TW201640391A - A discrete chaotic synchronization of real-time imaging system and its chaotic synchronization signal method - Google Patents

A discrete chaotic synchronization of real-time imaging system and its chaotic synchronization signal method Download PDF

Info

Publication number
TW201640391A
TW201640391A TW104114955A TW104114955A TW201640391A TW 201640391 A TW201640391 A TW 201640391A TW 104114955 A TW104114955 A TW 104114955A TW 104114955 A TW104114955 A TW 104114955A TW 201640391 A TW201640391 A TW 201640391A
Authority
TW
Taiwan
Prior art keywords
signal
chaotic
image
decryption
encrypted
Prior art date
Application number
TW104114955A
Other languages
Chinese (zh)
Other versions
TWI564744B (en
Inventor
顏錦柱
陳智勇
許祐禎
蔡欣翰
Original Assignee
樹德科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 樹德科技大學 filed Critical 樹德科技大學
Priority to TW104114955A priority Critical patent/TWI564744B/en
Publication of TW201640391A publication Critical patent/TW201640391A/en
Application granted granted Critical
Publication of TWI564744B publication Critical patent/TWI564744B/en

Links

Abstract

A discrete chaotic synchronization of real-time imaging system adapted to receive a digital image information, and includes an image encryption module, and an image decryption module. The image encryption module includes a encrypted calculator, an encryption signal generator, and a encryption dynamic private key generator. The image decryption module includes a decryption calculator, a decryption signal generator, and a decrypt dynamic private key generator. Wherein the image encryption module and the image were a decryption module embedded devices, by digital information transmission and video signal encryption and decryption calculation.

Description

離散化混沌同步之即時影像系統及其混沌 訊號同步方法 Discrete chaotic synchronization real-time image system and its chaos Signal synchronization method

本發明是有關於一種即時影像系統及方法,特別是指一種離散化混沌同步之即時影像系統及其混沌訊號同步方法。 The invention relates to an instant image system and method, in particular to a discretization chaotic synchronization real-time image system and a chaotic signal synchronization method thereof.

以往之混沌系統皆為類比式混沌系統,皆是利用一般電子電路的方式,使用電阻、電容、電感、以及運算放大器完成,但使用類比系統最大之缺點,會因元件本身之誤差值、元件老化、溫度濕度等等因數而改變其電路穩定性,且因混沌系統本身之蝴蝶效應特性,而嚴重影響到系統穩定度,進而導致同步控制性失效之可能。 In the past, chaotic systems are analogous chaotic systems, all of which use general electronic circuits, using resistors, capacitors, inductors, and operational amplifiers. However, the biggest disadvantage of using analog systems is the aging of the components themselves. The temperature stability and other factors change the stability of the circuit, and due to the butterfly effect characteristics of the chaotic system itself, it seriously affects the stability of the system, which leads to the possibility of synchronous control failure.

如我國專利第M339162號「一種基於行動醫療之不同程度混沌加密裝置」,是一種結合加密速度快,但加密強度較低的一階混沌加密器和加密速度較慢,但加密強度高的二階混沌加密器之行動醫療不同程度混沌加密裝置。 For example, China Patent No. M339162 "A chaotic encryption device based on mobile medical treatment" is a first-order chaotic encryptor with fast encryption speed but low encryption strength and second-order chaos with slow encryption speed but high encryption strength. The cryptographic action medical medical chaos encryption device.

習知之加密機制主要對心電圖/腦電波圖等生醫醫療訊號值進行加密,達到視覺無法辨視之加密功能,針對於多種行動醫療傳輸媒體之訊號位元流進行加密,並導入不同程度混沌加密器概念,其中,對於資料量大速度快的語音視訊訊號,採用加密速度快但加密強度較低的一階混沌加密,而對於保密需求較高的影像訊號、心 電圖訊號、腦波圖訊號以及病歷、體溫、脈搏量測值等文字、數字資料醫療訊號,採用加密速度慢但加密強度較高的二階混沌加密。 The encryption mechanism of the prior art mainly encrypts the biomedical medical signal values such as the electrocardiogram/brain wave map, and achieves the visually invisible encryption function, encrypts the signal bit stream of the plurality of mobile medical transmission media, and introduces chaotic encryption of different degrees. The concept of a device, in which a voice signal with a large amount of data is fast, a first-order chaotic encryption with a fast encryption speed but a low encryption strength is used, and an image signal and a heart with high security requirements are used. Electrographic signals, brain wave signals, medical texts such as medical records, body temperature, pulse measurement values, etc., and second-order chaotic encryption with slow encryption speed but high encryption strength.

但是早期的混沌影像系統在使用上仍具有下列缺點: However, the early chaotic imaging system still has the following disadvantages in its use:

一、零件老化 First, the parts are aging

早期混沌系統皆是使用類比式混沌系統,在利用一般電子電路的電路板上具以實施,當經過一段時間後期電子元件老化而使初始值改變而產生蝴蝶效應,影響到系統穩定度,而導致同步控制失效。 Early chaotic systems use analog-like chaotic systems, which are implemented on circuit boards that utilize general electronic circuits. When the electronic components age after a period of time, the initial values change to produce a butterfly effect, which affects system stability. Synchronous control is invalid.

二、無法進行更複雜的計算 Second, unable to perform more complicated calculations

早期混沌系統的影像加解密計算是使用連續系統,加密的鑰匙越複雜,電子零件就必須使用更多,使的系統成本增加,且複雜的混沌系統在解密時更容易出現誤差,使的傳統影像混沌系統有機會被破解。 The image encryption and decryption calculation of the early chaotic system uses a continuous system. The more complicated the key is encrypted, the more electronic components must be used, the system cost increases, and the complex chaotic system is more prone to errors during decryption, making the traditional image The chaotic system has a chance to be cracked.

因此,如何改善早期使用類比訊號,並實現於電子零件(電阻、電容、電感、以及運算放大器)上,出現零件老化,及誤差無擴大而出現無法將影像成功解密的缺點,便成為相關技術人員亟需努力之目標。 Therefore, how to improve the early use of analog signals, and realize the electronic components (resistors, capacitors, inductors, and operational amplifiers), the appearance of parts aging, and the error does not expand and the failure to successfully decrypt the image, it becomes a related technician The goal of hard work is urgent.

有鑑於此,本發明之一目的是提供一種離散化混沌同步之即時影像系統,適用於接收一影像數位資訊,並包含一影像加密模組,及一影像解密模組。 In view of the above, an object of the present invention is to provide a discretization chaotic synchronization real-time image system, which is suitable for receiving an image digital information, and includes an image encryption module and an image decryption module.

該影像加密模組包括一接收該影像數位資訊的加密計算器、一產生一數位混沌訊號的加密端訊號產生器,及一接收該數位混沌訊號並產生一加密動態私鑰的加密動態私鑰產生器,該加密計算器接收該加密動態私鑰 並計算出一影像加密訊號。該影像解密模組,包括一接收該影像加密訊號的解密計算器、一接收該數位混沌訊號並產生一同步混沌訊號的解密端訊號產生器,及一接收該同步混沌訊號並產生一解密動態私鑰的解密動態私鑰產生器,該解密計算器接收該解密動態私鑰並計算出一與該影像數位資訊相同的解碼影像資訊。其中,該影像加密模組及該影像解密模組分別為一嵌入式裝置,並以數位化進行資訊的傳輸及影像加解密訊號的計算。 The image encryption module includes an encryption calculator that receives the digital information of the image, an encrypted terminal signal generator that generates a digital chaotic signal, and an encrypted dynamic private key that receives the digital chaotic signal and generates an encrypted dynamic private key. The encryption calculator receives the encrypted dynamic private key And calculate an image encryption signal. The image decryption module includes a decryption calculator that receives the image encrypted signal, a decryption signal generator that receives the digital chaotic signal and generates a synchronous chaotic signal, and receives the synchronous chaotic signal and generates a decrypted dynamic private The decryption dynamic private key generator of the key receives the decrypted dynamic private key and calculates a decoded image information that is the same as the image digital information. The image encryption module and the image decryption module are respectively an embedded device, and the information transmission and the image encryption and decryption signal are calculated by digitization.

本發明的再一技術手段,是在於上述之加密端訊號產生器所產生之數位混沌訊號為一離散化數位訊號,該解密端訊號產生器所產生之同步混沌訊號亦為一離散化數位訊號。 A further technical means of the present invention is that the digital chaotic signal generated by the encrypted signal generator is a discretized digital signal, and the synchronous chaotic signal generated by the decrypted signal generator is also a discretized digital signal.

本發明的又一技術手段,是在於上述之解密端訊號產生器具有一同步控制單元,使該同步混沌訊號與該數位混沌訊號之訊號同步,用以使該解密計算器能計算出正確的解碼影像資訊。 Another technical means of the present invention is that the decryption signal generator has a synchronization control unit that synchronizes the synchronization chaotic signal with the digital chaotic signal to enable the decryption calculator to calculate the correct decoded image. News.

本發明的另一目的是提供一種以上述離散化混沌同步之即時影像系統的混沌訊號同步方法,其包含下列步驟: Another object of the present invention is to provide a chaotic signal synchronization method for a real-time image system with discretization chaotic synchronization described above, which comprises the following steps:

首先進行步驟(a),定義一離散化混沌訊號的動態方程式。接著進行步驟(b),將該加密端訊號產生器與該解密端訊號產生器的狀態變數分別帶入該動態方程式中,並取得一加密端混沌方程式及一解密端混沌方程式。然後進行步驟(c),定義一誤差狀態,並將該加密端混沌方程式減去該解密端混沌方程式後取得一差分動態方程式。接著進行步驟(d),定義一轉換面,並利用滑動模式將該差分動態方程式收斂至0,以使狀態誤差響應穩定。最後進行步驟(e),該同步控制單元偵測該數位混沌訊號並進入滑動模式,以使該同步混沌訊號與該數位混沌訊號同步。 First, step (a) is performed to define a dynamic equation of the discretized chaotic signal. Then, in step (b), the state variables of the encrypted end signal generator and the decryption end signal generator are respectively brought into the dynamic equation, and an encrypted chaotic equation and a decrypted chaotic equation are obtained. Then, step (c) is performed to define an error state, and the chaotic equation of the encryption end is subtracted from the chaotic equation of the decryption end to obtain a differential dynamic equation. Next, step (d) is performed to define a conversion plane, and the differential dynamic equation is converged to 0 by the sliding mode to stabilize the state error response. Finally, in step (e), the synchronization control unit detects the digital chaotic signal and enters a sliding mode to synchronize the synchronous chaotic signal with the digital chaotic signal.

本發明之再一技術手段,是在於上述之該步 驟(a)中,該散化混沌訊號之動態方程式為:xd(k+1)T=xd(KT)+Hg(xd(KT));yd(KT)=Cxd(KT)。 According to still another technical means of the present invention, in the step (a), the dynamic equation of the scattered chaotic signal is: x d (k+1)T=x d (KT)+Hg(x d (KT) )); y d (KT) = Cx d (KT).

本發明的又一技術手段,是在於上述之步驟(c)中,該誤差狀態為e(k)=xs(k)-xm(k)。 Another technical means of the present invention is that in the above step (c), the error state is e(k) = x s (k) - x m (k).

本發明的另一技術手段,是在於上述之步驟(d)中,該轉換面為s(k)=es(k)+ce1(k),藉由滑動模式將該差分動態方程式收斂至0之方程式如下: Another technical means of the present invention is that in the above step (d), the conversion surface is s(k)=e s (k)+ce 1 (k), and the differential dynamic equation is converged by the sliding mode to The equation of 0 is as follows:

本發明的再一技術手段,是在於上述之步驟(e)中,該同步控制單元為下列方程式:u(k)=-f1(e(k))-αs(k)。 A further technical means of the present invention is that in the above step (e), the synchronous control unit is of the following equation: u(k) = -f 1 (e(k)) - αs(k).

本發明的又一技術手段,是在於上述之混沌訊號同步方法更包含一步驟(f),該加密動態私鑰產生器接收該加密端訊號產生器之數位混沌訊號,該解密動態私鑰產生器接收該解密端訊號產生器之同步混沌訊號,以使該加密動態私鑰與該解密動態私鑰同步。 Another technical means of the present invention is that the chaotic signal synchronization method further includes a step (f), the encrypted dynamic private key generator receives the digital chaotic signal of the encrypted end signal generator, and the decrypted dynamic private key generator Receiving the synchronization chaotic signal of the decryption end signal generator to synchronize the encrypted dynamic private key with the decrypted dynamic private key.

本發明的另一技術手段,是在於上述之混沌訊號同步方法更包含一步驟(g),該加密計算器使用該加密動態私鑰將該影像數位資訊加密成該影像加密訊號,該解密計算器使用以同步之解密動態私鑰將影像加密訊號解密成解碼影像資訊。 Another technical means of the present invention is that the chaotic signal synchronization method further includes a step (g) of encrypting the image digital information into the image encryption signal by using the encrypted dynamic private key, the decryption calculator The image encrypted signal is decrypted into decoded image information by using a decrypted dynamic private key.

本發明之有益功效在於將傳統使用電子零件之混沌影像系統,改變成以軟體控制計算成是之嵌入式裝置,並重新撰寫演算法將混沌訊號離散化,而離散化混沌即時影像加解密系統相容於任何混沌系統,並且因為混沌系統中奇異吸子的特殊性質,即使使用相同之混沌系統,也會因初始值、同步控制器設計方法以及加密演算法 的不同,而產生不同的加解密的訊號,加深了訊號解密的複雜度,因此本系統能增加影像加解密的穩定性及安全性。 The beneficial effect of the invention is that the chaotic image system of the traditional electronic component is changed into an embedded device which is calculated by software control, and the algorithm is rewritten to discretize the chaotic signal, and the chaotic real-time image encryption and decryption system is discretized. Convenient to any chaotic system, and because of the special properties of singular attractors in chaotic systems, even with the same chaotic system, initial values, synchronous controller design methods, and encryption algorithms Different, and generate different encryption and decryption signals, deepen the complexity of signal decryption, so the system can increase the stability and security of image encryption and decryption.

2‧‧‧影像數位資訊 2‧‧‧Image Digital Information

3‧‧‧影像加密模組 3‧‧‧Image Encryption Module

31‧‧‧加密計算器 31‧‧‧Encryption Calculator

311‧‧‧影像加密訊號 311‧‧‧Image encryption signal

32‧‧‧加密端訊號產生器 32‧‧‧Encrypted signal generator

321‧‧‧數位混沌訊號 321‧‧‧Digital chaotic signals

33‧‧‧加密動態私鑰產生器 33‧‧‧Encrypted Dynamic Private Key Generator

331‧‧‧加密動態私鑰 331‧‧‧Encrypted dynamic private key

4‧‧‧影像解密模組 4‧‧‧Image Decryption Module

41‧‧‧解密計算器 41‧‧‧Decryption Calculator

411‧‧‧解碼影像資訊 411‧‧‧Decoding image information

42‧‧‧解密端訊號產生器 42‧‧‧Decryption signal generator

421‧‧‧同步混沌訊號 421‧‧‧Synchronized chaotic signals

422‧‧‧同步控制單元 422‧‧‧Synchronous control unit

43‧‧‧解密動態私鑰產生器 43‧‧‧Decrypted Dynamic Private Key Generator

431‧‧‧解密動態私鑰 431‧‧‧Decrypted dynamic private key

801~807‧‧‧步驟 801~807‧‧‧Steps

圖1是一裝置示意圖,說明本發明離散化混沌同步之即時影像系統及其混沌訊號同步方法的一第一較佳實施例;圖2是一方法流程圖,說明本發明離散化混沌同步之即時影像系統及其混沌訊號同步方法的一第二較佳實施例;圖3是一響應圖,說明該第二較佳實施例使用電腦軟體模擬該第二較佳實施例之一勞倫茲的響應圖;圖4是一響應圖,說明該第二較佳實施例實現於該嵌入式裝置之一勞倫茲的響應圖;圖5是一電腦模擬圖,說明該第二較佳實施例實現於該嵌入式裝置之一轉換面的響應圖;圖6是一電腦模擬圖,說明該第二較佳實施例實現於該嵌入式裝置之一誤差狀態的響應圖;及圖7是一電腦模擬圖,說明該第二較佳實施例實現於該嵌入式裝置之一同步控制單元的響應圖。 1 is a schematic diagram of a device, illustrating a first preferred embodiment of a discretization chaotic synchronization real-time image system and a chaotic signal synchronization method thereof; FIG. 2 is a flow chart illustrating a method for discretizing chaotic synchronization of the present invention. A second preferred embodiment of the image system and its chaotic signal synchronization method; FIG. 3 is a response diagram illustrating the second preferred embodiment using a computer software to simulate the Lorentz response of the second preferred embodiment FIG. 4 is a response diagram illustrating a response diagram of the second preferred embodiment implemented in Lorentz of the embedded device; FIG. 5 is a computer simulation diagram illustrating that the second preferred embodiment is implemented in Figure 6 is a computer simulation diagram illustrating the response of the second preferred embodiment to an error state of the embedded device; and Figure 7 is a computer simulation diagram A response diagram of the synchronization control unit implemented in one of the embedded devices is illustrated in the second preferred embodiment.

有關於本發明之相關申請專利特色與技術內容,在以下配合參考圖式之二個較佳實施例的詳細說明中,將可清楚的呈現。 The details of the related patents and the technical contents of the present invention will be apparent from the following detailed description of the preferred embodiments of the accompanying drawings.

在進行詳細說明前應注意的是,類似的元件是以相同的編號來作表示。 It should be noted that, before the detailed description, similar elements are denoted by the same reference numerals.

參閱圖1,為本發明離散化混沌同步之即時影像系統及其混沌訊號同步方法之第一較佳實施例,該第一較佳實施例為一離散化混沌同步之即時影像系統,適用 於接收一影像數位資訊2,並包含一影像加密模組3,及一影像解密模組4。 1 is a first preferred embodiment of a discretization chaotic synchronization real-time image system and a chaotic signal synchronization method thereof. The first preferred embodiment is a discretization chaotic synchronization real-time image system, which is applicable to Receiving an image digital information 2, and comprising an image encryption module 3 and an image decryption module 4.

該影像加密模組3包括一接收該影像數位資訊2的加密計算器31、一產生一數位混沌訊號321的加密端訊號產生器32,及一接收該數位混沌訊號321並產生一加密動態私鑰331的加密動態私鑰產生器33,該加密計算器31接收該加密動態私鑰331並計算出一影像加密訊號311。 The image encryption module 3 includes an encryption calculator 31 that receives the image digital information 2, an encrypted terminal signal generator 32 that generates a digital chaotic signal 321 , and receives the digital chaotic signal 321 and generates an encrypted dynamic private key. The encrypted dynamic private key generator 33 of 331 receives the encrypted dynamic private key 331 and calculates an image encrypted signal 311.

該影像解密模組4包括一接收該影像加密訊號311的解密計算器41、一接收該數位混沌訊號321並產生一同步混沌訊號421的解密端訊號產生器42,及一接收該同步混沌訊號421並產生一解密動態私鑰431的解密動態私鑰產生器43,該解密計算器41接收該解密動態私鑰431並計算出一與該影像數位資訊2相同的解碼影像資訊411。 The image decryption module 4 includes a decryption calculator 41 that receives the image encryption signal 311, a decryption signal generator 42 that receives the digital chaotic signal 321 and generates a synchronization chaotic signal 421, and receives the synchronization chaotic signal 421. And a decryption dynamic private key generator 43 for decrypting the dynamic private key 431 is generated. The decryption calculator 41 receives the decrypted dynamic private key 431 and calculates a decoded image information 411 which is the same as the image digital information 2.

其中,該影像加密模組3及該影像解密模組4分別為一嵌入式裝置,並以數位化進行資訊的傳輸及影像加解密訊號的計算。該嵌入式裝置是一種具有數位計算功能的電腦系統,通常要求執行數位計算,是包含於控制硬體或機械部件的主要裝置。現在常見的很多系統都採用嵌入式裝置來進行控制,其複雜度低至單晶片,高至大型底盤或外殼內安裝有多個部件、外設和網路等,舉例來說:Soekris net4801之嵌入式裝置就適用於網路應用程式。該嵌入式裝置之種類繁多,並普及於市售產品中,其所屬技術領域具通常知識者都可以取得並善加利用,由於該嵌入式裝置本身的硬體技術並不是本案之重點,在此便不再詳加贅述。 The image encryption module 3 and the image decryption module 4 are respectively an embedded device, and the information transmission and the image encryption and decryption signal are calculated by digitization. The embedded device is a computer system with digital computing capabilities, usually requiring digital calculations, and is the primary device included in controlling hardware or mechanical components. Many of the systems that are common today are controlled by embedded devices, which are as complex as a single chip, with multiple components, peripherals, and networks installed in a large chassis or enclosure. For example: Soekris net4801 embedding The device is suitable for web applications. The embedded device has a wide variety and is widely used in commercially available products, and its technical field can be obtained and utilized by ordinary people. Since the hardware technology of the embedded device itself is not the focus of the case, here I will not repeat them in detail.

本發明人要強調的是雖然本發明是使用一般具有影像收發及傳輸收發的嵌入式裝置(UDOO),但是針對內部的執行程式重新撰寫新的加密演算,使該加密端訊 號產生器32所產生之數位混沌訊號321為一離散化數位訊號,該解密端訊號產生器42所產生之同步混沌訊號421亦為一離散化數位訊號。 The present inventors have emphasized that although the present invention uses an embedded device (UDOO) that generally has image transmission and reception and transmission and reception, a new encryption algorithm is rewritten for the internal execution program to make the encryption message. The digital chaotic signal 321 generated by the number generator 32 is a discretized digital signal, and the synchronous chaotic signal 421 generated by the decryption signal generator 42 is also a discrete digital signal.

該解密端訊號產生器42具有一同步控制單元422,以使該同步混沌訊號421與該數位混沌訊號321之訊號同步,用以使該解密計算器41能計算出正確的解碼影像資訊411。 The decryption terminal signal generator 42 has a synchronization control unit 422 for synchronizing the synchronization chaotic signal 421 with the signal of the digital chaotic signal 321 for enabling the decryption calculator 41 to calculate the correct decoded image information 411.

該影像數位資訊3之加密動態私鑰產生器33會接收該加密端訊號產生器32所產生動態的數位混沌訊號321,並產生該加密動態私鑰331,由於該加密端訊號產生器32是使用離散化數位訊號進行計算,所以該加密動態私鑰331是隨著時間的不同而有不同的資訊,當該影像數位資訊3接收該影像數位資訊2時,該加密計算器31會將該影像數位資訊2與該加密動態私鑰331進行邏輯運算,用以得到該影像加密訊號311。 The encrypted dynamic private key generator 33 of the image digital information 3 receives the dynamic digital chaotic signal 321 generated by the encrypted terminal signal generator 32, and generates the encrypted dynamic private key 331, since the encrypted terminal signal generator 32 is used. The discretized digital signal is calculated, so the encrypted dynamic private key 331 has different information with time. When the image digital information 3 receives the image digital information 2, the encrypted calculator 31 will digitize the image. The information 2 is logically operated with the encrypted dynamic private key 331 to obtain the image encrypted signal 311.

該影像加密訊號311因為經過加密程序,直接汲取播放時並無法播放正常影像,此時可將該影像加密訊號311及該數位混沌訊號321進行傳輸,資訊傳輸的方式可以使用無線技術,也可以使用有線傳輸技術,由於資訊傳輸的技術不是本發明的重點,在此便不再加以敘述。 Because the image encryption signal 311 is directly encrypted during playback, the normal image cannot be played. In this case, the image encryption signal 311 and the digital chaotic signal 321 can be transmitted. The information transmission method can use wireless technology or can be used. Wired transmission technology, because the technology of information transmission is not the focus of the present invention, will not be described here.

值得一題的是,該數位混沌訊號321為離散化數位訊號,而其中之混沌(Chaos)的奇異吸子的特性,使的混沌系統非常注重初始條件,即使使用相同的混沌解密裝置,也會因初始值,撰寫程式中加密及解密的算法不同,而有不同的結果,所以即使資訊傳輸途中被第三者擷取資訊,也無法被成功解密。 It is worthwhile to note that the digital chaotic signal 321 is a discretized digital signal, and the characteristics of the chaotic (Chaos) singular attractor make the chaotic system pay great attention to the initial conditions, even if the same chaotic decryption device is used. Due to the initial value, the algorithms for encrypting and decrypting in the writing program are different, and there are different results, so even if the information is transmitted by a third party during the information transmission, it cannot be successfully decrypted.

該影像解密模組4之解密端訊號產生器42接收該數位混沌訊號321,並由該同步控制單元422產生同步於該影像加密訊號311的同步混沌訊號421,已使該解密動態私鑰產生器43產生正確的解密動態私鑰431,當 該解密計算器41接收到該影像加密訊號311時,會將該影像加密訊號311時及該解密動態私鑰431進行邏輯運算,以還原該影像數位資訊2並得到解碼影像資訊411。 The decryption signal generator 42 of the image decryption module 4 receives the digital chaotic signal 321 , and the synchronization control unit 422 generates a synchronization chaotic signal 421 synchronized with the image encryption signal 311 , and the decrypted dynamic private key generator is enabled. 43 produces the correct decryption dynamic private key 431, when When the decryption calculator 41 receives the image encryption signal 311, the image encryption signal 311 and the decryption dynamic private key 431 are logically operated to restore the image digital information 2 and obtain decoded image information 411.

當該影像解密模組4之解密計算器41產生正確的解碼影像資訊411時,可以將該解碼影像資訊411接到任何的影像播放器即可撥出正確的影像資訊,較加地,本發明是針對數位影像圖進行加解密,該嵌入式裝置的處理速度只須達到每秒16張以上之圖像,即可達到流暢之影像,再者,由於該嵌入式裝置是為積體電路所構成,使用者可以選擇執行計算速度較快的嵌入式裝置,可以提高圖像的解析度並提升影像播放的順暢度。 When the decryption calculator 41 of the image decryption module 4 generates the correct decoded image information 411, the decoded image information 411 can be connected to any video player to dial the correct image information, and the present invention is For the encryption and decryption of the digital image map, the processing speed of the embedded device only needs to reach more than 16 images per second, so as to achieve smooth image, and since the embedded device is composed of integrated circuits, The user can choose to execute an embedded device with a faster calculation speed, which can improve the resolution of the image and improve the smoothness of the image playback.

參閱圖2,為本發明離散化混沌同步之即時影像系統及其混沌訊號同步方法之第二較佳實施例,該第二較佳實施例是一種使用該離散化混沌同步之即時影像系統的混沌訊號同步方法,並包含步驟801~807。 2 is a second preferred embodiment of a discretization chaotic synchronization real-time image system and a chaotic signal synchronization method thereof. The second preferred embodiment is a chaotic method using the discretization chaotic synchronization real-time image system. The signal synchronization method includes steps 801-807.

首先進行步驟801,定義一離散化混沌訊號的動態方程式。混沌連續型的動態方程式如下(1)式: First, step 801 is performed to define a dynamic equation of the discretized chaotic signal. The dynamic equation of chaotic continuous type is as follows (1):

其中g(x(t))為非線性向量,(A,B)是可控的。則依前述(1)式可取得離散時間混沌系統可表示如下(2)式:xd(k+1)T=xd(KT)+Hg(xd(KT)) yd(KT)=Cxd(KT) (2) Where g(x(t)) is a nonlinear vector and (A, B) is controllable. The discrete-time chaotic system can be obtained according to the above formula (1) and can be expressed as follows: (2): x d (k+1)T=x d (KT)+Hg(x d (KT)) y d (KT)= Cx d (KT) (2)

其中,G=eAT;H=[G-In]A-1B。 Where G=e AT ; H=[GI n ]A -1 B.

本發明人以Lorenz system(混沌模擬系統)舉例說明,其中,連續系統描述如(3)式: The inventors exemplify the Lorenz system, in which the continuous system is described as (3):

其中a=10,b=8/3,c=28,為簡化設計,將 上式(3)改寫為滿足(1)式之矩陣如下(4)式: Where a=10, b=8/3, c=28, in order to simplify the design, the above equation (3) is rewritten to satisfy the matrix of (1) as follows: (4):

若取樣時間為0.001秒,則由(2)式可得其離散系統如下(5)式: If the sampling time is 0.001 seconds, the discrete system obtained by (2) can be obtained as follows: (5):

參閱圖3,為發明人使用MATLAB模擬勞倫茲(Lorenz)模型系統下奇異吸子之狀態響應圖,其中,也實施於目前許多的混沌系統中,圖式中之X與Y軸是分別將該離散化數位訊號中Xd1、Xd2,及Xd3的相互關係分別以三個圖表示。 Referring to Figure 3, the inventors used MATLAB to simulate the state response of the singular attractor under the Lorenz model system. Among them, it is also implemented in many chaotic systems. The X and Y axes in the graph are respectively The relationship between X d1 , X d2 , and X d3 in the discretized digital signal is represented by three graphs.

參閱圖4,為發明人撰寫程式並寫入該嵌入式裝置(UDOO)中的改良式離散混沌系統的狀態響應圖,同樣的,圖式中之X與Y軸是分別將該離散化數位訊號中Xd1、Xd2,及Xd3的相互關係分別以三個曲線圖表示。將圖3與圖4相互對照比較,兩者之響應圖相差不遠,表示將混沌的演算方式更改為離散化數位訊號,並且實現於嵌入式裝置上是可行的。 Referring to FIG. 4, the state response diagram of the improved discrete chaotic system written by the inventor and written into the embedded device (UDOO) is similar. The X and Y axes in the figure are respectively the discrete digital signals. The correlations between X d1 , X d2 , and X d3 are represented by three graphs, respectively. Comparing Figure 3 with Figure 4, the response graphs of the two are not far from each other, indicating that the chaotic calculation method is changed to a discretized digital signal, and it is feasible to implement on an embedded device.

接著進行步驟802,將該加密端訊號產生器32與該解密端訊號產生器42的狀態變數分別帶入該動態方程式中,並取得一加密端混沌方程式(6)及一解密端混沌方程式(7)。 Next, in step 802, the state variables of the encrypted end signal generator 32 and the decryption end signal generator 42 are respectively brought into the dynamic equation, and an encrypted chaotic equation (6) and a decrypted chaotic equation (7) are obtained. ).

該加密端混沌方程式如下(6)式:x md1(k+1)=0.99x md1(k)+0.01x md2(k) x md2(k+1)=0.028x md1(k)+0.999x md2(k)-0.001x md1(k)x md3(k) x md3(k+1)=0.997x md3(t)+0.001x md1(k)x md2(k) (6) The chaotic equation of the encryption end is as follows (6): x md 1 ( k +1)=0.99 x md 1 ( k )+0.01 x md 2 ( k ) x md 2 ( k +1)=0.028 x md 1 ( k )+0.999 x md 2 ( k )-0.001 x md 1 ( k ) x md 3 ( k ) x md 3 ( k +1)=0.997 x md 3 ( t )+0.001 x md 1 ( k ) x md 2 ( k ) (6)

該解密端混沌方程式如下(7)式:x sd1(k+1)=0.99x sd1(k)+0.01x sd2(k) x sd2(k+1)=0.028x sd1(k)+0.999x sd2(k)+u(k) x sd3(k+1)=0.997x sd3(t)+0.001x sd1(k)x md2(k) (7) The chaotic equation of the decryption end is as follows (7): x sd 1 ( k +1)=0.99 x sd 1 ( k )+0.01 x sd 2 ( k ) x sd 2 ( k +1)=0.028 x sd 1 ( k )+0.999 x sd 2 ( k )+ u ( k ) x sd 3 ( k +1)=0.997 x sd 3 ( t )+0.001 x sd 1 ( k ) x md 2 ( k ) (7)

其中xm=[xmd1,xmd2,xmd3]及xs=[xsd1,xsd2,xsd3]分別為主僕系統之狀態變數。 Where x m =[x md1 , x md2 , x md3 ] and x s =[x sd1 , x sd2 , x sd3 ] are the state variables of the main servant system, respectively.

然後進行步驟803,定義一誤差狀態(8),並將該加密端混沌方程式減去該解密端混沌方程式後取得一差分動態方程式(9),其中該誤差狀態如下(8)式:e(k)=x s (k)-x m (k) (8) Then, in step 803, an error state (8) is defined, and the chaotic equation of the encryption end is subtracted from the chaotic equation of the decryption end to obtain a differential dynamic equation (9), wherein the error state is as follows: (8): e ( k) )= x s ( k )- x m ( k ) (8)

由上(6)-(8),我們可以推導得到下列誤差系統之差分動態方程式:e 1(k+1)=0.99e 1(k)+0.01e 2(k) e 2(k+1)=0.028e 1(k)+0.999e 2(k)+0.001x md1(k)x md2(k)+u(k) e 3(k+1)=0.997e 3(t)+0.001x md2(k)e 1(k) (9) From (6)-(8), we can derive the differential dynamic equation of the following error system: e 1 ( k +1)=0.99 e 1 ( k )+0.01 e 2 ( k ) e 2 ( k +1) =0.028 e 1 ( k )+0.999 e 2 ( k )+0.001 x md 1 ( k ) x md 2 ( k )+ u ( k ) e 3 ( k +1)=0.997 e 3 ( t )+0.001 x Md 2 ( k ) e 1 ( k ) (9)

很清楚的,此離散化混沌同步的問題即是討論如何將該差分動態方程式(9)穩定,並設計適當的同步控制單元422u(k),使該加密端混沌方程式(7)和該解密端混沌方程式(8)間之狀態誤差響應穩定,即為下列方程式(10): It is clear that the problem of discretization chaotic synchronization is to discuss how to stabilize the differential dynamic equation (9) and design an appropriate synchronization control unit 422u(k) to make the encryption end chaotic equation (7) and the decryption end. The state error response between the chaotic equations (8) is stable, which is the following equation (10):

其中,e(k)=[e1(k)e2(k)e3(k)]TWhere e(k)=[e 1 (k)e 2 (k)e 3 (k)] T .

接著進行步驟804,定義一轉換面(11),並利用滑動模式將該差分動態方程式(9)收斂至0,以使狀態誤 差響應穩定,該轉換面如下(11)式:s(k)=e 2(k)+ce 1(k) (11) Next, in step 804, a conversion plane (11) is defined, and the differential dynamic equation (9) is converged to 0 by using a sliding mode to stabilize the state error response. The conversion plane is as follows: (11): s ( k )= e 2 ( k )+ ce 1 ( k ) (11)

其中sR,且c為選擇之參數滿足|0.99-0.01c|<1。當系統進入滑動模式s(k)=e2(k)-ce1(k)=0後,誤差系統(9a)式動態滿足下(12)式:e 1(k+1)=(0.99-0.01c)e 1(k) (12) Where s R, and c is the parameter of choice satisfying |0.99-0.01c|<1. When the system enters the sliding mode s(k)=e 2 (k)-ce 1 (k)=0, the error system (9a) dynamically satisfies the following equation (12): e 1 ( k +1)=(0.99- 0.01 c ) e 1 ( k ) (12)

該第二較佳實施例所使用的滑動模式是一種控制方法,主要是將受控置的系統產生兩個以上的子系統,再利用一些刻意加入的切換條件來產生滑動模式,用以達成將目標控制於穩定且理想的狀態,由於滑動模式的控制技術已經非常成熟,且也為所屬領域中具通常知識者所悉知,在此便不再詳加贅述。 The sliding mode used in the second preferred embodiment is a control method, which mainly generates two or more subsystems in a controlled system, and then uses some deliberately added switching conditions to generate a sliding mode for achieving The target is controlled in a stable and ideal state, and since the control technique of the sliding mode is already very mature and well known to those of ordinary skill in the art, it will not be described in detail herein.

然後進行步驟805,該同步控制單元422偵測該數位混沌訊號321並進入滑動模式,以使該同步混沌訊號421與該數位混沌訊號321同步。 Then, in step 805, the synchronization control unit 422 detects the digital chaotic signal 321 and enters a sliding mode to synchronize the synchronous chaotic signal 421 with the digital chaotic signal 321.

因為c滿足|0.99-0.01c|<1,所以e1(k)將收斂至0,又系統在滑動模式時s(k)=e2(k)+ce1(k)=0,所以e2(k)亦將收歛至0,當e1(k)和e2(k)均收歛至0時,將(9)式退化為e3(k+1)=0.997e3(t),亦即e3(t)將收歛至0,以將該差分動態方程式(9)收斂至0。並將該同步控制單元422設計如下(13)式:u(k)=-f1(e(k))-αs(k) (13) Since c satisfies |0.99-0.01c|<1, e 1 (k) will converge to 0, and the system s(k)=e 2 (k)+ce 1 (k)=0 in the sliding mode, so e 2 (k) will also converge to 0. When both e 1 (k) and e 2 (k) converge to 0, the equation (9) is degenerated to e 3 (k+1)=0.997e 3 (t), That is, e 3 (t) will converge to 0 to converge the differential dynamic equation (9) to zero. And the synchronization control unit 422 is designed as follows (13): u(k)=-f 1 (e(k))-αs(k) (13)

其中,f1(e(k))=(0.028-0.01c)e1(k)+(0.01c-0.001)e2(k)+0.001xmd1(k)xmd3(k) (14) Where f 1 (e(k))=(0.028-0.01c)e 1 (k)+(0.01c-0.001)e 2 (k)+0.001x md1 (k)x md3 (k) (14)

本案發明人在模擬試驗中,起使值設定為xm(0)=[1-1-1]T,xs(0)=[-0.50.6-0.5]T,選擇c=49,滿足|0.99-0.01c|<1,所以轉換面s(k)可以設計如下:s(k)=e 2(k)+49e 1(k) (15) In the simulation test, the inventor set the value to x m (0)=[1-1-1] T , x s (0)=[-0.50.6-0.5] T , and select c=49 to satisfy |0.99-0.01c|<1, so the conversion surface s(k) can be designed as follows: s ( k )= e 2 ( k )+49 e 1 ( k ) (15)

同時,該同步控制單元422設計如下:u(k)=-f 1(e(k))-αs(k);其中,α=0.2 (16) At the same time, the synchronization control unit 422 is designed as follows: u ( k )=- f 1 ( e ( k ))- αs ( k ); where α = 0.2 (16)

參閱圖5、6、7,為發明人模擬試驗的結果,其中,圖5為該轉換面s(k)的響應圖,X軸為時間(t),Y軸為該轉換面s(k);圖6為誤差狀態e(k)的響應圖,X軸為時間(t),Y軸為該誤差狀態e(k):e1、e2,及e3;圖7為該同步控制單元422u(k)的響應圖,X軸為時間(t),Y軸為該同步控制單元422u(k);在圖式中清楚的表示該加密端訊號產生器32及該解密端訊號產生器42亦如預期,誤差收斂到0使該數位混沌訊號321與該同步混沌訊號421達到同步。 Referring to Figures 5, 6, and 7, the results of the inventor simulation test, wherein Figure 5 is a response diagram of the conversion surface s(k), the X-axis is time (t), and the Y-axis is the conversion surface s(k) Figure 6 is a response diagram of the error state e(k), the X-axis is time (t), the Y-axis is the error state e(k): e 1 , e 2 , and e 3 ; Figure 7 is the synchronous control unit The response graph of 422u(k), the X axis is time (t), and the Y axis is the synchronization control unit 422u(k); the encrypted end signal generator 32 and the decryption end signal generator 42 are clearly indicated in the drawing. As expected, the error converges to zero to synchronize the digital chaotic signal 321 with the synchronous chaotic signal 421.

接著進行步驟806,該加密動態私鑰產生器33接收該加密端訊號產生器32之數位混沌訊號321,該解密動態私鑰產生器43接收該解密端訊號產生器42之同步混沌訊號421,以使該加密動態私鑰產生器33所產生之加密動態私鑰331與該解密動態私鑰產生器43所產生之解密動態私鑰431同步。 Next, in step 806, the encrypted dynamic private key generator 33 receives the digital chaotic signal 321 of the encrypted end signal generator 32, and the decrypted dynamic private key generator 43 receives the synchronous chaotic signal 421 of the decrypted end signal generator 42 to The encrypted dynamic private key 331 generated by the encrypted dynamic private key generator 33 is synchronized with the decrypted dynamic private key 431 generated by the decrypted dynamic private key generator 43.

其中,該加密動態私鑰產生器33必需將該數位混沌訊號321轉換成與該影像數位資訊2相同大小之影像矩陣的加密動態私鑰331,該解密動態私鑰產生器43必需將該同步混沌訊號421轉換成與該影像加密訊號311相同大小之影像矩陣的解密動態私鑰431,以方便後續步驟使用。 The encrypted dynamic private key generator 33 must convert the digital chaotic signal 321 into an encrypted dynamic private key 331 of an image matrix of the same size as the image digital information 2. The decrypted dynamic private key generator 43 must synchronize the synchronization. The signal 421 is converted into a decrypted dynamic private key 431 of an image matrix of the same size as the image encryption signal 311 to facilitate subsequent steps.

最後進行步驟807,該加密計算器31使用該加密動態私鑰331將該影像數位資訊2加密成該影像加密訊號311,該解密計算器41使用以同步之解密動態私鑰431將影像加密訊號311解密成解碼影像資訊411。 Finally, in step 807, the encryption calculator 31 encrypts the image digital information 2 into the image encryption signal 311 by using the encrypted dynamic private key 331. The decryption calculator 41 uses the decrypted dynamic private key 431 to synchronize the image encryption signal 311. Decrypted into decoded image information 411.

其中,該影像數位資訊2為複數的數位影像圖,當該加密計算器31接收到該影像數位資訊2時,會將 該影像數位資訊2與該加密動態私鑰331進行邏輯運算,以得到該影像加密訊號311並進行傳輸,由於該加密動態私鑰331是依據該數位混沌訊號321隨時改變,以使該影像加密訊號311具有保密的功效。 The image digital information 2 is a plurality of digital image images. When the encryption calculator 31 receives the image digital information 2, The image digital information 2 is logically operated with the encrypted dynamic private key 331 to obtain the image encrypted signal 311 and transmitted. The encrypted dynamic private key 331 is changed according to the digital chaotic signal 321 at any time, so that the image is encrypted. 311 has the effect of confidentiality.

當該解密計算器41接收到該影像加密訊號311時,會將該影像加密訊號311與該解密動態私鑰431進行邏輯運算,由於該步驟806已將該解密動態私鑰431與該加密動態私鑰331同步,所以該解密動態私鑰431可正確的將該影像加密訊號311還原成該解碼影像資訊411,並於可顯示影像的顯示器中,或是將該解碼影像資訊411儲存起來。 When the decryption calculator 41 receives the image encryption signal 311, the image encryption signal 311 and the decryption dynamic private key 431 are logically operated. Since the step 806 has the decrypted dynamic private key 431 and the encrypted dynamic private The key 331 is synchronized, so the decrypted dynamic private key 431 can correctly restore the image encrypted signal 311 to the decoded image information 411, and store the decoded image information 411 in the display capable of displaying the image.

最後,發明人要強調的是,由於該嵌入式裝置是使用執行程式的半導體晶片,在目前積體電路的產品越來越進步,計算的效能越來越強大,在本發明的數位計算上可以馬上計算並的到結果,設計者亦可選擇較為複雜的加密方程式並轉換成離散化數位資訊在該嵌入式裝置中執行,當然可以得到較為保密的影像加密訊號311,不怕影像資料外洩。 Finally, the inventor would like to emphasize that since the embedded device is a semiconductor wafer using an executable program, the products of the current integrated circuit are more and more advanced, and the calculation performance is more and more powerful, and the digital calculation of the present invention can be performed. Immediately after calculation, the designer can also select a more complex encryption equation and convert it into discrete digital information for execution in the embedded device. Of course, a relatively confidential image encryption signal 311 can be obtained, which is not afraid of leakage of image data.

由上述說明可知,本發明離散化混沌同步之即時影像系統及其混沌訊號同步方法確實包含以下優點: It can be seen from the above description that the discretization chaotic synchronization real-time image system and the chaotic signal synchronization method of the present invention do include the following advantages:

一、延長裝置壽命 First, extend the life of the device

本發明將該連續的混沌訊號轉換成數位的該離散化數位訊號,並實現於該嵌入式裝置中,改善傳統電子電路中存在著其電子元件本身之誤差值、元件老化、溫度濕度等等因數而產生誤差,而無法正確執行影像加解密。 The invention converts the continuous chaotic signal into a digitized discretized digital signal, and realizes in the embedded device, and improves the error value, component aging, temperature and humidity, etc. of the electronic component itself in the conventional electronic circuit. An error occurs and image encryption and decryption cannot be performed correctly.

二、更為保密 Second, more confidential

由於目前積體電路的執行速度越來越快,使該嵌入式裝置的計算功能非常強大, 可於短時間內執行非常複雜的計算,在設計時可以用更為複雜之該加密動態私鑰331,使得到該影像加密訊號311的第三者更不容易進行解碼,加深料保密的效果。 Due to the faster execution speed of the integrated circuit, the computing function of the embedded device is very powerful. A very complicated calculation can be performed in a short time, and the more complicated encrypted dynamic private key 331 can be used in the design, so that the third party to the image encryption signal 311 is less likely to decode, and the effect of confidentiality is deepened.

三、使畫面更順暢 Third, make the picture smoother

由於該影像數位資訊2是由複數之數位影像圖所構成,當該嵌入式裝置的執行速度越快,每秒可處理的圖像也就越多,不僅可以使顯示的畫面更為流暢,也可以提高圖像的解析度,使影像畫面更為清晰。 Since the image digital information 2 is composed of a plurality of digital image images, the faster the execution speed of the embedded device, the more images can be processed per second, which not only makes the displayed image smoother, but also It can improve the resolution of the image and make the image clearer.

綜上所述,本發明將傳統使用於電子電路之類比混沌影像加解密控制系統進行全新的施作方式,首先將類比混沌訊號離散化,並得到該離散化數位訊號,在於該嵌入式裝置中與以實現,不僅可以改善傳統電子電路的使用壽命及電子元件間的誤差狀況,該嵌入式裝置還能提升計算速度使該解碼影像資訊411更為流暢也更為清晰,故確實能夠達到本發明之目的。 In summary, the present invention performs a novel implementation method similar to the chaotic image encryption and decryption control system conventionally used in electronic circuits. First, the analog chaotic signal is discretized, and the discretized digital signal is obtained, which is in the embedded device. The implementation can not only improve the service life of the traditional electronic circuit and the error condition between the electronic components, but also improve the calculation speed to make the decoded image information 411 more smooth and clear, so that the invention can be achieved. The purpose.

惟以上所述者,僅為本發明之二個較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above is only the two preferred embodiments of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent change of the patent application scope and the description of the invention is Modifications are still within the scope of the invention.

2‧‧‧影像數位資訊 2‧‧‧Image Digital Information

3‧‧‧影像加密模組 3‧‧‧Image Encryption Module

31‧‧‧加密計算器 31‧‧‧Encryption Calculator

311‧‧‧影像加密訊號 311‧‧‧Image encryption signal

32‧‧‧加密端訊號產生器 32‧‧‧Encrypted signal generator

321‧‧‧數位混沌訊號 321‧‧‧Digital chaotic signals

33‧‧‧加密動態私鑰產生器 33‧‧‧Encrypted Dynamic Private Key Generator

331‧‧‧加密動態私鑰 331‧‧‧Encrypted dynamic private key

4‧‧‧影像解密模組 4‧‧‧Image Decryption Module

41‧‧‧解密計算器 41‧‧‧Decryption Calculator

411‧‧‧解碼影像資訊 411‧‧‧Decoding image information

42‧‧‧解密端訊號產生器 42‧‧‧Decryption signal generator

421‧‧‧同步混沌訊號 421‧‧‧Synchronized chaotic signals

422‧‧‧同步控制單元 422‧‧‧Synchronous control unit

43‧‧‧解密動態私鑰產生器 43‧‧‧Decrypted Dynamic Private Key Generator

431‧‧‧解密動態私鑰 431‧‧‧Decrypted dynamic private key

Claims (10)

一種離散化混沌同步之即時影像系統,適用於接收一影像數位資訊,並包含:一影像加密模組,包括一接收該影像數位資訊的加密計算器、一產生一數位混沌訊號的加密端訊號產生器,及一接收該數位混沌訊號並產生一加密動態私鑰的加密動態私鑰產生器,該加密計算器接收該加密動態私鑰並計算出一影像加密訊號;及一影像解密模組,包括一接收該影像加密訊號的解密計算器、一接收該數位混沌訊號並產生一同步混沌訊號的解密端訊號產生器,及一接收該同步混沌訊號並產生一解密動態私鑰的解密動態私鑰產生器,該解密計算器接收該解密動態私鑰並計算出一與該影像數位資訊相同的解碼影像資訊;其中,該影像加密模組及該影像解密模組分別為一嵌入式裝置,並以數位化進行資訊的傳輸及影像加解密訊號的計算。 A discretization chaotic synchronization real-time image system, which is adapted to receive an image digital information, and includes: an image encryption module, comprising an encryption calculator that receives the digital information of the image, and an encrypted terminal signal that generates a digital chaotic signal And an encrypted dynamic private key generator for receiving the digital chaotic signal and generating an encrypted dynamic private key, the encryption calculator receiving the encrypted dynamic private key and calculating an image encrypted signal; and an image decryption module, including a decryption calculator that receives the image encryption signal, a decryption signal generator that receives the digital chaotic signal and generates a synchronous chaotic signal, and a decryption dynamic private key that receives the synchronous chaotic signal and generates a decrypted dynamic private key The decryption calculator receives the decrypted dynamic private key and calculates a decoded image information that is the same as the image digital information; wherein the image encryption module and the image decryption module are respectively an embedded device, and are digitally The transmission of information and the calculation of image encryption and decryption signals are carried out. 依據申請專利範圍第1項所述離散化混沌同步之即時影像系統,其中,該加密端訊號產生器所產生之數位混沌訊號為一離散化數位訊號,該解密端訊號產生器所產生之同步混沌訊號亦為一離散化數位訊號。 According to the instant image system of the discretization chaotic synchronization described in claim 1, wherein the digital chaotic signal generated by the encrypted signal generator is a discretized digital signal, and the synchronization chaos generated by the decryption signal generator The signal is also a discrete digital signal. 依據申請專利範圍第2項所述離散化混沌同步之即時影像系統,其中,該解密端訊號產生器具有一同步控制單 元,使該同步混沌訊號與該數位混沌訊號之訊號同步,用以使該解密計算器能計算出正確的解碼影像資訊。 An instant image system for discretizing chaotic synchronization according to claim 2, wherein the decryption signal generator has a synchronization control list The element synchronizes the synchronization chaotic signal with the signal of the digital chaotic signal to enable the decryption calculator to calculate the correct decoded image information. 一種以申請專利範圍第1~3項任一項所述離散化混沌同步之即時影像系統的混沌訊號同步方法,並包含下列步驟:(a)定義一離散化混沌訊號的動態方程式;(b)將該加密端訊號產生器與該解密端訊號產生器的狀態變數分別帶入該動態方程式中,並取得一加密端混沌方程式及一解密端混沌方程式;(c)定義一誤差狀態,並將該加密端混沌方程式減去該解密端混沌方程式後取得一差分動態方程式;(d)定義一轉換面,並利用滑動模式將該差分動態方程式收斂至0,以使狀態誤差響應穩定;及(e)該同步控制單元偵測該數位混沌訊號並進入滑動模式,以使該同步混沌訊號與該數位混沌訊號同步。 A chaotic signal synchronization method for discretizing chaotic synchronization real-time image system according to any one of claims 1 to 3, and comprising the following steps: (a) defining a dynamic equation of a discretized chaotic signal; (b) The state variables of the encrypted end signal generator and the decryption end signal generator are respectively brought into the dynamic equation, and an encrypted chaotic equation and a decrypted chaotic equation are obtained; (c) an error state is defined, and the Obtaining a differential dynamic equation by subtracting the chaotic equation of the decryption end from the chaotic equation of the encryption end; (d) defining a conversion plane, and converging the differential dynamic equation to 0 by using the sliding mode to stabilize the state error response; and (e) The synchronization control unit detects the digital chaotic signal and enters a sliding mode to synchronize the synchronous chaotic signal with the digital chaotic signal. 依據申請專利範圍第4項所述混沌訊號同步方法,其中,在該步驟(a)中,該散化混沌訊號之動態方程式為:xd(k+1)T=xd(KT)+Hg(xd(KT));yd(KT)=Cxd(KT)。 According to the chaotic signal synchronization method of claim 4, wherein in the step (a), the dynamic equation of the scattered chaotic signal is: x d (k+1)T=x d (KT)+Hg (x d (KT)); y d (KT) = Cx d (KT). 依據申請專利範圍第5項所述混沌訊號同步方法,其中,在該步驟(c)中,該誤差狀態為e(k)=xs(k)-xm(k)。 The chaotic signal synchronization method according to claim 5, wherein in the step (c), the error state is e(k)=x s (k)−x m (k). 依據申請專利範圍第6項所述混沌訊號同步方法,其中,在該步驟(d)中,該轉換面為s(k)=es(k)+ce1(k),藉 由滑動模式將該差分動態方程式收斂至0之方程式如下: According to the chaotic signal synchronization method of claim 6, wherein in the step (d), the conversion plane is s(k)=e s (k)+ce 1 (k), and the sliding mode is The equation for the differential dynamic equation to converge to 0 is as follows: 依據申請專利範圍第7項所述混沌訊號同步方法,其中,在該步驟(e)中,該同步控制單元為下列方程式:u(k)=-f1(e(k))-αs(k)。 According to the chaotic signal synchronization method of claim 7, wherein in the step (e), the synchronization control unit is the following equation: u(k)=-f 1 (e(k))-αs(k ). 依據申請專利範圍第8項所述混沌訊號同步方法,更包含一步驟(f),該加密動態私鑰產生器接收該加密端訊號產生器之數位混沌訊號,該解密動態私鑰產生器接收該解密端訊號產生器之同步混沌訊號,以使該加密動態私鑰與該解密動態私鑰同步。 According to the chaotic signal synchronization method of claim 8, further comprising a step (f), the encrypted dynamic private key generator receives the digital chaotic signal of the encrypted end signal generator, and the decrypted dynamic private key generator receives the The synchronization chaotic signal of the end signal generator is decrypted to synchronize the encrypted dynamic private key with the decrypted dynamic private key. 依據申請專利範圍第9項所述混沌訊號同步方法,更包含一步驟(g),該加密計算器使用該加密動態私鑰將該影像數位資訊加密成該影像加密訊號,該解密計算器使用以同步之解密動態私鑰將影像加密訊號解密成解碼影像資訊。 According to the chaotic signal synchronization method of claim 9, further comprising a step (g), the encryption calculator encrypts the image digital information into the image encryption signal by using the encrypted dynamic private key, and the decryption calculator uses The synchronous decryption dynamic private key decrypts the image encrypted signal into decoded image information.
TW104114955A 2015-05-11 2015-05-11 Chaotic synchronization signal method TWI564744B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104114955A TWI564744B (en) 2015-05-11 2015-05-11 Chaotic synchronization signal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104114955A TWI564744B (en) 2015-05-11 2015-05-11 Chaotic synchronization signal method

Publications (2)

Publication Number Publication Date
TW201640391A true TW201640391A (en) 2016-11-16
TWI564744B TWI564744B (en) 2017-01-01

Family

ID=57850678

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104114955A TWI564744B (en) 2015-05-11 2015-05-11 Chaotic synchronization signal method

Country Status (1)

Country Link
TW (1) TWI564744B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718680B (en) * 2019-09-24 2021-02-11 國立勤益科技大學 Digital Medical Information Security Transmission System

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI810933B (en) * 2022-05-13 2023-08-01 國立勤益科技大學 Random dynamic key generation system based on chaotic synchronization and method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM339162U (en) * 2007-09-28 2008-08-21 Jin-Feng Lin Chaos encryption device based on different degrees of mobile healthcare
US8139764B2 (en) * 2008-05-06 2012-03-20 Harris Corporation Closed galois field cryptographic system
US8145692B2 (en) * 2008-05-29 2012-03-27 Harris Corporation Digital generation of an accelerated or decelerated chaotic numerical sequence

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI718680B (en) * 2019-09-24 2021-02-11 國立勤益科技大學 Digital Medical Information Security Transmission System

Also Published As

Publication number Publication date
TWI564744B (en) 2017-01-01

Similar Documents

Publication Publication Date Title
KR102373264B1 (en) authentication processing service
US10733116B2 (en) System and method for securely connecting to a peripheral device
US20120054485A1 (en) Terminal device, server, data processing system, data processing method, and program
US20120014520A1 (en) Biometric encryption and key generation
US20230412573A1 (en) Methods, systems, and media for protecting and verifying video files
WO2017047172A1 (en) Information processing device, information processing method, and program and mapping server
JP2012212138A (en) Encryption program, decryption program, encryption method, decryption method, system, and content generation method
CN110677260A (en) Authentication method, authentication device, electronic equipment and storage medium
CN104618091B (en) Double chaos system dynamic key and the united Streaming Media secret communication methods of RSA
WO2021082647A1 (en) Federated learning system, training result aggregation method, and device
TWI564744B (en) Chaotic synchronization signal method
CN108366299A (en) A kind of media playing method and device
CN106845075A (en) One kind concentrates diagnosis report system
US10003462B2 (en) Key generating method and apparatus
WO2017054480A1 (en) Multimedia data encryption method and apparatus
CN109766705B (en) Circuit-based data verification method and device and electronic equipment
WO2022247790A1 (en) Data management method and apparatus, device and storage medium
CN103415009B (en) A kind of two-way wireless speech secret signalling based on Lorenz chaotic circuit and method
CN110176988A (en) Guarantee that redundancy executes body and encrypts the consistent device and method of behavior
Sakr et al. Prediction-based haptic data reduction and transmission in telementoring systems
TWM509478U (en) Real-time video system with discretization chaos synchronization
Orue et al. Determination of the parameters for a Lorenz system and application to break the security of two-channel chaotic cryptosystems
CN114879877B (en) State data synchronization method, device, equipment and storage medium
WO2016206169A1 (en) Wireless access method, device and system, and storage medium
CN110071793B (en) Random number generation method and system based on BMC

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees