TW201702688A - Optical coherence tomography apparatus and its application - Google Patents

Optical coherence tomography apparatus and its application Download PDF

Info

Publication number
TW201702688A
TW201702688A TW105103680A TW105103680A TW201702688A TW 201702688 A TW201702688 A TW 201702688A TW 105103680 A TW105103680 A TW 105103680A TW 105103680 A TW105103680 A TW 105103680A TW 201702688 A TW201702688 A TW 201702688A
Authority
TW
Taiwan
Prior art keywords
light
module
objective lens
tissue
detector
Prior art date
Application number
TW105103680A
Other languages
Chinese (zh)
Inventor
黃升龍
何端書
林群倫
馬永霖
梁昌昕
Original Assignee
安盟生技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安盟生技股份有限公司 filed Critical 安盟生技股份有限公司
Publication of TW201702688A publication Critical patent/TW201702688A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/443Evaluating skin constituents, e.g. elastin, melanin, water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/45Multiple detectors for detecting interferometer signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dermatology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Provided herein are devices and systems that apply full-field optical coherence tomography (OCT) technology to three-dimensional skin tissue imaging. A special designed Mirau type objective and an optical microscope module allowing both OCT mode and orthogonal polarization spectral imaging (OPSI) mode are disclosed.

Description

光學同調斷層掃描設備及其應用 Optical coherence tomography equipment and its application

本發明係關於一種光學同調斷層掃描設備及其應用,適用於對組織樣品進行成像。 The present invention relates to an optical coherence tomography apparatus and its use for imaging tissue samples.

光學同調斷層掃描(OCT)是一種用於進行高解析度截面成像的技術,其可提供組織結構(例如,皮膚組織)在微米尺度的圖像。OCT方法沿著OCT光束對光散射樣本內部進行測量。 Optical coherence tomography (OCT) is a technique for performing high-resolution cross-sectional imaging that provides images of tissue structure (eg, skin tissue) at the micrometer scale. The OCT method measures the interior of the light scattering sample along the OCT beam.

莫氏(Mohs)顯微鏡外科手術是在顯微控制下從患者身體進行切除,其用於基底細胞癌(BCC)、鱗狀細胞癌(SCC)以及較不常見的其他類型皮膚癌的完全切除。將切除的組織樣本(即,生物檢體)水平切開以提供組織切片,繼而在載玻片上對所述組織切片進行組織學準備。在顯微鏡下檢查所述載玻片,以確定腫瘤是否被完全包含於切除的組織中--此為透過檢測所切除的組織的邊緣或邊沿上是否不存在腫瘤而定。若腫瘤未完全包含於所切除的組織中,則須從患者身體重複切除額外的組織,直到取得的所有組織切片顯示腫瘤已從患者身體移除。生物檢體 檢查和組織學處理係用於組織診斷的黃金標準,因此,一般而言由於莫氏外科手術需多次活體組織檢查而非常耗時,故應用OCT以高效的方式來創建莫氏顯微外科手術樣本的圖像將非常有益。 Mohs microscopy surgery is performed under microscopic control from the patient's body for complete excision of basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and less common types of skin cancer. The excised tissue sample (ie, the biopsy) is cut horizontally to provide a tissue section, which is then histologically prepared on a slide. The slides were examined under a microscope to determine if the tumor was completely contained in the resected tissue - this was determined by detecting the absence of a tumor on the edge or edge of the excised tissue. If the tumor is not completely contained in the excised tissue, additional tissue must be resected from the patient's body until all tissue sections taken show that the tumor has been removed from the patient's body. Biological specimen Inspection and histology are the gold standard for tissue diagnosis, so it is generally time consuming for Mohs surgery to require multiple biopsies, so OCT is used to create Mohs microsurgery in an efficient manner. The image of the sample will be very helpful.

本發明提供的裝置或系統,其包括:光源模組,其被配置用於向光學顯微鏡模組提供光源光,該光學顯微鏡模組運用所述光源光並處理光信號;Mirau型物鏡模組,其運用來自所述光學顯微鏡模組的光,並且處理從容納組織樣品的組織平移模組生成的光信號;以及包括第一檢測器和第二檢測器的資料處理單元,其用於分析來自所述組織樣品的光信號,其中所述Mirau型物鏡模組包括浸入介質中的干涉物鏡,並且其中所述光學顯微鏡模組包括第一偏振分束器和第二偏振分束器,所述第一偏振分束器適於僅使所述信號光的一部分正交偏振並經由所述第二偏振分束器投射至所述第一檢測器,所述第二偏振分束器適於僅使所述信號光的一部分正交偏振並投射至所述第二檢測器。 The device or system provided by the present invention comprises: a light source module configured to provide light source light to an optical microscope module, the light microscope module uses the light source light and processes the light signal; the Mirau type objective lens module, It utilizes light from the optical microscope module and processes an optical signal generated from a tissue translation module that houses the tissue sample; and a data processing unit including a first detector and a second detector for analyzing the source An optical signal of the tissue sample, wherein the Mirau type objective lens module includes an interference objective lens immersed in the medium, and wherein the optical microscope module includes a first polarization beam splitter and a second polarization beam splitter, the first A polarizing beam splitter is adapted to cause only a portion of the signal light to be orthogonally polarized and projected to the first detector via the second polarizing beam splitter, the second polarizing beam splitter being adapted to cause only the A portion of the signal light is orthogonally polarized and projected to the second detector.

在另一方面,提供了一種用於對組織樣品進行成像的方法,該方法包括:透過本文所述的裝置或系統,對從樣品深度方向出現的測試光進行成像,以及對來自該樣品的次結構(substructure)的吸收、色散和/或散射的反差圖像(contrast image)進行成像,以提供該樣品的動態狀態。 In another aspect, a method for imaging a tissue sample is provided, the method comprising: imaging a test light emerging from a depth direction of a sample through a device or system as described herein, and a second time from the sample A contrast image of the absorption, dispersion, and/or scattering of the substructure is imaged to provide a dynamic state of the sample.

援用併入 Incorporation

若本說明書中有提及的所有出版物、專利和專 利申請,均透過引用而以相同程度併入本文,猶如具體且單獨地指出每個單獨的出版物、專利或專利申請通過引用而併入。 If all publications, patents and specialties mentioned in this manual are mentioned The application is hereby incorporated by reference in its entirety to the extent of the extent of the disclosure of the disclosure of the disclosure of each of each of each of

110‧‧‧光源模組 110‧‧‧Light source module

120‧‧‧光學顯微鏡模組 120‧‧‧Optical microscope module

130‧‧‧Mirau型物鏡模組 130‧‧‧Mirau type objective lens module

140‧‧‧組織平移模組 140‧‧‧Organization translation module

150‧‧‧資料處理單元 150‧‧‧Data Processing Unit

209‧‧‧多模光纖 209‧‧‧Multimode fiber

210‧‧‧光源模組 210‧‧‧Light source module

211‧‧‧單包層晶體光纖 211‧‧‧Single-clad crystal fiber

212‧‧‧鐳射二極體 212‧‧‧Laser diode

213‧‧‧第一準直和聚焦模組 213‧‧‧First Collimation and Focusing Module

214‧‧‧第二準直和聚焦模組 214‧‧‧Second collimation and focusing module

220‧‧‧光學顯微鏡模組 220‧‧‧Optical microscope module

221‧‧‧物鏡透鏡 221‧‧‧ objective lens

222‧‧‧光學長波通濾波器 222‧‧‧Optical long wave pass filter

223‧‧‧第一分束器 223‧‧‧First beam splitter

225‧‧‧反射鏡 225‧‧‧Mirror

226‧‧‧投射透鏡 226‧‧‧Projection lens

227‧‧‧第二分束器 227‧‧‧Second beam splitter

230‧‧‧Mirau型物鏡模組 230‧‧‧Mirau type objective lens module

231‧‧‧z軸壓電換能器(PZT) 231‧‧‧z-axis piezoelectric transducer (PZT)

233‧‧‧干涉物鏡 233‧‧‧Interference objective

234‧‧‧物鏡透鏡 234‧‧‧ objective lens

235‧‧‧環形容納器 235‧‧‧Ring container

236‧‧‧第一玻璃板 236‧‧‧First glass plate

237‧‧‧第二玻璃板 237‧‧‧second glass plate

240‧‧‧組織平移模組 240‧‧‧Organization translation module

241‧‧‧蓋玻片 241‧‧‧ coverslips

250‧‧‧資料處理單元 250‧‧‧Data Processing Unit

251‧‧‧第一檢測器 251‧‧‧First detector

252‧‧‧第二檢測器 252‧‧‧Second detector

308‧‧‧成像光纖束 308‧‧‧ imaging fiber bundle

310‧‧‧光源模組 310‧‧‧Light source module

320‧‧‧光學顯微模組 320‧‧‧Optical microscopy module

327‧‧‧光學聚焦鏡 327‧‧‧Optical focusing mirror

330‧‧‧Mirau型物鏡模組 330‧‧‧Mirau type objective lens module

340‧‧‧樣品平移模組 340‧‧‧sample translation module

透過以下使用本發明原理的實施方式之詳述及圖式,將能更理解本發明的特徵及優點,圖式說明如下: The features and advantages of the present invention will become more apparent from the detailed description of the embodiments of the invention.

圖1為代表本發明裝置/系統的框圖,該裝置/系統包括光源模組、光學顯微鏡模組、Mirau型物鏡模組、組織平移模組和資料處理單元。 1 is a block diagram representing a device/system of the present invention including a light source module, an optical microscope module, a Mirau type objective lens module, a tissue translation module, and a data processing unit.

圖2為本發明裝置/系統的另一態樣,其提供了OCT模式和OPSI模式兩者。 2 is another aspect of the apparatus/system of the present invention that provides both an OCT mode and an OPSI mode.

圖3為圖2所示之示例性發明裝置/系統的變化示意圖。 3 is a schematic diagram of a variation of the exemplary inventive device/system of FIG.

圖4為示例性Mirau型物鏡模組的示意圖。 4 is a schematic illustration of an exemplary Mirau type objective lens module.

圖5為示例性光源Ce3+:YAG單包層晶體光纖的放射光譜,其中之插圖顯示了該晶體光纖的末端視圖。 Figure 5 is a radiation spectrum of an exemplary source Ce 3+ :YAG single-clad crystal fiber, with an inset showing an end view of the crystal fiber.

圖6顯示以CCD的一個畫素測量的水與玻璃板之間的光程差。 Figure 6 shows the optical path difference between water and glass plates measured with one pixel of the CCD.

圖7顯示在水中的側向掃描,展現出0.56μm的橫向解析度。 Figure 7 shows a lateral scan in water showing a lateral resolution of 0.56 μm.

近年來,光學同調斷層掃描(OCT)已經廣泛應用於皮膚組織的三維(3-D)圖像重建。眾所周知,在表皮中非侵入性地探查角質層(SC)的層參數(LP),諸如平均總厚度(a-TT)、平均層數(a-NOL)和平均細胞層厚度 (a-CLT)等,對於評估表皮的皮膚保濕性變得很重要。然而,為了將OCT技術應用於皮膚組織成像,在組織中優於1.2μm的軸向解析度是測量SC的LP的門檻。此外,單個3-D表皮細胞的形態對於癌前診斷中正常和異常細胞的早期檢測也很重要。這些都要求在組織中的次微米空間解析度。利用二維CCD/CMOS相機的全場OCT(FF-OCT)有機會觀察SC的層結構,尤其是用於正面監測。通常,使用CCD/CMOS相機的FF-OCT的檢測靈敏度為約80dB,這與相機面積大小和正面畫面播放速率(en face frame rate)有關。 In recent years, optical coherence tomography (OCT) has been widely applied to three-dimensional (3-D) image reconstruction of skin tissue. It is well known that the layer parameters (LP) of the stratum corneum (SC), such as the mean total thickness (a-TT), the average number of layers (a-NOL), and the average cell layer thickness (a-CLT), are non-invasively explored in the epidermis. Etc. It is important to evaluate the skin moisture retention of the epidermis. However, in order to apply OCT technology to skin tissue imaging, an axial resolution better than 1.2 μm in tissue is the threshold for measuring the LP of SC. In addition, the morphology of individual 3-D epidermal cells is also important for early detection of normal and abnormal cells in precancerous diagnosis. These all require sub-micron spatial resolution in the tissue. The full field OCT (FF-OCT) using a two-dimensional CCD/CMOS camera has the opportunity to observe the layer structure of the SC, especially for front side monitoring. Generally, the detection sensitivity of the FF-OCT using a CCD/CMOS camera is about 80 dB, which is related to the camera area size and the en face frame rate.

角質形成細胞和黑素細胞是表皮中的兩種主要細胞類型,其正常大小為10至50μm。約一個月內通過角質化過程,表皮可分為若干個層,即底部的基底層、棘層、顆粒層、透明層和頂部的SC。在表皮中,黑素細胞散佈在基底層,具有伸長的樹突。在皮膚護理方面,角質形成細胞的增殖和分化影響表皮鎖水能力和乾性皮膚疾病。 Keratinocytes and melanocytes are the two major cell types in the epidermis, with a normal size of 10 to 50 μm. Through the keratinization process in about one month, the skin can be divided into several layers, namely the base layer of the bottom, the spinous layer, the granular layer, the transparent layer and the SC at the top. In the epidermis, melanocytes are interspersed in the basal layer and have elongated dendrites. In skin care, proliferation and differentiation of keratinocytes affect epidermal water retention and dry skin diseases.

本文提供了將OCT技術(例如,FF-OCT)應用於皮膚組織成像的裝置和系統。具體而言,本發明提供了皮膚組織的體外(in vitro)和體內(in vivo)3-D成像。 Apparatus and systems for applying OCT techniques (eg, FF-OCT) to skin tissue imaging are provided herein. In particular, the present invention provides in vitro and in vivo 3-D imaging of skin tissue.

在一些實施方式中,提供了一種裝置,該裝置包括:光源模組,其被配置用於向光學顯微鏡模組提供光源光,該光學顯微鏡模組運用所述光源光並處理光信號;Mirau型物鏡模組,其運用來自所述光學顯微鏡模組的光, 並且處理從容納組織樣品的組織平移模組生成的光信號;以及包括第一檢測器和第二檢測器的資料處理單元,其用於分析來自組織樣品的光信號,其中所述Mirau型物鏡模組包括浸入介質中的干涉物鏡,並且其中所述光學顯微鏡模組包括:第一偏振分束器,其適於僅使信號光的一部分正交偏振並經由第二偏振分束器投射至第一檢測器,以及第二偏振分束器,其適於僅使信號光的一部分正交偏振並投射至第二檢測器。 In some embodiments, a device is provided, the device comprising: a light source module configured to provide light source light to an optical microscope module, the light microscope module applying the light source light and processing the light signal; An objective lens module that uses light from the optical microscope module, And processing an optical signal generated from a tissue translation module that houses the tissue sample; and a data processing unit including a first detector and a second detector for analyzing an optical signal from the tissue sample, wherein the Mirau type objective mode The set includes an interference objective immersed in the medium, and wherein the optical microscope module includes: a first polarizing beam splitter adapted to cause only a portion of the signal light to be orthogonally polarized and projected to the first via the second polarizing beam splitter A detector, and a second polarizing beam splitter adapted to only polarize a portion of the signal light and project it to the second detector.

在一些實施方式中,光源模組包括自發發射光源、放大式自發發射光源、超輻射發光二極體、發光二極體(LED)、寬頻超連續譜光源、鎖模雷射器、可調諧雷射器、傅立葉域鎖模光源、光參量振盪器(OPO)、鹵素燈、或者摻雜晶體光纖,諸如Ce3+:YAG晶體光纖、Ti3+:Al2O3晶體光纖、Cr4+:YAG晶體光纖等。在某些實施方式中,光源模組包括Ce3+:YAG晶體光纖、Ti3+:Al2O3晶體光纖或Cr4+:YAG晶體光纖。在某些實施方式中,光源模組包括Ce3+:YAG晶體光纖。 In some embodiments, the light source module includes a spontaneous emission source, an amplified spontaneous emission source, a super luminescent diode, a light emitting diode (LED), a broadband supercontinuum source, a mode-locked laser, and a tunable mine. Emitter, Fourier domain mode-locked source, optical parametric oscillator (OPO), halogen lamp, or doped crystal fiber, such as Ce 3+ :YAG crystal fiber, Ti 3+ :Al 2 O 3 crystal fiber, Cr 4+ : YAG crystal fiber, etc. In some embodiments, the light source module comprises a Ce 3+ :YAG crystal fiber, a Ti 3 +:Al 2 O 3 crystal fiber, or a Cr 4+ :YAG crystal fiber. In some embodiments, the light source module comprises a Ce 3+ :YAG crystal fiber.

在一些實施方式中,Mirau型物鏡模組包括浸入介質中的干涉物鏡透鏡,其位於填充有一種或多種介質的密封容器中的第一玻璃板、第二玻璃板。在某些實施方式中,干涉物鏡透鏡浸入在具有與待分析的組織樣品相似的光學特性的介質中。在某些實施方式中,所述光學特性是折射率。在某些實施方式中,所述介質具有在約1.2至約1.8範圍內的折射率。在某些實施方式中,所述介質具有在 約1.3至約1.5範圍內的折射率。在一些實施方式中,所述介質包括具有在約1.3至約1.5範圍內的折射率的水、矽油、乙醇、甘油、派熱克斯玻璃(pyrex)、透明玻璃或塑膠,或者其組合。在某些實施方式中,所述介質包括水、矽油或甘油。在某些實施方式中,所述介質包括水。在某些實施方式中,所述介質包括矽油。在一些實施方式中,所述一種或多種介質包括第一介質和第二介質。在某些實施方式中,所述第一介質包括水,而所述第二介質包括矽油。 In some embodiments, a Mirau type objective lens module includes an interference objective lens immersed in a medium that is located in a first glass sheet, a second glass sheet in a sealed container filled with one or more media. In certain embodiments, the interference objective lens is immersed in a medium having optical properties similar to the tissue sample to be analyzed. In certain embodiments, the optical property is a refractive index. In certain embodiments, the medium has a refractive index in the range of from about 1.2 to about 1.8. In certain embodiments, the medium has A refractive index in the range of from about 1.3 to about 1.5. In some embodiments, the medium comprises water, eucalyptus oil, ethanol, glycerin, pyrex, clear glass, or plastic having a refractive index ranging from about 1.3 to about 1.5, or a combination thereof. In certain embodiments, the medium comprises water, eucalyptus oil or glycerin. In certain embodiments, the medium comprises water. In certain embodiments, the medium comprises eucalyptus oil. In some embodiments, the one or more media comprises a first medium and a second medium. In certain embodiments, the first medium comprises water and the second medium comprises eucalyptus oil.

在一些實施方式中,所述組織平移模組包括蓋玻片和位於組織容納器裝置上的橫向機動化線性載物台。在一些實施方式中,所述組織容納器裝置是載玻片或盒。在某些實施方式中,所述蓋玻片充當組織容納器。 In some embodiments, the tissue translation module includes a cover slip and a lateral motorized linear stage located on the tissue container device. In some embodiments, the tissue container device is a slide or cassette. In certain embodiments, the coverslip acts as a tissue holder.

在一些實施方式中,所述資料處理單元包括一個或多個一維檢測器、一個或多個二維檢測器、任選地耦合的計算機,或者其組合。在某些實施方式中,所述資料處理單元包括兩個或更多個二維檢測器。在某些實施方式中,所述兩個或更多個二維檢測器是電荷耦合器件(CCD)、多畫素相機或互補金屬氧化物半導體(CMOS)相機,或者其組合。 In some embodiments, the data processing unit includes one or more one-dimensional detectors, one or more two-dimensional detectors, optionally coupled computers, or a combination thereof. In certain embodiments, the data processing unit includes two or more two-dimensional detectors. In certain embodiments, the two or more two-dimensional detectors are charge coupled device (CCD), multi-pixel camera, or complementary metal oxide semiconductor (CMOS) camera, or a combination thereof.

在一些實施方式中,提供了一種系統或裝置,其包括:Ce3+:YAG晶體光纖/LED光源模組,其被配置用於向光學顯微鏡模組提供光源光,該光學顯微鏡模組運用該光源光並處理光信號;Mirau型物鏡模組,其運用來自光學顯微鏡模組的光,並且處理從組織平移模組生成的光信號; 以及資料處理單元,用於分析來自組織樣品的光信號,其中所述Mirau型物鏡模組包括矽油,並且其中所述光學顯微鏡模組包括作為光學開關的1/4波片,該1/4波片被配置用於在光學同調斷層掃描(OCT)模式與正交偏振光譜成像(OPSI)模式之間切換。 In some embodiments, a system or apparatus is provided, comprising: a Ce 3+ :YAG crystal fiber/LED light source module configured to provide source light to an optical microscope module, the optical microscope module utilizing the Light source and process the light signal; the Mirau type objective lens module uses light from the optical microscope module and processes the light signal generated from the tissue translation module; and a data processing unit for analyzing the light signal from the tissue sample, Wherein the Mirau type objective lens module comprises an emu oil, and wherein the optical microscope module comprises a quarter-wave plate as an optical switch, the quarter-wave plate being configured for use in an optical coherence tomography (OCT) mode and Switching between orthogonal polarization spectral imaging (OPSI) modes.

在一些實施方式中,提供了一種系統或裝置,其包括:Ce3+:YAG晶體光纖/LED光源模組,其被配置用於向光學顯微鏡模組提供光源光,該光學顯微鏡模組運用所述光源光並處理光信號;Mirau型物鏡模組,其運用來自所述光學顯微鏡模組的光,並且處理從組織平移模組生成的光信號;以及包括第一檢測器和第二檢測器的資料處理單元,其用於分析來自組織樣品的光信號,其中所述Mirau型物鏡模組包括浸入介質中的干涉物鏡,並且其中所述光學顯微鏡模組包括第一偏振分束器和第二偏振分束器,所述第一偏振分束器適於僅使信號光的一部分正交偏振並經由第二偏振分束器而投射至第一檢測器,所述第二偏振分束器適於僅使所述信號光的一部分正交偏振並投射至第二檢測器。 In some embodiments, a system or apparatus is provided, comprising: a Ce 3+ :YAG crystal fiber/LED light source module configured to provide source light to an optical microscope module, the optical microscope module application Light source light and process light signals; a Mirau type objective lens module that utilizes light from the optical microscope module and processes light signals generated from the tissue translation module; and includes a first detector and a second detector a data processing unit for analyzing an optical signal from a tissue sample, wherein the Mirau type objective lens module includes an interference objective lens immersed in the medium, and wherein the optical microscope module includes a first polarization beam splitter and a second polarization a beam splitter adapted to cause only a portion of the signal light to be orthogonally polarized and projected to the first detector via a second polarization beam splitter, the second polarization beam splitter being adapted to only A portion of the signal light is orthogonally polarized and projected to a second detector.

參見圖1,其為示例性發明系統/裝置100,其包括光源模組110、光學顯微鏡模組120、Mirau型物鏡模組130、組織平移模組140和資料處理單元150。光模組120被配置用於向光學顯微鏡模組120提供合適的光,光學顯微鏡模組120運用光源光並處理光信號。光學顯微鏡模組120與Mirau型物鏡模組130相關聯,Mirau型物鏡模組130 進一步處理光並將光注入到位於組織平移模組140的組織樣品。從組織平移模組返回的光被引導至資料處理單元150。 Referring to FIG. 1 , an exemplary inventive system/device 100 includes a light source module 110 , an optical microscope module 120 , a Mirau type objective lens module 130 , a tissue translation module 140 , and a data processing unit 150 . The light module 120 is configured to provide appropriate light to the optical microscope module 120, which utilizes source light and processes the light signals. The optical microscope module 120 is associated with the Mirau type objective lens module 130, and the Mirau type objective lens module 130 Light is further processed and injected into tissue samples located in tissue translation module 140. Light returned from the tissue translation module is directed to the data processing unit 150.

在一些實施方式中,光源模組包括自發發射光源、放大式自發發射光源、超輻射發光二極體、發光二極體(LED)、寬頻超連續譜光源、鎖模雷射器、可調諧雷射器、傅立葉域鎖模光源、光參量振盪器(OPO)、鹵素燈、摻雜晶體光纖(諸如Ce3+:YAG晶體光纖、Ti3+:Al2O3晶體光纖、Cr4+:YAG晶體光纖等),或者所屬技術領域中具有通常知識者將容易認識到的會根據本發明的實踐來提供合適的光的任何其他合適的光源。在某些實施方式中,光源模組包括Ce3+:YAG晶體光纖、Ti3+:Al2O3晶體光纖或者Cr4+:YAG晶體光纖,例如,所述光源模組可以是美國專利號8,416,48、8625948和美國公開號20080047303(以上文獻均引用併入本發明)中公開的光源模組中的其中一者。 In some embodiments, the light source module includes a spontaneous emission source, an amplified spontaneous emission source, a super luminescent diode, a light emitting diode (LED), a broadband supercontinuum source, a mode-locked laser, and a tunable mine. Emitter, Fourier domain mode-locked source, optical parametric oscillator (OPO), halogen lamp, doped crystal fiber (such as Ce 3+ :YAG crystal fiber, Ti 3+ :Al 2 O 3 crystal fiber, Cr 4+ :YAG Crystal optical fibers, etc., or any other suitable source of light that would be readily recognized by those of ordinary skill in the art to provide suitable light in accordance with the practice of the present invention. In some embodiments, the light source module includes a Ce 3+ :YAG crystal fiber, a Ti 3+ :Al 2 O 3 crystal fiber, or a Cr 4+ :YAG crystal fiber. For example, the light source module can be a US patent number. One of the light source modules disclosed in U.S. Patent No. 8,416,48, and U.S. Pat.

在一些實施方式中,資料處理單元包括一個或多個一維檢測器、一個或多個二維檢測器、與其耦合的計算機,或者其組合。在一些實施方式中,資料處理單元包括兩個二維檢測器。該二維檢測器例如可以單獨是電荷耦合器件(CCD)或互補金屬氧化物半導體(CMOS)相機等。 In some embodiments, the data processing unit includes one or more one-dimensional detectors, one or more two-dimensional detectors, a computer coupled thereto, or a combination thereof. In some embodiments, the data processing unit includes two two-dimensional detectors. The two-dimensional detector may be, for example, a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS) camera or the like.

在某些實施方式中,資料處理單元150包括兩個多元素(即,多畫素)相機。 In some embodiments, data processing unit 150 includes two multi-element (ie, multi-pixel) cameras.

圖2圖示了示例性發明系統/裝置200,其包括經由多模光纖209向光學顯微鏡模組220提供照明光的晶體 光纖/LED寬頻光源210、光學顯微鏡模組220、Mirau型物鏡模組230、組織平移模組240和包括第一檢測器251和第二檢測器252的資料處理單元250。示例性光源模組210包括Ce3+:YAG單包層晶體光纖211,Ce3+:YAG單包層晶體光纖211由1-W、445-nm的鐳射二極體212(Nichia),#NDB7875,日本)通過第一準直和聚焦模組213(例如,包括60×非球面透鏡、帶通濾波器(Semrock,#FF01-445/45,美國)和40×消色差透鏡)以及第二準直和聚焦模組214(例如,包括40X消色差物鏡透鏡和20X消色差物鏡透鏡)進行激發(pump),其中帶通濾波器的功能是將後向寬頻光反射回單包層晶體光纖211,以使從單包層晶體光纖211輸出的螢光準直並將其聚焦至多模光纖209中。從單包層晶體光纖的輸出端出現的寬頻光耦合至多模光纖209中並繼而由光學顯微鏡模組220中的物鏡透鏡221進行準直,其中單包層晶體光纖之後的光的中心波長和頻寬分別為560nm和95nm。 2 illustrates an exemplary inventive system/device 200 including a crystal fiber/LED broadband source 210, an optical microscope module 220, and a Mirau type objective module 230 that provide illumination light to an optical microscope module 220 via a multimode fiber 209. The tissue translation module 240 and the data processing unit 250 including the first detector 251 and the second detector 252 are organized. The exemplary light source module 210 includes a Ce 3+ :YAG single-clad crystal fiber 211, and the Ce 3+ :YAG single-clad crystal fiber 211 is a 1-W, 445-nm laser diode 212 (Nichia), #NDB7875 , Japan) through the first collimation and focusing module 213 (for example, including a 60× aspheric lens, a bandpass filter (Semrock, #FF01-445/45, USA), and a 40× achromatic lens) and a second standard The direct and focus module 214 (eg, including a 40X achromatic objective lens and a 20X achromatic objective lens) is pumped, wherein the function of the band pass filter is to reflect the backward broadband light back to the single-clad crystal fiber 211. The phosphor output from the single-clad crystal fiber 211 is collimated and focused into the multimode fiber 209. The broadband light emerging from the output of the single-clad crystal fiber is coupled into the multimode fiber 209 and then collimated by the objective lens 221 in the optical microscope module 220, wherein the center wavelength and frequency of the light after the single-clad crystal fiber The widths are 560 nm and 95 nm, respectively.

示例性光學顯微鏡模組220包括物鏡透鏡221、光學長波通濾波器222、分束器223,該分束器223設置在光學長波通濾波器222與Mirau型物鏡模組230之間並將光導引至Mirau型物鏡模組230、反射鏡225和投射透鏡226。在一些實施方式中,第一分束器是偏振分束器。在一些實施方式中,在光學長波通濾波器與所述第一分束器之間設置可選擇使用偏振透鏡。從多模光纖209輸出並由分束器223反射的光會變成偏振光。第二分束器227的設計允許本 發明裝置/系統提供OCT模式和正交偏振光譜成像(OPSI)模式兩者。在一些實施方式中,第二分束器是偏振分束器。在一些實施方式中,在第一分束器與第二分束器之間可選擇設置偏振透鏡。第二偏振分束器227將偏振光投射至第二檢測器252。由組織平移模組240中的樣品以及由參考臂(reference arm)反射回來的光束會透過第一分束器223直接進行組合,第二偏振分束器227僅處理部分信號光,使其正交偏振並投射至第二檢測器252(提供OPSI模式),而偏振狀態不變的部分信號光會經由反射鏡225反射至所述第一檢測器251(提供OCT模式)。處於OPSI模式中的系統能夠偵測樣品中散射的去偏振光(depolarized light)。OCT模式對有深度結構(例如,皮膚組織結構)的樣品進行成像特別有效。而OPSI模式允許本發明系統藉由獲取樣品的任何次結構(substructure)或微環境(micro-environment)(例如,紅細胞和微血管)的吸收、色散和/或散射的反差圖像,來偵測其動態狀態(例如,在血管中移動的紅細胞)。在一些實施方式中,從第一檢測器和第二檢測器兩者所收集的資料會透過電腦等進一步處理。此示例性發明系統/裝置能夠對組織樣品的整體結構(例如,組織樣品的深度截面)和次結構(例如,血管內的紅細胞)進行偵測,尤其對體內皮膚狀況的成像特別有用。 The exemplary optical microscope module 220 includes an objective lens 221, an optical long pass filter 222, and a beam splitter 223. The beam splitter 223 is disposed between the optical long pass filter 222 and the Mirau type objective lens module 230 and guides the light guide. The model is led to the Mirau type objective lens module 230, the mirror 225, and the projection lens 226. In some embodiments, the first beam splitter is a polarizing beam splitter. In some embodiments, an optional use of a polarizing lens is provided between the optical long pass filter and the first beam splitter. Light output from the multimode fiber 209 and reflected by the beam splitter 223 becomes polarized light. The design of the second beam splitter 227 allows this The inventive device/system provides both OCT mode and orthogonal polarization spectral imaging (OPSI) mode. In some embodiments, the second beam splitter is a polarizing beam splitter. In some embodiments, a polarizing lens can be optionally disposed between the first beam splitter and the second beam splitter. The second polarization beam splitter 227 projects the polarized light to the second detector 252. The sample in the tissue translation module 240 and the light beam reflected from the reference arm are directly combined by the first beam splitter 223, and the second polarization beam splitter 227 processes only part of the signal light to be orthogonal. The polarization is projected to the second detector 252 (providing the OPSI mode), and part of the signal light having the same polarization state is reflected by the mirror 225 to the first detector 251 (providing the OCT mode). The system in OPSI mode is capable of detecting the scattered depolarized light in the sample. The OCT mode is particularly effective for imaging samples with deep structures (eg, skin tissue structures). The OPSI mode allows the system of the present invention to detect the absorption, dispersion, and/or scattering contrast images of any substructure or micro-environment of the sample (eg, red blood cells and microvessels). Dynamic state (eg, red blood cells moving in blood vessels). In some embodiments, the data collected from both the first detector and the second detector is further processed by a computer or the like. This exemplary inventive system/device is capable of detecting the overall structure of a tissue sample (e.g., a deep section of a tissue sample) and sub-structures (e.g., red blood cells within an blood vessel), particularly for imaging skin conditions in the body.

當通過第一偏振分束器223之後,光會變為圓偏振。該圓偏振光會在通過Mirau型物鏡模組230從參考臂(reference arm)和樣品臂(sample arm)反射回時變為反向圓偏 振。從組織平移模組240中的樣品和參考臂反射回來的光束在通過偏振分束器223之後進行組合,繼而投射到所述第二偏振分束器227上。 After passing through the first polarizing beam splitter 223, the light becomes circularly polarized. The circularly polarized light will become a reverse circular deviation when reflected back from the reference arm and the sample arm by the Mirau type objective lens module 230. Vibration. The beams reflected from the sample and reference arms in the tissue translation module 240 are combined after passing through the polarization beam splitter 223 and then projected onto the second polarization beam splitter 227.

組織平移模組240包括覆蓋組織樣品(例如,皮膚組織)的蓋玻片241和位於組織容納器裝置上的橫向機動化線性載物台242。組織容納器裝置可以是任何適合於容納組織的容納器。例如,組織容納器裝置是用於容納活檢物的載玻片。在一些情況下,蓋玻片係作為載玻片使用。在某些實施方式中,組織容納器裝置是蓋玻片。在一些實施方式中,組織容納器裝置是用於保持組織樣品(諸如來自患者手術暴露的組織樣本)的匣。 The tissue translation module 240 includes a cover slip 241 that covers a tissue sample (eg, skin tissue) and a lateral motorized linear stage 242 that is positioned on the tissue container device. The tissue container device can be any container suitable for holding tissue. For example, the tissue container device is a slide for holding a biopsy. In some cases, coverslips are used as slides. In certain embodiments, the tissue container device is a coverslip. In some embodiments, the tissue container device is a file for holding a tissue sample, such as a tissue sample from a patient's surgical exposure.

圖3提供了圖2實施方式的變化態樣,其中成像光纖束308用來在Mirau型物鏡模組330和光學顯微模組320之間傳輸光,Mirau型物鏡模組330和光學顯微模組320處理來自光源模組310的光。此變化實施方式提供了一種移動/靈活的Mirau型物鏡模組330來檢測樣品平移模組340中的樣品。為了適於該設計,可在成像光纖束308中使用可選的準直透鏡以進一步使光準直到Mirau型物鏡模組。如圖3中所示,藉由使用光學聚焦鏡327以進一步增強圖像的品質。 3 provides a variation of the embodiment of FIG. 2 in which imaging fiber bundle 308 is used to transfer light between a Mirau type objective lens module 330 and an optical microscopy module 320, a Mirau type objective lens module 330 and an optical microscopy module. Group 320 processes the light from light source module 310. This variant embodiment provides a mobile/flexible Mirau type objective module 330 for detecting samples in the sample translation module 340. To accommodate this design, an optional collimating lens can be used in the imaging fiber bundle 308 to further align the light to the Mirau type objective lens module. As shown in FIG. 3, the quality of the image is further enhanced by using an optical focusing mirror 327.

參考圖4,其顯示了圖2之示例性Mirau型物鏡模組,該Mirau型物鏡模組230包括z軸壓電換能器(PZT)231,該z軸壓電換能器(PZT)231與2D x-y線性平臺(未示出)和干涉物鏡233光學耦合。詳言之,此特殊設計的 Mirau型之干涉物鏡233包括浸入第一介質(例如,水)中的物鏡透鏡234(例如,Olympus,LUMPLFLN 20×W,NA:0.5,視場:550μm,日本)、環形容納器235、用於容納第二介質(例如,矽油)的兩個熔融石英玻璃板(厚度:150μm,λ/10平度,第一玻璃板236和第二玻璃板237)。水中焦場的直徑為約220μm(使用1/3視場)。干涉物鏡233固定於z軸壓電換能器231(PI,#P-720,德國)上。在一些實施方式中,第一介質與第二介質相同,例如,第一介質和第二介質可以都是矽油。 Referring to FIG. 4, there is shown an exemplary Mirau type objective lens module of FIG. 2, the Mirau type objective lens module 230 including a z-axis piezoelectric transducer (PZT) 231, the z-axis piezoelectric transducer (PZT) 231 It is optically coupled to a 2D xy linear stage (not shown) and an interference objective 233. In detail, this specially designed The Mirau type interference objective 233 includes an objective lens 234 (for example, Olympus, LUMPLFLN 20×W, NA: 0.5, field of view: 550 μm, Japan) immersed in a first medium (for example, water), a ring receiver 235, for Two fused silica glass plates (thickness: 150 μm, λ/10 flat, first glass plate 236 and second glass plate 237) containing a second medium (for example, eucalyptus oil). The diameter of the water focal field is about 220 μm (using 1/3 field of view). The interference objective 233 is fixed to the z-axis piezoelectric transducer 231 (PI, #P-720, Germany). In some embodiments, the first medium is the same as the second medium, for example, the first medium and the second medium may both be eucalyptus oil.

蓋玻片241層疊在樣品之下。在一些實施方式中,蓋玻片具有與玻璃板相同的厚度。採用開環控制的PZT的總光行程為112μm。使用與物鏡透鏡234位於同一平面上的500μm直徑的黑墨吸收體(n=1.48)來匹配第一玻璃板236的折射率,以便將雜散光吸收回資料處理單元(即CCD),並且用於消除強度的直流項(DC term)。在用TiO2/SiO2(T/R=60/40,T:透射率;R:反射率;n矽油=1.406)塗覆交錯的層之後,在第二玻璃板237的頂部上塗覆寬頻分束器塗層。接觸第二介質(即,矽油)的第一玻璃板236的反射塗層因n矽油=1.406而約為4%。 A cover glass 241 is laminated under the sample. In some embodiments, the coverslip has the same thickness as the glass sheet. The total optical travel of the PZT with open loop control is 112 μm. A 500 μm diameter black ink absorber (n=1.48) on the same plane as the objective lens 234 is used to match the refractive index of the first glass plate 236 to absorb stray light back to the data processing unit (ie, CCD) and for Eliminate the DC term of the intensity. After coating the staggered layers with TiO 2 /SiO 2 (T/R=60/40, T: transmittance; R: reflectance; n 矽 oil = 1.406), a wide frequency band is coated on top of the second glass plate 237. Beam coat coating. The reflective coating of the first glass sheet 236 that contacts the second medium (i.e., eucalyptus oil) is about 4% due to n 矽 oil = 1.406.

在操作過程中,物鏡透鏡234使光通過第一玻璃板236而向組織平移模組240上的測試樣品聚焦。第二板237將聚焦光的第一部分反射至第一玻璃板反射塗層以定義出參考光(reference light),並且將聚焦光的第二部分透射至測試樣品以定義出量測光(measurement light)。繼而,第 二板237將從測試樣品反射(或散射)的量測光與從第一玻璃板上的反射塗層反射的參考光重新組合,並且由物鏡234和成像透鏡對組合光進行成像,以在資料處理單元250(例如,具有或不具有電腦的多畫素相機)上產生干涉。PZT 231與2D x-y線性平臺232相耦合。 During operation, the objective lens 234 directs light through the first glass sheet 236 to focus the test sample on the tissue translation module 240. The second plate 237 reflects the first portion of the focused light to the first glass plate reflective coating to define a reference light and transmits the second portion of the focused light to the test sample to define the measurement light (measurement light) ). Then, the first The second plate 237 recombines the measurement light reflected (or scattered) from the test sample with the reference light reflected from the reflective coating on the first glass plate, and images the combined light by the objective lens 234 and the imaging lens to Interference is generated on processing unit 250 (e.g., a multi-pixel camera with or without a computer). The PZT 231 is coupled to a 2D x-y linear platform 232.

在一些實施方式中,干涉物鏡233包括浸入介質中的物鏡透鏡234、位於填充有一種或多種介質的密封容器中的第一玻璃板236、第二玻璃板237。本文所述的介質定義為具有對由光束穿過所述介質而引入的光路中的色散加以補償的特性的任何介質。與填充有空氣的傳統Mirau物鏡相比,Mirau型物鏡模組中的所述一種或多種介質提供了在斷層成像情況下減少色散的手段。在一些實施方式中,本發明的Mirau型物鏡模組包括兩種或更多種介質(例如,第一介質、第二介質等),其中至少一種介質具有與待分析的樣品相似的光學特性,其被佈置用於對由光束穿過Mirau型物鏡而引入的光路中的色散加以補償。在各種皮膚光學特性中,折射率是重要的一種。在1至10μm範圍的微觀尺度上,折射率的變化引起光散射。人體皮膚組織的折射率基於已知方法已確定(例如,Ding等人,Physics in Medicine and Biology,2006,51(6),1479)。相比於在標準溫度和壓力(STP)下的空氣的折射率1.00,人體皮膚組織的折射率為約1.38至1.44。具有1.3至1.5之間的折射率的介質的不排除例如包括水(1.33)、矽油(1.336-1.582,取決於組成)、20%葡萄糖水溶液(1.36)、乙醇(1.36)、甘油(1.47)、 派熱克斯玻璃(1.47)。在一些實施方式中,在Mirau型物鏡模組中使用的介質的折射率範圍為約1.0至約2.0、約1.2至約1.8、約1.3至約1.6、或者約1.3至約1.5。在某些實施方式中,所述介質的折射率範圍為約1.3至約1.5。 In some embodiments, the interference objective 233 includes an objective lens 234 immersed in the medium, a first glass plate 236, and a second glass plate 237 located in a sealed container filled with one or more media. The medium described herein is defined as any medium having characteristics that compensate for dispersion in the optical path introduced by the beam passing through the medium. The one or more media in the Mirau type objective module provide a means of reducing dispersion in the case of tomographic imaging as compared to conventional Mirau objectives filled with air. In some embodiments, the Mirau type objective lens module of the present invention includes two or more media (eg, a first medium, a second medium, etc.), wherein at least one of the media has optical characteristics similar to those of the sample to be analyzed, It is arranged to compensate for the dispersion in the optical path introduced by the beam passing through the Mirau type objective. Among various skin optical properties, refractive index is an important one. On a microscopic scale in the range of 1 to 10 μm, a change in refractive index causes light scattering. The refractive index of human skin tissue has been determined based on known methods (for example, Ding et al., Physics in Medicine and Biology, 2006, 51(6), 1479). The refractive index of human skin tissue is about 1.38 to 1.44 compared to the refractive index of 1.00 of air at standard temperature and pressure (STP). The medium having a refractive index of between 1.3 and 1.5 is not excluded, for example, including water (1.33), eucalyptus oil (1.336-1.582, depending on composition), 20% aqueous glucose solution (1.36), ethanol (1.36), glycerin (1.47), Pyrex glass (1.47). In some embodiments, the medium used in the Mirau type objective lens module has a refractive index ranging from about 1.0 to about 2.0, from about 1.2 to about 1.8, from about 1.3 to about 1.6, or from about 1.3 to about 1.5. In certain embodiments, the medium has a refractive index ranging from about 1.3 to about 1.5.

例如,物鏡透鏡234浸入在水(即,第一介質)或者具有與水的光學特性相接近的光學特性的液體中。這是因為待成像的樣品(例如,活細胞、皮膚組織)包含最多的是水。由此能夠以令人滿意的方式進行活細胞的成像。在一些實施方式中,所述一種或多種介質是液體、凝膠、特殊玻璃、特殊塑膠或者具有與測試樣品的光學特性相接近的光學特性的任何其他合適的材料。在某些實施方式中,所述介質是液體。在一些實施方式中,液體介質包括水、甘油、乙醇、矽油等。在某些實施方式中,所述液體介質包括水。在某些實施方式中,所述液體介質包括矽油。在某些實施方式中,所述液體介質包括甘油。在一些實施方式中,所述介質是具有約1.3至約1.5範圍內的折射率的透明玻璃或塑膠。 For example, the objective lens 234 is immersed in water (ie, a first medium) or a liquid having optical characteristics close to the optical characteristics of water. This is because the sample to be imaged (eg, living cells, skin tissue) contains the most water. Thereby, imaging of living cells can be performed in a satisfactory manner. In some embodiments, the one or more media are liquids, gels, special glasses, special plastics, or any other suitable material having optical properties that are close to the optical properties of the test sample. In certain embodiments, the medium is a liquid. In some embodiments, the liquid medium includes water, glycerin, ethanol, eucalyptus oil, and the like. In certain embodiments, the liquid medium comprises water. In certain embodiments, the liquid medium comprises eucalyptus oil. In certain embodiments, the liquid medium comprises glycerin. In some embodiments, the medium is a clear glass or plastic having a refractive index in the range of from about 1.3 to about 1.5.

如圖2中所示,PZT 231由來自具有開環模式的DAQ卡(NI,#PCI-4461,美國)的經放大信號所偏置。經由邁克耳孫(Michelson)干涉儀,通過He-Ne雷射器的計數波數和相位差來記錄PZT的z軸位置與輸入電壓。因此,PZT的滯後運動在實驗上通過所記錄的位置-電壓曲線來補償。例如,圖5為Ce3+:YAG SCF(示例性光源)的放射光譜,其中插圖顯示了SCF的末端視圖。從水與玻璃板 之間的邊界處反射的A型掃描的干涉測量信號強度由CCD的一個畫素進行測量(參見圖6)。來自圖5中載波信號的載波包絡強度在帶通濾波器和希耳伯(Hilbert)變換之後計算得出。由已知方法計算出的檢測靈敏度為約81dB。本發明系統的雜訊基底(noise floor)基本上被更強的共焦門(例如,NA:0.8對0.5)效應所抑制,並且繼而進一步降低了鬼像效應。示例性干涉物鏡相應地提供了在水介質表面沿軸向和橫向方向的Ra=0.91μm(參見圖5)和Rt=0.56μm(參見圖7)(或者在SC表面(結合水後,n=1.47),Ra=0.90μm和Rt=0.51μm)的實驗解析度;然而,根據方程1,滿足衍射極限的在水表面的理論空間解析度為Ra=0.56μm和Rt=0.43μm(或者在SC表面,Ra=0.55μm和Rt=0.39μm)。 As shown in Figure 2, PZT 231 is biased by an amplified signal from a DAQ card (NI, #PCI-4461, USA) with open loop mode. The z-axis position and input voltage of the PZT are recorded by the Michelson interferometer through the count wavenumber and phase difference of the He-Ne laser. Therefore, the hysteresis motion of the PZT is experimentally compensated by the recorded position-voltage curve. For example, Figure 5 is the emission spectrum of Ce 3+ :YAG SCF (exemplary light source), with the inset showing the end view of the SCF. The interferometric signal intensity of the A-scan reflected from the boundary between the water and the glass plate is measured by one pixel of the CCD (see Figure 6). The carrier envelope strength from the carrier signal in Figure 5 is calculated after the bandpass filter and the Hilbert transform. The detection sensitivity calculated by the known method is about 81 dB. The noise floor of the system of the present invention is substantially suppressed by the stronger confocal gate (e.g., NA: 0.8 versus 0.5) effect, and in turn further reduces the ghost effect. An exemplary interference objective correspondingly provides Ra = 0.91 μm (see Figure 5) and Rt = 0.56 μm (see Figure 7) in the axial and transverse directions on the surface of the aqueous medium (or on the SC surface (after water binding, n = 1.47), experimental resolution of Ra = 0.90 μm and Rt = 0.51 μm; however, according to Equation 1, the theoretical spatial resolution at the water surface that satisfies the diffraction limit is Ra = 0.56 μm and Rt = 0.43 μm (or in SC) Surface, Ra = 0.55 μm and Rt = 0.39 μm).

其中△Zeff意指由△Z共焦(水中的共焦門(confocal gate),等於λ0n/NA2,對於40×物鏡(NA:0.8)為約1.16μm)和△Z同調(水中的同調門(coherent gate),等於0.44λ0 2/n△λ,對於具有相同物鏡的Ce3+:YAG光源為約1.09μm)貢獻的有效軸向解析度。n樣品和n水相應地為樣品和水的折射率。λ0和△λ為光源的中心波長和頻寬。在圖4中, 40×干涉物鏡透鏡234用於水浸。令人驚訝地發現,當使用20×干涉物鏡透鏡(其中NA為0.5)時,樣品掃描變得更高效但仍獲得了相似的3-D成像結果(例如,解析度)。因此,在一些實施方式中,用於本發明裝置/系統的物鏡透鏡具有0.5或更小的NA。由於水和矽油都具有與樣品組織中的一種相似的相似折射率,因此所屬技術領域中具有通常知識者將容易了解相互取代,或者僅使用水,或者僅使用矽油,或者根據本發明的實施而使用任何其他合適的介質。例如,製作浸入在矽油(第一介質)中且第二介質為矽油的干涉物鏡,以克服基於水的Mirau型物鏡模組的易蒸發性。 Wherein △ Z eff is meant a confocal △ Z (confocal water gate (confocal gate), the water is equal to λ 0 n / NA 2, for a 40 × objective (NA: 0.8) of about 1.16μm) and △ Z homology ( The coherent gate in water is equal to 0.44 λ 0 2 /n water Δλ, and the effective axial resolution contributed to the Ce 3+ :YAG source with the same objective lens is about 1.09 μm). The n sample and n water are correspondingly the refractive indices of the sample and water. λ 0 and Δλ are the center wavelength and bandwidth of the light source. In Fig. 4, a 40x interference objective lens 234 is used for water immersion. Surprisingly, it has been found that when a 20x interference objective lens (where NA is 0.5) is used, sample scanning becomes more efficient but still achieves similar 3-D imaging results (eg, resolution). Thus, in some embodiments, the objective lens used in the device/system of the present invention has an NA of 0.5 or less. Since both water and eucalyptus oil have similar refractive indices similar to those in the sample tissue, those of ordinary skill in the art will readily appreciate mutual substitution, or use only water, or only eucalyptus oil, or in accordance with implementations of the present invention. Use any other suitable media. For example, an interference objective lens immersed in an eucalyptus oil (first medium) and a second medium eucalyptus oil is prepared to overcome the evaporability of the water-based Mirau type objective lens module.

通常,FF-OCT在0°、90°、180°和270°,使用單張拍攝(single-shot)CCD,通過經由相位階躍技術計算棧資訊而獲得正面圖像,其中通過PZT的三角形振盪運動來對其移相。隨著一個正面圖像的曝光時間增加,檢測靈敏度變得更好。繼而,通過沿z軸堆積正面圖像來重建3-D圖像。與經典FF-OCT不同,包括Mirau型物鏡的本發明裝置/系統通過順序的干涉測量信號來重建3-D圖像重合(3D image stack)。該次要考慮因素將使本發明裝置/系統更好的深度成像。 Typically, FF-OCT uses a single-shot CCD at 0°, 90°, 180°, and 270° to obtain a frontal image by calculating stack information via a phase step technique, where the triangle oscillations through PZT Exercise to phase shift it. As the exposure time of a front image increases, the detection sensitivity becomes better. Then, the 3-D image is reconstructed by stacking the frontal image along the z-axis. Unlike the classic FF-OCT, the inventive apparatus/system including the Mirau type objective lens reconstructs a 3-D image stack by sequential interferometric signals. This secondary consideration will result in better depth imaging of the device/system of the present invention.

本發明的裝置或系統能夠有效且輕鬆地對組織樣品進行成像,在輔助皮膚治療中尤其有用,例如,本發明的裝置或系統可來輔助莫氏外科手術。在外科手術過程中,在每次移除組織之後,當患者等待時,即可對該組織進行癌細胞檢查,以決定是否需額外切除組織。莫氏外 科手術是在皮膚癌的移除過程中獲得完整邊沿控制的眾多方法之一,其取決於完整的四週邊緣和深處邊沿評估。本發明的裝置或系統可以原位地(in situ)對樣品組織進行成像,或者在從患者身體中移除樣品組織後成像,從而對莫氏外科手術提供了有效的輔助方式。在一些實施方式中,提供了一種用於對組織樣品進行成像的方法,該方法包括:透過本文所述的裝置或系統,對從樣品深度方向出現的測試光進行成像,以及對來自該樣品的次結構的吸收、色散和/或散射的反差圖像進行成像,以獲得該樣品的動態狀態。在一些實施方式中,組織樣品是皮膚組織。在某些實施方式中,所述方法可用於對皮膚組織狀況進行成像。在某些實施方式中,透過完整的周圍週邊和深處邊沿評估來確定皮膚狀況。 The device or system of the present invention is capable of imaging tissue samples efficiently and easily, and is particularly useful in assisting skin treatment, for example, the device or system of the present invention can be used to assist in Mohs surgery. During the surgical procedure, after each removal of the tissue, when the patient is waiting, the tissue can be examined for cancer to determine if additional tissue removal is required. Mohs outside Surgery is one of the many ways to achieve complete edge control during skin cancer removal, depending on the complete perimeter edge and deep edge assessment. The device or system of the present invention can image tissue tissue in situ or after removing tissue tissue from the patient's body, thereby providing an effective means of assisting Mohs surgery. In some embodiments, a method for imaging a tissue sample is provided, the method comprising: imaging a test light emerging from a depth direction of a sample through the apparatus or system described herein, and from the sample The contrast image of the absorption, dispersion, and/or scattering of the secondary structure is imaged to obtain the dynamic state of the sample. In some embodiments, the tissue sample is skin tissue. In certain embodiments, the method can be used to image skin tissue conditions. In certain embodiments, skin conditions are determined through a complete peripheral perimeter and deep edge assessment.

儘管本文已呈現並描述了本發明的較佳實施方式,但對於所屬技術領中具有通常知識者而言,其僅為實施態樣的舉例,在不脫離本發明的情況下,所屬技術領域中具有通常知識者可進行各種變化、改變及替代,應理解,可以採用本文描述的本發明實施方式的各種替代方案來實施本發明。以下的申請專利範圍旨在定義本發明的範圍,且涵蓋該些申請專利範圍內的方法、結構及其等同物。 Although the preferred embodiment of the present invention has been shown and described, it is to be understood by those of ordinary skill in the art that Various changes, modifications, and substitutions may be made by those skilled in the art, and it is understood that the invention may be practiced with various alternatives to the embodiments of the invention described herein. The scope of the invention is intended to define the scope of the invention, and to cover the methods, structures, and equivalents thereof.

209‧‧‧多模光纖 209‧‧‧Multimode fiber

210‧‧‧光源模組 210‧‧‧Light source module

211‧‧‧單包層晶體光纖 211‧‧‧Single-clad crystal fiber

212‧‧‧鐳射二極體 212‧‧‧Laser diode

213‧‧‧第一準直和聚焦模組 213‧‧‧First Collimation and Focusing Module

214‧‧‧第二準直和聚焦模組 214‧‧‧Second collimation and focusing module

220‧‧‧光學顯微鏡模組 220‧‧‧Optical microscope module

221‧‧‧物鏡透鏡 221‧‧‧ objective lens

222‧‧‧光學長波通濾波器 222‧‧‧Optical long wave pass filter

223‧‧‧第一分束器 223‧‧‧First beam splitter

225‧‧‧反射鏡 225‧‧‧Mirror

226‧‧‧投射透鏡 226‧‧‧Projection lens

227‧‧‧第二分束器 227‧‧‧Second beam splitter

230‧‧‧Mirau型物鏡模組 230‧‧‧Mirau type objective lens module

231‧‧‧z軸壓電換能器(PZT) 231‧‧‧z-axis piezoelectric transducer (PZT)

233‧‧‧干涉物鏡 233‧‧‧Interference objective

240‧‧‧組織平移模組 240‧‧‧Organization translation module

241‧‧‧蓋玻片 241‧‧‧ coverslips

250‧‧‧資料處理單元 250‧‧‧Data Processing Unit

251‧‧‧第一檢測器 251‧‧‧First detector

252‧‧‧第二檢測器 252‧‧‧Second detector

Claims (27)

一種裝置,包括:一光源模組,其被配置用於向一光學顯微鏡模組提供一光源光,所述光學顯微鏡模組運用所述光源光並處理光信號;一Mirau型物鏡模組,其運用來自所述光學顯微鏡模組的光,並且處理從容納一組織樣品的一組織平移模組所產生的光信號;以及一資料處理單元,其包括一第一檢測器及一第二檢測器,用於分析來自所述組織樣品的光信號,其中所述Mirau型物鏡模組包括一干涉物鏡,所述干涉物鏡浸入介質中,並且其中所述光學顯微鏡模組包括一第一分束器及一第二分束器,所述第一分束器適於僅使所述信號光的一部分正交偏振並經由所述第二分束器投射至所述第一檢測器,所述第二分束器適於僅使所述信號光的一部分正交偏振並投射至所述第二檢測器。 A device comprising: a light source module configured to provide a source of light to an optical microscope module, the optical microscope module utilizing the source light and processing an optical signal; a Mirau type objective lens module Using light from the optical microscope module and processing an optical signal generated from a tissue translation module housing a tissue sample; and a data processing unit including a first detector and a second detector For analyzing an optical signal from the tissue sample, wherein the Mirau type objective lens module includes an interference objective lens, the interference objective lens is immersed in the medium, and wherein the optical microscope module includes a first beam splitter and a a second beam splitter adapted to cause only a portion of the signal light to be orthogonally polarized and projected to the first detector via the second beam splitter, the second beam splitter The device is adapted to only polarize a portion of the signal light and project it to the second detector. 如申請專利範圍第1項所述的裝置,其中所述光源模組包括自發發射光源、放大式自發發射光源、超輻射發光二極體、發光二極體(LED)、寬頻超連續譜光源、鎖模雷射器、可調諧雷射器、傅立葉域鎖模光源、光參量振盪器(OPO)、鹵素燈、Ce3+:YAG晶體光纖、Ti3+:Al2O3晶體光纖、Cr4+:YAG晶體光纖。 The device of claim 1, wherein the light source module comprises a spontaneous emission light source, an amplified spontaneous emission light source, a super-radiation light-emitting diode, a light-emitting diode (LED), a broadband super-continuous spectrum light source, Mode-locked laser, tunable laser, Fourier-domain mode-locked source, optical parametric oscillator (OPO), halogen lamp, Ce 3+ :YAG crystal fiber, Ti 3+ :Al 2 O 3 crystal fiber, Cr 4 + : YAG crystal fiber. 如申請專利範圍第3項所述的裝置,其中所述光源模組包括Ce3+:YAG晶體光纖、Ti3+:Al2O3晶體光纖或Cr4+:YAG晶體光纖。 The device of claim 3, wherein the light source module comprises a Ce 3+ :YAG crystal fiber, a Ti 3+ :Al 2 O 3 crystal fiber, or a Cr 4+ :YAG crystal fiber. 如申請專利範圍第3項所述的裝置,其中所述光源模組包括Ce3+:YAG晶體光纖。 The device of claim 3, wherein the light source module comprises a Ce 3+ :YAG crystal fiber. 如申請專利範圍第1項所述的裝置,其中所述Mirau型物鏡模組包括浸入一介質中的一干涉物鏡透鏡、位於填充有一種或多種介質的密封容器中的一第一玻璃板、一第二玻璃板。 The apparatus of claim 1, wherein the Mirau type objective lens module comprises an interference objective lens immersed in a medium, a first glass plate in a sealed container filled with one or more mediums, and a Second glass plate. 如申請專利範圍第1項所述的裝置,其中所述干涉物鏡透鏡浸入在具有與待分析的組織樣品相似的光學特性的介質中。 The device of claim 1, wherein the interference objective lens is immersed in a medium having optical properties similar to the tissue sample to be analyzed. 如申請專利範圍第6項所述的裝置,其中所述光學特性是折射率。 The device of claim 6, wherein the optical property is a refractive index. 如申請專利範圍第7項所述的裝置,其中所述介質具有在約1.2至約1.8範圍內的折射率。 The device of claim 7, wherein the medium has a refractive index in the range of from about 1.2 to about 1.8. 如申請專利範圍第8項所述的裝置,其中所述介質具有在約1.3至約1.5範圍內的折射率。 The device of claim 8, wherein the medium has a refractive index in the range of from about 1.3 to about 1.5. 如申請專利範圍第9項所述的裝置,所述介質包括具有在約1.3至約1.5範圍內的折射率的水、矽油、乙醇、甘油、派熱克斯玻璃、透明玻璃或塑膠,或者其組合。 The device of claim 9, wherein the medium comprises water, eucalyptus oil, ethanol, glycerin, pyrex glass, transparent glass or plastic having a refractive index in the range of from about 1.3 to about 1.5, or combination. 如申請專利範圍第10項所述的裝置,其中所述介質包括水、矽油或甘油。 The device of claim 10, wherein the medium comprises water, eucalyptus oil or glycerin. 如申請專利範圍第11項所述的裝置,其中所述介質包括矽油。 The device of claim 11, wherein the medium comprises eucalyptus oil. 如申請專利範圍第5項所述的裝置,其中所述一種或多種介質包括第一介質和第二介質。 The device of claim 5, wherein the one or more media comprises a first medium and a second medium. 如申請專利範圍第1項所述的裝置,其中所述第一介質包括水,而所述第二介質包括矽油。 The device of claim 1, wherein the first medium comprises water and the second medium comprises eucalyptus oil. 如申請專利範圍第1項所述的裝置,其中所述光學顯微鏡模組還包括一物鏡透鏡、一光學長波通濾波器和一偏振分束器。 The device of claim 1, wherein the optical microscope module further comprises an objective lens, an optical long pass filter, and a polarization beam splitter. 如申請專利範圍第1所述的裝置,其中所述組織平移模組包括一蓋玻片和位於一組織容納器裝置上的一橫向機動化線性載物台。 The device of claim 1, wherein the tissue translation module comprises a cover slip and a lateral motorized linear stage located on a tissue container device. 如申請專利範圍第16項所述的裝置,其中所述組織容納器裝置是載玻片或盒。 The device of claim 16, wherein the tissue container device is a slide or a cartridge. 如申請專利範圍第16項所述的裝置,其中所述蓋玻片係用作所述組織容納器。 The device of claim 16, wherein the cover slip is used as the tissue container. 如申請專利範圍第2項所述的裝置,其中所述第一檢測器或所述第二檢測器係各自獨立為一維檢測器或二維檢測器、任選地耦合的計算機,或者其組合。 The device of claim 2, wherein the first detector or the second detector are each independently a one-dimensional detector or a two-dimensional detector, an optionally coupled computer, or a combination thereof . 如申請專利範圍第19項所述的裝置,其中所述第一檢測器或所述第二檢測器是二維檢測器。 The device of claim 19, wherein the first detector or the second detector is a two-dimensional detector. 如申請專利範圍第20項所述的裝置,其中所述二維檢測器是電荷耦合器件(CCD)、多畫素相機或互補金屬氧化物半導體(CMOS)相機,或者其組合。 The device of claim 20, wherein the two-dimensional detector is a charge coupled device (CCD), a multi-pixel camera, or a complementary metal oxide semiconductor (CMOS) camera, or a combination thereof. 如申請專利範圍第1項所述的裝置,其中所述光源模組包括Ce3+:YAG晶體光纖,而所述Mirau型物鏡模組包括作為一種或多種介質的矽油。 The device of claim 1, wherein the light source module comprises a Ce 3+ :YAG crystal fiber, and the Mirau type objective lens module comprises an eucalyptus oil as one or more media. 一種用於對組織樣品進行成像的系統,包括:一光源模組,其被配置用於向一光學顯微鏡模組提供一光源光,所述光學顯微鏡模組運用所述光源光並處理光信號;一Mirau型物鏡模組,其運用來自所述光學顯微鏡模組的光,並且處理從容納一組織樣品的一組織平移模組生成的光信號;以及一資料處理單元,其包括一第一檢測器和一第二檢測器的,用於分析來自所述組織樣品的光信號,其中所述Mirau型物鏡模組包括浸入介質中的一干涉物鏡,並且其中所述光學顯微鏡模組包括一第一偏振分束器和一第二偏振分束器,所述第一偏振分束器適於僅使所述信號光的一部分正交偏振並經由所述第二偏振分束器投射至所述第一檢測器,所述第二偏振分束器適於僅使所述信號光的一部分正交偏振並投射至所述第二檢測器。 A system for imaging a tissue sample, comprising: a light source module configured to provide a light source light to an optical microscope module, the optical microscope module applying the light source light and processing the light signal; a Miraau type objective lens module that utilizes light from the optical microscope module and processes an optical signal generated from a tissue translation module that houses a tissue sample; and a data processing unit that includes a first detector And a second detector for analyzing an optical signal from the tissue sample, wherein the Mirau type objective lens module includes an interference objective lens immersed in the medium, and wherein the optical microscope module includes a first polarization a beam splitter and a second polarization beam splitter adapted to cause only a portion of the signal light to be orthogonally polarized and projected to the first detection via the second polarization beam splitter The second polarizing beam splitter is adapted to only polarize a portion of the signal light and project it to the second detector. 一種用於對組織樣品進行成像的方法,包括:藉由申請專利範圍第1項所述的裝置或申請專利範圍第23項所述的系統,對從一樣品之深度方向出現的測試光進行成像,以及對來自所述樣品的次結構(substructure)的吸收的反差圖像進行成像。 A method for imaging a tissue sample, comprising: imaging a test light emerging from a depth direction of a sample by the apparatus of claim 1 or the system of claim 23 And imaging the contrast image of the absorption from the substructure of the sample. 如申請專利範圍第24項所述的方法,其中所述樣品是皮膚組織。 The method of claim 24, wherein the sample is skin tissue. 如申請專利範圍第25項所述的方法,其中所述方法用於對皮膚組織狀況進行成像。 The method of claim 25, wherein the method is for imaging a skin tissue condition. 如申請專利範圍第26項所述的方法,其中透過完整的周圍週邊和深處邊沿來評估確定所述皮膚狀況。 The method of claim 26, wherein the determining the condition of the skin is assessed by a complete surrounding perimeter and a deep edge.
TW105103680A 2015-02-04 2016-02-04 Optical coherence tomography apparatus and its application TW201702688A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201562111668P 2015-02-04 2015-02-04

Publications (1)

Publication Number Publication Date
TW201702688A true TW201702688A (en) 2017-01-16

Family

ID=56564662

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105103680A TW201702688A (en) 2015-02-04 2016-02-04 Optical coherence tomography apparatus and its application

Country Status (2)

Country Link
TW (1) TW201702688A (en)
WO (1) WO2016126861A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111386439A (en) * 2017-09-18 2020-07-07 安盟生技股份有限公司 Interference imaging device and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3134331A1 (en) * 2019-05-08 2020-11-12 Tuan-Shu Ho Optical system and detection method therof
EP4044898A4 (en) * 2019-10-19 2023-10-18 Apollo Medical Optics, Ltd. Optical system and interference objective module therof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6330106B1 (en) * 1999-02-17 2001-12-11 Lucid, Inc. Tissue specimen holder
AU2001251114A1 (en) * 2000-03-28 2001-10-08 Board Of Regents, The University Of Texas System Enhancing contrast in biological imaging
US8437007B2 (en) * 2010-12-30 2013-05-07 Axsun Technologies, Inc. Integrated optical coherence tomography system
US9229210B2 (en) * 2012-02-26 2016-01-05 Caliber Imaging And Diagnostics, Inc. Tissue specimen stage for an optical sectioning microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111386439A (en) * 2017-09-18 2020-07-07 安盟生技股份有限公司 Interference imaging device and application thereof
CN111386439B (en) * 2017-09-18 2022-07-12 安盟生技股份有限公司 Interference imaging device and application thereof
TWI804509B (en) * 2017-09-18 2023-06-11 安盟生技股份有限公司 Interference imaging device

Also Published As

Publication number Publication date
WO2016126861A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
US10209500B2 (en) Three-dimensional optical coherence tomography apparatus and its application
TWI553294B (en) Optical interference imaging apparatus, system and method of the application of the same
US10197379B2 (en) Optical sensing based on measurements of displacements induced by optical forces in viscoelastic media using phase-sensitive optical coherence tomography
Dalimier et al. Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging
US9226666B2 (en) Confocal photoacoustic microscopy with optical lateral resolution
CN105980810B (en) Optical tomography apparatus and method
Koenig Hybrid multiphoton multimodal tomography of in vivo human skin
Seidenari et al. Diagnosis of BCC by multiphoton laser tomography
Yang et al. Broadband graphene-based photoacoustic microscopy with high sensitivity
Song et al. Isometrically resolved photoacoustic microscopy based on broadband surface plasmon resonance ultrasound sensing
TW201702688A (en) Optical coherence tomography apparatus and its application
Zhu et al. Resolution-matched reflection mode photoacoustic microscopy and optical coherence tomography dual modality system
Rudolph et al. Trends in optical biomedical imaging
Kukk et al. Multimodal imaging system with ultrasound, photoacoustics, and optical coherence tomography for optical biopsy of melanoma
Boppart Optical coherence tomography: Principles applications and advances
Dahal et al. Characterization of multiphoton photoacoustic spectroscopy for subsurface brain tissue diagnosis and imaging
Ren et al. High-resolution imaging diagnosis of human fetal membrane by three-dimensional optical coherence tomography
Larson et al. Performance of line-scanning confocal microscopy in human skin: investigation of potential for clinical translation
US20230417654A1 (en) Ultrahigh-speed multi-parametric photoacoustic microscopy based on a thin-film optical-acoustic combiner
Li Label-Free Photoacoustic Microscopy for Biomedical and Point-of-Care Applications
Rolland et al. Virtual skin biopsy with Gabor Domain optical coherence microscopy
Zhu Photoacoustic Sensors with Composite-Layer-based Plasmon Waveguide Resonance
Kim et al. Spatial refractive index measurement of porcine artery using differential phase optical coherence microscopy
Haji Reza All-Optical and Endoscopic Photoacoustic Microscopy
Boccara et al. Optical Coherence Tomography