TW201643487A - Light directing film - Google Patents

Light directing film Download PDF

Info

Publication number
TW201643487A
TW201643487A TW105117333A TW105117333A TW201643487A TW 201643487 A TW201643487 A TW 201643487A TW 105117333 A TW105117333 A TW 105117333A TW 105117333 A TW105117333 A TW 105117333A TW 201643487 A TW201643487 A TW 201643487A
Authority
TW
Taiwan
Prior art keywords
height
block
maximum value
blocks
major surface
Prior art date
Application number
TW105117333A
Other languages
Chinese (zh)
Other versions
TWI613474B (en
Inventor
王康華
楊景安
潘漢聰
Original Assignee
友輝光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/729,029 external-priority patent/US9366875B2/en
Application filed by 友輝光電股份有限公司 filed Critical 友輝光電股份有限公司
Publication of TW201643487A publication Critical patent/TW201643487A/en
Application granted granted Critical
Publication of TWI613474B publication Critical patent/TWI613474B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

The present invention discloses a light directing film comprising a first structured major surface, a second major surface opposite to the first structured major surface and a reference plane between the first structured major surface and the second major surface, wherein the reference plane is substantially perpendicular to the thickness direction of the light directing film, wherein the first structured major surface comprises a first prism element and a second prism element extending substantially in a first direction, wherein a first ridge of the first prism element has a first height relative to the reference plane and a second ridge of the second prism element has a second height relative to the reference plane, wherein the first height of the first ridge of the first prism element varies along the first direction. Preferably, the maximum of the first height is larger than the maximum of the second height.

Description

光導向膜Light guiding film

本發明是關於具有結構的表面的光學基板,特別是指能增強亮度的光學基板,更特別是指用於具有平面光源平面顯示器的光學基板。The present invention relates to an optical substrate having a structured surface, and more particularly to an optical substrate capable of enhancing brightness, and more particularly to an optical substrate having a planar light source flat panel display.

平面顯示科技廣泛使用在電視顯示器、電腦顯示器、及掌上型電子用品(如:手機、個人數位助理(PDAs)、等)。液晶顯示器(LCD)是平面顯示器其中的一種型態,它植入一具有像素陣列以表現出影像的液晶(LC)模組。在背光LCD中,亮度增強薄膜係使用稜鏡的結構引導光線沿著視線軸(註:與顯示器垂直),以增強顯示器由使用者所看到的光的亮度,因而可使這個系統用較少的能量來產生所需要的軸上(on-axix)照明。Flat display technology is widely used in television displays, computer monitors, and handheld electronics (eg, cell phones, personal digital assistants (PDAs), etc.). A liquid crystal display (LCD) is a type of flat panel display that incorporates a liquid crystal (LC) module having a pixel array to represent an image. In a backlit LCD, the brightness enhancement film uses a crucible structure to direct light along the line of sight (note: perpendicular to the display) to enhance the brightness of the light seen by the user, thus making the system less The energy to produce the required on-axix illumination.

到目前為止,亮度增強薄膜是由在薄膜的光線發射表面上之平行的稜鏡槽、雙凸透狀槽、或金字塔形狀所提供,用以改變光線於離開薄膜時之通過薄膜/空氣介面的角度,並使斜的入射光線,能在垂直於薄膜的光輸出面的方向上重新分配,使得更多的光線能垂直於薄膜光輸出面。亮度增強薄膜具有平滑的光入射面,經由此面使光由背光模組進入。迄今,許多應用使用相互成轉動關係的兩個亮度增強薄膜層,因此在各自薄膜層的溝槽是彼此成90度角。So far, the brightness enhancement film has been provided by parallel grooves, double convex grooves, or pyramid shapes on the light emitting surface of the film to change the light passing through the film/air interface when leaving the film. The angle and the oblique incident light can be redistributed in a direction perpendicular to the light output face of the film such that more light can be perpendicular to the film light output face. The brightness enhancement film has a smooth light entrance surface through which light enters the backlight module. To date, many applications have used two brightness enhancement film layers that are in a rotational relationship with each other, so that the grooves in the respective film layers are at an angle of 90 degrees to each other.

平面顯示器使用兩個亮度增強薄膜時,可能產生不希望出現的疊紋現象,此疊紋現象是在兩個亮度增強薄膜的表面上週期性稜鏡圖案結構的干涉所造成。過去,亮度增強薄膜已經發展出各種不同的表面結構以避免疊紋形成。在合併一單層亮度增強薄膜的平面顯示器中,這週期性的圖案造成的疊紋,是因為薄膜本身稜鏡結構圖案本身及此圖案的反射影像(當被平面顯示器中的其他表面反射)所造成。更甚者,亮度增強薄膜的結構及LC模組上的像素陣列也會形成疊紋型態。When two brightness enhancement films are used in a flat panel display, undesired moiré may occur, which is caused by interference of periodic pattern structures on the surfaces of the two brightness enhancement films. In the past, brightness enhancement films have developed a variety of different surface structures to avoid the formation of moiré. In a flat panel display incorporating a single layer of brightness enhancement film, the periodic pattern caused by the pattern is due to the film itself and the reflected image of the pattern (when reflected by other surfaces in the flat panel display) Caused. Moreover, the structure of the brightness enhancement film and the pixel array on the LC module also form a moiré pattern.

例如,美國專利號碼5,280,371揭露兩層平行的亮度增強薄膜使用不同的平行空間(spatial)頻率或間距。它更進一步揭露,相對於LC模組像素陣列,將至少一個亮度增強薄膜旋轉,如此薄膜上的縱向結構會與像素陣列形成一角度,進而減少疊紋效應。然而,由於傳統製造亮度薄膜的過程中,重要的修剪是必要的,以得到一垂直形狀的亮度增強薄膜,以與矩形之平面顯示器一起使用,相對於LC模組之像素陣列而言,稜鏡結構被旋轉一角度。這方法大大的增加生產的成本。For example, U.S. Patent No. 5,280,371 discloses the use of different parallel spatial frequencies or spacings for two parallel brightness enhancement films. It further discloses that at least one brightness enhancement film is rotated relative to the LC module pixel array such that the longitudinal structure on the film forms an angle with the pixel array, thereby reducing the moiré effect. However, due to the traditional process of manufacturing a brightness film, important trimming is necessary to obtain a vertical shape brightness enhancement film for use with a rectangular flat panel display, relative to the pixel array of the LC module, The structure is rotated an angle. This method greatly increases the cost of production.

美國專利號5,919,551揭露一種光學薄膜結構具有平行的、變化的尖峰或溝槽之間距,以減少可見的疊紋圖案,以及揭露合併一層或多層薄膜的光的顯示器。間距變化可以跨越(over)相鄰之尖峰及/或谷或是介於(between)相鄰成對的尖峰及/或谷之間。光學薄膜的截面,沿著尖峰及谷的方向,仍然是不變的。U.S. Patent No. 5,919,551 discloses an optical film structure having parallel, varying peaks or inter-groove spacing to reduce visible moiré patterns and to reveal a display incorporating light from one or more layers of film. The pitch variation can span adjacent peaks and/or valleys or bebetween adjacent pairs of spikes and/or valleys. The cross section of the optical film, along the direction of the peaks and valleys, remains unchanged.

美國專利號6,862,141揭露一種光學基板具有三度空間的表面,且具有約1公分或更少的關連長度(correlation length)。此光學基板被定義為一第一表面結構功能被第二個表面結構功能所調變,從第一道進入的光線,第一表面結構功能產生至少一反射的分量。三度空間表面的各尖峰位於相同的平面上。這光學基板適用於各種不同的應用上,包含亮度增強。這份專利提議較精確且複雜的方法來獲得光學基板的表面結構。從這份專利無法清楚地知道光學基板實際上是如何被實現。更進一步的説,吾人懷疑所揭露的結構其亮度增強的程度是否能達到與稜鏡薄膜相抗衡的程度。U.S. Patent No. 6,862,141 discloses an optical substrate having a three dimensional space surface and having a correlation length of about 1 cm or less. The optical substrate is defined as a first surface structure function that is modulated by a second surface structure function, the light entering from the first track, the first surface structure function producing at least one reflected component. The peaks of the three-dimensional surface are on the same plane. This optical substrate is suitable for a variety of different applications, including brightness enhancement. This patent proposes a more precise and complex method to obtain the surface structure of an optical substrate. It is not clear from this patent how the optical substrate is actually implemented. Furthermore, it is suspected that the disclosed structure has a degree of brightness enhancement that is comparable to that of the ruthenium film.

我們所需要的是一種具成本效益的光學基板,其能提供在單層基板中具有亮度增強與減少疊紋效應的表面結構。What is needed is a cost effective optical substrate that provides a surface structure with brightness enhancement and reduced moiré effects in a single layer substrate.

本發明指向一種光學基板,其具有一種可增強照明或亮度、及減少在單層基板之疊紋效應(moire effect)的結構的表面(structured surface)。本發明之其中一種型態,光學基板可以是膜狀(film)、片狀(sheet)、板狀(plate)及其他形狀類似的形式,可以是活動式的或固定式的,具有三度空間變化的,結構的光輸出表面包含一組不規則的_irregular稜鏡結構及一組非結構的(non-structured)光滑、平坦的光輸入面。The present invention is directed to an optical substrate having a structured surface that enhances illumination or brightness and reduces the moire effect on a single layer substrate. In one form of the invention, the optical substrate may be in the form of a film, a sheet, a plate, and the like, and may be movable or fixed, having a three-dimensional space. The varying, structured light output surface contains an irregular set of _irregular(R) structures and a set of non-structured smooth, flat light input faces.

在本發明之一具體實例中,在整個光學基板結構中,光輸出面與光輸入面通常是互相平行的(即:並不構成整體的逐漸變細狀(tapered)、凹狀或凸狀之基板結構)。In one embodiment of the present invention, in the entire optical substrate structure, the light output surface and the light input surface are generally parallel to each other (ie, do not constitute a whole tapered, concave or convex shape). Substrate structure).

於本發明的另一具體實例中,光輸出面的不規則的稜鏡結構可視為包含被橫向地(並肩地)安置的縱向不規則稜鏡區塊,以界定尖峰(peak)及谷(valley)。縱向不規則稜鏡區塊的一柱面(facet)則形成於每一相鄰的尖峰與谷間。縱向變化的稜鏡結構有一或多個如下的結構特性。至少複數個不規則稜鏡區塊具有由一端大而逐漸變細到一端小的形式,或從較寬的寬度到較窄的寬度的形式,或從高的尖峰高度到低的尖峰高度的形式。相鄰的尖峰,相鄰的谷,及/或相鄰的尖峰與谷在至少一定範圍的橫向稜鏡區塊中是不平行的。相鄰的尖峰,相鄰的谷,及/或相鄰的尖峰與谷可以有序地(orderly)、半有序地、隨機地、或擬隨機(quasi-random)地方式輪流地(alternately)於平行與非平行間改變。同樣地,相對於一特別的縱向方向,非平行的尖峰,谷及/或尖峰與谷可以有序地、半有序地、隨機地、或擬隨機地,介於收斂至發散間輪流變換。所有的尖峰並不在相同的平面上,而所有的谷可或不可在相同的平面上。沿縱方向,尖峰及谷的截面不是固定的。介於相鄰的尖峰、相鄰的谷及/或相鄰的尖峰及谷之間距,跨越不同稜鏡區塊,以有序地、半有序地、隨機地、或擬隨機地橫向地(laterally)改變。In another embodiment of the invention, the irregular 稜鏡 structure of the light output face can be considered to include longitudinal irregular ridge blocks that are laterally (and laterally) disposed to define peaks and valleys (valley) ). A facet of the longitudinal irregular meandering block is formed between each adjacent peak and valley. The longitudinally varying 稜鏡 structure has one or more of the following structural characteristics. At least a plurality of irregularly shaped blocks have a form that is large and tapered from one end to a small end, or a form from a wider width to a narrower width, or a form from a high peak height to a low peak height. . Adjacent spikes, adjacent valleys, and/or adjacent peaks and valleys are non-parallel in at least a range of lateral chirp blocks. Adjacent spikes, adjacent valleys, and/or adjacent peaks and valleys may alternately, orderly, semi-orderedly, randomly, or quasi-randomly. Change between parallel and non-parallel. Similarly, non-parallel peaks, valleys, and/or spikes and valleys may alternately converge to divergence, in an orderly, semi-ordered, random, or quasi-random manner, relative to a particular longitudinal direction. All the peaks are not on the same plane, and all the valleys may or may not be on the same plane. In the longitudinal direction, the cross sections of the peaks and valleys are not fixed. Between adjacent peaks, adjacent valleys, and/or adjacent peaks and valleys, spanning different blocks, orderly, semi-orderedly, randomly, or pseudo-randomly ( Laterally) change.

在本發明之另一具體實例中,不規則稜鏡結構在光輸出表面可視為包含不規模稜鏡區塊的並肩或橫向列,其中每一個不規則稜鏡區塊的縱列可視為包含複數個不規則稜鏡區塊以連續的方式,連接著端與端。在一具體實例中,一個稜鏡區塊的較小端沿著相同的列,連接到另外一個稜鏡區塊的較小端,較大端沿著相同的列,連接到另外一個稜鏡區塊的較大端。橫向相鄰的尖峰、相鄰的谷及/或相鄰的尖峰及谷都不是平行的。許多跨越於稜鏡區塊上的尖峰與谷的結構具有更進一步的結構特性,其是與先前的具體實例相似的。相鄰的不規則稜鏡區塊可以是具有相同的長度之不有序的縱向截面,或是具有不同長度的隨機或擬隨機之不規則截面。In another embodiment of the present invention, the irregular 稜鏡 structure may be viewed on the light output surface as a side or lateral column containing non-scale , blocks, wherein the column of each irregular 稜鏡 block may be considered to contain a plurality The irregular blocks are connected in a continuous manner to the ends. In a specific example, the smaller end of one 稜鏡 block is connected to the smaller end of the other 稜鏡 block along the same column, and the larger end is connected to the other 稜鏡 area along the same column. The larger end of the block. Lateral adjacent peaks, adjacent valleys, and/or adjacent peaks and valleys are not parallel. Many of the structures of the peaks and valleys spanning the meandering block have further structural characteristics, which are similar to the previous specific examples. Adjacent irregular crotch blocks may be unordered longitudinal sections of the same length, or random or quasi-random irregular sections of different lengths.

在本發明更進一步的具體實例中,稜鏡區塊相鄰列的尖峰或谷都是平行的,且一列的不規則稜鏡區塊與另一列的不規則稜鏡區塊交叉。In a further embodiment of the invention, the peaks or valleys of adjacent columns of the block are parallel, and one column of the irregular block intersects the other column of the irregular block.

在本發明另外一具體實例中,每個稜鏡區塊之一或多個柱面可能是實質地平(flat)或曲的(curyed)(凸的及/或凹的)。In another embodiment of the invention, one or more of the cylinders may be substantially flat or curved (convex and/or concave).

本發明揭露一光導向膜。該光導向膜具有一結構化第一主表面、相對於該結構化第一主表面的一第二主表面和位於該結構化第一主表面和該第二主表面之間的一參考平面,其中該參考平面實質上垂直於該光導向膜的厚度方向,其中該結構化第一主表面包含實質上在一第一方向上延伸的一第一稜鏡元件和一第二稜鏡元件,其中該第一稜鏡元件的一第一稜線具有相對於該參考平面的一第一高度且該第二稜鏡元件的一第二稜線具有相對於該參考平面的一第二高度,其中該第一稜鏡元件的該第一稜線的該第一高度沿著該第一方向變化。較佳來說,該第一高度的最大值大於該第二高度的最大值。The present invention discloses a light directing film. The light directing film has a structured first major surface, a second major surface opposite the structured first major surface, and a reference plane between the structured first major surface and the second major surface, Wherein the reference plane is substantially perpendicular to a thickness direction of the light directing film, wherein the structured first major surface comprises a first tantalum element and a second tantalum element extending substantially in a first direction, wherein a first ridge line of the first 稜鏡 element has a first height relative to the reference plane and a second ridge line of the second 稜鏡 element has a second height relative to the reference plane, wherein the first The first height of the first ridgeline of the haptic element varies along the first direction. Preferably, the maximum value of the first height is greater than the maximum value of the second height.

當放置第二光學片材(例如光導向膜)使第二光學片材接近光導向膜100(第一光學片材)的結構化第一主表面時,高度較高的稜鏡元件的稜線(ridge、peak或apex)(具有第一稜鏡元件的第一稜線的第一高度的最大值的稜鏡元件)對於第二光學片材接近光導向膜的結構化第一主表面產生了限制作用,藉以降低吸附(wet-out)的可能性。高度較高的稜鏡元件和高度較低的稜鏡元件的高度差異使得在高度較低的稜鏡元件區域大大地抑制不想要的光學耦合現象發生。因此,使用結構化第一主表面作為控制接近之用大大地降低在結構化第一主表面上容易產生不想要的光學耦合現象的表面積。在本發明中,具有第一高度111B最大值之點不僅可以位於不同的第一稜鏡元件上 ,也可以位於同一個的第一稜鏡元件上,以使光導向膜的結構化第一主表面具有用以接觸或足夠接近第二光學片材的最小表面積。因此,結構化第一主表面可提高亮度、降低疊紋(moiré)效應和避免吸附。When a second optical sheet (eg, a light directing film) is placed such that the second optical sheet approaches the structured first major surface of the light directing film 100 (first optical sheet), the ridgeline of the higher height tantalum element ( Ridge, peak or apex) (an element having a maximum of the first height of the first ridge of the first 稜鏡 element) has a limiting effect on the second optical sheet approaching the structured first major surface of the light directing film In order to reduce the possibility of wet-out. The difference in height between the higher-height element and the lower-height element makes the suppression of unwanted optical coupling phenomena in the lower-height element area. Thus, the use of a structured first major surface as a control approximation greatly reduces the surface area on the structured first major surface that is susceptible to unwanted optical coupling phenomena. In the present invention, the point having the maximum value of the first height 111B may be located not only on the different first 稜鏡 element but also on the same first 稜鏡 element, so that the structured first main light guiding film The surface has a minimum surface area to contact or be sufficiently close to the second optical sheet. Thus, structuring the first major surface enhances brightness, reduces moiré effects, and avoids adsorption.

本描述是目前實現本發明之最好的型態。本發明在此所描述參照了各種不同的具體實例及圖式。本描述是為了闡明本發明的大略原理因此不該視為限制的觀點。在不悖離本發明之範圍與精神下,以本發明所提及的方式加以變化及增進並且完成的技術是被贊許的。而本發明的範圍最好是參考附件之申請專利範圍來決定。This description is by way of the best mode of carrying out the invention. The invention has been described herein with reference to various specific embodiments and drawings. The description is intended to clarify the general principles of the invention and therefore should not be considered as limiting. Techniques that are varied, enhanced, and accomplished in the manner in which the invention is described are appreciated without departing from the scope and spirit of the invention. The scope of the invention is preferably determined by reference to the appended claims.

本發明指向一種具有結構的表面以增強亮度及減少疊紋效應(moire effect)的光學基板。於本發明的一態樣,光學基板是以膜形、片形、板形及其他類似的型態,可以是活動式的或固定式的,具有三維變化有結構的光輸出面則包含一種不規則稜鏡結構,及一種非結構的、光滑、平坦的光輸入面。藉由說明但不設限,本發明闡述連接一光學基板用於LCD上,此LCD具有一般長方形顯示區域以導入影像的LC面板。The present invention is directed to an optical substrate having a structured surface to enhance brightness and reduce the moire effect. In one aspect of the invention, the optical substrate is in the form of a film, a sheet, a plate, and the like, and may be movable or fixed. The light output surface having a three-dimensional variation has a type of Regular 稜鏡 structure, and an unstructured, smooth, flat light input surface. By way of illustration and not limitation, the invention is directed to an optical substrate for use in an LCD having an generally rectangular display area for directing an image of an LC panel.

圖1說明一平面顯示器的例子。一種背光LCD,依據本發明的其中一具體實例,包含一液晶(LC)顯示器模組12,以背光模組14形式表現的一平面光源,及幾個插入LC模組12與背光模組14間的光學薄膜。LC模組12包含三明治式地介於兩個透明基板之間的液晶,以及定義二維像素陣列的控制線路。背光模組14提供平面光分佈,此背光型態可以是展延於平面上的光源,也可以是如圖1所示的邊緣光源型態,提供一種線性光源16在導光板18的邊緣。提供反射片20以導引光線由線性光源16經由導光板18的邊緣進入導光板18中。此導光板是結構的(例如:具有定義在面對而遠離LC模組12的底面、且具有逐漸變細的板及光之反射及/或散射表面的結構),經由面對LC模組12的頂層平面,以分布及導光。此光學薄膜可能包含上下擴散薄膜22及24,用以從導光板18的光滑面來擴散光線。光學薄膜更進一步包含上下結構的表面,及依據本發明的光學基板26及28,用以將光線重新分布,以使沿著垂直薄膜表面方向的光線的分布為更多。光學基板26及28常被引用於如照明或亮度增強薄膜、光的重導薄膜、及引導擴散薄膜等的技術。光線從如此的光學薄膜組合進入LC模組12,是空間均勻地分布於LC模組12的平坦面上,而且具有相對強度的垂直光線明亮度。依據本發明的光學基板可與LCD使用與部署以供顯示,例如:電視、筆記型電腦、螢幕、可攜式裝置如手機、PDA及相關產品,以使顯示更明亮。Figure 1 illustrates an example of a flat panel display. A backlight LCD, in accordance with one embodiment of the present invention, includes a liquid crystal (LC) display module 12, a planar light source in the form of a backlight module 14, and a plurality of interposed LC modules 12 and a backlight module 14 Optical film. The LC module 12 includes liquid crystal sandwiched between two transparent substrates, and a control line defining a two-dimensional array of pixels. The backlight module 14 provides a planar light distribution, which may be a light source extending on a plane, or an edge light source type as shown in FIG. 1, providing a linear light source 16 at the edge of the light guide plate 18. The reflective sheet 20 is provided to guide light into the light guide plate 18 from the linear light source 16 via the edge of the light guide plate 18. The light guide plate is structural (for example, having a structure defined to face away from the bottom surface of the LC module 12 and having a tapered plate and a light reflecting and/or scattering surface), facing the LC module 12 The top plane is to distribute and guide light. The optical film may include upper and lower diffusing films 22 and 24 for diffusing light from the smooth surface of the light guide plate 18. The optical film further includes surfaces of the upper and lower structures, and optical substrates 26 and 28 in accordance with the present invention for redistributing light such that the distribution of light along the direction of the surface of the vertical film is more. The optical substrates 26 and 28 are often cited in techniques such as illumination or brightness enhancement films, light redirecting films, and guided diffusion films. Light rays are combined from such an optical film into the LC module 12, which is spatially evenly distributed on the flat surface of the LC module 12, and has a relative intensity of vertical light. Optical substrates in accordance with the present invention can be used and deployed with LCDs for display, such as televisions, notebook computers, screens, portable devices such as cell phones, PDAs, and related products to make displays brighter.

在本發明的一具體實例中,在整個光學基板結構中,一般而言,光輸出面與光輸入面是彼此平行的(即,通常並不形成如同背光模組之導光板一樣逐漸變細的形狀,或者如同凹的形狀或是凸的形狀的整個基板結構)。參照圖2,光學基板30具有一平坦光滑的光輸入面32,並且有一具有不規則稜鏡結構的光輸出面34,此不規則稜鏡結構可視為包含被安排在橫向排列(即,並肩)之縱向的不規則稜鏡區塊。In one embodiment of the present invention, in the entire optical substrate structure, generally, the light output surface and the light input surface are parallel to each other (ie, generally do not form a thinner like a light guide plate of the backlight module). Shape, or the entire substrate structure like a concave shape or a convex shape). Referring to Figure 2, the optical substrate 30 has a flat smooth light input face 32 and has a light output face 34 having an irregular meandering structure which can be considered to be arranged to be arranged in a lateral direction (i.e., side by side). The vertical irregular block.

為了容易參考,在此將採用如下的正交x、y、z軸系統用以解釋各種不同的方向。如圖2所示,x軸是穿越尖峰與谷的方向,也可參照為橫向的方向。參照稜鏡區塊的縱向方向則是參照稜鏡區塊35俯視圖中的尖峰36。y軸與x軸正交,通常是指稜鏡區塊35的縱向方向。稜鏡區塊35是不有序的幾何形狀,當以平面俯視之,y軸可以不需要位於縱向方向或是沿著尖峰(例如,圖3)。光輸入面32位於x-y平面上。對一個長方形的光學基板來說,x及y軸將沿著基板的正交邊緣。z軸是正交於x及y軸。代表稜鏡區塊橫向列的端點之邊緣位於x-z平面上,如圖2所示。參照稜鏡區塊35的橫截面,則表示沿著y軸上的各個位置之x-z平面上的截面。進一步來說,所參考的水平方向則是指在x-y平面,而所參考垂直方向則是指z方向。For ease of reference, the following orthogonal x, y, z-axis systems will be employed herein to account for various different directions. As shown in Fig. 2, the x-axis is the direction crossing the peaks and valleys, and can also be referred to as the lateral direction. Referring to the longitudinal direction of the meandering block, reference is made to the peak 36 in the top view of the meandering block 35. The y-axis is orthogonal to the x-axis and generally refers to the longitudinal direction of the haptic block 35. The meandering block 35 is an unordered geometry that, when viewed in plan, may not need to be in the longitudinal direction or along a peak (eg, Figure 3). The light input face 32 is located on the x-y plane. For a rectangular optical substrate, the x and y axes will follow the orthogonal edges of the substrate. The z-axis is orthogonal to the x and y axes. The edge of the endpoint representing the horizontal column of the block is located on the x-z plane, as shown in FIG. Referring to the cross section of the crucible block 35, the cross section along the x-z plane of each position on the y-axis is indicated. Further, the horizontal direction referred to refers to the x-y plane, and the reference vertical direction refers to the z direction.

圖4說明一個單一縱向的、不規則的稜鏡區塊35。稜鏡區塊35可視為依據本發明之一具體實例中之光學基板的基本方塊。須注意的是,在此以下將被明顯討論的,稜鏡區塊是連接於縱向及/或橫向上相鄰的稜鏡區塊。因為稜鏡區塊事實上並非個別分離的區塊所組合在一起的,稜鏡區塊的材料是一種連續且緊密連接在一起的結構,沒有實際的接觸或連接面。然而,為了易於說明本發明,光學基板的結構的表面可視為由複數個稜鏡區塊所組成。然而,從結構的表面觀之,稜鏡區塊的柱面結構外觀是很明顯的。稜鏡區塊的端或是谷是由(如示意圖所示之變換線transition line)介於縱向連接區塊之間的變換(transition)所定義出來的。以下更進一步的被了解,在稜鏡區塊內介於柱面間的變換(例如:在尖峰上)及介於不同稜鏡區塊間的柱面可能是有徑的(radiused)或圓角的(rounded),但是這樣的變換仍然是由柱面方位的改變來決定。Figure 4 illustrates a single longitudinal, irregular ridge block 35. The crucible block 35 can be considered as a basic block of an optical substrate in accordance with one embodiment of the present invention. It should be noted that, as will be apparent below, the 稜鏡 block is connected to the 稜鏡 block that is adjacent in the longitudinal and/or lateral direction. Since the 稜鏡 block is not actually a combination of individual separated blocks, the material of the 稜鏡 block is a continuous and tightly connected structure with no actual contact or joint surface. However, for ease of illustration of the invention, the surface of the structure of the optical substrate may be considered to consist of a plurality of germanium blocks. However, from the surface of the structure, the appearance of the cylindrical structure of the crucible block is obvious. The end or valley of the block is defined by a transition between the longitudinally connected blocks (as shown in the schematic transition line). It is further understood below that the inter-cylinder transformations in the 稜鏡 block (eg on peaks) and the cylinders between different 稜鏡 blocks may be radiused or rounded (rounded), but such transformations are still determined by changes in cylinder orientation.

用圖4的端(面)40來作參考,稜鏡區塊35的橫截面在圖4通常是三角形的,在三角形29a下方(亦即,三角形的基座往下延伸)之基板具有一薄層或長方形基座31a。注意的是,基座31a及三角形29a都是整合體(integral)的一部分或是單一(monolithic)結構的一部份。稜鏡區塊35包含一大的端39及一小的端40,及一尖峰36以直線方式從大端39到小端40的斜坡。在圖2及3的具體實例中,在稜鏡區塊的端39及40的柱面是平行的,而尖峰36相對端面(從上方以平面視之)偏斜一角度。(以下所討論的其他具體實例,稜鏡區塊的端面可能是平行的,尖峰36垂直於至少一個端面或者相對至少一個端面偏離一角度,或是柱面可能是非平行的。例如圖15中的不規則稜鏡端面的幾何形狀,以及相對於端的尖峰。)在尖峰36的每個側邊是稜鏡區塊的平柱面(facet)38。尖峰36的頂角,由沿著整個稜鏡區塊35的不同x-z截面來看,保持著常數(例如:選擇介於70度至110度角間,以90度較佳)。例如參考圖2之光學基板30中的尖峰頂角被討論時,此點將會更加明顯。須注意的是,所參考的頂角在此所指的是尖峰36的角度,此頂角是沿著y方向的x-z平面上的截面來看的,如上所定義。圖4表示基座31a為均勻厚度,也可以是不均勻厚度,如同谷37的高度(在z-方向)可能沿著縱向方向以及相對於谷37的橫向方向而改變,如以下之更進一步解釋。此後,所提的尖峰與谷的高度是相對於光輸入平面32,而沿z方向量測。注意的是,由於製造的限制,從x-z平面之截面來看,尖峰36的頂角及谷37的底角(在此稱為谷頂角)可能是圓角的而非尖銳的。Referring to the end (face) 40 of Fig. 4, the cross section of the crucible block 35 is generally triangular in Fig. 4, and the substrate below the triangle 29a (i.e., the base of the triangle extends downward) has a thin Layer or rectangular base 31a. Note that the pedestal 31a and the triangle 29a are both part of an integral or part of a monolithic structure. The crotch block 35 includes a large end 39 and a small end 40, and a ramp 36 is linearly sloped from the large end 39 to the small end 40. In the specific examples of Figures 2 and 3, the cylinders at the ends 39 and 40 of the crucible block are parallel, and the peaks 36 are offset at an angle relative to the end faces (viewed from above in a planar view). (Other embodiments discussed below, the end faces of the meandering blocks may be parallel, the peaks 36 being perpendicular to at least one of the end faces or offset from the at least one end face by an angle, or the cylinders may be non-parallel. For example, in FIG. The geometry of the irregular meandering end face, as well as the peak relative to the end.) At each side of the peak 36 is the facet 38 of the meandering block. The apex angle of the peak 36 is maintained constant by the different x-z cross-sections along the entire meandering block 35 (e.g., between 70 and 110 degrees, preferably 90 degrees). This point will be more apparent when, for example, the peak apex angle in the optical substrate 30 of FIG. 2 is discussed. It should be noted that the reference apex angle herein refers to the angle of the peak 36 which is viewed along the y-direction in the x-z plane, as defined above. Figure 4 shows that the pedestal 31a is of uniform thickness and may also be of non-uniform thickness, as the height of the valley 37 (in the z-direction) may vary along the longitudinal direction and with respect to the lateral direction of the valley 37, as explained further below. . Thereafter, the height of the raised peaks and valleys is measured relative to the light input plane 32 and along the z direction. It is noted that due to manufacturing constraints, the apex angle of the peak 36 and the base angle of the valley 37 (referred to herein as the apex angle) may be rounded rather than sharp from the cross-section of the x-z plane.

特別說明的是,複數個縱向稜鏡區塊35被安排在橫向的列如圖2所示。當俯視自垂直於x-y平面及稜鏡縱向方向的截面時,尖峰36頂角是可變化的,但是由x-z截面來看,沿著稜鏡區塊之不同的y的位置時(例如,看圖3中之平行截面A-A、B-B、C-C、D-D)仍然是常數。尖峰36頂角係視製程使用而定,是直接或間接地,以機械工具製作尖峰36模具時之角度所定,此模具用以形成尖峰。例如,工具可能是被用來轉換成各種自由的角度,包含x、y及z方向,之機台所支承,如此導致光學基板30結構的表面不規則稜鏡區塊上之三維變化,沿y方向上的不同位置的x-z平面上,保持一個固定的尖峰頂角。更複雜的支承裝置可用來提供於x、y及z方向移動及x、y、z軸轉動之更多的自由度(degree of freedom),使得稜鏡區塊具有更複雜的三維變化結構。Specifically, a plurality of longitudinal blocks 35 are arranged in a horizontal column as shown in FIG. The apex angle of the peak 36 is changeable when viewed from a section perpendicular to the xy plane and the longitudinal direction of the ,, but by the xz section, along the different y positions of the 稜鏡 block (for example, looking at the figure) The parallel sections AA, BB, CC, DD) in 3 are still constant. The peak angle of the peak 36 depends on the process, and is determined directly or indirectly by the angle at which the tool 36 is used to make the peak 36 mold. The mold is used to form a peak. For example, the tool may be used to convert to various free angles, including the x, y, and z directions, supported by the machine, thus resulting in a three-dimensional change in the surface irregularities of the optical substrate 30 structure, along the y-direction. Maintain a fixed peak apex angle on the xz plane at different locations. More complex support devices can be used to provide more degrees of freedom in the x, y, and z directions of movement and x, y, and z axis rotations, resulting in a more complex three dimensional variation of the 稜鏡 block.

相鄰稜鏡區塊35的柱面38相交錯而定義一谷37。橫越橫向地相接列來看,谷37的頂角可能是變化的也可能是沒有變化的。這些稜鏡區塊內的每一個稜鏡區塊可能是非對稱於x-y,x-z及/或y-z平面,或可能是對稱於某些平面 (例如:在圖3,稜鏡區塊35c及35h是對稱於通過尖峰36c及36h的個別垂直y-z平面。)當橫越整個光學基板30的平面面積來看,這稜鏡區塊35的組合可能是非對稱的,或者當沿著某些平面來看可能是對稱的(例如:圖3中之光學基板30中,相對經由稜鏡區塊35e及35f間之谷37e的y-z平面,其左半截面與右半截面是互相對稱的)。注意在光學基板30中不同的稜鏡區塊35的幾何形狀(例如:整體的尺寸,大小端相對於尖峰36的角度,尖峰與谷的高度等)可能是不同的。The cylinders 38 of adjacent crucible blocks 35 are staggered to define a valley 37. Looking at the horizontally adjacent rows, the apex angle of the valley 37 may or may not change. Each of the 稜鏡 blocks within these 稜鏡 blocks may be asymmetric to the xy, xz and/or yz planes, or may be symmetrical to certain planes (eg, in Figure 3, 稜鏡 blocks 35c and 35h are symmetrical) The individual vertical yz planes passing through the peaks 36c and 36h.) When viewed across the planar area of the entire optical substrate 30, the combination of the blocks 35 may be asymmetrical or may be Symmetrical (for example, in the optical substrate 30 of Fig. 3, the left half section and the right half section are symmetrical with respect to each other via the yz plane of the valley 37e between the meandering blocks 35e and 35f). Note that the geometry of the different haptic blocks 35 in the optical substrate 30 (e.g., the overall size, the angle of the sized end relative to the peak 36, the height of the peaks and valleys, etc.) may be different.

如圖2所示,不規則稜鏡結構的光輸出面34包含縱向的不規則稜鏡區塊35a到35j,以橫向的列安排(亦即,並肩的),而定義尖峰36a到36j及谷37a到37i。圖3的俯視圖更清楚的說明了光學基板30,縱方向變化的稜鏡區塊有如下的結構特性,再加上那些已於上述所強調過的。至少一複數個稜鏡區塊每一個有大的端39(有較大的寬度及尖峰高度)逐漸變細地到一個小的端40(具有一個較小的寬度及尖峰高度)。例如,稜鏡區塊35a、35b、35d、35e、35f、35g、35i、及35j。參考圖2,在光學基板30內,至少某些尖峰36是不在相同的x-y水平面上的。在光學基板30內至少某些谷37a到37i是在相同的x-y水平面上的(亦即,對某些谷來說,谷的高度,或者說是介於谷37a到37i與光輸入面32之間的基座材料厚度是不變的)。另外一種未表示的是,至少某些谷37a到37i是不在相同的x-y水平面上的。更進一步的說,谷37的高度(亦即,介於谷與光輸入面32之間的厚度)可以沿著谷37而變化。更進一步的說,沿著x軸方向之光學基板30的相反緣,不規則稜鏡區塊橫向至少一範圍內,大端39與小端40是以隨機、擬隨機、有序的、半有序的形式混合著(亦即,交替著介於大的寬度到窄的寬度,或是從較大的尖峰高度到較小的尖峰高度)。介於橫向的相鄰稜鏡區塊的變換(亦即,谷37)是連續的(亦即,沒有落差),即使此變換是在平的柱面38間亦然。或者,介於橫向的相鄰稜鏡區塊間的變換可能是光滑的或圓角的,藉由提供一半徑(未表出)於介於相鄰稜鏡區塊間的變換或連接點上。這種圓角的半徑可能是由製造的限制所形成,但這結構的表面塊體之特性具有良好的平柱面,也許除了介於相鄰稜鏡區塊及/或沿著尖峰之變換點之外。As shown in Fig. 2, the light output face 34 of the irregular 稜鏡 structure includes longitudinal irregular ridge blocks 35a to 35j arranged in a lateral column (i.e., side by side), and defines peaks 36a to 36j and valleys. 37a to 37i. The top view of Fig. 3 more clearly illustrates the optical substrate 30, and the longitudinally varying meandering blocks have the following structural characteristics, plus those already emphasized above. At least one of the plurality of turns of the block has a large end 39 (having a larger width and a peak height) that tapers to a small end 40 (having a smaller width and peak height). For example, the blocks 35a, 35b, 35d, 35e, 35f, 35g, 35i, and 35j. Referring to Figure 2, in the optical substrate 30, at least some of the peaks 36 are not at the same x-y level. At least some of the valleys 37a to 37i in the optical substrate 30 are on the same xy level (i.e., for some valleys, the height of the valleys, or between the valleys 37a to 37i and the light input surface 32) The thickness of the pedestal material is constant. Another indication is that at least some of the valleys 37a to 37i are not at the same x-y level. Still further, the height of the valley 37 (i.e., the thickness between the valley and the light input face 32) may vary along the valley 37. Further, the opposite edge of the optical substrate 30 along the x-axis direction, the irregular 稜鏡 block is laterally at least within a range, and the large end 39 and the small end 40 are random, quasi-random, ordered, and semi-existent. The form of the sequence is mixed (ie, alternating between a large width to a narrow width, or from a larger peak height to a smaller peak height). The transformation (i.e., valley 37) of adjacent lateral blocks in the lateral direction is continuous (i.e., there is no drop) even if the transformation is between flat cylinders 38. Alternatively, the transition between adjacent lateral blocks may be smooth or rounded by providing a radius (not shown) at the transition or junction between adjacent blocks. . The radius of such rounded corners may be formed by manufacturing constraints, but the surface block of this structure has a good flat cylindrical surface, perhaps in addition to the transition between adjacent tantalum blocks and/or spikes. Outside.

相鄰尖峰36、相鄰谷37、及/或相鄰尖峰36與谷37之間距是以規則地、半規則地、隨機地、或擬隨機地形式改變著。要注意的是,一整群隨機不規則稜鏡區塊之陣列、圖案、或配置,可能在一定範圍的面積或長度中重複著並分布於整個光學基板30的結構的光輸出面上,導致整個光學基板上整體性的規則地、半規則地、或擬隨機地圖案或安排,如圖10之說明,並討論如下。相鄰的尖峰,相鄰的谷,及/或相鄰的尖峰與谷在至少一段範圍的橫向的稜鏡區塊中,都不是平行的。相鄰的尖峰36,相鄰的谷37,及/或相鄰的尖峰36與谷37可能以規則地、半規則地隨機地、或擬隨機地形式,在平行與非平行間交替著。同樣的,相鄰但不平行的尖峰36、相鄰的谷37、及/或相鄰的尖峰36與谷37可能以規則地、半規則地、隨機地、或擬隨機地形式,交替地介於收斂到發散間(參照於稜鏡區塊的同一的一般縱向方向)。只要不悖離本發明的範圍與精神,大端39,及/或小的端40,可以是相同的大小及形狀,但也可以是不同的。y-方向上及/或在一個特定的尖峰與谷的一般的縱向上之不同位置的x-z平面上,尖峰36與谷37處所截取之光學基板30之截面並非一成不變的。在圖2及圖3說明的具體實例中,沿著縱向,稜鏡區塊35c及35h有均勻的寬度、端及尖峰與谷。即使這些特別的個別稜鏡區塊具有有序的幾何形狀,然而參照其他的稜鏡區塊,以整個來看,它們仍然對結構的表面的不規則性有所貢獻。The spacing between adjacent peaks 36, adjacent valleys 37, and/or adjacent peaks 36 and valleys 37 is altered in a regular, semi-regular, random, or quasi-random manner. It should be noted that an array, pattern, or arrangement of a random group of random irregular blocks may be repeated over a range of areas or lengths and distributed over the light output surface of the structure of the entire optical substrate 30, resulting in The overall optical substrate is generally regular, semi-regular, or quasi-randomly patterned or arranged, as illustrated in Figure 10, and discussed below. Adjacent spikes, adjacent valleys, and/or adjacent peaks and valleys are not parallel in at least a range of laterally meandering blocks. Adjacent peaks 36, adjacent valleys 37, and/or adjacent peaks 36 and valleys 37 may alternate in a regular, semi-regular random, or quasi-random manner, between parallel and non-parallel. Similarly, adjacent but non-parallel peaks 36, adjacent valleys 37, and/or adjacent peaks 36 and valleys 37 may be alternately introduced in a regular, semi-regular, random, or quasi-random manner. Converging to the divergence (refer to the same general longitudinal direction of the block). The large end 39, and/or the small end 40, may be of the same size and shape, but may be different, without departing from the scope and spirit of the invention. The cross-section of the optical substrate 30 taken at the peak 36 and the valley 37 is not constant in the y-direction and/or in the x-z plane at a particular position in the general longitudinal direction of a particular peak and valley. In the specific example illustrated in FIGS. 2 and 3, the meandering blocks 35c and 35h have uniform widths, ends, and peaks and valleys along the longitudinal direction. Even though these particular individual blocks have an ordered geometry, referring to other blocks, they still contribute to the surface irregularities of the structure as a whole.

在本發明的其他具體實例中,在光輸出面的不規則稜鏡結構可視為包含並肩(side-by-side)或橫向(lateral)排列的不規則稜鏡結構,其中每個不規則稜鏡結構的縱向列可被視為包含複數個交錯的不規則稜鏡區塊或是以連續性地方式連接端與端。在圖5說明的具體實例中,光學基板31內,沿著相同的列來看,在光輸出面43處,稜鏡區塊中較小的端是連接到另一稜鏡區塊較小的端上,而其中一個稜鏡區塊較大的端是連接到另一稜鏡區塊較大的端。圖6說明兩個縱向稜鏡區塊35m及35n,而每一個都相似於圖4中的稜鏡區塊35,兩者的小端都是端面連到端面的。當由薄膜31之結構的基板的上方來看,一個或多個縱向稜鏡區塊的兩個端可能是平行的,其具有尖峰垂直於端或橫向的與端偏離一角度,或此端可能是非平行的。(注意,稜鏡區塊的端可能是、也可能不是位於x-z平面上,參考圖5的光學基板31)圖15表示各種不規則稜鏡例子的俯視圖,特別是端39及40對於尖峰36及各別稜鏡的縱向漸縮側的相對關係。特別說明的,在圖15A的稜鏡區塊35中,端39及40是互相平行的,而尖峰36則垂直於這兩個端;在圖15B的稜鏡區塊35中,端39及40是不平行的,而尖峰36只有與端39垂直;在圖15C的稜鏡區塊35中,端39及40是不平行的,而尖峰36不垂直於任一端;在圖15D的稜鏡區塊35中,端39及40是互相平行的,而尖峰36不垂直於任一端。In other embodiments of the invention, the irregular 稜鏡 structure at the light output face may be considered to comprise an irregular 稜鏡 structure of side-by-side or lateral arrangement, wherein each irregular 稜鏡The longitudinal columns of the structure can be considered to contain a plurality of interlaced irregular blocks or to connect the ends end in a continuous manner. In the specific example illustrated in FIG. 5, in the optical substrate 31, along the same column, at the light output surface 43, the smaller end of the meandering block is connected to another smaller block. On the end, the larger end of one of the blocks is connected to the larger end of the other block. Figure 6 illustrates two longitudinal weir blocks 35m and 35n, each of which is similar to the weir block 35 of Figure 4, with the small ends of the ends being connected to the end faces. When viewed from above the substrate of the structure of the film 31, the two ends of the one or more longitudinal meandering blocks may be parallel, having a peak perpendicular to the end or lateral direction offset from the end by an angle, or the end may It is non-parallel. (Note that the end of the block may or may not be located on the xz plane, refer to the optical substrate 31 of FIG. 5.) FIG. 15 shows a top view of various irregular examples, particularly the ends 39 and 40 for the peak 36 and The relative relationship of the longitudinally tapered sides of the respective jaws. Specifically, in the block 35 of Fig. 15A, the ends 39 and 40 are parallel to each other, and the peak 36 is perpendicular to the two ends; in the block 35 of Fig. 15B, the ends 39 and 40 It is not parallel, and the peak 36 is only perpendicular to the end 39; in the crotch block 35 of Fig. 15C, the ends 39 and 40 are non-parallel, and the peak 36 is not perpendicular to either end; in the crotch region of Fig. 15D In block 35, ends 39 and 40 are parallel to one another and peaks 36 are not perpendicular to either end.

縱向稜鏡區塊可能於其大端上互相交錯或端對端連接,如圖5所示(例如:35p及35q)。藉由提供一半徑(未示出)在介於相鄰稜鏡區塊間的變換或連接點上,介於縱向相鄰稜鏡區塊間之變換27可能是光滑或圓角的。特定列上的不規則稜鏡區塊35可能有不同或相似的大小及幾何形狀(例如:不同的長度、逐漸變細的角度、端的大小等等)。舉例來說,代替如圖5中所示在一列介於一般相似長度的不規則稜鏡區塊間交替著的情形,不同幾何形狀與大小的不規則稜鏡區塊也可能連成規則地、半規則地、隨機或擬隨機混合的一列,以形成圖7及圖8的結構的光輸出面45(以下將會討論圖7及圖8所示的薄膜41,在更進一步的具體實例中,可能也包含有序的稜鏡區塊)。舉例來說,第一不規則稜鏡區塊35r的一個端可以連於第二不同長度的不規則稜鏡區塊35s的一個端。複數個不規則稜鏡區塊列以並肩或橫向的形式被安排著,以形成光學基板41。Longitudinal blocks may be interleaved or end-to-end connected at their large ends, as shown in Figure 5 (for example: 35p and 35q). By providing a radius (not shown) at the transition or joint between adjacent blocks, the transition 27 between the longitudinally adjacent blocks may be smooth or rounded. The irregular chirp blocks 35 on a particular column may have different or similar sizes and geometries (eg, different lengths, tapered angles, end sizes, etc.). For example, instead of alternating between irregular columns of generally similar length as shown in FIG. 5, irregular blocks of different geometric shapes and sizes may be connected in a regular manner. a semi-regular, random or quasi-randomly mixed sequence to form the light output face 45 of the structure of Figures 7 and 8 (the film 41 shown in Figures 7 and 8 will be discussed below, in a further embodiment, It may also contain ordered blocks.) For example, one end of the first irregular block 35r may be connected to one end of the second different length irregular block 35s. A plurality of irregular block arrays are arranged side by side or laterally to form an optical substrate 41.

在一列上介於縱向相鄰的稜鏡區塊間的變換及介於不同列間(亦即,谷37)的變換是連續的,在相鄰稜鏡區塊間並無落差,即使這變換是介於平坦的柱面亦然(在同一列及列與列之間都是)。相同列上縱向相鄰的稜鏡區塊直線尖峰的變換也是連續無任何落差的。藉由在轉接時的曲度,這種變換可以被作得光滑或圓角形,但是整塊的稜鏡區塊之結構的表面仍是平坦的柱面。換句話說,變換是圓角到某種程度的。這種圓角的曲度可能導因於藉由使用特殊的工具及這種工具在基板上的移動,以形成結構的表面的製造限制所形成的。一般而言,曲率段(curvature section)的長度(以位於彎曲所處的面來看)當與稜鏡區塊的光滑柱面之特性尺寸(長及/或寬)來比較,是非常細小的(例如:為了說明柱面相關程度的圓角化,曲率得為小於光滑柱面段的特徵尺寸15%的數量級,以小於10%較佳,更佳的為小於5%)。The transformation between vertically adjacent blocks in a column and the transformation between different columns (ie, valley 37) are continuous, and there is no drop between adjacent blocks, even if this transformation It is also between flat cylinders (in the same column and between columns and columns). The transformation of the linear peaks of the longitudinally adjacent 稜鏡 blocks on the same column is also continuous without any drop. This transformation can be made smooth or rounded by the curvature at the transition, but the surface of the monolithic block is still a flat cylinder. In other words, the transformation is rounded to some extent. The curvature of such rounded corners may be caused by the use of special tools and the movement of such tools on the substrate to form manufacturing constraints on the surface of the structure. In general, the length of the curvature section (in terms of the plane at which the bend is located) is very small when compared to the characteristic dimensions (length and/or width) of the smooth cylinder of the meandering block. (For example, to account for the degree of fillet correlation, the curvature is on the order of 15% less than the feature size of the smooth cylinder section, preferably less than 10%, more preferably less than 5%).

圖9A表示在一列稜鏡區塊上的交叉或連接的另一具體實例。稜鏡區塊列包含縱向不規則稜鏡區塊35(與圖4相似),及不同大小的規則稜鏡區塊33(例如:不規則稜鏡區塊35t及35u,及規則稜鏡區塊33a及33b),依據不規則稜鏡區塊35之連接端之大小而定。圖9A表示兩個不規則稜鏡區塊35及規則稜鏡區塊33安排在一列的例子。更多的稜鏡區塊33及35也可能提供在此列上。不規則稜鏡區塊35及規則稜鏡區塊33在特定的列上,各自有不同的大小及/或幾何形狀,或相似的大小及/或幾何形狀(例如,不規則稜鏡區塊35及或規則稜鏡區塊33之不同的長度,不規則稜鏡區塊35逐漸變細的角度,不規則稜鏡區塊35及規則稜鏡區塊33的端之大小等)。更者,在一列上,除了交替的介於不規則稜鏡區塊35及規則稜鏡區塊33之間,規則稜鏡區塊33及不規則稜鏡區塊35可能以任何或隨機方式混合連接在同列上。例如,第一個不規則稜鏡區塊35的一個端可能是連於第二個不規則稜鏡區塊35的一個端上,而第一個不規則稜鏡區塊35的另一個端可能是連於規則稜鏡區塊33。當俯視時,圖9A之一或多個稜鏡區塊的兩端面可能是平行的,具有稜鏡區塊的尖峰36垂直於端面或相對端而橫向偏離一角度,或端是不平行的。變換27是連續的,且可能是光滑的或圓角的具有曲率,如較早的具體實例所示。Figure 9A shows another specific example of a crossing or connection on a stack of blocks. The block column includes a vertical irregular block 35 (similar to FIG. 4), and a rule block 33 of different sizes (for example, irregular blocks 35t and 35u, and a rule block) 33a and 33b), depending on the size of the connection end of the irregular block 35. Fig. 9A shows an example in which two irregular blocks 35 and a rule block 33 are arranged in one column. More blocks 33 and 35 may also be provided on this column. Irregular block 35 and regular block 33 have different sizes and/or geometries, or similar sizes and/or geometries, on a particular column (eg, irregular block 35) And the different lengths of the rule block 33, the angle at which the irregular block 35 is tapered, the size of the irregular block 35 and the end of the rule block 33, and the like. Moreover, in a column, in addition to the alternating between the irregular block 35 and the rule block 33, the rule block 33 and the irregular block 35 may be mixed in any or random manner. Connected to the same column. For example, one end of the first irregular block 35 may be connected to one end of the second irregular block 35, and the other end of the first irregular block 35 may be Is connected to the rule block 33. When viewed from above, the end faces of one or more of the turns of Figure 9A may be parallel, with the peaks 36 of the turns being perpendicular to the end or opposite end laterally offset by an angle, or the ends being non-parallel. The transform 27 is continuous and may be smooth or rounded with curvature as shown in the earlier specific example.

圖9B表示圖9A的另一具體實例,其中不規則稜鏡區塊35w及35x是以端對端的形式交錯地或相鄰於規則稜鏡區塊33c及33d之間,當俯視時如此稜鏡區塊的尖峰彼此偏斜一角度(例如:0到45度)。在此具體實例中,不規則稜鏡區塊35w及35x中的每一個端或兩者,其端是不平行的,及/或規則稜鏡區塊33c及33d每一個或兩者,其端是不平行的,或另一種形式則是,如果端是平行的,稜鏡區塊尖峰是不垂直於它的對應端。如早先的具體實例,變換27是連續的,可能光滑的帶有一曲率。Figure 9B shows another embodiment of Figure 9A in which the irregular blocks 35w and 35x are interleaved or adjacent between the regular blocks 33c and 33d in an end-to-end manner, as viewed from above. The peaks of the block are skewed at an angle to each other (for example: 0 to 45 degrees). In this specific example, each end or both of the irregular blocks 35w and 35x are non-parallel, and/or each of the regular blocks 33c and 33d or both ends It is not parallel, or the other form is, if the ends are parallel, the 稜鏡 block spike is not perpendicular to its corresponding end. As in the previous specific example, the transform 27 is continuous and may be smooth with a curvature.

不規則及規則稜鏡區塊的複數個列可能被安排為並肩或橫向的,以形成光學基板之結構的光輸出面。圖7及8所示的薄膜41,可能包含不規則及規則稜鏡區塊的混合(亦即,基本方塊組合,於圖6、圖9A及/或圖9B中)。The plurality of columns of irregularities and regular blocks may be arranged side by side or laterally to form a light output face of the structure of the optical substrate. The film 41 shown in Figures 7 and 8 may contain a mixture of irregular and regular blocks (i.e., a basic block combination, in Figures 6, 9A and/or 9B).

在圖7具體實例中橫越整個稜鏡區塊的尖峰與谷結構,可以具有與早先描述關於圖2的具體實例相似的結構特性。例如,於一個橫向或縱向相鄰稜鏡區塊的範圍內,稜鏡區塊尖峰與谷之俯視圖是不平行的(即,在橫向方向)。然而,相反於圖2的具體實例,在圖7的具體實例中,大部分薄膜內的谷並不在同一水平面上,因其中一列稜鏡區塊柱面交錯於另一列的稜鏡區塊柱面,其柱面之交錯線(即,谷)從光輸入面32來看是在不同的高度,一部分則視稜鏡區塊的寬度而定。The peak and valley structures that traverse the entire ankle block in the particular example of FIG. 7 may have similar structural characteristics as previously described with respect to the specific example of FIG. For example, in the range of a laterally or longitudinally adjacent 稜鏡 block, the top view of the 稜鏡 block is not parallel to the top view of the valley (ie, in the lateral direction). However, contrary to the specific example of FIG. 2, in the specific example of FIG. 7, the valleys in most of the films are not on the same horizontal plane, because one column of the crucible blocks is staggered in the other column of the crucible block cylinder. The staggered lines (i.e., valleys) of the cylinders are at different heights from the light input face 32, and some depend on the width of the block.

圖10說明一光學基板49的結構的光輸出面46之具體實例,其中更清楚的說明隨機結構面陣列特性,橫越於整個薄膜平面,在某些長度或面積之後重複出現,如此行成一規則地、半有序的、或擬隨機的不規則稜鏡區塊結構,橫越整個光學基板49的結構的表面。重複性陣列的特性大小,是規則地以每2列到50列,較佳以每2列到35列,更佳地每2列到20列或甚至更佳地每2列到10列的方式出現。Figure 10 illustrates a specific example of the light output face 46 of the structure of an optical substrate 49 in which the characteristics of the random structure plane array are more clearly illustrated, traversing the entire film plane, repeating after some length or area, thus forming a rule A ground, semi-ordered, or quasi-random irregular 稜鏡 block structure traverses the surface of the structure of the entire optical substrate 49. The characteristic size of the repeating array is regularly in the order of every 2 columns to 50 columns, preferably every 2 columns to 35 columns, more preferably every 2 columns to 20 columns or even more preferably every 2 columns to 10 columns. appear.

在本發明的更進一步具體實例,在光學基板47平面的橫向方向上(亦即,俯視),稜鏡區塊相鄰列的尖峰是平行的,如圖11及12的圖例所示。光學基板47結構的光輸出面48可視為包含在圖6及9中的區塊結構,但是與先前圖7的具體實例相反,以至少超過某一範圍的橫向列來看,列上稜鏡區塊尖峰36是被安排在一直線上,及介於相鄰列間的相鄰尖峰36是平行於薄膜47的平面。每個稜鏡區塊的兩端的面是平行的,且其稜鏡區塊的尖峰垂直於端。與圖7具體實例相似,大部分圖11的具體實例中的谷並不位於薄膜47內相同的水平面上,因一列的稜鏡區塊柱面交錯於另一列的稜鏡區塊柱面,使交錯的線(亦即,谷)由光輸入面32算起之高度是不同的,一部分則視稜鏡區塊內的寬度而定。In a still further embodiment of the present invention, in the lateral direction of the plane of the optical substrate 47 (i.e., in plan view), the peaks of adjacent columns of the meandering blocks are parallel, as shown in the legends of Figs. The light output surface 48 of the structure of the optical substrate 47 can be regarded as the block structure included in FIGS. 6 and 9, but contrary to the specific example of the previous FIG. 7, the column is arranged in a horizontal column at least over a certain range. The block peaks 36 are arranged in a straight line, and adjacent peaks 36 between adjacent columns are parallel to the plane of the film 47. The faces of the ends of each of the meandering blocks are parallel, and the peaks of the meandering blocks are perpendicular to the ends. Similar to the specific example of FIG. 7, most of the valleys in the specific example of FIG. 11 are not located on the same horizontal plane in the film 47, because one column of the crucible blocks is staggered in the other column of the crucible block, so that The height of the interlaced lines (i.e., valleys) from the light input surface 32 is different, and the portion is determined by the width within the block.

值得注意的是,在圖7及8與圖11及12的具體實例中,一個稜鏡區塊35與另一個稜鏡區塊交錯在縱向與橫向的方向。更進一步來說,參考圖12光學基板47的左邊,稜鏡區塊53與相鄰稜鏡區塊交錯著的方式使它終止於縱方向。在此特殊的例子,稜鏡區塊53尖峰終止,且稜鏡區塊53任一側邊的谷最後相遇而達到縱向方向的單一谷。進一步參考圖11相鄰稜鏡區塊在某些相鄰柱面上,可能以無變換的方式交錯著。例如,參考圖11及12在光學基板47的左邊角落位置,一個稜鏡區塊的柱面61可以連續不斷地連到相鄰的稜鏡區塊柱面,而無任何變換。It is to be noted that in the specific examples of FIGS. 7 and 8 and FIGS. 11 and 12, one turn block 35 is interleaved with the other block in the longitudinal and lateral directions. Further, referring to the left side of the optical substrate 47 of Fig. 12, the meandering block 53 is staggered with the adjacent meandering blocks such that it terminates in the longitudinal direction. In this particular example, the crests of the crotch block 53 terminate, and the valleys on either side of the crotch block 53 finally meet to reach a single valley in the longitudinal direction. With further reference to Figure 11, adjacent blocks are on some adjacent cylinders and may be staggered in a non-transformed manner. For example, referring to Figures 11 and 12, at the left corner position of the optical substrate 47, the cylindrical surface 61 of one of the meandering blocks can be continuously connected to the adjacent cylindrical block without any change.

在本發明另一具體實例中,一或多個柱面50及/或一或多個稜鏡區塊尖峰55可能是實質地彎曲的(凸或凹的),如圖13及14所示的結構的表面54。尖峰55可能沿著波狀起伏的線,而柱面50可能有或者可能沒有波狀起伏的表面,包含凹或凸兩者的表面。沿著y-方向在x-z平面截面來看,波狀起伏的稜鏡區塊之尖峰55頂角可以有或者沒有固定的角度。須注意的是,尖峰55的任一邊,並不是都有曲柱面,一面可能是彎曲的另一面可能是平的。不同的尖峰55依循不同的曲線,可能包含只有一個曲的柱面,或者沿著特定的尖峰,有許多不同彎曲的柱面以隨機地、規則地、或半規則地方式分布。圖13及14清楚的說明了橫越於結構的表面54上,相鄰的稜鏡區塊可能具有不同的曲線或波狀起伏狀的尖峰及/或柱面,具有不同曲率並以隨機地、擬隨機地、規則地、或半規則地方式分布著。In another embodiment of the invention, one or more of the cylinder faces 50 and/or one or more of the crotch block peaks 55 may be substantially curved (convex or concave) as shown in FIGS. 13 and 14 Surface 54 of the structure. The peak 55 may follow a undulating line, while the cylinder 50 may or may not have a undulating surface, including a concave or convex surface. In the x-z plane section along the y-direction, the apex angle 55 of the undulating crotch block may or may not have a fixed angle. It should be noted that either side of the peak 55 does not have a curved surface, and the other side that may be curved may be flat. The different peaks 55 follow different curves, may contain only one curved cylinder, or along a particular peak, there are many different curved cylinders distributed randomly, regularly, or semi-regularly. Figures 13 and 14 clearly illustrate that across the surface 54 of the structure, adjacent helium blocks may have different curves or undulating peaks and/or cylinders with different curvatures and randomly, It is intended to be distributed randomly, regularly, or semi-regularly.

這些附加的具體實例得分享了與先前描述的具體實例類似之結構的表面之更進一步的特性與特色。These additional specific examples share further features and features of the surface of the structure similar to the specific examples previously described.

依據本發明,例如當應用於LCD時,光學基板所包含一個不有序的、稜鏡的、結構的光輸出面,其具有增強亮度及減少疊紋的型態。結構的光輸出面的各種具體實例已經如上所獨立描述的,然而不同的具體實例與單一的光學基板的相互組合在無悖離本發明的範圍與精神原則下仍然是被了解的。In accordance with the present invention, for example, when applied to an LCD, the optical substrate includes an unordered, 稜鏡, structured light output surface having a pattern that enhances brightness and reduces moiré. Various specific examples of the light output face of the structure have been independently described above, however, the mutual combination of different specific examples and a single optical substrate is still known without departing from the scope and spirit of the invention.

根據本發明的光學基板相對尺寸的一個範例說明,在不同x-y位置之尖峰高度,其變化可小至1到10um(微米)大至100到200um的程度。相對尖峰的高度差異(沿著一特定尖峰或介於橫向的尖峰間)可以由1到100um的數量級而變化,介於谷間的相對高度差異也可能由2到200um的數量級而變化。稜鏡區塊的長度可能有100um到500mm 的數量級變化。前述的大小是意圖說明一個事實,就是結構的表面的特性是微觀結構的,它是um的範圍。藉由範例,光學基板面積的整體尺寸,可以有2mm到10m之寬度與長度的變化(甚至於可能更大的尺寸變化),依據特別的應用而定(例如:手機的平面面板顯示器,或超大的電視螢幕平面面板顯示器)。光學基板結構的表面上的稜鏡區塊的特性大小,不需隨整體光學基板尺寸而顯著地改變。上述所討論的光學基板可能被基座所支撐,這種基座51如圖2所示。光學基板由光學透明物質所形成。基座51可能是由與光學基板30相同的透明材料所構成,例如,提供額外的結構支持相對薄的光學基板30。光學基板可以相當彈性的製成一捲體,放置並連結在分開的基座51上。另外一種方式,基座51可能是緊密連結在一起的一種結構,是光學基板30整體的一部分。基座厚度可以是25到300um的程度。基座厚度可能較此厚度厚或薄,視特定應用而定。一般而言,較大尺寸的光學基板可能需要較厚的基座以得到較好的支撐,而小規模應用,較小尺寸的光學基板則可能需要較薄的基座。An example of the relative size of the optical substrate according to the present invention illustrates that the peak height at different x-y positions can vary as small as 1 to 10 um (micrometers) to as large as 100 to 200 um. The height difference of the opposite peaks (between a specific peak or a lateral peak) may vary from 1 to 100 um, and the relative height difference between the valleys may also vary from 2 to 200 um. The length of the block may vary by an order of magnitude of 100um to 500mm. The foregoing dimensions are intended to illustrate the fact that the characteristics of the surface of the structure are microstructured, which is the range of um. By way of example, the overall size of the optical substrate area can vary from 2 mm to 10 m in width and length (even larger size variations) depending on the particular application (eg, a flat panel display of a cell phone, or an oversized TV screen flat panel display). The size of the germanium block on the surface of the optical substrate structure does not need to vary significantly with the overall optical substrate size. The optical substrate discussed above may be supported by a pedestal 51 such as that shown in FIG. The optical substrate is formed of an optically transparent substance. The pedestal 51 may be constructed of the same transparent material as the optical substrate 30, for example, providing additional structure to support a relatively thin optical substrate 30. The optical substrate can be made relatively flexible to form a roll, placed and attached to a separate base 51. Alternatively, the pedestal 51 may be a structure that is tightly joined together and is part of the optical substrate 30 as a whole. The pedestal thickness can be from 25 to 300 um. The thickness of the pedestal may be thicker or thinner than this thickness, depending on the particular application. In general, larger sized optical substrates may require thicker pedestals for better support, while for smaller applications, smaller sized optical substrates may require thinner pedestals.

本發明之光學基板結構的表面可能依據許多製程技術而產生,包含微機械使用堅硬的工具以形成模具或相似物,用以製作前述的不規則稜鏡外觀。堅硬工具可能是非常小尺寸的工具,並安裝在CNC(電腦數值控制)的機器上(例:車床,铣床及直線切割(ruling)/鉋床成型(shaping)機器)。這些機器加上一些可變的裝置,用以協助此工具可以用來達到微小的移位,來移動及製造不同程度的不有序的稜鏡。已知STS(Slow Tool Servo),FTS(Fast Tool Servo)及某些超音波振動的器具是這些裝置的例子。以美國專利號6581286為例,其所發表FTS之一種應用,藉由紋切割的方式以製作光學薄膜上的溝槽。這工具是安裝在機器上,用以產生在一稜鏡內沿y方向x-z平面上的固定的尖峰頂角。相關自由度之增加,使用此工具以形成模具表面,可以得到上述之光學基板結構的表面之三度空間變化的不規則稜鏡區塊。The surface of the optical substrate structure of the present invention may be produced in accordance with a number of process techniques, including micromachined use of a rigid tool to form a mold or the like for making the aforementioned irregular flaw appearance. Hard tools may be very small-sized tools and are installed on CNC (computer numerical control) machines (eg lathes, milling machines and ruling/shaping machines). These machines, along with some variable devices, are used to assist the tool in achieving small shifts to move and create varying degrees of unordered defects. Instruments known as STS (Slow Tool Servo), FTS (Fast Tool Servo) and some ultrasonic vibrations are examples of such devices. In the case of U.S. Patent No. 6,581,286, an application of the published FTS is used to form grooves on an optical film by means of grain cutting. The tool is mounted on the machine to produce a fixed peak apex angle in the x-z plane along the y-direction within a bore. With the increase in the degree of freedom associated with the use of this tool to form the surface of the mold, it is possible to obtain an irregularly-shaped block of three-dimensional changes in the surface of the optical substrate structure described above.

母模(master)可直接被用於製造光學基板的模型或是用於電鑄(electroform)一個母模的複製本,這種複製本是被用於塑造光學基板。這模具可以帶狀、輪狀(drum)、板狀、或腔狀的形態出現。此模具經由基板的熱壓(hot embossing)的方式,及/或經由附加的紫外線的固化、或熱設定材料,以形成基板上的稜鏡結構。此模型經由射出成型的方式可被用來形成光學基板。基板或是塗佈的材質可能是有機的、無機的、或是混合的光學的透明物質,也可能包含懸浮擴散,雙折射(birefringent)或折射率修飾微粒。The master can be used directly to make a model of an optical substrate or to electroform a replica of a master that is used to shape an optical substrate. The mold can be in the form of a ribbon, a drum, a plate, or a cavity. The mold is formed by means of hot embossing of the substrate, and/or via additional UV curing, or heat setting material to form a crucible structure on the substrate. This model can be used to form an optical substrate by injection molding. The substrate or coated material may be an organic, inorganic, or mixed optically transparent material, and may also contain suspension diffusion, birefringent or refractive index modified particles.

LCD結合此發明的光學基板可配置在電子裝置上。如圖16所示,電子部分110(可能是PDA、手機、電視、顯示器螢幕、可攜式電腦、冰箱等的其中一種)包含相關於本發明之其中一種具體實例的發明的LCD10(圖1)。LCD 10包含上述的發明的光學基板。在適合的機殼內電子裝置110可進一步地包含像是按鍵及按扭(概要地表示在區塊116) 的使用者輸入介面、影像資料控制電路,如控制器(概要地表示在區塊113)用以管理影像資料流到LCD面板10,特別規劃在電子裝置110的電子部分,可能包含處理器、類比與數位轉換器、記憶體裝置、資料儲存裝置等(整體示意由區塊118所示),以及電源如電源供應器、電池或插座(jack)以供應外部電源(由區塊114概要地表示),在此技術中零件都是習知的。The LCD in combination with the optical substrate of the present invention can be disposed on an electronic device. As shown in FIG. 16, the electronic portion 110 (which may be one of a PDA, a mobile phone, a television, a display screen, a portable computer, a refrigerator, etc.) includes an LCD 10 (Fig. 1) related to one of the specific examples of the present invention. . The LCD 10 includes the optical substrate of the invention described above. The electronic device 110 in a suitable housing may further include a user input interface such as a button and a button (shown schematically in block 116), a video data control circuit, such as a controller (shown schematically at block 113). Used to manage the flow of image data to the LCD panel 10, particularly in the electronic portion of the electronic device 110, possibly including processors, analog and digital converters, memory devices, data storage devices, etc. (shown generally by block 118) And a power source such as a power supply, battery or jack to supply an external power source (represented schematically by block 114), parts of which are well known in the art.

請返回參考圖2。圖2揭露至少一複數個不規則稜鏡區塊每一個有大的端39(有較大的寬度及尖峰高度)逐漸變細地到一個小的端40(具有一個較小的寬度及尖峰高度),例如 稜鏡區塊35a、35b、35d、35e、35f、35g、35i及35j。稜鏡區塊35c、35h中每一個稜鏡區塊沿著其長度方向具有相同的截面形狀,稜鏡區塊35c、35h中每一個稜鏡區塊的稜線(ridge)(或尖峰) 36c、36h沿著其長度方向具有固定的高度。此外,圖2也揭露了在光學基板30中,至少某些尖峰36是不在相同的x-y水平面上的。舉例來說,稜鏡區塊35b的稜線沿著其長度方向具有變化的高度且稜鏡區塊35c的稜線沿著其長度方向具有固定的高度,使得稜鏡區塊35b的稜線和稜鏡區塊35c的稜線不在相同的x-y水平面上。Please refer back to Figure 2. Figure 2 discloses that at least one of the plurality of irregularly shaped blocks each has a large end 39 (having a larger width and a peak height) tapering to a small end 40 (having a smaller width and peak height) For example, the blocks 35a, 35b, 35d, 35e, 35f, 35g, 35i, and 35j. Each of the crotch blocks 35c, 35h has the same cross-sectional shape along its length direction, and a ridge (or spike) 36c of each of the crotch blocks 35c, 35h, 36h has a fixed height along its length. In addition, FIG. 2 also discloses that in the optical substrate 30, at least some of the peaks 36 are not at the same x-y level. For example, the ridge line of the meandering block 35b has a varying height along its length direction and the ridge line of the meandering block 35c has a fixed height along its length such that the ridge line and the meandering area of the meandering block 35b The ridges of block 35c are not on the same xy level.

圖17A至圖17D、圖18A至圖18D、圖19A至圖19D和圖20說明本發明光導向膜100的三維示意圖。為了方便說明,僅具有第一稜線111A的第一稜鏡元件111和具有第二稜線112A的第二稜鏡元件112呈現在圖17A、圖17B、圖18A、圖18B、圖19A、圖19B和圖20,其中第一稜線111A具有較大的高度111B且第二稜線112A具有較小的高度112B。圖17A、圖17B、圖18A、圖18B、圖19A、圖19B和圖20揭露光導向膜100具有一結構化第一主表面101、相對於該結構化第一主表面101的一第二主表面102和位於該結構化第一主表面101和該第二主表面102之間的一參考平面103(例如一個可任意選擇的假想平面)。參考平面103也可選自第二主表面102和位於稜鏡層和支撐稜鏡層的基板之間界面其中之一。參考平面103實質上垂直於光導向膜100的厚度方向(例如Z軸)。結構化第一主表面101包含實質上在一第一方向上延伸的一第一稜鏡元件111和一第二稜鏡元件112。第一方向可為稜鏡元件的長度方向(例如Y軸),較佳來說,垂直於稜鏡元件的寬度方向(例如X軸或截面方向)。稜鏡元件可具有線性長度、彎曲(meandering)長度或波型長度。單一稜鏡元件的相對面(facet)相交以形成稜鏡元件的稜線(ridge、peak或apex)。相鄰稜鏡元件的相對面(facet)相交以形成稜鏡元件的谷(groove或valley)。第一稜鏡元件111的第一稜線111A具有相對於參考平面103的第一高度111B且該第二稜鏡元件112的第二稜線112A具有相對於參考平面103的第二高度112B。較佳來說,由第一稜鏡元件111的第一稜線111A所定義的第一兩面角(dihedral angle)實質上等於由第二稜鏡元件112的第二稜線112A所定義的第二兩面角,然而,第一兩面角可不等於第二兩面角。第一稜鏡元件111的第一稜線111A的第一高度111B沿著第一方向變化。選擇性地,第二稜鏡元件112的第二稜線112A的第二高度112B沿著第一方向變化(見圖17B、圖18B和圖19B)。較佳來說,第一高度111B的最大值大於第二高度112B的最大值(見圖17A、圖17B、圖18A、圖18B、圖19A、圖19B和圖20)。選擇性地,第一高度111B的平均值大於第二高度112B的平均值。如果第二高度112B沿著第一方向具有固定的高度時,在第二稜鏡元件112的第二稜線112A上的任意點的第二高度112B為第二高度112B的最大值或第二高度112B的平均值。17A to 17D, 18A to 18D, 19A to 19D, and 20 illustrate a three-dimensional schematic view of the light guiding film 100 of the present invention. For convenience of explanation, only the first 稜鏡 element 111 having the first ridgeline 111A and the second 稜鏡 element 112 having the second ridgeline 112A are presented in FIGS. 17A, 17B, 18A, 18B, 19A, 19B and Figure 20, wherein the first ridgeline 111A has a larger height 111B and the second ridgeline 112A has a smaller height 112B. 17A, 17B, 18A, 18B, 19A, 19B, and 20 disclose that the light directing film 100 has a structured first major surface 101 and a second major relative to the structured first major surface 101. Surface 102 and a reference plane 103 (e.g., an arbitrarily selectable imaginary plane) between the structured first major surface 101 and the second major surface 102. The reference plane 103 can also be selected from one of the second major surface 102 and the interface between the ruthenium layer and the substrate supporting the ruthenium layer. The reference plane 103 is substantially perpendicular to the thickness direction of the light guiding film 100 (for example, the Z axis). The structured first major surface 101 includes a first tantalum element 111 and a second tantalum element 112 extending substantially in a first direction. The first direction may be the length direction of the 稜鏡 element (eg, the Y axis), preferably perpendicular to the width direction of the 稜鏡 element (eg, the X axis or the cross-sectional direction). The tantalum element can have a linear length, a meandering length, or a wave length. The facets of a single 稜鏡 element intersect to form the ridge (ridge, peak or apex) of the 稜鏡 element. The opposite facets of adjacent tantalum elements intersect to form a valley or valley of the tantalum elements. The first ridgeline 111A of the first haptic element 111 has a first height 111B relative to the reference plane 103 and the second ridgeline 112A of the second haptic element 112 has a second height 112B relative to the reference plane 103. Preferably, the first dihedral angle defined by the first ridgeline 111A of the first 稜鏡 element 111 is substantially equal to the second dihedral angle defined by the second ridgeline 112A of the second 稜鏡 element 112. However, the first dihedral angle may not be equal to the second dihedral angle. The first height 111B of the first ridgeline 111A of the first 稜鏡 element 111 varies along the first direction. Optionally, the second height 112B of the second ridgeline 112A of the second haptic element 112 varies along the first direction (see Figures 17B, 18B, and 19B). Preferably, the maximum value of the first height 111B is greater than the maximum value of the second height 112B (see FIGS. 17A, 17B, 18A, 18B, 19A, 19B, and 20). Optionally, the average of the first heights 111B is greater than the average of the second heights 112B. If the second height 112B has a fixed height along the first direction, the second height 112B at any point on the second ridgeline 112A of the second 稜鏡 element 112 is the maximum of the second height 112B or the second height 112B average value.

當放置第二光學片材(例如光導向膜)使第二光學片材接近光導向膜100(第一光學片材)的結構化第一主表面101時,高度較高的稜鏡元件的稜線(ridge、peak或apex)(具有第一稜鏡元件111的第一稜線111A的第一高度111B的最大值的稜鏡元件)對於第二光學片材接近光導向膜100的結構化第一主表面101產生了限制作用,藉以降低吸附(wet-out)的可能性。高度較高的稜鏡元件和高度較低的稜鏡元件的高度差異使得在高度較低的稜鏡元件區域大大地抑制不想要的光學耦合現象發生。因此,使用結構化第一主表面101作為控制接近之用大大地降低在結構化第一主表面101上容易產生不想要的光學耦合現象的表面積。在本發明中,具有第一高度111B最大值之點不僅可以位於不同的第一稜鏡元件111上 ,也可以位於同一個的第一稜鏡元件111上,以使光導向膜100的結構化第一主表面101具有用以接觸或足夠接近第二光學片材的最小表面積。因此,結構化第一主表面101可提高亮度、降低疊紋(moiré)效應和避免吸附。When a second optical sheet (eg, a light directing film) is placed such that the second optical sheet approaches the structured first major surface 101 of the light directing film 100 (first optical sheet), the ridgeline of the higher height tantalum element (ridge, peak or apex) (a 稜鏡 element having a maximum value of the first height 111B of the first ridge line 111A of the first 稜鏡 element 111) for the second optical sheet approaching the structured first main of the light guiding film 100 Surface 101 creates a limiting effect whereby the likelihood of wet-out is reduced. The difference in height between the higher-height element and the lower-height element makes the suppression of unwanted optical coupling phenomena in the lower-height element area. Thus, the use of the structured first major surface 101 as a control approximation greatly reduces the surface area on the structured first major surface 101 that is susceptible to unwanted optical coupling phenomena. In the present invention, the point having the maximum value of the first height 111B may be located not only on the different first tantalum elements 111 but also on the same first tantalum element 111 to structure the light directing film 100. The first major surface 101 has a minimum surface area to contact or be sufficiently close to the second optical sheet. Thus, structuring the first major surface 101 can increase brightness, reduce moiré effects, and avoid adsorption.

第一稜鏡元件111和第二稜鏡元件112的配置可以有許多情形。在一個實施例中,結構化第一主表面101可包含兩個第一稜鏡元件111和位於兩個第一稜鏡元件111之間的至少一第二稜鏡元件112(見圖17C、圖17D、圖18C、圖18D、圖19C和圖19D)。在另一個實施例中,結構化第一主表面101可包含第一群組的第一稜鏡元件111、第二群組的第一稜鏡元件111以及位於第一群組的第一稜鏡元件111和第二群組的第二稜鏡元件111之間的至少一第二稜鏡元件112(未圖示)。選擇性地,在圖17A至圖17D、圖18A至圖18D、圖19A至圖19D的第二稜鏡元件112可任意地交換(見圖20)。The configuration of the first weir element 111 and the second weir element 112 can have many situations. In one embodiment, the structured first major surface 101 can include two first tantalum elements 111 and at least one second tantalum element 112 between the two first tantalum elements 111 (see Figure 17C, Figure). 17D, FIG. 18C, FIG. 18D, FIG. 19C, and FIG. 19D). In another embodiment, the structured first major surface 101 can include a first group of first germanium elements 111, a second group of first germanium elements 111, and a first one of the first group At least one second 稜鏡 element 112 (not shown) between the element 111 and the second 稜鏡 element 111 of the second group. Alternatively, the second germanium elements 112 in FIGS. 17A to 17D, 18A to 18D, and 19A to 19D may be arbitrarily exchanged (see FIG. 20).

在本發明中,圖17A至圖17I(群組I)、圖18A至圖18I(群組II)和圖19A至圖19I(群組III)分類成三個群組以方便說明。In the present invention, FIGS. 17A to 17I (Group I), FIGS. 18A to 18I (Group II), and FIGS. 19A to 19I (Group III) are classified into three groups for convenience of explanation.

群組I:Group I:

在群組I(圖17A至圖17D)中 ,有許多例子顯示第一高度111B的最大值大於第二高度112B的最大值。在圖2 、圖5、圖7 、圖8和圖10至圖14也可以看到。選擇性地,這些例子也顯示第一高度111B的平均值大於第二高度112B的平均值。為了方便說明,第一稜鏡元件111的第一稜線111A、第二稜鏡元件112的第二稜線112A和參考平面103投影在YZ平面上(見圖17E至圖17H)。In group I (Figs. 17A to 17D), there are many examples showing that the maximum value of the first height 111B is greater than the maximum value of the second height 112B. It can also be seen in Figures 2, 5, 7, 8 and 10 to 14. Alternatively, these examples also show that the average of the first height 111B is greater than the average of the second height 112B. For convenience of explanation, the first ridge line 111A of the first 稜鏡 element 111, the second ridge line 112A of the second 稜鏡 element 112, and the reference plane 103 are projected on the YZ plane (see FIGS. 17E to 17H).

第二稜鏡元件112的第二稜線112A的第二高度112B沿著第一方向實質上具有固定的高度,其中第一高度111B的最大值大於第二高度112B(見圖17A、圖17E和圖17F)。在第一稜鏡元件111上有許多具有第一高度111B之最大值的點用以接觸或足夠接近第二光學片材,因此結構化第一主表面101可提高亮度、降低疊紋效應和避免吸附。也可從圖2見到,稜鏡區塊35b的稜線沿其長度方向具有變化的高度且稜鏡區塊35b的稜線在大的端具有最大高度,以及稜鏡區塊35c的稜線沿其長度方向具有固定的高度,以使稜鏡區塊35b的稜線高度的最大值大於稜鏡區塊35c的固定稜線高度。在一個實施例中,第一高度111B的最小值可大於第二高度112B(見圖17A和圖17E)。在這個案例中,第一高度111B的平均值和第二高度112B之間的差異較大,藉以降低吸附的可能性。在另一個實施例中,第一高度111B的最小值可小於第二高度112B(見圖17A和圖17F)。在這個案例中,第一高度111B的平均值和第二高度112B之間的差異較小,藉以完全支撐第二光學片材且降低疊紋效應。The second height 112B of the second ridgeline 112A of the second haptic element 112 has a substantially fixed height along the first direction, wherein the maximum of the first height 111B is greater than the second height 112B (see Figures 17A, 17E and 17F). There are a plurality of points on the first weir element 111 having a maximum of the first height 111B for contacting or sufficiently close to the second optical sheet, so that structuring the first major surface 101 can increase brightness, reduce moiré effects, and avoid Adsorption. As can also be seen from Fig. 2, the ridgeline of the meandering block 35b has a varying height along its length and the ridgeline of the meandering block 35b has a maximum height at the large end, and the ridgeline of the meandering block 35c along its length The direction has a fixed height such that the maximum height of the ridgeline height of the haptic block 35b is greater than the fixed ridgeline height of the haptic block 35c. In one embodiment, the minimum of the first height 111B may be greater than the second height 112B (see Figures 17A and 17E). In this case, the difference between the average of the first height 111B and the second height 112B is large, thereby reducing the possibility of adsorption. In another embodiment, the minimum of the first height 111B may be less than the second height 112B (see Figures 17A and 17F). In this case, the difference between the average of the first height 111B and the second height 112B is small, thereby fully supporting the second optical sheet and reducing the moiré effect.

第二稜鏡元件112的第二稜線112A的第二高度112B沿著第一方向變化,其中第一高度111B的最大值大於第二高度112B的最大值(見圖17B、圖17G和圖17H)。在第一稜鏡元件111上有許多具有第一高度11B之最大值的點用以接觸或足夠接近第二光學片材,因此結構化第一主表面101可提高亮度、降低疊紋效應和避免吸附。在一個實施例中,第一高度111B的最小值可大於第二高度112B的最大值(見圖17B和圖17G)。在這個案例中,第一高度111B的平均值和第二高度112B的平均值之間的差異較大,藉以降低吸附的可能性。在另一個實施例中,第一高度111B的最小值可小於第二高度112B的最大值(見圖17B和圖17H)。在這個案例中,第一高度111B的平均值和第二高度112B的平均值之間的差異較小,藉以完全支撐第二光學片材且降低疊紋效應。The second height 112B of the second ridge line 112A of the second 稜鏡 element 112 varies along the first direction, wherein the maximum value of the first height 111B is greater than the maximum value of the second height 112B (see FIGS. 17B, 17G, and 17H) . There are a plurality of points on the first weir element 111 having a maximum of the first height 11B for contacting or sufficiently close to the second optical sheet, so that structuring the first major surface 101 improves brightness, reduces moiré effects, and avoids Adsorption. In one embodiment, the minimum of the first height 111B may be greater than the maximum of the second height 112B (see Figures 17B and 17G). In this case, the difference between the average of the first height 111B and the average of the second height 112B is large, thereby reducing the possibility of adsorption. In another embodiment, the minimum of the first height 111B may be less than the maximum of the second height 112B (see Figures 17B and 17H). In this case, the difference between the average of the first height 111B and the average of the second height 112B is small, thereby fully supporting the second optical sheet and reducing the moiré effect.

第一稜鏡元件111的第一部分121具有第一高度111B的最小值,且第一稜鏡元件111的第二部分131具有第一高度111B的最大值,其中該第一部分121具有第一底部寬度121X,且該第二部分131具有第二底部寬度131X,其中該第二底部寬度131X大於該第一底部寬度121X(見圖17I)。第一稜鏡元件111的第一部分121具有第一高度111B的最小值,且第一稜鏡元件111的第二部分131具有第一高度111B的最大值,其中該第一部分121具有第一截面形狀,且該第二部分131具有第二截面形狀,其中該第二截面形狀的每一邊131X、131Y、131Z係從該第一截面形狀的對應邊121X、121Y、121Z以大於1的比例放大(見圖17I)。The first portion 121 of the first weir element 111 has a minimum value of the first height 111B, and the second portion 131 of the first weir element 111 has a maximum value of the first height 111B, wherein the first portion 121 has a first bottom width 121X, and the second portion 131 has a second bottom width 131X, wherein the second bottom width 131X is greater than the first bottom width 121X (see FIG. 17I). The first portion 121 of the first weir element 111 has a minimum value of the first height 111B, and the second portion 131 of the first weir element 111 has a maximum value of the first height 111B, wherein the first portion 121 has a first cross-sectional shape And the second portion 131 has a second cross-sectional shape, wherein each side 131X, 131Y, 131Z of the second cross-sectional shape is enlarged from a corresponding side 121X, 121Y, 121Z of the first cross-sectional shape by a ratio greater than 1 (see Figure 17I).

群組II:Group II:

在群組II(圖18A至圖18D)中 ,有許多例子顯示第一高度111B的最大值大於第二高度112B的最大值。選擇性地,這些例子也顯示第一高度111B的平均值大於第二高度112B的平均值。詳細來說,第一稜鏡元件111的第一稜線111A包含:第一部分141,其中該第一部分141的第一高度111B具有固定值;以及第二部分151,鄰近於該第一部分141,其中該第二部分151的第一高度111B具有非固定值,其中該第二部分151的第一高度111B的該非固定值的最大值大於該第一部分141的第一高度111B的該固定值;其中該第二部分151的第一高度111B的該非固定值的最大值大於第二高度112B的最大值。為了方便說明,第一稜鏡元件111的第一稜線111A、第二稜鏡元件112的第二稜線112A和參考平面103投影在YZ平面上(見圖18E至圖18H)。In Group II (Figs. 18A to 18D), there are many examples showing that the maximum value of the first height 111B is greater than the maximum value of the second height 112B. Alternatively, these examples also show that the average of the first height 111B is greater than the average of the second height 112B. In detail, the first ridgeline 111A of the first haptic element 111 includes: a first portion 141, wherein the first height 111B of the first portion 141 has a fixed value; and a second portion 151 adjacent to the first portion 141, wherein the The first height 111B of the second portion 151 has a non-fixed value, wherein the maximum value of the non-fixed value of the first height 111B of the second portion 151 is greater than the fixed value of the first height 111B of the first portion 141; The maximum value of the non-fixed value of the first height 111B of the two portions 151 is greater than the maximum value of the second height 112B. For convenience of explanation, the first ridge line 111A of the first 稜鏡 element 111, the second ridge line 112A of the second 稜鏡 element 112, and the reference plane 103 are projected on the YZ plane (see FIGS. 18E to 18H).

第二稜鏡元件112的第二稜線112A的第二高度112B沿著第一方向實質上具有固定的高度,其中第二部分151的第一高度111B的非固定值的最大值大於第二高度112B (見圖18A、圖18E和圖18F)。在第一稜鏡元件111上有許多具有第二部分151的第一高度111B的非固定值的最大值的點用以接觸或足夠接近第二光學片材,因此結構化第一主表面101可提高亮度、降低疊紋效應和避免吸附。在一個實施例中, 第一部分141的第一高度111B的固定值可大於第二高度112B(見圖18A和圖18E)。在這個案例中,第一高度111B的平均值和第二高度112B之間的差異較大,藉以降低吸附的可能性。在另一個實施例中,第一部分141的第一高度111B的固定值可小於第二高度112B (見圖18A和圖18F)。在這個案例中,第一高度111B的平均值和第二高度112B之間的差異較小,藉以完全支撐第二光學片材且降低疊紋效應。The second height 112B of the second ridgeline 112A of the second haptic element 112 has a substantially fixed height along the first direction, wherein the maximum value of the non-fixed value of the first height 111B of the second portion 151 is greater than the second height 112B (See Figures 18A, 18E, and 18F). There are a plurality of points on the first weir element 111 having a maximum value of the non-fixed value of the first height 111B of the second portion 151 for contacting or sufficiently close to the second optical sheet, so that the first main surface 101 can be structured Improve brightness, reduce moiré and avoid adsorption. In one embodiment, the first height 111B of the first portion 141 may have a fixed value greater than the second height 112B (see Figures 18A and 18E). In this case, the difference between the average of the first height 111B and the second height 112B is large, thereby reducing the possibility of adsorption. In another embodiment, the fixed value of the first height 111B of the first portion 141 may be less than the second height 112B (see Figures 18A and 18F). In this case, the difference between the average of the first height 111B and the second height 112B is small, thereby fully supporting the second optical sheet and reducing the moiré effect.

第二稜鏡元件112的第二稜線112A的第二高度112B沿著第一方向變化,其中第二部分151的第一高度111B的非固定值的最大值大於第二高度112B的最大值(見圖18B、圖18G和圖18H)。在第一稜鏡元件111上有許多具有第二部分151的第一高度111B的非固定值的最大值的點用以接觸或足夠接近第二光學片材,因此結構化第一主表面101可提高亮度、降低疊紋效應和避免吸附。在一個實施例中,第一部分141的第一高度111B的固定值可大於第二高度112B的最大值 (見圖18B和圖18G)。在這個案例中,第一高度111B的平均值和第二高度112B的平均值之間的差異較大,藉以降低吸附的可能性。在另一個實施例中,第一部分141的第一高度111B的固定值可小於第二高度112B的最大值 (見圖18B和圖18H)。在這個案例中,第一高度111B的平均值和第二高度112B的平均值之間的差異較小,藉以完全支撐第二光學片材且降低疊紋效應。The second height 112B of the second ridgeline 112A of the second haptic element 112 varies along a first direction, wherein the maximum value of the non-fixed value of the first height 111B of the second portion 151 is greater than the maximum value of the second height 112B (see 18B, 18G and 18H). There are a plurality of points on the first weir element 111 having a maximum value of the non-fixed value of the first height 111B of the second portion 151 for contacting or sufficiently close to the second optical sheet, so that the first main surface 101 can be structured Improve brightness, reduce moiré and avoid adsorption. In one embodiment, the fixed value of the first height 111B of the first portion 141 may be greater than the maximum value of the second height 112B (see Figures 18B and 18G). In this case, the difference between the average of the first height 111B and the average of the second height 112B is large, thereby reducing the possibility of adsorption. In another embodiment, the fixed value of the first height 111B of the first portion 141 may be less than the maximum value of the second height 112B (see Figures 18B and 18H). In this case, the difference between the average of the first height 111B and the average of the second height 112B is small, thereby fully supporting the second optical sheet and reducing the moiré effect.

第一稜鏡元件111的第一部件具有第一部分141,且第一稜鏡元件111的第二部件具有第二部分151的第一高度111B的非固定值的最大值,其中該第一部件具有第一底部寬度141X,且該第二部件具有第二底部寬度151X,其中該第二底部寬度151X大於該第一底部寬度141X(見圖18I)。第一稜鏡元件111的第一部件具有第一部分141,且第一稜鏡元件111的第二部件具有第二部分151的第一高度111B的非固定值的最大值,其中該第一部件具有第一截面形狀,且該第二部件具有第二截面形狀,其中該第二截面形狀的每一邊151X、151Y、151Z係從該第一截面形狀的對應邊141X、141Y、141Z以大於1的比例放大(見圖18I)。The first component of the first weir element 111 has a first portion 141 and the second component of the first weir element 111 has a maximum value of a non-fixed value of the first height 111B of the second portion 151, wherein the first component has The first bottom width 141X, and the second member has a second bottom width 151X, wherein the second bottom width 151X is greater than the first bottom width 141X (see FIG. 18I). The first component of the first weir element 111 has a first portion 141 and the second component of the first weir element 111 has a maximum value of a non-fixed value of the first height 111B of the second portion 151, wherein the first component has a first cross-sectional shape, and the second member has a second cross-sectional shape, wherein each side 151X, 151Y, 151Z of the second cross-sectional shape is greater than 1 from a corresponding side 141X, 141Y, 141Z of the first cross-sectional shape Zoom in (see Figure 18I).

群組III:Group III:

在群組III(圖19A至圖19D)中 ,有許多例子顯示第一高度111B的最大值大於第二高度112B的最大值。選擇性地,這些例子也顯示第一高度111B的平均值大於第二高度112B的平均值。詳細來說,第一稜鏡元件111的第一稜線111A包含:第一部分161,其中該第一部分161的第一高度111B具有第一固定值;以及第二部分171,其中該第二部分171的第一高度111B具有第二固定值,其中該第二固定值大於該第一固定值;其中該第二固定值大於第二高度112B的最大值。較佳來說,第三部分175位於第一部分161和第二部分171之間以作為過渡部分。為了方便說明,第一稜鏡元件111的第一稜線111A、第二稜鏡元件112的第二稜線112A和參考平面103投影在YZ平面上(見圖19E至圖19H)。In group III (Figs. 19A to 19D), there are many examples showing that the maximum value of the first height 111B is greater than the maximum value of the second height 112B. Alternatively, these examples also show that the average of the first height 111B is greater than the average of the second height 112B. In detail, the first ridgeline 111A of the first 稜鏡 element 111 includes: a first portion 161, wherein the first height 111B of the first portion 161 has a first fixed value; and a second portion 171, wherein the second portion 171 The first height 111B has a second fixed value, wherein the second fixed value is greater than the first fixed value; wherein the second fixed value is greater than a maximum value of the second height 112B. Preferably, the third portion 175 is located between the first portion 161 and the second portion 171 as a transition portion. For convenience of explanation, the first ridge line 111A of the first 稜鏡 element 111, the second ridge line 112A of the second 稜鏡 element 112, and the reference plane 103 are projected on the YZ plane (see FIGS. 19E to 19H).

第二稜鏡元件112的第二稜線112A的第二高度112B沿著第一方向實質上具有固定的高度,其中第二部分171的第一高度111B的第二固定值大於第二高度112B(見圖19A、圖19E和圖19F)。在第一稜鏡元件111上有許多第二部分171用以接觸或足夠接近第二光學片材,因此結構化第一主表面101可提高亮度、降低疊紋效應和避免吸附。在一個實施例中,第一部分161的第一高度111B的第一固定值大於第二高度112B (見圖19A和圖19E)。在這個案例中,第一高度111B的平均值和第二高度112B之間的差異較大,藉以降低吸附的可能性。在另一個實施例中,第一部分161的第一高度111B的第一固定值小於第二高度112B(見圖19A和圖19F)。在這個案例中,第一高度111B的平均值和第二高度112B之間的差異較小,藉以完全支撐第二光學片材且降低疊紋效應。The second height 112B of the second ridgeline 112A of the second haptic element 112 has a substantially fixed height along the first direction, wherein the second fixed value of the first height 111B of the second portion 171 is greater than the second height 112B (see 19A, 19E, and 19F). There are a plurality of second portions 171 on the first weir element 111 for contacting or sufficiently close to the second optical sheet, so that structuring the first major surface 101 can increase brightness, reduce moiré effects, and avoid adsorption. In one embodiment, the first fixed value of the first height 111B of the first portion 161 is greater than the second height 112B (see Figures 19A and 19E). In this case, the difference between the average of the first height 111B and the second height 112B is large, thereby reducing the possibility of adsorption. In another embodiment, the first fixed value of the first height 111B of the first portion 161 is less than the second height 112B (see Figures 19A and 19F). In this case, the difference between the average of the first height 111B and the second height 112B is small, thereby fully supporting the second optical sheet and reducing the moiré effect.

第二稜鏡元件112的第二稜線112A的第二高度112B沿著第一方向變化,其中第二部分171的第一高度111B的第二固定值大於第二高度112B的最大值(見圖19B、圖19G和圖19H)。在第一稜鏡元件111上有許多具有第二部分171用以接觸或足夠接近第二光學片材,因此結構化第一主表面101可提高亮度、降低疊紋效應和避免吸附。在一個實施例中,第一部分161的第一高度111B的第一固定值大於第二高度112B的最大值 (見圖19B和圖19G)。在這個案例中,第一高度111B的平均值和第二高度112B的平均值之間的差異較大,藉以降低吸附的可能性。在另一個實施例中,第一部分161的第一高度111B的第一固定值小於第二高度112B的最大值(見圖19B和圖19H)。在這個案例中,第一高度111B的平均值和第二高度112B的平均值之間的差異較小,藉以完全支撐第二光學片材且降低疊紋效應。The second height 112B of the second ridge line 112A of the second 稜鏡 element 112 varies along the first direction, wherein the second fixed value of the first height 111B of the second portion 171 is greater than the maximum value of the second height 112B (see FIG. 19B). Figure 19G and Figure 19H). There are a plurality of second side portions 171 on the first tantalum element 111 for contacting or sufficiently close to the second optical sheet, so that structuring the first major surface 101 can increase brightness, reduce moiré effects, and avoid adsorption. In one embodiment, the first fixed value of the first height 111B of the first portion 161 is greater than the maximum value of the second height 112B (see Figures 19B and 19G). In this case, the difference between the average of the first height 111B and the average of the second height 112B is large, thereby reducing the possibility of adsorption. In another embodiment, the first fixed value of the first height 111B of the first portion 161 is less than the maximum value of the second height 112B (see Figures 19B and 19H). In this case, the difference between the average of the first height 111B and the average of the second height 112B is small, thereby fully supporting the second optical sheet and reducing the moiré effect.

第一稜鏡元件111的第一部件具有第一部分161,且第一稜鏡元件111的第二部件具有第二部分171,其中該第一部件具有第一底部寬度161X,且該第二部件具有第二底部寬度171X,其中該第二底部寬度171X大於該第一底部寬度161X(見圖19I)。第一稜鏡元件111的第一部件具有第一部分161,且第一稜鏡元件111的第二部件具有第二部分171,其中該第一部件具有第一截面形狀,且該第二部件具有第二截面形狀,其中該第二截面形狀的每一邊171X、171Y、171Z係從該第一截面形狀的對應邊161X、161Y、161Z以大於1的比例放大(見圖19I)。The first component of the first weir element 111 has a first portion 161 and the second component of the first weir element 111 has a second portion 171, wherein the first component has a first bottom width 161X and the second component has The second bottom width 171X, wherein the second bottom width 171X is greater than the first bottom width 161X (see FIG. 19I). The first component of the first weir element 111 has a first portion 161 and the second component of the first weir element 111 has a second portion 171, wherein the first component has a first cross-sectional shape and the second component has a A two-sectional shape in which each side 171X, 171Y, 171Z of the second cross-sectional shape is enlarged from a corresponding side 161X, 161Y, 161Z of the first cross-sectional shape by a ratio greater than one (see FIG. 19I).

在此所描述的本發明的特殊具體實例是為了說明本發明的目的,而非為了限制,它應被了解的是,這些技術的基本技巧、各種不同的細節材料及部分重新安排、但不悖離如在附件申請專利範圍中描述之本發明,都是可被完成的。The specific examples of the invention described herein are for the purpose of illustrating the invention, and are not intended to be construed as limiting the scope of the The invention as described in the scope of the attached patent application can be completed.

10‧‧‧背光LCD
12‧‧‧液晶顯示模組
14‧‧‧背光模組
16‧‧‧線性光源
18‧‧‧導光板
20‧‧‧反射片
22‧‧‧上層光擴散薄膜
24‧‧‧下層光擴散薄膜
26‧‧‧光學基板
27‧‧‧變換
28‧‧‧光學基板
29a‧‧‧三角形端面
30‧‧‧光學基板
31‧‧‧光輸入面
31a‧‧‧矩形基座
32‧‧‧平面光輸入面
33a‧‧‧規則稜鏡區塊
33b‧‧‧規則稜鏡區塊
33c‧‧‧規則稜鏡區塊
33d‧‧‧規則稜鏡區塊
34‧‧‧光輸出面
35,35a,35b,35c,35d,35e,35f‧‧‧不規則稜鏡區塊
35g,35h,35i,35j,35m,35n,35p‧‧‧不規則稜鏡區塊
35q,35r,35s,35t,35w,35x‧‧‧不規則稜鏡區塊
36,36a,36b,36c,36d,36e,36f,36g,36h,36i,36j‧‧‧尖峰
37,37a,37b,37c,37d,37e,37f,37g,37h,37i‧‧‧谷
38‧‧‧平坦柱面
39‧‧‧大端
40‧‧‧小端
41‧‧‧光學基板薄膜
43‧‧‧光輸出面
45,46,47,48‧‧‧結構的光輸出面
49‧‧‧光學基板薄膜
50‧‧‧柱面
51‧‧‧基座
53‧‧‧稜鏡區塊
54‧‧‧結構的光輸出面
55‧‧‧尖峰
61,63‧‧‧柱面
100‧‧‧光導向膜
101‧‧‧結構化第一主表面
102‧‧‧第二主表面
103‧‧‧參考平面
110‧‧‧電子裝置
111‧‧‧第一稜鏡元件
111A‧‧‧第一稜線
111B‧‧‧高度
112‧‧‧第二稜鏡元件
112A‧‧‧第二稜線
112B‧‧‧高度
113‧‧‧控制器
114‧‧‧電源
116‧‧‧使用者輸入介面
118‧‧‧處理器、類比/數位轉換器、記憶體裝置、資料儲存裝置
121‧‧‧第一部分
121X‧‧‧第一底部寬度(邊)
121Y‧‧‧邊
121Z‧‧‧邊
131‧‧‧第二部分
131X‧‧‧第二底部寬度(邊)
131Y‧‧‧邊
131Z‧‧‧邊
141‧‧‧第一部分
141X‧‧‧第一底部寬度 (邊)
141Y‧‧‧邊
141Z‧‧‧邊
151‧‧‧第二部分
151X‧‧‧第二底部寬度 (邊)
151Y‧‧‧邊
151Z‧‧‧邊
161‧‧‧第一部分
161X‧‧‧第一底部寬度 (邊)
161Y‧‧‧邊
161Z‧‧‧邊
171‧‧‧第二部分
171X‧‧‧第二底部寬度 (邊)
171Y‧‧‧邊
171Z‧‧‧邊
175‧‧‧第三部分
10‧‧‧ Backlit LCD
12‧‧‧LCD module
14‧‧‧Backlight module
16‧‧‧Linear light source
18‧‧‧Light guide
20‧‧‧reflector
22‧‧‧Upper light diffusing film
24‧‧‧Underlying light diffusing film
26‧‧‧Optical substrate
27‧‧‧Transformation
28‧‧‧Optical substrate
29a‧‧‧Triangular end face
30‧‧‧Optical substrate
31‧‧‧Light input surface
31a‧‧‧Rectangular base
32‧‧‧Flat light input surface
33a‧‧‧Rules
33b‧‧‧ Rules section
33c‧‧‧Rules
33d‧‧‧Rules
34‧‧‧Light output surface
35, 35a, 35b, 35c, 35d, 35e, 35f‧‧‧ irregular blocks
35g, 35h, 35i, 35j, 35m, 35n, 35p‧‧‧ irregular blocks
35q, 35r, 35s, 35t, 35w, 35x‧‧‧ irregular blocks
36, 36a, 36b, 36c, 36d, 36e, 36f, 36g, 36h, 36i, 36j‧‧
37, 37a, 37b, 37c, 37d, 37e, 37f, 37g, 37h, 37i‧‧‧ Valley
38‧‧‧flat cylinder
39‧‧‧ big endian
40‧‧‧Little End
41‧‧‧Optical substrate film
43‧‧‧Light output surface
45, 46, 47, 48‧‧‧ structured light output surface
49‧‧‧Optical substrate film
50‧‧‧Cylinder
51‧‧‧Base
53‧‧‧稜鏡 Block
54‧‧‧Light output surface of the structure
55‧‧‧ spike
61,63‧‧‧ cylindrical
100‧‧‧Light Guide Film
101‧‧‧ Structured first major surface
102‧‧‧Second major surface
103‧‧‧ reference plane
110‧‧‧Electronic devices
111‧‧‧First component
111A‧‧‧First ridge
111B‧‧‧ Height
112‧‧‧second component
112A‧‧‧Second ridgeline
112B‧‧‧ Height
113‧‧‧ Controller
114‧‧‧Power supply
116‧‧‧User input interface
118‧‧‧Processor, analog/digital converter, memory device, data storage device
121‧‧‧Part 1
121X‧‧‧First bottom width (side)
121Y‧‧‧ side
121Z‧‧‧ side
131‧‧‧Part II
131X‧‧‧second bottom width (side)
131Y‧‧‧ side
131Z‧‧‧ side
141‧‧‧Part 1
141X‧‧‧First bottom width (side)
141Y‧‧‧ side
141Z‧‧‧ side
151‧‧‧Part II
151X‧‧‧second bottom width (side)
151Y‧‧‧ side
151Z‧‧‧ side
161‧‧‧Part 1
161X‧‧‧First bottom width (side)
161Y‧‧‧ side
161Z‧‧‧ side
171‧‧‧Part II
171X‧‧‧second bottom width (side)
171Y‧‧‧ side
171Z‧‧‧ side
175‧‧‧Part III

為了能完全的了解本發明的特性及優點,以及較佳的使用模式,可參考如下詳細的說明並閱讀所附相關圖式。在以下的圖式中,例如指定的參考符號或相似的部份將遍及於該等圖式中。  圖1概要說明根據本發明之一具體實例,係具有一光學基板的LCD結構。  圖2根據本發明之一具體實例,是一光學基板之結構的光輸出面的透視圖。  圖3是圖2之結構的光輸出面的俯視圖。  圖4是不規則稜鏡區塊的透視圖,根據本發明之一具體實例,其可被視為一光學基板結構的光輸出面的基本方塊。  圖5為根據本發明之另一具體實例,一光學基板結構的光輸出面的概要透視圖。  圖6為根據本發明之一具體實例,複數個於一列中對齊之不規則稜鏡區塊的概要透視圖。  圖7為根據本發明之一更進一步的具體實例,一光學基板之結構的光輸出面的概要透視圖。  圖8是圖7結構的光輸出面的俯視圖。  圖9A為根據本發明之一具體實例,複數個於一列中對齊之稜鏡區塊的概要透視圖,包含不規則與規則稜鏡區塊的混合。  圖9B為根據本發明之另一具體實例,是圖9A之列上之稜鏡區塊概要透視圖,其中以平面視圖來看,稜鏡區塊偏離一角度。  圖10為根據本發明之另一具體實例,一光學基板的結構的光輸出面的透視圖。  圖11為根據本發明之更進一步之具體實例,是一光學基板的結構的光輸出面的透視圖。          圖12是圖11之結構的光輸出面的俯視圖。  圖13根據本發明之更進一步的具體實例,是一光學基板結構的光輸出面的透視圖。  圖14是圖13之結構的光輸出面的俯視圖。  圖15概要地說明相對於稜鏡區塊的尖峰,各種不同端表面結構之俯視圖。  圖16根據本發明之一具體實例,表示一電子裝置之概要圖,包含一LCD面板,其合併本發明的光學基板。  圖17A至圖17D、圖18A至圖18D、圖19A至圖19D和圖20說明本發明光導向膜的三維示意圖。 圖17E至圖17H、圖18E至圖18H、圖19E至圖19H和圖20說明投影在YZ平面上第一稜鏡元件的第一稜線、第二稜鏡元件的第二稜線和參考平面。 圖17I、圖18I、圖19I說明本發明光導向膜的第一稜線的三維示意圖。In order to fully understand the features and advantages of the present invention, as well as the preferred modes of use, reference is made to the following detailed description and the accompanying drawings. In the following figures, for example, the specified reference symbols or the like are throughout the drawings. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic illustration of an LCD structure having an optical substrate in accordance with an embodiment of the present invention. Figure 2 is a perspective view of a light output face of the structure of an optical substrate in accordance with an embodiment of the present invention. Figure 3 is a plan view of the light output surface of the structure of Figure 2; 4 is a perspective view of an irregular crucible block that can be considered as a basic block of the light output face of an optical substrate structure in accordance with an embodiment of the present invention. Figure 5 is a schematic perspective view of a light output face of an optical substrate structure in accordance with another embodiment of the present invention. Figure 6 is a schematic perspective view of a plurality of irregular blocks aligned in a column in accordance with an embodiment of the present invention. Figure 7 is a schematic perspective view of a light output face of a structure of an optical substrate in accordance with a still further embodiment of the present invention. Figure 8 is a plan view of the light output surface of the structure of Figure 7. Figure 9A is a schematic perspective view of a plurality of aligned blocks in a column, including a mixture of irregularities and regular blocks, in accordance with an embodiment of the present invention. Figure 9B is a schematic perspective view of a block of the block of Figure 9A in accordance with another embodiment of the present invention, wherein the block is offset from an angle in plan view. Figure 10 is a perspective view of a light output face of the structure of an optical substrate in accordance with another embodiment of the present invention. Figure 11 is a perspective view of a light output face of a structure of an optical substrate in accordance with a still further embodiment of the present invention. Figure 12 is a plan view of the light output surface of the structure of Figure 11; Figure 13 is a perspective view of a light output face of an optical substrate structure in accordance with a still further embodiment of the present invention. Figure 14 is a plan view of the light output surface of the structure of Figure 13; Figure 15 is a schematic illustration of a top view of various end surface structures relative to the peaks of the meandering block. Figure 16 is a schematic view showing an electronic device according to an embodiment of the present invention, comprising an LCD panel incorporating the optical substrate of the present invention. 17A to 17D, 18A to 18D, 19A to 19D and Fig. 20 illustrate a three-dimensional schematic view of the light guiding film of the present invention. 17E to 17H, 18E to 18H, 19E to 19H, and 20 illustrate the first ridge line of the first 稜鏡 element, the second ridge line of the second 稜鏡 element, and the reference plane projected on the YZ plane. 17I, 18I, and 19I are three-dimensional views showing the first ridgeline of the light guiding film of the present invention.

100‧‧‧光導向膜 100‧‧‧Light Guide Film

101‧‧‧結構化第一主表面 101‧‧‧ Structured first major surface

102‧‧‧第二主表面 102‧‧‧Second major surface

103‧‧‧參考平面 103‧‧‧ reference plane

111‧‧‧第一稜鏡元件 111‧‧‧First component

111A‧‧‧第一稜線 111A‧‧‧First ridge

111B‧‧‧高度 111B‧‧‧ Height

112‧‧‧第二稜鏡元件 112‧‧‧second component

112A‧‧‧第二稜線 112A‧‧‧Second ridgeline

112B‧‧‧高度 112B‧‧‧ Height

Claims (10)

一光導向膜,具有一結構化第一主表面、相對於該結構化第一主表面的一第二主表面和位於該結構化第一主表面和該第二主表面之間的一參考平面,其中該參考平面實質上垂直於該光導向膜的厚度方向,其中該結構化第一主表面包含實質上在一第一方向上延伸的一第一稜鏡元件和一第二稜鏡元件,其中該第一稜鏡元件的一第一稜線具有相對於該參考平面的一第一高度且該第二稜鏡元件的一第二稜線具有相對於該參考平面的一第二高度,其中該第一稜鏡元件的該第一稜線的該第一高度沿著該第一方向變化。a light directing film having a structured first major surface, a second major surface relative to the structured first major surface, and a reference plane between the structured first major surface and the second major surface Wherein the reference plane is substantially perpendicular to a thickness direction of the light directing film, wherein the structured first major surface comprises a first tantalum element and a second tantalum element extending substantially in a first direction, Wherein a first ridge line of the first 稜鏡 element has a first height relative to the reference plane and a second ridge line of the second 稜鏡 element has a second height relative to the reference plane, wherein the first The first height of the first ridgeline of a unit of the element varies along the first direction. 如申請專利範圍第1項之光導向膜,其中該第一高度的最大值大於該第二高度的最大值。The light guiding film of claim 1, wherein the maximum value of the first height is greater than the maximum value of the second height. 如申請專利範圍第1項之光導向膜,其中該第二稜鏡元件的該第二稜線的該第二高度沿著該第一方向實質上具有固定的高度,其中該第一高度的最大值大於該第二高度。The light guiding film of claim 1, wherein the second height of the second ridge line of the second 稜鏡 element has a substantially fixed height along the first direction, wherein the first height is a maximum Greater than the second height. 如申請專利範圍第1項之光導向膜,其中該第二稜鏡元件的該第二稜線的該第二高度沿著該第一方向變化,其中該第一高度的最大值大於該第二高度的最大值。The light guiding film of claim 1, wherein the second height of the second ridge line of the second 稜鏡 element varies along the first direction, wherein a maximum value of the first height is greater than the second height The maximum value. 如申請專利範圍第4項之光導向膜,其中該第一高度的最小值大於該第二高度的最大值。The light guiding film of claim 4, wherein the minimum value of the first height is greater than the maximum value of the second height. 如申請專利範圍第4項之光導向膜,其中該第一高度的最小值小於該第二高度的最大值。The light guiding film of claim 4, wherein the minimum value of the first height is less than the maximum value of the second height. 如申請專利範圍第2項之光導向膜,其中該第一稜鏡元件的一第一部分具有該第一高度的最小值,且該第一稜鏡元件的一第二部分具有該第一高度的最大值,其中該第一部分具有一第一底部寬度,且該第二部分具有一第二底部寬度,其中該第二底部寬度大於該第一底部寬度。The light guiding film of claim 2, wherein a first portion of the first weir element has a minimum value of the first height, and a second portion of the first weir element has the first height a maximum value, wherein the first portion has a first bottom width and the second portion has a second bottom width, wherein the second bottom width is greater than the first bottom width. 如申請專利範圍第2項之光導向膜,其中該第一稜鏡元件的一第一部分具有該第一高度的最小值,且該第一稜鏡元件的一第二部分具有該第一高度的最大值,其中該第一部分具有一第一截面形狀,且該第二部分具有一第二截面形狀,其中該第二截面形狀的每一邊係從該第一截面形狀的對應邊以大於1的比例放大。The light guiding film of claim 2, wherein a first portion of the first weir element has a minimum value of the first height, and a second portion of the first weir element has the first height a maximum value, wherein the first portion has a first cross-sectional shape, and the second portion has a second cross-sectional shape, wherein each side of the second cross-sectional shape is greater than 1 from a corresponding side of the first cross-sectional shape amplification. 如申請專利範圍第1項之光導向膜,其中該第一稜鏡元件的該第一稜線包含: 一第一部分,其中該第一部分的該第一高度具有一固定值;以及 一第二部分,鄰近於該第一部分,其中該第二部分的該第一高度具有一非固定值,其中該第二部分的該第一高度的該非固定值的最大值大於該第一部分的該第一高度的該固定值; 其中該第二部分的該第一高度的該非固定值的最大值大於該第二高度的最大值。The light guiding film of claim 1, wherein the first ridge line of the first cymbal element comprises: a first portion, wherein the first height of the first portion has a fixed value; and a second portion Adjacent to the first portion, wherein the first height of the second portion has a non-fixed value, wherein the maximum value of the non-fixed value of the first height of the second portion is greater than the first height of the first portion a fixed value; wherein a maximum value of the non-fixed value of the first height of the second portion is greater than a maximum value of the second height. 如申請專利範圍第1項之光導向膜,其中該第一稜鏡元件的該第一稜線包含: 一第一部分,其中該第一部分的該第一高度具有一第一固定值;以及 一第二部分,其中該第二部分的該第一高度具有一第二固定值,其中該第二固定值大於該第一固定值; 其中該第二固定值大於該第二高度的最大值。The light guiding film of claim 1, wherein the first ridge line of the first cymbal element comprises: a first portion, wherein the first height of the first portion has a first fixed value; and a second a portion, wherein the first height of the second portion has a second fixed value, wherein the second fixed value is greater than the first fixed value; wherein the second fixed value is greater than a maximum value of the second height.
TW105117333A 2015-06-02 2016-06-02 Light directing film TWI613474B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/729,029 US9366875B2 (en) 2005-06-09 2015-06-02 Light directing film
US14/729,029 2015-06-02

Publications (2)

Publication Number Publication Date
TW201643487A true TW201643487A (en) 2016-12-16
TWI613474B TWI613474B (en) 2018-02-01

Family

ID=57519283

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105117333A TWI613474B (en) 2015-06-02 2016-06-02 Light directing film

Country Status (2)

Country Link
CN (1) CN106226859B (en)
TW (1) TWI613474B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106704847A (en) * 2016-12-29 2017-05-24 中山市光大光学仪器有限公司 Spotlighting device
WO2019153327A1 (en) * 2018-02-12 2019-08-15 深圳市汇顶科技股份有限公司 Image acquisition method and apparatus
CN117950223A (en) 2022-10-18 2024-04-30 台湾扬昕股份有限公司 Light source module and display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019886B2 (en) * 2002-09-30 2007-12-12 オムロン株式会社 Optical film, surface light source device and liquid crystal display device
US6811274B2 (en) * 2002-12-04 2004-11-02 General Electric Company Polarization sensitive optical substrate
KR100432347B1 (en) * 2003-07-01 2004-05-20 주식회사 엘지에스 Prism sheet of back light unit for lcd
US20080049330A1 (en) * 2006-08-25 2008-02-28 3M Innovative Properties Company Light directing laminate
JP5066741B2 (en) * 2007-09-27 2012-11-07 スタンレー電気株式会社 Light guide plate for surface light source
KR101609400B1 (en) * 2008-04-02 2016-04-05 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Light directing film or light directing article
CN102236122B (en) * 2010-04-30 2012-12-19 中强光电股份有限公司 Optical membrane
TWI442112B (en) * 2011-11-17 2014-06-21 Au Optronics Corp Light guiding plate and backlight module
KR101489955B1 (en) * 2011-12-29 2015-02-04 제일모직주식회사 Prism sheet, back light unit comprising the same and optical display apparatus comprising the same
JP5184707B1 (en) * 2012-03-30 2013-04-17 株式会社ナナオ Liquid crystal display

Also Published As

Publication number Publication date
CN106226859A (en) 2016-12-14
TWI613474B (en) 2018-02-01
CN106226859B (en) 2019-09-06

Similar Documents

Publication Publication Date Title
TWI351550B (en) Optical substrate
CN105572790B (en) Optical sheet, concave-convex structure and method for forming concave-convex structure on substrate
US10527775B2 (en) Optical substrates having light collimating and diffusion structures
JP5665214B2 (en) Brightness-enhancing optical substrate having a structure for concealing optical defects
US7712944B2 (en) Luminance enhancement optical substrates with anti-chatter structures
CN109270610B (en) Method for forming concave-convex structure on substrate and method for manufacturing mold
TWI613474B (en) Light directing film
TWI553350B (en) Luminance enhancement optical substrates with anit-interference-fringe structure
US10379268B2 (en) Light directing film
US9075178B2 (en) Luminance enhancement optical substrates with anti-interference-fringe structures
US9733400B2 (en) Light directing film