite 20 until the composite 20 is no longer positioned between the pressure rolls 42.

平床層壓機30之不同設計可將不同壓力施加至複合物20。舉例而言,若壓力輥42具有由鋼構成之外表面,則複合物20上之壓力輥42之接觸佔用面積係相對小的且施加至複合物20之平均點壓力係大的。然而,若壓力輥42具有由彈性橡膠構成之外表面,則複合物20上之壓力輥42之接觸佔用面積係相對大的且施加至複合物20之平均點壓力係小的。 The different designs of the flat bed laminator 30 can apply different pressures to the composite 20. For example, if the pressure roller 42 has an outer surface made of steel, the contact footprint of the pressure roller 42 on the composite 20 is relatively small and the average point pressure applied to the composite 20 is large. However, if the pressure roller 42 has an outer surface composed of elastic rubber, the contact occupation area of the pressure roller 42 on the composite 20 is relatively large and the average point pressure applied to the composite 20 is small.

將來自壓力輥42之壓力施加至複合物20達約0.02秒至約5秒。更特定而言,可將壓力施加至複合物20達少至約0.01秒、0.50秒,1.0秒、1.5秒、2.0秒、2.5秒或者多達3.0秒、3.5秒、4.0秒、4.5秒、5.0秒或在由任一對前述值所限定之任一範圍內之持續時間。在一項實施例中,可將壓力施加至複合物20達0.01秒至0.05秒之持續時間。另外,由於壓力輥42具有圓形剖面,因此前述時間表示覆合物20經歷壓力之總持續時間。舉例而言,使用數量級計算,若壓力輥42之間的佔用面積之長度係1cm且平床層壓機30之線速度係5米/分鐘,則複合物20經歷由壓力輥42施加之壓力之滯留時間係0.12秒。然而,由於0.12秒表示複合物20經歷來自壓力輥42之壓力之時間總量,因此存在針對前半0.06秒之上升壓力之梯度及針對後半0.06秒之減少壓力之梯度。如此,在圖2之實施例中,由壓力輥42施加至複合物20之壓力係不連續的,此乃因當複合物20通過加熱部分38及冷卻部分40時不將壓力施加至複合物20。另一選擇係,平床層壓機30可經組態以在複合物20仍在加熱部分38內且結晶組分已經熔化時將壓力施加至複合物20。然而,當複合物20通過冷卻部分40時將不將壓力施加至複合物20以便最小化在冷卻期間施加至複合物20之應力。如此,平床層壓機30並不組態為將連續壓力施加至複合物20。 The pressure from the pressure roller 42 is applied to the composite 20 for about 0.02 seconds to about 5 seconds. More specifically, pressure can be applied to the composite 20 for as little as about 0.01 seconds, 0.50 seconds, 1.0 seconds, 1.5 seconds, 2.0 seconds, 2.5 seconds, or as much as 3.0 seconds, 3.5 seconds, 4.0 seconds, 4.5 seconds, 5.0. Seconds or duration in any range defined by any of the foregoing values. In one embodiment, pressure can be applied to the composite 20 for a duration of from 0.01 seconds to 0.05 seconds. In addition, since the pressure roller 42 has a circular cross section, the aforementioned time indicates the total duration of the pressure experienced by the laminate 20. For example, using an order of magnitude calculation, if the length of the occupied area between the pressure rolls 42 is 1 cm and the line speed of the flat bed laminator 30 is 5 m/min, the composite 20 undergoes the retention of the pressure applied by the pressure roll 42. The time is 0.12 seconds. However, since 0.12 seconds indicates the total amount of time that the composite 20 is subjected to the pressure from the pressure roller 42, there is a gradient of the rising pressure for the first half of 0.06 seconds and a gradient of the decreasing pressure for the latter half of 0.06 seconds. Thus, in the embodiment of FIG. 2, the pressure applied by the pressure roller 42 to the composite 20 is discontinuous because the composite 20 does not apply pressure to the composite 20 as it passes through the heating portion 38 and the cooling portion 40. . Alternatively, the flat bed laminator 30 can be configured to apply pressure to the composite 20 while the composite 20 is still within the heated portion 38 and the crystalline components have melted. However, when the composite 20 passes through the cooling section 40, no pressure will be applied to the composite 20 in order to minimize the stress applied to the composite 20 during cooling. As such, the flat bed laminator 30 is not configured to apply continuous pressure to the composite 20.

在利用輥42將壓力施加至複合物20之後,複合物20移動穿過冷卻部分40且然後離開平床層壓機30。在一項實施例中,冷卻部分40經 組態以用於小於黏結劑材料20b之結晶組分之熔化溫度之溫度。舉例而言,冷卻部分40可經組態以取決於包含於黏結劑材料20b內之特定結晶組分而用於在0℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃、60℃、70℃、80℃、90℃或在由任一對前述值所限定之任一範圍內之溫度下操作。由於冷卻部分40之長度與加熱部分38之長度大約相同,因此可將複合物20冷卻達與將其加熱大約相同之時間量。更特定而言,可將複合物20冷卻達少至0.01秒、0.50秒、1.0秒、1.5秒、2.0秒、2.5秒、3.0秒或者多達1分鐘、2分鐘、3分鐘、4分鐘或5分鐘或者由任一對前述值所限定之任一範圍。當複合物20通過冷卻部分40時,需要複合物20保持平坦且並不彎曲以便最小化在冷卻期間施加至複合物20之應力。另一選擇係,由於在結晶組分中迅速地發生熱轉移,因此若複合物20可能將充足熱量輻射至其周圍事物以將其溫度降低至結晶組分之熔化溫度以下以允許結晶組分凝固,則可將冷卻部分40自平床層壓機30消除。 After pressure is applied to the composite 20 using the rollers 42, the composite 20 moves through the cooling portion 40 and then exits the flat bed laminator 30. In one embodiment, the cooling portion 40 is It is configured for a temperature less than the melting temperature of the crystalline component of the binder material 20b. For example, the cooling portion 40 can be configured to be used at 0 ° C, 5 ° C, 10 ° C, 15 ° C, 20 ° C, 25 ° C, 30 ° C depending on the particular crystalline component contained within the binder material 20b. 35 ° C, 40 ° C, 45 ° C, 50 ° C, 60 ° C, 70 ° C, 80 ° C, 90 ° C or at any temperature within any range defined by the foregoing values. Since the length of the cooling portion 40 is about the same as the length of the heating portion 38, the composite 20 can be cooled up to about the same amount of time as it is heated. More specifically, the composite 20 can be cooled down to 0.01 seconds, 0.50 seconds, 1.0 seconds, 1.5 seconds, 2.0 seconds, 2.5 seconds, 3.0 seconds, or up to 1 minute, 2 minutes, 3 minutes, 4 minutes, or 5 Minutes or any range defined by any of the foregoing values. As the composite 20 passes through the cooling portion 40, the composite 20 is required to remain flat and not curved to minimize the stress applied to the composite 20 during cooling. Alternatively, since heat transfer occurs rapidly in the crystalline component, if the composite 20 may radiate sufficient heat to its surroundings to lower its temperature below the melting temperature of the crystalline component to allow the crystalline component to solidify. The cooling portion 40 can be eliminated from the flat bed laminator 30.

另外,如本文中所詳述,在冷卻至黏結劑材料20b之結晶組分之熔化溫度以下時最小化或消除至複合物20之應力可係合意的。由於當冷卻時不將壓力施加至複合物20,因此不會將應力引入至結晶組分之晶體結構中。此外,由於在結晶組分內迅速地發生熱轉移,因此維持在結晶組分熔化時在非晶組分周圍流動且流動至纖維材料20a內之任何空隙中的結晶組分之離散部分而不在化學上或物理上與非晶組分混合。如此,非晶組分及結晶組分在黏結劑材料20b內保持離散且係彼此不相容的。 Additionally, as detailed herein, it may be desirable to minimize or eliminate the stress to the composite 20 when cooled below the melting temperature of the crystalline component of the binder material 20b. Since no pressure is applied to the composite 20 when cooled, stress is not introduced into the crystal structure of the crystalline component. Furthermore, since heat transfer occurs rapidly within the crystalline component, a discrete portion of the crystalline component that flows around the amorphous component and flows into any voids within the fibrous material 20a while the crystalline component is molten is maintained without being chemically It is mixed with or physically mixed with an amorphous component. As such, the amorphous component and the crystalline component remain discrete and incompatible with each other within the binder material 20b.

另外,第一帶32及第二帶34可將小於由輥42施加之壓力之低壓力施加至複合物20。由於由第一帶32及第二帶34施加之壓力係低的,因此當複合物20通過冷卻部分40時並不將額外應力引入至複合物20中。另一選擇係,當複合物20通過冷卻部分40時,帶32、34可不將任 何壓力施加至複合物20。在一項實例中,當複合物20通過加熱部分38及冷卻部分40時,第一帶32及第二帶34可將低至0.01psi、0.05psi、0.10psi、0.15psi、0.20psi或0.25psi或者高達1.0psi、2.0psi、3.0psi、4.0psi、5.0psi、6.0psi、7.0psi、8.0psi、9.0psi或10.0psi或者由任一對前述值所限定之任一範圍內之壓力施加至複合物20。在一項實施例中,由第一帶32及第二帶34施加之壓力小於0.5psi。更特定而言,施加由第一帶32及第二帶34施加之壓力達與平床層壓機30之帶速度成反比之持續時間。在一項實施例中,由第一帶32及第二帶34將壓力施加至複合物20之滯留時間介於少至1秒、3秒、5秒、7秒、9秒或11秒或者多達1分鐘、2分鐘、3分鐘、4分鐘或5分鐘或者由任一對前述值所限定之任一範圍之範圍內。如此,複合物20可經歷兩個相異壓力一在通過加熱部分38及/或冷卻部分40時由第一帶32及第二帶34施加之第一低壓力以及由壓力輥42施加之第二較高壓力。 Additionally, the first belt 32 and the second belt 34 can apply a lower pressure than the pressure applied by the roller 42 to the composite 20. Since the pressure applied by the first belt 32 and the second belt 34 is low, no additional stress is introduced into the composite 20 as the composite 20 passes through the cooling portion 40. Alternatively, when the composite 20 passes through the cooling portion 40, the belts 32, 34 may not What pressure is applied to the composite 20. In one example, when the composite 20 passes through the heating portion 38 and the cooling portion 40, the first belt 32 and the second belt 34 can be as low as 0.01 psi, 0.05 psi, 0.10 psi, 0.15 psi, 0.20 psi, or 0.25 psi. Or up to 1.0 psi, 2.0 psi, 3.0 psi, 4.0 psi, 5.0 psi, 6.0 psi, 7.0 psi, 8.0 psi, 9.0 psi or 10.0 psi or any pressure within any range defined by the foregoing values applied to the composite Object 20. In one embodiment, the pressure applied by the first belt 32 and the second belt 34 is less than 0.5 psi. More specifically, the pressure applied by the first belt 32 and the second belt 34 is applied for a duration that is inversely proportional to the belt speed of the flat bed laminator 30. In one embodiment, the residence time of the pressure applied to the composite 20 by the first belt 32 and the second belt 34 is as little as 1 second, 3 seconds, 5 seconds, 7 seconds, 9 seconds, or 11 seconds or more. Up to 1 minute, 2 minutes, 3 minutes, 4 minutes, or 5 minutes or within any range defined by any of the foregoing values. As such, the composite 20 can undergo two distinct pressures - a first low pressure applied by the first belt 32 and the second belt 34 as it passes through the heating portion 38 and/or the cooling portion 40 and a second applied by the pressure roller 42 Higher pressure.

參考圖3,亦可利用展示為平床層壓機30’的平床層壓機30之替代實施例形成複合物20。平床層壓機30’包含可沿逆時針方向圍繞輥33旋轉之第一帶32及可沿順時針方向圍繞複數個輥35’旋轉之第二帶34’。在一項實施例中,第一帶32及第二帶34’以1米/秒至15米/秒之速度且較佳地以3米/秒之速度旋轉。以圖解說明方式,第二帶34’之長度大於第一帶32之長度,使得複合物20與第二帶34’接觸達比與第一帶32接觸長之時間週期。 Referring to Figure 3, composite 20 can also be formed using an alternate embodiment of a flat bed laminator 30 shown as a flat bed laminator 30'. The flat bed laminator 30' includes a first belt 32 that is rotatable about the roller 33 in a counterclockwise direction and a second belt 34' that is rotatable about a plurality of rollers 35' in a clockwise direction. In one embodiment, the first belt 32 and the second belt 34' are rotated at a speed of from 1 m/sec to 15 m/sec and preferably at a speed of 3 m/sec. By way of illustration, the length of the second strap 34' is greater than the length of the first strap 32 such that the composite 20 is in contact with the second strap 34' for a longer period of time than contact with the first strap 32.

仍參考圖3,平床層壓機30’進一步包含加熱部分38、冷卻部分40及定位於其間之壓力輥42。基於壓力輥42之位置,複合物20在移動穿過加熱部分38及冷卻部分40時並未處於壓力下,但其在於輥42之間穿過時確實接收10psi、30psi、50psi、70psi、90psi、110psi、130psi、150psi、170psi、190psi、210psi、230psi、250psi、270psi、290psi、310psi或在由任一對前述值所限定之任一範圍內之夾 持壓力。 Still referring to Fig. 3, the flat bed laminator 30' further includes a heating portion 38, a cooling portion 40, and a pressure roller 42 positioned therebetween. Based on the position of the pressure roller 42, the composite 20 is not under pressure as it moves through the heating portion 38 and the cooling portion 40, but does receive 10 psi, 30 psi, 50 psi, 70 psi, 90 psi, 110 psi when passing between the rollers 42. 130psi, 150psi, 170psi, 190psi, 210psi, 230psi, 250psi, 270psi, 290psi, 310psi or in any range defined by any of the foregoing values Holding pressure.

圖3之平床層壓機30’亦包含至少一個塗佈裝置44。以圖解說明方式,平床層壓機30’包含第一塗佈裝置44a及第二塗佈裝置44b,其可係熱熔施塗器或乾式塗佈施塗器。更特定而言,塗佈裝置44a、44b定位於加熱部分38及冷卻部分40上游,且第一塗佈裝置44a經組態以將含於其中之黏結劑材料20b施加於第二帶34’上,而第二塗佈裝置44b經組態以在纖維材料20a進入通路36之前將含於其中之黏結劑材料20b施加於纖維材料20a之頂部上。 The flat bed laminator 30' of Figure 3 also includes at least one coating device 44. By way of illustration, the flat bed laminator 30' includes a first coating device 44a and a second coating device 44b, which may be a hot melt applicator or a dry coating applicator. More specifically, the coating devices 44a, 44b are positioned upstream of the heating portion 38 and the cooling portion 40, and the first coating device 44a is configured to apply the binder material 20b contained therein to the second belt 34' The second coating device 44b is configured to apply the binder material 20b contained therein to the top of the fibrous material 20a before the fibrous material 20a enters the passageway 36.

如圖3中所展示,纖維材料20a沿著複數個輥46朝向第一帶32及第二帶34’移動。第一塗佈裝置44a將預定量之黏結劑材料20b施加至第二帶34’。如此,當纖維材料20a接觸第二帶34’時,第二帶34’上之黏結劑材料20b施加至纖維材料20a之下部表面。另外,在纖維材料20a接觸第一帶32之前,將來自第二塗佈裝置44b之黏結劑材料20b施加至纖維材料20a之頂部表面。以此方式,在複合物20進入通路36、加熱部分38、冷卻部分40及壓力輥42之前,將黏結劑材料20b施加至纖維材料20a之頂部表面及底部表面兩者以界定複合物20。 As shown in Figure 3, the fibrous material 20a moves along the plurality of rollers 46 toward the first belt 32 and the second belt 34'. The first coating device 44a applies a predetermined amount of the binder material 20b to the second belt 34'. Thus, when the fibrous material 20a contacts the second belt 34', the binder material 20b on the second belt 34' is applied to the lower surface of the fibrous material 20a. Additionally, the binder material 20b from the second coating device 44b is applied to the top surface of the fibrous material 20a before the fibrous material 20a contacts the first belt 32. In this manner, the binder material 20b is applied to both the top and bottom surfaces of the fibrous material 20a to define the composite 20 before the composite 20 enters the passage 36, the heating portion 38, the cooling portion 40, and the pressure roller 42.

當複合物20進入加熱部分38時,黏結劑材料20b之結晶組分熔化且流動至纖維材料20a中以與纖維材料20a整合。由壓力輥42將壓力施加至複合物20。更特定而言,且如本文中關於平床層壓機30所詳述,壓力輥42可施加壓力達少至約0.01秒、0.50秒、1.0秒、1.5秒、2.0秒、2.5秒或者多達3.0秒、3.5秒、4.0秒、4.5秒、5.0秒或由任一對前述值所限定之任一範圍內之持續時間。在利用輥42將壓力施加至複合物20之後,複合物20移動穿過冷卻部分40且離開平床層壓機30’。如此,由壓力輥42施加至複合物20之壓力係不連續的,此乃因當複合物20通過加熱部分38及冷卻部分40時不將壓力施加至複合物20。 When the composite 20 enters the heating portion 38, the crystalline component of the binder material 20b melts and flows into the fibrous material 20a to integrate with the fibrous material 20a. Pressure is applied to the composite 20 by the pressure roller 42. More specifically, and as detailed herein with respect to the flat bed laminator 30, the pressure roller 42 can apply pressure as little as about 0.01 seconds, 0.50 seconds, 1.0 seconds, 1.5 seconds, 2.0 seconds, 2.5 seconds, or as much as 3.0. Seconds, 3.5 seconds, 4.0 seconds, 4.5 seconds, 5.0 seconds or a duration in any range defined by any of the foregoing values. After applying pressure to the composite 20 using the rollers 42, the composite 20 moves through the cooling portion 40 and exits the flat bed laminator 30'. As such, the pressure applied by the pressure roller 42 to the composite 20 is discontinuous because the composite 20 does not apply pressure to the composite 20 as it passes through the heating portion 38 and the cooling portion 40.

由於黏結劑材料20b之結晶組分具有比非晶組分低之熔化黏度及 表面能且可具有比非晶組分低之熔化溫度,因此當壓力輥42將壓力施加至複合物20時,在結晶組分中可存在較大潤濕、較大排氣量及較大壓縮。如此,在平床層壓機30、30’中在複合物20之形成期間減少非晶組分內之空隙、氣穴、間隙或其他內部開口之存在。以此方式,複合物20包含減小毛細管力及複合物20之總有效表面積的通常無空隙之平滑表面,藉此由於環境條件(諸如海水、汽油、石油、溶劑及潤滑劑)不會穿透複合物20而增加複合物20之防彈性。此外,除減少複合物20之表面處之空隙之外,透過對複合物20之壓縮而移除複合物20內之內部空隙、穴及通道或將複合物20內之內部空隙、穴及通道排氣,藉此減小對流體或其他滲透物之芯吸之趨勢。根據前述揭示內容形成之複合物20可用於防彈物件且抵抗可使複合物20降級之環境條件。 Since the crystalline component of the binder material 20b has a lower melting viscosity than the amorphous component and The surface energy can have a lower melting temperature than the amorphous component, so when the pressure roller 42 applies pressure to the composite 20, there may be greater wetting, larger displacement, and greater compression in the crystalline component. . Thus, the presence of voids, cavitation, gaps or other internal openings in the amorphous component is reduced during formation of the composite 20 in the flat bed laminator 30, 30'. In this manner, the composite 20 comprises a generally void-free, smooth surface that reduces capillary forces and the total effective surface area of the composite 20, thereby not penetrating due to environmental conditions such as seawater, gasoline, petroleum, solvents, and lubricants. The composite 20 increases the ballistic resistance of the composite 20. In addition, in addition to reducing the voids at the surface of the composite 20, internal voids, pockets, and channels within the composite 20 are removed by compression of the composite 20 or internal voids, pockets, and channels within the composite 20 are removed. Gas, thereby reducing the tendency to wicking fluid or other permeate. The composite 20 formed in accordance with the foregoing disclosure can be used in ballistic resistant articles and against environmental conditions that can degrade the composite 20.

實例Instance 實例A:雙模態黏結劑材料之鹽水測試Example A: Saline test of bimodal binder material

以黏結劑材料內之結晶組分之變化含量形成複合物之各種樣本。然後將複合物之此等樣本曝露於鹽水達經延長時間週期以判定結晶組分之存在是否影響複合物之耐腐蝕性。 Various samples of the composite are formed from varying amounts of crystalline components within the binder material. These samples of the composite are then exposed to the brine for an extended period of time to determine if the presence of the crystalline component affects the corrosion resistance of the composite.

複合物之形成Formation of complex

為了形成此等樣本,根據表1形成黏結劑材料之各種濃度以界定比較實例1、複合物20之實例1及複合物20之實例2。 To form these samples, various concentrations of the binder material were formed according to Table 1 to define Comparative Example 1, Example 1 of Composite 20, and Example 2 of Composite 20.

將黏結劑材料施加至由Honeywell 1150-denier SPECTRA® Merge 95121 UHMWPE纖維構成之纖維材料。更特定而言,使用纖維浸漬塗佈器,將黏結劑材料施加至第一單向纖維網並將該經塗佈纖維網乾燥。將該經乾燥纖維網纏繞至滾筒上。亦利用纖維浸漬塗佈器塗佈第二單向纖維網之第二捲、將其乾燥並纏繞至滾筒上。將第一捲上之第一經塗佈纖維網切割成方形件。將經纏繞纖維之第二捲安裝於平床層壓機30、30’之入口處或者附近且將第二纖維網鋪開並饋送穿過平床層壓機30、30’。將平床層壓機30、30’之加熱部分38之溫度設定為低於結晶組分之熔化溫度之溫度。當第二經塗佈纖維網開始行進至平床層壓機30、30’中時,在第二纖維網進入平床層壓機30、30’之前將第一經塗佈纖維網之方形件放置於第二經塗佈纖維網之頂部上。以與第二纖維網之纖維方向成90度之定向定位第一纖維網之每一方形件之纖維方向。另外,將第一纖維網之每一方形件定位為向後鄰接第二纖維網上之先前毗鄰方形件以界定連續、經塗佈、雙疊層纖維材料。此連續、雙疊層纖維材料進入平床層壓機30、30’,且由輥42施加之壓力將第一纖維網之方形件黏附至第二纖維網。然而,來自輥42之壓力及加熱部分38之熱量並未熔化黏結劑材料之結晶組分(若在黏結劑材料中存在任一結晶組分的話)。由第一纖維網之經切割方形件及第二纖維網之連續捲形成之雙疊層纖維網然後在通過平床層壓機30、30’並黏附在一起之後纏繞至滾筒上。然後將平床層壓機30、30’之加熱部分38之溫度增加至黏結劑材料內之結晶組分(若任一結晶組分存在的話)之熔點範圍內之溫度。然後將雙疊層纖維材料之捲鋪開且雙疊層纖維材料通過平床層壓機30、30’。由於加熱部分38之溫度在結晶組分及黏結劑材料之熔點範圍內,因此當雙疊層纖維材料通過輥42時將壓縮或緻密化施予至雙疊層纖維材料。在雙疊層纖維材料通過平床層壓機30、30’之後,將雙疊層纖維材料切割成方形件且藉由堆疊雙疊 層纖維材料之52個層而產生彈道樣本。每一樣本之總面密度或每織物之多個層之面積之總重量係0.89磅/ft2The binder material was applied to a fibrous material composed of Honeywell 1150-denier SPECTRA ® Merge 95121 UHMWPE fibers. More specifically, the binder material is applied to the first unidirectional web and the coated web is dried using a fiber dip coater. The dried web is wound onto a drum. A second roll of the second unidirectional web is also coated with a fiber dip coater, dried and wound onto a drum. The first coated web on the first roll is cut into square pieces. A second roll of wound fibers is mounted at or near the entrance of the flat bed laminator 30, 30' and the second web is spread and fed through the flat bed laminator 30, 30'. The temperature of the heating portion 38 of the flat bed laminator 30, 30' is set to a temperature lower than the melting temperature of the crystalline component. When the second coated web begins to travel into the flat bed laminator 30, 30', the square of the first coated web is placed before the second web enters the flat bed laminator 30, 30' On top of the second coated web. The fiber direction of each square piece of the first web is positioned at an orientation of 90 degrees to the fiber direction of the second web. Additionally, each square piece of the first web is positioned to abut the previously adjacent square piece of the second web to define a continuous, coated, double laminate fiber material. This continuous, double laminate fiber material enters the flat bed laminator 30, 30' and the pressure applied by the roll 42 adheres the square piece of the first web to the second web. However, the pressure from the roll 42 and the heat of the heated portion 38 do not melt the crystalline component of the cement material (if any crystalline component is present in the binder material). The double laminate web formed from the continuous web of the cut web of the first web and the second web is then wound onto the drum after passing through the flat bed laminators 30, 30' and adhering together. The temperature of the heated portion 38 of the flat bed laminator 30, 30' is then increased to a temperature within the melting point range of the crystalline component (if any crystalline component is present) in the binder material. The roll of double laminate fiber material is then spread out and the double laminate fiber material is passed through a flat bed laminator 30, 30'. Since the temperature of the heating portion 38 is within the melting range of the crystalline component and the binder material, compression or densification is applied to the dual laminate fiber material as it passes through the roll 42. After the double laminate fiber material passes through the flat bed laminator 30, 30', the double laminate fiber material is cut into square pieces and a ballistic sample is produced by stacking 52 layers of the double laminate fiber material. The total areal density of each sample or the total weight of the area of multiple layers per fabric is 0.89 lbs/ft 2 .

對複合物之測試Testing of complexes

將比較實例1、實例1及實例2各自浸泡於處於3.5%之濃度之鹽水(海鹽在自來水中)中達24小時。將比較實例1、實例1及實例2懸掛以滴水乾燥達15分鐘。接下來,將比較實例1、實例1及實例2各自放置至黏土塊或平臺上,如NIJ STD 0101.06第III級中所進一步揭示,且以1430 +/- 30ft/sec之速度將357 Magnum SJHP Remington射擊發射於比較實例1、實例1及實例2處。 Comparative Example 1, Example 1, and Example 2 were each immersed in brine (sea salt in tap water) at a concentration of 3.5% for 24 hours. Comparative Example 1, Example 1 and Example 2 were suspended by dripping with water for 15 minutes. Next, Comparative Example 1, Example 1, and Example 2 were each placed on a clay block or platform, as further disclosed in Level III of NIJ STD 0101.06, and 357 Magnum SJHP Remington at 1430 +/- 30 ft/sec. The shots were fired at Comparative Example 1, Example 1, and Example 2.

將比較實例1、實例1及實例2之兩個樣本中之每一者各自用357 Magnum SJHP Remington子彈射擊三次以判定穿透至每一樣本中之每一子彈之深度。如表2中所展示,對比較實例1之每一樣本之射擊2及射擊3完全地穿透複合物,如表2中由「完全」所指示。然而,沒有一個實例1或實例2之樣本被完全地穿透。更特定而言,子彈最小地穿透至含有氟碳化合物非晶組分及棕櫚蠟結晶組分的實例1之樣本中。 Each of the two samples of Comparative Example 1, Example 1, and Example 2 was each fired three times with a 357 Magnum SJHP Remington bullet to determine the depth of penetration into each of the bullets in each sample. As shown in Table 2, Shot 2 and Shot 3 of each sample of Comparative Example 1 completely penetrated the composite as indicated by "Complete" in Table 2. However, none of the samples of Example 1 or Example 2 were completely penetrated. More specifically, the bullet penetrated minimally into the sample of Example 1 containing the fluorocarbon amorphous component and the palm wax crystalline component.

實例B:具有非晶組分及結晶組分之變化濃度之雙模態黏結劑材料Example B: Bimodal binder material having varying concentrations of amorphous and crystalline components

以黏結劑材料內之結晶組分之變化含量形成複合物之各種樣 本。然後用9mm子彈射擊複合物之此等樣本以判定結晶組分之存在是否影響複合物之防彈性。 Forming a variety of composites with varying amounts of crystalline components in the binder material this. These samples of the composite were then fired with a 9 mm bullet to determine if the presence of the crystalline component affected the ballistic resistance of the composite.

複合物之形成Formation of complex

為了形成此等樣本,根據表3形成黏結劑材料之各種濃度以界定比較實例1、複合物20之實例1、複合物20之實例2及複合物20之實例3。用於形成此等樣本之塗佈及複合物處理條件與上文中實例1之彼等塗佈及複合物處理條件相同。 To form these samples, various concentrations of the binder material were formed according to Table 3 to define Comparative Example 1, Example 1 of Composite 20, Example 2 of Composite 20, and Example 3 of Composite 20. The coating and composite treatment conditions used to form these samples were the same as those of Example 1 above for coating and composite processing.

對複合物之測試Testing of complexes

將比較實例1及實例1至實例3之樣本各自放置至黏土塊或平臺上,如NIJ STD 0101.06第III級中所進一步揭示,且以表4中所展示之變化速度將9mm射擊發射於比較實例1及實例1至實例3之每一樣本處。更特定而言,表4提供50%之子彈停止於比較實例1及實例1至實例3內且50%之子彈完全地穿透比較實例1及實例1至實例3之理論速度V50。舉例而言,為了判定V50速度,以變化速度將複數個射擊發射於比較實例1及實例1至實例3之每一樣本處以判定子彈完全地穿透樣本之速度範圍及子彈部分地穿透樣本之速度範圍。對每一樣本之此等射擊群組經歷統計分析以判定用於所測試的比較實例1及實例1至實例3之每一樣本之V50速度。 Samples of Comparative Example 1 and Examples 1 through 3 were each placed on a clay block or platform, as further disclosed in Level III of NIJ STD 0101.06, and a 9 mm shot was fired at a rate of change as shown in Table 4 for a comparative example. 1 and each of the samples of Examples 1 to 3. More specifically, Table 4 provides that 50% of the bullets were stopped in Comparative Example 1 and Examples 1 to 3 and 50% of the bullets completely penetrated the theoretical speed V50 of Comparative Example 1 and Examples 1 to 3. For example, to determine the V50 speed, a plurality of shots are fired at each of Comparative Example 1 and Example 1 through Example 3 at varying speeds to determine the speed range at which the bullet completely penetrates the sample and the partial penetration of the sample by the bullet. Speed range. These shot groups for each sample were subjected to statistical analysis to determine the V50 speed for each of Comparative Example 1 and Examples 1 through 3 tested.

如表4中所展示,與實例1、實例2及實例3相比,並非係雙模態黏結劑之比較實例1具有最低V50速度。如此,在子彈不會完全地穿透樣本之情況下實例1至實例3之樣本能夠耐受以較高速度射擊之子彈。另外,含有15%之結晶組分之實例1及含有40%之結晶組分之實例3各自具有類似V50速度。 As shown in Table 4, Comparative Example 1 which is not a bimodal binder has the lowest V50 speed compared to Example 1, Example 2, and Example 3. As such, the samples of Examples 1 through 3 can withstand bullets fired at higher speeds in the event that the bullet does not completely penetrate the sample. Further, Example 1 containing 15% of the crystalline component and Example 3 containing 40% of the crystalline component each had a similar V50 speed.

實例C:具有變化結晶組分之雙模態黏結劑材料Example C: Bimodal binder material with varying crystalline components

以黏結劑材料內之結晶組分之變化含量形成複合物之各種樣本。然後用9mm子彈射擊複合物之此等樣本以判定結晶組分之存在是否影響複合物之防彈性。 Various samples of the composite are formed from varying amounts of crystalline components within the binder material. These samples of the composite were then fired with a 9 mm bullet to determine if the presence of the crystalline component affected the ballistic resistance of the composite.

複合物之形成Formation of complex

為了形成此等樣本,根據表3形成黏結劑材料之各種濃度以界定比較實例1、複合物20之實例1、複合物20之實例2、複合物20之實例3、複合物20之實例4、複合物20之實例5及複合物20之實例6。用於形成此等樣本之塗佈及複合物處理條件與上文中實例1之彼等塗佈及複合物處理條件相同。 To form these samples, various concentrations of the binder material were formed according to Table 3 to define Comparative Example 1, Example 1 of Composite 20, Example 2 of Composite 20, Example 3 of Composite 20, Example 4 of Composite 20, Example 5 of Composite 20 and Example 6 of Composite 20. The coating and composite treatment conditions used to form these samples were the same as those of Example 1 above for coating and composite processing.

對複合物之測試Testing of complexes

將比較實例1及實例1至實例6之每一樣本各自放置至黏土塊或平臺上,如NIJ STD 0101.06第III級中所進一步揭示,且以表6中所展示之變化速度將9mm射擊發射於比較實例1及實例1至實例6之每一樣本處。更特定而言,表6提供50%之子彈停止於比較實例1及實例1至實例6內且50%之子彈完全地穿透比較實例1及實例1至實例6之理論速度V50。舉例而言,為了判定V50速度,以變化速度將複數個射擊發射於比較實例1及實例1至實例6之每一樣本處以判定子彈完全地穿透樣本之速度範圍及子彈部分地穿透樣本之速度範圍。對每一樣本之此等射擊群組經歷統計分析以判定用於所測試的比較實例1及實例1至實例6之每一樣本之V50速度。 Each of Comparative Examples 1 and 1 to 6 was placed on a clay block or platform, as further disclosed in Level III of NIJ STD 0101.06, and a 9 mm shot was fired at the rate of change shown in Table 6. Each of Example 1 and Example 1 to Example 6 was compared. More specifically, Table 6 provides that 50% of the bullets were stopped in Comparative Example 1 and Examples 1 to 6 and 50% of the bullets completely penetrated the theoretical speed V50 of Comparative Example 1 and Examples 1 to 6. For example, to determine the V50 speed, a plurality of shots are fired at each of Comparative Example 1 and Example 1 through Example 6 at varying speeds to determine the speed range at which the bullet completely penetrates the sample and the partial penetration of the sample by the bullet. Speed range. These shot groups for each sample were subjected to statistical analysis to determine the V50 speed for each of Comparative Example 1 and Examples 1 through 6 tested.

表6:9mm FMJ V50測試結果Table 6: 9mm FMJ V50 test results

如表5中所展示,與實例1至實例6相比,並非係雙模態黏結劑之比較實例1具有最低V50速度。如此,在子彈不會完全地穿透樣本之情況下實例1至實例6之樣本能夠耐受以較高速度射擊之子彈。另外,含有微晶蠟之實例3具有最大V50。 As shown in Table 5, Comparative Example 1 which is not a bimodal binder has the lowest V50 speed as compared with Examples 1 to 6. As such, the samples of Examples 1 through 6 can withstand bullets fired at higher speeds in the event that the bullet does not completely penetrate the sample. In addition, Example 3 containing microcrystalline wax has a maximum V50.

儘管已參考較佳實施例特定展示並闡述了本發明,但熟習此項技術者將容易地瞭解,可在不背離本發明之精神及範疇之情況下作出各種改變及修改。意欲申請專利範圍被解釋為涵蓋所揭示實施例、上文已論述之彼等替代方案及其所有等效內容。 Although the present invention has been particularly shown and described with reference to the preferred embodiments of the present invention, it will be understood by those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the patent application is intended to cover the disclosed embodiments, the alternatives discussed above, and all equivalents thereof.

2‧‧‧鋼帶式壓機 2‧‧‧Steel belt press

4‧‧‧第一複數個輥 4‧‧‧First multiple rolls

6‧‧‧第二複數個輥 6‧‧‧Second multiple rolls

8‧‧‧溫度單元 8‧‧‧Temperature unit

8a‧‧‧加熱部分 8a‧‧‧heating section

8b‧‧‧冷卻部分 8b‧‧‧cooling section

10‧‧‧第一帶 10‧‧‧First Belt

12‧‧‧第二帶 12‧‧‧Second belt

14‧‧‧複合物 14‧‧‧Complex

Claims (10)

一種防彈複合物,其包括:複數個纖維;及雙模態黏結劑,其施加至該複數個纖維,該黏結劑包含具有熔化溫度之結晶組分及具有軟化溫度之非晶組分,該結晶組分及該非晶組分相對於彼此而具有以下性質中之至少一者:(1)該結晶組分之該熔化溫度小於該非晶組分之該軟化溫度;(2)在高於該結晶組分之該熔化溫度之溫度下,該結晶組分之黏度小於該非晶組分之黏度;及(3)在高於該結晶組分之該熔化溫度之溫度下,該結晶組分之表面能小於該非晶組分之表面能。 A ballistic resistant composite comprising: a plurality of fibers; and a bimodal binder applied to the plurality of fibers, the binder comprising a crystalline component having a melting temperature and an amorphous component having a softening temperature, the crystal The component and the amorphous component have at least one of the following properties with respect to each other: (1) the melting temperature of the crystalline component is less than the softening temperature of the amorphous component; and (2) is higher than the crystalline group At a temperature at which the melting temperature is divided, the viscosity of the crystalline component is less than the viscosity of the amorphous component; and (3) at a temperature above the melting temperature of the crystalline component, the surface energy of the crystalline component is less than The surface energy of the amorphous component. 如請求項1之防彈複合物,其中該結晶組分係選自由以下各項組成之群組之蠟材料:棕櫚蠟、硬脂醯胺蠟、聚乙烯蠟、石蠟、聚烯烴蠟及微晶蠟。 The ballistic resistant composite of claim 1, wherein the crystalline component is selected from the group consisting of wax materials: palm wax, stearylamine wax, polyethylene wax, paraffin wax, polyolefin wax, and microcrystalline wax. . 如請求項1之防彈複合物,其中該非晶組分係由選自由以下各項組成之群組之聚合材料中之至少一者構成:丙烯酸、聚胺甲酸酯、腈橡膠、丙烯腈丁二烯共聚物及氟碳化合物。 The ballistic resistant composite of claim 1, wherein the amorphous component is composed of at least one selected from the group consisting of acrylic materials, polyurethanes, nitrile rubbers, acrylonitriles Alkene copolymers and fluorocarbons. 如請求項1之防彈複合物,其中該非晶組分構成該雙模態黏結劑之自60wt.%至95wt.%,且該結晶組分構成該雙模態黏結劑之自5wt.%至40wt.%。 The ballistic resistant composite of claim 1, wherein the amorphous component constitutes from 60 wt.% to 95 wt.% of the bimodal binder, and the crystalline component constitutes from 5 wt.% to 40 wt% of the bimodal binder. .%. 如請求項1之防彈複合物,其中該結晶組分之該熔化溫度係自50℃至140℃。 The ballistic resistant composite of claim 1, wherein the melting temperature of the crystalline component is from 50 ° C to 140 ° C. 一種形成防彈複合物之方法,其包括:提供包括複數個經單向定向之第一纖維之第一纖維疊層,其 中該等第一纖維塗佈有包括非晶組分及結晶組分之第一雙模態黏結劑;提供包括複數個經單向定向之第二纖維之第二纖維疊層,其中該等第二纖維塗佈有包括非晶組分及結晶組分之第二雙模態黏結劑;將該第一纖維疊層及第二纖維疊層定位成堆疊式配置,將該第一纖維疊層及該第二纖維疊層加熱至在該結晶組分之熔化溫度範圍內之溫度;當該第一纖維疊層及該第二纖維疊層處於該結晶組分之該熔化溫度範圍內之溫度時,將小於1巴之壓力施加至該等疊層,藉以該第一纖維疊層與第二纖維疊層彼此附著且藉此形成防彈複合物;及使該第一纖維疊層及該第二纖維疊層冷卻。 A method of forming a ballistic resistant composite, comprising: providing a first fiber stack comprising a plurality of unidirectionally oriented first fibers, The first fibers are coated with a first bimodal binder comprising an amorphous component and a crystalline component; a second fiber laminate comprising a plurality of unidirectionally oriented second fibers, wherein the first The second fiber is coated with a second bimodal binder comprising an amorphous component and a crystalline component; the first fiber laminate and the second fiber laminate are positioned in a stacked configuration, the first fiber laminate and The second fiber laminate is heated to a temperature within a melting temperature range of the crystalline component; when the first fiber laminate and the second fiber laminate are at a temperature within the melting temperature range of the crystalline component, Applying a pressure of less than 1 bar to the laminates, whereby the first fiber laminate and the second fiber laminate are attached to each other and thereby forming a ballistic resistant composite; and the first fiber laminate and the second fiber laminate The layer is cooled. 如請求項6之方法,其中將壓力施加至該第一纖維疊層及該第二纖維疊層之該步驟係使用平床層壓機來進行。 The method of claim 6, wherein the step of applying pressure to the first fiber laminate and the second fiber laminate is performed using a flat bed laminator. 如請求項6之方法,其中將壓力施加至該第一纖維疊層及該第二纖維疊層之該步驟包含:在該加熱步驟期間將小於0.5psi之第一壓力施加至該等經堆疊疊層;及當該等疊層處於該結晶組分之該熔點範圍內之該溫度時,將自10psi至300psi之第二壓力施加至該等經堆疊疊層。 The method of claim 6, wherein the step of applying pressure to the first fiber laminate and the second fiber laminate comprises: applying a first pressure of less than 0.5 psi to the stacked stack during the heating step And applying a second pressure from 10 psi to 300 psi to the stacked stacks when the stack is at the temperature within the melting point of the crystalline component. 如請求項6之方法,其中該非晶組分包括丙烯酸聚合物、聚胺甲酸酯、腈橡膠、丙烯腈丁二烯共聚物、氟碳化合物聚合物或其之組合,且其中該結晶組分包括棕櫚蠟、硬脂醯胺蠟、聚乙烯蠟、石蠟、聚烯烴蠟、微晶蠟或其之組合。 The method of claim 6, wherein the amorphous component comprises an acrylic polymer, a polyurethane, a nitrile rubber, an acrylonitrile butadiene copolymer, a fluorocarbon polymer, or a combination thereof, and wherein the crystalline component These include palm wax, stearylamine wax, polyethylene wax, paraffin wax, polyolefin wax, microcrystalline wax, or a combination thereof. 一種形成防彈複合物之方法,其包括:提供呈單向定向之第一複數個纖維; 提供呈單向定向之第二複數個纖維;提供具有非晶組分及結晶組分之黏結劑;用該黏結劑塗佈該第一複數個纖維;用該黏結劑塗佈該第二複數個纖維;以與該第二複數個纖維成90度之角定位該第一複數個纖維;將該第一及第二複數個纖維加熱至在該結晶組分之熔化溫度範圍內之溫度;當該第一及第二複數個纖維處於該結晶組分之該熔點範圍內之溫度時,將小於1巴之壓力施加至該第一及第二複數個纖維;及使該第一及第二複數個纖維冷卻。 A method of forming a ballistic resistant composite, comprising: providing a first plurality of fibers oriented in a unidirectional direction; Providing a second plurality of fibers oriented in a unidirectional manner; providing a binder having an amorphous component and a crystalline component; coating the first plurality of fibers with the binder; coating the second plurality of the plurality of fibers with the binder a fiber; positioning the first plurality of fibers at an angle of 90 degrees to the second plurality of fibers; heating the first and second plurality of fibers to a temperature within a melting temperature range of the crystalline component; Applying a pressure of less than 1 bar to the first and second plurality of fibers when the first and second plurality of fibers are at a temperature within the melting point of the crystalline component; and causing the first and second plurality Fiber cooling.
TW105109292A 2015-03-26 2016-03-24 Ballistic resistant composite material TW201710574A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562138548P 2015-03-26 2015-03-26
US15/060,862 US20160281272A1 (en) 2015-03-26 2016-03-04 Ballistic resistant composite material

Publications (1)

Publication Number Publication Date
TW201710574A true TW201710574A (en) 2017-03-16

Family

ID=56976559

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105109292A TW201710574A (en) 2015-03-26 2016-03-24 Ballistic resistant composite material

Country Status (10)

Country Link
US (1) US20160281272A1 (en)
EP (1) EP3274649A4 (en)
JP (1) JP2018513954A (en)
KR (1) KR20180011457A (en)
CN (1) CN107635763A (en)
BR (1) BR112017020608A2 (en)
CA (1) CA2980540A1 (en)
MX (1) MX2017012079A (en)
TW (1) TW201710574A (en)
WO (1) WO2016154102A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11530513B2 (en) * 2018-07-20 2022-12-20 Honeywell International Inc. Ballistic translation efficiency of high performance fibers
WO2020148639A1 (en) * 2019-01-14 2020-07-23 Tata Advanced Materials Limited A method for manufacturing a protective layer for a wearable article
IT202100005624A1 (en) * 2021-03-10 2022-09-10 Saati Spa MATERIAL IN ANTI-KNIFE ROLLS, METHOD AND INSTALLATION FOR ITS PRODUCTION
IT202100005618A1 (en) * 2021-03-10 2022-09-10 Saati Spa FIBER REINFORCED COMPOSITE MATERIAL AND METHOD AND PLANT FOR ITS PRODUCTION

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958685A (en) * 1957-08-09 1960-11-01 Du Pont Polymers of perfluoropropylene
GB1577012A (en) * 1973-12-17 1980-10-15 Galt G S Plastics armour
US4544694A (en) 1982-12-27 1985-10-01 American Hoechst Corporation Extrusion lubricant composition and process
CA1335913C (en) * 1987-12-15 1995-06-13 Louis Henry Miner Rigid composite
ITMI20030295A1 (en) * 2003-02-19 2004-08-20 Citterio Flli Spa PENETRATION RESISTANT FLEXIBLE COMPOSITE MATERIAL
CA2568559A1 (en) * 2004-05-28 2005-11-06 Addison Closson Adhesive Textiles, Inc. Method of forming adhesive mixtures and ballistic composites utilizing the same
US20090068453A1 (en) * 2006-10-11 2009-03-12 Sengshiu Chung Impact-resistant lightweight polymeric laminates
ITTO20070079A1 (en) * 2007-02-05 2008-08-06 Alenia Aeronautica Spa SEMICRISTALLINE MATRIX MATERIALS WITH LAYER SURFACE AMORPHOUS
US8017530B1 (en) 2007-03-28 2011-09-13 Honeywell International Inc. Environmentally resistant ballistic composite based on a fluorocarbon-modified matrix binder
US8256019B2 (en) * 2007-08-01 2012-09-04 Honeywell International Inc. Composite ballistic fabric structures for hard armor applications
US7994075B1 (en) * 2008-02-26 2011-08-09 Honeywell International, Inc. Low weight and high durability soft body armor composite using topical wax coatings
JP2013528250A (en) 2010-06-11 2013-07-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Polymer formulations useful for ballistic applications
US20120141720A1 (en) * 2010-06-11 2012-06-07 E. I. Du Pont De Nemours And Company Enhanced Flexible Lightweight Ballistic, Stab and Spike resistant Materials

Also Published As

Publication number Publication date
CN107635763A (en) 2018-01-26
WO2016154102A1 (en) 2016-09-29
MX2017012079A (en) 2018-02-21
EP3274649A4 (en) 2018-10-31
JP2018513954A (en) 2018-05-31
US20160281272A1 (en) 2016-09-29
BR112017020608A2 (en) 2018-06-26
CA2980540A1 (en) 2016-09-29
KR20180011457A (en) 2018-02-01
EP3274649A1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
CA2716885C (en) Low weight and high durability soft body armor composite using topical wax coatings
TW201710574A (en) Ballistic resistant composite material
CN102159916B (en) Bullet-proof articles comprising elongate bodies
EP1595105B9 (en) Anti-penetration flexible composite material
EP2726654B1 (en) Ultra-high strength uhmw pe fibers and products
TWI402389B (en) Environmentally resistant ballistic composite based on a nitrile rubber binder
TWI417507B (en) Composite ballistic fabric structures for hard armor applications
KR101088559B1 (en) Ballistic-resistant article
TW200904635A (en) Method to create an environmentally resistant soft armor composite
TW200912241A (en) Method to apply multiple coatings to a fiber web
CN102666088A (en) Impact resistant composite article
TW200912240A (en) Composite ballistic fabric structures
KR20230060513A (en) Aramid nanofiber composite unidirectional fabric and manufacturing method thereof
EP3924179A1 (en) Ballistic-resistant article based on sheets with discontinuous film splits
RU2337827C2 (en) Object resistant to ballistic effects
BG2533U1 (en) A composite material
MX2008010521A (en) Method of making improved ballistic products