TW201705819A - Light emitting diode linear light modulator with temperature compensation - Google Patents

Light emitting diode linear light modulator with temperature compensation Download PDF

Info

Publication number
TW201705819A
TW201705819A TW104124919A TW104124919A TW201705819A TW 201705819 A TW201705819 A TW 201705819A TW 104124919 A TW104124919 A TW 104124919A TW 104124919 A TW104124919 A TW 104124919A TW 201705819 A TW201705819 A TW 201705819A
Authority
TW
Taiwan
Prior art keywords
temperature
current
dependent
type transistor
module
Prior art date
Application number
TW104124919A
Other languages
Chinese (zh)
Other versions
TWI562681B (en
Inventor
林俊偉
李嘉璽
Original Assignee
國立雲林科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立雲林科技大學 filed Critical 國立雲林科技大學
Priority to TW104124919A priority Critical patent/TWI562681B/en
Application granted granted Critical
Publication of TWI562681B publication Critical patent/TWI562681B/en
Publication of TW201705819A publication Critical patent/TW201705819A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Abstract

A light emitting diode (LED) linear light modulator with temperature compensation includes a comparing module, a timing processing module, an LED module and a temperature compensating current control module. The comparing module compares an analog input signal with a triangular wave sampling signal to generate a pulse width modulation (PWM) signal. The PWM signal is inputted into the timing processing module and converted to a digital signal. The temperature compensating current control module, electrically connected to the LED module and the timing processing module, includes a plurality of low-temperature correlated linear current units and a switching switch, and controls a current amount passing through the LED module to generate a low-temperature correlated linear current. Thus, the color temperature of an LED is prevented from drifting with a change in the ambient temperature.

Description

具溫度補償之發光二極體線性調光器Temperature compensated LED dimmer linear dimmer

本發明為有關一種發光二極體調光器,尤指一種具溫度補償之發光二極體線性調光器。The invention relates to a light-emitting diode dimmer, in particular to a temperature-compensated light-emitting diode linear dimmer.

各式各樣的光源充斥在我們的生活中,如白熾燈泡、螢光燈、發光二極體等,其中,由於發光二極體具有效率高、壽命長、不易損壞、反應速度快、可靠性高等傳統光源所不及的優點,而被廣泛的應用於各種領域之中。A wide variety of light sources are used in our lives, such as incandescent bulbs, fluorescent lamps, light-emitting diodes, etc. Among them, light-emitting diodes have high efficiency, long life, are not easily damaged, and have fast response and reliability. The advantages of higher traditional light sources are widely used in various fields.

發光二極體調光方式主要分成線性調節與脈衝寬度調變兩種,利用脈衝寬度調變的方式如歐盟專利公開第EP 1814365號之「LED driving device with pulse width modulation」,其包含有一脈波寬度調變控制單元與一發光二極體驅動電路,將該脈波寬度調變控制單元的脈波寬度調變週期中發光的時間,分成主要發光週期與次要發光週期,再把主要發光週期切割成幾份小週期,並分散於整個脈波寬度調變週期中,提高發光的次數以及更新率,避免發生畫面不連續或閃爍的現象。The light-emitting diode dimming method is mainly divided into two types: a linear adjustment and a pulse width modulation, and a pulse width modulation method, such as "LED driving device with pulse width modulation" of the European Patent Publication No. EP 1814365, which includes a pulse wave. The width modulation control unit and a light emitting diode driving circuit divide the time of the light emission in the pulse width modulation period of the pulse width modulation control unit into a main illumination period and a secondary illumination period, and then the main illumination period It is cut into several small periods and dispersed throughout the pulse width modulation period, which improves the number of times of illumination and the update rate, and avoids the phenomenon of discontinuity or flickering of the picture.

其雖然解決畫面不連續或閃爍的現象,但脈衝寬度調變的原理為使開關快速切換,利用人眼視覺暫留的現象而產生連續的線性光,提高更新率當然可以使人眼察覺不出其閃爍問題,但根本上的來說,開關快速切換會造成大電流瞬間流入發光二極體,而有可能會降低發光二極體的使用壽命,且當環境溫度改變時,電路之半導體元件會改變輸入之電流大小,並使發光二極體的色溫產生飄移,因此,如何使發光二極體的色溫不隨環境溫度改變而飄移,實為業者所努力的目標。Although it solves the phenomenon that the picture is discontinuous or flickering, the principle of pulse width modulation is to make the switch switch quickly, and the continuous linear light is generated by the phenomenon of persistence of the human eye vision, and the update rate can certainly prevent the human eye from perceiving. The problem of flickering, but fundamentally, the rapid switching of the switch will cause a large current to flow into the light-emitting diode instantaneously, which may reduce the service life of the light-emitting diode, and when the ambient temperature changes, the semiconductor component of the circuit will The input current is changed, and the color temperature of the light-emitting diode is shifted. Therefore, how to make the color temperature of the light-emitting diode not drift with the change of the ambient temperature is a goal that the industry strives.

本發明的主要目的,在於解決發光二極體的色溫隨著環境溫度改變而飄移的問題。The main object of the present invention is to solve the problem that the color temperature of the light-emitting diode drifts as the ambient temperature changes.

本發明的次要目的,在於解決開關快速切換使大電流瞬間流入發光二極體,而降低發光二極體的使用壽命的問題。A secondary object of the present invention is to solve the problem that the switch quickly switches to cause a large current to flow into the light-emitting diode instantaneously, thereby reducing the service life of the light-emitting diode.

為達上述目的,本發明提供一種具溫度補償之發光二極體線性調光器,包含有一比較模組、一時序處理模組、一發光二極體模組以及一溫度補償電流控制模組。該比較模組利用一三角波取樣訊號對一類比輸入訊號進行比較,以產生一脈波寬度調變訊號,該時序處理模組接受該脈波寬度調變訊號並轉換為一數位訊號,該溫度補償電流控制模組電性連接於該發光二極體模組及該時序處理模組,包含有複數相互並聯的低溫度相關線性電流單元,以及一電性連接於該時序處理模組、該發光二極體模組與該些低溫度相關線性電流單元的切換開關,該些低溫度相關線性電流單元各包含有一隨溫度增加而變大的正溫度相關線性電流部以及一隨溫度增加而變小的負溫度相關線性電流部,以產生一低溫度相關線性電流,該時序處理模組藉由該切換開關以控制各該低溫度相關線性電流單元與該發光二極體模組的電性導通,進而控制流經該發光二極體模組的電流量。To achieve the above objective, the present invention provides a temperature compensated LED dimmer linear dimmer comprising a comparison module, a timing processing module, a light emitting diode module and a temperature compensation current control module. The comparison module compares an analog input signal with a triangular wave sampling signal to generate a pulse width modulation signal, and the timing processing module receives the pulse width modulation signal and converts it into a digital signal, the temperature compensation The current control module is electrically connected to the LED module and the timing processing module, and includes a plurality of low temperature related linear current units connected in parallel with each other, and an electrical connection to the timing processing module, the light emitting diode a switching module of the polar body module and the low temperature-dependent linear current units, each of the low temperature-dependent linear current units each having a positive temperature-dependent linear current portion that becomes larger as the temperature increases, and a smaller as the temperature increases a negative temperature-dependent linear current portion for generating a low temperature-dependent linear current, wherein the timing processing module controls the electrical conduction between each of the low temperature-dependent linear current units and the light-emitting diode module by the switch The amount of current flowing through the light emitting diode module is controlled.

綜上所述,本發明具有以下特點:In summary, the present invention has the following features:

一、藉由設置該些低溫度相關線性電流單元,而產生與溫度相關性非常低的低溫度相關線性電流,使該發光二極體不會隨環境溫度的改變而飄移。1. By setting the low temperature dependent linear current units, a low temperature dependent linear current with very low temperature dependence is generated, so that the light emitting diode does not drift with changes in ambient temperature.

二、藉由該時序處理模組控制該切換開關,進而控制流經該發光二極體模組的電流量,以增加該發光二極體模組的使用壽命。Second, the timing switch module controls the switch, and then controls the amount of current flowing through the LED module to increase the service life of the LED module.

有關本發明的詳細說明及技術內容,現就配合圖式說明如下:The detailed description and technical content of the present invention will now be described as follows:

請參閱「圖1」以及「圖2」所示,本發明提供一種具溫度補償之發光二極體線性調光器,包含有一比較模組10、一時序處理模組20、一數位低通濾波模組50、一發光二極體模組30、一獨立電壓源60以及一溫度補償電流控制模組40。該比較模組10利用一三角波取樣訊號11對一類比輸入訊號12進行比較,以產生一脈波寬度調變訊號13,該脈波寬度調變訊號13再輸入至該時序處理模組20,該時序處理模組20更包含有一延遲單元22、一加法單元23以及一栓鎖單元24,該脈波寬度調變訊號13經過該延遲單元22進行延遲,產生複數個時序訊號25,該加法單元23對該些時序訊號25進行相加,而產生複數個時序加法訊號26,再經由該栓鎖單元24使該些時序加法訊號26同步,形成一數位訊號21輸出。Referring to FIG. 1 and FIG. 2, the present invention provides a temperature compensated LED dimmer linear dimmer comprising a comparison module 10, a timing processing module 20, and a digital low pass filter. The module 50, an LED module 30, an independent voltage source 60, and a temperature compensation current control module 40. The comparison module 10 compares a analog input signal 12 with a triangular wave sampling signal 11 to generate a pulse width modulation signal 13 , and the pulse width modulation signal 13 is further input to the timing processing module 20 . The timing processing module 20 further includes a delay unit 22, an adding unit 23, and a latching unit 24, and the pulse width modulation signal 13 is delayed by the delay unit 22 to generate a plurality of timing signals 25, and the adding unit 23 The timing signals 25 are added to generate a plurality of timing addition signals 26, and the timing addition signals 26 are synchronized by the latch unit 24 to form a digital signal 21 output.

該獨立電壓源60提供該發光二極體模組30所需之電壓,該數位低通濾波模組50電性連接於該時序處理模組20以及該溫度補償電流控制模組40之間,其接收較少位元數的該數位訊號21轉換為一較多位元數的數位訊號51,並輸出至該溫度補償電流控制模組40,該溫度補償電流控制模組40包含有複數個相互並聯的低溫度相關線性電流單元41以及一切換開關42,該切換開關42電性連接於該數位低通濾波模組50、該發光二極體模組30與該些低溫度相關線性電流單元41,該數位訊號51之位元數對應於該些低溫度相關線性電流單元41之數量,並藉由該切換開關42以控制各該低溫度相關線性電流單元41與該發光二極體模組30的電性導通,進而控制流經該發光二極體模組30的電流量。The independent voltage source 60 provides the voltage required by the LED module 30. The digital low-pass filter module 50 is electrically connected between the timing processing module 20 and the temperature compensation current control module 40. The digital signal 21 that receives a smaller number of bits is converted into a digital signal 51 of a greater number of bits and output to the temperature compensation current control module 40. The temperature compensation current control module 40 includes a plurality of parallel lines. The low temperature related linear current unit 41 and a switch 42 are electrically connected to the digital low pass filter module 50, the LED module 30 and the low temperature related linear current units 41, The number of bits of the digital signal 51 corresponds to the number of the low temperature dependent linear current units 41, and the switch 42 is used to control the low temperature dependent linear current unit 41 and the LED module 30. Electrically conducting, thereby controlling the amount of current flowing through the LED module 30.

於本實施例中,該溫度補償電流控制模組40更包含有一連接於該發光二極體模組30與該切換開關42之間的電壓緩衝單元43,用以穩定該獨立電壓源60所提供的電壓,使該切換開關42可以運作,進而控制該發光二極體模組30與該些低溫度相關線性電流單元41之電性導通。In this embodiment, the temperature compensation current control module 40 further includes a voltage buffer unit 43 connected between the LED module 30 and the switch 42 for stabilizing the independent voltage source 60. The voltage of the switch 42 can be operated to control the electrical conduction between the LED module 30 and the low temperature related linear current units 41.

續搭配參閱「圖3」所示,該溫度補償電流控制模組40更具有一正溫度相關電流產生單元44以及一負溫度相關電流產生單元45,該正溫度相關電流產生單元44包含有一第一正溫度相關電流產生部441以及一第二正溫度相關電流產生部442,該第一正溫度相關電流產生部441以及該第二正溫度相關電流產生部442相互並聯且電性連接一電壓源46,並各包含有一第一P型電晶體443、一第二P型電晶體444以及一第一N型電晶體445,該第一P型電晶體443之源極電性連接於該電壓源46,該第一P型電晶體443之汲極電性連接於該第二P型電晶體444之源極與該第一P型電晶體443之閘極,該第二P型電晶體444之汲極電性連接於該第一N型電晶體445之汲極與閘極,該第一N型電晶體445之源極接地,該第一正溫度相關電流產生部441的該第二P型電晶體444之閘極電性連接一第一電壓輸入端446,該第二正溫度相關電流產生部442的該第二P型電晶體444之閘極電性連接一第二電壓輸入端447。Referring to FIG. 3, the temperature compensation current control module 40 further has a positive temperature dependent current generating unit 44 and a negative temperature related current generating unit 45. The positive temperature dependent current generating unit 44 includes a first The positive temperature-dependent current generating unit 441 and the second positive temperature-dependent current generating unit 442, the first positive temperature-dependent current generating unit 441 and the second positive temperature-dependent current generating unit 442 are connected in parallel and electrically connected to a voltage source 46. And each of the first P-type transistor 443, a second P-type transistor 444, and a first N-type transistor 445. The source of the first P-type transistor 443 is electrically connected to the voltage source 46. The drain of the first P-type transistor 443 is electrically connected to the source of the second P-type transistor 444 and the gate of the first P-type transistor 443, and the second P-type transistor 444 The pole is electrically connected to the drain and the gate of the first N-type transistor 445, the source of the first N-type transistor 445 is grounded, and the second P-type of the first positive temperature-dependent current generating portion 441 The gate of the crystal 444 is electrically connected to a first voltage input terminal 446, and the second positive Gate electrically correlation of the second current-generating portion 442 of the P-type transistor 444 is connected to a second voltage of the input terminal 447.

該負溫度相關電流產生單元45包含有一第一負溫度相關電流產生部451以及一第二負溫度相關電流產生部452,該第一負溫度相關電流產生部451以及該第二負溫度相關電流產生部452相互並聯且電性連接該電壓源46,並各包含有一第三P型電晶體453以及一第二N型電晶體454,該第三P型電晶體453之源極電性連接於該電壓源46,該第三P型電晶體453之汲極電性連接於該第二N型電晶體454之汲極與該第三P型電晶體453之閘極,該第二N型電晶體454之源極接地,該第一負溫度相關電流產生部451的該第二N型電晶體454之閘極電性連接一第三電壓輸入端455,該第二負溫度相關電流產生部452的該第二N型電晶體454之閘極電性連接一第四電壓輸入端456。The negative temperature-dependent current generating unit 45 includes a first negative temperature-dependent current generating portion 451 and a second negative temperature-related current generating portion 452, and the first negative temperature-related current generating portion 451 and the second negative temperature-related current generating portion The portions 452 are connected in parallel to each other and electrically connected to the voltage source 46, and each includes a third P-type transistor 453 and a second N-type transistor 454. The source of the third P-type transistor 453 is electrically connected to the source. a voltage source 46, the drain of the third P-type transistor 453 is electrically connected to the drain of the second N-type transistor 454 and the gate of the third P-type transistor 453, the second N-type transistor The source of the 454 is grounded, and the gate of the second N-type transistor 454 of the first negative temperature-dependent current generating portion 451 is electrically connected to a third voltage input terminal 455. The second negative temperature-dependent current generating portion 452 The gate of the second N-type transistor 454 is electrically connected to a fourth voltage input terminal 456.

續搭配參閱「圖4A」至「圖4C」,利用該第一電壓輸入端446與該第二電壓輸入端447輸入之電壓控制,當閘極源極電壓(Vgs)大於某個臨界值時,該第一正溫度相關電流產生部441產生一第一正非線性電流711,當閘極源極電壓(Vgs)小於某個臨界值時,該第二正溫度相關電流產生部442產生一第二正非線性電流712,將該第一正非線性電流711與該第二正非線性電流712互補而可形成一正溫度相關線性電流71。同理,再藉由該第三電壓輸入端455與該第四電壓輸入端456輸入之電壓控制,當閘極源極電壓(Vgs)大於某個臨界值時,該第一負溫度相關電流產生部451產生一第一負非線性電流721,當閘極源極電壓(Vgs)小於某個臨界值時,該第二負溫度相關電流產生部452產生一第二負非線性電流722,將該第一負非線性電流721與該第二負非線性電流722互補而可形成一負溫度相關線性電流72。最後,將該正溫度相關線性電流71與該負溫度相關線性電流72互補,而形成一低溫度相關線性電流70,使該發光二極體模組30之導通電流不會隨環境溫度的改變而飄移。Referring to FIG. 4A to FIG. 4C, the voltage input by the first voltage input terminal 446 and the second voltage input terminal 447 is controlled. When the gate source voltage (Vgs) is greater than a certain threshold value, The first positive temperature-dependent current generating portion 441 generates a first positive nonlinear current 711. When the gate source voltage (Vgs) is less than a certain threshold, the second positive temperature-dependent current generating portion 442 generates a second A positive nonlinear current 712, which is complementary to the second positive nonlinear current 712, forms a positive temperature dependent linear current 71. Similarly, the voltage input by the third voltage input terminal 455 and the fourth voltage input terminal 456 is controlled, and when the gate source voltage (Vgs) is greater than a certain threshold, the first negative temperature related current is generated. The portion 451 generates a first negative nonlinear current 721. When the gate source voltage (Vgs) is less than a certain threshold, the second negative temperature-dependent current generating portion 452 generates a second negative nonlinear current 722. The first negative nonlinear current 721 is complementary to the second negative nonlinear current 722 to form a negative temperature dependent linear current 72. Finally, the positive temperature-dependent linear current 71 is complementary to the negative temperature-dependent linear current 72 to form a low-temperature-dependent linear current 70, so that the on-current of the LED module 30 does not change with the ambient temperature. drift.

再搭配參閱「圖5A」以及「圖5B」所示,為本發明之實驗數據圖,其中,縱座標為流通的電流量,橫坐標為調光的時間,並於溫度介於-20℃至120℃之間進行實驗,「圖5A」為未設置該溫度補償電流控制模組40的情況下進行實驗,在溫度-20℃的情況下得到一-20℃之溫度未補償線段81,以及在溫度120℃的情況下得到一120℃之溫度未補償線段82,可知溫度會影響電流量,使該發光二極體模組30的色溫產生飄移;「圖5B」為有設置該溫度補償電流控制模組40的情況下進行實驗,於溫度-20℃至120℃所測得之結果幾乎完全重疊,並以溫度補償線段83表示。Referring to FIG. 5A and FIG. 5B again, it is an experimental data diagram of the present invention, wherein the ordinate is the amount of current flowing, the abscissa is the time of dimming, and the temperature is between -20 ° C and Experiment was carried out between 120 ° C. "Fig. 5A" is an experiment in the case where the temperature compensation current control module 40 is not provided, and a temperature uncompensated line segment 81 of -20 ° C is obtained at a temperature of -20 ° C, and When the temperature is 120 ° C, a 120 ° C temperature uncompensated line segment 82 is obtained, and it is known that the temperature affects the current amount, causing the color temperature of the LED module 30 to drift; "FIG. 5B" is provided with the temperature compensation current control. Experiments were carried out in the case of module 40, and the results measured at temperatures -20 ° C to 120 ° C almost completely overlap and are represented by temperature compensation line segment 83.

此外,該些低溫度相關線性電流單元41可以分別包含有至少二電流鏡413,該至少二電流鏡413由一產生正比於溫度之電流的正溫度相關線性電流部411以及一產生反比於溫度之電流的負溫度相關線性電流部412所組成,並鏡射該正溫度相關電流產生單元44以及該負溫度相關電流產生單元45之電流。該切換開關42具有複數分別對應連接於該些低溫度相關線性電流單元41的N型開關電晶體421,該些N型開關電晶體421的閘極分別連接該數位低通濾波模組50,各汲極連接於該電壓緩衝單元43,再連接於該發光二極體模組30,該電壓緩衝單元43用以穩定該獨立電壓源60所提供的電壓,各源極分別對應連接於該些低溫度相關線性電流單元41,該數位訊號51控制該些N型開關電晶體421,以控制該發光二極體模組30與該些低溫度相關線性電流單元41之電性導通。In addition, the low temperature-dependent linear current units 41 may respectively include at least two current mirrors 413, which are generated by a positive temperature-dependent linear current portion 411 that generates a current proportional to temperature and inversely proportional to temperature. The negative temperature dependent linear current portion 412 of the current is formed and mirrors the current of the positive temperature dependent current generating unit 44 and the negative temperature dependent current generating unit 45. The switch 42 has a plurality of N-type switching transistors 421 respectively connected to the low-temperature-dependent linear current units 41. The gates of the N-type switching transistors 421 are respectively connected to the digital low-pass filter module 50. The drain is connected to the voltage buffer unit 43 and is connected to the LED module 30. The voltage buffer unit 43 is configured to stabilize the voltage provided by the independent voltage source 60. The sources are respectively connected to the low voltage. The temperature-dependent linear current unit 41 controls the N-type switching transistors 421 to control the electrical conduction between the LED module 30 and the low temperature-dependent linear current units 41.

需特別說明的是,該些低溫度相關線性電流單元41中之電流量可以都不相同,以本實施例舉例,各該低溫度相關線性電流單元41可藉由該些N型開關電晶體421的調整,而調配電流量由1、21 、22 、23 …往上遞增,進而控制該些低溫度相關線性電流單元41的電流量,使該發光二極體可接受到線性的電流,進而調整輸出照明的亮度,舉例來說,當需要輸出五倍電流量時,便可使數位低通濾波模組50所輸出的數位訊號51輸出0-0-0-0-0-1-0-1,控制該切換開關42導通一倍電流及四倍電流的低溫度相關線性電流單元41,進而相加得到所需的五倍電流。並非如習知脈波寬度調變的方式是利用最小電流與最大電流間進行時間上的控制切換方式,因此可以增加該發光二極體模組30的使用壽命。It should be noted that the amount of current in the low temperature dependent linear current units 41 may be different. In the embodiment, each of the low temperature related linear current units 41 may be through the N type switching transistors 421. The adjustment, and the power distribution flow is incremented by 1 , 2 1 , 2 2 , 2 3 ... to control the amount of current of the low temperature dependent linear current units 41, so that the light emitting diode can receive a linear current And adjusting the brightness of the output illumination. For example, when it is required to output five times of current, the digital signal 51 output by the digital low-pass filter module 50 can be output as 0-0-0-0-0-1- 0-1, the switch 42 is controlled to turn on the low-temperature-dependent linear current unit 41 of one current and four times, and then add up to obtain the required five times of current. The method of switching the width of the pulse wave as in the prior art is to control the time between the minimum current and the maximum current, so that the service life of the LED module 30 can be increased.

綜上所述,本發明具有以下特點:In summary, the present invention has the following features:

一、 藉由該正溫度相關電流產生單元產生該正溫度相關線性電流,該負溫度相關電流產生單元產生該負溫度相關線性電流,再將該正溫度相關線性電流與該負溫度相關線性電流互補,而形成一低溫度相關線性電流,使該發光二極體模組不會隨環境溫度的改變而飄移。1. The positive temperature-dependent current generating unit generates the positive temperature-dependent linear current, the negative temperature-dependent current generating unit generates the negative temperature-dependent linear current, and the positive temperature-dependent linear current is complementary to the negative temperature-dependent linear current And forming a low temperature-dependent linear current, so that the light-emitting diode module does not drift with changes in ambient temperature.

二、 藉由設置該些低溫度相關線性電流單元中之電流量各不相同,由1、21 、22 、23 …往上遞增,再利用該些N型開關電晶體控制該發光二極體模組與該些低溫度相關線性電流單元之電性導通,使該發光二極體可做精準之線性調整。2. By setting the amount of current in the low temperature related linear current units to be different, increasing from 1 , 2 1 , 2 2 , 2 3 ..., and then using the N type switching transistors to control the light emitting The electrical connection between the polar body module and the low temperature related linear current units enables the LED to be accurately linearly adjusted.

三、 利用該些低溫度相關線性電流單元中之電流量各不相同,使切換該些N型開關電晶體時,其電流量並非於最小電流與最大電流間進行切換,可以增加該發光二極體模組的使用壽命。3. The amount of current in the low-temperature-dependent linear current units is different, so that when the N-type switching transistors are switched, the current amount is not switched between the minimum current and the maximum current, and the light-emitting diode can be increased. The service life of the body module.

因此本發明極具進步性及符合申請發明專利的要件,爰依法提出申請,祈鈞局早日賜准專利,實感德便。Therefore, the present invention is highly progressive and conforms to the requirements of the invention patent application, and the application is made according to law, and the praying office grants the patent as soon as possible.

以上已將本發明做一詳細說明,惟以上所述者,僅爲本發明的一較佳實施例而已,當不能限定本發明實施的範圍。即凡依本發明申請範圍所作的均等變化與修飾等,皆應仍屬本發明的專利涵蓋範圍內。The present invention has been described in detail above, but the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made by the scope of the present application should remain within the scope of the patent of the present invention.

10‧‧‧比較模組
11‧‧‧三角波取樣訊號
12‧‧‧類比輸入訊號
13‧‧‧脈波寬度調變訊號
20‧‧‧時序處理模組
21‧‧‧數位訊號
22‧‧‧延遲單元
23‧‧‧加法單元
24‧‧‧栓鎖單元
25‧‧‧時序訊號
26‧‧‧時序加法訊號
30‧‧‧發光二極體模組
40‧‧‧溫度補償電流控制模組
41‧‧‧低溫度相關線性電流單元
411‧‧‧正溫度相關線性電流部
412‧‧‧負溫度相關線性電流部
413‧‧‧電流鏡
42‧‧‧切換開關
421‧‧‧N型開關電晶體
43‧‧‧電壓緩衝單元
44‧‧‧正溫度相關電流產生單元
441‧‧‧第一正溫度相關電流產生部
442‧‧‧第二正溫度相關電流產生部
443‧‧‧第一P型電晶體
444‧‧‧第二P型電晶體
445‧‧‧第一N型電晶體
446‧‧‧第一電壓輸入端
447‧‧‧第二電壓輸入端
45‧‧‧負溫度相關電流產生單元
451‧‧‧第一負溫度相關電流產生部
452‧‧‧第二負溫度相關電流產生部
453‧‧‧第三P型電晶體
454‧‧‧第二N型電晶體
455‧‧‧第三電壓輸入端
456‧‧‧第四電壓輸入端
46‧‧‧電壓源
50‧‧‧數位低通濾波模組
51‧‧‧數位訊號
60‧‧‧獨立電壓源
70‧‧‧低溫度相關線性電流
71‧‧‧正溫度相關線性電流
711‧‧‧第一正非線性電流
712‧‧‧第二正非線性電流
72‧‧‧負溫度相關線性電流
721‧‧‧第一負非線性電流
722‧‧‧第二負非線性電流
81‧‧‧-20℃之溫度未補償線段
82‧‧‧120℃之溫度未補償線段
83‧‧‧溫度補償線段
10‧‧‧Comparative Module
11‧‧‧ triangular wave sampling signal
12‧‧‧ analog input signal
13‧‧‧ Pulse width modulation signal
20‧‧‧Time Processing Module
21‧‧‧ digital signal
22‧‧‧Delay unit
23‧‧‧Addition unit
24‧‧‧Lock unit
25‧‧‧ Timing signal
26‧‧‧Timed addition signal
30‧‧‧Lighting diode module
40‧‧‧Temperature Compensation Current Control Module
41‧‧‧Low temperature related linear current unit
411‧‧‧Positive temperature dependent linear current section
412‧‧‧Negative temperature-dependent linear current section
413‧‧‧current mirror
42‧‧‧Toggle switch
421‧‧‧N type switching transistor
43‧‧‧Voltage buffer unit
44‧‧‧Positive temperature dependent current generating unit
441‧‧‧First positive temperature dependent current generation unit
442‧‧‧Second positive temperature dependent current generation unit
443‧‧‧First P-type transistor
444‧‧‧Second P-type transistor
445‧‧‧First N-type transistor
446‧‧‧First voltage input
447‧‧‧second voltage input
45‧‧‧Negative temperature-dependent current generating unit
451‧‧‧First negative temperature dependent current generation unit
452‧‧‧Second negative temperature-dependent current generation unit
453‧‧‧ Third P-type transistor
454‧‧‧Second N-type transistor
455‧‧‧ third voltage input
456‧‧‧ fourth voltage input
46‧‧‧voltage source
50‧‧‧Digital Low Pass Filter Module
51‧‧‧ digital signal
60‧‧‧Independent voltage source
70‧‧‧Low temperature related linear current
71‧‧‧Positive temperature dependent linear current
711‧‧‧First positive nonlinear current
712‧‧‧Second positive nonlinear current
72‧‧‧Negative temperature-dependent linear current
721‧‧‧First negative nonlinear current
722‧‧‧Second negative nonlinear current
81‧‧‧-20°C temperature uncompensated line segment
82‧‧‧120°C temperature uncompensated line segment
83‧‧‧Temperature compensation line segment

圖1,為本發明一較佳實施例之單元配置示意圖。 圖2,為本發明一較佳實施例之時序處理模組單元方塊示意圖。 圖3,為本發明一較佳實施例之溫度補償電流控制模組之電路示意圖。 圖4A,為本發明正溫度相關線性電流之示意圖。 圖4B,為本發明負溫度相關線性電流之示意圖。 圖4C,為本發明低溫度相關線性電流之示意圖。 圖5A,為未設置本發明之溫度補償電流控制模組之數據圖。 圖5B,為設置本發明之溫度補償電流控制模組之數據圖。FIG. 1 is a schematic diagram of a unit configuration according to a preferred embodiment of the present invention. 2 is a block diagram of a timing processing module unit according to a preferred embodiment of the present invention. 3 is a circuit diagram of a temperature compensation current control module according to a preferred embodiment of the present invention. 4A is a schematic diagram of a positive temperature dependent linear current of the present invention. 4B is a schematic diagram of a negative temperature dependent linear current of the present invention. 4C is a schematic diagram of a low temperature dependent linear current of the present invention. FIG. 5A is a data diagram of a temperature compensation current control module in which the present invention is not provided. Figure 5B is a data diagram of a temperature compensated current control module of the present invention.

10‧‧‧比較模組 10‧‧‧Comparative Module

11‧‧‧三角波取樣訊號 11‧‧‧ triangular wave sampling signal

12‧‧‧類比輸入訊號 12‧‧‧ analog input signal

13‧‧‧脈波寬度調變訊號 13‧‧‧ Pulse width modulation signal

20‧‧‧時序處理模組 20‧‧‧Time Processing Module

21‧‧‧數位訊號 21‧‧‧ digital signal

30‧‧‧發光二極體模組 30‧‧‧Lighting diode module

40‧‧‧溫度補償電流控制模組 40‧‧‧Temperature Compensation Current Control Module

41‧‧‧低溫度相關線性電流單元 41‧‧‧Low temperature related linear current unit

42‧‧‧切換開關 42‧‧‧Toggle switch

43‧‧‧電壓緩衝單元 43‧‧‧Voltage buffer unit

50‧‧‧數位低通濾波模組 50‧‧‧Digital Low Pass Filter Module

51‧‧‧數位訊號 51‧‧‧ digital signal

60‧‧‧獨立電壓源 60‧‧‧Independent voltage source

Claims (7)

一種具溫度補償之發光二極體線性調光器,其包含有: 一比較模組,利用一三角波取樣訊號對一類比輸入訊號進行比較,以產生一脈波寬度調變訊號; 一接受該脈波寬度調變訊號並轉換為一數位訊號的時序處理模組; 一發光二極體模組;以及 一電性連接於該發光二極體模組及該時序處理模組的溫度補償電流控制模組,包含有複數相互並聯的低溫度相關線性電流單元,以及一電性連接於該時序處理模組、該發光二極體模組與該些低溫度相關線性電流單元的切換開關,該些低溫度相關線性電流單元各包含有一隨溫度增加而變大的正溫度相關線性電流部以及一隨溫度增加而變小的負溫度相關線性電流部,以產生一低溫度相關線性電流,該時序處理模組藉由該切換開關以控制各該低溫度相關線性電流單元與該發光二極體模組的電性導通,進而控制流經該發光二極體模組的電流量。A temperature compensated LED dimmer linear dimmer comprising: a comparison module for comparing a type of input signal with a triangular wave sampling signal to generate a pulse width modulation signal; a timing processing module for converting a wave width modulation signal into a digital signal; a light emitting diode module; and a temperature compensation current control mode electrically connected to the light emitting diode module and the timing processing module The group includes a plurality of low temperature-dependent linear current units connected in parallel with each other, and a switch electrically connected to the timing processing module, the light emitting diode module and the low temperature related linear current units, and the low The temperature-dependent linear current units each include a positive temperature-dependent linear current portion that becomes larger as the temperature increases, and a negative temperature-dependent linear current portion that becomes smaller as the temperature increases to generate a low temperature-dependent linear current. The switch controls the electrical conduction between each of the low temperature-dependent linear current units and the LED module by the switch, thereby controlling the flow through the The amount of current in the LED module. 如申請專利範圍第1項所述之具溫度補償之發光二極體線性調光器,其中更包含有一電性連接於該時序處理模組以及該溫度補償電流控制模組之間的數位低通濾波模組,其接收較少位元數的該數位訊號轉換為一較多位元數的數位訊號,該數位訊號之位元數對應於該些低溫度相關線性電流單元之數量。The temperature-compensated LED diode dimmer according to claim 1, further comprising a digital low-pass electrically connected between the timing processing module and the temperature compensation current control module. The filter module converts the digital signal that receives a smaller number of bits into a digital signal with a greater number of bits, and the number of bits of the digital signal corresponds to the number of the low temperature dependent linear current units. 如申請專利範圍第2項所述之具溫度補償之發光二極體線性調光器,其中該溫度補償電流控制模組更包含有一連接於該發光二極體模組與該切換開關之間的電壓緩衝單元;該切換開關具有複數分別對應連接於該些低溫度相關線性電流單元的N型開關電晶體,該些N型開關電晶體的閘極分別連接該數位低通濾波模組,各汲極連接於該電壓緩衝單元,各源極分別對應連接於該些低溫度相關線性電流單元,該數位訊號控制該些N型開關電晶體,以控制該發光二極體模組與該些低溫度相關線性電流單元之電性導通。The temperature-compensated light-emitting diode linear dimmer of claim 2, wherein the temperature-compensating current control module further comprises a connection between the light-emitting diode module and the switch a voltage buffer unit; the switch has a plurality of N-type switch transistors respectively connected to the low temperature-dependent linear current units, and the gates of the N-type switch transistors are respectively connected to the digital low-pass filter module, and each of the switches The poles are connected to the voltage buffer unit, and the respective sources are respectively connected to the low temperature related linear current units, and the digital signals control the N type switch transistors to control the LED module and the low temperature Electrical conduction of the associated linear current unit. 如申請專利範圍第1項所述之具溫度補償之發光二極體線性調光器,其中該時序處理模組更包含有一延遲單元、一加法單元以及一栓鎖單元,該脈波寬度調變訊號經過該延遲單元進行延遲,產生複數個時序訊號,該加法單元對該些時序訊號進行相加,而產生複數個時序加法訊號,再經由該栓鎖單元使該些時序加法訊號同步。The temperature-compensated light-emitting diode linear dimmer according to claim 1, wherein the timing processing module further comprises a delay unit, an adding unit and a latch unit, wherein the pulse width modulation The signal is delayed by the delay unit to generate a plurality of timing signals, and the adding unit adds the timing signals to generate a plurality of timing addition signals, and then synchronizes the timing addition signals via the latch unit. 如申請專利範圍第1項所述之具溫度補償之發光二極體線性調光器,其中該溫度補償電流控制模組更具有一正溫度相關電流產生單元以及一負溫度相關電流產生單元,該些低溫度相關線性電流單元係分別包含有至少二電流鏡,該至少二電流鏡分別為該正溫度相關線性電流部以及該負溫度相關線性電流部,鏡射該正溫度相關電流產生單元以及該負溫度相關電流產生單元之電流。The temperature compensated LED diode dimmer according to claim 1, wherein the temperature compensation current control module further comprises a positive temperature dependent current generating unit and a negative temperature related current generating unit. The low temperature dependent linear current units each include at least two current mirrors, the at least two current mirrors being the positive temperature dependent linear current portion and the negative temperature dependent linear current portion, mirroring the positive temperature dependent current generating unit and the The current of the negative temperature dependent current generating unit. 如申請專利範圍第5項所述之具溫度補償之發光二極體線性調光器,其中該正溫度相關電流產生單元包含有一第一正溫度相關電流產生部以及一第二正溫度相關電流產生部,該第一正溫度相關電流產生部以及該第二正溫度相關電流產生部相互並聯且電性連接一電壓源,並各包含有一第一P型電晶體、一第二P型電晶體以及一第一N型電晶體,該第一P型電晶體之源極電性連接於該電壓源,該第一P型電晶體之汲極電性連接於該第二P型電晶體之源極與該第一P型電晶體之閘極,該第二P型電晶體之汲極電性連接於該第一N型電晶體之汲極與閘極,該第一N型電晶體之源極接地,該第一正溫度相關電流產生部的該第二P型電晶體之閘極電性連接一第一電壓輸入端,該第二正溫度相關電流產生部的該第二P型電晶體之閘極電性連接一第二電壓輸入端,利用該第一電壓輸入端與該第二電壓輸入端輸入之電壓控制,使該第一正溫度相關電流產生部及該第二正溫度相關電流產生部分別產生一第一正非線性電流與一第二正非線性電流,且該第一正非線性電流與該第二正非線性電流互補而可形成一正溫度相關線性電流。The temperature-compensated light-emitting diode linear dimmer according to claim 5, wherein the positive temperature-dependent current generating unit comprises a first positive temperature-dependent current generating portion and a second positive temperature-dependent current generating portion. The first positive temperature-dependent current generating unit and the second positive temperature-dependent current generating unit are connected in parallel and electrically connected to a voltage source, and each includes a first P-type transistor, a second P-type transistor, and a first N-type transistor, the source of the first P-type transistor is electrically connected to the voltage source, and the drain of the first P-type transistor is electrically connected to the source of the second P-type transistor And a gate of the first P-type transistor, a drain of the second P-type transistor is electrically connected to a drain and a gate of the first N-type transistor, and a source of the first N-type transistor Grounding, the gate of the second P-type transistor of the first positive temperature-dependent current generating portion is electrically connected to a first voltage input end, and the second P-type transistor of the second positive temperature-dependent current generating portion The gate is electrically connected to a second voltage input terminal, and the first voltage input is utilized The voltage input to the second voltage input terminal controls the first positive temperature-dependent current generating portion and the second positive temperature-dependent current generating portion to generate a first positive nonlinear current and a second positive nonlinear current, respectively And the first positive nonlinear current is complementary to the second positive nonlinear current to form a positive temperature dependent linear current. 如申請專利範圍第5項所述之具溫度補償之發光二極體線性調光器,其中該負溫度相關電流產生單元包含有一第一負溫度相關電流產生部以及一第二負溫度相關電流產生部,該第一負溫度相關電流產生部以及該第二負溫度相關電流產生部相互並聯且電性連接一電壓源,並各包含有一第三P型電晶體以及一第二N型電晶體,該第三P型電晶體之源極電性連接於該電壓源,該第三P型電晶體之汲極電性連接於該第二N型電晶體之汲極與該第三P型電晶體之閘極,該第二N型電晶體之源極接地,該第一負溫度相關電流產生部的該第二N型電晶體之閘極電性連接一第三電壓輸入端,該第二負溫度相關電流產生部的該第二N型電晶體之閘極電性連接一第四電壓輸入端,利用該第三電壓輸入端與該第四電壓輸入端輸入之電壓控制,使該第一負溫度相關電流產生部及該第二負溫度相關電流產生部分別產生一第一負非線性電流與一第二負非線性電流,且該第一負非線性電流與該第二負非線性電流互補而可形成一負溫度相關線性電流。The temperature-compensated light-emitting diode linear dimmer according to claim 5, wherein the negative temperature-related current generating unit comprises a first negative temperature-dependent current generating portion and a second negative temperature-dependent current generating portion. The first negative temperature-dependent current generating portion and the second negative temperature-dependent current generating portion are connected in parallel and electrically connected to a voltage source, and each includes a third P-type transistor and a second N-type transistor. The source of the third P-type transistor is electrically connected to the voltage source, and the drain of the third P-type transistor is electrically connected to the drain of the second N-type transistor and the third P-type transistor a gate of the second N-type transistor, the gate of the second N-type transistor of the first negative temperature-dependent current generating portion is electrically connected to a third voltage input terminal, the second negative The gate of the second N-type transistor of the temperature-dependent current generating portion is electrically connected to a fourth voltage input terminal, and the voltage is controlled by the voltage input from the third voltage input terminal and the fourth voltage input terminal to make the first negative Temperature dependent current generating portion and the second negative temperature The degree-dependent current generating portion generates a first negative nonlinear current and a second negative nonlinear current, respectively, and the first negative nonlinear current is complementary to the second negative nonlinear current to form a negative temperature-dependent linear current.
TW104124919A 2015-07-31 2015-07-31 Light emitting diode linear light modulator with temperature compensation TWI562681B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104124919A TWI562681B (en) 2015-07-31 2015-07-31 Light emitting diode linear light modulator with temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104124919A TWI562681B (en) 2015-07-31 2015-07-31 Light emitting diode linear light modulator with temperature compensation

Publications (2)

Publication Number Publication Date
TWI562681B TWI562681B (en) 2016-12-11
TW201705819A true TW201705819A (en) 2017-02-01

Family

ID=58227369

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104124919A TWI562681B (en) 2015-07-31 2015-07-31 Light emitting diode linear light modulator with temperature compensation

Country Status (1)

Country Link
TW (1) TWI562681B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4869744B2 (en) * 2006-03-09 2012-02-08 株式会社 日立ディスプレイズ LED lighting device and liquid crystal display device using the same
US10264637B2 (en) * 2009-09-24 2019-04-16 Cree, Inc. Solid state lighting apparatus with compensation bypass circuits and methods of operation thereof
US9730294B2 (en) * 2011-11-07 2017-08-08 GE Lighting Solutions, LLC Lighting device including a drive device configured for dimming light-emitting diodes
CN102802325B (en) * 2012-09-10 2015-02-18 浙江大学 Circuit for realizing PWM (pulse width modulation) dimming of LED (light emitting diode) current by multi-phase high-frequency carrier PWM

Also Published As

Publication number Publication date
TWI562681B (en) 2016-12-11

Similar Documents

Publication Publication Date Title
US9730291B1 (en) Color temperature adjustment based on dim level
US7342577B2 (en) Light emitting diode driving apparatus with high power and wide dimming range
TWI391028B (en) Light emitting diode module
RU2621883C1 (en) Led-backlight system and display device
US20170105259A1 (en) Current Splitter For LED Lighting System
CN107484299B (en) LED lamp brightness and color temperature adjusting control circuit based on one-way PWM and implementation method thereof
EP3030052B1 (en) Dynamic configuration for subsection led driving device and led illumination device
CN107660026B (en) L ED constant current driving circuit and lamp
TWI594664B (en) Light-emitting diode driving device and short protection method for driving device
WO2020037807A1 (en) Dimmable illumination device and dimming circuit
TW201352058A (en) Driving circuit of light emitting diode string and driving method thereof
JP2018198174A (en) Light emission driving device, and vehicular lamp
TW201517685A (en) Light emitting diode illumination device
CN207781160U (en) A kind of LED light bar, backlight module, liquid crystal display die set and terminal device
KR20140024138A (en) Led driving circuit comprising delay time circuit to a current source
US11602021B2 (en) Linear drive circuit and led light having the same
US9468051B1 (en) Light emitting diode linear light modulator with temperature compensation
CN111083826B (en) LED drive circuit capable of adjusting brightness and color
TW201705819A (en) Light emitting diode linear light modulator with temperature compensation
KR200285442Y1 (en) A temperature compensated LED Traffic Signal Module Controller maintaining constant luminous intensity
US10470261B2 (en) Method of generating stable direct current signal, silicon controlled switch dimming method and device
TW201717706A (en) Commutation circuit for sequential linear LED drivers
US10609799B2 (en) Multi-output dimmable class-2 power supply in accord with american standard
CN203352865U (en) LED dimming system
US10143059B1 (en) Circuit of dimming and toning based on a driver on board module

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees