TW201701634A - System and methods for managing a radio resource control (RRC) state in a wireless communication device supporting concurrent radio access technologies - Google Patents
System and methods for managing a radio resource control (RRC) state in a wireless communication device supporting concurrent radio access technologies Download PDFInfo
- Publication number
- TW201701634A TW201701634A TW105116710A TW105116710A TW201701634A TW 201701634 A TW201701634 A TW 201701634A TW 105116710 A TW105116710 A TW 105116710A TW 105116710 A TW105116710 A TW 105116710A TW 201701634 A TW201701634 A TW 201701634A
- Authority
- TW
- Taiwan
- Prior art keywords
- rat
- protocol stack
- network
- wireless communication
- network associated
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本發明係關於用於在支援並行無線電存取技術的無線通訊設備中管理無線電資源控制(RRC)狀態的系統和方法。The present invention relates to systems and methods for managing radio resource control (RRC) states in a wireless communication device that supports parallel radio access technology.
廣泛地部署無線通訊網路,以提供各種通訊服務,例如,電話、視訊、資料、訊息傳遞、廣播等等。此類網路(其通常是多工網路)經由共享可用的網路資源來支援針對多個使用者的通訊。此類網路的一個實例是通用行動電信系統(UMTS)陸地無線電存取網路(UTRAN)。UTRAN是被規定成由第三代合作夥伴計畫(3GPP)支援的第三代(3G)行動電話技術的UMTS的一部分的無線電存取網路(RAN)。為行動通訊全球系統(GSM)技術的繼承者的UMTS,當前支援各種空中介面標準,例如,寬頻分碼多工存取(W-CDMA)、時分分碼多工存取(TD-CDMA)和時分同步分碼多工存取(TD-SCDMA)。Widely deployed wireless communication networks to provide a variety of communication services, such as telephony, video, data, messaging, broadcast, and more. Such networks (which are typically multiplexed networks) support communication for multiple users by sharing available network resources. An example of such a network is the Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (UTRAN). The UTRAN is a Radio Access Network (RAN) that is specified as part of the UMTS of the third generation (3G) mobile phone technology supported by the Third Generation Partnership Project (3GPP). UMTS, the successor to the Global System for Mobile Communications (GSM) technology, currently supports a variety of null intermediaries, such as Wideband Code Division Multiple Access (W-CDMA), Time Division Coded Multiple Access (TD-CDMA). And time division synchronous code division multiplexing access (TD-SCDMA).
行動通訊的持續的目標是實現高速率的資料發送與接收,同時使消耗的功率的量減至最小。照此,無線通訊設備可以在使用長期進化(LTE)標準的網路上進行操作,其中該LTE標準經由改進對行動寬頻網際網路存取的支援來增強GSM、UMTS及/或CDMA2000。此類改進的支援可以是基於例如增加的無線資料網路的容量和速度的,與其他標準和多輸入多輸出(MIMO)天線技術的整合的。The continuing goal of mobile communications is to achieve high rate data transmission and reception while minimizing the amount of power consumed. As such, wireless communication devices can operate over a network that uses the Long Term Evolution (LTE) standard, which enhances GSM, UMTS, and/or CDMA2000 by improving support for mobile broadband Internet access. Such improved support may be based on, for example, the increased capacity and speed of the wireless data network, integrated with other standards and multiple input multiple output (MIMO) antenna technologies.
此外,無線通訊設備可以包括被配置有多個接收路徑的單一射頻(RF)資源,該多個接收路徑允許設備接收關於一種以上的無線電存取技術的通訊。因此,此類設備(其可以被稱為具備並行RAT(CRAT)能力的設備)可以使用共享的RF資源和多個接收鏈來調諧到和調諧離開由不同的服務供應商(例如,使用多個用戶辨識模組(SIM))及/或同一服務供應商(例如,在混合系統中)實現的網路。因此,接收鏈配置可以向無線通訊設備提供各種各樣的調諧離開選項,例如,調諧離開到與同一服務供應商相關聯的網路、與相同無線電存取技術中的不同服務供應商相關聯的網路、與不同無線電存取技術中的不同服務供應商相關聯的網路等等。Moreover, the wireless communication device can include a single radio frequency (RF) resource configured with a plurality of receive paths that allow the device to receive communications regarding more than one radio access technology. Thus, such devices (which may be referred to as parallel RAT (CRAT) capable devices) may use shared RF resources and multiple receive chains to tune to and tune away from different service providers (eg, using multiple User Identification Module (SIM) and/or network implemented by the same service provider (eg, in a hybrid system). Thus, the receive chain configuration can provide a variety of tune away options to the wireless communication device, for example, tune away to a network associated with the same service provider, associated with different service providers in the same radio access technology. Network, networks associated with different service providers in different radio access technologies, and more.
如果此類調諧離開是冗長的,則處於RRC連接模式的無線通訊設備可能丟失與網路的無線電連接達一段時間。結果,無線通訊設備可能不能夠從網路接收下行鏈路訊息,其包括用於指示無線電鏈路的釋放的訊息。此類故障可能造成無線通訊設備的操作的狀態與網路中的相應的狀態之間的不匹配。儘管可以使用各種各樣的技術來處理這種不匹配,但是此類解決方案可能涉及對功率及/或網路資源的低效使用。If such tuning away is lengthy, the wireless communication device in RRC connected mode may lose radio connection to the network for a period of time. As a result, the wireless communication device may not be able to receive downlink messages from the network, including messages for indicating the release of the radio link. Such failures may cause a mismatch between the state of operation of the wireless communication device and the corresponding state in the network. While a variety of techniques can be used to handle this mismatch, such solutions may involve inefficient use of power and/or network resources.
各個實施例的系統、方法和設備使得具有支援至少第一無線電存取技術(RAT)和第二無線電存取技術的射頻(RF)資源的無線通訊設備,能夠對無線電資源控制(RRC)狀態的同步進行管理。在各個實施例中,對RRC狀態的同步進行管理可以包括下列操作:偵測RF資源從與第一RAT相關聯的網路到與第二RAT相關聯的網路的調諧離開,決定執行在第一協定堆疊上的媒體存取控制(MAC)協定層不活動計時器是否已經到期,以及回應於決定MAC協定層不活動計時器尚未到期,偵測到第一協定堆疊正在連接的非連續接收(CDRX)模式下操作。在各個實施例中,如果MAC協定層不活動計時器尚未到期,則操作亦可以包括:決定是否從與第一RAT相關聯的網路接收到新的上行鏈路或者下行鏈路資源准許,以及回應於決定未從與第一RAT相關聯的網路接收到新的上行鏈路或者下行鏈路資源准許,決定第一協定堆疊的操作的RRC狀態是否可能和與第一RAT相關聯的網路中設置的相應的RRC狀態不同。在各個實施例中,如果MAC協定層不活動計時器尚未到期,則操作亦可以包括:回應於決定第一協定堆疊的操作的RRC狀態可能與該網路中設置的相應的RRC狀態不同,向與第一RAT相關聯的網路發送排程請求。在各個實施例中,若MAC協定層不活動計時器尚未到期,則操作亦可以包括:選擇用於在第一協定堆疊上使用的傳呼解碼模式。在一些實施例中,該RF資源可以在調諧離開持續時間之後,調諧返回到與第一RAT相關聯的網路。The systems, methods and apparatus of various embodiments enable a wireless communication device having radio frequency (RF) resources supporting at least a first radio access technology (RAT) and a second radio access technology, capable of radio resource control (RRC) status Manage at the same time. In various embodiments, managing the synchronization of the RRC state may include the operation of detecting that the RF resource is tuned away from the network associated with the first RAT to the network associated with the second RAT, the decision is performed at Whether the media access control (MAC) protocol layer inactivity timer on the protocol stack has expired, and in response to determining that the MAC protocol layer inactivity timer has not expired, detecting that the first protocol stack is being connected to the non-contiguous Receive (CDRX) mode operation. In various embodiments, if the MAC protocol layer inactivity timer has not expired, the operation may also include determining whether to receive a new uplink or downlink resource grant from the network associated with the first RAT, And in response to determining not to receive a new uplink or downlink resource grant from the network associated with the first RAT, determining whether an RRC state of operation of the first protocol stack is possible and a network associated with the first RAT The corresponding RRC states set in the road are different. In various embodiments, if the MAC protocol layer inactivity timer has not expired, the operation may also include: the RRC state in response to determining the operation of the first protocol stack may be different from the corresponding RRC state set in the network, A scheduling request is sent to the network associated with the first RAT. In various embodiments, if the MAC protocol layer inactivity timer has not expired, the operations may also include selecting a paging decoding mode for use on the first protocol stack. In some embodiments, the RF resource can tune back to the network associated with the first RAT after the tuning away duration.
在一些實施例中,決定第一協定堆疊的操作的RRC狀態是否潛在地和與第一RAT相關聯的網路中設置的相應的RRC狀態不同可以包括:決定調諧離開持續時間是否比閥值持續時間更長。一些實施例亦可以包括:回應於決定MAC協定層不活動計時器尚未到期,決定用於第一協定堆疊的定時對準(TA)計時器是否已經到期,並且是否尚未恢復上行鏈路定時對準。In some embodiments, determining whether the RRC state of the operation of the first protocol stack is potentially different from the corresponding RRC state set in the network associated with the first RAT may include determining whether the tune away duration is longer than a threshold It takes longer. Some embodiments may also include determining whether a timing alignment (TA) timer for the first protocol stack has expired and whether uplink timing has not been recovered in response to determining that the MAC protocol layer inactivity timer has not expired alignment.
在一些實施例中,選擇用於在第一協定堆疊上使用的傳呼解碼模式可以包括:回應於決定用於第一協定堆疊的TA計時器已經到期,並且尚未恢復上行鏈路定時對準,選擇非最佳化的傳呼解碼模式。在一些實施例中,選擇用於在第一協定堆疊上使用的傳呼解碼模式可以包括:回應於決定第一協定堆疊的操作的RRC狀態不潛在地和與第一RAT相關聯的網路中設置的相應的RRC狀態不同,選擇RF資源的調諧離開之前在使用的相同的傳呼解碼模式。在一些實施例中,選擇用於在第一協定堆疊上使用的傳呼解碼模式可以包括:回應於決定第一協定堆疊的操作的RRC狀態潛在地與該網路中設置的相應的RRC狀態不同,在該排程請求之後,基於來自與第一RAT相關聯的網路的回饋來選擇傳呼解碼模式。在一些實施例中,在該排程請求之後,基於來自與第一RAT相關聯的網路的回饋來選擇傳呼解碼模式可以包括:在排程請求禁止計時器到期之前,回應於決定回應於該排程請求的回饋包括來自與第一RAT相關聯的網路的上行鏈路資源准許,選擇功率最佳化的傳呼解碼模式,以及回應於決定回應於該排程請求的回饋不包括來自與第一RAT相關聯的該網路的上行鏈路資源准許,選擇非最佳化的傳呼解碼模式。In some embodiments, selecting a paging decoding mode for use on the first protocol stack can include: in response to deciding that a TA timer for the first protocol stack has expired, and has not resumed uplink timing alignment, Select a non-optimized paging decoding mode. In some embodiments, selecting a paging decoding mode for use on the first protocol stack can include: responding to an RRC state that determines an operation of the first protocol stack is not potentially in-network settings associated with the first RAT The corresponding RRC state is different, and the tuning of the RF resource is selected to leave the same paging decoding mode that was used before. In some embodiments, selecting a paging decoding mode for use on the first protocol stack may include: in response to determining that an RRC state of operation of the first protocol stack is potentially different from a corresponding RRC state set in the network, After the scheduling request, the paging decoding mode is selected based on feedback from the network associated with the first RAT. In some embodiments, selecting the paging decoding mode based on feedback from the network associated with the first RAT after the scheduling request may include responding to the decision response before the scheduling request prohibition timer expires The feedback of the scheduling request includes an uplink resource grant from the network associated with the first RAT, a paging decoding mode that selects power optimization, and a response in response to the decision to respond to the scheduling request does not include The uplink resource grant of the network associated with the first RAT selects a non-optimized paging decoding mode.
在一些實施例中,第一RAT可以是長期進化(LTE)無線通訊協定的實施方式。一些實施例亦可以包括:在選擇時,實現功率最佳化的傳呼解碼模式。在一些實施例中,實現功率最佳化的傳呼解碼模式可以包括:在第一協定堆疊上,在CDRX週期的活動時段期間,對實體下行鏈路控制通道(PDCCH)進行解碼。在一些實施例中,對PDCCH進行解碼可以包括:使用與第一協定堆疊相關聯的細胞無線電網路臨時識別符(C-RNTI),以及在與第一協定堆疊無關的傳呼時機中,使用傳呼無線電網路臨時識別符(P-RNTI)。In some embodiments, the first RAT may be an implementation of a Long Term Evolution (LTE) wireless communication protocol. Some embodiments may also include a paging decoding mode that achieves power optimization when selected. In some embodiments, implementing the power-optimized paging decoding mode may include decoding the physical downlink control channel (PDCCH) during an active period of the CDRX cycle on the first protocol stack. In some embodiments, decoding the PDCCH may include using a Cell Radio Network Temporary Identifier (C-RNTI) associated with the first protocol stack, and using paging in a paging occasion unrelated to the first protocol stack Radio Network Temporary Identifier (P-RNTI).
在一些實施例中,在選擇時實現非最佳化的傳呼解碼模式可以包括:在第一協定堆疊上,在CDRX週期的活動時段期間,對實體下行鏈路控制通道(PDCCH)進行解碼,其中對PDCCH進行解碼是使用與第一協定堆疊相關聯的細胞無線網路臨時識別符(C-RNTI),以及在與第一協定堆疊的閒置的非連續接收(IDRX)週期相關聯的傳呼時機期間使用傳呼無線網路臨時識別符(P-RNTI)對PDCCH進行解碼來執行的。在一些實施例中,實現非最佳化的傳呼解碼模式可以包括:決定與第一協定堆疊的IDRX週期相關聯的傳呼時機是否落入CDRX週期的不活動時段之內,以及回應於決定與第一協定堆疊的IDRX週期相關聯的傳呼時機落入CDRX週期的不活動時段之內,當對PDCCH進行解碼時,關於該RF資源執行額外的喚醒和斷電程序。In some embodiments, implementing the non-optimized paging decoding mode upon selection may include decoding, on the first protocol stack, a physical downlink control channel (PDCCH) during an active period of the CDRX cycle, wherein Decoding the PDCCH is using a Cellular Radio Network Temporary Identifier (C-RNTI) associated with the first protocol stack, and during a paging occasion associated with an idle discontinuous reception (IDRX) cycle of the first protocol stack Performed by decoding the PDCCH using a paging radio network temporary identifier (P-RNTI). In some embodiments, implementing the non-optimized paging decoding mode may include determining whether a paging occasion associated with the IDRX cycle of the first protocol stack falls within an inactivity period of the CDRX cycle, and in response to the decision The paging occasion associated with the IDRX cycle of an agreed stack falls within the inactive period of the CDRX cycle, and when the PDCCH is decoded, additional wake-up and power-down procedures are performed with respect to the RF resource.
在一些實施例中,若MAC協定層不活動計時器已經到期,則操作亦可以包括:在第一協定堆疊上,觸發RRC重新建立程序,其中該RRC重新建立程序恢復第一協定堆疊和與第一RAT相關聯的網路之間的信號無線電承載的操作。在一些實施例中,若MAC協定層不活動計時器已經到期,則操作亦可以包括:向與第一RAT相關聯的網路發送第一排程請求,決定是否從與第一RAT相關聯的網路接收到對於第一協定堆疊的上行鏈路資源准許,以及回應於決定從與第一RAT相關聯的網路接收到對於第一協定堆疊的上行鏈路資源准許,重置MAC協定層不活動計時器並且重置排程請求計數器。在一些實施例中,若未從與第一RAT相關聯的網路接收到對於第一協定堆疊的上行鏈路資源准許,則操作亦可以包括:對該排程請求計數器進行遞增,決定該排程請求計數器的當前值是否比預先決定的閥值更大,以及執行與和第一RAT相關聯的網路的連接的本地釋放,其中該本地釋放允許第一協定堆疊轉換到RRC閒置狀態中。In some embodiments, if the MAC protocol layer inactivity timer has expired, the operation may also include: triggering, on the first protocol stack, an RRC re-establishment procedure, wherein the RRC re-establishment procedure resumes the first protocol stack and The operation of the signal radio bearer between the networks associated with the first RAT. In some embodiments, if the MAC protocol layer inactivity timer has expired, the operation may also include transmitting a first scheduling request to the network associated with the first RAT to determine whether to be associated with the first RAT The network receives an uplink resource grant for the first protocol stack and resets the MAC protocol layer in response to determining to receive an uplink resource grant for the first protocol stack from the network associated with the first RAT Inactivity timer and reset schedule request counter. In some embodiments, if the uplink resource grant for the first protocol stack is not received from the network associated with the first RAT, the operation may include: incrementing the schedule request counter to determine the row Whether the current value of the process request counter is greater than a predetermined threshold, and performing a local release of the connection to the network associated with the first RAT, wherein the local release allows the first contract stack to transition into the RRC idle state.
在一些實施例中,預先決定的閥值可以被設置為至少為三的值。在一些實施例中,第一協定堆疊可以與第一用戶辨識模組(SIM)相關聯,第二協定堆疊可以與第二SIM相關聯,並且與第一RAT和第二RAT相關聯的網路是獨立地操作的。在一些實施例中,第一協定堆疊和第二協定堆疊均可以與提供混合系統的服務供應商相關聯,其中該混合系統至少實現第一RAT和第二RAT。In some embodiments, the predetermined threshold may be set to a value of at least three. In some embodiments, the first protocol stack can be associated with a first subscriber identity module (SIM), the second protocol stack can be associated with a second SIM, and the network associated with the first RAT and the second RAT It operates independently. In some embodiments, both the first protocol stack and the second protocol stack can be associated with a service provider that provides a hybrid system, wherein the hybrid system implements at least a first RAT and a second RAT.
各個實施例包括無線通訊設備,該無線通訊設備包括被配置有至少第一和第二RF接收資源的無線通訊設備,以及被配置有用於執行上面描述的方法的操作的處理器可執行指令的處理器。各個實施例亦包括在其上儲存有處理器可執行指令的非暫時性處理器可讀取媒體,其中該處理器可執行指令被配置為使無線通訊設備的處理器執行上面描述的方法的操作。各個實施例亦包括具有用於執行上面描述的方法的功能的單元的無線通訊設備。Various embodiments include a wireless communication device including a wireless communication device configured with at least first and second RF receiving resources, and processing of processor-executable instructions configured to perform the operations of the methods described above Device. Various embodiments also include non-transitory processor readable media having processor executable instructions stored thereon, wherein the processor executable instructions are configured to cause a processor of the wireless communication device to perform the operations of the method described above . Various embodiments also include a wireless communication device having means for performing the functions of the methods described above.
將參照附圖來詳細地描述各個實施例。在任何可能的情況下,將貫穿附圖使用相同的元件符號來代表相同的或者相似的部件。對於特定實例和實現方式的提及是出於說明性的目的的,而非意欲限制本發明或者申請專利範圍的範疇。Various embodiments will be described in detail with reference to the drawings. Wherever possible, the same reference numerals will be used to refer to the References to specific examples and implementations are for illustrative purposes and are not intended to limit the scope of the invention or the scope of the invention.
無線通訊協定可以包括用於增強網路的能力以同時為大量設備服務的機制。例如,長期進化(LTE)協定為無線通訊設備提供用於指定設備與網路之間的動作和行為的狀態定義(亦即,無線電資源控制(RRC)狀態)。例如,LTE網路可以經由維護相應的RRC狀態表示,來追蹤無線通訊設備的RRC狀態。當RRC連接狀態被設置在LTE網路中,並且被反映在設備操作中時,可以在無線通訊設備與網路之間的無線電承載上發生資料交換。但是,若無線通訊設備上的操作的RRC狀態與網路中的典型的RRC狀態不同步,則該無線通訊設備可能對下行鏈路傳輸無回應,或者期望接收從未發送的信號。Wireless communication protocols may include mechanisms for enhancing the capabilities of the network to simultaneously serve a large number of devices. For example, the Long Term Evolution (LTE) protocol provides a wireless communication device with a state definition (ie, Radio Resource Control (RRC) state) for specifying actions and behavior between the device and the network. For example, the LTE network can track the RRC state of the wireless communication device by maintaining a corresponding RRC state representation. When the RRC connection status is set in the LTE network and is reflected in the operation of the device, data exchange can occur on the radio bearer between the wireless communication device and the network. However, if the RRC state of operation on the wireless communication device is not synchronized with the typical RRC state in the network, the wireless communication device may not respond to the downlink transmission or expect to receive a signal that has never been transmitted.
各個實施例的系統、方法和設備使得多無線電存取技術(RAT)無線通訊設備能夠在長時間地調諧離開到另一個網路之後,執行高效的無線電資源控制(RRC)狀態同步。此類高效的同步可能涉及:使用現有的訊號傳遞來利用高的置信度決定無線通訊設備上的操作的RRC狀態是否與網路中表示的相應的RRC狀態不匹配,並且若是,則經由調整通道解碼來考慮該不匹配。對高效同步的管理亦可以包括:若利用高的置信度,決定在RRC狀態之間不存在不匹配的話,則避免不必要的功率消耗。此外,對各個實施例中的高效同步的管理可以包括:當不存在未決的或者最近的資料傳輸量時,強制釋放無線通訊設備上的無線電資源,以避免浪費網路容量。The systems, methods, and devices of various embodiments enable a multi-radio access technology (RAT) wireless communication device to perform efficient radio resource control (RRC) state synchronization after tuning for a long time to leave another network. Such efficient synchronization may involve using existing signal delivery to determine whether the RRC state of operation on the wireless communication device does not match the corresponding RRC state indicated in the network with high confidence, and if so, via the adjustment channel Decode to consider this mismatch. The management of efficient synchronization may also include: if high confidence is used, it is decided that there is no mismatch between RRC states, then unnecessary power consumption is avoided. Moreover, management of efficient synchronization in various embodiments may include forcibly releasing radio resources on the wireless communication device when there is no pending or recent data throughput to avoid wasting network capacity.
本文可互換地使用術語「無線設備」、「行動設備」和「無線通訊設備」來代表下列各項中的任何一項或者全部:蜂巢式電話、智慧型電話、個人或行動多媒體播放機、個人資料助理(PDA)、膝上型電腦、平板電腦、智慧型電腦、掌上電腦、無線電子郵件接收器、具備多媒體網際網路能力的蜂巢式電話、無線遊戲控制器、以及類似的個人電子設備,其中該等類似的個人電子設備包括可程式設計處理器和記憶體以及用於建立無線通訊路徑和經由無線通訊路徑來發送/接收資料的電路。The terms "wireless device", "mobile device" and "wireless communication device" are used interchangeably herein to refer to any or all of the following: cellular phones, smart phones, personal or mobile multimedia players, individuals Data assistants (PDAs), laptops, tablets, smart phones, PDAs, wireless email receivers, cellular phones with multimedia Internet capabilities, wireless game controllers, and similar personal electronic devices. Such similar personal electronic devices include a programmable processor and memory and circuitry for establishing a wireless communication path and transmitting/receiving data via a wireless communication path.
如本文使用的,術語「SIM」、「SIM卡」和「用戶辨識模組」可以可互換地代表記憶體,該記憶體可以是積體電路或者被嵌入到可移動卡中,並且儲存被用來辨識及/或驗證網路上的無線設備並且實現與網路的通訊服務的國際行動用戶標識(IMSI)、相關的金鑰及/或其他資訊。SIM的實例係包括針對LTE 3GPP標準中提供的通用用戶辨識模組(USIM)和針對3GPP2標準中提供的可移動使用者辨識模組(R-UIM)。通用積體電路卡(UICC)是用於SIM的另一術語。由於被儲存在SIM中的資訊使得無線設備能夠針對特定通訊服務或者數個服務來與特定網路建立通訊鏈路,因此當該SIM和通訊網路以及由該網路支援的服務和訂閱與彼此相互關聯時,本文亦使用術語「SIM」作為對與被儲存在特定的SIM中的資訊相關聯的並且由被儲存在特定的SIM中的資訊實現的通訊服務的簡寫提及。類似地,術語SIM亦可以被用作對在與被儲存在特定的SIM中的資訊實現的訂閱和網路建立並且進行通訊服務時使用的協定堆疊及/或數據機堆疊和通訊程序的簡寫提及。As used herein, the terms "SIM", "SIM card" and "user identification module" may interchangeably represent a memory, which may be an integrated circuit or embedded in a removable card, and stored for use. An International Mobile Subscriber Identity (IMSI), associated key, and/or other information that identifies and/or authenticates wireless devices on the network and enables communication services with the network. Examples of SIM include the Universal Subscriber Identity Module (USIM) provided in the LTE 3GPP standard and the Mobile Subscriber Identity Module (R-UIM) provided in the 3GPP2 standard. The Universal Integrated Circuit Card (UICC) is another term for SIM. Since the information stored in the SIM enables the wireless device to establish a communication link with a particular network for a particular communication service or services, the SIM and communication network and the services and subscriptions supported by the network interact with each other In association, the term "SIM" is also used herein as a shorthand reference to a communication service associated with information stored in a particular SIM and implemented by information stored in a particular SIM. Similarly, the term SIM can also be used as a shorthand reference to protocol stacking and/or modem stacking and communication procedures used in subscription and network establishment and communication services implemented with information stored in a particular SIM. .
如本文使用的,術語「RF資源」代表通訊設備中用於對射頻信號進行發送、接收和解碼的組件。通常,RF資源包括被耦合在一起的、用於發送RF信號的、被稱為「發射鏈」的多個組件,以及被耦合在一起的、用於接收和處理RF信號的、在本文被稱為「接收鏈」或者「RF接收鏈」的多個組件。As used herein, the term "RF resource" means a component in a communication device for transmitting, receiving, and decoding radio frequency signals. Typically, RF resources include a plurality of components, called "transmission chains", that are coupled together for transmitting RF signals, and are coupled together for receiving and processing RF signals, which are referred to herein. It is a component of the "receiving chain" or "RF receiving chain".
如本文使用的,術語「多SIM無線通訊設備」、「多SIM無線設備」和「雙SIM無線通訊設備」可以可互換地描述被配置有一個以上的SIM的無線設備。As used herein, the terms "multi-SIM wireless communication device," "multi-SIM wireless device," and "dual SIM wireless communication device" may interchangeably describe a wireless device configured with more than one SIM.
如本文使用的,術語「多SIM多待機通訊設備」、「MSMS無線設備」、「雙SIM雙待機通訊設備」和「DSDS無線設備」可以可互換地描述被配置有一個以上的SIM、並且允許同時在兩個網路上執行閒置模式操作,以及在一個網路上進行選擇性通訊同時在至少一個其他網路上執行閒置模式操作的無線通訊設備。雙SIM雙待機通訊設備是一種類型的MSMS通訊設備的實例。As used herein, the terms "multi-SIM multi-standby communication device", "MSMS wireless device", "dual SIM dual standby communication device" and "DSDS wireless device" may be interchangeably described as being configured with more than one SIM and allowed Simultaneously performing idle mode operations on two networks, as well as wireless communication devices that perform selective communication on one network while performing idle mode operation on at least one other network. A dual SIM dual standby communication device is an example of one type of MSMS communication device.
如本文使用的,術語「網路」、「系統」、「無線網路」、「蜂巢網路」和「無線通訊網路」可以可互換地代表服務供應商的與無線設備及/或無線設備上的訂閱相關聯的無線網路的一部分或者全部。本文描述的技術可以被用於諸如分碼多工存取(CDMA)、分時多工存取(TDMA)、分頻多工存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)和其他網路之類的各種無線通訊網路。通常,在給定的地理區域中可以部署任意數量的無線網路。每個無線網路可以支援可以在一或多個頻率或者頻率範圍上操作的至少一種無線電存取技術。可以對使用LTE標準的無線網路進行提及,並且因此本文亦可以可互換地使用術語「進化型通用陸地無線電存取」、「E-UTRA」和「進化型節點」來代表無線網路。但是,此類提及僅僅作為實例來提供,並不意欲排除使用其他通訊標準的無線網路。As used herein, the terms "network," "system," "wireless network," "honeycomb network," and "wireless communication network" may be used interchangeably to refer to a service provider's wireless device and/or wireless device. Subscribe to some or all of the associated wireless networks. The techniques described herein can be used in, for example, code division multiplexing access (CDMA), time division multiplexing access (TDMA), frequency division multiplexing access (FDMA), orthogonal FDMA (OFDMA), single carrier FDMA ( SC-FDMA) and various wireless communication networks such as other networks. Typically, any number of wireless networks can be deployed in a given geographic area. Each wireless network can support at least one radio access technology that can operate over one or more frequency or frequency ranges. Reference may be made to wireless networks using the LTE standard, and thus the terms "evolved universal terrestrial radio access", "E-UTRA" and "evolved node" may also be used interchangeably herein to refer to a wireless network. However, such references are provided by way of example only and are not intended to exclude wireless networks that use other communication standards.
如本文使用的,術語「並行的RAT」、「具備CRAT能力的」、「多RAT」和「雙接收」可以可互換地描述使用共享的RF資源,來至少支援與一個以上的RAT的下行鏈路通訊的無線通訊設備。具備CRAT能力的無線通訊設備可以被配置有與所支援的RAT之每一者RAT相對應的一或多個接收鏈,其中所支援的RAT可以與單一SIM相關聯(亦即,在混合模式無線設備中)或者與單獨的SIM相關聯(亦即,在MSMS無線設備中)。亦即,在給定的時間,具備CRAT能力的無線設備可能有能力活動地接收所支援的RAT中的任何一個RAT上的通訊。As used herein, the terms "parallel RAT," "CRAT capable," "multi-RAT," and "dual reception" may interchangeably describe the use of shared RF resources to support at least one downlink with more than one RAT. Wireless communication equipment for road communication. The CRAT capable wireless communication device can be configured with one or more receive chains corresponding to each of the supported RATs, wherein the supported RAT can be associated with a single SIM (ie, in a hybrid mode wireless) In the device) or associated with a separate SIM (ie, in an MSMS wireless device). That is, at a given time, a CRAT capable wireless device may be capable of actively receiving communications on any of the supported RATs.
如本文使用的,術語「閒置的非連續接收模式」、「IDRX模式」和「IDRX週期」可以可互換地代表涉及交替的休眠時段(在此期間,功耗被減至最小)和喚醒(或「甦醒」)時段(在其中正常的功耗和接收被返回,並且無線設備監控傳呼通道)的閒置狀態程序。IDRX週期的長度(其被量測成一個喚醒時段的開始與下一個喚醒時段的開始之間的間隔)通常是由網路以信號形式發送的。As used herein, the terms "idle discontinuous reception mode", "IDRX mode" and "IDRX cycle" may interchangeably represent alternate sleep periods (during which power consumption is minimized) and wake up (or The "awake" period (in which the normal power consumption and reception are returned, and the wireless device monitors the paging channel) idle state program. The length of the IDRX cycle, which is measured as the interval between the beginning of a wake-up period and the beginning of the next wake-up period, is typically signaled by the network.
如本文使用的,術語「連接的非連續接收模式」、「CDRX模式」和「CDRX週期」可以可互換地代表連接狀態程序,其涉及在「開啟持續時間」(CDRX開啟時段)(在其中針對排程訊息連續地監控下行鏈路控制通道)與「關閉持續時間」時段(CDRX關閉時段)(在其中可以跳過對下行鏈路通道的接收以節省功率,同時對下行鏈路傳輸量進行緩存,直到下一個CDRX開啟時段為止)之間進行交替。CDRX週期的長度(其被量測成一個CDRX開啟時段的開始與下一個CDRX開啟時段的開始之間的間隔)可以基於資料傳送之間的時間量來動態地配置。As used herein, the terms "connected discontinuous reception mode", "CDRX mode" and "CDRX cycle" may interchangeably represent a connection state procedure involving "on duration" (CDRX on period) (in which The scheduling message continuously monitors the downlink control channel) and the "off-duration" period (CDRX off period) (in which the reception of the downlink channel can be skipped to save power while buffering the downlink transmission amount) Alternate between until the next CDRX on period. The length of the CDRX cycle, which is measured as the interval between the beginning of one CDRX on period and the beginning of the next CDRX on period, can be dynamically configured based on the amount of time between data transfers.
廣泛地部署無線通訊網路,以提供各種通訊服務,例如,語音、封包資料、廣播、訊息傳遞等等。這些無線網路可以有能力經由共享可用的網路資源,來支援針對多個使用者的通訊。Widely deployed wireless communication networks to provide a variety of communication services, such as voice, packet data, broadcast, messaging, and more. These wireless networks have the ability to support communications for multiple users by sharing available network resources.
本文描述的技術可以被用於各種無線通訊網路,例如,分碼多工存取(CDMA)網路、分時多工存取(TDMA)網路、分頻多工存取(FDMA)網路、正交FDMA(OFDMA)網路、單載波FDMA(SC-FDMA)網路等等。可以由此類無線通訊網路實現的技術可以包括亦能夠利用諸如寬頻CDMA(W-CDMA)、CDMA2000、行動通訊全球系統(GSM)等等之類的各種無線電技術的無線網路。例如,CDMA網路可以實現通用陸地無線電存取(UTRA)(其包括寬頻CDMA(W-CDMA)標準)、CDMA2000(其包括IS-2000、IS-95及/或IS-856標準)等等。在另一個實例中,TDMA網路可以實現行動通訊全球系統(GSM)。在另一個實例中,OFDMA網路可以實現進化型UTRA(E-UTRA)(其包括長期進化(LTE)標準)、IEEE 802.11(WiFi)、IEEE 802.16(WiMAX)、IEEE 802.20、快閃OFDM®等等。這些多工存取技術已經在各種電信標準中被採納,以提供使得不同的無線通訊設備能夠在城市層面、國家層面、地區層面及/或全球層面進行通訊的公共協定。The techniques described herein can be used in a variety of wireless communication networks, such as code division multiplex access (CDMA) networks, time division multiplexed access (TDMA) networks, and frequency division multiplexed access (FDMA) networks. , orthogonal FDMA (OFDMA) networks, single carrier FDMA (SC-FDMA) networks, and the like. Techniques that may be implemented by such wireless communication networks may include wireless networks that are also capable of utilizing various radio technologies such as Wide Frequency CDMA (W-CDMA), CDMA2000, Global System for Mobile Communications (GSM), and the like. For example, a CDMA network may implement Universal Terrestrial Radio Access (UTRA) (which includes the Wideband CDMA (W-CDMA) standard), CDMA2000 (which includes the IS-2000, IS-95, and/or IS-856 standards), and the like. In another example, a TDMA network can implement the Global System for Mobile Communications (GSM). In another example, an OFDMA network may implement evolved UTRA (E-UTRA) (which includes Long Term Evolution (LTE) standards), IEEE 802.11 (WiFi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash OFDM®, and the like. Wait. These multiplex access technologies have been adopted in various telecommunication standards to provide public protocols that enable different wireless communication devices to communicate at the city, national, regional, and/or global levels.
現代無線通訊設備(例如,智慧型電話)均可以包括一或多個SIM卡,該一或多個SIM卡包含使得使用者能夠連接到不同的行動網路,同時使用同一個行動通訊設備的SIM。每個SIM用來辨識和驗證使用特定的行動通訊設備的用戶,並且每個SIM只與一種訂閱相關聯。如本文使用的,術語「RF資源」代表無線通訊設備中用於對射頻信號進行發送、接收和解碼的元件。RF資源通常包括被耦合在一起的、用於發送RF信號的、被稱為「發射鏈」的多個組件,以及被耦合在一起的、用於接收和處理RF信號的、在本文被稱為「接收鏈」的多個組件。Modern wireless communication devices (eg, smart phones) may each include one or more SIM cards containing SIMs that enable users to connect to different mobile networks while using the same mobile communication device . Each SIM is used to identify and authenticate users using a particular mobile communication device, and each SIM is associated with only one subscription. As used herein, the term "RF resource" means an element in a wireless communication device for transmitting, receiving, and decoding radio frequency signals. RF resources typically include a plurality of components, called "transmission chains", that are coupled together for transmitting RF signals, and are coupled together for receiving and processing RF signals, referred to herein as Multiple components of the Receive Chain.
儘管本文可以參照二的數量(degree)(亦即,兩個RAT、兩個SIM、兩個接收鏈等等)來描述具體的接收器操作,但是此類提及被用作實例,並不意味著排除能夠在三個或更多個RAT上進行通訊及/或與三個或更多個SIM進行通訊的實施例。術語「接收器」及/或「發射器」可以分別指示用於無線電鏈路的在使用的接收鏈及/或發射鏈,及/或其一部分。接收鏈及/或發射鏈的此類部分可以是RF資源的一部分,其包括但不限於:RF前端、RF前端的組件(其包括接收器單元及/或發射器單元)、一副或多副天線等等。接收鏈及/或發射鏈的一部分可以被整合到單一晶片中,或者分佈在多個晶片上。此外,RF資源或者該RF資源的一部分,可以連同該無線通訊設備的其他功能被整合到晶片中。Although specific receiver operations can be described herein with reference to the degree of two (ie, two RATs, two SIMs, two receive chains, etc.), such references are used as examples and are not meant to be Embodiments capable of communicating on three or more RATs and/or communicating with three or more SIMs are excluded. The terms "receiver" and/or "transmitter" may respectively indicate the receiving chain and/or the transmitting chain for use in the radio link, and/or a portion thereof. Such portions of the receive chain and/or transmit chain may be part of an RF resource including, but not limited to, an RF front end, a component of the RF front end (which includes a receiver unit and/or a transmitter unit), one or more pairs Antennas and so on. A portion of the receive chain and/or the transmit chain can be integrated into a single wafer or distributed across multiple wafers. In addition, RF resources or portions of the RF resources can be integrated into the wafer along with other functions of the wireless communication device.
各個實施例可以在各種各樣的通訊系統(例如,圖1A中示出的實例通訊系統100)內實現。通訊系統100可以包括一或多個無線通訊設備102、無線通訊網路104、以及被耦合到無線通訊網路104和被耦合到網際網路108的網路服務器106。在一些實施例中,網路服務器106可以被實現成無線通訊網路104的網路基礎設施內的伺服器。Various embodiments may be implemented within a wide variety of communication systems (e.g., example communication system 100 shown in FIG. 1A). Communication system 100 can include one or more wireless communication devices 102, a wireless communication network 104, and a network server 106 coupled to wireless communication network 104 and coupled to Internet 108. In some embodiments, the web server 106 can be implemented as a server within the network infrastructure of the wireless communication network 104.
典型的無線通訊網路104可以包括被耦合到網路操作中心112的複數個蜂巢基地台110,其中該網路操作中心112進行操作以例如經由電話陸地線路(例如,POTS網路,未圖示)和網際網路108,來連接無線通訊設備102(例如,平板設備、膝上型電腦、蜂巢式電話等等)與其他網路目的地之間的語音和資料撥叫。無線通訊網路104亦可以包括被耦合到網路操作中心112或者位於網路操作中心112內的一或多個伺服器116,其中該一或多個伺服器116提供到網際網路108及/或到網路服務器106的連接。無線通訊設備102與無線通訊網路104之間的通訊,可以經由諸如GSM、UMTS、EDGE、第四代(4G)、3G、CDMA、TDMA、LTE及/或其他通訊技術之類的雙向無線通訊鏈路114來完成。A typical wireless communication network 104 can include a plurality of cellular base stations 110 coupled to a network operations center 112, wherein the network operations center 112 operates to, for example, via a telephone land line (e.g., a POTS network, not shown). And the Internet 108, to connect voice and data dialing between the wireless communication device 102 (e.g., tablet, laptop, cellular, etc.) and other network destinations. The wireless communication network 104 can also include one or more servers 116 coupled to the network operations center 112 or located within the network operations center 112, wherein the one or more servers 116 are provided to the Internet 108 and/or The connection to the web server 106. The communication between the wireless communication device 102 and the wireless communication network 104 can be via a two-way wireless communication link such as GSM, UMTS, EDGE, fourth generation (4G), 3G, CDMA, TDMA, LTE, and/or other communication technologies. Road 114 is completed.
通常,在給定的地理區域中可以部署任意數量的無線網路。每個無線網路可以支援一或多個無線電存取技術,其中該一或多個無線電存取技術可以在給定的地理區域中的一或多個頻率(其亦被稱為載波、通道、頻道等等)上操作,以便避免不同的無線電存取技術的無線網路之間的干擾。Typically, any number of wireless networks can be deployed in a given geographic area. Each wireless network may support one or more radio access technologies, where the one or more radio access technologies may be in one or more frequencies in a given geographic area (also referred to as carriers, channels, Channels, etc.) operate to avoid interference between wireless networks of different radio access technologies.
在上電時,無線通訊設備102可以搜尋該無線通訊設備102能夠從其接收通訊服務的無線網路。在各個實施例中,無線通訊設備102可以被配置為經由規定優先順序清單(在其中LTE頻率佔據最高的頻點)來優選LTE網路(當其可用時)。無線通訊設備102可以在所辨識的網路中的一個網路(其被稱為服務網路)上執行註冊程序,並且無線通訊設備102可以在連接模式下操作,以與服務網路進行活動地通訊。或者,若無線通訊設備102不需要活動通訊,則無線通訊設備102可以在閒置模式下操作,並且常駐在服務網路上。在閒置模式下,如在諸如標題為「LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedures in idle mode」的3GPP TS 36.304版本8.2.0發佈8的LTE標準中規定的,無線通訊設備102可以辨識在其中該無線通訊設備102能夠發現一般場景下的「適當的」細胞或者緊急場景下的「可接受的」細胞的所有RAT。At power up, the wireless communication device 102 can search for a wireless network from which the wireless communication device 102 can receive communication services. In various embodiments, the wireless communication device 102 can be configured to prefer an LTE network (when it is available) via a specified prioritization list (where the LTE frequency occupies the highest frequency point). The wireless communication device 102 can perform a registration procedure on one of the identified networks (which is referred to as a service network), and the wireless communication device 102 can operate in a connected mode to actively interact with the service network. communication. Alternatively, if the wireless communication device 102 does not require active communication, the wireless communication device 102 can operate in an idle mode and reside on the service network. In the idle mode, as specified in the LTE standard such as Release 3 of 3GPP TS 36.304 Release 8.2.0 titled "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedures in idle mode" The wireless communication device 102 can identify all RATs in which the wireless communication device 102 can discover "appropriate" cells in a normal scenario or "acceptable" cells in an emergency scenario.
無線通訊設備102可以常駐在屬於所有辨識的細胞之中具有最高優先順序的RAT的細胞。無線通訊設備102可以保持常駐在該細胞上,直到控制通道不再滿足閥值信號強度或者來自更高優先順序RAT的細胞的信號達到閥值信號強度為止。在3GPP TS 36.304版本8.2.0發佈8中,亦描述了用於閒置模式下的無線通訊設備102的此類細胞選擇/重新選擇操作。The wireless communication device 102 can reside in cells belonging to the RAT having the highest priority among all identified cells. The wireless communication device 102 can remain resident on the cell until the control channel no longer meets the threshold signal strength or the signal from the cells of the higher priority RAT reaches the threshold signal strength. Such a cell selection/reselection operation for the wireless communication device 102 in idle mode is also described in 3GPP TS 36.304 Release 8.2.0 Release 8.
圖1B圖示包括進化型封包系統(EPS)的網路架構150。參照圖1A-1B,在該網路架構150中,無線通訊設備102可以被連接到LTE存取網路,例如,進化型UMTS陸地無線電存取網路(E-UTRAN)152。在各個實施例中,E-UTRAN 152可以是LTE基地台(亦即,進化型節點B)的網路(例如,圖1A中的110),其中該LTE基地台可以經由X2介面(例如,回載)(未圖示)被連接至彼此。FIG. 1B illustrates a network architecture 150 that includes an Evolutionary Packet System (EPS). Referring to Figures 1A-1B, in the network architecture 150, the wireless communication device 102 can be connected to an LTE access network, such as an evolved UMTS Terrestrial Radio Access Network (E-UTRAN) 152. In various embodiments, E-UTRAN 152 may be a network of LTE base stations (ie, evolved Node B) (eg, 110 in FIG. 1A), where the LTE base station may be via an X2 interface (eg, back) Loaded (not shown) are connected to each other.
在各個實施例中,每個進化型節點B可以向無線設備提供至LTE核心(例如,進化型封包核心)的存取點。例如,網路架構150中的EPS亦可以包括E-UTRAN 152可以連接到的進化型封包核心(EPC)154。在各個實施例中,EPC 154可以包括至少一個行動性管理實體(MME)162、服務閘道(SGW)160和封包資料網路(PDN)閘道(PGW)163。In various embodiments, each evolved Node B may provide an access point to a LTE core (eg, an evolved packet core) to a wireless device. For example, the EPS in network architecture 150 may also include an evolved packet core (EPC) 154 to which E-UTRAN 152 may be connected. In various embodiments, EPC 154 may include at least one Mobility Management Entity (MME) 162, a Serving Gateway (SGW) 160, and a Packet Data Network (PDN) Gateway (PGW) 163.
在各個實施例中,E-UTRAN 152可以經由連接到EPC 154內的SGW 160和連接到MME 162來連接到EPC 154。MME 162(其亦可以被邏輯地連接到SGW 160)可以處理無線通訊設備102的追蹤和傳呼,以及針對EPC 154上的E-UTRAN存取的安全性。MME 162可以被連結到歸屬用戶伺服器(HSS)156,該HSS 156可以支援包含使用者訂閱、設定檔和驗證資訊的資料庫。此外,MME 162為經由SGW 160進行傳送的使用者IP封包,提供承載和連接管理。SGW 160可以被連接到PGW 163,該PGW 163可以向無線通訊設備102提供IP位址分配以及其他功能。PGW 163可以被連接到服務供應商的IP服務158,該服務供應商的IP服務158可以包括例如網際網路、網內網路、IP多媒體子系統(IMS)、PS串流媒體服務(PSS)等等。In various embodiments, E-UTRAN 152 can be connected to EPC 154 via SGW 160 connected to EPC 154 and to MME 162. The MME 162 (which may also be logically coupled to the SGW 160) may handle the tracking and paging of the wireless communication device 102, as well as the security for E-UTRAN access on the EPC 154. The MME 162 can be linked to a Home Subscriber Server (HSS) 156, which can support a repository containing user subscriptions, profiles, and authentication information. In addition, MME 162 provides bearer and connection management for user IP packets transmitted via SGW 160. SGW 160 can be coupled to PGW 163, which can provide IP address allocation and other functions to wireless communication device 102. The PGW 163 can be connected to a service provider's IP service 158, which can include, for example, the Internet, an intranet, an IP Multimedia Subsystem (IMS), a PS Streaming Media Service (PSS). and many more.
網路架構150亦可以包括電路交換(CS)網路和封包交換(PS)網路。在一些實施例中,無線通訊設備102可以經由連接到傳統的第二代(2G)/第三代(3G)存取網路164,被連接到CS及/或PS封包交換網路。在一些實施例中,2G/3G存取網路164可以是例如一或多個UTRAN、全球進化GSM增強型資料速率(EDGE)無線電存取網路(GERAN)、CDMA 2000 1xRTT、CDMA 2000 1xEV-DO等等。在各個實施例中,2G/3G存取網路164可以包括基地台(例如,基地台收發機(BTS)、節點B、無線電基地台(RBS)等等)(例如,110)的網路,以及至少一個基地台控制器(BSC)或者無線電網路控制器(RNC)。在各個實施例中,2G/3G存取網路164可以經由與行動交換中心(MSC)和相關聯的拜訪位置暫存器(VLR)的介面(或者至其的閘道)(它們可以被一起實現成MSC/VLR 166),來連接到電路切換式網路。在CS網路中,MSC/VLR 166可以連接到CS核心168,該CS核心168可以經由閘道MSC(GMSC)170被連接到外部網路(例如,公用交換電話網路(PSTN))。Network architecture 150 may also include a circuit switched (CS) network and a packet switched (PS) network. In some embodiments, the wireless communication device 102 can be connected to the CS and/or PS packet switched network via a connection to a conventional second generation (2G) / third generation (3G) access network 164. In some embodiments, the 2G/3G access network 164 can be, for example, one or more UTRAN, Global Evolution GSM Enhanced Data Rate (EDGE) Radio Access Network (GERAN), CDMA 2000 1xRTT, CDMA 2000 1xEV- DO and so on. In various embodiments, the 2G/3G access network 164 can include a network of base stations (e.g., base station transceivers (BTS), Node Bs, radio base stations (RBS), etc.) (e.g., 110), And at least one base station controller (BSC) or radio network controller (RNC). In various embodiments, the 2G/3G access network 164 may be via an interface with a Mobile Switching Center (MSC) and associated Visit Location Register (VLR) (or a gateway thereto) (they may be Implemented as MSC/VLR 166) to connect to a circuit-switched network. In the CS network, the MSC/VLR 166 can be connected to the CS core 168, which can be connected to an external network (e.g., the Public Switched Telephone Network (PSTN)) via a gateway MSC (GMSC) 170.
在各個實施例中,2G/3G存取網路164可以經由與服務GPRS支援節點(SGSN)172的介面(或者至其的閘道)連接到PS網路,其中SGSN 172可以連接到PS核心174。在PS網路中,PS核心174可以經由閘道GPRS支援節點(GGSN)176被連接到外部PS網路,例如,網際網路和服務供應商的IP服務158。In various embodiments, the 2G/3G access network 164 can be connected to the PS network via an interface with the Serving GPRS Support Node (SGSN) 172 (or a gateway thereto), where the SGSN 172 can be connected to the PS core 174 . In the PS network, the PS core 174 can be connected to an external PS network via a gateway GPRS support node (GGSN) 176, such as the Internet and service provider's IP service 158.
當無線通訊設備102常駐在E-UTRAN 152(亦即,LTE網路)的進化型節點B上時,LTE網路服務供應商可以使用多種技術來實現針對無線通訊設備102的語音撥叫。LTE網路可以與CS網路和PS網路共存於混合的(亦即,混合式)網路中,其中MME 162為無線通訊設備102服務以便在LTE網路上利用PS資料服務,SGSN 172為無線通訊設備102服務以便在非LTE區域中利用PS資料服務,以及MSC/VLR 166為無線通訊設備102服務以便利用語音服務。在各個實施例中,無線通訊設備102可能有能力經由實現電路交換回退(CSFB)以在存取E-UTRAN 152與傳統的2G/3G存取網路164之間進行切換,來使用單一的RF資源用於語音服務和LTE資料服務二者。When the wireless communication device 102 is resident on the evolved Node B of the E-UTRAN 152 (i.e., LTE network), the LTE network service provider can implement voice dialing for the wireless communication device 102 using a variety of techniques. The LTE network can coexist with the CS network and the PS network in a hybrid (i.e., hybrid) network, wherein the MME 162 serves the wireless communication device 102 to utilize the PS data service over the LTE network, and the SGSN 172 is wireless. The communication device 102 serves to utilize the PS data service in a non-LTE region, and the MSC/VLR 166 serves the wireless communication device 102 to utilize voice services. In various embodiments, the wireless communication device 102 may be capable of using a single circuit by implementing Circuit Switched Fallback (CSFB) to switch between accessing the E-UTRAN 152 and the legacy 2G/3G access network 164. RF resources are used for both voice services and LTE data services.
可以實現混合的網路,以經由MME 162與MSC/VLR 166之間的介面(SG)來有助於電路交換回退(CSFB)。該介面使得無線通訊設備102在常駐在LTE網路上時,能夠利用單一的RF資源來既進行CS註冊又進行PS註冊,這經由E-UTRAN 152來實現傳送CS傳呼。CS傳呼可以發起CSFB程序,該CSFB程序可能造成無線設備轉換到CS網路並且利用CS撥叫建立程序。A hybrid network can be implemented to facilitate Circuit Switched Fallback (CSFB) via an interface (SG) between the MME 162 and the MSC/VLR 166. The interface enables the wireless communication device 102 to utilize both a single RF resource for both CS registration and PS registration when resident on the LTE network, which enables the delivery of CS paging via the E-UTRAN 152. The CS pager can initiate a CSFB program that may cause the wireless device to switch to the CS network and use the CS to call the setup procedure.
在各個實施例中,高速存取網路(例如,E-UTRAN)可以使用調制和無線電存取方案,並且該調制和無線電存取方案可以根據被部署的特定的電信標準而變化。例如,在LTE應用中,可以在下行鏈路上使用正交分頻多工(OFDM),而在上行鏈路上使用單載波分頻多工存取(SC-FDMA),來支援分頻雙工(FDD)和分時雙工(TDD)。儘管本文可以關於LTE來描述各個實施例,但是各個實施例可以被擴展到使用其他調制和多工存取技術的其他電信標準。舉例而言,各個實施例可以被擴展到進化資料最佳化(EV-DO)及/或超行動寬頻(UMB),其之每一者是由第三代合作夥伴計畫2(3GPP2)作為CDMA2000家族的一部分頒佈的空中介面標準,以向無線設備提供寬頻網際網路存取。各個實施例亦可以被擴展到使用W-CDMA的UTRA、GSM、超行動寬頻(UMB)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20及/或使用OFDMA的快閃OFDM。使用的實際的無線通訊標準和存取技術可以取決於具體的應用和被施加於該系統的整體設計約束。In various embodiments, a high speed access network (e.g., E-UTRAN) may use modulation and radio access schemes, and the modulation and radio access scheme may vary depending on the particular telecommunications standard being deployed. For example, in LTE applications, Orthogonal Frequency Division Multiplexing (OFDM) can be used on the downlink and Single-Carrier Frequency Division Multiple Access (SC-FDMA) can be used on the uplink to support frequency division duplexing ( FDD) and Time Division Duplex (TDD). Although various embodiments may be described herein with respect to LTE, various embodiments may be extended to other telecommunication standards that use other modulation and multiplex access techniques. For example, various embodiments may be extended to Evolutionary Data Optimization (EV-DO) and/or Ultra Mobile Broadband (UMB), each of which is implemented by the 3rd Generation Partnership Project 2 (3GPP2) An air intermediation standard promulgated by a portion of the CDMA2000 family to provide broadband Internet access to wireless devices. Various embodiments may also be extended to UTRA, GSM, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, and/or fast OFDM using OFDMA using W-CDMA. The actual wireless communication standards and access technologies used may depend on the particular application and the overall design constraints imposed on the system.
在一些實施例中,存取網路實體(例如,進化型節點B)可以具有支援MIMO技術的多副天線,從而使得進化型節點B能夠利用空間域來支援空間多工、波束成形及/或發送分集。可以使用空間多工來同時地在相同的頻率上發送不同的資料串流。在一些實施例中,可以向單一無線設備發送資料串流,以增加資料速率,而在其他例子中,可以向多個無線設備發送資料串流,以增加整體的系統容量。具體而言,進化型節點B可以對每個資料串流進行空間預編碼,並且在下行鏈路上經由多副發射天線來發送均空間預編碼的資料串流。具有不同的空間特徵的空間預編碼的資料串流可以到達一或多個無線設備,實現對去往該設備或者天線的一或多個資料串流的恢復。在上行鏈路上,每個無線設備可以發送空間預編碼的資料串流,其使得進化型節點B能夠辨識每個接收的資料串流的源。在一些實施例中,當通道狀況不利時,進化型節點B可以使用波束成形來將傳輸能量集中在一或多個方向上。在各個實施例中,波束成形可以涉及對資料進行空間預編碼,以便經由多副天線進行傳輸。在一些實施例中,為了在細胞的邊緣處實現良好的覆蓋,可以結合發送分集來使用單一的串流波束成形傳輸(例如,經由多副天線向同一源發送該串流)。In some embodiments, an access network entity (eg, an evolved Node B) may have multiple antennas supporting MIMO technology, thereby enabling the evolved Node B to utilize spatial domains to support spatial multiplexing, beamforming, and/or Send diversity. Spatial multiplexing can be used to simultaneously transmit different streams of data on the same frequency. In some embodiments, the data stream can be sent to a single wireless device to increase the data rate, while in other examples, the data stream can be sent to multiple wireless devices to increase overall system capacity. In particular, the evolved Node B may spatially precode each data stream and transmit a spatially precoded data stream over multiple downlinks on the downlink. Spatially precoded data streams having different spatial characteristics can reach one or more wireless devices for recovery of one or more data streams destined for the device or antenna. On the uplink, each wireless device can transmit a spatially precoded data stream that enables the evolved Node B to identify the source of each received data stream. In some embodiments, when the channel conditions are unfavorable, the evolved Node B can use beamforming to concentrate the transmitted energy in one or more directions. In various embodiments, beamforming may involve spatially precoding the data for transmission via multiple antennas. In some embodiments, to achieve good coverage at the edges of the cell, a single stream beamforming transmission can be used in conjunction with transmit diversity (eg, transmitting the stream to the same source via multiple antennas).
可以在已經被部署的或者未來可能被部署的改進的LTE無線網路中實現各個實施例。改進的LTE通訊通常使用多達20 MHz頻寬中的頻譜,該20 MHz頻寬是在被用於每個方向上的傳輸的多達總共100 MHz(5個分量載波)的載波聚合中分配的。Various embodiments may be implemented in an improved LTE wireless network that has been deployed or may be deployed in the future. Improved LTE communication typically uses a spectrum in a bandwidth of up to 20 MHz, which is allocated in a carrier aggregation of up to a total of 100 MHz (5 component carriers) used for transmission in each direction. .
圖2是適合於實現各個實施例的實例無線通訊設備200的功能方塊圖。參照圖1A-2,無線通訊設備200可以類似於如描述的無線通訊設備102中的一或多個無線通訊設備。無線通訊設備200可以包括SIM介面202,該SIM介面202可以表示一或多個SIM介面。SIM介面202可以容納與第一訂閱相關聯的第一辨識模組SIM 204。在一些實施例中,無線通訊設備200亦可以包括作為SIM介面202的一部分的第二SIM介面,其可以容納與第二訂閱相關聯的第二辨識模組SIM 204。在一些實施例中,可以針對另外的SIM介面及/或SIM(例如,第三、第四等等)(未圖示),重複該配置。2 is a functional block diagram of an example wireless communication device 200 suitable for implementing various embodiments. Referring to Figures 1A-2, wireless communication device 200 can be similar to one or more wireless communication devices in wireless communication device 102 as described. The wireless communication device 200 can include a SIM interface 202, which can represent one or more SIM interfaces. The SIM interface 202 can house the first identification module SIM 204 associated with the first subscription. In some embodiments, the wireless communication device 200 can also include a second SIM interface that is part of the SIM interface 202 that can house the second identification module SIM 204 associated with the second subscription. In some embodiments, this configuration may be repeated for additional SIM interfaces and/or SIMs (eg, third, fourth, etc.) (not shown).
各個實施例中的SIM可以是被配置有SIM及/或USIM應用的通用積體電路卡(UICC),實現對GSM及/或UMTS網路的存取。UICC亦可以提供針對電話簿和其他應用的儲存。或者,在CDMA網路中,SIM可以是卡上的UICC可移動使用者辨識模組(R-UIM)或者CDMA用戶辨識模組(CSIM)。The SIM in various embodiments may be a Universal Integrated Circuit Card (UICC) configured with SIM and/or USIM applications to enable access to GSM and/or UMTS networks. UICC can also provide storage for phonebooks and other applications. Alternatively, in a CDMA network, the SIM may be a UICC Mobile Subscriber Identity Module (R-UIM) or a CDMA Subscriber Identity Module (CSIM) on the card.
每個SIM 204可以具有CPU、ROM、RAM、EEPROM和I/O電路。在各個實施例中使用的SIM 204可以包含使用者帳戶資訊、IMSI、SIM應用工具包(SAT)命令集合、以及用於電話簿連絡人的儲存空間。SIM 204亦可以儲存歸屬識別符(例如,系統辨識號(SID)/網路辨識號(NID)對、歸屬PLMN(HPLMN)碼等等),以指示SIM網路服務供應商提供商。可以在SIM卡上印刷積體電路卡辨識(ICCID)SIM序號以用於標識。Each SIM 204 can have CPU, ROM, RAM, EEPROM, and I/O circuitry. The SIM 204 used in various embodiments may include user account information, an IMSI, a set of SIM Application Toolkit (SAT) commands, and a storage space for a phone book contact. The SIM 204 may also store a home identifier (eg, a system identification number (SID) / network identification number (NID) pair, a home PLMN (HPLMN) code, etc.) to indicate the SIM network service provider provider. The integrated circuit card identification (ICCID) SIM serial number can be printed on the SIM card for identification.
無線通訊設備200可以包括可以被耦合到編碼器/解碼器(CODEC)208的、諸如通用處理器206之類的至少一個控制器。轉而,CODEC 208可以被耦合到揚聲器210和麥克風212。通用處理器206亦可以被耦合到至少一個記憶體214。記憶體214可以是用於儲存處理器可執行指令的非暫時性有形電腦可讀取儲存媒體。例如,這些指令可以包括將與第一訂閱或者第二訂閱有關的通訊資料路由經由相應的基頻RF資源鏈。記憶體214可以儲存作業系統(OS)、以及使用者應用軟體和可執行指令。Wireless communication device 200 can include at least one controller, such as general purpose processor 206, that can be coupled to an encoder/decoder (CODEC) 208. In turn, the CODEC 208 can be coupled to the speaker 210 and the microphone 212. The general purpose processor 206 can also be coupled to at least one memory 214. Memory 214 can be a non-transitory tangible computer readable storage medium for storing processor executable instructions. For example, the instructions can include routing communication data associated with the first subscription or the second subscription via a corresponding baseband RF resource chain. The memory 214 can store an operating system (OS), as well as user application software and executable instructions.
通用處理器206和記憶體214均可以被耦合到至少一個基頻數據機處理器216。無線通訊設備200之每一者SIM 204可以與基頻-RF資源鏈相關聯,其中該基頻-RF資源鏈包括基頻數據機處理器216和RF資源218的至少一個接收塊(例如,RX1、RX2)。在各個實施例中,基頻-RF資源鏈可以包括實體地或者邏輯地單獨的基頻數據機處理器(例如,BB1、BB2)。Both general purpose processor 206 and memory 214 can be coupled to at least one baseband data processor 216. Each of the wireless communication devices 200, the SIM 204, can be associated with a baseband-RF resource chain that includes at least one receive block of the baseband data processor 216 and the RF resource 218 (eg, RX1) , RX2). In various embodiments, the baseband-RF resource chain may include a baseband data processor (eg, BB1, BB2) that is physically or logically separate.
RF資源218可以被耦合到至少一副天線220,並且可以執行用於與無線通訊設備200的SIM 204相關聯的無線服務的發送/接收功能。在一些實施例中,RF資源218可以被耦合到多副無線天線220,以發送和接收RF信號、SIM 204的多個版本的RF信號,從而使得無線通訊設備200能夠使用接收分集及/或多輸入多輸出(MIMO)操作。RF資源218可以包括單獨的接收功能和發送功能,或者可以包括對發射器功能和接收器功能進行組合的收發機。在各個實施例中,RF資源218的發送功能可以經由至少一個發送塊(TX)來實現,其中該至少一個發送塊可以表示與一或多個無線電存取技術/SIM相關聯的電路。The RF resources 218 can be coupled to at least one antenna 220 and can perform transmit/receive functions for wireless services associated with the SIM 204 of the wireless communication device 200. In some embodiments, RF resources 218 can be coupled to multiple wireless antennas 220 to transmit and receive RF signals, multiple versions of RF signals of SIM 204, thereby enabling wireless communication device 200 to use receive diversity and/or multiple Input multiple output (MIMO) operation. The RF resources 218 may include separate receive and transmit functions, or may include a transceiver that combines transmitter functions and receiver functions. In various embodiments, the transmitting function of RF resource 218 can be implemented via at least one transmit block (TX), which can represent circuitry associated with one or more radio access technologies/SIMs.
在特定的實施例中,通用處理器206、記憶體214、基頻數據機處理器216和RF資源218可以被包括在片上系統設備222中。一或多個SIM 204和相應的介面202可以在片上系統設備222的外部。此外,各個輸入和輸出設備可以被耦合到片上系統設備222的組件,例如,介面或者控制器。適合於在無線通訊設備200中使用的實例使用者輸入組件,可以包括但不限於小鍵盤224和觸控式螢幕顯示器226。In a particular embodiment, general purpose processor 206, memory 214, baseband data processor 216, and RF resources 218 may be included in system on chip device 222. One or more SIMs 204 and corresponding interfaces 202 may be external to system-on-chip device 222. Moreover, various input and output devices can be coupled to components of system-on-a-chip device 222, such as an interface or controller. Example user input components suitable for use in wireless communication device 200 may include, but are not limited to, keypad 224 and touch screen display 226.
在一些實施例中,小鍵盤224、觸控式螢幕顯示器226、麥克風212或者其組合,可以執行用於接收對於發起出話撥叫的請求的功能。例如,觸控式螢幕顯示器226可以接收對來自連絡人列表的連絡人的選擇,或者接收電話號碼。在另一個實例中,觸控式螢幕顯示器226和麥克風212中的任一者或者二者可以執行用於接收對於發起出話撥叫的請求的功能。例如,觸控式螢幕顯示器226可以接收對來自連絡人列表的連絡人的選擇,或者接收電話號碼。作為另一個實例,對於發起出話撥叫的請求可以具有經由麥克風212接收的語音命令的形式。如本發明所屬領域中已知的,可以在無線通訊設備200中的各種軟體模組與功能之間提供介面,以在它們之間實現通訊。In some embodiments, keypad 224, touchscreen display 226, microphone 212, or a combination thereof, may perform functions for receiving a request to initiate an outgoing call. For example, touch screen display 226 can receive a selection of contacts from a contact list or receive a phone number. In another example, either or both of touch screen display 226 and microphone 212 can perform functions for receiving a request to initiate an outgoing call. For example, touch screen display 226 can receive a selection of contacts from a contact list or receive a phone number. As another example, the request to initiate an outgoing call may be in the form of a voice command received via the microphone 212. As is known in the art to which the present invention pertains, an interface can be provided between various software modules and functions in the wireless communication device 200 to enable communication therebetween.
無線通訊設備的基頻數據機處理器可以被配置為:執行包括與至少一個SIM相關聯的至少一個協定堆疊的軟體。SIM和相關聯的協定堆疊可以被配置為支援用於滿足不同的使用者需求的各種各樣的通訊服務。此外,可以為特定的SIM設定用於執行不同的訊號傳遞程序的資訊,以存取與這些服務相關聯的核心網路的域,並且處理其資料。The baseband data processor of the wireless communication device can be configured to execute software including at least one protocol stack associated with the at least one SIM. The SIM and associated protocol stacks can be configured to support a wide variety of communication services for meeting different user needs. In addition, information for executing different signal delivery procedures can be set for a particular SIM to access the domains of the core network associated with these services and process their data.
如前述,各個實施例中的無線通訊設備可以支援多種無線電存取技術(RAT),以支援與不同的無線網路的通訊。例如,這些無線電技術可以包括廣域網(例如,第三代合作夥伴計畫(3GPP)長期進化(LTE)或者1x無線電傳輸技術(1xRTT或者1x))、無線區域網路(WLAN)、藍芽等等。可以提供多副天線及/或接收塊,以促進與天線和接收器/發射器配置的各種組合的多模式通訊。每種無線電技術可以經由一副或多副天線來發送或者接收信號。As mentioned above, the wireless communication devices in various embodiments can support multiple radio access technologies (RATs) to support communication with different wireless networks. For example, these radio technologies may include wide area networks (eg, 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) or 1x Radio Transmission Technology (1xRTT or 1x)), Wireless Local Area Network (WLAN), Bluetooth, etc. . Multiple antennas and/or receive blocks may be provided to facilitate multi-mode communication with various combinations of antenna and receiver/transmitter configurations. Each radio technology can transmit or receive signals via one or more antennas.
在各個實施例中,RF資源218可以被配置有接收器和發射器電路,以支援根據不同的無線通訊協定進行操作的多種無線電存取技術/無線網路。此類電路可以使RF資源218得以處理與不同的通訊標準相關聯的信號,並且可以包括或者提供至放大器、數位類比轉換器、類比數位轉換器、濾波器、壓控的不同集合的連接。In various embodiments, RF resources 218 may be configured with receiver and transmitter circuitry to support multiple radio access technologies/wireless networks operating in accordance with different wireless protocols. Such circuitry may enable RF resources 218 to process signals associated with different communication standards and may include or provide connections to different sets of amplifiers, digital analog converters, analog digital converters, filters, voltage controls.
圖3圖示用於LTE中的使用者平面和控制平面的無線電協定堆疊的實例。參照圖1-3,無線通訊設備200可以實現用於與和一或多個SIM相關聯的存取網路(例如,E-UTRAN 152)的進化型節點B 350進行通訊的軟體架構300。在各個實施例中,軟體架構300中的層可以形成與進化型節點B 350的軟體中的相應的層的邏輯連接。軟體架構300可以分佈在諸如基頻數據機處理器216之類的一或多個處理器之中。儘管關於一個無線電協定堆疊進行了示出,但是在多SIM的無線設備中,軟體架構300可以包括多個協定堆疊,該多個協定堆疊之每一者協定堆疊可以與不同的RAT相關聯,並且可選地與不同的SIM相關聯(例如,分別與DSDS無線設備中的兩個SIM 204相關聯的兩個協定堆疊)。此外,儘管下面參照LTE通訊層進行了描述,但是軟體架構300可以支援用於無線通訊的各種各樣的標準和協定中的任何一種,及/或可以包括用於支援各種各樣的無線通訊標準和協定中的任何一種的額外的協定堆疊。Figure 3 illustrates an example of a radio protocol stack for a user plane and a control plane in LTE. Referring to Figures 1-3, the wireless communication device 200 can implement a software architecture 300 for communicating with an evolved Node B 350 of an access network (e.g., E-UTRAN 152) associated with one or more SIMs. In various embodiments, the layers in the software architecture 300 may form a logical connection with a corresponding one of the software of the evolved Node B 350. The software architecture 300 can be distributed among one or more processors, such as the baseband data processor 216. Although illustrated with respect to a radio protocol stack, in a multi-SIM wireless device, the software architecture 300 can include a plurality of protocol stacks, each of which can be associated with a different RAT, and Optionally associated with different SIMs (eg, two contract stacks associated with two SIMs 204 in a DSDS wireless device, respectively). Moreover, although described below with reference to the LTE communication layer, the software architecture 300 can support any of a wide variety of standards and protocols for wireless communication, and/or can include support for a wide variety of wireless communication standards. An additional agreement stack with any of the agreements.
軟體架構300可以包括非存取層(NAS)302和存取層(AS)304。NAS 302可以包括用於支援封包過濾、安全管理、行動性控制、通信期管理、以及無線通訊設備的SIM(例如,SIM 204)與其核心網路之間的傳輸量和訊號傳遞的功能和協定。AS 304可以包括用於支援SIM(例如,SIM 204)與支援的存取網路的實體(例如,進化型節點B)之間的通訊的功能和協定。特別地,AS 304可以包括至少三個層(層1、層2和層3),該至少三個層之每一者層可以包含各種子層。The software architecture 300 can include a non-access stratum (NAS) 302 and an access stratum (AS) 304. NAS 302 may include functions and protocols for supporting packet filtering, security management, mobility control, traffic management, and transmission and signaling between a SIM (e.g., SIM 204) of a wireless communication device and its core network. AS 304 may include functions and protocols for supporting communication between a SIM (e.g., SIM 204) and a supported access network entity (e.g., evolved Node B). In particular, AS 304 can include at least three layers (Layer 1, Layer 2, and Layer 3), each of which can include various sub-layers.
在使用者平面和控制平面中,AS 304的層1(L1)可以是實體層306,該實體層306可以監督用於經由空中介面來實現發送及/或接收的功能。此類實體層306的功能的例子可以包括循環冗餘檢查(CRC)附接、編碼塊、加擾和解擾、調制和解調、信號量測、MIMO等等。In the user plane and control plane, layer 1 (L1) of AS 304 may be a physical layer 306, which may supervise functions for enabling transmission and/or reception via empty intermediaries. Examples of functions of such physical layer 306 may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurement, MIMO, and the like.
在使用者平面和控制平面中,AS 304的層2(L2)可以負責實體層306之上的、無線通訊設備200與進化型節點B 350之間的鏈路。在各個實施例中,層2可以包括媒體存取控制(MAC)子層308、無線電鏈路控制(RLC)子層310和封包資料彙聚協定(PDCP)312子層,它們之每一者形成在進化型節點B 350處終止的邏輯連接。In the user plane and control plane, Layer 2 (L2) of AS 304 may be responsible for the link between the wireless communication device 200 and the evolved Node B 350 above the physical layer 306. In various embodiments, layer 2 may include a medium access control (MAC) sublayer 308, a radio link control (RLC) sublayer 310, and a packet data aggregation protocol (PDCP) 312 sublayer, each of which is formed at A logical connection terminated at the evolved Node B 350.
在控制平面中,AS 304的層3(L3)可以包括無線電資源控制(RRC)子層3。儘管未圖示,但是軟體架構300可以包括額外的層3子層,以及層3之上的各種上層。在各個實施例中,RRC子層313可以提供包括下列各項的功能:廣播系統資訊、傳呼、以及建立和釋放無線通訊設備200與存取網路(例如,E-UTRAN 152的進化型節點B)之間的RRC訊號傳遞連接。In the control plane, Layer 3 (L3) of AS 304 may include a Radio Resource Control (RRC) sublayer 3. Although not shown, the software architecture 300 can include additional layer 3 sub-layers, as well as various upper layers above layer 3. In various embodiments, RRC sublayer 313 may provide functionality including: broadcasting system information, paging, and establishing and releasing wireless communication device 200 and access network (eg, evolved Node B of E-UTRAN 152) Between the RRC signal transfer connection.
在各個實施例中,PDCP子層312可以提供包括下列各項的上行鏈路功能:不同的無線電承載與邏輯通道之間的多工、序號增加、切換資料處理、完整性保護、加密和標頭壓縮。在下行鏈路中,PDCP子層312可以提供包括下列各項的功能:資料封包的按序傳送、重複資料封包偵測、完整性驗證、解密和標頭解壓縮。In various embodiments, the PDCP sublayer 312 may provide uplink functionality including: multiplexing between different radio bearers and logical channels, sequence number addition, handover data processing, integrity protection, encryption, and headers. compression. In the downlink, the PDCP sublayer 312 can provide functions including: in-order delivery of data packets, duplicate data packet detection, integrity verification, decryption, and header decompression.
在上行鏈路中,RLC子層310可以提供上層資料封包的分段和級聯、丟失資料封包的重傳、以及自動重傳請求(ARQ)。在下行鏈路中,而RLC子層310的功能可以包括:對資料封包進行重新排序以補償無序接收、上層資料封包的重組和ARQ。在上行鏈路中,MAC子層308可以提供包括下列各項的功能:邏輯通道與傳輸通道之間的多工、隨機存取程序、邏輯通道優先順序和混合ARQ(HARQ)操作。在下行鏈路中,MAC層功能可以包括細胞內的通道映射、解多工、非連續接收和HARQ操作。In the uplink, the RLC sublayer 310 can provide segmentation and concatenation of upper data packets, retransmission of lost data packets, and automatic repeat request (ARQ). In the downlink, the function of the RLC sublayer 310 may include reordering the data packets to compensate for out-of-order reception, reassembly of upper data packets, and ARQ. In the uplink, the MAC sublayer 308 can provide functions including: multiplexing between logical channels and transmission channels, random access procedures, logical channel prioritization, and hybrid ARQ (HARQ) operations. In the downlink, MAC layer functions may include intra-cell channel mapping, de-multiplexing, discontinuous reception, and HARQ operations.
儘管軟體架構300可以提供用於經由實體媒體來發送資料的功能,但是軟體架構300亦可以包括至少一個主機層314來向無線通訊設備200中的各種應用提供資料傳送服務。在一些實施例中,由至少一個主機層314提供的特定於應用的功能,可以在軟體架構與通用處理器206之間提供介面。Although the software architecture 300 can provide functionality for transmitting data via physical media, the software architecture 300 can also include at least one host layer 314 to provide data transfer services to various applications in the wireless communication device 200. In some embodiments, the application-specific functionality provided by at least one host layer 314 can provide an interface between the software architecture and the general purpose processor 206.
在其他實施例中,軟體架構300可以包括用於提供主機層功能的一或多個更高的邏輯層(例如,傳輸層、工作階段層、展示層、應用層等等)。例如,在一些實施例中,軟體架構300可以包括網路層(例如,IP層),在該層中,邏輯連接終止在PDN閘道(例如,PGW 163)處。在一些實施例中,軟體架構300可以包括應用層,在該層中,邏輯連接終止在另一個設備(例如,終端使用者設備、伺服器等等)處。在一些實施例中,軟體架構300亦可以在AS 304中包括實體層306與通訊硬體(例如,一或多個RF收發機)之間的硬體介面316。In other embodiments, the software architecture 300 can include one or more higher logic layers (eg, transport layer, work phase layer, presentation layer, application layer, etc.) for providing host layer functionality. For example, in some embodiments, the software architecture 300 can include a network layer (eg, an IP layer) in which a logical connection terminates at a PDN gateway (eg, PGW 163). In some embodiments, the software architecture 300 can include an application layer in which the logical connection terminates at another device (eg, an end user device, a server, etc.). In some embodiments, the software architecture 300 can also include a hardware interface 316 between the physical layer 306 and a communication hardware (eg, one or more RF transceivers) in the AS 304.
在LTE系統中,無線通訊設備可以處於由RRC協定規定的兩種狀態中的一種狀態:RRC閒置狀態和RRC連接狀態。在RRC閒置狀態下,無線通訊設備未被附著到網路(亦即,進化型節點B),並且執行自由細胞重新選擇。在RRC連接狀態下,無線通訊設備被連接到處理行動性和切換的進化型節點B,並且與該無線設備的訊號傳遞無線電承載和識別符相關聯。儘管本文關於無線通訊設備來提及與進化型節點B的此類連接,但是應當理解的是,在LTE系統中,在與IMSI(亦即,SIM)相關聯的數據機堆疊上建立連接。亦即,對各個程序及/或與網路的通訊中的無線通訊設備的提及,可以是對與網路中的訂閱相關聯的使用者設備的一般性提及。照此,出於網路連接的目的,可以將被傳送到不同的使用者設備的SIM描述成相同的無線通訊設備。In the LTE system, the wireless communication device may be in one of two states specified by the RRC protocol: an RRC idle state and an RRC connected state. In the RRC idle state, the wireless communication device is not attached to the network (i.e., evolved Node B) and performs free cell reselection. In the RRC connected state, the wireless communication device is connected to the evolved Node B that handles mobility and handover and is associated with the signal delivery radio bearer and identifier of the wireless device. Although such connections to evolved Node B are referred to herein with respect to wireless communication devices, it should be understood that in an LTE system, connections are established on a stack of data machines associated with IMSI (ie, SIM). That is, references to various programs and/or wireless communication devices in communication with the network may be a general reference to user devices associated with subscriptions in the network. As such, the SIMs transmitted to different user devices can be described as the same wireless communication device for the purpose of network connection.
規定了在其中無線通訊設備(或者與LTE操作相關聯的數據機堆疊)在RRC連接狀態與閒置狀態之間進行切換的RRC連接建立和釋放程序。例如,在RRC連接釋放程序中,進化型節點B通常可以實現RRC不活動計時器,當無線通訊設備進入RRC連接狀態時,啟動該RRC不活動計時器。若進化型節點B觀察到在RRC不活動計時器到期之前,沒有交換的資料,則進化型節點B可以釋放該RRC連接中涉及的無線電資源,並且向該無線設備發送RRC連接釋放訊息。該RRC連接釋放訊息可以具有由進化型節點B在實體下行鏈路控制通道(PDCCH)上發送的控制信號的形式。在各個實施例中,RRC不活動計時器可以由進化型節點B基於由核心網路(例如,EPC 154)指定的等待時間的量及/或基於由該進化型節點B觀測的無線電量測結果和狀況來配置。An RRC connection setup and release procedure in which a wireless communication device (or a data machine stack associated with LTE operation) is switched between an RRC connected state and an idle state is specified. For example, in the RRC connection release procedure, the evolved Node B can generally implement an RRC inactivity timer, which is initiated when the wireless communication device enters the RRC connected state. If the evolved Node B observes that there is no exchange of data before the RRC inactivity timer expires, the evolved Node B may release the radio resources involved in the RRC connection and send an RRC Connection Release message to the wireless device. The RRC Connection Release message may be in the form of a control signal transmitted by the evolved Node B on a Physical Downlink Control Channel (PDCCH). In various embodiments, the RRC inactivity timer may be based on the amount of latency specified by the evolved Node B based on the core network (eg, EPC 154) and/or based on radio measurements observed by the evolved Node B. And status to configure.
在RRC閒置狀態下,無線通訊設備不具有活動的通訊通信期。為了在處於RRC閒置狀態時向無線通訊設備發送傳呼訊息,核心網路實體(例如,MME 162)或者進化型節點B可以觸發傳呼程序。例如,此類傳呼訊息可以是針對該無線通訊設備的下行鏈路傳輸量(例如,行動站終止語音撥叫或者封包資料傳送)的通知、系統資訊改變或者地震和海嘯預警服務(ETWS)通知。為了在RRC閒置狀態下接收傳呼訊息,無線通訊設備(或者與LTE操作相關聯的數據機堆疊)可以在特定的時間訊框期間,針對傳呼無線電網路臨時識別符(P-RNTI)來監控PDCCH。In the RRC idle state, the wireless communication device does not have an active communication communication period. In order to send a paging message to the wireless communication device while in the RRC idle state, the core network entity (e.g., MME 162) or the evolved Node B may trigger the paging procedure. For example, such a paging message may be a notification of a downlink transmission amount of the wireless communication device (eg, a mobile station terminating voice dialing or packet data transmission), a system information change, or an earthquake and tsunami warning service (ETWS) notification. In order to receive the paging message in the RRC idle state, the wireless communication device (or the data machine stack associated with the LTE operation) may monitor the PDCCH for the paging radio network temporary identifier (P-RNTI) during a specific time frame. .
在各個實施例中,P-RNTI是用於在PDCCH上指示在實體下行鏈路共享通道(PDSCH)上的相應的資源區塊中攜帶傳呼資訊的單一的固定指示符(FFFE)。具體而言,當在RRC閒置狀態下操作時,無線通訊設備可以經由下列方式來節省功率:只在與該無線通訊設備屬於的傳呼組相關聯的特定傳呼時機(亦即,傳呼訊框的子訊框)期間,才針對P-RNTI來監控PDCCH,並且在其他時間使接收電路斷電。此類傳呼時機可以定期地發生(例如,每60 ms或者100 ms一次),其產生構成閒置狀態的非連續接收(IDRX)模式的休眠狀態和喚醒狀態的週期。在一些實施例中,在IDRX模式的喚醒時段期間,RF資源可以監控來自鄰點細胞的信號(例如,評估用於指示信號品質的量測結果),以及監控傳呼訊息。無線通訊設備可以經由接收由LTE網路廣播的IDRX參數,來選擇用於監控的傳呼訊框和傳呼時機。此類IDRX參數可以是在特定的系統資訊區塊(SIB)(例如,SIB2)中提供的資訊的一部分。In various embodiments, the P-RNTI is a single fixed indicator (FFFE) for indicating that the paging information is carried in the corresponding resource block on the Physical Downlink Shared Channel (PDSCH) on the PDCCH. In particular, when operating in the RRC idle state, the wireless communication device can save power by: only the specific paging occasion associated with the paging group to which the wireless communication device belongs (ie, the child of the paging frame) During the frame, the PDCCH is monitored for the P-RNTI and the receiving circuit is powered down at other times. Such paging occasions may occur periodically (e.g., every 60 ms or 100 ms), which produces a period of sleep and wake states that constitute the discontinuous reception (IDRX) mode of the idle state. In some embodiments, during the wake-up period of the IDRX mode, the RF resources can monitor signals from neighboring cells (eg, evaluate measurements for indicating signal quality), and monitor paging messages. The wireless communication device can select a paging frame and a paging occasion for monitoring via receiving an IDRX parameter broadcast by the LTE network. Such IDRX parameters may be part of the information provided in a particular System Information Block (SIB) (eg, SIB2).
相對於RRC閒置狀態,當在RRC連接狀態下操作時,無線通訊設備的功耗通常非常地高。具體而言,由於下行鏈路資料可能在任何時間到達,因此處於RRC連接狀態的無線通訊設備應當對每一個子訊框中的PDCCH進行監控,以檢查下行鏈路資料是否可用。例如,無線通訊設備可以使用由LTE網路向特定的無線通訊設備(或者與LTE操作相關聯的數據機堆疊)分配的細胞無線電網路臨時識別符(C-RNTI),對PDCCH進行解碼。Relative to the RRC idle state, the power consumption of the wireless communication device is typically very high when operating in the RRC connected state. Specifically, since the downlink data may arrive at any time, the wireless communication device in the RRC connected state should monitor the PDCCH in each subframe to check whether the downlink data is available. For example, the wireless communication device can decode the PDCCH using a Cell Radio Network Temporary Identifier (C-RNTI) assigned by the LTE network to a particular wireless communication device (or a stack of data machines associated with LTE operation).
無線設備(或者與LTE操作相關聯的數據機堆疊)可以經由實現連接狀態的DRX(CDRX)模式,來減少此類消耗。具體而言,在CDRX模式下,無線通訊設備可以利用短的時間段,在此期間,在資料通訊通信期中不發送或者接收資料(例如,在沒有未解決(outstanding)的封包或者新封包要被發送或者接收時的封包到達程序期間)。當啟用CDRX模式時,無線通訊設備可以在針對下行鏈路資料來監控PDCCH的時段(亦即,CDRX開啟時段)與不使用RF資源及/或使RF資源斷電的時段(亦即,CDRX關閉時段)之間循環。在各個實施例中,進化型節點B可以為無線通訊設備(或者與LTE操作相關聯的數據機堆疊)配置一組CDRX參數,其可以是基於應用類型來選擇的,使得將功率和資源節省最大化。在一些實施例中,當啟用CDRX模式時,無線通訊設備可能在接收資料時經歷延長的延遲,這是由於此類資料中的一些或者全部資料可能被進化型節點B緩存,以避免在CDRX關閉時段期間到達。因此,可以對CDRX參數進行設置,以實現使封包延遲最小化與使功率節省最大化之間的平衡。A wireless device (or a stack of data machines associated with LTE operations) may reduce such consumption via a DRX (CDRX) mode that implements a connection state. Specifically, in CDRX mode, the wireless communication device can utilize a short period of time during which no data is transmitted or received during the data communication communication period (eg, in the absence of an outstanding packet or a new packet to be The packet sent or received arrives during the program). When the CDRX mode is enabled, the wireless communication device can monitor the time period of the PDCCH for the downlink data (ie, the CDRX on period) and the period in which the RF resources are not used and/or the RF resources are powered off (ie, the CDRX is off) Cycle between periods). In various embodiments, the evolved Node B may configure a set of CDRX parameters for the wireless communication device (or a stack of data machines associated with LTE operations), which may be selected based on the type of application, such that power and resource savings are maximized Chemical. In some embodiments, when CDRX mode is enabled, the wireless communication device may experience an extended delay in receiving the data, as some or all of the data in such material may be cached by the evolved Node B to avoid being turned off in the CDRX. Arrived during the time period. Therefore, the CDRX parameters can be set to achieve a balance between minimizing packet delay and maximizing power savings.
亦可以使用傳呼訊息來向處於RRC連接狀態的無線通訊設備發送一些類型的資訊。具體而言,類似於RRC閒置狀態,在RRC連接狀態下,可以使用傳呼來向無線通訊設備提供系統資訊改變和ETWS通知。由於進化型節點B可能未意識到常駐在其覆蓋範圍中的RRC閒置狀態設備,因此進化型節點B可能在所有可能的傳呼時機中發送此類資訊。因此,在各個實施例中,無線通訊設備可以實現「功率最佳化的傳呼解碼模式」,以進一步改善CDRX模式下的功率節省。具體而言,功率最佳化的傳呼解碼模式提供無線通訊設備(或者與LTE操作相關聯的數據機堆疊)經由監控CDRX開啟時段期間或者與CDRX開啟時段鄰近的任何傳呼時機,來接收傳呼訊息。亦即,無線通訊設備可以在不同的傳呼時機中接收相同的資訊,並且避免CDRX關閉時段期間的不必要的喚醒,而不是對其自己的傳呼時機(其可能在CDRX開啟時段之外)進行監控。只要無線通訊設備在每一個預設的傳呼週期(例如,1.28 s)監控一個傳呼時機至少一次,功率最佳化的傳呼解碼模式就可以遵守3GPP TS 36.331中闡述的效能要求。The paging message can also be used to send some type of information to the wireless communication device in the RRC connected state. Specifically, similar to the RRC idle state, in the RRC connected state, paging can be used to provide system information changes and ETWS notifications to the wireless communication device. Since the evolved Node B may not be aware of the RRC idle state devices that are resident in its coverage, the evolved Node B may send such information in all possible paging occasions. Thus, in various embodiments, the wireless communication device can implement a "power optimized paging decoding mode" to further improve power savings in CDRX mode. In particular, the power optimized paging decoding mode provides for the wireless communication device (or the data machine stack associated with the LTE operation) to receive the paging message via monitoring any paging occasions during the CDRX on period or adjacent to the CDRX on period. That is, the wireless communication device can receive the same information at different paging occasions and avoid unnecessary wake-up during the CDRX off period, rather than monitoring its own paging occasion (which may be outside the CDRX open period) . As long as the wireless communication device monitors a paging occasion at least once for each predetermined paging period (eg, 1.28 s), the power optimized paging decoding mode can comply with the performance requirements set forth in 3GPP TS 36.331.
此外,在RRC連接狀態下,進化型節點B可以發送持續的時間提前命令,以便維持時間對準。在各個實施例中,如由進化型節點B決定的,可以定期地或者依須求地發送此類命令。當在下行鏈路上接收到時間提前命令時,無線通訊設備可以重新開機定時對準(TA)計時器,這表示該無線通訊設備期望使用當前時間提前命令值中的值來具有與進化型節點B的上行鏈路同步的時間量。在各個實施例中,從更高層的角度來看,當TA計時器在執行時,可以僅僅認為該無線通訊設備(或者與LTE操作相關聯的數據機堆疊)與進化型節點B處於上行鏈路對準。若TA計時器到期(亦即,無線通訊設備尚未在該TA計時器間隔期間接收到任何時間提前命令),則認為該無線通訊設備上的上行鏈路時間對準被丟失,並且該無線通訊設備可以釋放分配的實體上行鏈路控制通道(PUCCH),以及清除任何配置的上行鏈路及/或下行鏈路資源准許。為了重新獲得其與進化型節點B的上行鏈路對準,無線通訊設備執行隨機存取程序,其中該隨機存取程序可以是由該無線通訊設備自身觸發的(例如,用於未決的上行鏈路資料),或者是由進化型節點B經由PDCCH上的信號觸發的(例如,用於未決的下行鏈路資料)。Furthermore, in the RRC connected state, the evolved Node B can send a continuous time advance command to maintain time alignment. In various embodiments, such commands may be sent periodically or on demand, as determined by the evolved Node B. When a time advance command is received on the downlink, the wireless communication device can reboot the timing alignment (TA) timer, which indicates that the wireless communication device desires to use the value in the current time advance command value to have the evolved Node B The amount of time that the uplink is synchronized. In various embodiments, from a higher layer perspective, when the TA timer is executing, only the wireless communication device (or the data machine stack associated with the LTE operation) may be considered to be in the uplink with the evolved Node B. alignment. If the TA timer expires (ie, the wireless communication device has not received any time advance command during the TA timer interval), then the uplink time alignment on the wireless communication device is considered to be lost, and the wireless communication is The device may release the assigned Physical Uplink Control Channel (PUCCH) and clear any configured uplink and/or downlink resource grants. In order to regain its uplink alignment with the evolved Node B, the wireless communication device performs a random access procedure, wherein the random access procedure may be triggered by the wireless communication device itself (eg, for pending uplinks) The path data) is either triggered by the evolved Node B via a signal on the PDCCH (eg, for pending downlink data).
如描述的,具有單一的RF資源的無線通訊設備可以使用各種各樣的配置和模式來提供對並行RAT(CRAT)的支援。例如,無線通訊設備可以是單一的無線電單元LTE(SRLTE)設備,其被配置為針對資料通訊來存取LTE,以及針對語音撥叫來存取GSM或者1xRTT(例如,GSM/SRLTE或者1x SRLTE)。在另一個實例中,該無線通訊設備可以是MSMS無線通訊設備(例如,DSDS無線通訊設備),在其中在與不同的RAT(例如,LTE和GSM或者1xRTT)相關聯的兩個SIM之間共享該RF資源。在MSMS配置和SRLTE配置二者中,對RF資源進行共享可以涉及:實現從一種RAT(例如,LTE)中的網路調諧離開到另一種RAT(例如,非LTE RAT)中的網路。As described, a wireless communication device with a single RF resource can provide support for Parallel RAT (CRAT) using a wide variety of configurations and modes. For example, the wireless communication device can be a single radio unit LTE (SRLTE) device configured to access LTE for data communication and to access GSM or 1xRTT for voice dialing (eg, GSM/SRLTE or 1x SRLTE) . In another example, the wireless communication device can be an MSMS wireless communication device (eg, a DSDS wireless communication device) in which to share between two SIMs associated with different RATs (eg, LTE and GSM or 1xRTT) The RF resource. In both MSMS configuration and SRLTE configuration, sharing RF resources may involve implementing a network tune away from one RAT (eg, LTE) to another network (eg, a non-LTE RAT).
若LTE MSMS或者SRLTE設備(「具備CRAT能力的」設備)經歷冗長的調諧離開到非LTE RAT,則可能在該調諧離開期間丟失與LTE網路的連接達一段時間。例如,如由現場測試確立的,無線通訊設備可能未能從進化型節點B接收到RRC連接釋放訊息。在此類環境下,無線通訊設備(或者與LTE操作相關聯的數據機堆疊)可以繼續處於操作的RRC連接狀態,而進化型節點B中的相應的RRC狀態可以被表示成RRC閒置。RRC狀態之間的此類不匹配可能關於該無線通訊設備的功耗及/或由進化型節點B使用的網路資源具有負面影響。例如,無線通訊設備可以根據CDRX模式的CDRX開啟時段來監控PDCCH,以便從進化型節點B接收下行鏈路信號。但是,由於進化型節點B認為該無線通訊設備處於RRC閒置模式,因此在CDRX開啟時段期間的此類監控是不必要的並且浪費功率。If an LTE MSMS or SRLTE device ("CRAT capable" device) experiences a lengthy tuning to leave to a non-LTE RAT, it may lose connectivity to the LTE network for a period of time during the tune away. For example, as established by field testing, the wireless communication device may not receive an RRC Connection Release message from the evolved Node B. In such an environment, the wireless communication device (or the data machine stack associated with the LTE operation) may continue to be in an RRC connected state of operation, while the corresponding RRC state in the evolved Node B may be represented as RRC idle. Such mismatch between RRC states may have a negative impact on the power consumption of the wireless communication device and/or the network resources used by the evolved Node B. For example, the wireless communication device can monitor the PDCCH according to the CDRX on period of the CDRX mode to receive the downlink signal from the evolved Node B. However, since the evolved Node B believes that the wireless communication device is in the RRC idle mode, such monitoring during the CDRX on period is unnecessary and wastes power.
各種現有的技術可以處理無線通訊設備(或者與LTE操作相關聯的數據機堆疊)與LTE網路(亦即,進化型節點B)之間的RRC狀態的潛在的不匹配。特別地,此類技術可以經由儘管不匹配,仍然確保從進化型節點B接收傳呼訊息,來處理無線通訊設備上的操作的RRC連接狀態和進化型節點B中表示的相應的RRC閒置狀態的場景。例如,當處於CDRX模式時,無線通訊設備除了在CDRX開啟時段期間,使用C-RNTI來對PDCCH進行解碼之外,亦可以在由IDRX週期闡述的適當傳呼時機,對PDCCH進行解碼。由於RRC閒置模式下的傳呼可以提供特定於設備的傳呼訊息,亦即,行動站終止撥叫/下行鏈路資料,而不是終止要向所有設備發送的通用資訊(亦即,系統改變資訊或者ETWS通知),因此,無線通訊設備對其IDRX週期傳呼時機(其可能未落入CDRX開啟時段之內,或者不與CDRX開啟時段鄰近)進行監控。結果,使用該技術,無線通訊設備不能利用上面描述的功率最佳化的模式,並且因此基於所需要的喚醒(其獨立於CDRX開啟時段),其可能是不太功率高效的。Various existing techniques can handle the potential mismatch of RRC states between wireless communication devices (or data machine stacks associated with LTE operations) and LTE networks (ie, evolved Node Bs). In particular, such techniques may, via a mismatch, ensure that the RRC connection state of the operation on the wireless communication device and the corresponding RRC idle state represented in the evolved Node B are handled by receiving the paging message from the evolved Node B. . For example, when in CDRX mode, the wireless communication device can use the C-RNTI to decode the PDCCH during the CDRX on period, and can also decode the PDCCH at the appropriate paging opportunity as illustrated by the IDRX cycle. Since the paging in the RRC idle mode can provide device-specific paging messages, that is, the mobile station terminates the dialing/downlink data instead of terminating the general information to be sent to all devices (ie, system change information or ETWS) Notification), therefore, the wireless communication device monitors its IDRX periodic paging occasion (which may not fall within the CDRX open period or is not adjacent to the CDRX open period). As a result, using this technique, wireless communication devices are not able to take advantage of the power optimized modes described above, and thus may be less power efficient based on the required wakeup (which is independent of the CDRX on period).
可以被用來解決無線通訊設備與進化型節點B之間的RRC狀態的潛在的不匹配的另一種實例技術涉及配置用於該無線通訊設備上的MAC協定層的不活動計時器(「MAC層不活動計時器」)。在各個實施例中,MAC層不活動計時器可以是由無線通訊設備(或者與LTE操作相關聯的數據機堆疊)在轉換到RRC連接狀態時啟動的,並且可以被設置為預設的持續時間(例如,60秒)。當MAC層不活動計時器在執行時,無線通訊設備可以監控從進化型節點B接收的下行鏈路資料和向進化型節點B發送的上行鏈路資料。例如,無線通訊設備可以監控PDCCH和PUCCH,以偵測被定址到其C-RNTI的信號或者使用其C-RNTI加密的信號。若在MAC層不活動計時器到期之前偵測到此類訊號傳遞,則無線通訊設備可以保持在RRC連接狀態,同時重置MAC層不活動計時器和進化型節點B上的RRC不活動計時器。若MAC層不活動計時器到期而未偵測到任何資料交換,則無線通訊設備可以假定存在無線電鏈路故障,並且觸發RRC連接重新建立程序。此類RRC連接重新建立程序在該無線通訊設備上重新建立或者重新確認操作的RRC連接狀態以及在進化型節點B中重新建立或者重新確認相應的RRC連接狀態,重置該無線通訊設備上的MAC層不活動計時器,並且重置進化型節點B上的RRC不活動計時器。用該方式,RRC連接重新建立程序經由將進化型節點B和無線設備均帶到RRC連接狀態,來強制進化型節點B和無線設備重新同步。Another example technique that can be used to address a potential mismatch in RRC state between a wireless communication device and an evolved Node B involves configuring an inactivity timer for the MAC protocol layer on the wireless communication device ("MAC layer" Inactivity timer"). In various embodiments, the MAC layer inactivity timer may be initiated by the wireless communication device (or a data machine stack associated with the LTE operation) upon transitioning to the RRC connected state and may be set to a preset duration (for example, 60 seconds). When the MAC layer inactivity timer is executing, the wireless communication device can monitor the downlink data received from the evolved Node B and the uplink data transmitted to the evolved Node B. For example, a wireless communication device can monitor the PDCCH and PUCCH to detect a signal addressed to its C-RNTI or a signal encrypted using its C-RNTI. If such a signal transmission is detected before the MAC layer inactivity timer expires, the wireless communication device can remain in the RRC connected state while resetting the MAC layer inactivity timer and the RRC inactivity timer on the evolved Node B. Device. If the MAC layer inactivity timer expires without detecting any data exchange, the wireless communication device can assume that there is a radio link failure and trigger an RRC connection re-establishment procedure. Such an RRC connection re-establishment procedure re-establishes or re-confirms the RRC connection status of the operation on the wireless communication device and re-establishes or re-confirms the corresponding RRC connection status in the evolved Node B, resetting the MAC on the wireless communication device The layer is inactive timer and resets the RRC inactivity timer on evolved Node B. In this manner, the RRC Connection Re-establishment procedure forces the evolved Node B and the wireless device to resynchronize by bringing both the evolved Node B and the wireless device to the RRC connected state.
但是,在一些實施例中,配置MAC層不活動計時器來解決RRC狀態的潛在的不匹配,可能引入額外問題。具體而言,由於MAC層不活動計時器的持續時間通常被設置為比(由進化型節點B設置的)RRC不活動計時器的持續時間更短,因此,由無線通訊設備上的MAC層不活動計時器的到期觸發的RRC連接重新建立程序,將在RRC不活動計時器到期之前,持續地造成RRC不活動計時器的重置。結果,進化型節點B可能從不能夠觸發RRC連接釋放程序,並且無線通訊設備可能始終被阻止轉換到RRC閒置狀態。However, in some embodiments, configuring a MAC layer inactivity timer to address potential mismatches in the RRC state may introduce additional problems. In particular, since the duration of the MAC layer inactivity timer is typically set to be shorter than the duration of the RRC inactivity timer (set by the evolved Node B), the MAC layer on the wireless communication device is not The RRC connection re-establishment procedure triggered by the expiration of the activity timer will continue to cause a reset of the RRC inactivity timer before the RRC inactivity timer expires. As a result, the evolved Node B may never be able to trigger the RRC Connection Release procedure, and the wireless communication device may always be prevented from transitioning to the RRC idle state.
各個實施例提供了對於現有技術的改進,以處理從LTE網路(亦即,進化型節點B)到具備CRAT能力的無線通訊設備(或者與LTE操作相關聯的數據機堆疊)的RRC連接釋放訊息的潛在的丟失。特別地,各個實施例避免了由現有RRC狀態同步機製造成的對於功率利用率和輸送量的負面影響,其中現有RRC狀態同步機制提供到非LTE網路的冗長的調諧離開時段。例如,各個實施例可以在無需在CDRX關閉時段中需要額外的喚醒的情況下,使得能夠解決無線通訊設備上的操作的RRC狀態與進化型節點B中表示的相應的RRC狀態之間的不匹配。另一個實施例可以防止由於經由MAC層不活動計時器同步無線通訊設備與進化型節點B之間的RRC狀態,而造成該無線通訊設備進入永久的RRC連接狀態。一些實施例可以涉及這些改進的組合。Various embodiments provide improvements to the prior art to handle RRC connection release from an LTE network (ie, evolved Node B) to a CRAT capable wireless communication device (or a data machine stack associated with LTE operation) The potential loss of the message. In particular, various embodiments avoid the negative impact on power utilization and throughput caused by existing RRC state synchronization mechanisms, which provide a lengthy tuning away period to non-LTE networks. For example, various embodiments may enable a solution to a mismatch between the RRC state of operation on the wireless communication device and the corresponding RRC state represented in the evolved Node B without requiring additional wakeups in the CDRX off period. . Another embodiment may prevent the wireless communication device from entering a permanent RRC connected state due to synchronization of the RRC state between the wireless communication device and the evolved Node B via the MAC layer inactivity timer. Some embodiments may involve combinations of these improvements.
如描述的,LTE網路(例如,進化型節點B)經由PDCCH以信號形式發送PDSCH和PUSCH上的、並且被分配給無線通訊設備的資源區塊。為了請求對上行鏈路資料的傳輸,在RRC連接狀態下操作的無線通訊設備(或者與LTE操作相關聯的數據機堆疊)可以發起排程請求(SR)程序。例如,無線通訊設備可以向進化型節點B發送SR,以便獲得針對PUSCH資源配置的上行鏈路准許。無線設備可以在專用於該特定設備的PUCCH上的一或多個定期的SR資源(亦即,「SR機會」)上發送該SR訊息。無線通訊設備可以被動態地設定有SR週期,其中該SR週期提供PUCCH上的SR機會之間的間隔(例如,大約1-80 ms)。儘管當網路保持大量的、處於RRC連接狀態的、具有相對低的活動等級的設備時,可以指定更長的間隔以便允許節省PUCCH資源,但是可以為延遲敏感的服務配置更短的間隔,並且因此更頻繁的SR機會。為了避免不必要的SR重傳,特別是在短的SR間隔的情況下,無線通訊設備可以在傳輸SR之後,設置SR禁止計時器。亦即,當SR禁止計時器在執行時,無線通訊設備不發送新的SR。As described, the LTE network (e.g., evolved Node B) signals the resource blocks on the PDSCH and PUSCH that are allocated to the wireless communication device via the PDCCH. In order to request transmission of uplink data, a wireless communication device (or a data machine stack associated with LTE operations) operating in an RRC connected state may initiate a scheduling request (SR) procedure. For example, the wireless communication device can send an SR to the evolved Node B in order to obtain an uplink grant for PUSCH resource configuration. The wireless device may send the SR message on one or more periodic SR resources (i.e., "SR Opportunities") on the PUCCH dedicated to that particular device. The wireless communication device can be dynamically set with an SR period, wherein the SR period provides an interval between SR opportunities on the PUCCH (eg, about 1-80 ms). Although a longer interval may be specified to allow saving of PUCCH resources when the network maintains a large number of devices in a RRC connected state with relatively low activity levels, shorter intervals may be configured for delay sensitive services, and Therefore more frequent SR opportunities. In order to avoid unnecessary SR retransmissions, especially in the case of short SR intervals, the wireless communication device can set the SR disable timer after transmitting the SR. That is, when the SR inhibit timer is being executed, the wireless communication device does not transmit a new SR.
在一些實施例中,使用CDRX的、具備CRAT能力的無線通訊設備可以在MAC層不活動計時器到期之前,利用SR程序來將該無線通訊設備中的操作的RRC與由進化型節點B表示的相應的RRC狀態同步。具體而言,基於在SR之後來自進化型節點B的回應,無線通訊設備可能有能力利用高的置信度來辨識進化型節點B中設置的典型的RRC狀態。例如,若無線通訊設備在PDCCH上接收到上行鏈路准許(亦即,使用C-RNTI用於與LTE操作相關聯的數據機堆疊),則可以作出關於相應的RRC連接狀態被表示在進化型節點B中的假定,並且因此,無線通訊設備可以在RRC狀態已經被同步的推定下執行操作。由於在進化型節點B中的典型的RRC閒置狀態情況下接收上行鏈路准許的可能性非常低,並且其他事件(例如,進化型節點B向另一個設備分配相同的C-RNTI等等)不太可能發生,因此可能存在這種高的置信度。In some embodiments, a CRAT capable wireless communication device using CDRX may utilize an SR procedure to represent the RRC of the operation in the wireless communication device with the evolved Node B before the MAC layer inactivity timer expires. The corresponding RRC state synchronization. In particular, based on the response from the evolved Node B after the SR, the wireless communication device may be able to utilize the high confidence to identify the typical RRC state set in the evolved Node B. For example, if the wireless communication device receives an uplink grant on the PDCCH (ie, using a C-RNTI for the data machine stack associated with the LTE operation), then an indication can be made that the corresponding RRC connection state is represented in the evolved type. The assumptions in Node B, and therefore, the wireless communication device can perform operations under the presumption that the RRC state has been synchronized. The possibility of receiving an uplink grant is very low due to the typical RRC idle state in the evolved Node B, and other events (eg, the evolved Node B assigns the same C-RNTI to another device, etc.) It is too likely to happen, so there may be such a high degree of confidence.
若無線通訊設備未從進化型節點B接收到上行鏈路准許,則無線通訊設備可以在相應的RRC閒置狀態被表示在進化型節點B中的推定下執行操作,並且因此存在與無線通訊設備中的操作的RRC連接狀態的不匹配。由於儘管該操作的RRC連接狀態和進化型節點B中表示的相應的RRC連接狀態這二者,但是未接收到上行鏈路准許的可能性相對低,因此在這種推定下存在高的置信度。關於未接收到此類上行鏈路准許的原因可以包括:例如,高的網路負載、進化型節點B由於定時未對準或者單獨地影響訊號傳遞屬性的其他因素造成對PUCCH進行解碼的故障。因此,在各個實施例中,在辨識到RRC狀態的不匹配時,無線通訊設備可以決定需要進行同步。If the wireless communication device does not receive an uplink grant from the evolved Node B, the wireless communication device can perform an operation under the presumption that the corresponding RRC idle state is indicated in the evolved Node B, and thus exists in the wireless communication device The RRC connection status of the operation does not match. Since there is a relatively low probability that the uplink grant is not received despite the RRC connection state of the operation and the corresponding RRC connection state indicated in the evolved Node B, there is a high confidence in this estimation. . Reasons for not receiving such an uplink grant may include, for example, a high network load, a failure of the evolved Node B to decode the PUCCH due to timing misalignment or other factors that individually affect the signal transfer properties. Thus, in various embodiments, upon identifying a mismatch in the RRC state, the wireless communication device can decide that synchronization is needed.
圖4A和圖4B根據各個實施例圖示用於對具備CRAT能力的無線通訊設備上維持的RRC狀態與網路中表示的RRC狀態之間的同步進行管理的方法400。具體而言,此類管理可以經由避免對PDCCH進行額外的解碼的需求(亦即,在由該設備的IRDX週期闡述的傳呼時機中)來改善功率利用率,這可能需要RF資源在CDRX關閉時段期間的額外的喚醒。4A and 4B illustrate a method 400 for managing synchronization between an RRC state maintained on a CRAT capable wireless communication device and an RRC state represented in the network, in accordance with various embodiments. In particular, such management may improve power utilization by avoiding the need for additional decoding of the PDCCH (ie, in paging occasions elaborated by the device's IRDX cycle), which may require RF resources to be in the CDRX off period Extra wake up during the period.
參照圖1-4B,方法400的操作可以由諸如無線通訊設備200之類的無線設備的一或多個處理器來實現。該一或多個處理器可以包括:例如,此類通用處理器206及/或基頻數據機處理器216、或者可以被耦合到記憶體214和被耦合到基頻數據機處理器216的單獨的控制器(未圖示)。Referring to Figures 1-4B, the operations of method 400 may be implemented by one or more processors of a wireless device, such as wireless communication device 200. The one or more processors may include, for example, such a general purpose processor 206 and/or a baseband data processor 216, or may be coupled to the memory 214 and to a separate coupled to the baseband data processor 216. Controller (not shown).
在方塊402中,無線設備處理器可以偵測到該無線設備正在與第一RAT相關聯的網路(例如,LTE網路)中,在RRC連接狀態下進行操作,同時支援與至少一種其他RAT的通訊。如描述的,該無線通訊設備(例如,102、200)可以具有支援並行RAT上的通訊的單一的RF資源(例如,具備CRAT能力的無線設備)。在一些實施例中,該無線設備可以是多SIM多待機(MSMS)設備,其中至少一個SIM支援LTE,而在其他實施例中,該無線設備可以是單一的無線電單元LTE(SRLTE)無線設備,其被配置為連接到支援LTE和至少一種其他RAT二者的至少一個混合系統。在方塊410中,無線設備處理器可以在與第一RAT相關聯的協定堆疊(例如,LTE協定堆疊)上執行資料發送和接收。In block 402, the wireless device processor can detect that the wireless device is operating in an RRC connected state in a network (eg, an LTE network) associated with the first RAT, while supporting and at least one other RAT Communication. As described, the wireless communication device (e.g., 102, 200) can have a single RF resource (e.g., a CRAT capable wireless device) that supports communication over a parallel RAT. In some embodiments, the wireless device can be a multiple SIM multiple standby (MSMS) device, wherein at least one SIM supports LTE, while in other embodiments, the wireless device can be a single radio unit LTE (SRLTE) wireless device, It is configured to connect to at least one hybrid system that supports both LTE and at least one other RAT. In block 410, the wireless device processor can perform data transmission and reception on a protocol stack (eg, an LTE protocol stack) associated with the first RAT.
與方塊410的操作並行地,在方塊404中,無線設備處理器可以啟動LTE協定堆疊上的MAC層不活動計時器。在一些實施例中,MAC層不活動計時器可以被設置為預設值(例如,60秒)。在一些實施例中,MAC層不活動計時器可以基於歷史資料及/或目前的網路狀況來動態地設置。In parallel with the operation of block 410, in block 404, the wireless device processor can initiate a MAC layer inactivity timer on the LTE protocol stack. In some embodiments, the MAC layer inactivity timer can be set to a preset value (eg, 60 seconds). In some embodiments, the MAC layer inactivity timer can be dynamically set based on historical data and/or current network conditions.
在決定方塊408中,無線設備處理器可以決定MAC層不活動計時器是否已經到期。回應於決定MAC層不活動計時器已經到期(亦即,決定方塊408=「是」),則無線設備處理器可以經由在方法400結束之前觸發排程請求程序(參照圖5描述的方法500),來可選地利用另一種功率利用率改進機制。回應於決定MAC層不活動計時器尚未到期(亦即,決定方塊408=「否」),則在方塊410中,無線設備處理器可以繼續在LTE協定堆疊上執行資料發送和接收。In decision block 408, the wireless device processor can determine if the MAC layer inactivity timer has expired. In response to determining that the MAC layer inactivity timer has expired (ie, decision block 408 = "Yes"), the wireless device processor can trigger the schedule request procedure by ending the method 400 (see method 500 described with respect to FIG. 5). ) to optionally utilize another power utilization improvement mechanism. In response to determining that the MAC layer inactivity timer has not expired (ie, decision block 408 = "No"), then in block 410, the wireless device processor may continue to perform data transmission and reception on the LTE protocol stack.
在方塊416處繼續,無線設備處理器可以針對來自進化型節點B的對於LTE協定堆疊的新的下行鏈路或者上行鏈路資源准許,對下行鏈路通道(例如,PDCCH)進行監控。例如,無線設備處理器可以對PDCCH上攜帶的下行鏈路控制資訊進行解碼,以辨識針對與LTE協定堆疊相關聯的C-RNTI的資源配置。在決定方塊412中,無線設備處理器可以決定TA計時器是否已經到期,並且是否尚未恢復與進化型節點B的上行鏈路時間對準。Continuing at block 416, the wireless device processor can monitor the downlink channel (e.g., PDCCH) for new downlink or uplink resource grants for the LTE protocol stack from the evolved Node B. For example, the wireless device processor can decode the downlink control information carried on the PDCCH to identify the resource configuration for the C-RNTI associated with the LTE protocol stack. In decision block 412, the wireless device processor can determine if the TA timer has expired and whether the uplink time alignment with the evolved Node B has not been restored.
回應於決定TA計時器尚未到期或者已經到期,但是與進化型節點B的上行鏈路時間對準已經被恢復(亦即,決定方塊412=「否」),無線設備處理器可以返回到方塊416,以繼續針對來自進化型節點B的新的下行鏈路或者上行鏈路資源准許,對下行鏈路通道進行監控。回應於決定TA計時器已經到期,並且與進化型節點B的上行鏈路時間對準尚未被恢復(亦即,決定方塊412=「是」),在方塊414中,無線設備處理器可以針對與進化型節點B的連接,在LTE協定堆疊上實現非最佳化的傳呼解碼模式。無線設備處理器可以經由返回到方塊416,繼續針對來自進化型節點B的新的下行鏈路或者上行鏈路資源准許,對下行鏈路通道進行監控。In response to determining that the TA timer has not expired or has expired, but the uplink time alignment with the evolved Node B has been restored (ie, decision block 412 = "No"), the wireless device processor can return to Block 416 to continue monitoring the downlink channel for new downlink or uplink resource grants from the evolved Node B. In response to determining that the TA timer has expired and the uplink time alignment with the evolved Node B has not been restored (i.e., decision block 412 = "Yes"), in block 414, the wireless device processor can target A connection to the evolved Node B implements a non-optimized paging decoding mode on the LTE protocol stack. The wireless device processor can continue to monitor the downlink channel for new downlink or uplink resource grants from the evolved Node B via a return to block 416.
與決定方塊412的操作並行地,在決定方塊418(圖4B)中,無線設備處理器可以決定是否已經從進化型節點B接收到對於LTE協定堆疊的新的下行鏈路或者上行鏈路資源准許,並且在決定方塊422(圖4B)中,決定調諧離開到與非LTE RAT相關聯的網路的持續時間是否大於閥值。由於假定隨著調諧離開的持續時間增加,丟失來自進化型節點B的RRC連接釋放訊息的可能性增加,因此閥值持續時間可以表示已經發生此類丟失的特定的置信度。In parallel with the operation of decision block 412, in decision block 418 (Fig. 4B), the wireless device processor can decide whether a new downlink or uplink resource grant for the LTE protocol stack has been received from the evolved Node B. And, in decision block 422 (FIG. 4B), it is determined whether the duration of tuning to leave the network associated with the non-LTE RAT is greater than a threshold. Since it is assumed that as the duration of tuning away increases, the likelihood of losing an RRC Connection Release message from the evolved Node B increases, so the threshold duration may indicate a particular confidence that such loss has occurred.
回應於決定對於LTE協定堆疊的新的下行鏈路或者上行鏈路資源准許尚未被接收(亦即,決定方塊418=「否」),無線設備處理器可以返回到方塊416(圖4A)中,針對新的下行鏈路或者上行鏈路資源准許,對下行鏈路通道進行監控。回應於決定對於LTE協定堆疊的新的下行鏈路或者上行鏈路資源准許已經被接收(亦即,決定方塊418=「是」),在方塊420中,無線設備處理器可以針對LTE協定堆疊上的連接,實現功率最佳化的傳呼解碼模式(亦即,對CDRX開啟時段期間的或者與CDRX開啟時段鄰近的任何傳呼時機進行解碼)。亦即,從進化型節點B接收的新的上行鏈路或者下行鏈路資源准許指示:LTE網路認為該無線設備處於連接狀態(亦即,相應的RRC連接狀態被表示在進化型節點B中),並且因此該無線設備程序可以在該設備已經與LTE協定堆疊上的操作的RRC狀態同步的推定下繼續進行。照此,不需要監控與LTE協定堆疊的IDRX週期相對應的傳呼時機,這可以避免CDRX關閉時段期間的額外的喚醒。無線設備處理器亦可以返回到方塊416(圖4A)中,針對新的下行鏈路或者上行鏈路資源准許,對下行鏈路通道進行監控。In response to determining that a new downlink or uplink resource grant for the LTE protocol stack has not been received (ie, decision block 418 = "No"), the wireless device processor may return to block 416 (FIG. 4A), The downlink channel is monitored for new downlink or uplink resource grants. In response to determining that a new downlink or uplink resource grant for the LTE protocol stack has been received (i.e., decision block 418 = "Yes"), in block 420, the wireless device processor can be stacked on the LTE protocol. The connection, the power-optimized paging decoding mode (ie, decoding any paging occasions during the CDRX on period or adjacent to the CDRX on period). That is, the new uplink or downlink resource grant received from the evolved Node B indicates that the LTE network considers the wireless device to be in a connected state (ie, the corresponding RRC connected state is represented in the evolved Node B) And, therefore, the wireless device program can proceed with the presumption that the device has synchronized with the RRC state of operation on the LTE protocol stack. As such, there is no need to monitor paging occasions corresponding to the IDRX cycle of the LTE protocol stack, which can avoid additional wakeups during the CDRX off period. The wireless device processor may also return to block 416 (Fig. 4A) to monitor the downlink channel for a new downlink or uplink resource grant.
回應於決定調諧離開到與非LTE RAT相關聯的網路的持續時間不大於閥值(亦即,決定方塊422=「否」),在方塊427中,無線設備可以針對與進化型節點B的連接,實現在該調諧離開之前被使用的解碼模式(例如,功率最佳化的傳呼解碼模式或者非最佳化的傳呼解碼模式)。其後,無線設備處理器亦可以返回到方塊416(圖4A)中,針對新的下行鏈路或者上行鏈路資源准許,對下行鏈路通道進行監控。In response to the decision to tune away to the network associated with the non-LTE RAT for a duration that is not greater than a threshold (ie, decision block 422 = "No"), in block 427, the wireless device may be directed to the evolved Node B. A connection is implemented to implement a decoding mode (eg, a power-optimized paging decoding mode or a non-optimized paging decoding mode) that is used before the tuning leaves. Thereafter, the wireless device processor may also return to block 416 (FIG. 4A) to monitor the downlink channel for a new downlink or uplink resource grant.
回應於決定調諧離開到與非LTE RAT相關聯的網路的持續時間大於閥值(亦即,決定方塊422=「是」),在方塊424中,無線設備處理器可以向進化型節點B發送一個排程請求(SR)。在一些實施例中,若LTE協定堆疊不具有未決的資料要在上行鏈路中發送,則此類SR可以是虛擬請求。在各個實施例中,如描述的,該SR(或者虛擬SR)可以是在PUCCH上發送的傳輸。In response to the decision to tune away to the network associated with the non-LTE RAT for a duration greater than a threshold (ie, decision block 422 = "Yes"), in block 424, the wireless device processor may send to the evolved Node B A schedule request (SR). In some embodiments, such an SR may be a virtual request if the LTE protocol stack does not have pending data to send in the uplink. In various embodiments, as described, the SR (or virtual SR) may be a transmission sent on the PUCCH.
在方塊426中,無線設備處理器可以啟動針對一個SR的SR禁止計時器,並且在決定方塊428中,無線設備處理器可以決定在該SR禁止計時器到期之前,LTE協定堆疊是否從進化型節點B接收到上行鏈路資源准許。In block 426, the wireless device processor can initiate an SR disable timer for one SR, and in decision block 428, the wireless device processor can decide whether the LTE protocol stack is evolved before the SR inhibit timer expires. Node B receives the uplink resource grant.
回應於決定在SR禁止計時器到期之前,LTE協定堆疊未接收到上行鏈路資源准許(亦即,決定方塊428=「否」),在方塊430中,無線設備處理器可以針對與進化型節點B的連接,在LTE協定堆疊上實現非最佳化的傳呼解碼模式。亦即,基於缺少來自進化型節點B的回應,假定LTE網路認為該無線設備處於RRC閒置狀態(亦即,相應的RRC閒置狀態被表示在進化型節點B中),並且因此不與該無線設備上的操作的RRC連接狀態同步。結果,該無線設備可以在CDRX開啟時段期間,以及在與該無線設備屬於的傳呼組相關聯的傳呼時機期間(其可能是在CDRX關閉時段期間),對用於下行鏈路資料的PDCCH進行解碼。其後,無線設備處理器可以在方塊416(圖4A)中,繼續針對來自進化型節點B的、新的下行鏈路或者上行鏈路資源准許,對下行鏈路通道進行監控。In response to the decision that the LTE protocol stack does not receive an uplink resource grant before the SR barring timer expires (i.e., decision block 428 = "No"), in block 430, the wireless device processor can target the evolved type. The connection of Node B implements a non-optimized paging decoding mode on the LTE protocol stack. That is, based on the lack of a response from the evolved Node B, it is assumed that the LTE network considers the wireless device to be in an RRC idle state (ie, the corresponding RRC idle state is indicated in the evolved Node B), and therefore does not The RRC connection status of the operation on the device is synchronized. As a result, the wireless device can decode the PDCCH for downlink data during the CDRX on period and during the paging occasion associated with the paging group to which the wireless device belongs (which may be during the CDRX off period) . Thereafter, the wireless device processor can continue to monitor the downlink channel for new downlink or uplink resource grants from the evolved Node B in block 416 (FIG. 4A).
回應於決定在SR禁止計時器到期之前,LTE協定堆疊接收到上行鏈路資源准許(亦即,決定方塊428=「是」),在方塊432中,無線設備處理器可以針對與進化型節點B的連接,在LTE協定堆疊上實現功率最佳化的傳呼解碼模式。其後,無線設備處理器可以在方塊416(圖4A)中,繼續針對新的下行鏈路或者上行鏈路資源准許,對下行鏈路通道進行監控。In response to the decision to receive an uplink resource grant (ie, decision block 428 = "Yes") before the SR barring timer expires, in block 432, the wireless device processor can target the evolved node. B's connection, a power-optimized paging decoding mode on the LTE protocol stack. Thereafter, the wireless device processor can continue to monitor the downlink channel for new downlink or uplink resource grants in block 416 (FIG. 4A).
如描述的,MAC層不活動計時器的到期可以觸發要由無線設備發送給LTE網路的RRC重新建立訊息,轉而,造成在LTE網路上的RRC不活動計時器到期之前,重置更長的LTE網路上的RRC不活動計時器。以該方式,可能使LTE協定堆疊處於該無線設備中的操作的RRC連接狀態的無限循環。因此,在一些實施例中,如圖5中示出的方法500中提供的,可以在MAC層不活動計時器到期之後,經由強制釋放RRC連接(當需要時),來改善該無線設備上的功率利用率。As described, expiration of the MAC layer inactivity timer may trigger an RRC re-establishment message to be sent by the wireless device to the LTE network, which in turn may cause a reset before the RRC inactivity timer expires on the LTE network. Longer RRC inactivity timer on LTE networks. In this way, it is possible to have an LTE protocol stack in an infinite loop of RRC connected states of operation in the wireless device. Thus, in some embodiments, as provided in method 500 as shown in FIG. 5, the wireless layer may be improved via a forced release RRC connection (when needed) after the MAC layer inactivity timer expires Power utilization.
參照圖1-5,方法500可以獨立於方法400來實現,而在其他實施例中,一旦在決定方塊708(圖4A)中,MAC層不活動計時器已經到期,方法500可以向方法400提供可選的附加程序。此外,方法500的操作可以由無線設備200的諸如下列各項的一或多個處理器來實現:通用處理器206及/或基頻數據機處理器216、或者可以被耦合到記憶體214和被耦合到基頻數據機處理器216的單獨的控制器(未圖示)。Referring to Figures 1-5, method 500 can be implemented independently of method 400, while in other embodiments, once in MAC block 708 (Fig. 4A), the MAC layer inactivity timer has expired, method 500 can be directed to method 400. An optional add-on is available. Moreover, the operations of method 500 may be implemented by one or more processors of wireless device 200, such as general purpose processor 206 and/or baseband data processor 216, or may be coupled to memory 214 and A separate controller (not shown) is coupled to the baseband data processor 216.
方法500可以開始於如描述的方法400的方塊402-408中的操作(亦即,當決定方塊408=「是」時)。因此,回應於決定MAC層不活動計時器已經到期(亦即,決定方塊408=「是」),在方塊502中,例如,如描述的,作為宣告LTE協定堆疊上的無線電鏈路故障的結果,可以觸發RRC連接重新建立程序。Method 500 can begin with operations in blocks 402-408 of method 400 as described (ie, when decision block 408 = "Yes"). Thus, in response to determining that the MAC layer inactivity timer has expired (i.e., decision block 408 = "Yes"), in block 502, for example, as described, as declaring a radio link failure on the LTE protocol stack. As a result, the RRC connection re-establishment procedure can be triggered.
在決定方塊504中,無線設備處理器可以決定在LTE協定堆疊上,TA計時器是否已經到期。回應於決定TA計時器已經到期(亦即,決定方塊504=「是」),在方塊506中,無線設備處理器可以允許RRC連接重新建立程序正常地繼續進行。亦即,無線設備處理器可以與進化型節點B重新同步,在相應的RRC連接狀態被表示在進化型節點B中的情況下,將LTE協定堆疊帶入到操作的RRC連接狀態。回應於決定TA計時器尚未到期(亦即,決定方塊504=「否」),在方塊508中,無線設備處理器可以向進化型節點B發送下一個SR。In decision block 504, the wireless device processor can determine if the TA timer has expired on the LTE protocol stack. In response to determining that the TA timer has expired (i.e., decision block 504 = "Yes"), in block 506, the wireless device processor may allow the RRC connection re-establishment procedure to continue normally. That is, the wireless device processor can resynchronize with the evolved Node B, bringing the LTE protocol stack into the RRC connected state of operation if the corresponding RRC connected state is indicated in the evolved Node B. In response to determining that the TA timer has not expired (i.e., decision block 504 = "No"), in block 508, the wireless device processor can transmit the next SR to the evolved Node B.
在決定方塊510中,無線設備處理器可以決定LTE協定堆疊是否接收到來自進化型節點B的新的上行鏈路資源准許。回應於決定接收到新的上行鏈路資源准許(亦即,決定方塊510=「是」),在方塊512中,無線設備處理器可以重置排程請求計數器(SR計數器)和MAC層不活動計時器。亦即,由於相應的RRC連接狀態被表示在進化型節點B中,無線設備處理器將建立應當在該無線設備上維持的操作的RRC連接狀態。無線設備處理器可以在方塊416(圖4A)中,繼續針對來自進化型節點B的新的下行鏈路或者上行鏈路資源准許,對下行鏈路通道進行監控。In decision block 510, the wireless device processor can determine whether the LTE protocol stack received a new uplink resource grant from the evolved Node B. In response to the decision to receive a new uplink resource grant (i.e., decision block 510 = "Yes"), in block 512, the wireless device processor can reset the schedule request counter (SR counter) and the MAC layer is inactive. Timer. That is, since the corresponding RRC connection state is indicated in the evolved Node B, the wireless device processor will establish an RRC connected state of the operation that should be maintained on the wireless device. The wireless device processor may continue to monitor the downlink channel for new downlink or uplink resource grants from the evolved Node B in block 416 (Fig. 4A).
回應於決定未從進化型節點B接收到新的上行鏈路資源准許(亦即,決定方塊510=「否」),在方塊514中,無線設備處理器可以對SR計數器進行遞增,並且在決定方塊516中,決定SR計數器值是否大於SR閥值。在各個實施例中,LTE網路可以配置RRC參數,其中該RRC參數設置允許該無線設備處理器發送/重新發送該排程請求的實例的最大數量(例如,dsr-TransMax),其具有至少為四的值。在一些實施例中,SR閥值可以被設置為:Max[3,]。亦即,SR閥值可以是值3和dsr-TransMax值的一半中的較大者。In response to the decision not to receive a new uplink resource grant from the evolved Node B (i.e., decision block 510 = "No"), in block 514, the wireless device processor may increment the SR counter and determine In block 516, it is determined if the SR counter value is greater than the SR threshold. In various embodiments, the LTE network may configure an RRC parameter, wherein the RRC parameter setting allows the wireless device processor to send/resend a maximum number of instances of the scheduling request (eg, dsr-TransMax) having at least The value of four. In some embodiments, the SR threshold can be set to: Max[3, ]. That is, the SR threshold can be the greater of the value 3 and half of the dsr-TransMax value.
回應於決定SR計數器值不大於SR閥值(亦即,決定方塊516=「否」),無線設備處理器可以返回到在方塊508中,向進化型節點B發送下一個SR。In response to determining that the SR counter value is not greater than the SR threshold (i.e., decision block 516 = "No"), the wireless device processor may return to transmitting the next SR to the evolved Node B in block 508.
回應於決定SR計數器值大於SR閥值(亦即,決定方塊516=「是」),無線設備處理器可以在方塊518中,執行RRC連接的本地釋放,從而釋放無線電資源,並且使LTE協定堆疊轉換到操作的RRC閒置狀態。亦即,在沒有回應的情況下多次嘗試發送排程請求之後,存在典型的RRC閒置狀態被設置在進化型節點B中的高的置信度。但是,由於基於RRC不活動計時器的持續的重置,阻止了LTE網路釋放RRC連接,因此無線設備處理器可以執行訊號傳遞,以強制轉換到LTE協定堆疊上的RRC閒置狀態。In response to determining that the SR counter value is greater than the SR threshold (i.e., decision block 516 = "Yes"), the wireless device processor may perform a local release of the RRC connection in block 518, thereby releasing radio resources and stacking the LTE protocol. Switch to the RRC idle state of the operation. That is, after multiple attempts to send a scheduling request without a response, there is a high confidence that a typical RRC idle state is set in the evolved Node B. However, due to the continual reset of the RRC inactivity timer, the LTE network is prevented from releasing the RRC connection, so the wireless device processor can perform signal delivery to forcibly transition to the RRC idle state on the LTE protocol stack.
因此,在各個實施例中,無線設備處理器可以儘可能地避免使用非最佳化的傳呼解碼模式,以便在MAC層不活動計時器到期之前,改善功率利用率。Thus, in various embodiments, the wireless device processor can avoid using a non-optimized paging decoding mode as much as possible to improve power utilization before the MAC layer inactivity timer expires.
各個實施例關於被配置為支援多個RAT(例如,LTE、和GSM、CDMA 2000中的一或多個等等)的至少一個SIM和RF資源,來描述改善功率效率。但是,在各個實施例的描述中,對於第一RAT和第二RAT以及相應的協定堆疊的提及是任意的,並且僅僅出於提供說明性的實例而被使用。無線設備處理器可以分配任何指示符、名稱或者其他指定,以區分與一或多個RAT及/或協定堆疊相關聯的接收鏈。此外,不管哪個接收鏈正被用來從資料通訊的網路調諧離開,實施例方法皆同樣地適用。此外,儘管資料通訊的網路被引用成LTE網路或者進化型節點B,但是這些應用亦是說明性的實例,並且可以實現各個實施例來接收各種各樣的高速網路(例如,HSPA+、DC-HSPA、EV-DO等等)中的任何一種高速網路中的資料。Various embodiments are described with respect to at least one SIM and RF resources configured to support multiple RATs (eg, LTE, and one or more of GSM, CDMA 2000, etc.) to improve power efficiency. However, in the description of various embodiments, references to the first RAT and the second RAT and corresponding protocol stacks are arbitrary and are used merely to provide illustrative examples. The wireless device processor can assign any indicator, name, or other designation to distinguish the receive chains associated with one or more RATs and/or protocol stacks. In addition, the embodiment methods are equally applicable regardless of which receive chain is being used to tune away from the network of data communications. In addition, although the data communication network is referred to as an LTE network or an evolved Node B, these applications are also illustrative examples, and various embodiments may be implemented to receive a variety of high speed networks (eg, HSPA+, Data in any of the high speed networks of DC-HSPA, EV-DO, etc.).
各個實施例(其包括但不限於上面參照圖4A和圖4B論述的實施例)可以在各種各樣的無線設備中的任何一種無線設備(圖6中圖示實例600)中實現。參照圖1-6,無線設備600(例如,其可以與圖1A-2中的無線設備102及/或200相對應)可以包括被耦合到觸控式螢幕控制器604和內部記憶體606的處理器602。處理器602可以是被設計用於通用或者特定處理任務的一或多個多核IC。內部記憶體606可以是揮發性記憶體或者非揮發性記憶體,並且亦可以是安全的及/或加密的記憶體,或者非安全的及/或未加密的記憶體、或者其任意組合。Various embodiments, including but not limited to the embodiments discussed above with respect to Figures 4A and 4B, may be implemented in any of a wide variety of wireless devices (example 600 illustrated in Figure 6). Referring to Figures 1-6, wireless device 600 (e.g., which may correspond to wireless device 102 and/or 200 in Figures 1A-2) may include processing coupled to touch screen controller 604 and internal memory 606 602. Processor 602 can be one or more multi-core ICs designed for general purpose or specific processing tasks. Internal memory 606 can be volatile memory or non-volatile memory, and can also be secure and/or encrypted memory, or non-secure and/or unencrypted memory, or any combination thereof.
觸控式螢幕控制器604和處理器602亦可以被耦合到觸控式螢幕面板612,例如,電阻式感應觸控式螢幕、電容式感應觸控式螢幕、紅外線感應觸控式螢幕等等。無線設備600可以具有用於進行發送和接收的、被耦合至彼此及/或被耦合到處理器602的一或多個無線電信號收發機608(例如,Peanut®、藍芽®、Zigbee®、Wi-Fi、RF無線電單元)和天線610。收發機608和天線610可以與上面提及的電路一起使用,以實現各種無線傳輸協定堆疊和介面。無線設備600可以包括蜂巢網路無線數據機晶片616,該蜂巢網路無線數據機晶片616經由蜂巢網路來實現通訊並且被耦合到處理器。無線設備600可以包括被耦合到處理器602的周邊設備連接介面618。周邊設備連接介面618可以被單獨地配置為接受一種類型的連接,或者被多重地配置為接受各種類型的實體和通訊連接、共同的或者專有的連接,例如,USB、火線、雷電或者PCIe。周邊設備連接介面618亦可以被耦合到類似配置的周邊設備連接埠(未圖示)。無線設備600亦可以包括用於提供音訊輸出的揚聲器614。無線設備600亦可以包括用塑膠、金屬、或者材料的組合構造的殼體620,用於容納本文論述的組件中的所有或者一些組件。無線設備600可以包括被耦合到處理器602的電源622,例如,一次性或者可再充電的電池。該可再充電的電池亦可以被耦合到周邊設備連接埠,以從無線設備600之外的源接收充電電流。The touch screen controller 604 and the processor 602 can also be coupled to the touch screen panel 612, for example, a resistive touch screen, a capacitive touch screen, an infrared touch screen, and the like. Wireless device 600 can have one or more radio signal transceivers 608 coupled to each other and/or coupled to processor 602 for transmission and reception (eg, Peanut®, Bluetooth®, Zigbee®, Wi -Fi, RF radio unit) and antenna 610. Transceiver 608 and antenna 610 can be used with the circuits mentioned above to implement various wireless transport protocol stacks and interfaces. The wireless device 600 can include a cellular network wireless modem chip 616 that communicates via a cellular network and is coupled to the processor. Wireless device 600 can include a peripheral device connection interface 618 that is coupled to processor 602. Peripheral device connection interface 618 can be separately configured to accept one type of connection, or multiplely configured to accept various types of physical and communication connections, common or proprietary connections, such as USB, Firewire, Thunderbolt, or PCIe. The peripheral device connection interface 618 can also be coupled to a similarly configured peripheral device port (not shown). Wireless device 600 can also include a speaker 614 for providing audio output. The wireless device 600 can also include a housing 620 constructed of a combination of plastic, metal, or material for housing all or some of the components discussed herein. Wireless device 600 can include a power source 622 that is coupled to processor 602, such as a disposable or rechargeable battery. The rechargeable battery can also be coupled to a peripheral device port to receive charging current from a source external to the wireless device 600.
各個實施例(其包括但不限於上面參照圖4A和圖4B論述的實施例)亦可以在各種各樣的個人計算設備(圖7中示出的實例700)內實現。參照圖1-7,膝上型電腦700(例如,其可以與圖1A-2中的無線設備102、200相對應)可以包括觸控板觸摸表面717,該觸控板觸摸表面717充當電腦的定位設備,並且因此可以接收拖動、滾動和輕打手勢(其類似於在裝備有觸控式螢幕顯示器的並且上面描述的無線計算設備上實現的那些手勢)。膝上型電腦700通常將包括被耦合到揮發性記憶體712和大容量非揮發性記憶體(例如,硬碟713或者快閃記憶體)的處理器711。電腦700亦可以包括被耦合到處理器711的軟碟機714和壓縮光碟(CD)驅動器715。電腦700亦可以包括被耦合到處理器711的多個連接器埠,用於建立資料連接或者容納外部記憶體設備,例如,USB或者火線®接線插座、或者用於將處理器711耦合到網路的其他網路連接電路。在筆記本配置中,電腦殼體包住均被耦合到處理器711的觸控板717、鍵盤718和顯示器719。如公知的,該計算設備的其他配置可以包括(例如,經由USB輸入)被耦合到處理器的電腦滑鼠或者追蹤球,它們亦可以結合各個實施例來使用。Various embodiments, including but not limited to the embodiments discussed above with respect to Figures 4A and 4B, may also be implemented within a wide variety of personal computing devices (example 700 shown in Figure 7). Referring to Figures 1-7, a laptop 700 (e.g., which may correspond to the wireless devices 102, 200 of Figures 1A-2) may include a trackpad touch surface 717 that functions as a computer The device is positioned, and thus can be dragged, scrolled, and tapped (similar to those implemented on a wireless computing device equipped with a touchscreen display and described above). Laptop 700 will typically include a processor 711 coupled to volatile memory 712 and bulk non-volatile memory (eg, hard disk 713 or flash memory). Computer 700 may also include a floppy disk drive 714 and a compact disk (CD) drive 715 coupled to processor 711. The computer 700 can also include a plurality of connectors 耦合 coupled to the processor 711 for establishing a data connection or accommodating an external memory device, such as a USB or Firewire® wiring socket, or for coupling the processor 711 to the network. Other network connection circuits. In a notebook configuration, the computer housing encases a touchpad 717, keyboard 718, and display 719 that are both coupled to processor 711. As is well known, other configurations of the computing device can include (eg, via USB input) a computer mouse or trackball coupled to the processor, which can also be used in conjunction with various embodiments.
參照圖1~7,處理器602和711可以是能夠經由軟體指令(應用)被配置為執行各種各樣的功能(其包括上面描述的各個實施例的功能)的任何可程式設計的微處理器、微電腦或者多個處理器晶片或者數個晶片。在一些設備中,可以提供多個處理器,例如,一個處理器專用於無線通訊功能,以及一個處理器專用於執行其他應用。通常,在存取軟體應用並且將它們載入到處理器602和711中之前,可以將這些軟體應用儲存在內部記憶體606、712和713中。處理器602和711可以包括足夠用於儲存這些應用軟體指令的內部記憶體。在很多設備中,內部記憶體可以是揮發性或者非揮發性記憶體(例如,快閃記憶體)或者二者的混合。出於本描述的目的,對於記憶體的一般性提及代表由處理器602、711可存取的記憶體,其包括被插入到該設備中的內部記憶體或者卸載式存放裝置器,以及處理器602和711它們自身內的記憶體。Referring to Figures 1-7, processors 602 and 711 can be any programmable microprocessor capable of being configured via software instructions (applications) to perform a wide variety of functions, including the functions of the various embodiments described above. , microcomputer or multiple processor chips or several wafers. In some devices, multiple processors may be provided, for example, one processor dedicated to wireless communication functions, and one processor dedicated to executing other applications. Typically, these software applications can be stored in internal memory 606, 712, and 713 prior to accessing the software applications and loading them into processors 602 and 711. Processors 602 and 711 can include internal memory sufficient to store these application software instructions. In many devices, the internal memory can be a volatile or non-volatile memory (eg, a flash memory) or a mixture of the two. For the purposes of this description, a general reference to memory refers to memory accessible by processors 602, 711 that includes internal memory or offload storage devices that are inserted into the device, as well as processing. 602 and 711 are memory within themselves.
上述方法描述和程序流程圖僅僅作為說明性的實例來提供,而不意欲要求或者暗示必須按呈現的順序來執行各個實施例的步驟。如將由本發明所屬領域中具有通常知識者意識到的,可以按照任何順序來執行前述的實施例中的步驟的順序。諸如「其後」、「隨後」、「接下來」等等之類的詞語,並不意欲限制步驟的順序;這些詞語僅僅被用來引導讀者從頭到尾閱讀該方法的描述。此外,任何以單數形式對請求項要素的提及(例如,使用冠詞「一(a)」、「一個(an)」或者「該(the)」),不應被解釋為將該要素限制為單數形式。The above described method descriptions and program flow diagrams are provided by way of illustrative example only and are not intended to be required or imply that the steps of the various embodiments must be performed in the order presented. The order of the steps in the foregoing embodiments may be performed in any order, as will be appreciated by those of ordinary skill in the art to which the invention pertains. Words such as "subsequent", "subsequent", "next", and the like are not intended to limit the order of the steps; these words are only used to guide the reader to read the description of the method from beginning to end. In addition, any reference to a claim element in the singular (for example, the use of the articles "a", "an" or "the" should not be construed as limiting the element to Singular form.
儘管本文使用術語「第一」和「第二」來描述與SIM相關聯的資料傳輸和與不同的SIM相關聯的資料接收,但是此類識別符僅僅是出於方便起見,並不意味著將各個實施例限制於特定的順序、序列、網路或者服務供應商的類型。Although the terms "first" and "second" are used herein to describe the data transfer associated with a SIM and the receipt of data associated with a different SIM, such identifiers are for convenience only and do not imply The various embodiments are limited to a particular order, sequence, network, or type of service provider.
結合本文揭示的實施例描述的各個說明性的邏輯、邏輯塊、模組、電路和演算法步驟可以被實現成電子硬體、電腦軟體或者二者的組合。為了清楚地示出硬體和軟體的這種可互換性,上文已經圍繞著各個說明性的組件、方塊、模組、電路和步驟的功能,概括地對它們進行了描述。至於此類功能是被實現成硬體還是軟體,取決於特定的應用和被施加到整個系統上的設計約束。本發明所屬領域中具有通常知識者可以針對每個特定的應用,以變通的方式實現所描述的功能,但是,此類實現決策不應當被解釋為導致背離本發明的範疇。The various illustrative logical, logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as an electronic hardware, a computer software, or a combination of both. To clearly illustrate this interchangeability of hardware and software, the various features of the various components, blocks, modules, circuits, and steps have been described above generally. Whether such functionality is implemented as hardware or software depends on the particular application and design constraints imposed on the overall system. A person skilled in the art to which the present invention pertains can implement the described functions in a modified manner for each particular application, but such implementation decisions should not be construed as causing a departure from the scope of the invention.
可以利用被設計為執行本文描述的功能的通用處理器、數位訊號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)或者其他可程式設計邏輯裝置、個別閘門或者電晶體邏輯裝置、個別硬體組件或者其任意組合,來實現或者執行結合本文揭示的態樣描述的被用於實現各個說明性的邏輯、邏輯塊、模組和電路的硬體。通用處理器可以是微處理器,但是在替代方案中,該處理器可以是任何習知的處理器、控制器、微控制器或者狀態機。處理器亦可以被實現成計算設備的組合,例如,DSP和微處理器的組合、複數個微處理器、結合DSP核心的一或多個微處理器、或者任何其他此類配置。或者,一些步驟或者方法可以由特定於給定的功能的電路來執行。A general purpose processor, digital signal processor (DSP), special application integrated circuit (ASIC), field programmable gate array (FPGA), or other programmable logic device, individually designed to perform the functions described herein, may be utilized. The gate or transistor logic device, individual hardware components, or any combination thereof, implement or perform the hardware described in connection with the aspects disclosed herein for implementing the various illustrative logic, logic blocks, modules, and circuits. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. The processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some steps or methods may be performed by circuitry specific to a given function.
在一或多個示例性態樣中,描述的功能可以用硬體、軟體、韌體或者其任意組合來實現。若用軟體來實現,則可以將功能儲存成非暫時性電腦可讀取媒體或者非暫時性處理器可讀取媒體上的一或多個指令或者代碼。本文揭示的方法或者演算法的步驟,可以被體現在處理器可執行軟體模組中,該處理器可執行軟體模組可以存在於非暫時性電腦可讀取媒體或者處理器可讀儲存媒體上。非暫時性電腦可讀或者處理器可讀儲存媒體可以是能夠由電腦或者處理器存取的任何儲存媒體。經由實例而非限制的方式,此類非暫時性電腦可讀或者處理器可讀取媒體可以包括RAM、ROM、EEPROM、快閃記憶體、CD-ROM或者其他光碟儲存、磁碟儲存或者其他磁存放裝置、或者能夠被用來儲存具有指令或者資料結構形式的期望的程式碼並且能夠由電腦存取的任何其他媒體。如本文使用的,磁碟和光碟包括壓縮光碟(CD)、鐳射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光光碟,其中磁碟通常磁性地複製資料,而光碟則利用鐳射來光學地複製資料。上文的組合亦被包括在非暫時性電腦可讀和處理器可讀取媒體的範疇之內。另外,方法或者演算法的操作可以作為一個代碼及/或指令或者其任意組合或者集合,存在於非暫時性處理器可讀取媒體及/或電腦可讀取媒體上,其中該非暫時性處理器可讀取媒體及/或電腦可讀取媒體可以被併入到電腦程式產品中。In one or more exemplary aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the function can be stored as a non-transitory computer readable medium or a non-transitory processor can read one or more instructions or code on the medium. The method or algorithm steps disclosed herein may be embodied in a processor executable software module, which may exist on a non-transitory computer readable medium or a processor readable storage medium. . The non-transitory computer readable or processor readable storage medium can be any storage medium that can be accessed by a computer or processor. Such non-transitory computer readable or processor readable medium may include RAM, ROM, EEPROM, flash memory, CD-ROM or other optical disk storage, disk storage or other magnetic means by way of example and not limitation. A storage device, or any other medium that can be used to store a desired code in the form of an instruction or data structure and that can be accessed by a computer. As used herein, disks and compact discs include compact discs (CDs), laser discs, compact discs, digital versatile discs (DVDs), floppy discs, and Blu-ray discs, where the discs are usually magnetically replicated, while the discs are laser-based. Optically copy data. Combinations of the above are also included within the scope of non-transitory computer readable and processor readable media. In addition, the operations of the method or algorithm may be presented as a code and/or instructions, or any combination or collection thereof, on a non-transitory processor readable medium and/or computer readable medium, wherein the non-transitory processor Readable media and/or computer readable media can be incorporated into a computer program product.
為了使得本發明所屬領域中任何具有通常知識者能夠實現或者使用本發明,提供了所揭示的實施例的先前描述。對於本發明所屬領域中具有通常知識者來說,對這些實施例的各種修改將是顯而易見的,並且本文定義的一般原理可以在不背離本發明的精神或者範疇的情況下被應用於其他實施例。因此,本發明不意欲被限制到本文示出的實施例,而是要符合與所附的申請專利範圍和本文揭示的原理和新穎性特徵相一致的最寬的範疇。The previous description of the disclosed embodiments is provided to enable a person of ordinary skill in the art to make or use the invention. Various modifications to the embodiments of the invention will be apparent to those skilled in the <RTI ID=0.0> </RTI> <RTIgt; </ RTI> <RTIgt; . Therefore, the present invention is not intended to be limited to the embodiments shown herein, but the scope of the invention is to be accorded
100‧‧‧通訊系統
102‧‧‧無線通訊設備
104‧‧‧無線通訊網路
106‧‧‧網路服務器
108‧‧‧網際網路
110‧‧‧蜂巢基地台
112‧‧‧網路操作中心
114‧‧‧雙向無線通訊鏈路
116‧‧‧伺服器
150‧‧‧網路架構
152‧‧‧進化型UMTS陸地無線電存取網路(E-UTRAN)
154‧‧‧進化型封包核心(EPC)
156‧‧‧歸屬用戶伺服器(HSS)
158‧‧‧服務供應商的IP服務
160‧‧‧服務閘道(SGW)
162‧‧‧行動性管理實體(MME)
163‧‧‧封包資料網路(PDN)閘道(PGW)
164‧‧‧傳統的第二代(2G)/第三代(3G)存取網路
166‧‧‧MSC/VLR
168‧‧‧CS核心
170‧‧‧閘道MSC(GMSC)
172‧‧‧服務GPRS支援節點(SGSN)
174‧‧‧PS核心
176‧‧‧閘道GPRS支援節點(GGSN)
200‧‧‧無線通訊設備
202‧‧‧SIM介面
204‧‧‧第一辨識模組SIM
206‧‧‧第二辨識模組SIM
208‧‧‧編碼器/解碼器(CODEC)
210‧‧‧揚聲器
212‧‧‧麥克風
214‧‧‧記憶體
216‧‧‧基頻數據機處理器
218‧‧‧RF資源
220‧‧‧天線
222‧‧‧片上系統設備
224‧‧‧小鍵盤
226‧‧‧觸控式螢幕顯示器
300‧‧‧軟體架構
302‧‧‧非存取層(NAS)
304‧‧‧存取層(AS)
306‧‧‧實體層
308‧‧‧媒體存取控制(MAC)子層
310‧‧‧無線電鏈路控制(RLC)子層
312‧‧‧封包資料彙聚協定(PDCP)
313‧‧‧RRC子層
314‧‧‧主機層
316‧‧‧硬體介面
350‧‧‧進化型節點B
400‧‧‧方法
402‧‧‧方塊
404‧‧‧方塊
408‧‧‧決定方塊
410‧‧‧方塊
412‧‧‧決定方塊
414‧‧‧方塊
416‧‧‧方塊
418‧‧‧決定方塊
420‧‧‧方塊
422‧‧‧決定方塊
424‧‧‧方塊
426‧‧‧方塊
427‧‧‧方塊
428‧‧‧決定方塊
430‧‧‧方塊
432‧‧‧方塊
500‧‧‧方法
502‧‧‧方塊
504‧‧‧決定方塊
506‧‧‧方塊
508‧‧‧方塊
510‧‧‧決定方塊
512‧‧‧方塊
514‧‧‧方塊
516‧‧‧決定方塊
518‧‧‧方塊
600‧‧‧無線設備
602‧‧‧處理器
604‧‧‧觸控式螢幕控制器
606‧‧‧內部記憶體
608‧‧‧收發機
610‧‧‧天線
612‧‧‧觸控式螢幕面板
614‧‧‧揚聲器
616‧‧‧蜂巢網路無線數據機晶片
618‧‧‧周邊設備連接介面
620‧‧‧殼體
622‧‧‧電源
708‧‧‧決定方塊
711‧‧‧處理器
712‧‧‧揮發性記憶體
713‧‧‧硬碟
714‧‧‧軟碟機
715‧‧‧壓縮光碟(CD)驅動器
717‧‧‧觸控板
718‧‧‧鍵盤
719‧‧‧顯示器100‧‧‧Communication system
102‧‧‧Wireless communication equipment
104‧‧‧Wireless communication network
106‧‧‧Web server
108‧‧‧Internet
110‧‧‧Hive base station
112‧‧‧Network Operations Center
114‧‧‧Two-way wireless communication link
116‧‧‧Server
150‧‧‧Network Architecture
152‧‧‧Evolved UMTS Terrestrial Radio Access Network (E-UTRAN)
154‧‧‧Evolved Packet Core (EPC)
156‧‧‧Home User Server (HSS)
158‧‧‧Service providers' IP services
160‧‧‧Service Gateway (SGW)
162‧‧‧Action Management Entity (MME)
163‧‧‧ Packet Data Network (PDN) Gateway (PGW)
164‧‧‧Traditional second generation (2G)/third generation (3G) access network
166‧‧‧MSC/VLR
168‧‧‧CS core
170‧‧‧German MSC (GMSC)
172‧‧‧Serving GPRS Support Node (SGSN)
174‧‧‧PS core
176‧‧‧Gateway GPRS Support Node (GGSN)
200‧‧‧Wireless communication equipment
202‧‧‧SIM interface
204‧‧‧First Identification Module SIM
206‧‧‧Second Identification Module SIM
208‧‧‧Encoder/Decoder (CODEC)
210‧‧‧Speakers
212‧‧‧ microphone
214‧‧‧ memory
216‧‧‧Based frequency data processor
218‧‧‧RF resources
220‧‧‧Antenna
222‧‧‧On-chip system equipment
224‧‧‧Keypad
226‧‧‧Touch screen display
300‧‧‧Software architecture
302‧‧‧ Non-Access Stratum (NAS)
304‧‧‧Access Layer (AS)
306‧‧‧ physical layer
308‧‧‧Media Access Control (MAC) sublayer
310‧‧‧ Radio Link Control (RLC) sublayer
312‧‧‧ Packet Information Convergence Agreement (PDCP)
313‧‧‧RRC sublayer
314‧‧‧Host layer
316‧‧‧hard interface
350‧‧‧Evolved Node B
400‧‧‧ method
402‧‧‧ square
404‧‧‧ square
408‧‧‧Decision box
410‧‧‧ square
412‧‧‧Decision box
414‧‧‧ squares
416‧‧‧ square
418‧‧‧Decision box
420‧‧‧ square
422‧‧‧Decision box
424‧‧‧ squares
426‧‧‧ squares
427‧‧‧ square
428‧‧‧Decision box
430‧‧‧ square
432‧‧‧ squares
500‧‧‧ method
502‧‧‧ square
504‧‧‧Decision box
506‧‧‧ square
508‧‧‧ square
510‧‧‧Decision box
512‧‧‧ squares
514‧‧‧ squares
516‧‧‧Decision box
518‧‧‧ square
600‧‧‧Wireless equipment
602‧‧‧ processor
604‧‧‧Touch screen controller
606‧‧‧Internal memory
608‧‧‧ transceiver
610‧‧‧Antenna
612‧‧‧Touch screen panel
614‧‧‧Speaker
616‧‧‧Hive Network Wireless Data Processor Chip
618‧‧‧ Peripheral device connection interface
620‧‧‧shell
622‧‧‧Power supply
708‧‧‧Decision box
711‧‧‧ processor
712‧‧‧ volatile memory
713‧‧‧ Hard disk
714‧‧‧VCD player
715‧‧‧Compact Disc (CD) drive
717‧‧‧ Trackpad
718‧‧‧ keyboard
719‧‧‧ display
被併入本文並且構成本說明書的一部分的附圖,圖示本發明的示例性實施例,並且連同上面提供的概括描述以及下面提供的具體實施方式一起用來解釋本文的特徵。The accompanying drawings, which are incorporated in FIG.
圖1A是適合於與各個實施例一起使用的網路的通訊系統方塊圖。1A is a block diagram of a communication system suitable for use with the various embodiments of the network.
圖1B是適合於與各個實施例一起使用的進化型封包系統(EPS)的系統方塊圖。FIG. 1B is a system block diagram of an Evolutionary Packet System (EPS) suitable for use with various embodiments.
圖2是圖示根據各個實施例的無線通訊設備的方塊圖。2 is a block diagram illustrating a wireless communication device in accordance with various embodiments.
圖3是圖示根據各個實施例的使用者平面LTE協定堆疊的方塊圖。3 is a block diagram illustrating a user plane LTE protocol stack in accordance with various embodiments.
圖4A和圖4B是圖示根據各個實施例的用於在實例無線通訊設備中實現無線電資源控制(RRC)狀態管理的方法的程序流程圖。4A and 4B are program flow diagrams illustrating methods for implementing radio resource control (RRC) state management in an example wireless communication device, in accordance with various embodiments.
圖5是圖示根據各個實施例的用於在實例無線通訊設備中實現RRC狀態管理的另一種方法的程序流程圖。5 is a program flow diagram illustrating another method for implementing RRC state management in an example wireless communication device, in accordance with various embodiments.
圖6是適合於與各個實施例一起使用的實例無線設備的組件圖。6 is a component diagram of an example wireless device suitable for use with various embodiments.
圖7是適合於與各個實施例一起使用的另一種實例無線設備的組件圖。7 is a component diagram of another example wireless device suitable for use with the various embodiments.
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic deposit information (please note according to the order of the depository, date, number)
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign deposit information (please note in the order of country, organization, date, number)
(請換頁單獨記載) 無(Please change the page separately) No
200‧‧‧無線通訊設備 200‧‧‧Wireless communication equipment
300‧‧‧軟體架構 300‧‧‧Software architecture
302‧‧‧非存取層(NAS) 302‧‧‧ Non-Access Stratum (NAS)
304‧‧‧存取層(AS) 304‧‧‧Access Layer (AS)
306‧‧‧實體層 306‧‧‧ physical layer
308‧‧‧媒體存取控制(MAC)子層 308‧‧‧Media Access Control (MAC) sublayer
310‧‧‧無線電鏈路控制(RLC)子層 310‧‧‧ Radio Link Control (RLC) sublayer
312‧‧‧封包資料彙聚協定(PDCP) 312‧‧‧ Packet Information Convergence Agreement (PDCP)
313‧‧‧RRC子層 313‧‧‧RRC sublayer
314‧‧‧主機層 314‧‧‧Host layer
316‧‧‧硬體介面 316‧‧‧hard interface
350‧‧‧進化型節點B 350‧‧‧Evolved Node B
Claims (30)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/080234 WO2016191916A1 (en) | 2015-05-29 | 2015-05-29 | System and methods for managing a radio resource control (rrc) state in a wireless communication device supporting concurrent radio access technologies |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201701634A true TW201701634A (en) | 2017-01-01 |
Family
ID=57439700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105116710A TW201701634A (en) | 2015-05-29 | 2016-05-27 | System and methods for managing a radio resource control (RRC) state in a wireless communication device supporting concurrent radio access technologies |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201701634A (en) |
WO (1) | WO2016191916A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI712326B (en) * | 2017-11-17 | 2020-12-01 | 美商高通公司 | Techniques for power control using carrier aggregation in wireless communications |
TWI762019B (en) * | 2020-11-06 | 2022-04-21 | 緯創資通股份有限公司 | Wireless network connection management method |
TWI771429B (en) * | 2017-06-14 | 2022-07-21 | 美商高通公司 | System and method for transmitting beam failure recovery request |
CN115765919A (en) * | 2017-03-24 | 2023-03-07 | 瑞典爱立信有限公司 | Methods, devices and media for scheduling request handling with multiple configured TTIs |
US20230119395A1 (en) * | 2021-10-14 | 2023-04-20 | Qualcomm Incorporated | Cdrx and idrx collisions |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3860304A1 (en) * | 2017-08-02 | 2021-08-04 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Transition method, network device, and terminal device |
US10334527B2 (en) | 2017-08-11 | 2019-06-25 | Qualcomm Incorporated | Method and/or system for scheduling multiple receive chains |
US10925056B2 (en) | 2018-06-29 | 2021-02-16 | Intel Corporation | Multimode device priority access management |
US10805879B2 (en) * | 2018-09-27 | 2020-10-13 | Apple Inc. | Low-power activation of accessory in sleep state |
US11399273B2 (en) | 2019-10-04 | 2022-07-26 | Apple Inc. | Multiple SIM card operation of an electronic device |
CN113473589B (en) * | 2020-03-31 | 2022-12-06 | 华为技术有限公司 | Timing advance determining method and communication device |
US12035299B2 (en) * | 2020-08-13 | 2024-07-09 | Qualcomm Incorporated | Scheduling communication for multiple subscriber identity modules over a single communication link |
US20240215101A1 (en) * | 2021-08-05 | 2024-06-27 | Apple Inc. | Multi-SIM Scheduling Gaps |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101022648B (en) * | 2006-02-14 | 2010-06-09 | 中兴通讯股份有限公司 | Calling trigger resource release method for wide-band code-divided multi-addressing system |
US8885517B2 (en) * | 2012-02-16 | 2014-11-11 | Giri Prassad Deivasigamani | Operational state mismatch identification for a mobile device |
US9319952B2 (en) * | 2012-03-30 | 2016-04-19 | Apple Inc. | Apparatus and methods for synchronization recovery in a hybrid network |
KR20140066356A (en) * | 2012-11-23 | 2014-06-02 | 삼성전자주식회사 | System, method and apparatus for solving mismatch of radio resource control status in wireless communication system |
-
2015
- 2015-05-29 WO PCT/CN2015/080234 patent/WO2016191916A1/en active Application Filing
-
2016
- 2016-05-27 TW TW105116710A patent/TW201701634A/en unknown
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115765919A (en) * | 2017-03-24 | 2023-03-07 | 瑞典爱立信有限公司 | Methods, devices and media for scheduling request handling with multiple configured TTIs |
TWI771429B (en) * | 2017-06-14 | 2022-07-21 | 美商高通公司 | System and method for transmitting beam failure recovery request |
TWI712326B (en) * | 2017-11-17 | 2020-12-01 | 美商高通公司 | Techniques for power control using carrier aggregation in wireless communications |
US11153829B2 (en) | 2017-11-17 | 2021-10-19 | Qualcomm Incorporated | Techniques for power control using carrier aggregation in wireless communications |
US11606758B2 (en) | 2017-11-17 | 2023-03-14 | Qualcomm Incorporated | Techniques for power control using carrier aggregation in wireless communications |
US11622334B2 (en) | 2017-11-17 | 2023-04-04 | Qualcomm Incorporated | Techniques for power control using carrier aggregation in wireless communications |
TWI762019B (en) * | 2020-11-06 | 2022-04-21 | 緯創資通股份有限公司 | Wireless network connection management method |
US20230119395A1 (en) * | 2021-10-14 | 2023-04-20 | Qualcomm Incorporated | Cdrx and idrx collisions |
US11832336B2 (en) * | 2021-10-14 | 2023-11-28 | Qualcomm Incorporated | CDRX and IDRX collisions |
Also Published As
Publication number | Publication date |
---|---|
WO2016191916A1 (en) | 2016-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201701634A (en) | System and methods for managing a radio resource control (RRC) state in a wireless communication device supporting concurrent radio access technologies | |
CN109691219B (en) | System and method for performing adaptive access procedure on multi-SIM wireless communication device | |
US10517003B2 (en) | Systems and methods for maintaining service on multiple SIMs in a wireless communication device operating in a multi-SIM multi-standby (MSMS) mode | |
JP7433488B2 (en) | Method and apparatus for handling configuration upon refusal of radio access network notification area (RNA) updates | |
CN108886828B (en) | System and method for performing multiple Subscriber Identity Module (SIM) functions on a wireless communication device over the same carrier frequency | |
JP5749365B2 (en) | System and method for maintaining the status of a core network during a serving radio network subsystem relocation | |
US20180220329A1 (en) | System and Methods for Improving Performance in a Multi-SIM Wireless Communication Device Using Voice-Over-Wireless Local Area Network Service | |
JP6847109B2 (en) | Systems and methods to avoid degradation of call performance due to loss of downlink control signals in wireless communication devices | |
US9980275B2 (en) | Systems and methods for improving call performance during cell selection on a multi-subscriber identity module (SIM) wireless communication device | |
US20180070327A1 (en) | System and Methods for Performing an Early Radio Link Recovery Procedure on a Multi-Subscriber Identity Module Wireless Communication Device | |
US20160198352A1 (en) | System and Methods for Improving Data Performance Via Deliberate Hybrid Automatic Repeat Request (HARQ) Acknowledgment (ACK) and Fast Radio Link Control (RLC) Non-acknowledgment (NACK) in a Multi-Subscriber Identity Module (SIM) Wireless Communication Device | |
US9420480B2 (en) | Fast scan algorithm for higher priority service search | |
US10327196B2 (en) | Apparatus and methods for intelligent scheduling in hybrid networks based on client identity | |
EP2873287A1 (en) | Mechanisms to support ue power preference signaling | |
US9307394B2 (en) | Devices and methods for preventing out-of-service periods in multi-subscription scenarios | |
JP6336573B2 (en) | Enhanced reconfiguration procedure in a mobile terminal to reduce signaling and power consumption overhead | |
WO2017140082A1 (en) | System and methods for improving performance during radio resource control (rrc) connected state on wireless communication device supporting concurrent radio access technologies |