TW201638969A - Conductive paste for solar cell manufacturing process - Google Patents

Conductive paste for solar cell manufacturing process Download PDF

Info

Publication number
TW201638969A
TW201638969A TW104112825A TW104112825A TW201638969A TW 201638969 A TW201638969 A TW 201638969A TW 104112825 A TW104112825 A TW 104112825A TW 104112825 A TW104112825 A TW 104112825A TW 201638969 A TW201638969 A TW 201638969A
Authority
TW
Taiwan
Prior art keywords
solar cell
conductive paste
weight percentage
conductive
oxide
Prior art date
Application number
TW104112825A
Other languages
Chinese (zh)
Other versions
TWI559336B (en
Inventor
Tsung-Hsi Ko
Yen-Chang Chen
Chih-Wei Peng
Che-Chang Tsao
Yi-Fan Lai
Original Assignee
Exojet Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exojet Technology Corp filed Critical Exojet Technology Corp
Priority to TW104112825A priority Critical patent/TWI559336B/en
Publication of TW201638969A publication Critical patent/TW201638969A/en
Application granted granted Critical
Publication of TWI559336B publication Critical patent/TWI559336B/en

Links

Landscapes

  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

Provided is a conductive paste for solar cell manufacturing process, which includes an organic matter carrier, a conductive material and a glass medium. The conductive material and the glass medium are distributed in the organic matter carrier. The glass medium includes silicon dioxide with a weight percentage of 0.1 wt.% to 10 wt.%, lead oxide with a weight percentage of 0.1 wt.% to 23 wt.%, tellurium dioxide with a weight percentage of 20 wt.% to 80 wt.%, Bismuth(III) oxide (Bi2O3) with a weight percentage of 5 wt.% to 35 wt.%, and zinc oxide with a weight percentage of 0.1 wt.% to 20 wt.%. By increasing the weight percentage of the silicon dioxide, it is able to not only reduce the contact impedance in forming a conductive electrode, but also increase the viscosity of the conductive paste.

Description

用於太陽能電池製程之導電漿料Conductive paste for solar cell process

本發明為有關一種用於太陽能電池之化學材料,尤指一種用於太陽能電池製程之導電漿料。The invention relates to a chemical material for a solar cell, in particular to a conductive paste for a solar cell process.

傳統的太陽能電池基本結構係藉由一p型半導體與一n型半導體相互接合而形成一太陽能電池基板,該p型半導體與該n型半導體之間會形成一p-n接面(p-n junction),當接受太陽光照射時,太陽能電池會在該p-n接面處產生電子電洞對(hole-electron pair)。由於該p型半導體中具有較高的電洞密度;而在該n型半導體中具有較高的電子密度,因此在該p-n接面處,該電子電洞對的電子會往該n型半導體處移動,而該電子電洞對的電洞則會往該p型半導體處移動,進而產生電流,最後再利用導電電極將電流收集進行使用。前述之太陽能電池可參美國發明專利公開第US 2013/0247976號、US 2014/0083489號A conventional solar cell basic structure is formed by a p-type semiconductor and an n-type semiconductor being bonded to each other to form a solar cell substrate, and a ppn junction is formed between the p-type semiconductor and the n-type semiconductor. When exposed to sunlight, the solar cell creates a hole-electron pair at the pn junction. Since the p-type semiconductor has a higher hole density; and the n-type semiconductor has a higher electron density, at the pn junction, electrons of the electron hole pair will go to the n-type semiconductor The hole is moved, and the hole of the pair of electron holes moves to the p-type semiconductor to generate a current, and finally the current is collected and used by the conductive electrode. The aforementioned solar cell can be referred to US Patent Publication No. US 2013/0247976, US 2014/0083489

一般而言,習知太陽能電池所使用的導電電極係以一導電漿料圖案化塗佈於該太陽能電池基板上,該導電漿料包含玻璃介質、導電材料以及有機載體。就現行應用而言,大多採用銀或鋁作為該導電材料,如美國發明專利公開第US 2013/0026425號,揭示一種導電成分及其製程,該導電成分包括一導電功能混合物,其中該導電功能混合物由一金屬以及一金屬氧化物組成,該金屬為主體且該金屬氧化物係為填料,該金屬氧化物的重量百分比介於0.5 wt.%至5 wt.%之間,且該金屬氧化物包括氧化鋁、氧化銅、氧化鋅、氧化鋯、氧化矽及其組合;或者,如美國發明專利公告第US 8,383,011號,揭示一種含有金屬有機改性劑的導電油墨,含有一玻璃料、一導電物質、一有機介質及一或多種在焙燒後形成金屬氧化物的金屬有機成分,其中,該金屬有機成分含有鉍金屬有機物,且其足以在焙燒後形成至少l wt.%的金屬氧化物,該玻璃料包含氧化鉍、二氧化矽、氧化硼、二氧化碲及其組合。In general, a conductive electrode used in a conventional solar cell is patterned and coated on the solar cell substrate with a conductive paste containing a glass medium, a conductive material, and an organic vehicle. In the case of current applications, silver or aluminum is mostly used as the conductive material, as disclosed in US Patent Publication No. US 2013/0026425, which discloses a conductive component and a process thereof, the conductive component comprising a conductive functional mixture, wherein the conductive functional mixture Consisting of a metal and a metal oxide, the metal is a host and the metal oxide is a filler, the metal oxide is between 0.5 wt.% and 5 wt.%, and the metal oxide comprises Alumina, copper oxide, zinc oxide, zirconium oxide, cerium oxide, and combinations thereof; or, as disclosed in US Patent No. 8,383,011, discloses a conductive ink containing a metal organic modifier containing a glass frit and a conductive material. An organic medium and one or more metal organic components which form a metal oxide after calcination, wherein the metal organic component contains a base metal organic substance and is sufficient to form at least 1 wt.% of a metal oxide after firing, the glass The material comprises cerium oxide, cerium oxide, boron oxide, cerium oxide and combinations thereof.

導電漿料中的玻璃介質,主要用於提升該導電漿料的黏著性,並提供該太陽能電池基板與該金屬電極之間良好的歐姆接觸。當進行燒結製程時,該玻璃介質將會形成液態,除向該太陽能電池基板發生擴散外,亦可能發生化學反應並生成產物,若該玻璃介質的成分選擇不佳,恐將發生該太陽能電池基板與該金屬電極之間附著不佳、該太陽能電池基板與該金屬電極之間未形成良好之歐姆接觸阻抗或該太陽能電池基板受汙染等問題。因而影響太陽能電池的品質。The glass medium in the conductive paste is mainly used to improve the adhesion of the conductive paste and provide good ohmic contact between the solar cell substrate and the metal electrode. When the sintering process is performed, the glass medium will form a liquid state, and in addition to diffusion to the solar cell substrate, a chemical reaction may occur and a product may be formed. If the composition of the glass medium is poorly selected, the solar cell substrate may occur. The adhesion to the metal electrode is poor, and a good ohmic contact resistance or contamination of the solar cell substrate between the solar cell substrate and the metal electrode is not formed. This affects the quality of the solar cell.

本發明的主要目的,在於解決習知用於太陽能電池之導電漿料,附著性以及歐姆接觸阻抗不佳之問題。SUMMARY OF THE INVENTION A primary object of the present invention is to solve the problems of conventional conductive pastes for solar cells, such as adhesion and poor ohmic contact resistance.

為達上述目的,本發明提供一種用於太陽能電池製程之導電漿料,包含一有機物載體、一導電材料以及一玻璃介質,該導電材料與該玻璃介質分散於該有機物載體內,該玻璃介質包含重量百分比介於0.1 wt.%至10 wt.%之間的二氧化矽、重量百分比介於0.1 wt.%至23 wt.%之間的氧化鉛、重量百分比介於20 wt.%至80 wt.%之間的二氧化碲、重量百分比介於5 wt.%至35 wt.%之間的三氧化二鉍以及重量百分比介於0.1 wt.%至20 wt.%之間的氧化鋅。To achieve the above object, the present invention provides a conductive paste for a solar cell process, comprising an organic carrier, a conductive material, and a glass medium, the conductive material and the glass medium being dispersed in the organic carrier, the glass medium comprising Ceria in a weight percentage between 0.1 wt.% and 10 wt.%, lead oxide in a weight percentage between 0.1 wt.% and 23 wt.%, and a weight percentage between 20 wt.% and 80 wt% Between .% of ceria, between 5 wt.% and 35 wt.% of antimony trioxide and between 0.1 wt.% and 20 wt.% of zinc oxide.

由上述可知,本發明用於太陽能電池製程之導電漿料,藉由改變該玻璃介質中的成分以及比例,使得該導電漿料的特性改變,進而提升太陽能電池使用該導電漿料形成導電電極時的效能。It can be seen from the above that the conductive paste for the solar cell process of the present invention changes the characteristics of the conductive paste by changing the composition and ratio of the glass medium, thereby improving the solar cell using the conductive paste to form a conductive electrode. Performance.

有關本發明的詳細說明及技術內容,現就配合圖式說明如下:The detailed description and technical content of the present invention will now be described as follows:

本發明提供一種用於太陽能電池製程之導電漿料,包含一有機物載體、一導電材料以及一玻璃介質,該導電材料與該玻璃介質分散於該有機物載體內,於本發明之一實施例中,該導電材料可為銀、銀氧化物、銀鹽、銅、鈀、鋁或其組合,且該導電材料在該導電漿料的重量百分比介於80 wt.%至95 wt.%之間。該有機物載體之材料可為乙基纖維素(Ethyl cellulose)、聚丙烯酸(Polyacrylic acid)、聚乙烯醇縮丁醛(Polyvinyl butyral)、聚乙烯醇(Polyvinyl alcohol)、聚烯烴(Polyolefin)、聚醯亞胺(Polyamide)、羧酸(Carboxylic acid)、油酸(Oleic acid)、牛脂二胺二油酸鹽(N-Tallow-1,3-diaminopropane dioleate)、二乙二醇丁醚(Diethylene glycol Butyl ether)、二乙二醇丁醚醋酸酯(2-(2-Butoxyethoxy)ethyl Acetate)、酯醇(Ester alcohol)、尼龍酸二甲酯(Dibasic ester)、松油醇(Terpineol)或前述之衍生物,且該有機物載體之重量百分比介於5 wt.%至20 wt.%之間。The present invention provides a conductive paste for a solar cell process, comprising an organic carrier, a conductive material, and a glass medium, the conductive material and the glass medium being dispersed in the organic carrier, in an embodiment of the present invention, The conductive material may be silver, silver oxide, silver salt, copper, palladium, aluminum or a combination thereof, and the conductive material has a weight percentage of the conductive paste of between 80 wt.% and 95 wt.%. The material of the organic carrier may be ethyl cellulose (Ethyl cellulose), polyacrylic acid, polyvinyl butyral, polyvinyl alcohol, polyolefin, polyfluorene. Polyamide, Carboxylic acid, Oleic acid, N-Tallow-1,3-diaminopropane dioleate, Diethylene glycol Butyl Ether), 2-(2-Butoxyethoxy)ethyl Acetate, Ester alcohol, Dibasic ester, Terpineol or the aforementioned derivatives And the weight percentage of the organic carrier is between 5 wt.% and 20 wt.%.

在本發明中,該玻璃介質之重量百分比介於0.1 wt.%至10 wt.%之間,該玻璃介質包括重量百分比介於0.1 wt.%至10 wt.%之間的二氧化矽、重量百分比介於0.1 wt.%至23 wt.%之間的氧化鉛、重量百分比介於20wt.%至80 wt.%之間的二氧化碲、重量百分比介於5 wt.%至35 wt.%之間的三氧化二鉍以及重量百分比介於0.1 wt.%至20 wt.%之間的氧化鋅。其中,二氧化矽為一玻璃形成劑(Glass former),係做為玻璃網絡主體,二氧化碲、氧化鉛、氧化鉍及氧化鋅則做為玻璃中間體(Glass intermediates)。In the present invention, the weight percentage of the glass medium is between 0.1 wt.% and 10 wt.%, and the glass medium comprises cerium oxide, weight of between 0.1 wt.% and 10 wt.% by weight. Lead oxide having a percentage between 0.1 wt.% and 23 wt.%, cerium oxide having a weight percentage between 20 wt.% and 80 wt.%, and a weight percentage ranging from 5 wt.% to 35 wt.% Between the antimony trioxide and zinc oxide in a weight percentage between 0.1 wt.% and 20 wt.%. Among them, cerium oxide is a glass former (Glass former), which is used as a glass network main body, and cerium oxide, lead oxide, cerium oxide and zinc oxide are used as glass intermediates.

當本發明應用於太陽能電池之正面銀漿(即該導電材料含有銀)時,該玻璃介質裡的氧化鉛及氧化鋅將當作抗反射層(Anti-reflection coating)蝕刻劑,然在高溫燒結的條件下,過多含量的氧化鉛和氧化鋅易造成歐姆接觸電阻上升,氧化鋅蝕刻過度甚至會造成電池短路。因此,本發明係利用二氧化矽的含量,控制該導電漿料的玻璃軟化點及黏度,來優化最終產品的接觸阻抗及線寬來達到提升電池效率的目的。When the present invention is applied to a front side silver paste of a solar cell (that is, the conductive material contains silver), lead oxide and zinc oxide in the glass medium will be used as an anti-reflection coating etchant, but sintered at a high temperature. Under the conditions, excessive levels of lead oxide and zinc oxide tend to cause an increase in ohmic contact resistance, and excessive etching of zinc oxide may even cause a short circuit in the battery. Therefore, the present invention utilizes the content of cerium oxide to control the glass softening point and viscosity of the conductive paste to optimize the contact resistance and line width of the final product to achieve the purpose of improving the efficiency of the battery.

另外,氧化碲的加入則能大幅提高銀粉於接觸介面的溶解再析出行為,因而降低接觸電阻,此乃因氧化碲在高溫時容易與銀顆粒共溶形成碲化銀等介穩定相,常溫時銀則又以奈米微粒等形式析出,若析出於矽晶片表面,則有助於形成矽-金屬接面,即矽與金屬將形成直接接觸,此接觸電阻較矽-氧化物(玻璃)-金屬接面更低,從而有效降低介面電阻。In addition, the addition of cerium oxide can greatly improve the dissolution and re-precipitation behavior of the silver powder on the contact interface, thereby reducing the contact resistance. This is because yttrium oxide is easily co-dissolved with silver particles at high temperatures to form a stable phase such as silver telluride. Silver is precipitated in the form of nano-particles, etc. If it is deposited on the surface of the germanium wafer, it will help to form a tantalum-metal joint, that is, the tantalum will form a direct contact with the metal, and the contact resistance is better than that of the tantalum-oxide (glass). The metal junction is lower, which effectively reduces the interface resistance.

請續參閱『圖1』以及『圖2A』至『圖2D』所示,其係為本發明應用於一太陽能電池之結構示意圖以及製程步驟示意圖,該太陽能電池之製程方法如下:Please refer to FIG. 1 and FIG. 2A to FIG. 2D , which are schematic diagrams of the structure and process steps of the present invention applied to a solar cell. The manufacturing method of the solar cell is as follows:

S1:形成一太陽能電池基板10,先準備一p型半導體基材11,並於該p型半導體基材11上進行一摻雜製程形成一n型半導體層12,該p型半導體基材11與該n型半導體層12形成該太陽能電池基板10,該p型半導體基材11可為單晶矽基板、多晶矽基板、砷化鎵基板或披覆矽的半導體薄膜的基板;S1: forming a solar cell substrate 10, preparing a p-type semiconductor substrate 11 and performing a doping process on the p-type semiconductor substrate 11 to form an n-type semiconductor layer 12, the p-type semiconductor substrate 11 and The n-type semiconductor layer 12 forms the solar cell substrate 10, and the p-type semiconductor substrate 11 may be a single crystal germanium substrate, a polycrystalline germanium substrate, a gallium arsenide substrate or a substrate coated with a germanium semiconductor film;

S2:形成一抗反射層20,於該n型半導體層12遠離該p型半導體基材11一側形成該抗反射層20,其中該抗反射層20可經由濺射、化學氣相沉積或其他類似方法所形成,而該抗反射層20之材料可為氮化矽、二氧化鈦或二氧化矽;S2: forming an anti-reflection layer 20, the anti-reflection layer 20 is formed on a side of the n-type semiconductor layer 12 away from the p-type semiconductor substrate 11, wherein the anti-reflection layer 20 can be via sputtering, chemical vapor deposition or other A similar method is formed, and the material of the anti-reflective layer 20 may be tantalum nitride, titanium dioxide or cerium oxide;

S3:形成一前導電漿料層30以及一後導電漿料層40,將本發明之該導電漿料塗佈於該抗反射層20遠離該太陽能電池基板10一側,以形成該前導電漿料層30,並以一後電極導電漿料塗佈於該太陽能電池基板10遠離該抗反射層20一側以形成該後導電漿料層40,其中該後電極導電漿料的導電金屬可為鎳、銀、鋁、銅、鈀、金或錫等;S3: forming a front conductive paste layer 30 and a rear conductive paste layer 40, and applying the conductive paste of the present invention to the side of the anti-reflective layer 20 away from the solar cell substrate 10 to form the front conductive paste. The layer 30 is coated with a back electrode conductive paste on the side of the solar cell substrate 10 away from the anti-reflective layer 20 to form the rear conductive paste layer 40. The conductive metal of the back electrode conductive paste may be Nickel, silver, aluminum, copper, palladium, gold or tin;

S4:燒結形成一前導電電極31以及一後導電電極41,進行一燒結製程,使該前導電漿料層30穿過該抗反射層20與該太陽能電池基板10的該n型半導體層12相互鍵結連接,進而形成該前導電電極31;另外,該後導電漿料層40經過該燒結製程後形成該後導電電極41,此與習知太陽能電池製程相同,故不於本發明中贅述。S4: sintering a front conductive electrode 31 and a rear conductive electrode 41 to perform a sintering process, so that the front conductive paste layer 30 passes through the anti-reflective layer 20 and the n-type semiconductor layer 12 of the solar cell substrate 10 The bonding is performed to form the front conductive electrode 31. In addition, the post conductive paste layer 40 forms the rear conductive electrode 41 after the sintering process, which is the same as the conventional solar cell process, and thus is not described in the present invention.

更進一步說明,由於該導電漿料中的該玻璃介質所含的二氧化矽重量百分比介於1 wt.%至10 wt.%之間,使所形成的該前導電電極31層與該n型半導體層12之間的接觸阻抗得以降低,進而提升該太陽能電池的效能;其次,該導電漿料的黏稠度亦可獲得提升,使得該前導電漿料層30的線寬不因黏度過低而有所改變,即,該導電漿料可避免線擴的問題,藉以穩定該太陽能電池於製程時的良率。Further, since the weight percentage of cerium oxide contained in the glass medium in the conductive paste is between 1 wt.% and 10 wt.%, the formed front conductive electrode 31 layer and the n-type are formed. The contact resistance between the semiconductor layers 12 is reduced, thereby improving the performance of the solar cell; secondly, the viscosity of the conductive paste can be improved, so that the line width of the front conductive paste layer 30 is not caused by the low viscosity. There is a change, that is, the conductive paste can avoid the problem of line expansion, thereby stabilizing the yield of the solar cell during the process.

綜上所述,由於本發明改變該導電漿料的該玻璃介質之成分與相關比例,並調控二氧化矽的重量百分比於0.1 wt.% 至10 wt.% 之間,使得該前導電電極的圖案能夠穩定不擴散變形,且該前導電電極與該太陽能電池基板有更低的接觸阻抗,進而提升該太陽能電池的製程良率以及光電轉換效率。In summary, since the present invention changes the composition and the relative proportion of the glass medium of the conductive paste, and adjusts the weight percentage of cerium oxide to be between 0.1 wt.% and 10 wt.%, so that the front conductive electrode The pattern can stabilize non-diffusion deformation, and the front conductive electrode and the solar cell substrate have lower contact resistance, thereby improving the process yield and photoelectric conversion efficiency of the solar cell.

10‧‧‧太陽能電池基板
11‧‧‧p型半導體基材
12‧‧‧n型半導體層
20‧‧‧抗反射層
30‧‧‧前導電漿料層
31‧‧‧前導電電極
40‧‧‧後導電漿料層
41‧‧‧後導電電極
10‧‧‧Solar cell substrate
11‧‧‧p-type semiconductor substrate
12‧‧‧n type semiconductor layer
20‧‧‧Anti-reflective layer
30‧‧‧Pre-conductive paste layer
31‧‧‧ Front conductive electrode
40‧‧‧After conductive paste layer
41‧‧‧After conductive electrode

圖1,為本發明應用於太陽能電池之結構示意圖 圖2A~2D,為本發明應用於太陽能電池之製程步驟示意圖1 is a schematic structural view of a solar cell according to the present invention. FIG. 2A to FIG. 2D are schematic diagrams showing a process of applying the solar cell to the present invention.

10‧‧‧太陽能電池基板 10‧‧‧Solar cell substrate

11‧‧‧p型半導體基材 11‧‧‧p-type semiconductor substrate

12‧‧‧n型半導體層 12‧‧‧n type semiconductor layer

20‧‧‧抗反射層 20‧‧‧Anti-reflective layer

30‧‧‧前導電漿料層 30‧‧‧Pre-conductive paste layer

40‧‧‧後導電漿料層 40‧‧‧After conductive paste layer

Claims (6)

一種用於太陽能電池製程之導電漿料,包含: 一有機物載體; 一分散於該有機物載體內的導電材料;以及 一分散於該有機物載體內的玻璃介質,該玻璃介質包含重量百分比介於0.1 wt.%至10 wt.%之間的二氧化矽、重量百分比介於0.1 wt.%至23 wt.%之間的氧化鉛、重量百分比介於20 wt.%至80 wt.%之間的二氧化碲、重量百分比介於5 wt.%至35 wt.%之間的三氧化二鉍以及重量百分比介於0.1 wt.%至20 wt.%之間的氧化鋅。An electroconductive paste for a solar cell process, comprising: an organic carrier; a conductive material dispersed in the organic carrier; and a glass medium dispersed in the organic carrier, the glass medium comprising 0.1 wt% by weight Between .% and 10 wt.% of ceria, between 0.1 wt.% and 23 wt.% of lead oxide, and between 20 wt.% and 80 wt.% Cerium oxide, cerium oxide having a weight percentage between 5 wt.% and 35 wt.%, and zinc oxide having a weight percentage between 0.1 wt.% and 20 wt.%. 如申請專利範圍第1項所述之用於太陽能電池製程之導電漿料,其中該有機物載體之材料選自於乙基纖維素、聚丙烯酸、聚乙烯醇縮丁醛、聚乙烯醇、聚烯烴、羧酸、油酸、牛脂二胺二油酸鹽、二乙二醇丁醚、二乙二醇丁醚醋酸酯、酯醇、尼龍酸二甲酯及松油醇所組成之群組。The conductive paste for solar cell process according to claim 1, wherein the material of the organic carrier is selected from the group consisting of ethyl cellulose, polyacrylic acid, polyvinyl butyral, polyvinyl alcohol, and polyolefin. a group consisting of carboxylic acid, oleic acid, tallow diamine dioleate, diethylene glycol butyl ether, diethylene glycol butyl ether acetate, ester alcohol, dimethyl nylon hydride and terpineol. 如申請專利範圍第1項所述之用於太陽能電池製程之導電漿料,其中該導電材料選自於銀、銀氧化物、銀鹽、銅、鈀及鋁所組成之群組。The conductive paste for solar cell process according to claim 1, wherein the conductive material is selected from the group consisting of silver, silver oxide, silver salt, copper, palladium and aluminum. 如申請專利範圍第1項所述之用於太陽能電池製程之導電漿料,其中該有機物載體之重量百分比介於5 wt.%至20 wt.%之間。The conductive paste for solar cell process according to claim 1, wherein the organic carrier has a weight percentage of between 5 wt.% and 20 wt.%. 如申請專利範圍第1項所述之用於太陽能電池製程之導電漿料,其中該導電材料之重量百分比介於80 wt.%至95 wt.%之間。The conductive paste for solar cell process according to claim 1, wherein the conductive material has a weight percentage of between 80 wt.% and 95 wt.%. 如申請專利範圍第1項所述之用於太陽能電池製程之導電漿料,其中該玻璃介質之重量百分比介於0.1 wt.%至10 wt.%之間。The conductive paste for solar cell process according to claim 1, wherein the glass medium has a weight percentage of between 0.1 wt.% and 10 wt.%.
TW104112825A 2015-04-22 2015-04-22 Conductive paste for solar cell processes TWI559336B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104112825A TWI559336B (en) 2015-04-22 2015-04-22 Conductive paste for solar cell processes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104112825A TWI559336B (en) 2015-04-22 2015-04-22 Conductive paste for solar cell processes

Publications (2)

Publication Number Publication Date
TW201638969A true TW201638969A (en) 2016-11-01
TWI559336B TWI559336B (en) 2016-11-21

Family

ID=57850386

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104112825A TWI559336B (en) 2015-04-22 2015-04-22 Conductive paste for solar cell processes

Country Status (1)

Country Link
TW (1) TWI559336B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9039937B1 (en) * 2013-12-17 2015-05-26 Samsung Sdi Co., Ltd. Composition for solar cell electrodes and electrode fabricated using the same

Also Published As

Publication number Publication date
TWI559336B (en) 2016-11-21

Similar Documents

Publication Publication Date Title
KR101552745B1 (en) Glass frits
US10164128B2 (en) Composition for solar cell electrodes and electrode fabricated using the same
US8308993B2 (en) Conductive inks
TWI594269B (en) Low-metal content electroconductive paste composition
TWI404780B (en) Silver paste composition and solar cell using the same
TWI599058B (en) Method of forming electrode, electrode manufactured therefrom and solar cell
US20140186994A1 (en) Composition for solar cell electrodes and electrode fabricated using the same
TWI603485B (en) Seed layer for solar cell conductive contact
TW201310663A (en) Element and photovoltaic cell
US9818889B2 (en) Composition for solar cell electrodes and electrode fabricated using the same
TWI714897B (en) Conductive paste for electrode of solar cell, glass frit included in the same, and solar cell
CN116189959A (en) Conductive paste for solar cell
TWI559336B (en) Conductive paste for solar cell processes
US11746957B2 (en) Interdigitated back contact metal-insulator-semiconductor solar cell with printed oxide tunnel junctions
TWI596784B (en) Conductive silver paste for solar cell manufacturing
KR20120053978A (en) Ag paste composition for forming electrode and silicon solar cell using the same
CN110634618B (en) Method for manufacturing solar cell electrode, conductive paste and method for manufacturing conductive paste
TW201705500A (en) Conductive paste and process for forming an electrode on a p-type emitter on an n-type base semiconductor substrate
KR101853417B1 (en) Conductive paste composition for electrode of solar cell and solar cell comprising electrode manufactured using the same
KR101930285B1 (en) Electrode Paste For Solar Cell's Electrode And Solar Cell using the same
US11107934B2 (en) Composition for forming solar cell electrode and solar cell electrode prepared using the same
KR20130067693A (en) Ag paste composition for forming electrode and silicon solar cell using the same
CN106297948A (en) Electrocondution slurry for solar battery process
TWI596073B (en) Conductive paste for solar cell manufacturing
KR20120086389A (en) Conductive pastes for electrodes of solar cell and methods of manufacturing solar cells using the conductive pastes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees