TW201643421A - Glass capillary structure and glass capillary processing method thereof - Google Patents

Glass capillary structure and glass capillary processing method thereof Download PDF

Info

Publication number
TW201643421A
TW201643421A TW104118212A TW104118212A TW201643421A TW 201643421 A TW201643421 A TW 201643421A TW 104118212 A TW104118212 A TW 104118212A TW 104118212 A TW104118212 A TW 104118212A TW 201643421 A TW201643421 A TW 201643421A
Authority
TW
Taiwan
Prior art keywords
layer
light
glass capillary
refractive index
processing
Prior art date
Application number
TW104118212A
Other languages
Chinese (zh)
Other versions
TWI557408B (en
Inventor
吳瑋特
陳建興
Original Assignee
國立屏東科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立屏東科技大學 filed Critical 國立屏東科技大學
Priority to TW104118212A priority Critical patent/TWI557408B/en
Application granted granted Critical
Publication of TWI557408B publication Critical patent/TWI557408B/en
Publication of TW201643421A publication Critical patent/TW201643421A/en

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A glass capillary processing method comprises the steps: providing a glass capillary body, the glass capillary body comprises a first body layer, a second body layer, a first pre-modified layer and a second pre-modified layer. The first pre-modified layer and the second pre-modified layer are located between the first body layer and the second body layer, and the first body layer, the second body layer, the first pre-modified layer and the second pre-modified layer has a first index of refraction; proceeding for the first pre-modified layer to make the first pre-modified layer modify to be a waveguide layer having a second index of refraction; proceeding for the second pre-modified layer to make the second pre-modified layer modify to be a light input layer, a light output layer and a spacing layer, the light input layer has a third index of refraction and the light output layer has a fourth index of refraction; and proceeding for a part of the waveguide layer to make the part of the waveguide layer modify to be an interference section having a fifth index of refraction, the interference section is located between the first body layer and the spacing layer. The first index of refraction, the second index of refraction, the third index of refraction are different, and the second index of refraction and the fifth index of refraction are different.

Description

玻璃毛細管結構及其加工方法Glass capillary structure and processing method thereof

本發明是關於一種玻璃毛細管結構及其加工方法,特別是一種製作馬赫-詹德干涉儀(MZI)感測器結構於玻璃毛細管內部之方法。The present invention relates to a glass capillary structure and a method of processing the same, and more particularly to a method of fabricating a Mach-Zehnder interferometer (MZI) sensor structure inside a glass capillary.

近年來隨著生物感測科技所發展出之生化感測平台需求量與日俱增,促使生化相關檢測科技產業迅速的發展,目前全球每年有數兆美元的市場價值,且隨食品、環境、化學及醫學臨床檢測的發展繼續成長。對醫藥產業及生化感測應用而言,於新藥開發、生物及食品檢測的過程中,需對於所有潛在元素的各種物理化學性質(physicochemical properties)進行分析,這些性質的分析必須在高通量(high throughput)的條件下進行,因此許多分析儀器是採用毛細電泳(capillary electrophoresis, CE)技術進行分離 In recent years, with the increasing demand for biochemical sensing platforms developed by biosensing technology, the biochemical-related detection technology industry has been rapidly developed. Currently, there are market value of several trillion US dollars per year, and it is clinically related to food, environment, chemistry and medicine. The development of testing continues to grow. For the pharmaceutical industry and biochemical sensing applications, the physicochemical properties of all potential elements need to be analyzed in the development of new drugs, biological and food testing. The analysis of these properties must be in high throughput ( High throughput conditions are performed, so many analytical instruments are separated by capillary electrophoresis (CE) techniques .

一般常用於毛細電泳的偵測方法有吸光度偵測器、紫外光、紫外-可見光偵測器、螢光偵測器…等,然而這些光學系統較困難直接轉換製作於玻璃基材之微流體晶片系統或毛細管內,加上分析儀器的確需要偵測溶液折射率的改變,藉此變化量進行分析,因此需要引入新的光學感測技術,以測知毛細管內之溶液折射率變化,克服長久以來生化感測系統之技術瓶頸。誠如前述,目前以折射率偵測的光學設計主流技術大致分為表面電漿共振(Surface Plasmon Resonance, SPR)感測器、光纖式粒子電漿共振(Fiber Optics Particles Plasmon Resonance, FO-PPR)感測器及光纖式馬赫-詹德干涉儀(Fiber Optics Mach-Zehnder Interferometer, FO-MZI)感測器,然表面電漿共振感測器及光纖式粒子電漿共振感測器此兩種折射率偵測技術皆受限於需修飾適當材料於感測元件表面來誘發光學共振,因此無法製作於毛細管內部。Commonly used in capillary electrophoresis detection methods include absorbance detectors, ultraviolet light, ultraviolet-visible light detectors, fluorescent detectors, etc. However, these optical systems are difficult to directly convert microfluidic wafers fabricated on glass substrates. In the system or capillary, plus the analytical instrument does need to detect the change of the refractive index of the solution, and thus the amount of change for analysis, it is necessary to introduce a new optical sensing technology to detect the refractive index change of the solution in the capillary, overcoming the long-standing The technical bottleneck of the biochemical sensing system. As mentioned above, the current mainstream optical design techniques for refractive index detection are broadly classified into Surface Plasmon Resonance (SPR) sensors and Fiber Optics Particles Plasmon Resonance (FO-PPR). Sensors and Fiber Optics Mach-Zehnder Interferometer (FO-MZI) sensors, surface-plasma resonance sensors and fiber-optic particle resonator resonance sensors Rate detection techniques are limited by the need to modify appropriate materials on the surface of the sensing element to induce optical resonance, and therefore cannot be fabricated inside the capillary.

本發明之主要目的在於提供一種玻璃毛細管之加工方法,其藉由製作馬赫-詹德干涉儀(MZI)感測器結構於玻璃毛細管內部,以改質玻璃毛細管內部之折射率,進而誘發光學干涉並且進行檢測。The main object of the present invention is to provide a method for processing a glass capillary by modifying a refractive index inside a glass capillary by making a Mach-Zehnder interferometer (MZI) sensor structure inside the glass capillary, thereby inducing optical interference. And carry out the test.

本發明之一種玻璃毛細管之加工方法,提供一玻璃毛細管本體,該玻璃毛細管本體的管壁包含有一第一本體層、一第二本體層、一第一預改質層及一第二預改質層,該第一預改質層及該第二預改質層位於該第一本體層及該第二本體層之間,且該第一預改質層位於該第一本體層及該第二預改質層之間,該第一本體層、該第二本體層、該第一預改質層及該第二預改質層沿該玻璃毛細管本體之軸向延伸,該第一本體層、該第二本體層、該第一預改質層及該第二預改質層具有一第一折射率;對該第一預改質層進行加工,以使該第一預改質層改質為一波導層(waveguide),且該波導層具有一第二折射率;沿該玻璃毛細管本體之軸向對該第二預改質層進行加工,使該第二預改質層改質為一光導入層、一光導出層及一位於該光導入層及該光導出層之間的區隔層,該光導入層具有一第三折射率,該光導出層具有一第四折射率;以及對該波導層進行局部加工,以使該波導層之局部區段改質為一干涉區段,該干涉區段位於該第一本體層及該區隔層之間,該干涉區段包含有至少一耦合點(coupling point),且該干涉區段具有一第五折射率,該第一折射率、該第二折射率及該第三折射率皆相異,該第二折射率及該第五折射率相異。。本發明藉由對該玻璃毛細管本體內部進行改質,使該玻璃毛細管本體之該第一預改質層改質為該波導層,該第二預改質層改質為該光導入層、該光導出層、該第一光柵層、該第二光柵層,最後使該波導層之局部區段改質為該干涉區段以在該玻璃毛細管本體內部形成馬赫-詹德干涉儀(MZI)感測器結構,而得到一具新穎性之折射率感測器。A glass capillary processing method of the present invention provides a glass capillary body, the tube wall of the glass capillary body comprising a first body layer, a second body layer, a first pre-modification layer and a second pre-modification The first pre-modification layer and the second pre-modification layer are located between the first body layer and the second body layer, and the first pre-modification layer is located at the first body layer and the second Between the pre-modified layers, the first body layer, the second body layer, the first pre-modification layer and the second pre-modification layer extend along an axial direction of the glass capillary body, the first body layer, The second body layer, the first pre-modification layer and the second pre-modification layer have a first refractive index; the first pre-modification layer is processed to modify the first pre-modification layer Is a waveguide, and the waveguide layer has a second refractive index; processing the second pre-modification layer along the axial direction of the glass capillary body to modify the second pre-modification layer into a a light introduction layer, a light derivation layer, and a compartment layer between the light introduction layer and the light derivation layer, The introduction layer has a third refractive index, the light derivation layer has a fourth refractive index; and the waveguide layer is locally processed to modify a local segment of the waveguide layer into an interference segment, the interference segment Located between the first body layer and the compartment layer, the interference section includes at least one coupling point, and the interference section has a fifth refractive index, the first refractive index, the second The refractive index and the third refractive index are all different, and the second refractive index and the fifth refractive index are different. . According to the present invention, the first pre-modified layer of the glass capillary body is modified into the waveguide layer by modifying the interior of the glass capillary body, and the second pre-modified layer is modified into the light-introducing layer. The light-derived layer, the first grating layer, the second grating layer, and finally the partial section of the waveguide layer is modified into the interference section to form a Mach-Zehnder interferometer (MZI) inside the glass capillary body The sensor structure is obtained to obtain a novel refractive index sensor.

本發明之主要目的在於提供一種玻璃毛細管結構,其藉由製作馬赫-詹德干涉儀(MZI)感測器結構於玻璃毛細管內部,以改質玻璃毛細管內部之折射率,進而誘發光學干涉並且進行檢測。The main object of the present invention is to provide a glass capillary structure by fabricating a Mach-Zehnder interferometer (MZI) sensor structure inside a glass capillary to modify the refractive index inside the glass capillary, thereby inducing optical interference and performing Detection.

本發明之一種玻璃毛細管結構,包含有一第一本體層、一相對於該第一本體層之第二本體層、一波導層、一光導入層、一相對於該光導入層之光導出層、一區隔層以及一干涉區段,該第一本體層及該第二本體層具有一第一折射率,該波導層位於該第一本體層及該第二本體層之間,該波導層具有一第二折射率,該光導入層具有一第三折射率,該波導層位於該光導入層及該第一本體層之間,該光導出層具有一第四折射率,該波導層位於該光導出層及該第一本體層之間,該區隔層位於該光導入層及該光導出層之間,該干涉區段位於該第一本體層及該區隔層之間,該干涉區段包含有至少一耦合點(coupling point),且該干涉區段具有一第五折射率,該第一折射率、該第二折射率及該第三折射率皆相異,該第二折射率及該第五折射率相異。A glass capillary structure of the present invention comprises a first body layer, a second body layer opposite to the first body layer, a waveguide layer, a light inducing layer, a light deriving layer with respect to the light introducing layer, a first spacer layer and a second body layer having a first index of refraction, the waveguide layer being located between the first body layer and the second body layer, the waveguide layer having a second refractive index, the light introducing layer has a third refractive index, the waveguide layer is located between the light introducing layer and the first body layer, the light guiding layer has a fourth refractive index, and the waveguide layer is located at the Between the light-derived layer and the first body layer, the partition layer is located between the light-introducing layer and the light-derived layer, the interference segment is located between the first body layer and the partition layer, the interference region The segment includes at least one coupling point, and the interference segment has a fifth refractive index, the first refractive index, the second refractive index, and the third refractive index are all different, and the second refractive index is different And the fifth refractive index is different.

請參閱第1及2A至2D圖,其係本發明之一較佳實施例,一種玻璃毛細管之加工方法包含下列步驟:首先,請參閱第1圖之步驟11及第2A圖,提供一玻璃毛細管本體110,該玻璃毛細管本體110可選自於圓形或方形,該玻璃毛細管本體110的管壁包含有一第一本體層111、一第二本體層112、一第一預改質層113及一第二預改質層114,該第一預改質層113及該第二預改質層114位於該第一本體層111及該第二本體層112之間,且該第一預改質層113位於該第一本體層111及該第二預改質層114之間,該第一本體層111具有一第一表面111a且該第一本體層111之該第一表面111a為該玻璃毛細管本體110之內側壁面,該第二本體層112具有一第二表面112a且該第二本體層112之該第二表面112a為該玻璃毛細管本體110之外側壁面,該第一本體層111、該第二本體層112、該第一預改質層113及該第二預改質層114沿該玻璃毛細管本體110之軸向X延伸,該第一本體層111、該第二本體層112、該第一預改質層113及該第二預改質層114具有一第一折射率。Please refer to FIGS. 1 and 2A to 2D, which are a preferred embodiment of the present invention. A method for processing a glass capillary comprises the following steps: First, please refer to step 11 and FIG. 2A of FIG. 1 to provide a glass capillary. The body of the glass capillary body 110 can be selected from a circular or square shape. The wall of the glass capillary body 110 includes a first body layer 111, a second body layer 112, a first pre-modified layer 113 and a a second pre-modified layer 114, the first pre-modified layer 113 and the second pre-modified layer 114 are located between the first body layer 111 and the second body layer 112, and the first pre-modified layer 113 is located between the first body layer 111 and the second pre-modification layer 114. The first body layer 111 has a first surface 111a and the first surface 111a of the first body layer 111 is the glass capillary body. The second body layer 112 has a second surface 112a, and the second surface 112a of the second body layer 112 is an outer wall surface of the glass capillary body 110, the first body layer 111, the second The body layer 112, the first pre-modification layer 113 and the second pre-modification layer 114 Glass capillary body extending axially of X 110, the first body layer 111, the second body layer 112, the first pre-modified layer 113 and the second pre-modified layer 114 having a first index of refraction.

接著,請參閱第1圖之步驟12及第2B圖,對該第一預改質層113進行加工,以使該第一預改質層113改質為一波導層113a(waveguide),且該波導層113a具有一第二折射率,在本實施例中,對該第一預改質層113進行加工之步驟中係利用一飛秒雷射機台(圖未繪出)對該第一預改質層113進行脈衝累積熱效應(thermal effect accumulated across pulses)加工,使得該波導層113之該第二折射率與未進行改質前之該第一預改質層113的該第一折射率之間具有差異,較佳的,該第二折射率大於該第一折射率,使光線可於該波導層113中產生全反射以傳遞光線。Next, referring to step 12 and FIG. 2B of FIG. 1 , the first pre-modification layer 113 is processed to modify the first pre-modification layer 113 into a waveguide layer 113a (waveguide), and the The waveguide layer 113a has a second refractive index. In the embodiment, the step of processing the first pre-modified layer 113 is performed by using a femtosecond laser machine (not shown). The modified layer 113 performs a thermal effect accumulated across pulse processing such that the second refractive index of the waveguide layer 113 and the first refractive index of the first pre-modified layer 113 before the modification is performed. There is a difference. Preferably, the second refractive index is greater than the first refractive index, so that light can be totally reflected in the waveguide layer 113 to transmit light.

之後,請參閱第1圖之步驟13及第2C圖,沿該玻璃毛細管本體之軸向對該第二預改質層114進行加工,以使該第二預改質層114改質為一光導入層114a、一光導出層114b及一位於該光導入層114a及該光導出層114b之間的區隔層114c,在本實施例中,該區隔層114c為該第二預改質層114未改質的區域,該區隔層114c用以區隔該光導入層114a及該光導出層114b。Thereafter, referring to step 13 and FIG. 2C of FIG. 1 , the second pre-modification layer 114 is processed along the axial direction of the glass capillary body to modify the second pre-modification layer 114 into a light. The introduction layer 114a, a light derivation layer 114b, and a compartment layer 114c between the light introduction layer 114a and the light derivation layer 114b. In this embodiment, the compartment layer 114c is the second pre-modified layer. The unmodified region 114 is used to partition the light introducing layer 114a and the light guiding layer 114b.

在本實施例中,使該第二預改質層114改質為該光導入層114a時,可同時形成一第一光柵層114d於該區隔層114c及該光導入層114a之間,且該第一光柵層114d及該光導入層114a之間具有一第一間距D1,或者,在不同實施例中,使該第二預改質層114改質為該光導入層114a時,該光導入層114a即可為柵欄型態,以使光線可更容易的由該光導入層114a及該第一光柵結構114d導入該波導層113a中。In this embodiment, when the second pre-modified layer 114 is modified into the light-introducing layer 114a, a first grating layer 114d can be simultaneously formed between the partition layer 114c and the light-introducing layer 114a, and The first grating layer 114d and the light introducing layer 114a have a first spacing D1 between them, or, in different embodiments, when the second pre-modifying layer 114 is modified into the light introducing layer 114a, the light The introduction layer 114a may be of a barrier type so that light can be more easily introduced into the waveguide layer 113a from the light introduction layer 114a and the first grating structure 114d.

在本實施例中,使該第二預改質層114改質為該光導出層114b時,可同時形成一第二光柵層114e於該區隔層114c及該光導出層114b之間,且該第二光柵層114e及該光導出層114b之間具有一第二間距D2,或者,在不同實施例中,使該第二預改質層114改質為該光導出層114b時,該光導出層114b即可為柵欄型態,以使光線可更容易的由該波導層113a經由該光導出層114b及該第二光柵結構114e導出。In this embodiment, when the second pre-modified layer 114 is modified into the light-derived layer 114b, a second grating layer 114e can be simultaneously formed between the partition layer 114c and the light-derived layer 114b, and The second grating layer 114e and the light-derived layer 114b have a second spacing D2 between them, or, in different embodiments, when the second pre-modifying layer 114 is modified to the light-derived layer 114b, the light The derivation layer 114b can be of a barrier type such that light can be more easily derived from the waveguide layer 113a via the light derivation layer 114b and the second grating structure 114e.

在本實施例中,該光導入層114a連接該波導層113a,且該光導出層114b亦連接該波導層113a,較佳地,該光導入層114a及該第一光柵層114d形成為一維微奈米週期性結構(transmission grating),且該光導出層114b及該第二光柵層114e亦形成為一維微奈米週期性結構(transmission grating),在本實施例中,對該第二預改質層114進行加工之步驟中係利用一飛秒雷射機台(圖未繪出)對該第二預改質層114進行雙光束干涉加工(Two-Laser Beam Interference Technique),該光導入層114a具有一第三折射率,該光導出層114b具有一第四折射率,該區隔層114c具有一第六折射率,該第六折射率與該第一折射率相同,其中該光導入層114a之該第三折射率與該波導層113a之該第二折射率相異,該光導出層114b之該第四折射率與該波導層113a之該第二折射率相異。In this embodiment, the light introducing layer 114a is connected to the waveguide layer 113a, and the light guiding layer 114b is also connected to the waveguide layer 113a. Preferably, the light introducing layer 114a and the first grating layer 114d are formed in one dimension. The micro-nano periodic structure (transmission grating), and the light-derived layer 114b and the second grating layer 114e are also formed as a one-dimensional micro-nano periodic structure (transmission grating). In this embodiment, the second In the step of processing the pre-modified layer 114, the second pre-modified layer 114 is subjected to a two-beam interference interference processing (Two-Laser Beam Interference Technique) by using a femtosecond laser machine (not shown). The introduction layer 114a has a third refractive index, the light derivation layer 114b has a fourth refractive index, and the spacer layer 114c has a sixth refractive index, the sixth refractive index being the same as the first refractive index, wherein the light The third refractive index of the introduction layer 114a is different from the second refractive index of the waveguide layer 113a, and the fourth refractive index of the light extraction layer 114b is different from the second refractive index of the waveguide layer 113a.

最後,請參閱第1圖之步驟14及第2D圖,對該波導層113a進行局部加工,以使該波導層113a之局部區段改質為一干涉區段115以形成一具有馬赫-詹德干涉儀(MZI)感測器結構之玻璃毛細管100,該干涉區段115位於該第一本體層111及該區隔層114c之間,該干涉區段115包含有至少一耦合點115a(coupling point)且該干涉區段115具有一第五折射率,該第五折射率與該波導層113a之該第二折射率相異,在本實施例中,對該波導層113a進行局部加工之步驟中係利用一飛秒雷射機台(圖未繪出)對該波導層113a之局部區段進行脈衝累積熱效應或雙光束干涉加工。Finally, referring to step 14 and FIG. 2D of FIG. 1, the waveguide layer 113a is locally processed to modify a partial section of the waveguide layer 113a into an interference section 115 to form a Mach-Zander a glass capillary tube 100 of the interferometer (MZI) sensor structure, the interference section 115 is located between the first body layer 111 and the compartment layer 114c, and the interference section 115 includes at least one coupling point 115a (coupling point) And the interference section 115 has a fifth index of refraction which is different from the second index of refraction of the waveguide layer 113a. In this embodiment, the step of locally processing the waveguide layer 113a is performed. The partial section of the waveguide layer 113a is subjected to pulse cumulative thermal effect or double beam interference processing using a femtosecond laser machine (not shown).

由於馬赫-詹德干涉儀(MZI)感測器之特徵在於利用光學分光元件或結構將入射光分裂為多道光束,當多道光束傳播於不同路徑,再以光學耦光元件或結構將之重合後,各光束間產生光程差(different optical paths),而形成干涉現象,即可對待測物進行檢測,因此本發明藉由於該玻璃毛細管本體110內部進行改質,使該玻璃毛細管本體110之該第一本體層111與該第二本體層112之間的該第一預改質層113改質為該波導層113a,及使該第二預改質層114改質為該光導入層114a、該光導出層114b、該第一光柵層114d、該第二光柵層114e,最後使該波導層113a之局部區段改質為該干涉區段115以在該玻璃毛細管本體110內部形成馬赫-詹德干涉儀(MZI)感測器結構,以使藉由該玻璃毛細管100之加工方法所製得之玻璃毛細管100成為具新穎性之折射率感測器。Since the Mach-Zehnder Interferometer (MZI) sensor is characterized in that the optical splitting element or structure is used to split the incident light into multiple beams, when the multiple beams are propagated in different paths, and then the optical coupling elements or structures are used. After the coincidence, the optical path difference between the beams is generated, and the interference phenomenon is formed, so that the object to be tested can be detected. Therefore, in the present invention, the glass capillary body 110 is modified by the inside of the glass capillary body 110. The first pre-modification layer 113 between the first body layer 111 and the second body layer 112 is modified into the waveguide layer 113a, and the second pre-modification layer 114 is modified into the light introduction layer. 114a, the light deriving layer 114b, the first grating layer 114d, the second grating layer 114e, and finally modifying a partial section of the waveguide layer 113a into the interference section 115 to form a Mach inside the glass capillary body 110 The Zander Interferometer (MZI) sensor structure is such that the glass capillary 100 produced by the processing method of the glass capillary 100 becomes a novel refractive index sensor.

請再參閱第2D圖,其係本發明之玻璃毛細管之加工方法所製得之一種玻璃毛細管100,其包含有一第一本體層111、一第二本體層112、一波導層113a、一光導入層114a、一光導出層114b、一區隔層114c以及一干涉區段115,該波導層113a、該光導入層114a、該光導出層114b及該區隔層114c位於該第一本體層111及該第二本體層112之間,且該波導層113a位於該第一本體層111、該光導入層114a、該光導出層114b及該區隔層114c之間,且該光導入層114a連接該波導層113a,該光導出層114b亦連接該波導層113a,該區隔層114c位於該光導入層114a及該光導出層114b之間,該干涉區段115位於該第一本體層111及該區隔層114c之間,且該干涉區段115包含有至少一耦合點115a(coupling point)。Please refer to FIG. 2D, which is a glass capillary tube 100 prepared by the method for processing a glass capillary of the present invention, which comprises a first body layer 111, a second body layer 112, a waveguide layer 113a, and a light introduction. The layer 114a, a light-derived layer 114b, a spacer layer 114c, and an interference section 115, the waveguide layer 113a, the light-introducing layer 114a, the light-derived layer 114b, and the compartment layer 114c are located in the first body layer 111. And the second body layer 112, and the waveguide layer 113a is located between the first body layer 111, the light introducing layer 114a, the light guiding layer 114b and the partition layer 114c, and the light introducing layer 114a is connected The waveguide layer 113a is also connected to the waveguide layer 113a. The spacer layer 114c is located between the light introducing layer 114a and the light guiding layer 114b. The interference section 115 is located in the first body layer 111 and Between the compartments 114c, the interference section 115 includes at least one coupling point 115a (coupling point).

該第一本體層111及該第二本體層112具有一第一折射率,該波導層113a具有一第二折射率,該光導入層114a具有一第三折射率,該光導出層114b具有一第四折射率,該區隔層114c具有一第六折射率,該第一折射率與該第六折射率相同,且該干涉區段115具有一第五折射率,該第一折射率、該第二折射率及該第三折射率皆相異,該第二折射率與該第五折射率相異,該第二折射率及該第四折射率相異。The first body layer 111 and the second body layer 112 have a first index of refraction, the waveguide layer 113a has a second index of refraction, the light-introducing layer 114a has a third index of refraction, and the light-derived layer 114b has a a fourth refractive index, the spacer layer 114c has a sixth refractive index, the first refractive index is the same as the sixth refractive index, and the interference segment 115 has a fifth refractive index, the first refractive index, the first refractive index The second refractive index and the third refractive index are all different, and the second refractive index is different from the fifth refractive index, and the second refractive index and the fourth refractive index are different.

在本實施例中,該玻璃毛細管100另包含有一第一光柵層114d及一第二光柵層114e,該第一光柵層114d形成於該區隔層114c及該光導入層114a之間,且該光導入層114a及該第一光柵層114d形成為一維微奈米週期性結構(transmission grating),該第二光柵層114e形成於該區隔層114c及該光導出層114b之間,且該光導出層114b及該第二光柵層114e形成為一維微奈米週期性結構(transmission grating),該第一光柵層114d及該光導入層114a之間具有一第一間距D1,該第二光柵層114e及該光導出層114b之間具有一第二間距D2。In this embodiment, the glass capillary tube 100 further includes a first grating layer 114d and a second grating layer 114e. The first grating layer 114d is formed between the partition layer 114c and the light introducing layer 114a, and the The light-introducing layer 114a and the first grating layer 114d are formed as a one-dimensional micro-period, and the second grating layer 114e is formed between the interlayer 114c and the light-extracting layer 114b, and the The light-derived layer 114b and the second grating layer 114e are formed as a one-dimensional micro-period. The first grating layer 114d and the light-introducing layer 114a have a first spacing D1. A grating pitch 114e and the light deriving layer 114b have a second pitch D2 therebetween.

請參閱第3圖,其為本發明之該玻璃毛細管100實際應用於毛細電泳架構之示意圖,該玻璃毛細管100的一端設置於一第一容器C1中,該玻璃毛細管100的另一端設置於一第二容器C2中,且該第一容器C1、該玻璃毛細管100及該第二容器C2中皆設置有電解液S,並利用一電源供應器E分別於該第一容器C1及該第二容器C2中施加正電壓及負電壓,使待測樣品能於電解液中受到電動力的牽引游離,並通過一偵測裝置B,以進行待測樣品之分析檢測。Please refer to FIG. 3 , which is a schematic diagram of the glass capillary tube 100 of the present invention applied to a capillary electrophoresis structure. One end of the glass capillary tube 100 is disposed in a first container C1 , and the other end of the glass capillary tube 100 is disposed in a first In the second container C2, the first container C1, the glass capillary tube 100 and the second container C2 are provided with an electrolyte S, and a power supply E is respectively used in the first container C1 and the second container C2. A positive voltage and a negative voltage are applied to enable the sample to be tested to be freely pulled by the electromotive force in the electrolyte, and pass through a detecting device B to perform analysis and detection of the sample to be tested.

請參閱第4圖,其為待測樣品通過該偵測裝置B時,光於該玻璃毛細管100內部之路徑及感測原理示意圖,光由該玻璃毛細管100通過時,光由該光導入層114a及該第一光柵層114d所形成之一維微奈米週期性結構入射時,其n階(n=1、2、3…)繞射光之繞射角度若滿足該波導層113a之全反射條件,其繞射模態可於該波導層113a內傳播,當傳播於該波導層113a的模態通過該干涉區段115中之一耦合點115a(coupling point)時,部份模態被耦合至該玻璃毛細管100內傳播,當經過該干涉區段115中之另一耦合點115b時,於該第一本體層111內傳播的模態又被耦合回該波導層113a,形成光程差而產生干涉現象,當此干涉光通過該光導出層114b及該第二光柵層114e所形成之一維微奈米週期性結構(transmission grating)時,其繞射模態恰好滿足波導層113a的洩漏模態(leakage mode),因此可由一光譜分析儀A得到干涉條紋之反射光譜,藉此進行折射率檢測。Please refer to FIG. 4 , which is a schematic diagram of the path and sensing principle of the light inside the glass capillary tube 100 when the sample to be tested passes through the detecting device B. When the light passes through the glass capillary tube 100, the light is introduced from the light introducing layer 114a. And when the one-dimensional micro-nano periodic structure formed by the first grating layer 114d is incident, the diffraction angle of the n-th order (n=1, 2, 3...) diffracted light satisfies the total reflection condition of the waveguide layer 113a. The diffraction mode can be propagated in the waveguide layer 113a. When the mode propagated through the waveguide layer 113a passes through a coupling point 115a (coupling point) in the interference section 115, part of the mode is coupled to The glass capillary tube 100 propagates. When passing through another coupling point 115b in the interference section 115, the mode propagated in the first body layer 111 is coupled back to the waveguide layer 113a to form an optical path difference. The interference phenomenon, when the interference light passes through the one-dimensional micro-period periodic structure formed by the light-derived layer 114b and the second grating layer 114e, the diffraction mode thereof just satisfies the leakage mode of the waveguide layer 113a Leakage mode, so it can be obtained by an optical spectrum analyzer A Reflection spectrum of interference fringes, thereby detecting the refractive index.

本發明之保護範圍當視後附之申請專利範圍所界定者為準,任何熟知此項技藝者,在不脫離本發明之精神和範圍內所作之任何變化與修改,均屬於本發明之保護範圍。The scope of the present invention is defined by the scope of the appended claims, and any changes and modifications made by those skilled in the art without departing from the spirit and scope of the invention are within the scope of the present invention. .

11‧‧‧提供玻璃毛細管本體
12‧‧‧對第一預改質層進行加工
13‧‧‧對第二預改質層進行加工
14‧‧‧對波導層進行局部加工
100‧‧‧玻璃毛細管結構
110‧‧‧玻璃毛細管本體
111‧‧‧第一本體層
111a‧‧‧第一表面
112‧‧‧第二本體層
112a‧‧‧第二表面
113‧‧‧第一預改質層
113a‧‧‧波導層
114‧‧‧第二預改質層
114a‧‧‧光導入層
114b‧‧‧光導出層
114c‧‧‧區隔層
114d‧‧‧第一光柵層
114e‧‧‧第二光柵層
115‧‧‧干涉區段
115a‧‧‧耦合點
115b‧‧‧另一耦合點
A‧‧‧光譜分析儀
B‧‧‧偵測裝置
C1‧‧‧第一容器
C2‧‧‧第二容器
E‧‧‧電源供應器
S‧‧‧電解液
D1‧‧‧第一間距
D2‧‧‧第二間距
X‧‧‧軸向
11‧‧‧ Providing a glass capillary body
12‧‧‧Processing the first pre-modified layer
13‧‧‧Processing the second pre-modified layer
14‧‧‧Local processing of the waveguide layer
100‧‧‧ glass capillary structure
110‧‧‧ glass capillary body
111‧‧‧First body layer
111a‧‧‧ first surface
112‧‧‧Second body layer
112a‧‧‧ second surface
113‧‧‧First pre-modified layer
113a‧‧‧Wave layer
114‧‧‧Second pre-modified layer
114a‧‧‧Light introduction layer
114b‧‧‧Light export layer
114c‧‧‧ compartment
114d‧‧‧First grating layer
114e‧‧‧second grating layer
115‧‧‧Interference section
115a‧‧‧ coupling point
115b‧‧‧ another coupling point
A‧‧‧Spectrum Analyzer
B‧‧‧Detection device
C1‧‧‧ first container
C2‧‧‧ second container
E‧‧‧Power supply
S‧‧‧ electrolyte
D1‧‧‧first spacing
D2‧‧‧second spacing
X‧‧‧ axial

第1圖:依據本發明之一實施例,一種玻璃毛細管之加工方法之流程圖。 第2A至2D圖:依據本發明之一實施例,玻璃毛細管之管壁截面示意圖。 第3圖:依據本發明之一實施例,一種毛細電泳架構示意圖。 第4圖:依據本發明之一實施例,光於該毛細電泳架構之路徑及感測原理示意圖。Figure 1 is a flow chart showing a method of processing a glass capillary tube in accordance with an embodiment of the present invention. 2A to 2D are schematic cross-sectional views showing a wall of a glass capillary tube according to an embodiment of the present invention. Figure 3 is a schematic illustration of a capillary electrophoresis architecture in accordance with an embodiment of the present invention. Figure 4 is a schematic diagram showing the path and sensing principle of the capillary electrophoresis architecture in accordance with an embodiment of the present invention.

100‧‧‧玻璃毛細管 100‧‧‧ glass capillary

111‧‧‧第一本體層 111‧‧‧First body layer

111a‧‧‧第一表面 111a‧‧‧ first surface

112‧‧‧第二本體層 112‧‧‧Second body layer

112a‧‧‧第二表面 112a‧‧‧ second surface

113a‧‧‧波導層 113a‧‧‧Wave layer

114a‧‧‧光導入層 114a‧‧‧Light introduction layer

114b‧‧‧光導出層 114b‧‧‧Light export layer

114c‧‧‧區隔層 114c‧‧‧ compartment

114d‧‧‧第一光柵層 114d‧‧‧First grating layer

114e‧‧‧第二光柵層 114e‧‧‧second grating layer

115‧‧‧干涉區段 115‧‧‧Interference section

115a‧‧‧耦合點 115a‧‧‧ coupling point

Claims (21)

一種玻璃毛細管結構,其包含: 一第一本體層; 一相對於該第一本體層之第二本體層,該第一本體層及該第二本體層具有一第一折射率; 一波導層(waveguide),其位於該第一本體層及該第二本體層之間,該波導層具有一第二折射率; 一光導入層,其具有一第三折射率,該波導層位於該光導入層及該第一本體層之間; 一相對於該光導入層之光導出層,其具有一第四折射率,該波導層位於該光導出層及該第一本體層之間; 一區隔層,該區隔層位於該光導入層及該光導出層之間;以及 一干涉區段,其位於該第一本體層及該區隔層之間,該干涉區段包含有至少一耦合點(coupling point),且該干涉區段具有一第五折射率,該第一折射率、該第二折射率及該第三折射率皆相異,該第二折射率及該第五折射率相異。A glass capillary structure comprising: a first body layer; a second body layer opposite to the first body layer, the first body layer and the second body layer having a first refractive index; a waveguide, which is located between the first body layer and the second body layer, the waveguide layer has a second refractive index; a light-introducing layer having a third refractive index, the waveguide layer being located at the light-introducing layer And the first body layer; a light-extracting layer with respect to the light-introducing layer, having a fourth refractive index, the waveguide layer being located between the light-derived layer and the first body layer; a spacer between the light-introducing layer and the light-extracting layer; and an interference section between the first body layer and the compartment, the interference section including at least one coupling point ( a coupling point, and the interference segment has a fifth refractive index, the first refractive index, the second refractive index, and the third refractive index are all different, and the second refractive index and the fifth refractive index are different . 如申請專利範圍第1項所述之玻璃毛細管結構,其中該區隔層具有一第六折射率,該第一折射率與該第六折射率相同。The glass capillary structure of claim 1, wherein the spacer layer has a sixth index of refraction, the first index of refraction being the same as the sixth index of refraction. 如申請專利範圍第1項所述之玻璃毛細管結構,其中該光導入層連接該波導層。The glass capillary structure of claim 1, wherein the light inducing layer is connected to the waveguide layer. 如申請專利範圍第1項所述之玻璃毛細管結構,其中該光導出層連接該波導層。The glass capillary structure of claim 1, wherein the light-derived layer is connected to the waveguide layer. 如申請專利範圍第1項所述之玻璃毛細管結構,其另包含有一第一光柵層,該第一光柵層形成於該區隔層及該光導入層之間,且該第一光柵層及該光導入層之間具有一第一間距。The glass capillary structure of claim 1, further comprising a first grating layer, the first grating layer being formed between the interlayer and the light introducing layer, and the first grating layer and the There is a first spacing between the light directing layers. 如申請專利範圍第1項所述之玻璃毛細管結構,其另包含有一第二光柵層,該第二光柵層形成於該區隔層及該光導出層之間,且該第二光柵層及該光導出層之間具有一第二間距。The glass capillary structure of claim 1, further comprising a second grating layer formed between the compartment layer and the light deriving layer, and the second grating layer and the There is a second spacing between the light deriving layers. 如申請專利範圍第5項所述之玻璃毛細管結構,其中該光導入層及該第一光柵層形成為一維微奈米週期性結構(transmission grating)。The glass capillary structure according to claim 5, wherein the light introducing layer and the first grating layer are formed as a one-dimensional micro-period. 如申請專利範圍第6項所述之玻璃毛細管結構,其中該光導出層及該第二光柵層形成為一維微奈米週期性結構(transmission grating)。The glass capillary structure of claim 6, wherein the light-derived layer and the second grating layer are formed as a one-dimensional micro-period. 如申請專利範圍第1項所述之玻璃毛細管結構,其中該波導層之該第二折射率及該光導出層之該第四折射率相異。The glass capillary structure of claim 1, wherein the second refractive index of the waveguide layer and the fourth refractive index of the light-derived layer are different. 一種玻璃毛細管之加工方法,其包含: 提供一玻璃毛細管本體,該玻璃毛細管本體的管壁包含有一第一本體層、一第二本體層、一第一預改質層及一第二預改質層,該第一預改質層及該第二預改質層位於該第一本體層及該第二本體層之間,且該第一預改質層位於該第一本體層及該第二預改質層之間,該第一本體層、該第二本體層、該第一預改質層及該第二預改質層沿該玻璃毛細管本體之軸向延伸,該第一本體層、該第二本體層、該第一預改質層及該第二預改質層具有一第一折射率; 對該第一預改質層進行加工,以使該第一預改質層改質為一波導層(waveguide),且該波導層具有一第二折射率; 沿該玻璃毛細管本體之軸向對該第二預改質層進行加工,使該第二預改質層改質為一光導入層、一光導出層及一位於該光導入層及該光導出層之間的區隔層,該光導入層具有一第三折射率,該光導出層具有一第四折射率;以及 對該波導層進行局部加工,以使該波導層之局部區段改質為一干涉區段,該干涉區段位於該第一本體層及該區隔層之間,該干涉區段包含有至少一耦合點(coupling point),且該干涉區段具有一第五折射率,該第一折射率、該第二折射率及該第三折射率皆相異,該第二折射率及該第五折射率相異。A method for processing a glass capillary, comprising: providing a glass capillary body, the wall of the glass capillary body comprising a first body layer, a second body layer, a first pre-modified layer and a second pre-modification The first pre-modification layer and the second pre-modification layer are located between the first body layer and the second body layer, and the first pre-modification layer is located at the first body layer and the second Between the pre-modified layers, the first body layer, the second body layer, the first pre-modification layer and the second pre-modification layer extend along an axial direction of the glass capillary body, the first body layer, The second body layer, the first pre-modification layer and the second pre-modification layer have a first refractive index; processing the first pre-modification layer to modify the first pre-modification layer Is a waveguide layer, and the waveguide layer has a second refractive index; processing the second pre-modification layer along the axial direction of the glass capillary body to modify the second pre-modification layer into a a light introduction layer, a light derivation layer, and a compartment layer between the light introduction layer and the light derivation layer, The light introducing layer has a third refractive index, the light guiding layer has a fourth refractive index; and the waveguide layer is locally processed to modify a partial section of the waveguide layer into an interference section, the interference zone a segment is located between the first body layer and the compartment layer, the interference section includes at least one coupling point, and the interference section has a fifth refractive index, the first refractive index, the first The second refractive index and the third refractive index are all different, and the second refractive index and the fifth refractive index are different. 如申請專利範圍第10項所述之玻璃毛細管之加工方法,其中該區隔層具有一第六折射率,該第一折射率與該第六折射率相同。The method for processing a glass capillary according to claim 10, wherein the spacer layer has a sixth index of refraction, the first index of refraction being the same as the sixth index of refraction. 如申請專利範圍第10項所述之玻璃毛細管之加工方法,其中該光導入層連接該波導層。The method of processing a glass capillary according to claim 10, wherein the light introducing layer is connected to the waveguide layer. 如申請專利範圍第10項所述之玻璃毛細管之加工方法,其中該光導出層連接該波導層。The method of processing a glass capillary according to claim 10, wherein the light-derived layer is connected to the waveguide layer. 如申請專利範圍第10項所述之玻璃毛細管之加工方法,其中對該第二預改質層進行加工,以使該第二預改質層改質為該光導入層時,同時形成一第一光柵層於該區隔層及該光導入層之間,且該第一光柵層及該光導入層之間具有一第一間距。The method for processing a glass capillary according to claim 10, wherein the second pre-modified layer is processed to modify the second pre-modified layer to the light-introducing layer, and simultaneously form a first A grating layer is between the interlayer and the light introducing layer, and the first grating layer and the light introducing layer have a first spacing. 如申請專利範圍第10項所述之玻璃毛細管之加工方法,其中對該第二預改質層進行加工,以使該第二預改質層改質為該光導出層時,同時形成一第二光柵層於該區隔層及該光導出層之間,且該第二光柵層及該光導出層之間具有一第二間距。The method for processing a glass capillary according to claim 10, wherein the second pre-modified layer is processed to modify the second pre-modified layer to the light-derived layer, and simultaneously form a first The second grating layer is between the interlayer and the light-derived layer, and the second grating layer and the light-derived layer have a second spacing therebetween. 如申請專利範圍第14項所述之玻璃毛細管之加工方法,其中該光導入層及該第一光柵層形成為一維微奈米週期性結構(transmission grating)。The method for processing a glass capillary according to claim 14, wherein the light introducing layer and the first grating layer are formed as a one-dimensional micro-period. 如申請專利範圍第15項所述之玻璃毛細管之加工方法,其中該光導出層及該第二光柵層形成為一維微奈米週期性結構(transmission grating)。The method for processing a glass capillary according to claim 15, wherein the light-derived layer and the second grating layer are formed as a one-dimensional micro-period. 如申請專利範圍第10項所述之玻璃毛細管之加工方法,其中該波導層之該第二折射率及該光導出層之該第四折射率相異。The method for processing a glass capillary according to claim 10, wherein the second refractive index of the waveguide layer and the fourth refractive index of the light-derived layer are different. 如申請專利範圍第10項所述之玻璃毛細管之加工方法,其中對該第一預改質層進行加工之步驟中係利用一飛秒雷射機台對該第一預改質層進行脈衝累積熱效應(thermal effect accumulated across pulses)加工。The method for processing a glass capillary according to claim 10, wherein the step of processing the first pre-modified layer is performed by using a femtosecond laser machine to pulse accumulate the first pre-modified layer. Thermal effect accumulated across pulses. 如申請專利範圍第10項所述之玻璃毛細管之加工方法,其中對該第二預改質層進行加工之步驟中係利用一飛秒雷射機台對該第二預改質層進行雙光束干涉加工(Two-Laser Beam Interference Technique)。The method for processing a glass capillary according to claim 10, wherein the step of processing the second pre-modified layer is performed by using a femtosecond laser machine to double-beam the second pre-modified layer. Two-Laser Beam Interference Technique. 如申請專利範圍第10項所述之玻璃毛細管之加工方法,其中對該波導層進行局部加工之步驟中係利用一飛秒雷射機台對該波導層之局部區段進行脈衝累積熱效應或雙光束干涉加工。The method for processing a glass capillary according to claim 10, wherein the step of locally processing the waveguide layer is performed by using a femtosecond laser machine to perform pulse cumulative thermal effect or double on a partial section of the waveguide layer. Beam interference processing.
TW104118212A 2015-06-04 2015-06-04 Glass capillary structure and glass capillary processing method thereof TWI557408B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104118212A TWI557408B (en) 2015-06-04 2015-06-04 Glass capillary structure and glass capillary processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104118212A TWI557408B (en) 2015-06-04 2015-06-04 Glass capillary structure and glass capillary processing method thereof

Publications (2)

Publication Number Publication Date
TWI557408B TWI557408B (en) 2016-11-11
TW201643421A true TW201643421A (en) 2016-12-16

Family

ID=57851527

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104118212A TWI557408B (en) 2015-06-04 2015-06-04 Glass capillary structure and glass capillary processing method thereof

Country Status (1)

Country Link
TW (1) TWI557408B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7212693B2 (en) * 2003-12-22 2007-05-01 Lucent Technologies Inc. Optical substance analyzer
KR100801278B1 (en) * 2006-08-29 2008-02-04 삼성전기주식회사 Hybrid type waveguide sensor
CN101493410B (en) * 2009-03-04 2010-08-25 天津大学 Multichannel light microfluid sensor based on wavelength devision multiplex technology and sensing device

Also Published As

Publication number Publication date
TWI557408B (en) 2016-11-11

Similar Documents

Publication Publication Date Title
Muellner et al. CMOS-compatible Si3N4 waveguides for optical biosensing
JP3816072B2 (en) Optical waveguide sensor and measuring device using the same
JP4511857B2 (en) Sensor using photonic crystal and detection method of target substance
US8958999B1 (en) Differential detection for surface plasmon resonance sensor and method
Zhang et al. Fiber Loop Ring-Down Refractive Index Sensor Based on High-$ Q $ Photonic Crystal Cavity
Warren-Smith et al. Direct core structuring of microstructured optical fibers using focused ion beam milling
Xie et al. Multiplexed optical fiber biochemical sensing using cascaded C-shaped Fabry–Perot interferometers
CN104977274A (en) Optical micro-fluidic chip sensor based on single-beam differential detection and test method
KR101299135B1 (en) Reflective probe type apparatus for detecting gas and method for detecting gas using optical fiber with hollow core
Correa-Mena et al. Review on integrated optical sensors and its applications
CN103645158B (en) A kind of tricyclic is without thermalization biology sensor
Wu et al. Less-mode optic fiber evanescent wave absorbing sensor: Parameter design for high sensitivity liquid detection
Mahani et al. Design of an efficient Fabry-Perot biosensor using high-contrast slanted grating couplers on a dual-core single-mode optical fiber tip
Fan et al. Bulk sensing using a long-range surface-plasmon triple-output Mach–Zehnder interferometer
JP2010261958A (en) Photonic crystal fiber sensor
JP2016161546A (en) Micro flow channel chip
CN103616348B (en) A kind of photonic crystal three resonator cavity is without thermalization biology sensor
TWI557408B (en) Glass capillary structure and glass capillary processing method thereof
US8749792B2 (en) Device for optical measurement of materials, using multiplexing of light
Benoit et al. Effect of capillary properties on the sensitivity enhancement in capillary/fiber optical sensors
US10983049B2 (en) Method for detecting a local change in refractive index of a dielectric medium located on the surface of an optical sensor
Zhou et al. Fabrication of Optical Fiber Sensors Based on Femtosecond Laser Micro Machining
Berneschi et al. A waveguide absorption filter for fluorescence measurements
Testa et al. Optofluidics: a new tool for sensing
Borecki et al. Light transmission characteristics of silica capillaries