TW201709540A - Method for preparing solar cell fulfilling a low manufacturing cost, a viable mass production, with low environmental impact, and a superb performance of the resulting perovskite layer - Google Patents

Method for preparing solar cell fulfilling a low manufacturing cost, a viable mass production, with low environmental impact, and a superb performance of the resulting perovskite layer Download PDF

Info

Publication number
TW201709540A
TW201709540A TW105126595A TW105126595A TW201709540A TW 201709540 A TW201709540 A TW 201709540A TW 105126595 A TW105126595 A TW 105126595A TW 105126595 A TW105126595 A TW 105126595A TW 201709540 A TW201709540 A TW 201709540A
Authority
TW
Taiwan
Prior art keywords
perovskite
pbi
iodide
transport layer
methylammonium
Prior art date
Application number
TW105126595A
Other languages
Chinese (zh)
Inventor
Xue-Zhong Liao
Zhe-Pu Xu
Guo-You Tian
Original Assignee
Frontmaterials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frontmaterials Co Ltd filed Critical Frontmaterials Co Ltd
Publication of TW201709540A publication Critical patent/TW201709540A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To date, the known manufacturing process of the active layer (i.e. perovskite layer) of the perovskite solar cell is yet to be improved. The present disclosure provides a method simultaneously fulfilling a low manufacturing cost, a viable mass production, with low environmental impact, and a superb performance of the resulting perovskite layer.

Description

製備太陽能電池之方法 Method of preparing solar cell

本揭露大體上關於一種製備太陽能電池之方法,尤其是關於製備鈣鈦礦型太陽能電池之方法。 The present disclosure relates generally to a method of making a solar cell, and more particularly to a method of preparing a perovskite type solar cell.

人類從工業革命以來大量使用石化能源,造成了嚴重的全球暖化效應以及對於有限石化能源存量的恐慌,所以尋找低排碳、高效率以及低成本的再生能源是現今最重要的課題之一,其中最主要的再生能源包含太陽能、風能、海洋能以及地熱等等,當中以太陽能具有無噪音、無轉動組件、設置環境限制少以及有效紓解尖峰用電等優點最受到矚目。 Humans have used petrochemical energy extensively since the industrial revolution, causing serious global warming effects and panic about limited petrochemical energy stocks. Therefore, finding low-carbon, high-efficiency and low-cost renewable energy is one of the most important issues today. Among them, the most important renewable energy sources include solar energy, wind energy, ocean energy and geothermal energy. Among them, solar energy has the advantages of no noise, no rotating components, less environmental constraints, and effective use of peak power.

截至目前為止,太陽光電產業基本上由矽基太陽光電系統為主,但是因為該系統需要高純度之原料以及極高溫製程,導致成本居高不下,無法有效地達到市電同價(grid parity)的目標;而後新發展出來的碲化鎘(CdTe)、銅銦鎵硒(CIGS)等薄膜太陽能系統之成本與效率亦無法達到預期的目標,所以太陽光電產業遲遲無法有突破性的發展。 So far, the solar photovoltaic industry is basically dominated by the 矽-based solar photovoltaic system, but because the system requires high-purity raw materials and extremely high-temperature processes, the cost is high, and it is impossible to effectively achieve the grid parity. The goal; the cost and efficiency of the newly developed thin-film solar systems such as CdTe and CIGS are not able to achieve the expected goals, so the solar photovoltaic industry has been unable to make breakthrough development.

為了解決上述之問題,在近期,已針對許多材料為對象進行研發,其中,鈣鈦礦太陽能電池在近幾年受到相當大的關注。鈣鈦礦太陽能電池係其主動層材料為鈣鈦礦結構之有機-無機混摻物,其優點包含:可溶液製程、輕、可撓曲及可調色(能階可調)等,且重點在於其能量轉換效率高,眾多優勢搭配下,預期可大幅降低其生產與系統架設成本。 In order to solve the above problems, in recent years, research and development has been carried out on many materials, and perovskite solar cells have received considerable attention in recent years. Perovskite solar cells are organic-inorganic blends whose active layer material is perovskite structure, and its advantages include: solution process, light, flexible and tonable (adjustable energy level), etc. Because of its high energy conversion efficiency and many advantages, it is expected to significantly reduce its production and system installation costs.

為使所製得之鈣鈦礦太陽能電池有良好的能量轉換效率,鈣鈦礦層材料應予改善。目前高效率鈣鈦礦太陽能電池中的鹵素,以碘為主體,可形成三碘鈣鈦礦材料(triiodide perovskite),例如三碘化甲基銨鉛(methylammonium lead triiodide)(CH3NH3PbI3),或是三碘化甲脒鎓鉛(formamidinium lead trihalide)(NH2CH=NH2PbI3)。在鈣鈦礦材料中摻雜溴,則可調整鈣鈦礦半導體材料的能隙(band gap),進而改變其顏色等,而在鈣鈦礦材料中摻雜氯,則具有幫助薄膜表面型態、增加電荷傳導距離、修補材料缺陷、增強結晶度等等等之效果。 In order to achieve good energy conversion efficiency of the prepared perovskite solar cell, the perovskite layer material should be improved. At present, halogens in high-efficiency perovskite solar cells, mainly composed of iodine, can form triiodide perovskite, such as methylammonium lead triiodide (CH 3 NH 3 PbI 3 ). ), or formamidinium lead trihalide (NH 2 CH=NH 2 PbI 3 ). Doping bromine in the perovskite material can adjust the band gap of the perovskite semiconductor material, thereby changing its color, etc., while doping chlorine in the perovskite material helps the surface morphology of the film. Increase the charge conduction distance, repair material defects, enhance crystallinity, etc.

然而,在目前摻雜氯的鈣鈦礦材料當中,氯的含量都極低,大多佔所有鹵素的5at%以下,甚至多半低於一般元素儀器的量測極限0.1at%,因此對鈣鈦礦材料的修飾程度有限。造成氯含量低的原因主要是因為其製程方式,在後熱處理過程中氯化甲基銨(methylammonium chloride;MACl)會昇華,使氯離開鈣 鈦礦材料。 However, among the current perovskite-doped perovskite materials, the chlorine content is extremely low, mostly accounting for less than 5 at% of all halogens, and even more than 0.1 at% of the measurement limit of general elemental instruments, so the perovskite The degree of modification of the material is limited. The reason for the low chlorine content is mainly due to the way of its process. During the post-heat treatment, methylammonium chloride (MACl) will sublimate and chlorine will leave the calcium. Titanium ore material.

另外,在鈣鈦礦太陽能電池製程開發當中,亦著重於鈣鈦礦薄膜製程的開發,例如,探討如何利用不同的溶液製程,以得到高品質、大晶粒、少缺陷的鈣鈦礦薄膜。工業化的溶液量產塗佈製程,常見的有:刮刀塗佈(blade coating)、噴塗塗佈(spray coating)、狹縫塗佈(slot-die coating)、網印塗佈(screen printing)、噴墨塗佈(inkjet printing)、浸泡塗佈(dip coating)等等,其中浸泡塗布為一種極快速,材料使用率高,且相較於其他技術機台價格低廉的工業化技術。其他目前已知的製程尚包含:一步法(one-step processing)、二步法(sequential deposition)、溶劑蒸氣製程法(solvent-vapor-assisted processing)、熱鑄法(hot casting)等等,其中,熱鑄法係極有潛力被運用在量產上的製程。 In addition, in the development of perovskite solar cell process, the development of perovskite film process is also emphasized, for example, how to use different solution processes to obtain high quality, large grain, less defect perovskite film. Industrialized solution mass production coating processes, common: blade coating, spray coating, slot-die coating, screen printing, spray Ink coating, dip coating, etc., wherein the immersion coating is an industrial technology that is extremely fast, has a high material usage rate, and is inexpensive compared to other technical machines. Other currently known processes include: one-step processing, sequential deposition, solvent-vapor-assisted processing, hot casting, and the like. The hot casting method has great potential to be used in mass production processes.

熱鑄法(hot casting)製程最早發表於Nie等人之論文(Nie et al.,High-efficiency solution-processed perovskite solar cells with millimeter-scale grains.Science,2015.347:p.522-525),該文中揭示利用氯化甲基銨(methylammonium chloride;MACl)與碘化鉛(PbI2)配置鈣鈦礦前驅物溶液,直接在熱基板上進行旋轉塗佈,使鈣鈦礦前驅物快速在基板上結晶。該文中所述之製程,可以使鈣鈦礦薄膜有大尺寸的晶粒,進而降低晶界所造成的損耗而達到高效率。又,此製程不需要後續的後熱處理,因此氯元素可以成功留在鈣鈦礦材料內。 由於Nie等人未定量薄膜內部的氯含量,本案發明人重複上述的Nie等人之製程,並定量分析薄膜內部的氯含量,推估鹵素元素約佔38at%以上。 The hot casting process was first published in the paper by Nie et al. (Nie et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015. 347: p. 522-525). It is revealed that the perovskite precursor solution is prepared by using methylammonium chloride (MACl) and lead iodide (PbI 2 ), and spin coating is directly performed on the hot substrate to rapidly crystallize the perovskite precursor on the substrate. . The process described in the article can make the perovskite film have large-sized crystal grains, thereby reducing the loss caused by the grain boundary and achieving high efficiency. Moreover, this process does not require subsequent post-heat treatment, so the chlorine element can be successfully retained in the perovskite material. Since Nie et al. did not quantify the chlorine content inside the film, the inventors of the present invention repeated the above-described Nie et al. process and quantitatively analyzed the chlorine content inside the film, and estimated that the halogen element accounted for about 38 at% or more.

惟,除了獲得良好的鈣鈦礦前驅物以改善鈣鈦礦太陽能電池之主動層(即鈣鈦礦層)的表現外,鈣鈦礦層的製程也應避免對環境造成衝擊。例如,上述之Nie等人所揭示之製程中,所使用的溶劑為二甲基甲醯胺(dimethylformamide,後文亦簡稱為DMF),為環保署列管第二類毒化物,在製程上時的揮發會造成人體的毒害、環境的汙染以及製造成本的增加。 However, in addition to obtaining good perovskite precursors to improve the performance of the active layer of the perovskite solar cell (ie, the perovskite layer), the process of the perovskite layer should also avoid environmental impact. For example, in the process disclosed by Nie et al., the solvent used is dimethylformamide (hereinafter also referred to as DMF), and the EPA ranks the second type of poison, in the process. Volatilization can cause human toxicity, environmental pollution, and increased manufacturing costs.

另外,Nie等人所使用的鈣鈦礦前驅物為氯化甲基銨及碘化鉛(PbI2),因此在快速結晶的過程當中,會產生大量的三氯化甲基銨鉛(methylammonium lead tri-chloride,PbMACl3),這種化合物已經被證實具有非常大的能階差(>3電子伏特),因此在可見光以及紅外光波段完全無法做有效的光電轉換,而對元件整體的表現有不良的影響。 In addition, the perovskite precursor used by Nie et al. is methylammonium chloride and lead iodide (PbI 2 ), so during the rapid crystallization process, a large amount of methylammonium lead is produced. Tri-chloride, PbMACl 3 ), this compound has been proven to have a very large energy level difference (>3 electron volts), so it is impossible to perform effective photoelectric conversion in the visible light and infrared light bands, and the overall performance of the component is Bad influence.

有鑑於Nie等人之論文中的問題,Tsai等人之論文(Tsai,H.H.et al.Optimizing Composition and Morphology for Large-Grain Perovskite Solar Cells via Chemical Control.Chem.Mater.27,5570-5576(2015))揭示改善方案,係在前驅物中加入添加劑I2,利用化學平衡的方式抑制PbMACl3的產生,達到能量轉換效率的提升。惟,此種方式首先仍使用具有毒性的DMF作為溶 劑,再者,本案發明人發現,Tsai等人之論文所揭示之方法仍無法穩定調控氯含量。 In view of the problems in the paper by Nie et al., Tsai et al. (Tsai, HH et al. Optimizing Composition and Morphology for Large-Grain Perovskite Solar Cells via Chemical Control. Chem. Mater. 27, 5570-5576 (2015)) improvement disclosed embodiment, based additives in the precursor I 2, in a balanced manner by chemical inhibition of generation PbMACl 3, to improve energy conversion efficiency. However, this method first uses toxic DMF as a solvent. Furthermore, the inventors of the present invention found that the method disclosed in the paper by Tsai et al. still fails to stably regulate the chlorine content.

綜上所述,可知目前仍亟需兼具製造成本低、可量產、低環境衝擊且所製得之鈣鈦礦層效能佳的製程。 In summary, it can be seen that there is still a need for a process that combines low manufacturing cost, mass production, low environmental impact, and good performance of the produced perovskite layer.

有鑑於上述問題,本揭露提供用於製造太陽能電池之鈣鈦礦前驅物溶液,以及使用彼之的製備太陽能電池之方法。本揭露提供用於製造太陽能電池之鈣鈦礦前驅物溶液包含:溶質,其係選自由氯化甲基銨(methylammonium chloride)、溴化甲基銨(methylammonium bromide)、碘化甲基銨(methylammonium iodide)、氯化乙基銨(ethylammonium chloride)、溴化乙基銨(ethylammonium bromide)、碘化乙基銨(ethylammonium iodide)、氯化甲脒鎓(formanidinium chloride,NH2CH=NH2Cl)、溴化甲脒鎓(formanidinium bromide,NH2CH=NH2Br)、碘化甲脒鎓(formanidinium iodide,NH2CH=NH2I)、氯化鉛(PbCl2)、溴化鉛(PbBr2)、碘化鉛(PbI2)、及彼等之任何組合所組成的群組之溶質,以及溶劑,其係選自由二甲基亞碸(dimethyl sulfoxide;DMSO)、γ-丁內酯(gamma-butyrolactone;GBL)、二 甲基甲醯胺(DMF)、N-甲基-2-吡咯啶酮(NMP)、乙腈、二甲基乙醯胺(DMAC)、及彼等之任何組合所組成的群組。 In view of the above problems, the present disclosure provides a perovskite precursor solution for fabricating a solar cell, and a method of preparing the same using the same. The present disclosure provides a perovskite precursor solution for manufacturing a solar cell comprising: a solute selected from the group consisting of methylammonium chloride, methylammonium bromide, and methylammonium iodide. Iodide), ethylammonium chloride, ethylammonium bromide, ethylammonium iodide, formanidinium chloride (NH 2 CH=NH 2 Cl) , formazinium bromide (NH 2 CH=NH 2 Br), formazinium iodide (NH 2 CH=NH 2 I), lead chloride (PbCl 2 ), lead bromide (PbBr) 2 ) a solute of a group consisting of lead iodide (PbI 2 ), and any combination thereof, and a solvent selected from the group consisting of dimethyl sulfoxide (DMSO) and γ-butyrolactone ( Gamma-butyrolactone; GBL), dimethylformamide (DMF), N -methyl-2-pyrrolidone (NMP), acetonitrile, dimethylacetamide (DMAC), and any combination thereof The group consisting of.

在一實施態樣中,本揭露之用於製造太陽能電池之鈣鈦礦前驅物溶液中,該溶劑係選自由DMSO、GBL、NMP、乙腈、DMAC、及彼等之任何組合所組成的群組之溶劑。 In one embodiment, in the perovskite precursor solution of the present disclosure for manufacturing a solar cell, the solvent is selected from the group consisting of DMSO, GBL, NMP, acetonitrile, DMAC, and any combination thereof. Solvent.

舉例而言,可用於該鈣鈦礦前驅物溶液的溶劑,若為混合溶劑,可為、但不限於DMSO:GBL=1:9至9:1;NMP:GBL=1:9至9:1;或DMF:GBL=1:9至9:1。或者,鈣鈦礦前驅物之溶劑可選自由DMSO、GBL、及DMSO與GBL之混合物所組成的群組,其中,當鈣鈦礦前驅物之溶劑係DMSO加上GBL的混合溶劑時,GBL佔混合溶劑的體積%為大於0體積%且小於或等於90%、較佳為70%。 For example, the solvent usable for the perovskite precursor solution may be, but is not limited to, DMSO: GBL = 1:9 to 9:1; NMP: GBL = 1:9 to 9:1. Or DMF: GBL = 1:9 to 9:1. Alternatively, the solvent of the perovskite precursor may be selected from the group consisting of DMSO, GBL, and a mixture of DMSO and GBL, wherein when the solvent of the perovskite precursor is DMSO plus a mixed solvent of GBL, GBL accounts for The volume % of the mixed solvent is more than 0% by volume and less than or equal to 90%, preferably 70%.

在一具體實施態樣中,本揭露之用於製造太陽能電池之鈣鈦礦前驅物溶液,依溶質組成可分類為二元性前驅物(binary precursor)溶液、單一有機基團之多元性前驅物(multiple precursor-single organic group)溶液、及多重有機基團之多元性前驅物(multiple precursor-multiple organic group)溶液。 In a specific embodiment, the perovskite precursor solution for manufacturing a solar cell according to the present disclosure can be classified into a binary precursor solution and a multi-component precursor of a single organic group according to a solute composition. (multiple precursor-single organic group) solution, and a multiple precursor-multiple organic group solution.

當本揭露之鈣鈦礦前驅物溶液係二元性前驅物溶液,該二元性前驅物溶液的溶質可包括:二元性前驅物溶液第一溶質,其係選自由下列所組成的群組:氯化甲基銨、溴化甲基銨、碘化甲基銨、氯化乙 基銨、溴化乙基銨、碘化乙基銨、氯化甲脒鎓、溴化甲脒鎓、碘化甲脒鎓;以及二元性前驅物溶液第二溶質,其係選自由下列所組成的群組:氯化鉛、溴化鉛、及碘化鉛;惟,二元性前驅物溶液中的第一溶質及第二溶質中的至少一者必須係碘化物。 When the perovskite precursor solution of the present disclosure is a binary precursor solution, the solute of the binary precursor solution may include: a binary precursor solution first solute, which is selected from the group consisting of : methylammonium chloride, methylammonium bromide, methylammonium iodide, chloride B Base ammonium, ethylammonium bromide, ethylammonium iodide, formamidine chloride, formamidine bromide, formamidine iodide; and a second precursor of a binary precursor solution selected from the following The group consisting of lead chloride, lead bromide, and lead iodide; however, at least one of the first solute and the second solute in the binary precursor solution must be iodide.

上述之二元性前驅物溶液中的二元性前驅物第一溶質與二元性前驅物第二溶質的莫耳比可為1:2至2:1。 The molar ratio of the binary precursor first solute to the binary precursor second solute in the above binary precursor solution may be 1:2 to 2:1.

當本揭露之鈣鈦礦前驅物溶液係單一有機基團之多元性前驅物溶液,該單一有機基團之多元性前驅物溶液的溶質組分及組分比例可例如但不限於如下: When the perovskite precursor solution of the present disclosure is a monolithic precursor solution of a single organic group, the solute component and component ratio of the monolithic precursor solution of the single organic group may be, for example but not limited to, the following:

1. (MAI+MACl):PbI2=1:1,MAI:MACl=0.95:0.05至0.05:0.95 1. (MAI+MACl): PbI 2 = 1:1, MAI: MACl = 0.95: 0.05 to 0.05: 0.95

2. MAI:(PbI2+PbCl2)=1:1,PbI2:PbCl2=0.95:0.05至0.05:0.95 2. MAI: (PbI 2 + PbCl 2 ) = 1:1, PbI 2 : PbCl 2 = 0.95: 0.05 to 0.05: 0.95

3. (MAI+MACl):(PbI2+PbCl2)=1:1,(MAI+PbI2):(MACl+PbCl2)=0.95:0.05至0.05:0.95 3. (MAI+MACl): (PbI 2 + PbCl 2 ) = 1:1, (MAI + PbI 2 ): (MACl + PbCl 2 ) = 0.95: 0.05 to 0.05: 0.95

4. (MAI+MABr):PbI2=1:1,MAI:MABr=0.95:0.05至0.05:0.95 4. (MAI+MABr): PbI 2 = 1:1, MAI: MABr = 0.95: 0.05 to 0.05: 0.95

5. MAI:(PbI2+PbBr2)=1:1,PbI2:PbBr2=0.95:0.05至0.05:0.95 5. MAI: (PbI 2 + PbBr 2) = 1: 1, PbI 2: PbBr 2 = 0.95: 0.05 to 0.05: 0.95

6. (MAI+MABr):(PbI2+PbBr2)=1:1,(MAI+PbI2):(MABr+PbBr2)=0.95:0.05至0.05:0.95 6. (MAI + MABr) :( PbI 2 + PbBr 2) = 1: 1, (MAI + PbI 2) :( MABr + PbBr 2) = 0.95: 0.05 to 0.05: 0.95

7. MAI:(PbCl2+PbBr2)=1:1,PbCl2:PbBr2= 0.95:0.05至0.05:0.95 7. MAI: (PbCl 2 + PbBr 2 ) = 1:1, PbCl 2 : PbBr 2 = 0.95: 0.05 to 0.05: 0.95

8. (MAI+MACl+MABr):PbI2=1:1,MAI:(MACl+MABr)=0.95:0.05至0.05:0.95,MACl:MABr=0.95:0.05至0.05:0.95 8. (MAI+MACl+MABr): PbI 2 = 1:1, MAI: (MACl + MABr) = 0.95: 0.05 to 0.05: 0.95, MACl: MABr = 0.95: 0.05 to 0.05: 0.95

9. MAI:(PbI2+PbBr2+PbCl2)=1:1,PbI2:(PbBr2+PbCl2)=0.95:0.05至0.05:0.95,PbBr2:PbCl2=0.95:0.05至0.05:0.95 9. MAI: (PbI 2 + PbBr 2 + PbCl 2) = 1: 1, PbI 2: (PbBr 2 + PbCl 2) = 0.95: 0.05 to 0.05: 0.95, PbBr 2: PbCl 2 = 0.95: 0.05 to 0.05: 0.95

10. (MAI+MABr+MACl):(PbI2+PbBr2+PbCl2)=1:1,(MAI+PbI2):(MACl+MABr+PbBr2+PbCl2)=0.95:0.05至0.05:0.95,(MABr+PbBr2):(MACl+PbCl2)=0.95:0.05至0.05:0.95 10. (MAI + MABr + MACl) :( PbI 2 + PbBr 2 + PbCl 2) = 1: 1, (MAI + PbI 2) :( MACl + MABr + PbBr 2 + PbCl 2) = 0.95: 0.05 to 0.05: 0.95, (MABr + PbBr 2 ): (MACl + PbCl 2 ) = 0.95: 0.05 to 0.05: 0.95

11. (FAI+FACl):PbI2=1:1,FAI:FACl=0.95:0.05至0.05:0.95 11. (FAI + FACl): PbI 2 = 1: 1, FAI: FACl = 0.95: 0.05 to 0.05: 0.95

12. FAI:(PbI2+PbCl2)=1:1,PbI2:PbCl2=0.95:0.05至0.05:0.95 12. FAI: (PbI 2 + PbCl 2 ) = 1:1, PbI 2 : PbCl 2 = 0.95: 0.05 to 0.05: 0.95

13. (FAI+FACl):(PbI2+PbCl2)=1:1,(FAI+PbI2):(FACl+PbCl2)=0.95:0.05至0.05:0.95 13. (FAI + FACl) :( PbI 2 + PbCl 2) = 1: 1, (FAI + PbI 2) :( FACl + PbCl 2) = 0.95: 0.05 to 0.05: 0.95

14. (FAI+FABr):PbI2=1:1,FAI:FABr=0.95:0.05至0.05:0.95 14. (FAI+FABr): PbI 2 = 1:1, FAI: FABr = 0.95: 0.05 to 0.05: 0.95

15. FAI:(PbI2+PbBr2)=1:1,PbI2:PbBr2=0.95:0.05至0.05:0.95 15. FAI: (PbI 2 + PbBr 2) = 1: 1, PbI 2: PbBr 2 = 0.95: 0.05 to 0.05: 0.95

16. (FAI+FABr):(PbI2+PbBr2)=1:1,(FAI+PbI2):(FABr+PbBr2)=0.95:0.05至0.05:0.95 16. (FAI + FABr) :( PbI 2 + PbBr 2) = 1: 1, (FAI + PbI 2) :( FABr + PbBr 2) = 0.95: 0.05 to 0.05: 0.95

17. FAI:(PbCl2+PbBr2)=1:1,PbCl2:PbBr2=0.95:0.05至0.05:0.95 17. FAI: (PbCl 2 + PbBr 2 ) = 1:1, PbCl 2 : PbBr 2 = 0.95: 0.05 to 0.05: 0.95

18. (FAI+FACl+FABr):PbI2=1:1,FAI:(FACl+FABr)=0.95:0.05至0.05:0.95,FACl:FABr=0.95:0.05至0.05:0.95 18. (FAI+FACl+FABr): PbI 2 = 1:1, FAI: (FACl + FABr) = 0.95: 0.05 to 0.05: 0.95, FACl: FABr = 0.95: 0.05 to 0.05: 0.95

19. FAI:(PbI2+PbBr2+PbCl2)=1:1,PbI2:(PbBr2+PbCl2)=0.95:0.05至0.05:0.95,PbBr2:PbCl2=0.95:0.05至0.05:0.95 19. FAI: (PbI 2 + PbBr 2 + PbCl 2) = 1: 1, PbI 2: (PbBr 2 + PbCl 2) = 0.95: 0.05 to 0.05: 0.95, PbBr 2: PbCl 2 = 0.95: 0.05 to 0.05: 0.95

20. (FAI+FABr+FACl):(PbI2+PbBr2+PbCl2)=1:1,(FAI+PbI2):(FACl+FABr+PbBr2+PbCl2)=0.95:0.05至0.05:0.95,(FABr+PbBr2):(FACl+PbCl2)=0.95:0.05至0.05:0.95 20. (FAI + FABr + FACl) :( PbI 2 + PbBr 2 + PbCl 2) = 1: 1, (FAI + PbI 2) :( FACl + FABr + PbBr 2 + PbCl 2) = 0.95: 0.05 to 0.05: 0.95, (FABr + PbBr 2 ): (FACl + PbCl 2 ) = 0.95: 0.05 to 0.05: 0.95

21. (EAI+EACl):PbI2=1:1,EAI:EACl=0.95:0.05至0.05:0.95 21. (EAI+EACl): PbI 2 = 1:1, EAI: EACl = 0.95: 0.05 to 0.05: 0.95

22. EAI:(PbI2+PbCl2)=1:1,PbI2:PbCl2=0.95:0.05至0.05:0.95 22. EAI: (PbI 2 + PbCl 2 ) = 1:1, PbI 2 : PbCl 2 = 0.95: 0.05 to 0.05: 0.95

23. (EAI+EACl):(PbI2+PbCl2)=1:1,(EAI+PbI2):(EACl+PbCl2)=0.95:0.05至0.05:0.95 23. (EAI+EACl): (PbI 2 + PbCl 2 ) = 1:1, (EAI + PbI 2 ): (EACl + PbCl 2 ) = 0.95: 0.05 to 0.05: 0.95

24. (EAI+EABr):PbI2=1:1,EAI:EABr=0.95:0.05至0.05:0.95 24. (EAI+EABr): PbI 2 = 1:1, EAI: EABr = 0.95: 0.05 to 0.05: 0.95

25. EAI:(PbI2+PbBr2)=1:1,PbI2:PbBr2=0.95:0.05至0.05:0.95 25. EAI: (PbI 2 + PbBr 2) = 1: 1, PbI 2: PbBr 2 = 0.95: 0.05 to 0.05: 0.95

26. (EAI+EABr):(PbI2+PbBr2)=1:1,(EAI+PbI2):(EABr+PbBr2)=0.95:0.05至0.05:0.95 26. (EAI + EABr) :( PbI 2 + PbBr 2) = 1: 1, (EAI + PbI 2) :( EABr + PbBr 2) = 0.95: 0.05 to 0.05: 0.95

27. EAI:(PbCl2+PbBr2)=1:1,PbCl2:PbBr2=0.95:0.05至0.05:0.95 27. EAI: (PbCl 2 + PbBr 2 ) = 1:1, PbCl 2 : PbBr 2 = 0.95: 0.05 to 0.05: 0.95

28. (EAI+EACl+EABr):PbI2=1:1,EAI:(EACl+EABr)=0.95:0.05至0.05:0.95,EACl:EABr=0.95:0.05至0.05:0.95 28. (EAI+EACl+EABr): PbI 2 = 1:1, EAI: (EACl + EABr) = 0.95: 0.05 to 0.05: 0.95, EACl: EABr = 0.95: 0.05 to 0.05: 0.95

29. EAI:(PbI2+PbBr2+PbCl2)=1:1,PbI2:(PbBr2+PbCl2)=0.95:0.05至0.05:0.95,PbBr2:PbCl2=0.95:0.05至0.05:0.95 29. EAI: (PbI 2 + PbBr 2 + PbCl 2) = 1: 1, PbI 2: (PbBr 2 + PbCl 2) = 0.95: 0.05 to 0.05: 0.95, PbBr 2: PbCl 2 = 0.95: 0.05 to 0.05: 0.95

30. (EAI+EABr+EACl):(PbI2+PbBr2+PbCl2)=1:1,(EAI+PbI2):(EACl+EABr+PbBr2+PbCl2)=0.95:0.05至0.05:0.95,(EABr+PbBr2):(EACl+PbCl2)=0.95:0.05至0.05:0.95 30. (EAI + EABr + EACl) :( PbI 2 + PbBr 2 + PbCl 2) = 1: 1, (EAI + PbI 2) :( EACl + EABr + PbBr 2 + PbCl 2) = 0.95: 0.05 to 0.05: 0.95, (EABr + PbBr 2 ): (EACl + PbCl 2 ) = 0.95: 0.05 to 0.05: 0.95

當本揭露之鈣鈦礦前驅物溶液係多重有機基團之多元性前驅物溶液,該多重有機基團之多元性前驅物溶液的溶質組分及組分比例可例如但不限於如下: When the perovskite precursor solution of the present disclosure is a multi-organic precursor solution of multiple organic groups, the solute component and component ratio of the multi-organic precursor solution of the multiple organic group may be, for example but not limited to, the following:

1. (FAI+MAI):PbI2=1:1,FAI:MAI=0.95:0.05至0.05:0.95 1. (FAI+MAI): PbI 2 = 1:1, FAI: MAI = 0.95: 0.05 to 0.05: 0.95

2. (FAI+MABr):PbI2=1:1,FAI:MABr=0.95:0.05至0.05:0.95 2. (FAI+MABr): PbI 2 = 1:1, FAI: MABr = 0.95: 0.05 to 0.05: 0.95

3. (FAI+MABr):(PbI2+PbBr2)=1:1,(FAI+PbI2):(MABr+PbBr2)=0.95:0.05至0.05:0.95 3. (FAI + MABr) :( PbI 2 + PbBr 2) = 1: 1, (FAI + PbI 2) :( MABr + PbBr 2) = 0.95: 0.05 to 0.05: 0.95

4. (FAI+MACl):PbI2=1:1,FAI:MACl=0.95:0.05至0.05:0.95 4. (FAI+MACl): PbI 2 = 1:1, FAI: MACl = 0.95: 0.05 to 0.05: 0.95

5. (FAI+MACl):(PbI2+PbCl2)=1:1,(FAI+PbI2): (MACl+PbCl2)=0.95:0.05至0.05:0.95 5. (FAI + MACl) :( PbI 2 + PbCl 2) = 1: 1, (FAI + PbI 2): (MACl + PbCl 2) = 0.95: 0.05 to 0.05: 0.95

6. (FAI+MAI+MABr):PbI2=1:1,FAI:(MAI+MABr)=0.95:0.05至0.05:0.95,MAI:MABr=0.95:0.05至0.05:0.95 6. (FAI+MAI+MABr): PbI 2 = 1:1, FAI: (MAI + MABr) = 0.95: 0.05 to 0.05: 0.95, MAI: MABr = 0.95: 0.05 to 0.05: 0.95

7. (FAI+MAI+MABr):(PbI2+PbI2+PbBr2)=1:1,(FAI+PbI2):(MAI+PbI2+MABr+PbBr2)=0.95:0.05至0.05:0.95,(MAI+PbI2):(MABr+PbBr2)=0.95:0.05至0.05:0.95 7. (FAI + MAI + MABr) :( PbI 2 + PbI 2 + PbBr 2) = 1: 1, (FAI + PbI 2) :( MAI + PbI 2 + MABr + PbBr 2) = 0.95: 0.05 to 0.05: 0.95, (MAI + PbI 2 ): (MABr + PbBr 2 ) = 0.95: 0.05 to 0.05: 0.95

8. (FAI+MAI+MACl):PbI2=1:1,FAI:(MAI+MACl)=0.95:0.05至0.05:0.95,MAI:MACl=0.95:0.05至0.05:0.95 8. (FAI+MAI+MACl): PbI 2 = 1:1, FAI: (MAI+MACl) = 0.95: 0.05 to 0.05: 0.95, MAI: MACl = 0.95: 0.05 to 0.05: 0.95

9. (FAI+MAI+MACl):(PbI2+PbI2+PbCl2)=1:1,(FAI+PbI2):(MAI+PbI2+MACl+PbCl2)=0.95:0.05至0.05:0.95,(MAI+PbI2):(MACl+PbCl2)=0.95:0.05至0.05:0.95 9. (FAI+MAI+MACl): (PbI 2 + PbI 2 + PbCl 2 ) = 1:1, (FAI + PbI 2 ): (MAI + PbI 2 + MACl + PbCl 2 ) = 0.95: 0.05 to 0.05: 0.95, (MAI + PbI 2 ): (MACl + PbCl 2 ) = 0.95: 0.05 to 0.05: 0.95

10. (FAI+MABr+MACl):PbI2=1:1,FAI:(MABr+MACl)=0.95:0.05至0.05:0.95,MABr:MACl=0.95:0.05至0.05:0.95 10. (FAI+MABr+MACl): PbI 2 = 1:1, FAI: (MABr+MACl) = 0.95: 0.05 to 0.05: 0.95, MABr: MACl = 0.95: 0.05 to 0.05: 0.95

11. (FAI+MABr+MACl):(PbI2+PbBr2+PbCl2)=1:1,(FAI+PbI2):(MABr+PbBr2+MACl+PbCl2)=0.95:0.05至0.05:0.95,(MABr+PbBr2):(MACl+PbCl2)=0.95:0.05至0.05:0.95 11. (FAI + MABr + MACl) :( PbI 2 + PbBr 2 + PbCl 2) = 1: 1, (FAI + PbI 2) :( MABr + PbBr 2 + MACl + PbCl 2) = 0.95: 0.05 to 0.05: 0.95, (MABr + PbBr 2 ): (MACl + PbCl 2 ) = 0.95: 0.05 to 0.05: 0.95

12. (FAI+MAI+FABr):PbI2=1:1,FAI:(MAI+FABr)=0.95:0.05至0.05:0.95,MAI:FABr= 0.95:0.05至0.05:0.95 12. (FAI+MAI+FABr): PbI 2 = 1:1, FAI: (MAI + FABr) = 0.95: 0.05 to 0.05: 0.95, MAI: FABr = 0.95: 0.05 to 0.05: 0.95

13. (FAI+MAI+FABr):(PbI2+PbI2+PbBr2)=1:1,(FAI+PbI2):(MAI+PbI2+FABr+PbBr2)=0.95:0.05至0.05:0.95,(MAI+PbI2):(FABr+PbBr2)=0.95:0.05至0.05:0.95 13. (FAI + MAI + FABr) :( PbI 2 + PbI 2 + PbBr 2) = 1: 1, (FAI + PbI 2) :( MAI + PbI 2 + FABr + PbBr 2) = 0.95: 0.05 to 0.05: 0.95, (MAI + PbI 2 ): (FABr + PbBr 2 ) = 0.95: 0.05 to 0.05: 0.95

14. (FAI+MAI+FACl):PbI2=1:1,FAI:(MAI+FACl)=0.95:0.05至0.05:0.95,MAI:FACl=0.95:0.05至0.05:0.95 14. (FAI+MAI+FACl): PbI 2 = 1:1, FAI: (MAI + FACl) = 0.95: 0.05 to 0.05: 0.95, MAI: FACl = 0.95: 0.05 to 0.05: 0.95

15. (FAI+MAI+FACl):(PbI2+PbI2+PbCl2)=1:1,(FAI+PbI2):(MAI+PbI2+FACl+PbCl2)=0.95:0.05至0.05:0.95,(MAI+PbI2):(FACl+PbCl2)=0.95:0.05至0.05:0.95 15. (FAI+MAI+FACl): (PbI 2 + PbI 2 + PbCl 2 ) = 1:1, (FAI + PbI 2 ): (MAI + PbI 2 + FACl + PbCl 2 ) = 0.95: 0.05 to 0.05: 0.95, (MAI + PbI 2 ): (FACl + PbCl 2 ) = 0.95: 0.05 to 0.05: 0.95

16. (FAI+MABr+FABr):PbI2=1:1,FAI:(MABr+FABr)=0.95:0.05至0.05:0.95,MABr:FABr=0.95:0.05至0.05:0.95 16. (FAI+MABr+FABr): PbI 2 = 1:1, FAI: (MABr + FABr) = 0.95: 0.05 to 0.05: 0.95, MABr: FABr = 0.95: 0.05 to 0.05: 0.95

17. (FAI+MABr+FABr):(PbI2+PbBr2+PbBr2)=1:1,(FAI+PbI2):(MABr+PbBr2+FABr+PbBr2)=0.95:0.05至0.05:0.95,(MABr+PbBr2):(FABr+PbBr2)=0.95:0.05至0.05:0.95 17. (FAI + MABr + FABr) :( PbI 2 + PbBr 2 + PbBr 2) = 1: 1, (FAI + PbI 2) :( MABr + PbBr 2 + FABr + PbBr 2) = 0.95: 0.05 to 0.05: 0.95, (MABr + PbBr 2 ): (FABr + PbBr 2 ) = 0.95: 0.05 to 0.05: 0.95

18. (FAI+MACl+FACl):PbI2=1:1,FAI:(MACl+FACl)=0.95:0.05至0.05:0.95,MACl:FACl=0.95:0.05至0.05:0.95 18. (FAI+MACl+FACl): PbI 2 = 1:1, FAI: (MACl + FACl) = 0.95: 0.05 to 0.05: 0.95, MACl: FACl = 0.95: 0.05 to 0.05: 0.95

19. (FAI+MACl+FACl):(PbI2+PbCl2+PbCl2)=1:1,(FAI+PbI2):(MACl+PbCl2+FACl+PbCl2)= 0.95:0.05至0.05:0.95,(MACl+PbCl2):(FACl+PbCl2)=0.95:0.05至0.05:0.95 19. (FAI+MACl+FACl): (PbI 2 + PbCl 2 + PbCl 2 ) = 1:1, (FAI + PbI 2 ): (MACl + PbCl 2 + FACl + PbCl 2 ) = 0.95: 0.05 to 0.05: 0.95, (MACl + PbCl 2 ): (FACl + PbCl 2 ) = 0.95: 0.05 to 0.05: 0.95

20. (FAI+MABr+FACl):PbI2=1:1,FAI:(MABr+FACl)=0.95:0.05至0.05:0.95,MABr:FACl=0.95:0.05至0.05:0.95 20. (FAI+MABr+FACl): PbI 2 = 1:1, FAI: (MABr + FACl) = 0.95: 0.05 to 0.05: 0.95, MABr: FACl = 0.95: 0.05 to 0.05: 0.95

21. (FAI+MABr+FACl):(PbI2+PbBr2+PbCl2)=1:1,(FAI+PbI2):(MABr+PbBr2+FACl+PbCl2)=0.95:0.05至0.05:0.95,(MABr+PbBr2):(FACl+PbCl2)=0.95:0.05至0.05:0.95 21. (FAI + MABr + FACl) :( PbI 2 + PbBr 2 + PbCl 2) = 1: 1, (FAI + PbI 2) :( MABr + PbBr 2 + FACl + PbCl 2) = 0.95: 0.05 to 0.05: 0.95, (MABr + PbBr 2 ): (FACl + PbCl 2 ) = 0.95: 0.05 to 0.05: 0.95

22. (FAI+MACl+FABr):PbI2=1:1,FAI:(MACl+FABr)=0.95:0.05至0.05:0.95,MACl:FABr=0.95:0.05至0.05:0.95 22. (FAI+MACl+FABr): PbI 2 = 1:1, FAI: (MACl + FABr) = 0.95: 0.05 to 0.05: 0.95, MACl: FABr = 0.95: 0.05 to 0.05: 0.95

23. (FAI+MACl+FABr):(PbI2+PbCl2+PbBr2)=1:1,(FAI+PbI2):(MACl+PbCl2+FABr+PbBr2)=0.95:0.05至0.05:0.95,(MACl+PbCl2):(FABr+PbBr2)=0.95:0.05至0.05:0.95 23. (FAI+MACl+FABr): (PbI 2 + PbCl 2 + PbBr 2 ) = 1:1, (FAI + PbI 2 ): (MACl + PbCl 2 + FABr + PbBr 2 ) = 0.95: 0.05 to 0.05: 0.95, (MACl + PbCl 2 ): (FABr + PbBr 2 ) = 0.95: 0.05 to 0.05: 0.95

在一具體實施態樣中,本揭露之用於製造太陽能電池之鈣鈦礦前驅物溶液中,該溶質係氯化甲基銨、碘化甲基銨與碘化鉛之混合物,溶質之濃度係0.1M至1M,該溶質係選自由氯化甲基銨(methylammonium chloride)、溴化甲基銨(methylammonium bromide)、碘化甲基銨(methylammonium iodide)氯化甲脒鎓(formanidinium chloride,NH2CH=NH2Cl)、溴化甲脒鎓(formanidinium bromide,NH2CH=NH2Br)、碘化甲脒鎓(formanidinium iodide,NH2CH=NH2I)、氯化鉛(PbCl2)、溴化鉛(PbBr2)、及碘化鉛(PbI2)及彼等之任何組合所組成的群組之溶質。在另一實施態樣中,該溶劑為體積比3:7之二甲基亞碸及γ-丁內酯之混合物;而該溶質為莫耳比8:2:8:2之碘化甲基銨(methylammonium iodide):氯化甲基銨(methylammonium chloride):碘化鉛(PbI2):氯化鉛(PbCl2),或是氯化甲基銨、碘化甲基銨與碘化鉛之莫耳比係8:2:10。 In a specific embodiment, in the perovskite precursor solution for manufacturing a solar cell, the solute is a mixture of methylammonium chloride, methylammonium iodide and lead iodide, and the concentration of the solute. 0.1M to 1M, the solute is selected from methylammonium chloride, methylammonium bromide, methylammonium iodide, and formanidinium chloride (NH 2 ) CH=NH 2 Cl), formazinium bromide (NH 2 CH=NH 2 Br), formazinium iodide (NH 2 CH=NH 2 I), lead chloride (PbCl 2 ) Solutes of the group consisting of lead bromide (PbBr 2 ), and lead iodide (PbI 2 ) and any combination thereof. In another embodiment, the solvent is a mixture of dimethyl hydrazine and γ-butyrolactone in a volume ratio of 3:7; and the solute is a methyl iodide 8:2:8:2 methyl iodide Ammonium (methylammonium chloride): methylammonium chloride: lead iodide (PbI 2 ): lead chloride (PbCl 2 ), or methylammonium chloride, methylammonium iodide and lead iodide Moerby is 8:2:10.

本揭露所提供的鈣鈦礦前驅物溶液,前驅物組成比例可予以調整,將部分氯化甲基銨(methylammonium chloride;MACl)替換成碘化甲基銨(methylammonium iodide;MAI)然後跟碘化鉛(PbI2)混合當作前驅物,替換比例範圍在2at%至100at%之間,10at%至20at%有最佳效果,加入之後在同樣的製程條件下,可以使薄膜結晶尺寸更大,減少晶界對元件造成的損耗,且可以增加薄膜結晶度,提升薄膜吸收係數,增加電荷遷移距離,最終使元件能量轉換效率約有5%至8%比例的增加,且提高重複性以及良率。分析最終形成薄膜的氯含量比例約在25至30at%之間。 The perovskite precursor solution provided by the present disclosure can be adjusted in proportion to the composition of the precursor, and a part of methylammonium chloride (MACl) is replaced with methylammonium iodide (MAI) and then iodized. Lead (PbI 2 ) is mixed as a precursor, and the replacement ratio ranges from 2 at% to 100 at%, and 10 at% to 20 at% has the best effect. After the addition, the film crystal size can be made larger under the same process conditions. Reduce the loss of the grain boundary on the component, and increase the crystallinity of the film, increase the absorption coefficient of the film, increase the charge migration distance, and finally increase the energy conversion efficiency of the component by about 5% to 8%, and improve the repeatability and yield. . The ratio of the chlorine content of the final formed film was analyzed to be between about 25 and 30 at%.

本揭露另提供一種製備用於太陽能電池之鈣鈦礦膜之方法,其包含:將待覆以鈣鈦礦膜之材料加熱至範圍在25至300℃之間之溫度,將已加熱之材料置入如前述之鈣鈦礦前驅物溶液浸泡 0.1至5秒,其中,該鈣鈦礦前驅物溶液之溫度範圍介於25至250℃之間,以及將該材料自該鈣鈦礦前驅物溶液取出,藉由該材料的溫度使該鈣鈦礦前驅物溶液於基板上快速乾燥結晶,形成鈣鈦礦膜,其中該鈣鈦礦膜中之鈣鈦礦具有以ABX3所示之結構,其中A係甲基銨離子、乙基銨離子、及/或甲脒鎓離子(NH2CH=NH2 +)之中至少一種,B係Pb、Ge、Sn之中至少一種,X為VII族元素之中至少一種或VII族元素中二或更多種之混和。 The present disclosure further provides a method for preparing a perovskite film for a solar cell, comprising: heating a material to be coated with a perovskite film to a temperature ranging between 25 and 300 ° C, and placing the heated material Soaking in a perovskite precursor solution as described above for 0.1 to 5 seconds, wherein the perovskite precursor solution has a temperature in the range of 25 to 250 ° C, and removing the material from the perovskite precursor solution And the perovskite precursor solution is rapidly dried and crystallized on the substrate by the temperature of the material to form a perovskite film, wherein the perovskite in the perovskite film has a structure represented by ABX 3 , wherein A At least one of methyl ammonium ion, ethyl ammonium ion, and/or formazan ion (NH 2 CH=NH 2 + ), B is at least one of Pb, Ge, and Sn, and X is a group VII element. Mixing of two or more of at least one or Group VII elements.

相較於目前主流所使用的一步法(one-step)、兩步法(two-steps),上述之本揭露之製備用於太陽能電池之鈣鈦礦膜之方法,只需單一步驟塗佈,並無須耗時進行數十分鐘到數小時的後熱處理,因此可以輕易與捲對捲或是片對片連續式製程結合,加快製程速度提高產率以及降低設備成本。此外,相較於其他量產塗佈製程,浸泡塗佈的機台成本極為低廉。且,該方法成功利用量產製程使鈣鈦礦薄膜有非常大尺寸的晶粒,降低晶界所造成的損耗而達到高效率。 Compared with the one-step and two-steps used in the current mainstream, the above-mentioned method for preparing a perovskite film for a solar cell requires only a single step of coating. There is no need to take tens of minutes to several hours of post-heat treatment, so it can be easily combined with roll-to-roll or sheet-to-piece continuous processes to speed up the process and increase productivity and equipment costs. In addition, the immersion coated machine is extremely inexpensive compared to other mass production coating processes. Moreover, the method successfully utilizes the mass production process to make the perovskite film have very large-sized crystal grains, and reduce the loss caused by the grain boundary to achieve high efficiency.

本揭露亦提供一種製備太陽能電池之方法,其包含:提供導電基材;形成第一載子傳輸層於導電基材上;以如上述製備用於太陽能電池之鈣鈦礦膜之方法將鈣鈦礦前驅物溶液塗覆於該第一載子傳輸層上,以形成鈣鈦 礦膜;形成第二載子傳輸層於該鈣鈦礦膜上;形成功函數改質層於第二載子傳輸層上;以及形成電極層於功函數改質層上。 The present disclosure also provides a method of preparing a solar cell, comprising: providing a conductive substrate; forming a first carrier transport layer on the conductive substrate; and preparing the calcium titanium by using the method for preparing a perovskite film for a solar cell as described above a mineral precursor solution is coated on the first carrier transport layer to form a calcium titanium a mineral film; forming a second carrier transport layer on the perovskite film; a shape success function modifying layer on the second carrier transport layer; and forming an electrode layer on the work function reforming layer.

在一實施態樣中,該導電基材係為一透明導電玻璃、透明導電塑膠、其他透明導電基材或是不透明導電玻璃、不透明導電塑膠、其他不透明導電基材。 In one embodiment, the conductive substrate is a transparent conductive glass, a transparent conductive plastic, another transparent conductive substrate or an opaque conductive glass, an opaque conductive plastic, or other opaque conductive substrate.

在一實施態樣中,該第一載子傳輸層係為一電洞傳輸層或一電子傳輸層,第二載子傳輸層係為一電洞傳輸層或一電子傳輸層,電極層係為一陰極層或一陽極層。 In one embodiment, the first carrier transport layer is a hole transport layer or an electron transport layer, and the second carrier transport layer is a hole transport layer or an electron transport layer, and the electrode layer is a cathode layer or an anode layer.

在一實施態樣中,該電洞傳輸層的材料係為聚二氧乙基噻吩:苯乙烯磺酸(PEDOT:PSS)、2,2’,7,7’-肆[N,N-二(4-甲氧基苯基)胺基]-9,9’-螺二茀(螺-OMeTAD)、五氧化二釩(V2O5)、氧化鎳(NiO)、三氧化鎢(WO3)或三氧化鉬(MoO3)。 In one embodiment, the material of the hole transport layer is polydioxyl thiophene: styrene sulfonic acid (PEDOT: PSS), 2, 2', 7, 7'-肆 [N, N- II (4-Methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD), vanadium pentoxide (V 2 O 5 ), nickel oxide (NiO), tungsten trioxide (WO 3 ) or molybdenum trioxide (MoO 3 ).

在一實施態樣中,該電子傳輸層的材料係為氟化鋰(LiF)、鈣(Ca)、6,6-苯基-C61-丁酸甲酯(6,6-phenyl-C61-butyric acid methyl ester;PC61BM)、6,6-苯基-C71-丁酸甲酯(6,6-phenyl-C71-butyric acid methyl ester;PC71BM)、茚-碳六十之雙加成物(Indene-C60 bisadduct;ICBA)、碳酸銫(Cs2CO3)、二氧化鈦(TiO2)、2,9-甲基-4,7-二苯基-1,10-啡啉(bathocuproine,BCP)、氧化鋯(ZrO)、聚[(9,9-雙(3’-(N,N-二甲基胺基)丙基)-2,7-茀)-alt-2,7-(9,9-二辛基 茀)](PFN)或氧化鋅(ZnO)。 In one embodiment, the material of the electron transport layer is lithium fluoride (LiF), calcium (Ca), 6,6-phenyl-C61-butyric acid methyl ester (6,6-phenyl-C61-butyric Acid methyl ester; PC 61 BM), 6,6-phenyl-C71-butyric acid methyl ester (PC 71 BM), 茚-carbon sixty-two double addition (Indene-C60 bisadduct; ICBA), cesium carbonate (Cs 2 CO 3 ), titanium dioxide (TiO 2 ), 2,9-methyl-4,7-diphenyl-1,10-morpholine (bathocuproine, BCP) ), zirconia (ZrO), poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-茀)-alt-2,7-(9) , 9-dioctylfluorene)] (PFN) or zinc oxide (ZnO).

在一實施態樣中,該功函數改質層的材料係為聚伸乙亞胺(polyethylenimine;PEI)、乙氧基化聚伸乙亞胺(polyethyleneimine ethoxylated;PEIE)、聚[(9,9-雙(3’-(N,N-二甲基胺基)丙基)-2,7-茀)-alt-2,7-(9,9-二辛基茀)](PFN)、PFN衍生物(例如PFN-OX、PFCn6:K+、PFEN-Hg、PBN、PFPA-1)、HBPFN、或聚咔唑(polycarbazole)衍生物PC-P、PCP-EP、PCDTBT-N。 In one embodiment, the material of the work function modifying layer is polyethylenimine (PEI), polyethyleneimine ethoxylated (PEIE), poly[(9,9) -Bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN), PFN Derivatives (eg, PFN-OX, PFCn6: K+, PFEN-Hg, PBN, PFPA-1), HBPFN, or polycarbazole derivatives PC-P, PCP-EP, PCDTBT-N.

在一實施態樣中,該電極層的材料係為鈣(Ca)、鋁(Al)、銀(Ag)、金(Au)、氧化銦錫、鋁摻雜氧化鋅、銀奈米線、聚二氧乙基噻吩:苯乙烯磺酸、石墨烯、石墨烯氧化物、或其組合。 In one embodiment, the material of the electrode layer is calcium (Ca), aluminum (Al), silver (Ag), gold (Au), indium tin oxide, aluminum doped zinc oxide, silver nanowire, poly Dioxyethylthiophene: styrene sulfonic acid, graphene, graphene oxide, or a combination thereof.

本揭露所提供之以非毒化物溶劑鈣鈦礦薄膜太陽能電池製備方式,係利用熱鑄方式來塗佈溶解於非毒化物溶劑中之鈣鈦礦前驅物。藉此方法製備鈣鈦礦薄膜,可避免使用列管毒化物降低對於人體的毒害、環境的汙染以及製造成本並且製作出非常大尺寸的晶粒結構之薄膜,有效提升光電轉換效率。 The non-toxic solvent perovskite thin film solar cell preparation method provided by the present disclosure utilizes a hot casting method to coat a perovskite precursor dissolved in a non-toxic solvent. The method of preparing the perovskite film can avoid the use of the tube poison, reduce the toxicity to the human body, environmental pollution and manufacturing cost, and produce a film of a very large-sized grain structure, thereby effectively improving the photoelectric conversion efficiency.

應了解的是,上述之發明說明及下列之實施例均提供本揭露之實施態樣,且意欲提供了解本案所請之發明的本質及特性之概觀或架構。 It is to be understood that the foregoing description of the invention and the following examples of the invention are intended to provide an understanding of the nature of the invention and

1‧‧‧導電基材 1‧‧‧Electrical substrate

2‧‧‧第一載子傳輸層 2‧‧‧First carrier transport layer

3‧‧‧鈣鈦礦薄膜吸光層 3‧‧‧Perovskite film absorption layer

4‧‧‧第二載子傳輸層 4‧‧‧Second carrier transport layer

5‧‧‧功函數改質層 5‧‧‧Work function modification layer

6‧‧‧電極層 6‧‧‧electrode layer

圖1係以習知量產方法及本揭露之一實施態 樣的量產方法所製得的鈣鈦礦太陽能電池之效能比較。 1 is a conventional mass production method and an embodiment of the present disclosure A comparison of the performance of a perovskite solar cell produced by a mass production method.

圖2為依本揭露之方法所製成之太陽能電池之建構示意圖。 2 is a schematic view showing the construction of a solar cell fabricated by the method of the present disclosure.

圖3係不同碘化甲基銨替換比例之鈣鈦礦前驅物溶液所製得的鈣鈦礦太陽能電池之效能比較。 Figure 3 is a comparison of the performance of perovskite solar cells made from different perovskite methylammonium replacement ratios of perovskite precursor solutions.

圖4為不同鈣鈦礦前驅物溶液的晶粒尺寸。 Figure 4 shows the grain size of different perovskite precursor solutions.

圖5為以非毒化物溶劑製作鈣鈦礦薄膜太陽能電池之流程圖。 Figure 5 is a flow chart of a perovskite thin film solar cell fabricated using a non-toxic solvent.

圖6係以具有毒化物及非毒化物溶劑所製得的鈣鈦礦太陽能電池之效能比較。 Figure 6 is a comparison of the efficacy of a perovskite solar cell made with a poisonous and non-toxic solvent.

圖7A係以不同含氯前驅物摻雜比例,所得到之鈣鈦礦薄膜經由X光繞射技術所得之結晶比較。 Figure 7A is a comparison of the crystallization of the resulting perovskite film obtained by X-ray diffraction techniques at different chlorine-containing precursor doping ratios.

圖7B係以不同含氯前驅物摻雜比例,所得到之鈣鈦礦薄膜經由原子力顯微鏡分析所得之表面薄膜型態。 Figure 7B shows the surface film morphology obtained by atomic force microscopy of the obtained perovskite film at different doping ratios of chlorine-containing precursors.

圖7C係以不同含氯前驅物摻雜比例,所得到之面積0.09平方公分鈣鈦礦太陽能電池之效能比較。 Figure 7C is a comparison of the effectiveness of a 0.09 square centimeter perovskite solar cell obtained with different chlorine-containing precursor doping ratios.

圖7D係以表4-1中所示之前驅物C摻雜比例,所得到之面積1平方公分太陽能電池之效能。 Fig. 7D shows the performance of the obtained area of 1 square centimeter of the solar cell with the ratio of the precursor C doping shown in Table 4-1.

圖7E係利用熱浸泡方式製程鈣鈦礦薄膜之流程。 Figure 7E shows the flow of a perovskite film by thermal immersion.

現將詳細參照本揭露之實施態樣,在下文說 明一或多個實施例。各實施例係提供用來解釋、而非限定本揭露。事實上,熟悉本技術領域者將清楚瞭解可在未悖離本揭露之範圍下對本揭露之教示作各種修飾或變異。例如,經繪示或描述作為一實施態樣的一部分之特徵,可與另一實施態樣併用,以產生又另一實施態樣。因此,本揭露意欲將這類修飾及變異包含在後附之申請專利範圍及其等效物的範圍內。 Reference will now be made in detail to the embodiments of the disclosure, which are described below One or more embodiments are described. The examples are provided to explain, not limit, the disclosure. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the teachings of the present disclosure without departing from the scope of the disclosure. For example, features illustrated or described as part of one embodiment can be used in combination with another embodiment to produce yet another embodiment. Therefore, the disclosure is intended to cover such modifications and variations as fall within the scope of the appended claims.

所屬技術領域中具有通常知識者可了解本討論內容僅說明例示性實施態樣,且不欲作為限制本揭露之較廣態樣。 Those of ordinary skill in the art will appreciate that the present disclosure is only illustrative of the exemplary embodiments and is not intended to limit the scope of the disclosure.

本揭露所有指涉為單數特性或限制,應包括對應之複數特性或限制,反之亦然,除非另有指明或明確暗示與所指涉之前後文相反。 All references to the singular characteristics or limitations are intended to include the corresponding plural features or limitations, and vice versa, unless otherwise indicated or explicitly indicated to the contrary.

本文所使用之所有方法或加工步驟的組合可以以任何順序執行,除非另有指明或明確暗示與所指涉之前後文相反。 Combinations of all methods or processing steps used herein may be performed in any order, unless otherwise indicated or specifically indicated to the contrary.

另,為了進一步描繪本揭露之原理及操作,提供下列實施例。然而,無論如何,此實施例不應視為限制用。 In addition, the following examples are provided to further describe the principles and operation of the disclosure. However, this embodiment should not be considered limiting in any way.

實施例1:鈣鈦礦薄膜太陽能電池的量產方法 Example 1: Mass production method of perovskite thin film solar cell

首先,鈣鈦礦薄膜之通式為ABX3,鈣鈦礦前驅物溶液之溶質至少含有AX或BX2之中一種,A為鹼金屬離子、甲基銨離子、乙基銨離子、NH2CH=NH2離子或 烷基銨離子之中至少一種,B為IV族元素(鍺、錫、鉛)、III族元素銦或V族元素銻之中至少一種,X為VII族元素(氟、氯、溴、碘)之中至少一種、且可能是VII族元素中兩種或是兩種以上之任何比例混和。 First, the perovskite film has the general formula ABX 3 , and the solute of the perovskite precursor solution contains at least one of AX or BX 2 , and A is an alkali metal ion, a methyl ammonium ion, an ethyl ammonium ion, and an NH 2 CH. At least one of =NH 2 ion or alkylammonium ion, B is at least one of a group IV element (germanium, tin, lead), a group III element indium or a group V element bis, and X is a group VII element (fluorine, chlorine At least one of bromine, iodine, and possibly two or more of the Group VII elements may be mixed in any ratio.

舉例來說,若欲製備CH3NH3PbCl3-xIx之鈣鈦礦薄膜,鈣鈦礦前驅物溶液之溶質可為氯化甲基銨、碘化甲基銨與碘化鉛,溶劑可為DMF,其較佳溶液濃度為0.4M,實際濃度可為0.1M至1M。 For example, if a perovskite film of CH 3 NH 3 PbCl 3-x I x is to be prepared, the solute of the perovskite precursor solution may be methylammonium chloride, methylammonium iodide and lead iodide, solvent. It may be DMF, and its preferred solution concentration is 0.4 M, and the actual concentration may be 0.1 M to 1 M.

承上,本實施例的鈣鈦礦薄膜係以熱鑄(hot casting)結合浸泡塗佈(dip coating)而製備。將鈣鈦礦前驅物溶液加熱溫度可以從25至250℃,再將基材加熱至溫度為150℃或180℃,實際加熱溫度可以從25至300℃,之後讓熱基板進入鈣鈦礦前驅物溶液進行短暫浸泡,迅速離開溶液後,由於基板的高溫使得鈣鈦礦溶液可以在基板上快速乾燥結晶。 The perovskite film of the present embodiment was prepared by hot casting combined with dip coating. The perovskite precursor solution can be heated from 25 to 250 ° C, and then the substrate is heated to a temperature of 150 ° C or 180 ° C, the actual heating temperature can be from 25 to 300 ° C, after which the hot substrate enters the perovskite precursor After the solution is briefly immersed and quickly leaves the solution, the perovskite solution can be rapidly dried and crystallized on the substrate due to the high temperature of the substrate.

在本實施例中之導電基材為氟摻雜氧化錫(FTO),實際導電基材可為透明導電玻璃、透明導電塑膠、其他透明導電基材或是不透明導電玻璃、不透明導電塑膠、其他不透明導電基材。 The conductive substrate in this embodiment is fluorine-doped tin oxide (FTO), and the actual conductive substrate may be transparent conductive glass, transparent conductive plastic, other transparent conductive substrate or opaque conductive glass, opaque conductive plastic, and other opaque. Conductive substrate.

接著,利用旋鍍或其他方式,形成第一載子傳輸層於導電基材上,於本實施例中之第一載子傳輸層為電洞傳導層為聚二氧乙基噻吩:苯乙烯磺酸(PEDOT:PSS),每分鐘5000轉,30秒,以旋鍍製程塗佈於導電基材上,成膜後150℃烤乾15分鐘。接著,將鈣鈦礦前 驅物溶液置於燒杯中,同時將已鍍上電洞傳導層之導電基材加熱至180℃,而後快速讓熱基板進入鈣鈦礦前驅物溶液中進行短暫浸泡,迅速離開溶液後,由於基板的高溫使得鈣鈦礦溶液可以在基板上快速乾燥結晶,前述鈣鈦礦前驅物溶液之溶質為氯化甲基銨與碘化鉛,莫耳混和比例為1:1,溶劑係DMF,其較佳溶液濃度為0.4M。接著將電子傳導層6,6-苯基-C61-丁酸甲酯(6,6-phenyl-C61-butyric acid methyl ester;PC61BM)以旋鍍製程每分鐘1000轉30秒於主動層上鍍膜。最後將功函數改質層PEI以旋鍍製程每分鐘3000轉30秒於電子傳導層上鍍膜,再蒸鍍厚度100奈米的銀電極。 Then, the first carrier transport layer is formed on the conductive substrate by spin plating or other means. In the embodiment, the first carrier transport layer is a polyelectroxylthiophene: styrenesulfonate. Acid (PEDOT: PSS), 5,000 rpm, 30 seconds, was applied to a conductive substrate by a spin coating process, and baked at 150 ° C for 15 minutes after film formation. Next, the perovskite precursor solution is placed in a beaker, and the conductive substrate on which the hole conducting layer has been plated is heated to 180 ° C, and then the hot substrate is quickly introduced into the perovskite precursor solution for short soaking, rapidly After leaving the solution, the perovskite solution can be quickly dried and crystallized on the substrate due to the high temperature of the substrate. The solute of the perovskite precursor solution is methylammonium chloride and lead iodide, and the molar mixing ratio is 1:1. The solvent is DMF, and its preferred solution concentration is 0.4M. Next, the electron conducting layer 6,6-phenyl-C61-butyric acid methyl ester (PC 61 BM) was spin-plated on the active layer at 1000 rpm for 30 seconds per minute. Coating. Finally, the work function modifying layer PEI is coated on the electron conducting layer by spin coating process at 3000 rpm for 30 seconds per minute, and then a silver electrode having a thickness of 100 nm is evaporated.

於此實施例中,使用150℃或是180℃可以分別得到可以得到短路電流密度為12.78mA/cm2及17.05mA/cm2、開路電壓分別為1063.78及1049.39毫伏特、填充因子為48.56及51.90,光電轉換效率為6.60及9.28%之使用熱鑄以及浸泡式塗佈之鈣鈦礦薄膜太陽能電池(請參考圖1及表1)。 In this embodiment, the short-circuit current density of 12.78 mA/cm 2 and 17.05 mA/cm 2 , the open circuit voltages of 1063.78 and 1049.39 millivolts, and the fill factor of 48.56 and 51.90 can be obtained by using 150 ° C or 180 ° C, respectively. The perovskite thin film solar cells using hot-casting and immersion coating with photoelectric conversion efficiency of 6.60 and 9.28% (please refer to Fig. 1 and Table 1).

實施例2:鈣鈦礦前驅物之製備及使用彼之製作薄膜太陽能電池(如圖2所示) Example 2: Preparation and use of a perovskite precursor to produce a thin film solar cell (as shown in Figure 2)

在本實施例中,將部分氯化甲基銨(methylammonium chloride;MACl)替換成碘化甲基銨(methylammonium iodide;MAI)然後跟碘化鉛(PbI2)混合當作前驅物,接著以熱鑄方式進行塗佈。 In this embodiment, partial methylammonium chloride (MACl) is replaced with methylammonium iodide (MAI) and then mixed with lead iodide (PbI 2 ) as a precursor, followed by heat. Coating is carried out by casting.

承上,本實施例的鈣鈦礦薄膜係以熱鑄方式製備-將鈣鈦礦前驅物溶液加溫至最佳溫度120℃,實際加熱溫度可以從25~250℃,之後馬上將此加溫溶液用旋轉塗佈法(spin coating)鍍在已加溫基材上,實際塗佈方式不限於旋轉塗佈,諸如刮刀塗佈(blade coating),噴塗塗佈(spray coating),狹縫塗佈(slot-die coating),網印塗佈(screen printing),噴墨塗佈(inkjet printing),浸泡塗佈(dip coating)皆可,基材最佳溫度為180℃,實際加熱溫度可以從25~300℃。 According to the above, the perovskite film of the present embodiment is prepared by hot casting method - the perovskite precursor solution is heated to an optimum temperature of 120 ° C, and the actual heating temperature can be from 25 to 250 ° C, and then heated immediately. The solution is plated on the heated substrate by spin coating, and the actual coating method is not limited to spin coating, such as blade coating, spray coating, slit coating (slot) -die coating), screen printing, inkjet printing, dip coating, the optimum substrate temperature is 180 ° C, the actual heating temperature can be from 25 to 300 °C.

本製程比傳統真空製程以及濕式塗佈之一步法(one-step)、兩步法(two-steps)製程來的快速方便,無須昂貴的真空設備,也不需要傳統濕式製程所需要之長時間後退火處理,即可達到大晶粒及高能量轉換效率。 This process is faster and more convenient than traditional vacuum processes and wet-coating one-step, two-steps processes, without the need for expensive vacuum equipment or the need for traditional wet processes. Large-grain and high-energy conversion efficiency can be achieved after annealing for a long time.

在本實施例中之導電基材為氟摻雜氧化錫(FTO),實際導電基材可為透明導電玻璃、透明導電塑膠、其他透明導電基材或是不透明導電玻璃、不透明導電 塑膠、其他不透明導電基材。 The conductive substrate in this embodiment is fluorine-doped tin oxide (FTO), and the actual conductive substrate may be transparent conductive glass, transparent conductive plastic, other transparent conductive substrate or opaque conductive glass, opaque conductive Plastic, other opaque conductive substrates.

接著,利用旋鍍或其他方式,形成第一載子傳輸層於導電基材上,於本實施例中之第一載子傳輸層為電洞傳導層為聚二氧乙基噻吩:苯乙烯磺酸(PEDOT:PSS),每分鐘5000轉,30秒,以旋鍍製程塗佈於導電基材上,成膜後150℃烤乾15分鐘。接著,將鈣鈦礦前驅物溶液加熱至120℃,同時將已鍍上電洞傳導層之導電基材加熱至180℃,而後快速將已加熱之鈣鈦礦前驅物溶液滴到已加熱之導電基材上,以旋鍍製程每分鐘4000轉15秒鍍膜,前述鈣鈦礦前驅物溶液之溶質為氯化甲基銨(methylammonium chloride;MACl)、碘化甲基銨(methylammonium iodide;MAI)與碘化鉛(PbI2),莫耳混和比例為8:2:10(亦可為10:0:10、9.5:0.5:10、9:1:10、8:2:10、或5:5:10),溶劑則為二甲基甲醯胺(DMF),濃度0.4M。接著將電子傳導層6,6-苯基-C61-丁酸甲酯(6,6-phenyl-C61-butyric acid methyl ester;PC61BM)以旋鍍製程每分鐘1000轉30秒於主動層上鍍膜。最後將功函數改質層PEI以旋鍍製程每分鐘3000轉30秒於電子傳導層上鍍膜,再蒸鍍厚度100奈米的銀電極。 Then, the first carrier transport layer is formed on the conductive substrate by spin plating or other means. In the embodiment, the first carrier transport layer is a polyelectroxylthiophene: styrenesulfonate. Acid (PEDOT: PSS), 5,000 rpm, 30 seconds, was applied to a conductive substrate by a spin coating process, and baked at 150 ° C for 15 minutes after film formation. Next, the perovskite precursor solution is heated to 120 ° C, while the conductive substrate plated with the hole conducting layer is heated to 180 ° C, and then the heated perovskite precursor solution is quickly dropped onto the heated conductive The substrate is coated by a spin coating process at 4000 rpm for 15 seconds per minute. The solute of the perovskite precursor solution is methylammonium chloride (MACl), methylammonium iodide (MAI) and Lead iodide (PbI 2 ), the molar mixing ratio is 8:2:10 (may also be 10:0:10, 9.5:0.5:10, 9:1:10, 8:2:10, or 5:5) : 10), the solvent is dimethylformamide (DMF), the concentration is 0.4M. Next, the electron conducting layer 6,6-phenyl-C61-butyric acid methyl ester (PC 61 BM) was spin-plated on the active layer at 1000 rpm for 30 seconds per minute. Coating. Finally, the work function modifying layer PEI is coated on the electron conducting layer by spin coating process at 3000 rpm for 30 seconds per minute, and then a silver electrode having a thickness of 100 nm is evaporated.

於此實施例中,藉由調整最佳的旋轉塗步速度、溶液濃度、載子傳導層材料以及電極材料,可以得到短路電流密度為19.21mA/cm2、開路電壓為1.00V、填充因子為80.76、光電轉換效率為15.56%之鈣鈦礦薄膜太陽 能電池。 In this embodiment, by adjusting the optimum spin coating speed, solution concentration, carrier conductive layer material and electrode material, the short circuit current density is 19.21 mA/cm 2 , the open circuit voltage is 1.00 V, and the fill factor is 80.76, a perovskite thin film solar cell with a photoelectric conversion efficiency of 15.56%.

請參考圖3及表2,相較於習知鈣鈦礦太陽能電池,本揭露將部分氯化甲基銨(methylammonium chloride;MACl)替換成碘化甲基銨(methylammonium iodide;MAI),替換比例範圍在2at%至100at%之間,由圖4看出,隨著MAI添加比例增加晶粒尺寸也增加,但是到了0.5:0.5:1的時候,晶粒反而沒有辦形成連續薄膜覆蓋住全部之表面。10at%至20at%則有最佳效果,加入之後在同樣的製程條件下,減少晶界對元件造成的損耗,且可以增加薄膜結晶度,提升薄膜吸收係數,增加電荷遷移距離,最終使元件能量轉換效率約有5%~8%比例的增加,且提高重複性以及良率。 Please refer to FIG. 3 and Table 2. Compared with the conventional perovskite solar cell, the present disclosure replaces part of methylammonium chloride (MACl) with methylammonium iodide (MAI). The range is between 2at% and 100at%. As shown in Figure 4, the grain size increases with the addition of MAI, but at 0.5:0.5:1, the grain does not form a continuous film covering all of it. surface. 10at% to 20at% has the best effect. After the addition, under the same process conditions, the loss of the grain boundary on the component is reduced, and the crystallinity of the film can be increased, the absorption coefficient of the film can be increased, the charge migration distance can be increased, and finally the component energy can be obtained. The conversion efficiency is increased by about 5% to 8%, and the repeatability and yield are improved.

實施例3:以非毒化物溶劑製作鈣鈦礦薄膜太陽能電池 Example 3: Preparation of a perovskite thin film solar cell from a non-toxic solvent

在本實施例中,將鈣鈦礦前驅物溶於非毒化物溶劑中,接著以熱鑄方式進行塗佈。簡易流程示意如圖5所示。 In this embodiment, the perovskite precursor is dissolved in a non-toxic solvent and then coated by hot casting. The simple flow diagram is shown in Figure 5.

舉例來說,若欲製備CH3NH3PbI3之鈣鈦礦薄膜,鈣鈦礦前驅物溶液之溶質為甲基碘化銨與碘化鉛,溶劑則為DMSO加上GBL,體積混和比例可以從1:9至10:0,例如約3:7,實際其較佳溶液濃度可例如為0.1M至1M,例如約0.8M。 For example, if a perovskite film of CH 3 NH 3 PbI 3 is to be prepared, the solute of the perovskite precursor solution is methyl ammonium iodide and lead iodide, and the solvent is DMSO plus GBL, and the volume mixing ratio can be From 1:9 to 10:0, for example about 3:7, the actual preferred solution concentration can be, for example, from 0.1 M to 1 M, for example about 0.8 M.

承上,本實施例的鈣鈦礦薄膜係以熱鑄方式製備-將鈣鈦礦前驅物溶液加溫至最佳溫度120℃,實際加熱溫度可以從25至250℃,之後馬上將此加溫溶液用旋轉塗佈法(spin coating)鍍在已加溫基材上,實際塗佈方式不限於旋轉塗佈,諸如刮刀塗佈(blade coating)、噴塗塗佈(spray coating)、狹縫塗佈(slot-die coating)、網印塗佈(screen printing)、噴墨塗佈(inkjet printing)、浸泡塗佈(dip coating)皆可,基材最佳溫度為180℃,實際加熱溫度可以從25至300℃。 According to the above, the perovskite film of the present embodiment is prepared by hot casting method - the perovskite precursor solution is heated to an optimum temperature of 120 ° C, and the actual heating temperature can be from 25 to 250 ° C, and then heated immediately thereafter. The solution is plated on the heated substrate by spin coating, and the actual coating method is not limited to spin coating, such as blade coating, spray coating, slit coating (slot) -die coating), screen printing, inkjet printing, dip coating, the optimum substrate temperature is 180 ° C, the actual heating temperature can be from 25 to 300 °C.

本製程比傳統真空製程以及濕式塗佈之一步(one-step)、兩步(one-steps)製程來的快速方便,無須昂貴的真空設備,也不需要傳統濕式製程所需要之長時間後退火處理,即可達到大晶粒及高能量轉換效率。 This process is faster and more convenient than traditional vacuum processes and wet-coating one-step, one-steps processes, without the need for expensive vacuum equipment or the long time required for traditional wet processes. After annealing, large grain and high energy conversion efficiency can be achieved.

在本實施例中之導電基材為氟摻雜氧化錫 (FTO),實際導電基材可為透明導電玻璃、透明導電塑膠、其他透明導電基材或是不透明導電玻璃、不透明導電塑膠、其他不透明導電基材。 The conductive substrate in this embodiment is fluorine-doped tin oxide (FTO), the actual conductive substrate can be transparent conductive glass, transparent conductive plastic, other transparent conductive substrate or opaque conductive glass, opaque conductive plastic, other opaque conductive substrate.

接著,利用旋鍍或其他方式,形成第一載子傳輸層於導電基材上,於本實施例中之第一載子傳輸層為電洞傳導層為聚二氧乙基噻吩:苯乙烯磺酸(PEDOT:PSS),每分鐘5000轉,30秒,以旋鍍製程塗佈於導電基材上,成膜後150℃烤乾15分鐘。接著,將鈣鈦礦前驅物溶液加熱至120℃,同時將已鍍上電洞傳導層之導電基材加熱至180℃,而後快速將已加熱之鈣鈦礦前驅物溶液滴到已加熱之導電基材上,以旋鍍製程每分鐘4000轉15秒鍍膜,前述鈣鈦礦前驅物溶液之溶質為碘化甲基銨(methylammonium iodide;MAI)與碘化鉛(PbI2),莫耳混和比例為1:1,溶劑則為二甲基亞碸(Dimethyl sulfoxide;DMSO)加上γ-丁內酯(gamma-Butyrolactone;GBL),體積混和比例為3:7,溶液濃度為0.8M。接著將電子傳導層6,6-苯基-C61-丁酸甲酯(6,6-phenyl-C61-butyric acid methyl ester;PC61BM)以旋鍍製程每分鐘1000轉30秒於主動層上鍍膜。最後將功函數改質層PEI以旋鍍製程每分鐘3000轉30秒於電子傳導層上鍍膜,再蒸鍍厚度100奈米的銀電極。 Then, the first carrier transport layer is formed on the conductive substrate by spin plating or other means. In the embodiment, the first carrier transport layer is a polyelectroxylthiophene: styrenesulfonate. Acid (PEDOT: PSS), 5,000 rpm, 30 seconds, was applied to a conductive substrate by a spin coating process, and baked at 150 ° C for 15 minutes after film formation. Next, the perovskite precursor solution is heated to 120 ° C, while the conductive substrate plated with the hole conducting layer is heated to 180 ° C, and then the heated perovskite precursor solution is quickly dropped onto the heated conductive On the substrate, the spin coating process is applied at 4000 rpm for 15 seconds per minute, and the solute of the perovskite precursor solution is methylammonium iodide (MAI) and lead iodide (PbI 2 ), and the molar mixing ratio is For 1:1, the solvent is Dimethyl sulfoxide (DMSO) plus gamma-butyrolactone (GBL), the volume mixing ratio is 3:7, and the solution concentration is 0.8M. Next, the electron conducting layer 6,6-phenyl-C61-butyric acid methyl ester (PC 61 BM) was spin-plated on the active layer at 1000 rpm for 30 seconds per minute. Coating. Finally, the work function modifying layer PEI is coated on the electron conducting layer by spin coating process at 3000 rpm for 30 seconds per minute, and then a silver electrode having a thickness of 100 nm is evaporated.

於此實施例中,藉由調整最佳的旋轉塗佈速度、溶液濃度、載子傳導層材料以及電極材料,可以得到短路電流密度為20.87mA/cm2、開路電壓為0.94V、填充 因子為80.2、光電轉換效率為15.73%之非毒化物溶劑鈣鈦礦薄膜太陽能電池。 In this embodiment, by adjusting the optimum spin coating speed, solution concentration, carrier conductive layer material and electrode material, the short circuit current density is 20.87 mA/cm 2 , the open circuit voltage is 0.94 V, and the fill factor is 80.2. A non-toxic solvent perovskite thin film solar cell with a photoelectric conversion efficiency of 15.73%.

請參考圖6及表3,相較於習知鈣鈦礦太陽能電池,本揭露之非毒化物溶劑鈣鈦礦薄膜太陽能電池製備方式,可避免使用列管毒化物降低對於人體的毒害、環境的汙染以及製造成本並且利用熱鑄方式製作出非常大尺寸的晶粒結構之薄膜,有效提升光電轉換效率。 Please refer to FIG. 6 and Table 3. Compared with the conventional perovskite solar cell, the non-toxic solvent perovskite thin film solar cell preparation method of the present disclosure can avoid the use of the tube poison to reduce the toxicity to the human body and the environment. Pollution and manufacturing costs and the use of hot-casting to produce a film of very large-sized grain structure, effectively improving the photoelectric conversion efficiency.

實施例4:測試各種具有不同組分之鈣鈦礦前驅物溶液用於製作鈣鈦礦薄膜太陽能電池 Example 4: Testing various perovskite precursor solutions having different compositions for producing perovskite thin film solar cells

製作方式與實施例1至3的方式相同(流程可例如像是圖7E所示),惟鈣鈦礦前驅物溶液中,溶質組分及其比例係如下表4-1中所示,溶劑均使用DMSO及GBL之混合物(體積比3:7)。 The manner of preparation is the same as that of Examples 1 to 3 (the flow can be, for example, as shown in FIG. 7E), but in the perovskite precursor solution, the solute components and their proportions are as shown in Table 4-1 below, and the solvents are all A mixture of DMSO and GBL (3:7 by volume) was used.

如圖7A中所示之X光繞射圖譜,加入3至5%,PbMACl3的繞射強度相較於具有鈣鈦礦(Perovskite)結構之化合物仍然很弱。氯前驅物最佳比例摻雜提升電荷傳導距離,經由光致激發光譜所測出的電荷傳輸距離,加入5%的氯相較於沒有加入氯元素鈣鈦礦,電子傳輸距離由500奈米提升至660奈米,電子則由720奈米增加至820奈米。加入適當比例的氯前驅物,可以顯著讓薄膜更為平整均勻,如圖7B原子力顯微鏡所觀察表面型態,加入氯前驅物後表面變得非常平坦,和未加入氯前驅物的相比,表面粗糙度由200奈米,降低至約30奈米。氯摻雜誘導生成少部分二次相PbI2,如圖7A之X光繞射光譜所指出生成的PbI2繞射峰,未欲受限於理論,但咸信此種二次相可以用以修復鈣鈦礦材料缺陷,減少電荷損耗。氯前驅物最佳比例摻雜誘導鈣鈦礦形成(110)結晶方向,此種結晶方向有助於電荷的傳導,如圖7A所示之X光繞射圖,加入適當的氯前驅物,可以增強(110)結晶繞射強度,降低(020)結晶繞射強度。以上多種效應加乘,能量轉換效率 在適合的前驅物比例配比下,面積0.09平方公分電池可達能量轉換效率18.5%(表4-2),而如圖7C所示之電流密度對電壓的量測結果,此數值超越先前所有以熱鑄法製作的鈣鈦礦太陽能電池,我們並使用前驅物C製作了面積一平方公分的電池,能量轉換為15.4%,如圖7D電流密度對電壓的量測結果,超越目前所有一平方公分鈣鈦礦效率紀錄。 As shown in the X-ray diffraction pattern shown in Fig. 7A, the addition of 3 to 5%, the diffraction intensity of PbMACl 3 is still weak compared to the compound having a perovskite structure. The optimal proportion of chlorine precursors increases the charge conduction distance. The charge transmission distance measured by photoexcitation spectroscopy increases the electron transport distance from 500 nm by adding 5% chlorine compared to the non-chlorinated perovskite. To 660 nm, the electronics increased from 720 nm to 820 nm. Adding an appropriate proportion of the chlorine precursor can significantly make the film more even and uniform. As shown in the surface morphology observed by the atomic force microscope in Figure 7B, the surface becomes very flat after the addition of the chlorine precursor, compared to the surface without the addition of the chlorine precursor. The roughness is reduced from 200 nm to about 30 nm. Chlorine doping induces the formation of a small amount of secondary phase PbI 2 , as shown by the X-ray diffraction spectrum of Figure 7A. The diffraction peak of PbI 2 is not limited by theory, but it can be used for this secondary phase. Repair defects in perovskite materials and reduce charge loss. The optimal proportion of chlorine precursor doping induces the (110) crystal orientation of perovskite, which contributes to the conduction of charge, as shown in the X-ray diffraction pattern shown in Figure 7A, with the addition of a suitable chlorine precursor. Enhance (110) crystal diffraction intensity and reduce (020) crystal diffraction intensity. The above various effects are multiplied, and the energy conversion efficiency is 18.5% of the battery with an area of 0.09 square centimeter, and the energy conversion efficiency is 18.5% (Table 4-2), and the current density versus voltage as shown in FIG. 7C. Measurement results, this value surpasses all previous perovskite solar cells made by hot casting. We used precursor C to make a cell with a square centimeter area, and the energy was converted to 15.4%, as shown in Figure 7D. The measurement results surpass all current one square centimeter perovskite efficiency records.

所有本說明書中所引用之參考文獻,在此係以引用方式將它們全部併入本說明書。本文中之參考文獻的討論僅欲用於總結該些參考文獻作者之主張,並未承認任何參考文獻構成先前技術。申請人保留挑戰引用之參考文獻之準確性和相關性的權利。 All references cited in this specification are hereby incorporated by reference in their entirety in their entirety. The discussion of the references herein is only intended to summarize the claims of the authors of the references, and does not recognize that any reference constitutes prior art. Applicants reserve the right to challenge the accuracy and pertinence of the cited references.

雖然已使用特定術語、裝置及方法說明本揭露之較佳實施態樣,但此說明僅為描述目的之用。所使用文字為說明文字而非限制性文字。應了解,在未悖離於下 列申請專利範圍所述之本揭露精神及範疇下,所屬技術領域中具有通常知識者可進行更改及變動。此外,應了解,各種實施態樣之樣態可全部或部分相互取代。後附申請專利範圍之精神及範疇不應受限於本文中所含的較佳形式之描述。 Although the preferred embodiments of the present disclosure have been described using specific terms, devices, and methods, this description is for illustrative purposes only. The text used is explanatory text and not restrictive text. It should be understood that Changes and modifications may be made by those of ordinary skill in the art in the spirit and scope of the disclosure. In addition, it should be understood that aspects of the various embodiments may be substituted in whole or in part. The spirit and scope of the appended claims should not be limited by the description of the preferred forms contained herein.

Claims (15)

一種用於製造太陽能電池之鈣鈦礦前驅物溶液,其包含:溶質,其係選自由氯化甲基銨(methylammonium chloride)、溴化甲基銨(methylammonium bromide)、碘化甲基銨(methylammonium iodide)、氯化乙基銨(ethylammonium chloride)、溴化乙基銨(ethylammonium bromide)、碘化乙基銨(ethylammonium iodide)、氯化甲脒鎓(formanidinium chloride,NH2CH=NH2Cl)、溴化甲脒鎓(formanidinium bromide,NH2CH=NH2Br)、碘化甲脒鎓(formanidinium iodide,NH2CH=NH2I)、氯化鉛(PbCl2)、溴化鉛(PbBr2)、及碘化鉛(PbI2)、及彼等之任何組合所組成的群組之溶質,以及溶劑,其係選自由二甲基亞碸(dimethyl sulfoxide;DMSO)、γ-丁內酯(gamma-butyrolactone;GBL)、二甲基甲醯胺(DMF)、N-甲基-2-吡咯啶酮(NMP)、乙腈、二甲基乙醯胺(DMAC)、及彼等之任何組合所組成的群組。 A perovskite precursor solution for manufacturing a solar cell, comprising: a solute selected from the group consisting of methylammonium chloride, methylammonium bromide, and methylammonium iodide Iodide), ethylammonium chloride, ethylammonium bromide, ethylammonium iodide, formanidinium chloride (NH 2 CH=NH 2 Cl) , formazinium bromide (NH 2 CH=NH 2 Br), formazinium iodide (NH 2 CH=NH 2 I), lead chloride (PbCl 2 ), lead bromide (PbBr) a solute of a group consisting of 2 ), and lead iodide (PbI 2 ), and any combination thereof, and a solvent selected from the group consisting of dimethyl sulfoxide (DMSO), γ-butyrolactone (gamma-butyrolactone; GBL), dimethylformamide (DMF), N -methyl-2-pyrrolidone (NMP), acetonitrile, dimethylacetamide (DMAC), and any combination thereof The group formed. 如請求項1或2之鈣鈦礦前驅物溶液,其中該溶劑係選自由DMSO、γ-丁內酯、NMP、乙腈、DMAC、及彼等之任何組合所組成的群組之溶劑。 A perovskite precursor solution according to claim 1 or 2, wherein the solvent is selected from the group consisting of DMSO, γ-butyrolactone, NMP, acetonitrile, DMAC, and any combination thereof. 如請求項1或2之鈣鈦礦前驅物溶液,其中該溶質濃度為0.1M至1M,該溶質係選自由氯化甲 基銨(methylammonium chloride)、溴化甲基銨(methylammonium bromide)、碘化甲基銨(methylammonium iodide)、氯化甲脒鎓(formanidinium chloride,NH2CH=NH2Cl)、溴化甲脒鎓(formanidinium bromide,NH2CH=NH2Br)、碘化甲脒鎓(formanidinium iodide,NH2CH=NH2I)、氯化鉛(PbCl2)、溴化鉛(PbBr2)、及碘化鉛(PbI2)、及彼等之任何組合所組成的群組之溶質。 A perovskite precursor solution according to claim 1 or 2, wherein the solute concentration is from 0.1 M to 1 M, the solute is selected from the group consisting of methylammonium chloride, methylammonium bromide, and iodine. Methylammonium iodide, formanidinium chloride (NH 2 CH=NH 2 Cl), formazinium bromide (NH 2 CH=NH 2 Br), iodine methyl iodide the group (formanidinium iodide, NH 2 CH = NH 2 I), lead chloride (PbCl 2), lead bromide (PbBr 2), and lead iodide (PbI 2), and any of their combination consisting of Solute. 如請求項1或2之鈣鈦礦前驅物溶液,其中該溶劑為體積比3:7之二甲基亞碸及γ-丁內酯之混合物,該溶質為莫耳比8:2:8:2之碘化甲基銨(methylammonium iodide):氯化甲基銨(methylammonium chloride):碘化鉛(PbI2):氯化鉛(PbCl2)。 A perovskite precursor solution according to claim 1 or 2, wherein the solvent is a mixture of dimethyl hydrazine and γ-butyrolactone in a volume ratio of 3:7, the solute being a molar ratio of 8:2:8: 2 methylammonium iodide: methylammonium chloride: lead iodide (PbI 2 ): lead chloride (PbCl 2 ). 一種製備用於太陽能電池之鈣鈦礦膜之方法,其包含:將待覆以鈣鈦礦膜之材料加熱至範圍在25至300℃之間之溫度,將已加熱之材料置入如請求項1至4中任一項之鈣鈦礦前驅物溶液塗佈,其中,該鈣鈦礦前驅物溶液之溫度範圍介於25至250℃之間,藉由該材料的溫度使該鈣鈦礦前驅物溶液於基板上快速乾燥結晶,形成鈣鈦礦膜。 A method for preparing a perovskite film for a solar cell, comprising: heating a material to be coated with a perovskite film to a temperature ranging between 25 and 300 ° C, and placing the heated material as required The perovskite precursor solution of any one of 1 to 4, wherein the perovskite precursor solution has a temperature ranging from 25 to 250 ° C, and the perovskite precursor is caused by the temperature of the material The solution is rapidly dried and crystallized on the substrate to form a perovskite film. 如請求項5之方法,其中該鈣鈦礦膜中之鈣鈦礦具有以ABX3所示之結構,其 中A係甲基銨離子、乙基銨離子、及/或甲脒鎓離子(NH2CH=NH2 +)之中至少一種,B係Pb、Ge、Sn之中至少一種,X為VII族元素之中至少一種或VII族元素中二或更多種之混和。 The method of claim 5, wherein the perovskite in the perovskite film has a structure represented by ABX 3 , wherein A is a methylammonium ion, an ethylammonium ion, and/or a formazan ion (NH 2 ) At least one of CH=NH 2 + ), B is at least one of Pb, Ge, and Sn, and X is a mixture of at least one of Group VII elements or two or more of Group VII elements. 一種製備太陽能電池之方法,其包含:提供導電基材;形成第一載子傳輸層於導電基材上;以如請求項5或6之方法將鈣鈦礦前驅物溶液塗覆於該第一載子傳輸層上,以形成鈣鈦礦膜;形成第二載子傳輸層於該鈣鈦礦膜上;形成功函數改質層於第二載子傳輸層上;以及形成電極層於功函數改質層上。 A method of preparing a solar cell, comprising: providing a conductive substrate; forming a first carrier transport layer on the conductive substrate; applying a perovskite precursor solution to the first method according to the method of claim 5 or a carrier transport layer to form a perovskite film; a second carrier transport layer formed on the perovskite film; a shape success function modifying layer on the second carrier transport layer; and forming an electrode layer on the work function On the modified layer. 如請求項7之方法,其中該導電基材係為一透明導電玻璃、透明導電塑膠、其他透明導電基材或是不透明導電玻璃、不透明導電塑膠、其他不透明導電基材。 The method of claim 7, wherein the conductive substrate is a transparent conductive glass, a transparent conductive plastic, another transparent conductive substrate or an opaque conductive glass, an opaque conductive plastic, or another opaque conductive substrate. 如請求項7之方法,其中該第一載子傳輸層係為一電洞傳輸層或一電子傳輸層,第二載子傳輸層係為一電洞傳輸層或一電子傳輸層,電極層係為一陰極層或一陽極層。 The method of claim 7, wherein the first carrier transport layer is a hole transport layer or an electron transport layer, and the second carrier transport layer is a hole transport layer or an electron transport layer, and the electrode layer is It is a cathode layer or an anode layer. 如請求項7之方法,其中該電洞傳輸層的材料係為聚二氧乙基噻吩:苯乙烯磺酸(PEDOT:PSS)、2,2’,7,7’-肆[N,N-二(4-甲氧基苯基)胺基]-9,9’-螺二茀(螺-OMeTAD)、五氧化二釩(V2O5)、 氧化鎳(NiO)、三氧化鎢(WO3)或三氧化鉬(MoO3)。 The method of claim 7, wherein the material of the hole transport layer is polydioxyl thiophene: styrene sulfonic acid (PEDOT: PSS), 2, 2', 7, 7'-肆 [N, N- Bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD), vanadium pentoxide (V 2 O 5 ), nickel oxide (NiO), tungsten trioxide (WO 3 ) or molybdenum trioxide (MoO 3 ). 如請求項7之方法,其中該電子傳輸層的材料係為氟化鋰(LiF)、鈣(Ca)、6,6-苯基-C61-丁酸甲酯(6,6-phenyl-C61-butyric acid methyl ester;PC61BM)、6,6-苯基-C71-丁酸甲酯(6,6-phenyl-C71-butyric acid methyl ester;PC71BM)、茚-碳六十之雙加成物(Indene-C60 bisadduct;ICBA)、碳酸銫(Cs2CO3)、二氧化鈦(TiO2)、2,9-甲基-4,7-二苯基-1,10-啡啉(bathocuproine,BCP)、氧化鋯(ZrO)、聚[(9,9-雙(3’-(N,N-二甲基胺基)丙基)-2,7-茀)-alt-2,7-(9,9-二辛基茀)](PFN)、氧化鋅(ZnO)、或氧化錫(SnO2)。 The method of claim 7, wherein the material of the electron transport layer is lithium fluoride (LiF), calcium (Ca), 6,6-phenyl-C61-butyric acid methyl ester (6,6-phenyl-C61- Butyric acid methyl ester; PC 61 BM), 6,6-phenyl-C71-butyric acid methyl ester (PC 71 BM), 茚-carbon sixty plus Indene-C60 bisadduct (ICBA), cesium carbonate (Cs 2 CO 3 ), titanium dioxide (TiO 2 ), 2,9-methyl-4,7-diphenyl-1,10-morpholine (bathocuproine, BCP), zirconia (ZrO), poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-茀)-alt-2,7-( 9,9-dioctylfluorene)] (PFN), zinc oxide (ZnO), or tin oxide (SnO 2 ). 如請求項7之方法,其中該功函數改質層的材料係為聚伸乙亞胺(polyethylenimine;PEI)、乙氧基化聚伸乙亞胺(polyethyleneimine ethoxylated;PEIE)、聚[(9,9-雙(3’-(N,N-二甲基胺基)丙基)-2,7-茀)-alt-2,7-(9,9-二辛基茀)](PFN)、PFN-OX、PFCn6:K+、PFEN-Hg、PBN、PFPA-1、HBPFN或聚咔唑(Polycarbazole)衍生物PC-P、PCP-EP、PCDTBT-N。 The method of claim 7, wherein the material of the work function layer is polyethylenimine (PEI), polyethyleneimine ethoxylated (PEIE), poly[(9, 9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN), PFN-OX, PFCn6: K+, PFEN-Hg, PBN, PFPA-1, HBPFN or polycarbazole derivatives PC-P, PCP-EP, PCDTBT-N. 如請求項7之方法,其中該電極層的材料係為鈣(Ca)、鋁(Al)、銀(Ag)、金(Au)、氧化銦錫、鋁摻雜氧化鋅、銀奈米 線、聚二氧乙基噻吩:苯乙烯磺酸、石墨烯、石墨烯氧化物、或其組合。 The method of claim 7, wherein the material of the electrode layer is calcium (Ca), aluminum (Al), silver (Ag), gold (Au), indium tin oxide, aluminum-doped zinc oxide, silver nanometer. Line, polydioxyethylthiophene: styrene sulfonic acid, graphene, graphene oxide, or a combination thereof. 一種鈣鈦礦型太陽能電池,其係以如請求項1至4中任一項之鈣鈦礦前驅物溶液所製成。 A perovskite type solar cell produced by the perovskite precursor solution according to any one of claims 1 to 4. 一種鈣鈦礦型太陽能電池,其係以如請求項7至13中任一項之方法所製成。 A perovskite type solar cell produced by the method of any one of claims 7 to 13.
TW105126595A 2015-08-26 2016-08-19 Method for preparing solar cell fulfilling a low manufacturing cost, a viable mass production, with low environmental impact, and a superb performance of the resulting perovskite layer TW201709540A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104127881 2015-08-26

Publications (1)

Publication Number Publication Date
TW201709540A true TW201709540A (en) 2017-03-01

Family

ID=58774422

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105126595A TW201709540A (en) 2015-08-26 2016-08-19 Method for preparing solar cell fulfilling a low manufacturing cost, a viable mass production, with low environmental impact, and a superb performance of the resulting perovskite layer

Country Status (1)

Country Link
TW (1) TW201709540A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108987588A (en) * 2018-07-24 2018-12-11 南京信息工程大学 Multiple groups part perovskite absorbed layer precursor solution and preparation method thereof
WO2020147939A1 (en) * 2019-01-15 2020-07-23 Toyota Motor Europe Ink formulation for inkjet printing of perovskite active layers
CN112166160A (en) * 2018-04-02 2021-01-01 北卡罗来纳大学教堂山分校 Perovskite compositions comprising mixed solvent systems
CN113078267A (en) * 2021-03-26 2021-07-06 电子科技大学 Quasi-two-dimensional perovskite solar cell doped with three-dimensional perovskite and preparation method thereof
TWI753551B (en) * 2020-08-27 2022-01-21 財團法人工業技術研究院 Perovskite film and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112166160A (en) * 2018-04-02 2021-01-01 北卡罗来纳大学教堂山分校 Perovskite compositions comprising mixed solvent systems
EP3775065A4 (en) * 2018-04-02 2021-12-22 The University of North Carolina at Chapel Hill Perovskite compositions comprising mixed solvent systems
CN108987588A (en) * 2018-07-24 2018-12-11 南京信息工程大学 Multiple groups part perovskite absorbed layer precursor solution and preparation method thereof
WO2020147939A1 (en) * 2019-01-15 2020-07-23 Toyota Motor Europe Ink formulation for inkjet printing of perovskite active layers
TWI753551B (en) * 2020-08-27 2022-01-21 財團法人工業技術研究院 Perovskite film and manufacturing method thereof
US11271157B1 (en) 2020-08-27 2022-03-08 Industrial Technology Research Institute Perovskite film and manufacturing method thereof
CN113078267A (en) * 2021-03-26 2021-07-06 电子科技大学 Quasi-two-dimensional perovskite solar cell doped with three-dimensional perovskite and preparation method thereof

Similar Documents

Publication Publication Date Title
Li et al. Scalable fabrication of perovskite solar cells
Kim et al. Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition
Zhao et al. Alkali metal doping for improved CH3NH3PbI3 perovskite solar cells
Zhao et al. Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications
Liang et al. A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions
Liao et al. Hot-casting large-grain perovskite film for efficient solar cells: film formation and device performance
US20170018371A1 (en) Perovskite solar cell
TW201709540A (en) Method for preparing solar cell fulfilling a low manufacturing cost, a viable mass production, with low environmental impact, and a superb performance of the resulting perovskite layer
US20170084400A1 (en) Precipitation process for producing perovskite-based solar cells
EP3565015A1 (en) Solar cell, light-absorbing layer, and method for forming light-absorbing layer
JP2017188668A (en) Method for manufacturing large-area perovskite film, perovskite solar battery module, and method for manufacturing the same
US20210159426A1 (en) Perovskite compositions comprising mixed solvent systems
Deng et al. All room-temperature processing efficient planar carbon-based perovskite solar cells
JP7232032B2 (en) solar cell
Zong et al. Highly stable hole-conductor-free CH3NH3Pb (I1-xBrx) 3 perovskite solar cells with carbon counter electrode
Manjunatha et al. The characteristics of perovskite solar cells fabricated using DMF and DMSO/GBL solvents
CN108242505A (en) The preparation method of big crystal grain perovskite thin film photoelectric material
Zhang et al. Optimizing the efficiency of perovskite solar cells by a sub-nanometer compact titanium oxide electron transport layer
KR102080748B1 (en) A method for manufacturing a high-quality perovskite photoactive layer thin film and a perovskite solar cell
Ezike et al. Progress and prospect on stability of perovskite photovoltaics
Wang et al. Aniline Sulfonic Acid Induced Uniform Perovskite Film for Large‐Scale Photovoltaics
Kaleli et al. The production route of the MASnBr3 based perovskite solar cells with fully ultrasonic spray pyrolysis method
CN111403606A (en) Lycopene-doped perovskite solar cell and preparation method thereof
Burgos et al. Electrodeposition of ZnO nanorods as electron transport layer in a mixed halide perovskite solar cell
KR20170048854A (en) Method for preparation of absorber of solar cell