TW201637447A - 動態將品質更新到更高色度取樣率 - Google Patents

動態將品質更新到更高色度取樣率 Download PDF

Info

Publication number
TW201637447A
TW201637447A TW105100367A TW105100367A TW201637447A TW 201637447 A TW201637447 A TW 201637447A TW 105100367 A TW105100367 A TW 105100367A TW 105100367 A TW105100367 A TW 105100367A TW 201637447 A TW201637447 A TW 201637447A
Authority
TW
Taiwan
Prior art keywords
image
region
coded
encoded
chroma resolution
Prior art date
Application number
TW105100367A
Other languages
English (en)
Inventor
席爾 亞隆
朱立華
B安尼爾 庫馬
傑若恩E 范伊斯特任
Original Assignee
微軟技術授權有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 微軟技術授權有限責任公司 filed Critical 微軟技術授權有限責任公司
Publication of TW201637447A publication Critical patent/TW201637447A/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0102Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving the resampling of the incoming video signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/167Position within a video image, e.g. region of interest [ROI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors

Abstract

呈現使用在低解析度色度取樣格式(如YUV 4:2:0)的經譯碼圖像上操作的視訊編碼器的高解析度色度取樣格式(如YUV 4:4:4)的視訊圖像的編碼中的創新。舉例而言,根據一組決策規則,高色度解析度細節係在逐區域的基礎上選擇性編碼,而使得發生於色度解析度的相應增加的時間與地點的位元率的增加(由於高色度解析度細節的取樣值的編碼)可以用明顯的方式改良品質。以此方式,在低解析度色度取樣格式的經譯碼圖像中操作的可取得編碼器可以有效地用於提供高色度解析度細節。

Description

動態將品質更新到更高色度取樣率
本發明係關於動態將品質更新到更高色度取樣率。
工程師使用壓縮(亦稱為源譯碼或源編碼)以降低數位視訊的位元率。壓縮藉由將資訊轉換成較低位元率形式減少儲存與傳送視訊資訊的成本。壓縮可以無損,其中重建時的視訊品質不會受影響,但位元率的減少受到視訊複雜性的限制。或者,壓縮可以有損,其中重建視訊的品質受影響,但位元率的減少則更劇烈。解壓縮(亦稱為解碼)從壓縮形式重建原始資訊的版本。「編解碼器」係為編碼器/解碼器系統。
在過去的二十年中,已通過各種視訊編解碼器標準,包括ITU-T H.261、H.262(MPEG-2或ISO/IEC 13818-2)、H.263、H.264(MPEG-4 AVC或ISO/IEC 14496-10)、及H.265(HEVC或ISO/IEC 23008-2)標準、MPEG-1(ISO/IEC 11172-2)與MPEG-4視覺(ISO/IEC 14496-2)標準、及SMPTE 421M標準。視訊編解碼器標準通常定義用於經編碼視訊位元串流的語法的選項,當在編碼及解碼中使用特定特徵時詳細介紹位元串流中的參數。在許多情況下,視訊編解碼器標準亦提供關於解碼器應執行的解碼操作的細節,以在解碼中達成相符結果。除了編解碼器標準,各種專用編解碼器格式(如VP8、VP9、及其他VPx格式)定義用於經編碼視訊位元串流的語法與相應解碼操作的其他選項。
對於編碼,視訊源(如相機、或螢幕取得模組)通常提供轉換為格式(如YUV 4:4:4色度取樣格式)的視訊。YUV格式包括具有代表近似亮度值的取樣值的亮度(或Y)分量,以及具有代表色差值的取樣值的多個色度(或U與V)分量。在YUV 4:4:4格式中,色度資訊與亮度資訊代表於相同空間解析度中。
許多商業上可取得視訊編碼器與解碼器僅支援YUV 4:2:0色度取樣格式。YUV 4:2:0格式係為相較於YUV 4:4:4格式的子取樣色度資訊的格式,而使得色度解析度在水平與垂直二者係為亮度解析度的一半。作為設計原則,在理解使用編碼/解碼的YUV 4:2:0格式的決策的前提下,對於通用使用情況(如自然的相機拍攝視訊內容的編碼/解碼),查看者通常並未發現以YUV 4:2:0格式編碼/解碼的視訊與以YUV 4:4:4格式編碼/解碼的視訊之間的顯著視覺差異。(人類眼睛對於顏色(色度)的變化相較於亮度或強度(亮度)的變化較不敏感。)其每個圖像具有較少取樣的YUV 4:2:0格式的壓縮優勢因此引人注目。
然而,在一些使用情況中,視訊具有更豐富的色彩資訊與更高的色彩保真度可以是合理的。在這樣的使用情況下,YUV 4:4:4與YUV 4:2:0色度取樣格式之間的差異更容易由查看者察覺。舉例而言,對於電腦螢幕文本內容、具有人造硬邊界限的動畫視訊內容、彩色文本、或視訊內容的某些更普遍特徵(如捲動標題與硬邊圖形、或具有在色度頻道中濃縮的資訊的視訊)的編碼/解碼,YUV 4:4:4格式可較佳為YUV 4:2:0格式。一些編解碼器支援YUV 4:4:4格式的視訊圖像的直接編碼與解碼,但缺乏使用YUV 4:4:4格式的編解碼器廣泛支援(特別是在硬體實現方面)是一個障礙。而提供具有YUV 4:4:4品質的視訊的其他先前方式對於許多使用情況場景在速率失真效率與計算複雜性方面有缺陷。
綜上所述,實施方式呈現使用在低解析度色度取樣格式(如YUV 4:2:0)的經譯碼圖像上操作的視訊編碼器的高解析度色度取樣格式(如YUV 4:4:4)的視訊圖像的編碼中的創新。舉例而言,根據一組決策規則,高色度解析度細節係在逐區域的基礎上選擇性編碼,而使得發生於色度解析度的相應增加的時間與地點的位元率的增加(由於高色度解析度細節的取樣值的編碼)可以用明顯的方式改良品質。以此方式,在低解析度色度取樣格式的經譯碼圖像中操作的可取得編碼器可以有效地用於提供高色度解析度細節。
根據本文所述的創新的一個態樣,視訊處理工具(如視訊編碼器系統)將輸入圖像的取樣值封包到第一與第二經譯碼圖像。輸入圖像係根據如具有色度取樣率如4:4:4的輸入圖像格式組織。分別根據第一與第二經譯碼圖像格式組織第一與第二經譯碼圖像。第一與第二經譯碼圖像格式可以是相同經譯碼圖像格式或不同經譯碼圖像格式(如不同色度取樣率)。相較於輸入圖像格式,第一與第二經譯碼圖像格式中之至少一者可具有較低的色度取樣率,如4:2:0。第一經譯碼圖像包含用於輸入圖像的低色度解析度版本的取樣值。第二經譯碼圖像包含用於輸入圖像的高色度解析度細節的取樣值。
視訊處理工具編碼第一與第二經譯碼圖像,以產生經編碼資料。對於編碼,對於一或更多個區域中之每一者,視訊處理工具評估區域的一或更多個屬性(如區域中的改變的範圍、區域的經編碼資料的品質、及/或區域中的內容)。視訊處理工具至少部分依據評估結果決定輸入圖像的高色度解析度細節的區域中的經編碼取樣值是否為第二經譯碼圖像的一部分。視訊處理工具亦可至少部分依據評估結果決定輸入圖像的低色度解析度版本的區域的經編碼取樣值是否為第一經譯碼圖像的一部分。視訊處理工具輸出經編碼資料。
創新可實現為方法的一部分、經配置以執行該方法的電腦系統的一部分、或儲存用於使電腦系統在藉此程式化時執行該方法的電腦可執行指令的實體電腦可讀取媒體的一部分。各種創新可組合或單獨使用。本發明的前述及其他物件、特徵及優點將從下面參照隨附圖式進行的實施方式而變得更加顯而易見。
實施方式呈現使用在低解析度色度取樣格式(如YUV 4:2:0)的經譯碼圖像上操作的視訊編碼器的高解析度色度取樣格式(如YUV 4:4:4)的視訊圖像的編碼中的創新。舉例而言,根據一組決策規則,高色度解析度細節係在逐區域的基礎上選擇性編碼,而使得發生於色度解析度的相應增加的時間與地點的位元率的增加(由於高色度解析度細節的取樣值的編碼)可以用明顯的方式改良品質。以此方式,在低解析度色度取樣格式的經譯碼圖像中操作的可取得編碼器可以有效地用於提供高色度解析度細節。
如本文所使用,術語「經譯碼圖像」表示經編碼及解碼的圖像,通常係為具有色度取樣率(如4:2:0)的經譯碼圖像格式。術語「輸入圖像」表示在將取樣值重排到用於編碼的經譯碼圖像格式之前的輸入圖像格式的圖像,通常具有更高色度取樣率,如4:4:4。相反地,術語「輸出圖像」表示在從解碼後的經譯碼圖像格式重排取樣值之後的輸出圖像格式的圖像,通常具有與輸入圖像格式相同的色度取樣率。本文所述的一些實例涉及YUV 4:4:4格式的輸入/輸出圖像的取樣值的封包/解封包,以用於使用適於YUV 4:2:0格式的編解碼器的編碼/解碼。更一般地,所述之方式可用於其他色度取樣格式。舉例而言,除了取樣率(如4:4:4、4:2:2、4:2:0、4:1:1、4:0:0等)中的YUV顏色空間(如Y'UV、YIQ、Y'IQ、YdbDr、YCbCr、YCoCg等)的變化,所述之方式可如同色度取樣格式用於取樣率(如4:4:4、4:2:2、4:2:0、4:1:1、4:0:0等)中的色彩空間(如RGB、GBR等)。術語「封包」表示將第一圖像格式的圖像的部分或全部取樣值分離、轉換、重排、重新格式化、濾波、或以其他方式改變為第二圖像格式的一或更多個圖像中的任何操作。相反地,術語「解封包」表示將第二圖像格式的一或更多個圖像的一些或所有取樣值結合、組合、轉換、重排、重新格式化、濾波、或以其他方式改變以回到第一圖像格式的圖像的任何操作。
許多本文所述之實例中,將YUV 4:4:4格式的輸入圖像封包成已編碼的二個YUV 4:2:0格式的經譯碼圖像。將二個YUV 4:2:0格式的經譯碼圖像解碼並(對於至少一些取樣值)解封包到YUV 4:4:4格式的輸出圖像。更一般地,可將輸入圖像格式的輸入圖像封包成經譯碼圖像格式的多個經譯碼圖像,可以是用於各別經譯碼圖像的相同經譯碼圖像格式或不同經譯碼圖像格式(如不同色度取樣率)。舉例而言,對於YUV 4:4:4格式的輸入圖像,經譯碼圖像中之一者係為YUV 4:2:2格式,而其他經譯碼圖像係為4:0:0格式。在此配置中,YUV 4:2:2格式的經譯碼圖像可儲存輸入圖像的低色度解析度版本,而4:0:0的經譯碼圖像可儲存高色度解析度細節。
通常,當將輸入圖像格式的輸入圖像封包成經譯碼圖像格式的多個經譯碼圖像時,經譯碼圖像不包括重疊資料。舉例而言,將YUV 4:4:4格式的輸入圖像的一些取樣值封包成YUV 4:2:0格式的第一經譯碼圖像(可能在取樣值的濾波之後),而將輸入圖像的其他取樣值封包成一個YUV 4:2:0格式的第二經譯碼圖像。可替代地,經譯碼圖像可包括重疊資料,而潛在地傷害壓縮效率。舉例而言,假設將YUV 4:4:4格式的輸入圖像的取樣值封包成YUV 4:2:2格式或YUV 4:2:0格式的第一經譯碼圖像。可將一些相同取樣值以及附加取樣值可封包成YUV 4:2:0格式或YUV 4:2:2格式的第二經譯碼圖像。
儘管本文所呈現之操作係描述為藉由視訊編碼器或視訊解碼器執行,在許多情況下,操作可藉由另一類型的媒體編碼器或媒體解碼器(如映像編碼器或映像解碼器)或其他媒體處理工具執行。舉例而言,所述技術可應用於靜止映像編碼/解碼、醫療掃描內容編碼/解碼、多光譜映像內容編碼/解碼等。
參照特定於H.264/AVC標準或H.265/HEVC標準的語法元件與操作圖示一些本文所呈現之創新。本文所呈現之創新亦可實現於其他標準或格式。
許多本文所呈現之創新可在編碼某些「人造」建立的視訊內容(如用於遠端桌面會議或另一使用場景的螢幕取得內容)時改良速率-失真性能。螢幕取得內容通常包括重複結構(如圖形、文本字符)。螢幕取得內容經常以具有高色度取樣解析度的格式(如YUV 4:4:4或RGB 4:4:4)編碼,儘管亦可以用具有較低色度取樣解析度的格式(如YUV 4:2:0)編碼。用於螢幕取得內容的編碼/解碼的常見場景包括遠端桌面會議及在自然視訊或其他「混合內容」視訊上疊加的圖形的編碼/解碼。許多本文所呈現之創新亦可用於自然視訊。
更一般地,本文所呈現之實例的各種替代是可能的。舉例而言,一些本文所呈現之方法可藉由改變所述方法動作的順序,藉由拆分、重複、或省略某些方法動作等來修改。所揭示技術的各種態樣可以組合或單獨使用。不同實施例使用所述創新的一或更多者。一些本文所呈現之創新解決在先前技術中注意到的一或更多個問題。通常,給定技術/工具並未解決所有這樣的問題。I. 示例性電腦系統
第1圖圖示可實現幾個所述創新的合適電腦系統(100)的通用實例。電腦系統(100)並不意欲暗示使用或功能的範圍的任何限制,而創新可實現於不同的通用或專用電腦系統中。
參照第1圖,電腦系統(100)包括一或更多個處理單元(110、115)與記憶體(120、125)。處理單元(110、115)執行電腦可執行指令。處理單元可以是通用CPU、ASIC中的處理器、或任何其他類型的處理器。在多處理系統中,多個處理單元執行電腦可執行指令,以增加處理能力。舉例而言,第1圖圖示CPU(110)以及GPU或協同處理單元(115)。實體記憶體(120、125)可以是可藉由處理單元存取的揮發性記憶體(如暫存器、快取、RAM)、非揮發性記憶體(如ROM、EEPROM、快閃記憶體等)、或一些二者的組合。記憶體(120、125)儲存軟體(180),軟體(180)實現用於高色度解析度細節的編碼及/或解碼的一或更多個創新,且軟體(180)為適於藉由處理單元執行的電腦可執行指令的形式。
電腦系統可具有附加功能。舉例而言,電腦系統(100)包括儲存(140)、一或更多個輸入裝置(150)、一或更多個輸出裝置(160)、及一或更多個通訊連接(170)。互連機制(未圖示)(如匯流排、控制器、或網路)互連電腦系統(100)的部件。通常,作業系統軟體(未圖示)提供用於在電腦系統(100)中執行的其他軟體的操作環境,並協調電腦系統(100)的部件的動作。
實體儲存(140)可以是可移除或不可移除,並包括磁碟、磁帶或磁匣、光儲存媒體(如CD-ROM或DVD)、或可用於儲存資訊並可在電腦系統(100)中存取的任何其他媒體。儲存(140)儲存用於軟體(180)的指令,軟體(180)實現用於高色度解析度細節的編碼及/或解碼的一或更多個創新。
輸入裝置(150)可以是觸控輸入裝置(如鍵盤、滑鼠、筆、或軌跡球)、語音輸入裝置、掃描裝置、或提供輸入到電腦系統(100)的其他裝置。對於視訊而言,輸入裝置(150)可以是相機、視訊卡、TV調諧卡、螢幕取得模組、或接受類比或數位形式的視訊輸入的類似裝置、或將視訊輸入讀取到電腦系統(100)的CD-ROM或CD-RW。輸出裝置(160)可以是顯示器、印表機、喇叭、CD燒錄機、或從電腦系統(100)提供輸出的另一裝置。
通訊連接(170)允許透過通訊媒體對另一計算實體的通訊。通訊媒體傳達資訊,如電腦可執行指令、音訊或視訊輸入或輸出、或已調製資料訊號中的其他資料。已調製資料訊號係為具有經設置或改變其特性中的一或更多者的訊號,而以此方式編碼訊號中的資訊。以舉例而非限制之方式,通訊媒體可使用電、光、射頻、或其他載體。
本文所呈現之創新可描述於電腦可讀取媒體的一般上下文中。電腦可讀取媒體係為可在計算環境中存取的任何可取得實體媒體。以舉例而非限制的方式,利用電腦系統(100),電腦可讀取媒體包括記憶體(120、125)、儲存(140)、及任何上述之組合。
創新可描述於電腦可執行指令的一般上下文中,如那些包括在程式模組中而在目標真實或虛擬處理器上的電腦系統中執行者。一般而言,程式模組包括執行特定任務或實現特定抽象資料類型的例式、程式、函式庫、物件、類別、部件、資料結構等。程式模組的功能可在各個實施例中根據需要在程式模組之間組合或拆分。用於程式模組的電腦可執行指令可以在本地或分佈式電腦系統中執行。
術語「系統」與「裝置」在本文中可互換使用。除非上下文清楚地指出,否則術語並未暗示電腦系統或電腦裝置的類型的任何限制。在一般情況下,電腦系統或電腦裝置可以是本地或分佈式,並可包括具有實現本文所述之功能的軟體的專門用途硬體及/或通用硬體的任何組合。
所揭示之方法亦可使用經配置以執行任何所揭示之方法的專用計算硬體來實現。舉例而言,所揭示之方法可藉由專門設計或配置成實現任何所揭示之方法的整合電路(如ASIC(如ASIC數位訊號處理器(「DSP」))、GPU、或可程式化邏輯裝置(「PLD」)(如可規劃邏輯閘陣列(「FPGA」)))實現。
為了呈現之目的,實施方式使用術語如「決定」、「設定」、及「使用」,以描述在電腦系統中的電腦操作。這些術語係為用於藉由電腦執行的操作的高等級抽象語,且不應與人類所執行的動作混淆。對應於這些術語的實際電腦操作取決於實現而有所不同。II. 示例性網路環境
第2a與2b圖圖示示例性網路環境(201、202),包括視訊編碼器(220)與視訊解碼器(270)。編碼器(220)與解碼器(270)使用適當的通訊協定通過網路(250)連接。網路(250)可包括網際網路或另一電腦網路。
在第2a圖所示的網路環境(201)中,每一即時通訊(「RTC」)工具(210)包括用於雙向通訊的編碼器(220)與解碼器(270)。給定編碼器(220)可產生符合H.265標準、SMPTE 421M標準、H.264標準、另一標準、或專有格式的變化或擴充的輸出,而相應解碼器(270)接受來自編碼器(220)的經編碼資料。雙向通訊可以是視訊會議、視訊電話呼叫、或其他雙方或多方通訊場景的一部分。儘管第2a圖中的網路環境(201)包括二個即時通訊工具(210),網路環境(201)可以改為包括參與多方通訊的三或更多個即時通訊工具(210)。
即時通訊工具(210)管理編碼器(220)的編碼。第4圖圖示可包括在即時通訊工具(210)中的示例性編碼器系統(400)。可替代地,即時通訊工具(210)使用另一編碼器系統。即時通訊工具(210)亦管理解碼器(270)的解碼。第5圖圖示可包括在即時通訊工具(210)中的示例性解碼器系統(500)。可替代地,即時通訊工具(210)使用另一解碼器系統。
在第2b圖所示的網路環境(202)中,編碼工具(212)包括編碼器(220),以編碼用於遞送到包括解碼器(270)的多個播放工具(214)的視訊。單向通訊可提供於視訊監視系統、網路相機監視系統、遠端桌面會議呈現、或視訊經編碼並從一個位置發送到一或更多個其他位置的其他場景。儘管第2b圖的網路環境(202)包括二個播放工具(214),網路環境(202)可包括更多或更少個播放工具(214)。在一般情況下,播放工具(214)與編碼工具(212)通訊,以決定接收用於播放工具(214)的視訊串流。播放工具(214)接收串流,將所接收的經編碼資料緩衝適當期間,並開始解碼及播放。
第4圖圖示可包括在編碼工具(212)中的示例性編碼器系統(400)。可替代地,編碼工具(212)使用另一編碼器系統。編碼工具(212)亦可包括用於管理與一或更多個播放工具(214)的連接的伺服器端控制器邏輯。第5圖圖示可包括在播放工具(214)中的示例性解碼器系統(500)。可替代地,播放工具(214)使用另一解碼器系統。播放工具(214)可包括用於管理與編碼工具(212)的連接的客戶端控制器邏輯。III. 示例性訊框封包 / 解封包系統
第3圖係為結合可實現一些描述實施例的通用訊框封包/解封包系統(300)的方塊圖。
系統(300)包括視訊源(310),產生輸入圖像格式的源圖像(311),輸入圖像格式具有較高的第一色度取樣率,如YUV 4:4:4格式。視訊源(310)可以是相機、調諧器卡、螢幕取得模組、儲存媒體、或其他數位視訊源。
分離器(315)重排輸入圖像格式的圖像(311),以產生經譯碼圖像格式的源圖像(316),經譯碼圖像格式具有較低的第二色度取樣率,如YUV 4:2:0格式。使用訊框封包分離圖像(311)的示例性方式描述如下。可替代地,源圖像(316)可具有不同經譯碼圖像格式(如用於圖像(311)的低色度解析度版本的經譯碼圖像的YUV 4:2:2格式,與用於具有高色度解析度細節的經譯碼圖像的YUV 4:0:0格式),其中經譯碼圖像格式中之至少一者具有比輸入圖像格式更低的色度取樣率。分離器(315)可訊令關於一或更多個區域的元資料(317),以指示分離是否以及如何執行,以在解碼後由組合器(385)使用。訊令關於區域的元資料的示例性方式描述如下。
編碼器(340)編碼具有較低色度取樣率的經譯碼圖像格式的圖像(316)。(若圖像(316)具有不同經譯碼圖像格式,則對於不同經譯碼圖像格式可使用不同編碼器,或者可使用支援二種格式的單一編碼器。)示例性編碼器係參照第4、6a及6b圖描述於下。編碼器(340)在頻道(350)上輸出經譯碼資料(341),頻道(350)代表用於輸出的儲存、通訊連接、或另一頻道。
在本文所述的一些實例中,將經譯碼圖像格式的圖像(316)編碼為圖像的二個不同子序列。在第一子序列中,圖像包含用於圖像(311)的低色度解析度版本的取樣值。在第二子序列中,圖像包含用於圖像(311)的高色度解析度細節的取樣值。經譯碼資料(341)包括用於第一子序列的經編碼資料與用於第二子序列的經編碼資料。每一子序列符合編碼器(340)的格式,並能夠由該格式的解碼器(360)解碼。在編碼器(340)與解碼器(360)之間,位元串流編輯工具(未圖示)(如解多工器或路由器)可將用於第一子序列的經編碼資料從用於第二子序列的經編碼資料分隔開。此舉讓位元串流編輯工具能夠只將用於第一子序列的經編碼資料發送到一些播放裝置(例如,那些缺乏足夠顯示解析度、計算資源、或用於播放具有高色度解析度的網路連接),而藉由消除第二子序列的高色度解析度細節減少總位元率。用於於第一子序列的經編碼資料保持符合編碼器(340)的格式,並可由該格式的解碼器(360)解碼。對於其他播放裝置(例如,那些具有足夠顯示解析度、計算資源、以及用於播放具有高色度解析度的網路連接)而言,位元串流編輯工具可發送所有經譯碼資料(341),包括用於二個子序列的經編碼資料。
解碼器(360)接收至少一些經編碼資料(341),並解碼至少一些具有較低色度取樣率的經譯碼圖像格式的圖像(316)。(若圖像(316)具有不同經譯碼圖像格式,對於不同經譯碼圖像格式可使用不同解碼器,或者可使用支援二個格式的單一解碼器。)示例性解碼器參照第5及7圖描述於下。解碼器(360)輸出具有較低色度取樣率的經譯碼圖像格式的重建圖像(381)。舉例而言,解碼器(360)接收及解碼用於包含圖像(311)的低色度解析度版本的取樣值的經譯碼圖像的第一子序列的經編碼資料。或者,除了接收及解碼用於第一子序列的經編碼資料,解碼器(360)接收及解碼用於包含圖像(311)的高色度解析度細節的取樣值的經譯碼圖像的第二子序列的經編碼資料。
組合器(385)可選擇地重排具有較低色度取樣率的經譯碼圖像格式(或多個不同經譯碼圖像格式)的重建圖像(381),以重建具有較高色度取樣率的輸出圖像格式的輸出圖像(386)。使用訊框解封包的組合的示例性方式描述如下。組合器(385)可接收關於區域的元資料(317),以指示分離是否及如何執行,並使用這樣的元資料(317)以導引組合操作。組合器(385)將輸出圖像格式的重建圖像輸出到輸出目的地(390)。輸出圖像格式(如YUV 4:4:4格式)的輸出圖像的顏色空間轉換可將取樣值轉換成另一格式(如RGB 4:4:4格式),以供顯示。IV. 示例性編碼器系統
第4圖係為結合可實現一些描述實施例的示例性編碼器系統(400)的方塊圖。編碼器系統(400)可以是通用編碼工具,能夠在多個編碼模式中之任何者中操作,例如用於即時通訊或遠端桌面會議的低延遲編碼模式、代碼變換模式、及用於從檔案或串流產生用於播放的媒體的較高延遲編碼模式,或者可以是適於一個這樣的編碼模式的專用編碼工具。編碼器系統(400)可適於特定類型的內容(如螢幕取得內容)的編碼。編碼器系統(400)可實現為作業系統模組的一部分、應用程式庫的一部分、獨立應用程式的一部分、或者使用專用硬體。編碼器系統(400)可使用一或更多個通用處理器(如一或更多個CPU),以用於一些或全部編碼操作,使用圖形硬體(如GPU),以用於某些編碼操作,或者使用專用硬體(如ASIC),以用於某些編碼操作。總體而言,編碼器系統(400)從視訊源(410)接收具有較高的第一色度取樣率(如YUV 4:4:4)的輸入圖像格式的源視訊圖像(411)的序列,將輸入源圖像(411)分離成具有較低的第二色度取樣率的經譯碼圖像格式(如YUV 4:2:0)或多個經譯碼圖像格式的源圖像(416),以及編碼經譯碼圖像格式的源圖像(416),以產生經編碼資料作為對頻道(490)的輸出。
視訊源(410)可以是相機、調諧器卡、儲存媒體、螢幕取得模組、或其他數位視訊源。視訊源(410)以訊框速率(如每秒30訊框)產生視訊圖像的序列。如本文所使用,術語「圖像」一般指稱源、經譯碼、或重建映像資料。對於逐行掃描視訊,圖像係為逐行掃描視訊訊框。對於交錯視訊,在示例性實施例中,交錯視訊訊框可在編碼之前解交錯。可替代地,可將二個互補交錯視訊場一起編碼為單一視訊訊框或編碼為二個獨立經編碼場。除了指示逐行掃描視訊訊框或交錯掃描視訊訊框,術語「圖像」可指示單一非成對視訊場、互補對視訊場、代表給定時間的視訊物件的視訊物件平面、或在較大映像中的感興趣區域。視訊物件平面或區域可以是包括場景的多個物件或區域的較大映像的一部分。在從取得格式進行彩色空間轉換(例如,RGB格式)之後,源圖像(411)係為具有較高色度取樣格式(如YUV 4:4:4格式)的輸入圖像格式。
分離器(415)(亦稱為格式化器)重排輸入圖像格式的圖像(411),以產生具有較低色度取樣率(如YUV 4: 2:0格式)的經譯碼圖像格式的源圖像(416)。使用訊框封包的分離的示例性方式描述如下。可替代地,源圖像(416)可具有不同經譯碼圖像格式(如用於圖像(411)的低色度解析度版本的經譯碼圖像的YUV 4:2:2格式,與用於具有高色度解析度細節的經譯碼圖像的YUV 4:0:0格式),其中經譯碼圖像格式中之至少一者具有比輸入圖像格式更低的色度取樣率。分離器(415)可訊令元資料(未圖示),以指示是否及如何執行分離,以在解碼之後由組合器使用。訊令這樣的元資料的示例性方式描述於下。舉例而言,分離器(415)可如下所述執行預處理操作。
到達源圖像(416)係儲存在包括多個圖像緩衝器儲存區域(421、422、…、42n)的源圖像暫時記憶體儲存區域(420)。圖像緩衝器(421、422等)保持源圖像儲存區域(420)中的一個源圖像。在源圖像(416)的一或更多者已儲存在圖像緩衝器(421、422等)中之後,圖像選擇器(430)從源圖像儲存區域(420)選擇單獨源圖像。圖像選擇器(430)選擇用於輸入到編碼器(440)的圖像的順序可以不同於視訊源(410)產生圖像的順序,例如一些圖像的編碼可依順序延遲,以使得允許一些較後的圖像首先編碼,並因此促進時間向後預測。
分離器(415)與訊框儲存區(420)的順序可以切換。在編碼器(440)之前,編碼器系統(400)可包括預處理器(未圖示),以在編碼之前執行所選擇圖像(431)的預處理(如濾波)。預處理可包括初級(如亮度)與次級(如朝向紅色及朝向藍色的色度差異)分量的彩色空間轉換,以及用於編碼的重取樣處理(如減少色度分量的空間解析度)。
編碼器(440)編碼所選擇圖像(431)(經譯碼圖像格式),以產生經譯碼圖像(441),且亦產生記憶體管理控制操作(「MMCO」)或參照圖像設置(「RPS」)資訊(442)。RPS係為可用於當前圖相或任何後續圖像的運動補償的圖像設置的參照。若當前圖像並非已編碼的第一圖像,則在執行其編碼處理時,編碼器(440)可使用已儲存在解碼圖像暫時記憶體儲存區域(460)中的一或更多個先前編碼/解碼的圖像(469)。這樣的所儲存經解碼圖像(469)係作為當前源圖像(431)的內容的圖像間預測的參照圖像。MMCO/RPS資訊(442)向解碼器指示,重建圖像可作為參照圖像,並因此應儲存在圖像儲存區域中。
一般而言,編碼器(440)包括執行編碼任務的的多個編碼模組,如分割成圖塊、圖像內預測估計與預測、運動估計與補償、頻率變換、量化、及熵編碼。由編碼器(440)執行的確切操作可取決於壓縮格式而變化。所輸出的經編碼資料的格式可以是H.26x格式(如H.261、H.262、H.263、H.264、H.265)、Windows Media Video格式、VC-1格式、MPEG-x格式(如MPEG-1、MPEG-2、或MPEG-4)、VPx格式(如VP8、VP9)、或其他格式的變化或擴充格式。一般而言,編碼器(440)適於編碼具有較低色度取樣率的經譯碼圖像格式的經譯碼圖像。若圖像(416)具有不同經譯碼圖像格式,則可使用不同編碼器以用於不同經譯碼圖像格式,或者可使用單一編碼器以支援所有經譯碼圖像格式。
編碼器(440)可將圖像分割成相同或不同尺寸的多個圖塊。舉例而言,編碼器(440)沿著圖塊行與圖塊列分離圖像,以利用圖像邊界定義圖像中的圖塊水平與垂直邊界,其中每一圖塊係為矩形區域。圖塊通常用於提供並行處理的選項。圖像亦可組織為一或更多個切片(slice),其中切片可以是整個圖像或圖像區段。切片可獨立於圖像中的其他切片解碼,以提高錯誤容忍回復。將切片或圖塊的內容進一步分割成用於編碼與解碼的區塊。
對於根據H.264標準的語法,編碼器(440)可將圖像分割成相同尺寸或不同尺寸的多個切片。編碼器(440)將圖像(或切片)的內容分離成16x16的大區塊。大區塊包括組織為四個8x8亮度區塊的亮度取樣值與組織為8x8色度區塊的相應色度取樣值。一般而言,大區塊具有預測模式,如訊框間或訊框內。大區塊包括用於預測資訊(如預測模式細節、運動向量(「MV」)資訊等)的訊令及/或預測處理的一或更多個預測單位(如8x8區塊、4x4區塊,可稱為圖像間預測的分割)。大區塊亦具有用於剩餘編碼/解碼的一或更多個剩餘資料單元。
對於根據H.265標準的語法,編碼器(440)將圖像(或切片或圖塊)的內容分離成代碼樹單元。代碼樹單元(「CTU」)包括組織為亮度代碼樹區塊(「CTB」)的亮度取樣值與組織為二個色度CTB的相應色度取樣值。CTU(及其CTB)的尺寸由編碼器選擇。舉例而言,亮度CTB可包含64x64、32x32、或16x16亮度取樣值。CTU包括一或更多個代碼單元。代碼單元(「CU」)具有亮度代碼區塊(「CB」)與二個相應色度CB。一般而言,CU具有預測模式,如訊框間或訊框內。CU包括用於預測資訊(如預測模式細節、位移值等)的訊令及/或預測處理的一或更多個預測單元。預測單元(「PU」)具有亮度預測區塊(「PB」)與二個色度PB。CU亦具有用於剩餘編碼/解碼的一或更多個變換單元,其中變換單元(「TU」)具有亮度變換區塊(「TB」)與二個色度TB。編碼器決定如何將視訊分割成CTU、CU、PU、TU等。
如本文所使用,取決於上下文,術語「區塊」可指示大區塊、剩餘資料單元、CB、PB、或TB、或一些其他組取樣值。取決於上下文,術語「單元」可指示大區塊、CTU、CU、PU、TU、或一些其他組區塊,或者可指示單一區塊,或者可指示切片、圖塊、圖像、圖像群組、或其他更高級別區域。
返回到第4圖,編碼器(440)代表以來自圖像(431)中的先前重建的其他取樣值的預測而言的源圖像(431)的訊框內經譯碼區塊。對於區塊的訊框內空間預測,圖像內估計器估計將相鄰重建取樣值外插到區塊中。圖像內估計器可輸出熵經譯碼的預測資訊(如訊框內空間預測的預測模式/方向)。圖像內預測的預測器應用預測資訊,以決定訊框內預測值。
編碼器(440)代表以來自一或更多個參照圖像的預測而言的源圖像(431)的圖像間經譯碼經預測區塊。運動估計器估計區塊相對於一或更多個參照圖像(469)的運動。當使用多個參照圖像時,多個參照圖像可以來自不同時間方向或相同時間方向。運動補償預測參照區域係為參照圖像中的取樣值的區域,參照圖像中的取樣值用於產生用於當前圖像的取樣值的區塊的運動補償預測值。根據本文所述的一些創新,包括用於輸入圖像的低色度解析度版本的取樣值的經譯碼圖像與包括輸入圖像的高色度解析度細節的取樣值的經譯碼圖像係組織於不同子序列中。包括低色度解析度版本的取樣值的經譯碼圖像的運動估計與補償係在經譯碼圖像的第一子序列中執行。包括高色度解析度細節的取樣值的經譯碼圖像的運動估計與補償係在經譯碼圖像的不同的第二子序列中執行。運動估計器輸出經熵譯碼運動資訊,如MV資訊與參照圖像索引。運動補償器將MV應用至參照圖像(469),以決定圖像間預測的運動補償預測值。
編碼器(440)可決定區塊的預測值(訊框內或訊框間)與相應原始值之間的差異(如果有的話)。使用頻率變換(若並未略過頻率變換)及量化進一步編碼這些預測剩餘值。舉例而言,編碼器(440)設置用於圖像、圖塊、切片、大區塊、CU、及/或視訊的其他部分的量化參數(「QP」)的值,並相應量化變換係數。編碼器(440)的熵譯碼器壓縮經量化變換係數值以及某些輔助資訊(如MV資訊、參照圖像編號、QP值、模式決策、參數選擇)。典型的熵譯碼技術包括Exponential-Golomb譯碼、Golomb-Rice譯碼、算術譯碼、差分譯碼、Huffman譯碼、行程譯碼,可變長度對可變長度(「V2V」)譯碼、可變長度對固定長度(「V2F」)譯碼、Lempel-Ziv(「LZ」)譯碼、字典譯碼、機率間隔分割熵譯碼(「PIPE」)、以及上述之組合。熵譯碼器可使用用於不同種類資訊的不同譯碼技術,可應用多種技術的組合(例如在應用Golomb-Rice譯碼之後應用算術譯碼),並可從特定譯碼技術中的多個代碼表中選擇。若略過頻率變換,則可將預測剩餘值或輸入取樣值量化且經熵譯碼。若預測略過圖像內經譯碼內容,則可將從輸入取樣值計算的變換係數量化及經熵譯碼。
可調適解區塊濾波器係包括在編碼器(440)中的運動補償迴路(亦即「迴路」濾波)內,以平滑化經解碼圖像中跨越區塊邊界列及/或行中的不連續。其他濾波(如去環濾波、可調適迴路濾波(「ALF」)、或取樣可調適(sample-adaptive)偏移(「SAO」)濾波;未圖示)可替代或附加地應用為迴路濾波操作。
編碼器(440)產生基本位元串流中的經編碼資料。基本位元串流的語法通常定義於編解碼器標準或格式,或其擴充或變化中。作為編碼器(440)的輸出,基本位元串流通常以容器格式分封化或組織化,並如下面所解釋。基本位元串流中的經編碼資料包括組織為語法結構的語法元件。在一般情況下,語法元件可以是任何資料元件,而語法結構係為基本位元串流中指定順序的零或更多個語法元件。
對於根據H.264標準或H.265標準的語法,圖像參數集(「PPS」)係為包含可以與圖像相關聯的語法元件的語法結構。PPS可用於單一圖像,或PPS可重複用於一序列中的多個圖像。PPS通常包括與PPS相關聯的圖像的QP的預設或初始值。PPS通常獨立於圖像的經編碼資料而訊令。在圖像的經編碼資料中,語法元件指示哪個PPS要用於圖像。同樣地,對於根據H.264標準或H.265標準的語法,序列參數集(「SPS」)係為包含可以與圖像序列相關聯的語法元件的語法結構。位元串流可包括單一SPS或多個SPS。SPS通常獨立於序列的其他資料而訊令,而其他資料中的語法元件指示使用哪個SPS。
參照於第4圖,藉由解碼處理模擬器(450)處理經譯碼圖像(441)與MMCO/RPS資訊(442)(或等效於MMCO/RPS資訊(442)的資訊,由於圖像的依賴關係與順序結構對編碼器(440)係屬已知)。解碼處理模擬器(450)實現解碼器的一些功能,例如重建參照圖像的解碼任務。在與MMCO/RPS資訊(442)一致的方式中,解碼處理模擬器(450)決定給定經譯碼圖像(441)是否需要重建及儲存,以用於待編碼隨後圖像的圖像間預測的參照圖像。若經譯碼圖像(441)需要儲存,則解碼處理模擬器(450)對解碼處理建模,以藉由解碼器進行接收經譯碼圖像(441)及產生相應經解碼圖像(451)。藉此,當編碼器(440)已使用已儲存在經解碼圖像儲存區域(460)中的經解碼圖像(469)時,解碼處理模擬器(450)亦使用來自儲存區域(460)的解碼圖像(469),以作為解碼處理的一部分。
經解碼圖像暫時記憶體儲存區域(460)包括多個圖像緩衝器儲存區域(461、462、…、46n)。在與MMCO/RPS資訊(442)一致的方式中,解碼處理模擬器(450)管理儲存區域(460)中的內容,以識別具有不再需要由編碼器(440)作於參照圖像的圖像的任何圖像緩衝器(461、462等)。在對解碼處理建模之後,解碼處理模擬器(450)在已經以此方式識別的圖像緩衝器(461、462等)中儲存新的經解碼圖像(451)。
經譯碼圖像(441)與MMCO/RPS資訊(442)在暫時經譯碼資料區域(470)或其他經譯碼資料緩衝器中緩衝。聚集在經編碼資料區域(470)中的經編碼資料包含用於一或更多個圖像的經編碼資料,作為基本位元串流的語法的一部分。聚集在經編碼資料區域(470)中的經編碼資料亦可包括與經編碼視訊資料相關的媒體元資料(例如,作為在一或更多個補充增強資訊(「SEI」)訊息或視訊可用性資訊(「VUI」)訊息中的一或更多個參數)。
來自暫時經編碼資料區域(470)的經聚集資料(471)係藉由頻道編碼器(480)處理。頻道編碼器(480)可分封化及/或多工化用於傳輸或儲存的經聚集資料,以作為媒體串流(例如,根據媒體程式串流或傳輸串流格式(如ITU-T H.222.0|ISO/IEC 13818-1)或網際網路即時傳輸協定格式(如IETF RFC 3550)),在此情況下,頻道編碼器(480)可將語法元件增加為媒體傳輸串流的語法的一部分。或者,頻道編碼器(480)可將用於儲存的經聚集資料組織為檔案(例如,根據媒體容器格式,如ISO/IEC 14496-12),在此情況下,頻道編碼器(480)可將語法元件增加為媒體儲存檔案的語法的一部分。或者,更一般地,頻道編碼器(480)可實現一或更多個媒體系統多工協定或傳輸協定,在此情況下,頻道編碼器(480)可將語法元件增加為協定的語法的一部分。頻道編碼器(480)提供輸出到頻道(490),頻道(490)代表儲存、通訊連接、或用於輸出的另一頻道。頻道編碼器(480)或頻道(490)亦可包括例如用於順向錯誤修正(「FEC」)編碼及類比訊號調製的其他元件(未圖示)。V. 示例性解碼器系統
第5圖係為結合可實現一些描述實施例的示例性解碼器系統(500)的方塊圖。解碼器系統(500)可以是通用解碼工具,能夠在多種解碼模式中之任意者中操作,例如用於即時通訊或遠端桌面會議的低延遲解碼模式、代碼變換模式、及用於來自檔案或串流的媒體播放的更高延遲解碼模式,或者可以是適於一個這樣的解碼模式的專用解碼工具。解碼器系統(500)可適於特定類型的內容(例如,螢幕取得內容)的解碼。解碼器系統(500)可實現為作業系統模組、應用程式庫的一部分、獨立應用程式、或使用專用硬體。解碼器系統(500)可使用用於一些或全部解碼操作的一或更多個通用處理器(如一或更多個CPU),用於某些解碼操作的使用圖形硬體(如GPU),或使用用於某些解碼操作的專用硬體(如ASIC)。整體而言,解碼器系統(500)從頻道(510)接收經譯碼資料,解碼具有較低的第一色度取樣率的經譯碼圖像格式(如YUV 4:2:0格式)或多個經譯碼圖像格式的圖像,可選擇地將來自經譯碼圖像格式的經譯碼圖像的取樣值結合到具有較高的第二色度取樣率的輸出圖像格式(如YUV 4:4:4)的經譯碼圖像中,並產生經重建圖像(輸出圖像格式),以作為輸出目的地(590)的輸出。
解碼器系統(500)包括頻道(510),可代表儲存、通訊連接、或用於經譯碼資料作為輸入的另一頻道。頻道(510)產生已譯碼頻道的經譯碼資料。頻道解碼器(520)可處理經譯碼資料。舉例而言,頻道解碼器(520)解分封化及/或解多工化已為了傳輸或儲存而聚集為媒體串流的資料(例如,根據媒體程式串流或傳輸串流格式(如ITU-T H.222.0|ISO/IEC 13818-1),或網際網路即時傳輸協定格式(如IETF RFC 3550)),在此情況下,頻道解碼器(520)可解析加入為媒體傳輸串流的語法的一部分的語法元件。或者,頻道解碼器(520)分離已為了儲存而聚集為檔案的經譯碼視訊資料(例如,根據媒體容器格式,如ISO/IEC 14496-12),在此情況下,頻道解碼器(520)可解析加入為媒體儲存檔案的語法的一部分的語法元件。或者,更一般地,頻道解碼器(520)可實現一或更多個媒體系統解多工協定或傳輸協定,在此情況下,頻道解碼器(520)可解析加入為協定的語法的一部分的語法元件。這樣的用於媒體傳輸串流、媒體儲存串流、多工協定、或傳輸協定的語法元件可包括關於包括高色度解析度細節的區域的元資料。頻道(510)或頻道解碼器(520)亦可包括例如用於FEC解碼及類比訊號解調的其他元件(未圖示)。
從頻道解碼器(520)輸出的經譯碼資料(521)儲存在暫時經譯碼資料區域(530),直到已接收足夠量的這些資料。經譯碼資料(521)包括經譯碼圖像(531)(具有較低色度取樣率的經譯碼圖像格式,或多個不同經譯碼圖像格式)與MMCO/RPS資訊(432)。經譯碼資料區域(530)中的經譯碼資料(521)包含用於一或更多個經譯碼圖像的經譯碼資料,以作為基本經譯碼視訊位元串流的語法的一部分。經譯碼資料區域(530)中的經譯碼資料(521)亦可包括關於經譯碼圖像的媒體元資料(例如,作為一或更多個SEI訊息或VUI訊息中的一或更多個參數)。
一般而言,經譯碼資料區域(530)暫時儲存經譯碼資料(521),直到經譯碼資料(521)由解碼器(550)所使用。在這一點上,用於經譯碼圖像(531)的經譯碼資料與MMCO/RPS資訊(532)從經譯碼資料區域(530)傳送到解碼器(550)。隨著繼續解碼,將新的經譯碼資料加入經譯碼資料區域(530),並將剩餘在經譯碼資料區域(530)中的最早的經譯碼資料傳送到解碼器(550)。
解碼器(550)解碼經譯碼圖像(531),以產生具有較低色度取樣率的經譯碼圖像格式(或多個不同經譯碼圖像格式中之一者)的相應經解碼圖像(551)。圖像可分割成相同尺寸或不同尺寸的多個圖塊。圖像亦可以被組織為一或更多個切片。切片或圖塊的內容可進一步分割成區塊或其他組取樣值。
在適當時,當執行其解碼處理時,解碼器(550)可使用一或更多個先前經解碼圖像(569)作為用於圖像間預測的參照圖像。解碼器(550)從經解碼圖像暫時記憶體儲存區域(560)讀取這樣的先前經解碼圖像(569)。一般而言,解碼器(550)包括多個解碼模組,以執行解碼任務,例如熵解碼、圖像內預測、運動補償圖像間預測、反向量化、反向頻率變換(如果並未略過)、及圖塊的合併。由解碼器(550)執行的精確操作可取決於壓縮格式而變化。在一般情況下,解碼器(550)適於解碼具有較低色度取樣率的經譯碼圖像格式的圖像。若圖像(569)具有不同經譯碼圖像格式,則可使用不同解碼器以用於不同經譯碼圖像格式,或者可使用支援所有經譯碼圖像格式的單一解碼器。
舉例而言,解碼器(550)接收用於經譯碼圖像或經譯碼圖像序列的經編碼資料,並產生包括經解碼圖像(551)的輸出。在解碼器(550)中,緩衝器接收用於經譯碼圖像的經編碼資料,並在適當時間讓所接收的經編碼資料可提供給熵解碼器。熵解碼器熵解碼經熵編碼的量化資料以及經熵編碼的輔助資訊,通常應用在編碼器中執行的熵編碼的反算。
運動補償器將運動資訊應用到一或更多個參照圖像,以形成用於正在重建的圖像的任何訊框間譯碼(inter-coded)區塊的運動補償預測值。根據本文所述的一些創新,包括用於輸入圖像的低色度解析度版本的取樣值的經譯碼圖像與包括輸入圖像的高色度解析度細節的取樣值的經譯碼圖像被組織在不同子序列中。包括用於低色度解析度版本的取樣值的經譯碼圖像的運動補償在經譯碼圖像的第一子序列中執行。包括用於高色度解析度細節的取樣值的經譯碼圖像的運動補償在經譯碼圖像的不同的第二子序列中執行。圖像內預測模組可在空間上從先前重建的相鄰取樣值預測當前區塊的取樣值。
解碼器(550)亦重建預測剩餘值。反向量化器反向量化經熵解碼的資料。舉例而言,解碼器(550)依據位元串流中的語法元件設置用於圖像、圖塊、切片、及/或視訊的其他部分的QP值,並相應反向量化變換係數。反向頻率變換器將經量化的頻率域資料轉換成空間域資料。在一些實現中,可略過頻率變換,在此情況下,亦略過反向頻率變換。如果是這樣,則可熵解碼及反向量化預測剩餘值。對於圖像間預測區塊,解碼器(550)組合重建預測剩餘值與運動補償預測值。解碼器(550)可類似地組合預測剩餘值與來自圖像內預測的預測值。
可調適解區塊濾波器係包括在視訊解碼器(550)的運動補償迴路中,以平滑化經解碼圖像(551)中跨越區塊邊界列及/或行的不連續。其他濾波(如去環濾波、ALF、或SAO濾波;未圖示)可替代或附加地應用為迴路濾波操作。
經解碼圖像暫時記憶體儲存區域(560)包括多個圖像緩衝器儲存區域(561、562、…、56n)。解碼器(550)使用MMCO/RPS資訊(532),以識別可儲存經解碼圖像(551)的圖像緩衝器(561、562等)。解碼器(550)在圖像緩衝器中儲存經解碼圖像(551)。
輸出序列器(580)識別在輸出順序中將產生的下一個圖像何時可在經解碼圖像儲存區(560)中提供。當在輸出順序中將產生的經譯碼圖像格式的下一個圖像(581)可在經解碼圖像儲存區(560)中提供時,由輸出序列器(580)讀取,並輸出到(a)用於經譯碼圖像格式的圖像的顯示的輸出目的地(590)(例如,顯示器),或者(b)組合器(585)。在一般情況下,由輸出序列器(580)從經解碼圖像儲存區域(560)輸出圖像的順序可以不同於由解碼器(550)解碼圖像的順序。
組合器(585)重排經譯碼圖像格式(具有較低色度取樣率)或經譯碼圖像格式的圖像(581),以產生具有較高色度取樣率的輸出圖像格式(如YUV 4:4:4格式)的輸出圖像(586)。組合使用訊框解封包的示例性方式描述如下。組合器(585)可使用指示是否以及如何執行分離的元資料(未圖示),以導引組合操作。舉例而言,組合器(585)可如下所述執行後處理操作。解碼器系統(500)亦可在輸出圖像格式(如YUV 4:4:4格式)或經譯碼圖像格式(如YUV 4:2:0格式)的輸出圖像上執行顏色空間轉換,以將取樣值轉換成另一格式(如RGB 4:4:4格式),以供顯示。VI. 示例性視訊編碼器
第6a與6b圖係為結合可實現一些描述實施例的通用視訊編碼器(600)的方塊圖。作為輸入視訊訊號(605),編碼器(600)接收經譯碼圖像格式(例如具有較低色度取樣率(如YUV 4:2:0))的經譯碼圖像的序列,並包括當前圖像。編碼器(600)在經譯碼視訊位元串流(695)中產生作為輸出的經編碼資料。
編碼器(600)係為區塊式,並使用取決於實現的區塊格式。區塊可進一步在不同階段細分,例如在預測、頻率變換、及/或熵編碼階段。舉例而言,圖像可劃分為64x64區塊、32x32區塊,或16x16區塊,其可逐個劃分為用於譯碼及解碼的取樣值的較小區塊。舉例而言,在用於H.264標準的編碼的實現中,編碼器將圖像分割為大區塊、區塊、分區(用於圖像間預測)、及剩餘資料單元。舉例而言,在用於H.265標準的編碼的實現中,編碼器將圖像分割為CTU(CTB)、CU(CB)、PU(PB)、及TU(TB)。
編碼器(600)使用圖像內譯碼及/或圖像間譯碼壓縮圖像。許多編碼器(600)的部件係用於圖像內譯碼與圖像間譯碼二者。由那些部件執行的精確操作可以取決於壓縮的資訊的類型而變化。
拼貼模組(610)可選擇地將圖像分割為相同或不同尺寸的多個圖塊。舉例而言,拼貼模組(610)沿著圖塊列與圖塊行分離圖像,以利用圖像邊界定義圖像中的圖塊的水平與垂直邊界圖像,其中每一圖塊為矩形區域。編碼器(600)亦可將圖像分割為一或更多個切片,其中每一切片包括一或更多個區段。
一般編碼控制(620)接收用於輸入視訊訊號(605)的圖像以及從編碼器(600)的各種模組的反饋(未圖示)。整體而言,一般編碼控制(620)提供控制訊號(未圖示)到其他模組(如拼貼模組(610)、變換器/定標器/量化器(630)、定標器/反向變換器(635)、圖像內估計器(640)、運動估計器(650)、及訊框內/訊框間切換器),以在編碼期間設置及改變譯碼參數。特定言之,一般編碼控制(620)可控制關於編碼輸入圖像用於高色度解析度細節的取樣值的區域的決策,並如下所述。一般編碼控制(620)亦可控制關於編碼輸入圖像用於低色度解析度版本的取樣值的區域的決策,並如下所述。作為另一實例,一般編碼控制(620)可變化QP值,以控制包括輸入圖像的低色度解析度版本的取樣值的經譯碼圖像的區域的量化及/或控制包括高色度解析度細節的取樣值的經譯碼圖像的區域的量化。更一般地,一般編碼控制(620)可管理關於編碼期間的編碼模式的決策。一般編碼控制(620)產生一般控制資料(622),以指示編碼期間所作之決策,而使得相應解碼器可作出一致的決策。一般控制資料(622)係提供給標頭格式化器/熵編碼器(690)。
若使用圖像間預測以預測當前圖像,則運動估計器(650)估計相對於一或更多個參照圖像的當前圖像的取樣值的區塊的運動。經解碼圖像緩衝器(670)緩衝一或更多個先前重建的經譯碼圖像,以作為參照圖像。當使用多個參照圖像時,多個參照圖像可以來自不同時間方向或相同時間方向。運動估計器(650)產生作為輔助資訊的運動資料(652),如MV資料、合併模式索引值、及參照圖像選擇資料。運動資料(652)係提供給標頭格式化器/熵編碼器(690)以及運動補償器(655)。運動補償器(655)將MV應用到來自經解碼圖像緩衝器(670)的重建參照圖像。運動補償器(655)產生用於當前圖像的運動補償預測。
包括輸入圖像的低色度解析度版本的取樣值的經譯碼圖像與包括輸入圖像的高色度解析度細節的取樣值的經譯碼圖像可組織於不同子序列中,以用於運動估計與補償。舉例而言,對於包括輸入圖像的低色度解析度版本的取樣值的經譯碼圖像,運動估計與補償係在經譯碼圖像的第一子序列中執行。類似地,對於包括高色度解析度細節的取樣值的經譯碼圖像,運動估計與補償係在經譯碼圖像的不同的第二子序列中執行。編碼器(600)可以使用參照圖像重新排序及/或不同組的參照圖像索引,以管理經譯碼圖像的不同子序列的每一者中之時間依賴關係。
在編碼器(600)中的單獨路徑中,圖像內估計器(640)決定如何執行用於輸入視訊訊號(605)的當前圖像的取樣值的區塊的圖像內預測。可使用圖像內譯碼以完全或部分譯碼當前圖像。使用當前圖像的重建(638)的值,對於訊框內空間預測而言,圖像內估計器(640)決定如何在空間上從當前圖像的先前重建的相鄰取樣值預測當前圖像的當前區塊的取樣值(例如,決定空間預測的方向,以用於當前區塊)。圖像內估計器(640)產生作為輔助資訊的訊框內預測資料(642),如指示訊框內預測是否使用空間預測或另一類型的訊框內譯碼的資訊,以及預測模式/方向(用於訊框內空間預測)。訊框內預測資料(642)係提供給標頭格式化器/熵編碼器(690)以及圖像內預測器(645)。根據訊框內預測資料(642),圖像內預測器(645)在空間上從當前圖像的先前重建的相鄰取樣值預測當前圖像的當前區塊的取樣值。
訊框內/訊框間切換器選擇用於給定區塊的預測(658)是否是運動補償預測或圖像內預測。
預測(658)的區塊與輸入視訊訊號(605)的原始當前圖像的相應部分之間的差(如果有的話)提供用於非略過模式區塊的剩餘(618)的值。在當前圖像的重建期間,對於非略過模式區塊,重建剩餘值與預測(658)組合,以從視訊訊號(605)產生原始內容的近似或精確重建(638)。(在有損壓縮中,一些資訊從視訊訊號(605)丟失)。
在變換器/定標器/量化器(630)中,頻率變換器將空間域視訊資訊轉換成頻率域(例如,頻譜、變換)資料。對於區塊式視訊譯碼,頻率變換器將離散餘弦變換(「DCT」)、其整數近似、或另一類型的前向區塊變換(例如,離散正弦變換或其整數近似)應用到預測剩餘資料(或者若預測(658)為空則為取樣值資料)的區塊,以產生頻率變換係數的區塊。變換器/定標器/量化器(630)可應用具有可變區塊尺寸的變換。在此情況下,變換器/定標器/量化器(630)可決定用於當前區塊的剩餘值的變換的區塊尺寸。編碼器(600)亦可以在一些情況下略過變換步驟。
定標器/量化器定標及量化變換係數。舉例而言,量化器將死區定標器量化應用到具有量化間距尺寸的頻率域資料,量化間距尺寸係在逐圖像的基礎上、在逐圖塊的基礎上、在逐切片的基礎上、在逐大區塊的基礎上、在逐CU的基礎上、在逐區塊的基礎上、或在其他基礎上變化。變換係數亦可使用其他定標因子(例如,權重矩陣中的權重)定標或量化。量化變化係數資料(632)係提供給標頭格式化器/熵編碼器(690)。
在定標器/反向變換器(635)中,定標器/反向量化器在量化變換係數上執行反向定標及反向量化。當並未略過變換階段時,反向頻率變換器執行反向頻率變換,以產生重建預測剩餘值或取樣值的區塊。對於非略過模式區塊,編碼器(600)組合重建剩餘值與預測(658)的值(例如,運動補償預測值、圖像內預測值),以形成重建(638)。對於略過模式區塊,編碼器(600)使用預測(658)的值,以作為重建(638)。
對於圖像內預測,重建(638)的值可反饋到圖像內估計器(640)與圖像內預測器(645)。重建(638)的值亦可用於後續圖像的運動補償預測。重建(638)的值可進一步濾波。濾波控制(660)決定如何在重建(638)的值上執行去環濾波及SAO濾波,以用於視訊訊號(605)的給定圖像。濾波可調適禁止用於一些類型的經譯碼圖像(例如,包括高色度解析度細節的取樣值的經譯碼圖像)。濾波控制(660)產生濾波器控制資料(662),以提供給標頭格式化器/熵編碼器(690)與合併器/濾波器(665)。
在合併器/濾波器(665)中,編碼器(600)將來自不同圖塊的內容合併到圖像的重建版本。編碼器(600)選擇性根據濾波器控制資料(662)執行解區塊濾波與SAO濾波,以使得可調適平滑化圖像中跨越邊界的不連續。可替代或附加地應用其他濾波(如去環濾波或ALF;未圖示)。取決於編碼器(600)的設置,圖塊邊界可以選擇性濾波或完全不濾波,而編碼器(600)可提供經譯碼位元串流中的語法,以指示是否應用這種濾波。經解碼圖像緩衝器(670)緩衝重建的當前圖像,以用於後續運動補償的預測。
標頭格式化器/熵譯碼器(690)格式化及/或熵譯碼一般控制資料(622)、量化變換係數資料(632)、訊框內預測資料(642)、運動資料(652)、及濾波器控制資料(662)。標頭格式化器/熵譯碼器(690)提供經譯碼視訊位元串流(695)中的經編碼資料。經譯碼視訊位元串流(695)的格式可以是H.26x格式(如H.261、H.262、H.263、H.264、H.265)、Windows Media Video格式、VC-1格式、MPEG-x格式(如MPEG-1、MPEG-2、或MPEG-4)、VPx格式(如VP8、VP9)、或其他格式的變化或擴充。
取決於實現與所期望的壓縮類型,編碼器(600)的模組可增加、省略、分離成多個模組、與其他模組組合、及/或利用類似模組取代。在可替代實施例中,利用不同模組及/或模組的其他配置的編碼器執行所述技術中之一或更多者。編碼器的特定實施例通常使用編碼器(600)的變化或補充版本。編碼器(600)中的模組之間所圖示的關係指示編碼器中的資訊的一般流程;未圖示其他關係係由於簡單起見。VII. 示例性視訊解碼器
第7圖係為結合可實現一些描述實施例的通用解碼器(700)的方塊圖。解碼器(700)接收經譯碼視訊位元串流(705)中的經編碼資料,並產生包括經譯碼圖像格式(例如具有較低色度取樣率(如YUV 4:2:0))的經譯碼圖像的輸出,以用於重建視訊(795)。經譯碼視訊位元串流(705)的格式可以是Windows Media Video格式、VPx格式(如VP8、VP9)、VC-1格式、MPEG-x格式(如MPEG-1、MPEG-2、或MPEG-4)、H.26x格式(如H.261、H.262、H.263、H.264、H.265)、或其他格式的變化或擴充。
圖像可組織成相同尺寸或不同尺寸的多個圖塊。圖像亦可組織成一或更多個切片。切片或圖塊的內容可進一步組織為區塊。解碼器(700)係為區塊式,並取決於實現使用區塊格式。區塊可進一步在不同階段中細分。舉例而言,圖像可劃分為64x64區塊、32x32區塊、或16x16區塊,其可逐個劃分成取樣值的較小區塊。在H.265/HEVC標準的解碼的實現中,圖像可分割成CTU(CTB)、CU(CB)、PU(PB)、及TU(TB)。
解碼器(700)使用圖像內解碼及/或圖像間解碼解壓縮圖像。許多解碼器(700)的部件係用於圖像內解碼與圖像間解碼二者。由那些部件執行的精確操作可取決於所壓縮資訊的類型而變化。
緩衝器接收經譯碼視訊位元串流(705)中的經編碼資料,並讓所接收的經編碼資料可提供給解析器/熵解碼器(710)。解析器/熵解碼器(710)熵解碼經熵譯碼的資料,通常應用於編碼器(600)中執行的熵譯碼的反向(例如,上下文可調適二進制算術解碼)。作為解析及熵解碼的結果,解析器/熵解碼器(710)產生一般控制資料(722)、量化變換係數資料(732)、訊框內預測資料(742)、運動資料(752)、及濾波器控制資料(762)。
一般解碼控制(720)接收一般控制資料(722),並提供控制訊號(未圖示)給其他模組(如定標器/反向變換器(735)、圖像內預測器(745)、運動補償器(755)、及訊框內/訊框間切換器),以在解碼期間設置及改變解碼參數。更特定言之,一般解碼控制(720)可決定用於解碼輸出圖像的高色度解析度細節的取樣值的區域,並如下所述。一般解碼控制(720)亦可決定用於解碼輸出圖像的低色度解析度版本的取樣值的區域,並如下所述。作為另一實例,一般解碼控制(720)可變化QP值,以控制包括輸入圖像的低色度解析度版本的取樣值的經譯碼圖像的區域的反向量化,及/或控制包括高色度解析度細節的取樣值的經譯碼圖像的區域的反向量化。更一般地,一般解碼控制(720)可管理關於解碼期間的解碼模式的決策。
若使用圖像間預測以預測當前圖像,則運動補償器(755)接收運動資料(752),如MV資料、參照圖像選擇資料、及合併模式索引值。運動補償器(755)將MV應用到來自經解碼圖像緩衝器(770)的重建參照圖像。運動補償器(755)產生用於當前圖像的訊框間譯碼區塊的運動補償預測。經解碼圖像緩衝器(770)儲存一或更多個先前重建的圖像,以作為參照圖像。
包括輸入圖像的低色度解析度版本的取樣值的經譯碼圖像與包括輸入圖像的高色度解析度細節的取樣值的經譯碼圖像可組織於不同子序列中,以用於運動補償。舉例而言,對於包括輸入圖像的低色度解析度版本的取樣值的經譯碼圖像,運動補償係在經譯碼圖像的第一子序列中執行。類似地,對於包括高色度解析度細節的取樣值的經譯碼圖像,運動補償係在經譯碼圖像的不同的第二子序列中執行。解碼器(700)可以使用參照圖像重新排序及/或不同組的參照圖像索引,以管理經譯碼圖像的不同子序列的每一者中之時間依賴關係。
在解碼器(700)中的單獨路徑中,圖像內預測器(745)接收訊框內預測資料(742),如指示圖像內預測是否使用空間預測的資訊,以及預測模式方向(對於訊框內空間預測)。對於訊框內空間預測,圖像內預測器(745)使用當前圖像的重建(738)的值並根據預測模式資料,在空間上從當前圖像的先前重建的相鄰取樣值預測當前圖像的當前區塊的取樣值。
訊框內/訊框間切換器選擇運動補償預測或圖像內預測的值,以作為用於給定區塊的預測(758)。舉例而言,當其後為H.265/HEVC語法時,可依據經編碼以用於圖像的CU的語法元件控制訊框內/訊框間切換器,圖像的CU可包含訊框內預測CU與訊框間預測CU。當已編碼/訊令剩餘值時,解碼器(700)組合預測(758)與重建剩餘值,以從視訊訊號產生內容的重建(738)。當並未編碼/訊令剩餘值時,解碼器(700)使用預測(758)的值,以作為重建(738)。
為了當已編碼/訊令剩餘值時重建剩餘,定標器/反向變換器(735)接收及處理量化變換係數資料(732)。在定標器/反向變換器(735)中,定標器/反向量化器在量化變換係數上執行反向定標及反向量化。反向頻率變換器執行反向頻率變換,以產生重建預測剩餘值或取樣值的區塊。舉例而言,反向頻率變換器將反向區塊變換應用到頻率變換係數,以產生取樣值資料或預測剩餘資料。反向頻率變換可以是反向DCT、其整數近似、或另一類型的反向頻率變換(如反向離散正弦變換或其整數近似)。若在編碼期間略過頻率變換,則亦略過反向頻率變換。在此情況下,定標器/反向量化器可在預測剩餘資料(或取樣值資料)的區塊上執行反向定標及反向量化,以產生重建值。
對於圖像內預測,重建(738)的值可以反饋到圖像內預測器(745)。對於圖像間預測,重建(738)的值可以進一步濾波。在合併器/濾波器(765)中,解碼器(700)將來自不同圖塊的內容合併到圖像的重建版本。解碼器(700)選擇性根據濾波器控制資料(762)與濾波器可調適規則執行解區塊濾波與SAO濾波,以使得可調適平滑化圖像中跨越邊界的不連續。可替代或附加地應用其他濾波(如去環濾波或ALF;未圖示)。濾波可調適禁止用於一些類型的經譯碼圖像(例如,包括高色度解析度細節的取樣值的經譯碼圖像)。取決於解碼器(700)或經編碼位元串流資料中的語法元件的設置,圖塊邊界可選擇性濾波或完全不濾波。經解碼圖像緩衝器(770)緩衝重建的當前圖像,以用於後續運動補償預測。
解碼器(700)亦可包括後處理濾波器。後處理濾波器(708)可包括解區塊濾波、去環濾波、可調適Wiener濾波、底片顆粒再現(film-grain reproduction)濾波、SAO濾波、或另一類型的濾波。而「迴路」濾波係執行於運動補償迴路中的圖像的重建取樣值,並因此影響參照圖像的取樣值,在輸出以供顯示之前,將後處理濾波器(708)應用到運動補償迴路之外的重建取樣值,。
取決於實現與所期望的壓縮類型,解碼器(700)的模組可增加、省略、分離成多個模組、與其他模組組合、及/或利用類似模組取代。在可替代實施例中,利用不同模組及/或模組的其他配置的解碼器執行執行所述技術中之一或更多者。解碼器的特定實施例通常使用解碼器(700)的變化或補充版本。解碼器(700)中的模組之間所圖示的關係指示解碼器中的資訊的一般流程;未圖示其他關係係由於簡單起見。VIII. 重排輸入 / 輸出圖像格式與經譯碼圖像格式之間的取樣值
視訊源(如相機或螢幕取得模組)通常提供轉換成格式(如YUV 4:4:4色度取樣格式)的視訊。舉例而言,一些視訊源提供RGB格式的未壓縮視訊的圖像,而在編碼之前,圖像係藉由視訊編碼器轉換成所預期的YUV格式。YUV格式包括具有代表近似亮度值的取樣值的亮度(或Y)分量以及具有代表色差值的取樣值的多個色度(或U與V)分量。色差值(與到YUV色彩空間/從到另一色彩空間(如RGB)的轉換操作)的準確定義取決於實現。在一般情況下,如本文所使用的術語YUV指示具有亮度(或亮度(luminance))分量與一或更多個色度(或色度(chromiance))分量的任何顏色空間,包括Y'UV、YIQ、Y'IQ、及YDbDr以及變化,如YCbCr與YCoCg。所使用的分量訊號測量可透過非線性傳輸特性函數(一般稱為「伽馬預補償」,且經常藉由使用撇號標示,儘管撇號經常由於印刷方便而省略)的應用而調整。或者,分量訊號測量可以在具有與光振幅的線性關係的域。亮度與色度分量訊號可以很好地對齊人類視覺系統的明亮度與顏色的感知,或亮度與色度分量訊號可稍微從這樣的測量中偏離(例如,在YCoCg變化中應用方程式以簡化顏色分量值的計算)。本文所述的YUV格式的實例包括那些在稱為ITU-R BT.601、ITU-R BT.709、及ITU-R BT.2020的國際標準中所描述者。色度取樣類型的實例係圖示於H.264/AVC標準的第E-1圖。4:4:4格式可以是YUV 4:4:4格式或用於另一色彩空間的格式,如RGB或GBR。
許多商業上可取得的視訊編碼器與解碼器僅支援YUV 4:2:0色度取樣格式。YUV 4:2:0是相較於YUV 4:4:4格式的子取樣色度資訊的格式,其保留全解析度色度資訊(亦即,代表色度資訊與亮度資訊具有相同解析度)。然而,也有一些YUV 4:2:0格式的視訊的視覺缺陷更容易被觀看者察覺的使用情況。舉例而言,對於電腦螢幕文本內容的編碼/解碼(特別是使用ClearType技術展示的文本)而言,更普遍具有人造硬邊邊界、彩色文本、或視訊內容的某些特徵的動畫視訊內容(如捲動標題與硬邊圖形,或資訊集中在色度頻道的視訊),4:4:4格式可相對於4:2:0格式較佳。
本節描述各種方式以重新排列具有較高的第一色度取樣率的輸入圖像格式與具有較低的第二色度取樣率的經譯碼圖像格式之間的取樣值。然後,可使用適合於經譯碼圖像格式的編碼器編碼經譯碼圖像格式的圖像。在解碼(使用適合於經譯碼圖像格式的解碼器)之後,經譯碼圖像格式的圖像可輸出以用於進一步處理及顯示。或者,在這樣的解碼之後,可藉由重排經譯碼圖像格式的圖像到輸出圖像格式輸出圖像的取樣值以恢復具有較高色度取樣率的輸出圖像格式的圖像,以用於輸出及顯示。可替代地,代替於使用單一經譯碼圖像格式,不同經譯碼圖像可以具有不同經譯碼圖像格式,包括至少一個具有比輸入圖像格式更低的色度取樣率。
作為一個特定實例,本文所述之各種方式可在使用YUV 4:2:0格式編碼/解碼時,用於保留YUV 4:4:4格式的訊框的色度資訊。在這些方式中,舉例而言,將YUV 4:4:4訊框封包成二個YUV 4:2:0訊框。典型4:4:4訊框在每4個像素位置包含12個取樣值,而4:2:0訊框每4個像素位置僅包含6個取樣值。所以,包含在4:4:4訊框中的所有取樣值可封包到二個4:2:0訊框。
第8a圖圖示重排單一YUV 4:4:4圖像(801)的取樣值的通用方式(800)。單一YUV 4:4:4圖像(801)包括Y444 頻道、U444 頻道、及V444 頻道中的取樣值,以作為用於YUV 4:4:4圖像(801)的三個分量平面。每一分量平面具有寬度W與高度H的解析度。為便於描述本文所使用的一些實例,W與H二者可由4整除,但這並非暗示此舉為該方式之限制。
將單一YUV 4:4:4圖像(801)的取樣值分割成YUV 4:2:0格式的二個圖像,並標記為YUV 4:2:0圖像(802)與UUV 4:2:0圖像(803)。YUV 4:2:0圖像(802)包括Y420 頻道、U420 頻道、及V420 頻道中的取樣值。Y420 頻道包括來自單一YUV 4:4:4圖像(801)的Y444 頻道的取樣值。U420 頻道包括來自單一YUV 4:4:4圖像(801)的U444 頻道的一些取樣值,而V420 頻道包括來自單一YUV 4:4:4圖像(801)的V444 頻道的一些取樣值。UUV 4:2:0圖像(803)包括來自單一YUV 4:4:4圖像(801)的U444 頻道與V444 頻道的其他色度取樣值,並安排在UUV 4:2:0圖像(803)的Y420 頻道、U420 頻道、及V420 頻道中。
重排單一YUV 4:4:4圖像(801)的色度取樣值的示例性方式係參照於第8b-8e圖描述。在示例性方式中,將單一YUV 4:4:4圖像(801)的取樣值重排成YUV 4:2:0圖像(802)與UUV 4:2:0圖像(803),同時保持YUV 4:4:4圖像(801)的色度資訊的幾何對應。因為符合適於編碼YUV 4:2:0格式的圖像的典型編碼器所預期的模型,具有Y、U及V分量中良好幾何對應的YUV 4:2:0格式的圖像可以更好地壓縮。在示例性方式中,儘管具有較低解析度的色度取樣值,YUV 4:2:0圖像(802)亦代表由YUV 4:4:4圖像(801)代表的完整場景。此舉提供解碼的選項。無法或選擇不反轉取樣值的重排的解碼器可完成YUV 4:2:0圖像(802)的重建版本,以代表場景,並直接饋送到顯示器。
第8b圖圖示重排單一YUV 4:4:4圖像(801)的取樣值的第一實例(810)。在此方式(810)中,將YUV 4:4:4圖像(801)的取樣值封包到YUV 4:2:0的二個圖像(812、813)。YUV 4:2:0圖像(812)提供YUV 4:2:0格式的主視圖,由YUV 4:4:4圖像(801)代表的較低色度解析度版本的完整場景。UUV 4:2:0圖像(813)提供YUV 4:2:0格式的較高色度解析度細節。
在第8b圖中,區域A1、…、A6係為YUV 4:2:0格式的各別圖像(812、813)中的不同區域。 YUV 4:4:4圖像(801)的Y444 頻道的取樣值係分配給YUV 4:2:0圖像(812)的區域A1。YUV 4:4:4圖像(801)的U444 頻道的偶數行與偶數列的取樣值係分配給YUV 4:2:0圖像(812)的區域A2,而YUV 4:4:4圖像(801)的V444 頻道的偶數行與偶數列的取樣值係分配到YUV 4:2:0圖像(812)的區域A3。分配給區域A2與A3的取樣值可以濾波以減輕異常,如鋸齒異常。對於關於濾波選項的附加細節,請參閱第XII節;亦參照美國專利申請案公開號2014/0092998 A1與2014/0112394 A1。
對於UUV 4:2:0圖像(813),來自YUV 4:4:4圖像(801)的U444 頻道與V444 頻道的奇數列的取樣值係分配到UUV 4:2:0圖像(813)的區域A4。U取樣值與V取樣值的行可以在逐行基礎上交替,例如,U444 行1、V444 行1、U444 行3、V444 行3、並依此類推。YUV 4:4:4圖像(801)的U444 頻道的奇數列的偶數行的取樣值係分配到UUV 4:2:0圖像(813)的區域A5,而YUV 4:4:4圖像(801)的V444 頻道的奇數列的偶數行的取樣值係分配到UUV 4:2:0圖像(813)的區域A6。第8b圖所示之方式係為用於實現的「硬體友好」,如那些使用NV12格式將U與V取樣值封包在一起者。
因此,對於第8b圖圖示的示例性方式而言: 對於區域A1,,而的範圍在[0, W - 1] × [0, H - 1]。 對於區域A2,,而的範圍在[0,- 1] × [0,- 1]。 對於區域A3,,而的範圍在[0,- 1] × [0,- 1]。 對於區域A4,,而的範圍在[0,- 1] × [0, H - 1],以及,而的範圍在[0,- 1] × [0, H - 1]。 對於區域A5,,而的範圍在[0,- 1] × [0,- 1]。 對於區域A6,,而的範圍在[0,- 1] × [0,- 1]。
第8c圖圖示將單一YUV 4:4:4圖像(801)的取樣值重排到YUV 4:2:0格式的二個圖像中的第二實例(820)。YUV 4:2:0圖像(822)提供YUV 4:2:0格式的主視圖(由YUV 4:4:4圖像(801)代表的較低色度解析度版本的完整場景),而UUV 4:2:0圖像(823)提供YUV 4:2:0格式的較高色度解析度細節。
在第8c圖中,區域B1、…、B6係為YUV 4:2:0格式的各別圖像(822、823)中的不同區域。對於區域B1、…、B3,如在第8b圖中所示的第一示例性方式分配取樣值。對於UUV 4:2:0圖像(823),將來自YUV 4:4:4圖像(801)的U444 頻道與V444 頻道的奇數列的取樣值分配到UUV 4:2:0圖像(823)的區域B4。U取樣值與V取樣值的列可以在逐列基礎上交替,例如,U444 列1、V444 列1、U444 列3、V444 列3、並依此類推。將YUV 4:4:4圖像(801)的U444 頻道的偶數列的奇數行的取樣值分配到UUV 4:2:0圖像(823)的區域B5,而將YUV 4:4:4圖像(801)的V444 頻道的偶數列的奇數行的取樣值分配到UUV 4:2:0圖像(823)的區域B6。
因此,對於第8c圖所示之示例性方式而言: 對於區域B1,,而的範圍在[0, W - 1] × [0, H - 1]。 對於區域B2,,而的範圍在[0,- 1] × [0,- 1]。 對於區域B3,,而的範圍在[0,- 1] × [0,- 1]。 對於區域B4,,而的範圍在[0, W - 1] × [0,- 1],以及,而的範圍在[0, W - 1] × [0,- 1]。 對於區域B5,,而的範圍在[0,- 1] × [0,- 1]。 對於區域B6,,而的範圍在[0,- 1] × [0,- 1]。
第8d圖圖示將單一YUV 4:4:4圖像(801)的取樣值重排到YUV4:2:0格式的二個圖像的第三實例(830)。YUV 4:2:0圖像(832)提供YUV 4:2:0格式的主視圖(由YUV 4:4:4圖像(801)代表的較低色度解析度版本的完整場景),而UUV 4:2:0圖像(833)提供YUV 4:2:0格式的較高色度解析度細節。
在第8d圖中,區域C1、…、C9係為YUV4:2:0格式的各別圖像(832、833)中的不同區域。對於區域C1、…、C3,如在第8b圖中所示的第一示例性方式分配取樣值。對於UUV 4:2:0圖像(833),將來自YUV 4:4:4圖像(801)的U444 頻道與V444 頻道的取樣值分配到UUV 4:2:0圖像(833)的區域C4、…、C9,並如下所示。 對於區域C1,,而的範圍在[0, W - 1] × [0, H - 1]。 對於區域C2,,而的範圍在[0,- 1] × [0,- 1]。 對於區域C3,,而的範圍在[0,- 1] × [0,- 1]。 對於區域C4,,而的範圍在[0,- 1] × [0, H – 1]。. 對於區域C5,,而的範圍在[0,- 1] × [0, H - 1]。 對於區域C6,,而的範圍在[0,- 1] × [0,- 1]。 對於區域C7,,而的範圍在[0,- 1] × [0,- 1]。 對於區域C8,,而的範圍在[0,- 1] × [0,- 1]。 對於區域C9,,而的範圍在[0,- 1] × [0,- 1]。
YUV 4:4:4圖像(801)的Y444 頻道、U444 頻道、及V444 頻道的取樣值可以用不同方式代替以分配給區域C1、…、C9。舉例而言,將YUV 4:4:4圖像(801)的U444 頻道與V444 頻道的偶數行的取樣值分配給區域C4與C5,而將YUV 4:4:4圖像(801)的U444 頻道與V444 頻道的奇數行的取樣值分佈於區域C2、C3、及C6、…、C9之間。
第8e圖圖示將單一YUV 4:4:4圖像(801)的取樣值重排到YUV 4:2:0格式的二個圖像的第四實例(840)。YUV 4:2:0圖像(842)提供YUV 4:2:0格式的主視圖(由YUV 4:4:4圖像(801)代表的較低色度解析度版本的完整場景),而UUV 4:2:0圖像(843)提供YUV 4:2:0格式的較高色度解析度細節。
在第8e圖中,區域D1、…、D9係為YUV 4:2:0格式的各別圖像(842、843)中的不同區域。對於區域D1、…、D3,如在第8b圖中所示的第一示例性方式分配取樣值。對於UUV 4:2:0圖像(843),將來自YUV 4:4:4圖像(801)的U444 頻道與V444 頻道的取樣值分配給UUV 4:2:0圖像(843)的區域D4、…、D9,並如下所示。 對於區域D1,,而的範圍在[0, W - 1] × [0, H - 1]。 對於區域D2,,而的範圍在[0,- 1] × [0,- 1]。 對於區域D3,,而的範圍在[0,- 1] × [0,- 1]。 對於區域D4,,而的範圍在[0, W - 1] × [0,- 1]。 對於區域D5,,而的範圍在[0, W - 1] × [0,- 1]。 對於區域D6,,而的範圍在[0,- 1] × [0,- 1]。 對於區域D7,,而的範圍在[0,- 1] × [0,- 1]。 對於區域D8,,而的範圍在[0,- 1] × [0,- 1]。 對於區域D9,,而的範圍在[0,- 1] × [0,- 1]。
YUV 4:4:4圖像(801)的Y444 頻道、U444 頻道、及V444 頻道的取樣值可以用不同方式代替以分配給區域D1、…、D9。舉例而言,將YUV 4:4:4圖像(801)的U444 頻道與V444 頻道的偶數列的取樣值分配給區域D4和D5,而將YUV 4:4:4圖像(801)的U444 頻道與V444 頻道的奇數列的取樣值分佈於區域D2、D3、及D6、…、D9之間。
可替代地,可以用一些其他方式將單一YUV 4:4:4圖像(801)的取樣值重排到YUV 4:2:0圖像與UUV 4:2:0圖像。
將經譯碼圖像格式(如YUV 4:2:0格式)的經譯碼圖像的取樣值重排到輸出圖像格式(如YUV 4:4:4格式)的輸出圖像的處理可以簡單反映參考第8a-8e圖所描述方式中之一者。分配給YUV 4:2:0格式的經譯碼圖像的區域的取樣值係分配回到YUV 4:4:4格式的輸出圖像中的那些取樣值的原始位置中。在將取樣值從輸入圖像格式重排到經譯碼圖像格式時的濾波可以在將取樣值重排回輸出圖像格式時反向進行。關於附加細節,參閱第XII節;亦參閱美國專利申請案公開號2014/0092998 A1與2014/0112394 A1。
在先前將取樣值從YUV 4:4:4格式的圖像重排到YUV 4:2:0格式的圖像以用於編碼及解碼的方式中,編碼及解碼YUV 4:2:0格式的圖像的所有取樣值。相對於僅編碼YUV 4:2:0格式的圖像的低色度解析度版本,這樣的方式可在高色度解析度細節係為複雜或難以壓縮時顯著增加經編碼視訊的位元率,甚至在一些情況下加倍位元率。高色度解析度細節可以用觀看者可能未注意到的方式改善品質,尤其是在低譯碼品質或顯著運動的區域中。然而,在一些實現中,先前方法並未適當地定標品質與位元率,而使得該等方式不適合可調適串流,且先前方法不允許簡單地丟棄高色度解析度細節的經譯碼圖像。相對於僅編碼圖像的低色度解析度版本,先前方法亦可能顯著增加編碼及解碼的計算複雜度。IX. 將低色度解析度版本與高色度解析度細節分離到經譯碼圖像的不同子序列
本節呈現編碼及解碼圖像的高色度解析度細節的範圍中的第一組創新。特定言之,本節描述具有輸入圖像的低色度解析度版本的取樣值的經譯碼圖像與具有輸入圖像的高色度解析度細節的取樣值的經譯碼圖像在單獨子序列中編碼及解碼的方式。在一些示例性實現中,不同子序列(可替代地稱為子串流)中的經譯碼圖像係在經譯碼圖像的單一序列(可替代地稱為經譯碼圖像串流)中交替,而能夠利用習知編解碼器工具根據那些編解碼器工具的給定標準或格式而使用一致語法有效編碼及解碼。A. 用於低色度解析度版本與高色度解析度細節的經譯碼圖像的不同子序列的實例
對於輸入圖像格式的給定輸入圖像,視訊編碼工具將輸入圖像分離成經譯碼圖像格式(或多個經譯碼圖像格式)的多個編碼圖像。舉例而言,視訊編碼工具可使用參照第8a-8e圖所述之任何方式或使用另一方式將輸入圖像的取樣值重排到二個經譯碼圖像。經譯碼圖像中之一者包括用於輸入圖像的低色度解析度版本的取樣值(如YUV 4:2:0圖像)。其他經譯碼圖像包括用於輸入圖像的高色度解析度細節的取樣值(如YUV 4:2:0圖像)。
視訊編碼工具將二個經譯碼圖像分配到經譯碼圖像的給定序列中的經譯碼圖像的二個不同子序列。經譯碼圖像的一個子序列包括具有輸入圖像的低色度解析度版本的取樣值的經譯碼圖像。其他子序列包括具有輸入圖像的高色度解析度細節的取樣值的經譯碼圖像。
第9圖圖示經譯碼圖像的序列(900),包括YUV 4:2:0圖像的子序列與UUV 4:2:0圖像的子序列。YUV 4:2:0圖像的子序列包括具有輸入圖像的低色度解析度版本的取樣值的YUV 4:2:0格式的經譯碼圖像(910、911、…、919)。UUV 4:2:0圖像的子序列包括具有輸入圖像的高色度解析度細節的取樣值的YUV 4:2:0格式的經譯碼圖像(920、921、…、929)。如第9圖所示,YUV 4:2:0圖像與UUV 4:2:0圖像可以交替,而在YUV 4:2:0圖像與UUV 4:2:0圖像之間替換。或者,YUV 4:2:0圖像與UUV 4:2:0圖像可根據一些其他圖案組織在單一序列中。
視訊編碼工具編碼經譯碼圖像格式(或多個經譯碼圖像格式)的經譯碼圖像。作為編碼的一部分,視訊編碼工具管理運動補償依賴關係。更特定言之,當執行用於具有輸入圖像的低色度解析度版本的取樣值的的經譯碼圖像的區塊的運動估計及/或運動補償時,視訊編碼工具將該組可取得參照圖像限制成具有其他輸入圖像的低色度解析度版本的取樣值的經譯碼圖像。類似地,當執行用於具有輸入圖像的高色度解析度細節的取樣值的經譯碼圖像的區塊的運動估計及/或運動補償時,視訊編碼工具將該組可取得參照圖像限制成具有其他輸入圖像的高色度解析度細節的取樣值的經譯碼圖像。
視訊編碼工具可使用多個參照圖像、參照圖像重新排序、及/或長期參照圖像管理用於經譯碼圖像的不同子序列的運動補償依賴關係。舉例而言,H.264標準與H.265標準包括支援多個參照圖像、參照圖像重新排序、及長期參照圖像的譯碼工具。經解碼圖像緩衝器可儲存多個參照圖像(例如,一或更多個YUV 4:2:0圖像與一或更多個UUV 4:2:0圖像)。可在解碼圖像緩衝器的任意時段內緩衝長期參照圖像,以作為參照圖像。視訊編碼工具可重新排序參照圖像,而使得最常參照的圖像具有較低的參照圖像索引,這可讓參照圖像索引的熵譯碼更有效率。視訊編碼工具亦可以在經譯碼圖像的一個子序列中使用參照圖像的一組參照圖像索引,並在經譯碼圖像的其他子序列中使用參照圖像的不同組參照圖像索引。
為了說明之目的,第10a圖圖示YUV 4:2:0圖像的子序列的經譯碼圖像之間的時間依賴關係與UUV 4:2:0圖像的子序列的經譯碼圖像之間的時間依賴關係的簡單實例(1000)。經譯碼圖像的序列(1005)包括YUV 4:2:0圖像(1010、1030)的子序列與UUV 4:2:0圖像(1020、1040)的子序列。第一YUV 4:2:0圖像(1010)標記為長期參照圖像(例如索引為參照圖像索引0)。第一UUV 4:2:0圖像(1020)亦標記為長期參照圖像(例如索引為參照圖像索引1)。第二YUV 4:2:0圖像(1030)使用第一YUV 4:2:0圖像(1010)作為參照圖像(例如,將運動估計及補償限制為使用參照圖像索引0),但即使當第一UUV 4:2:0圖像(1020)已重建,亦不允許使用第一UUV 4:2:0圖像(1020)作為參照圖像。第二UUV 4:2:0圖像(1040)使用第一UUV 4:2:0圖像(1020)作為參照圖像(例如,將運動估計及補償限制為使用參照圖像索引1),但即使當第一YUV 4:2:0圖像(1010)已重建,亦不允許使用第一YUV 4:2:0圖像(1010)作為參照圖像。使用長期參照圖像有助於單一序列中的二個子序列的組合。
第10b圖圖示YUV 4:2:0圖像的子序列的經譯碼圖像之間的時間依賴關係與UUV 4:2:0圖像的子序列的經譯碼圖像之間的時間依賴關係的較複雜實例(1001)。再次,給定YUV 4:2:0圖像可以僅使用YUV 4:2:0圖像的子序列中的另一經譯碼圖像作為參照圖像,而給定UUV 4:2:0圖像可以僅使用UUV 4:2:0圖像的子序列中的另一經譯碼圖像作為參照圖像。第10b圖圖示序列(1005)跨越多個中間經譯碼圖像的長期預測的實例。最終UUV 4:2:0圖像(1090)使用由任意數量的YUV 4:2:0圖像分隔的第一UUV 4:2:0圖像(1020)作為參照圖像。最終UUV 4:2:0圖像(1090)不允許使用任何中間YUV 4:2:0圖像作為參照圖像。
如在下一節中所解釋,可從子序列丟棄經譯碼圖像。舉例而言,對於具有具有高色度解析度細節的取樣值的經譯碼圖像,若是沒有包括經編碼的取樣值的區域,則從其子序列丟棄經譯碼圖像。亦可利用零運動略過任一子序列中的經譯碼圖像(或其區域),而使得沒有經譯碼圖像(或區域)的編碼資料被輸出,而經譯碼圖像(或區域)係重複子序列中的先前經譯碼圖像。
在相應的解碼期間,視訊解碼工具解碼經譯碼圖像格式(或多個經譯碼圖像格式)的經譯碼圖像。當利用零運動略過任一子序列中的經譯碼圖像(或其區域),而使得沒有經譯碼圖像(或區域)的經譯碼資料被接收時,可藉由重複子序列中的先前經譯碼圖像而解碼經譯碼圖像(或區域)。作為解碼的一部分,視訊解碼工具執行與編碼器實施的運動補償依賴關係一致的運動補償。更特定言之,當執行具有輸出圖像的低色度解析度版本的取樣值的經譯碼圖像的區塊的運動補償時,將該組可取得參照圖像限制成具有其他輸出圖像的低色度解析度版本的取樣值的經譯碼圖像。類似地,當執行具有輸出圖像的高色度解析度細節的取樣值的經譯碼圖像的區塊的運動補償時,將該組可取得參考圖像限制成具有其他輸出圖像的高色度解析度細節的取樣值的經譯碼圖像。
在視訊解碼工具中,可使用多個參照圖像、參考圖像重新排序、及/或長期參照圖像管理經譯碼圖像的不同子序列的運動補償依賴關係。舉例而言,H.264標準與H.265標準包括支援多個參照圖像、參照圖像重新排序、及長期參照圖像的譯碼工具。
對於輸出圖像格式的給定輸出圖像,視訊解碼工具可組合經譯碼圖像格式(或多個經譯碼圖像格式)的多個經譯碼圖像。舉例而言,視訊解碼工具可藉由反轉任何參照第8a-8e圖所述之方式或使用另一方式而將二個經譯碼圖像的取樣值重排到輸出圖像。經譯碼圖像中之一者包括輸出圖像的低色度解析度版本的取樣值(如YUV 4:2:0圖像)。其他經譯碼圖像包括輸出圖像的高色度解析度細節的取樣值(如UUV 4:2:0圖像)。若已利用零運動略過經譯碼圖像(或其區域)中之任一者,則相同子序列中的先前經譯碼圖像(或共同定位區域)可提供在構成輸出圖像時使用的取樣值(用於當前經譯碼圖像或其區域)。B. 用於低色度解析度版本與高色度解析度細節的不同子序列的編碼 / 解碼的的技術
第11圖圖示用於輸入圖像的低色度解析度版本與高色度解析度細節的不同子序列中的經譯碼圖像的編碼的通用技術(1100)。視訊編碼工具(如參照第4圖所述之編碼器系統(400))或另一編碼工具可執行技術(1100)。
編碼工具將根據輸入圖像格式組織的輸入圖像的取樣值封包(1110)到分別根據第一與第二經譯碼圖像格式組織的第一與第二經譯碼圖像。第一與第二經譯碼圖像格式可以是相同經譯碼圖像格式或不同經譯碼圖像格式(例如,不同色度取樣率)。在一般情況下,輸入圖像格式具有第一色度取樣率,而第一與第二經譯碼圖像格式中之至少一者具有比第一色度取樣率更低的第二色度取樣率。舉例而言,第一色度取樣率係為4:4:4,而第二色度取樣率係為4:2:0。第一經譯碼圖像包含輸入圖像的低色度解析度版本的取樣值。第二經譯碼圖像包含輸入圖像的高色度解析度細節的取樣值。舉例而言,編碼工具使用參照第8a-8e圖所述之任何方式或另一方式,以將取樣值封包到第一與第二經譯碼圖像。
編碼工具將第一與第二經譯碼圖像編碼(1120)為經譯碼圖像的序列中的單獨經譯碼圖像,藉此產生經編碼資料。作為編碼的一部分,將第一經譯碼圖像編碼為序列的第一子序列的一部分,並將第二經譯碼圖像編碼為序列的第二子序列的一部分。第一子序列不同於第二子序列。為了運動補償(以及由此延伸的運動估計)之目的,沒有第一子序列中的經譯碼圖像被允許參照第二子序列中的任何經譯碼圖像,且沒有第二子序列中的經譯碼圖像被允許參照第一子序列中的任何經譯碼圖像。
舉例而言,編碼工具藉由使用識別第一子序列中的經譯碼圖像的第一組長期參照圖像索引,以管理第一子序列中的運動補償依賴關係。類似地,編碼工具藉由使用識別第二子序列中的經譯碼圖像的第二組長期參照圖像索引,以管理第二子序列中的運動補償依賴關係。編碼工具亦可重新排序參照圖像,而使得沒有第一子序列中的經譯碼圖像參照第二子序列中的任何經譯碼圖像,並且使得沒有第二子序列中的經譯碼圖像參照第一子序列中的任何經譯碼圖像。第一子序列的經編碼資料與第二子序列的經編碼資料可在稍後藉由位元串流編輯工具(如解多工器或路由器)分離,如在第III節中描述者。此舉允許位元串流編輯工具僅將第一子序列的經編碼資料發送到播放裝置(用於以低色度解析度解碼及播放),或將二個子序列的經編碼資料發送到播放裝置(用於以高色度解析度的潛在解碼及播放)。對於附加細節,請參閱第III節。
返回到第11圖,編碼工具輸出(1130)經編碼資料,其中包括第一與第二經譯碼圖像中的一或二者的經編碼資料。在一些情況下,第一經譯碼圖像及/或第二經譯碼圖像的經編碼資料僅包括該經譯碼圖像的一部分的經編碼資料(例如,如下所述之經譯碼圖像的一或更多個區域,但並非經譯碼圖像的所有區域)。編碼工具可以重複技術(1100),以用於一或更多個其他輸入圖像中之每一者。在一些情況下,可丟棄第二經譯碼圖像(並因此而未編碼),而使得沒有第二經譯碼圖像的經編碼資料被輸出。第一經譯碼圖像或第二經譯碼圖像(或其區域)亦可利用零運動略過,而使得沒有經譯碼圖像(或區域)的經編碼資料被輸出,而經譯碼圖像(或區域)係重複子序列中的先前經譯碼圖像。因此,當編碼來自輸入圖像的第一與第二經譯碼圖像時,編碼工具可產生用於第一經譯碼圖像的空白、第一經譯碼圖像的一些區域、或第一經譯碼圖像的所有者的經編碼資料,且編碼工具可產生用於第二經譯碼圖像的空白、第二經譯碼圖像的一些區域、或第二經譯碼圖像的所有者的經編碼資料。
第12圖圖示用於輸出圖像的低色度解析度版本與高色度解析度細節的不同子序列中的經譯碼圖像的解碼的通用技術(1200)。視訊解碼工具(如參照第5圖所述的解碼器系統(500))或另一解碼工具可執行技術(1200)。
解碼工具接收(1210)經編碼資料,並解碼(1220)第一與第二經譯碼圖像格式(可以是相同經譯碼圖像格式或不同經譯碼圖像格式)的第一與第二經譯碼圖像。第一經譯碼圖像包含用於輸出圖像格式的輸出圖像的低色度解析度版本的取樣值。第二經譯碼圖像包含用於輸出圖像的高色度解析度細節的取樣值。在一般情況下,輸出圖像格式具有第一色度取樣率,而第一與第二經譯碼圖像格式中之至少一者具有比第一色度取樣率更低的第二色度取樣率。舉例而言,第一色度取樣率係為4:4:4,而第二色度取樣率係為4:2:0。
解碼工具將第一與第二經譯碼圖像解碼(1220)為經譯碼圖像的序列中的單獨經譯碼圖像。作為解碼(1220)的一部分,將第一經譯碼圖像解碼為序列的第一子序列的一部分,並將第二經譯碼圖像解碼為序列的第二子序列的一部分。第一子序列不同於第二子序列。當利用零運動略過任一子序列中的經譯碼圖像(或其區域),而使得沒有接收到經譯碼圖像(或區域)的經編碼資料時,可藉由重複子序列中的先前經譯碼圖像解碼經譯碼圖像(或區域)。為了運動補償之目的,沒有第一子序列中的經譯碼圖像參照第二子序列中的任何經譯碼圖像,且沒有第二子序列中的經譯碼圖像參照第一子序列中的任何經譯碼圖像。
舉例而言,使用識別第一子序列中的經譯碼圖像的第一組長期參照圖像索引以管理第一子序列中的運動補償依賴關係。類似地,使用識別第二子序列中的經譯碼圖像的第二組長期參照圖像索引以管理第二子序列中的運動補償依賴關係。參照圖像亦可重新排序,而使得沒有第一子序列中的經譯碼圖像參照第二子序列中的任何經譯碼圖像,並且使得沒有第二子序列中的經譯碼圖像參照第一子序列中的任何經譯碼圖像。
解碼工具將第一與第二經譯碼圖像的取樣值解封包(1230)到輸出圖像。舉例而言,解碼工具反轉任何參照第8a-8e圖所述之方式或另一方式,以從第一與第二經譯碼圖像解封包取樣值。在一些情況下,第一經譯碼圖像及/或第二經譯碼圖像的經編碼資料僅包括該經譯碼圖像的一部分的經編碼資料(例如,如下所述之經譯碼圖像的一或更多個區域,但並非經譯碼圖像的所有區域),這將影響解封包期間重排哪些取樣值。舉例而言,若已利用零運動略過經譯碼圖像(或其區域)的任一者,則相同子序列中的先前經譯碼圖像(或共同定位區域)可提供在構成輸出圖像時使用的取樣值(用於當前經譯碼圖像或其區域)。
解碼工具可以重複技術(1200),以用於一或更多個其他輸出圖像之每一者。在一些情況下,可丟棄第二經譯碼圖像(並因此而未編碼),而使得沒有第二經譯碼圖像的經編碼資料被接收或解碼。亦可利用零運動略過第一經譯碼圖像或第二經譯碼圖像(或其區域),而使得沒有接收到經譯碼圖像(或區域)的經編碼資料,且經譯碼圖像(或區域)係替代地重複子序列中的先前經譯碼圖像。因此,當解碼輸出圖像的第一與第二經譯碼圖像時,解碼工具可使用用於第一經譯碼圖像的空白、第一經譯碼圖像的一些區域、或第一經譯碼圖像的所有者的經編碼資料,而解碼工具可使用用於第二經譯碼圖像的空白、第二經譯碼圖像的一些區域、或第二經譯碼圖像的所有者的經編碼資料。X. 高色度解析度細節的選擇性編碼 / 解碼區域
本節呈現圖像的高色度解析度細節的編碼及解碼的範圍中的第二組創新。特定言之,本節敘述選擇性編碼/解碼高色度解析度細節的區域的方式,而使得針對一些區域而非其他區域編碼/解碼高色度解析度細節的取樣值。編碼高色度解析度細節的取樣值的區域可改變,這有利於位元率與品質的適應。A. 低色度解析度版本與高色度解析度細節的經譯碼圖像的不同區域的實例
對於輸入圖像格式的給定輸入圖像,視訊編碼工具將輸入圖像分離成經譯碼圖像格式(或多個經譯碼圖像格式)的多個經譯碼圖像。舉例而言,視訊編碼工具可使用參照第8a-8e圖所述之任何方式或使用另一方式將輸入圖像的取樣值重排到二個經譯碼圖像。經譯碼圖像中之一者包括輸入圖像的低色度解析度版本的取樣值(如YUV 4:2:0圖像)。其他經譯碼圖像包括輸入圖像的高色度解析度細節的取樣值(如UUV 4:2:0圖像)。
視訊編碼工具將第一及/或第二經譯碼圖像分割成多個區域(亦稱為子區域)。區域的尺寸取決於實現。舉例而言,區域的尺寸係為16x16(例如,16x16、32x32、或64x64)的倍數,以利於利用習知編解碼器工具的實現。可替代地,區域具有一些其他尺寸。給定經譯碼圖像中之區域可以具有相同尺寸或不同尺寸。
對於第一經譯碼圖像,視訊編碼工具決定輸入圖像的低色度解析度版本的取樣值待編碼的區域(如果有的話)。對於第二經譯碼圖像,視訊編碼工具決定輸入圖像的高色度解析度細節的取樣值待編碼的區域(如果有的話)。第XI節呈現決定取樣值待編碼的區域的示例性方式。對於給定經譯碼圖像,視訊編碼工具可以不編碼經譯碼圖像的區域,編碼經譯碼圖像的一些區域或所有區域。當區域中的取樣值尚未譯碼時,可取決於上下文而略過或丟棄該區域,並如下面所解釋。
對於經譯碼圖像,視訊編碼工具產生並輸出識別經譯碼圖像的取樣值已編碼的區域的資料。這樣的區域資料的實例呈現如下。可藉由視訊編碼工具熵譯碼及藉由視訊解碼工具熵解碼區域資料。如參照於第3-5圖所述,可將區域資料訊令為元資料。
在相應解碼期間,視訊解碼工具接收及處理識別經譯碼圖像的取樣值已編碼的區域的區域資料。視訊解碼工具解碼經譯碼圖像,至少包括取樣值已編碼的區域的經編碼資料的解碼。當利用零運動略過經譯碼圖像(或其區域),而使得沒有接收到經譯碼圖像(或區域)的經編碼資料時,可藉由重複先前經譯碼圖像以解碼經譯碼圖像(或區域)。對於輸出圖像格式的給定輸出圖像,視訊解碼工具可組合經譯碼圖像格式(或多個經譯碼圖像格式)的多個經譯碼圖像。舉例而言,視訊解碼工具可藉由反轉參照第8a-8e圖所述之任何方式或使用另一方式將二個經譯碼圖像(分別用於低色度解析度版本與高色度解析度細節)的取樣值重排到輸出圖像。若利用零運動略過經譯碼圖像(或其區域)之任一者,則相同子序列中的先前經譯碼圖像(或共同定位區域)可提供在構成輸出圖像時使用的取樣值(用於當前經譯碼圖像或其區域)。
為了說明,第13圖圖示高色度解析度細節的區域中的取樣值的選擇性編碼及解碼的簡單實例(1300)。視訊編碼工具接收輸入圖像格式(如YUV 4:4:4格式)的輸入圖像(1310)的高色度解析度版本。視訊編碼工具將輸入圖像(1310)的取樣值重排到經譯碼圖像格式(如YUV 4:2:0格式)或多個經譯碼圖像格式的二個經譯碼圖像(1320、1330)。第一經譯碼圖像(1320)包括輸入圖像(1310)的低色度解析度版本的取樣值。第二經譯碼圖像(1330)包括輸入圖像(1310)的高色度解析度細節的二個區域中的取樣值。對於第二經譯碼圖像(1330)的剩餘部分,遺失高色度解析度細節。
經譯碼圖像(1320、1330)藉由視訊編碼工具編碼,透過網路傳送,並藉由視訊解碼工具解碼。視訊解碼工具亦將來自重建經譯碼圖像(1320、1330)的取樣值組合到輸出圖像格式(如YUV 4:4:4格式)的輸出圖像(1340)。輸出圖像(1340)包括合併來自第一經譯碼圖像(1320)的取樣值的具有低色度解析度的區域。對於該區域而言,高色度解析度細節係從第二經譯碼圖像(1330)遺失。輸出圖像(1340)亦包括合併來自第一經譯碼圖像(1320)的取樣值與來自第二經譯碼圖像(1330)的取樣值的具有高色度解析度的區域。
儘管第13圖圖示具有高色度解析度細節的二個區域,在其他實例中,第二經譯碼圖像(1330)具有更多或更少高色度解析度細節的區域。在不同極端狀況中,第二經譯碼圖像(1330)沒有高色度解析度細節的區域(並因此可以丟棄)或所有區域具有高色度解析度細節。
第14圖圖示輸入圖像的低色度解析度版本的區域與輸入圖像的高色度解析度細節的區域中的取樣值的選擇性編碼的實例(1400)。輸入圖像格式(如YUV 4:4:4格式)的輸入圖像(1410、1420、1430、1440、1450)的序列分別包括輸入圖像的高色度解析度版本的取樣值。視訊編碼工具將輸入圖像(1410、1420、1430、1440、1450)的每一者分割成經譯碼圖像格式(如YUV 4:2:0格式)或多個經譯碼圖像格式的二個經譯碼圖像。對於每一輸入圖像,二個經譯碼圖像中之一者代表輸入圖像或其至少選定區域的低色度版本,而其他經譯碼圖像代表輸入圖像或其至少選定區域的高色度解析度細節。
對於各種經譯碼圖像,視訊編碼工具選擇取樣值已編碼的區域。可獨立選擇用於輸入圖像的低色度解析度版本與高色度解析度細節的區域。舉例而言,對於第一輸入圖像(1410),輸入圖像的低色度解析度版本的所有區域被譯碼,而高色度解析度細節沒有區域被譯碼。對於第二輸入圖像(1420),輸入圖像的低色度解析度版本的所有區域被譯碼,而高色度解析度細節的二個不同區域被譯碼。對於第三輸入圖像(1430),輸入圖像的低色度解析度版本或高色度解析度細節沒有區域被譯碼。對於第四輸入圖像(1440),輸入圖像的低色度解析度版本的一個區域被譯碼(而一個並未譯碼),而高色度解析度細節沒有區域被譯碼。最後,對於第五輸入圖像(1450),輸入圖像的低色度解析度版本沒有區域被譯碼,而高色度解析度細節的一個區域被譯碼(而一個並未譯碼)。因此,對於輸入圖像的低色度解析度版本,可以將取樣值編碼為不用於區域、用於一些區域、或用於所有區域。此外,對於輸入圖像的高色度解析度細節,可以將取樣值編碼為不用於區域、用於一些區域、或用於所有區域。
因此,可從子序列丟棄經譯碼圖像。舉例而言,對於第一輸入圖像(1410),可從其子序列丟棄具有高色度解析度細節的取樣值的經譯碼圖像(沒有包括取樣值已編碼的區域)。亦可利用零運動略過任一子序列中的經譯碼圖像(或其區域),而使得沒有經譯碼圖像(或區域)的經編碼資料被輸出,且經譯碼圖像(或區域)係重複子序列中的先前經譯碼圖像。舉例而言,對於第三輸入圖像(1430),可利用零運動略過具有輸入圖像的低色度解析度版本的取樣值的經譯碼圖像,而使得沒有經譯碼圖像的經編碼資料被輸出,且經譯碼圖像係重複子序列中的先前經譯碼圖像。或者,對於第三輸入圖像(1430),可利用零運動略過具有高色度解析度細節的取樣值的經譯碼圖像的二個區域,而使得沒有經譯碼圖像的經編碼資料被輸出,且二個區域係重複該二個區域已譯碼的子序列中的先前經譯碼圖像。B. 區域資料實例
經譯碼圖像的區域資料指示經譯碼圖像中取樣值已編碼的區域。區域可以是經譯碼圖像中的預先定義分區(例如,具有預先定義的尺寸與位置,如H.264實現中的MB或H.265實現中的CTU)。可替代地,可以在區域資料中指定區域的大小及/或位置。舉例而言,對於一或更多個區域的每一者,區域資料包括(a)用於指定區域角落的一或更多個參數以及用於指定區域的寬度與高度的參數、(b)用於指定區域的多個角落的參數、或(c)用於指定區域的譯碼單位或大區塊的列表的參數。
除了用於定義區域的尺寸與位置的區域資料的參數(如果有的話),區域資料包括指示將取樣值編碼為經譯碼圖像的一部分的任何區域的索引值的映射。舉例而言,映射包括每一區域的索引值。映射可指示第二經譯碼圖像的經編碼資料包括輸入(或輸出)圖像的高色度解析度細節的經編碼取樣值的任何區域。當亦選擇用於第一經譯碼圖像的區域時,另一映射可指示第一經譯碼圖像的經編碼資料包括輸入(或輸出)圖像的低色度解析度版本的經編碼取樣值的任何區域。當在經譯碼圖像的區域中編碼取樣值時,經譯碼圖像的經編碼資料直接代表區域的取樣值。另一方面,當不在區域中譯碼取樣值時,可取決於上下文略過或丟棄區域。
對於經譯碼圖像的給定區域,索引值指示關於區域的資訊。第15與16圖圖示索引值的實例。可替代地,索引值指示其他資訊。在任何情況下,編碼工具或解碼工具可使用在經譯碼圖像的映射中的索引值,以決定將取樣值編碼為經譯碼圖像的一部分的任何區域。
第15圖圖示可在選擇性編碼及解碼輸入圖像(或輸出圖像)的低色度解析度版本與高色度解析度細節的區域中的取樣值時使用的示例性區域資料(1500)。在編碼期間,視訊編碼工具可使用區域資料(1500),以控制哪些區域具有經編碼的取樣值。在相應解碼中,視訊解碼工具可使用區域資料(1500),以決定取樣值已編碼的區域。在第15圖中,第一經譯碼圖像(1510)(標記為YUV 4:2:0圖像)包括輸入圖像x 的低色度解析度版本。第二經譯碼圖像(1520)(標記為UUV 4:2:0圖像)包括輸入圖像x 的高色度解析度細節。
將經譯碼圖像(1510、1520)中之每一者分割為12個區域。對於第一經譯碼圖像(1510),索引值的第一映射(1512)指示相較於共同定位區域中的取樣值已編碼的最近的前述YUV 4:2:0圖像的共同定位區域,取樣值已改變(「已變更」)的區域。第一經譯碼圖像(1510)的區域0-4與8中的取樣值係為已變更,但區域5-7與9-11中的取樣值並非已變更。對於第二經譯碼圖像(1520),索引值的另一映射(1522)指示相較於共同定位區域中的取樣值已編碼的最近的前述UUV 4:2:0圖像的共同定位區域,取樣值已改變(「已變更」)的區域。第二經譯碼圖像(1520)的區域1-8中的取樣值係為已變更,但區域9-11中的取樣值並非已變更。在映射(1512、1522)之每一者中,對於給定區域,索引值0x00(或一個位元值0)指示區域係為已變更,而索引值0x01(或一個位元值1)指示區域並非已變更。
視訊編碼工具與視訊解碼工具從映射(1512、1522)中的索引值推斷取樣值已編碼的經譯碼圖像的區域。舉例而言,根據解釋如第15圖所定義的區域資料的方式,對於第一經譯碼圖像(1510),已變更區域的取樣值係為已編碼,而非已變更區域的取樣值係為未編碼。作為替代,第一經譯碼圖像(1510)的非已變更區域係編碼為利用零運動的略過區域,而從先前的YUV 4:2:0圖像的共同定位區域複製。因此,總是有可用於輸入/輸出圖像的低色度解析度版本的區域的代表(編碼或複製(略過))。對於第二經譯碼圖像(1520),已變更區域的取樣值係為已編碼,而非已變更區域的取樣值係為未編碼。作為替代,第二經譯碼圖像(1520)的非已變更區域係編碼為利用零運動的略過區域(如果由於已編碼而並未改變共同定位區域,則從先前UUV 4:2:0圖像的共同定位區域複製),或者丟棄(在其他情況下)。因此,可直接利用區域的取樣值編碼、複製(略過)、或丟棄輸入/輸出圖像的高色度解析度細節的區域。
根據解釋如第15圖所定義的區域資料的另一方式,或根據稍微不同的規則譯碼或不譯碼第二經譯碼圖像(1520)的區域。更特定言之,對於第二經譯碼圖像(1520),僅在第一經譯碼圖像(1510)的共同定位區域並非已變更時編碼已變更區域的取樣值;否則不編碼第二經譯碼圖像(1520)的已變更區域的取樣值。例如在第一方式中,將第二經譯碼圖像(1520)的非已變更區域編碼為利用零運動的略過區域或丟棄。因此,高色度解析度細節的已變更區域可保持數個經譯碼圖像的已變更,直到最後被編碼。此方式係與第XI.A.I節所述之決策規則一致。
第16圖圖示可以在選擇性編碼及解碼輸入圖像的色度低解析度版本與高色度解析度細節的區域中的取樣值時使用的其他示例性區域資料(1600)。第一經譯碼圖像(1610)(標記為YUV 4:2:0圖像)包括輸入圖像x 的低色度解析度版本,而第二經譯碼圖像(1620)(標記為UUV 4:2:0圖像)包括輸入圖像x 的高色度解析度細節。
將經譯碼圖像(1610、1620)的每一者分割成12個區域,並具有索引值的相應映射(1612、1622)。區域的索引值係為二個位元值,其中第一位元指示相較於共同定位區域中的取樣值已編碼的最近的前述經譯碼圖像的共同定位區域,區域中的取樣值是否已改變(「已變更」),而第二位元指示(至少用於非已變更區域)區域中的取樣值是否已利用高品質編碼(亦即,在前述經譯碼圖像中的共同定位區域)。因此,值0x00(或二個位元值00)指示非已變更區域先前並未利用高品質編碼,而值0x01(或二個位元值01)指示非已變更區域先前已利用高品質編碼。0x02值(或二個位元值10)指示已變更區域。視訊編碼工具與視訊解碼工具可以使用規則從這樣的索引值推斷給定區域是否為已譯碼或未譯碼,如第XI.A.III節所述。
映射中的索引值可藉由視訊編碼工具熵譯碼(例如,使用遊程長度譯碼或上下文可調適二進制算術譯碼)。在此情況下,視訊解碼工具執行相應熵解碼。舉例而言,區域資料可以訊令為H.264標準或H.265標準的新類型SEI訊息的一部分、容器結構的欄位、傳輸協定訊息的欄位,或一些其他類型的元資料。
在第15與16圖中,每一區域具有相同尺寸。可替代地,區域可以在經譯碼圖像中或在圖像之間具有不同尺寸。C. 用於編碼 / 解碼低色度解析度版本與高色度解析度細節的經譯碼圖像的選擇區域的技術
第17圖圖示用於選擇性編碼高色度解析度細節的區域的取樣值的通用技術(1700)。視訊編碼工具(如參照第4圖描述的編碼器系統(400))或另一編碼工具可執行技術(1700)。
編碼工具將根據輸入圖像格式組織的輸入圖像的取樣值封包(1710)到根據第一與第二經譯碼圖像格式組織的第一與第二經譯碼圖像。第一與第二經譯碼圖像格式可以是相同經譯碼圖像格式或不同經譯碼圖像格式(例如,不同色度取樣率)。一般情況下,輸入圖像格式具有第一色度取樣率,而第一與第二經譯碼圖像格式中之至少一者具有較第一色度取樣率更低的第二色度取樣率。舉例而言,第一色度取樣率係為4:4:4,而第二色度取樣率係為4:2:0。第一經譯碼圖像包含輸入圖像的低色度解析度版本的取樣值。第二經譯碼圖像包含輸入圖像的高色度解析度細節的取樣值。舉例而言,編碼工具使用參照於第8a-8e圖所述之任何方式或另一方式,以將取樣值封包到第一與第二經譯碼圖像。
編碼工具編碼(1720)第一與第二經譯碼圖像,藉此產生經編碼資料。作為編碼的一部分,編碼工具選擇將輸入圖像的高色度解析度細節的相應取樣值編碼為第二經譯碼圖像的一部分的一或更多個區域。作為編碼的一部分,編碼工具亦可選擇將輸入圖像的低色度解析度版本的相應取樣值編碼為第一經譯碼圖像的一部分的一或更多個區域。第一與第二經譯碼圖像可編碼為經譯碼圖像的不同子序列的一部分,如第IX節所述。
編碼工具輸出(1730)經編碼資料,其中包括用於第一與第二經譯碼圖像的一或二者的經編碼資料。在一些情況下,用於第一經譯碼圖像及/或第二經譯碼圖像的經編碼資料包括用於該經譯碼圖像的僅一部分(例如,用於經譯碼圖像的一或更多個區域,但並非經譯碼圖像的所有區域)的經編碼資料。經編碼資料可以輸出為一個位元串流的一部分。位元串流的語法允許第一經譯碼圖像及/或第二經譯碼圖像缺乏輸入圖像的至少一部分的的經編碼取樣值。
編碼工具亦輸出(1740)區域資料,識別將輸入圖像的高色度解析度細節的相應取樣值編碼為第二經譯碼圖像的一部分的區域。當編碼工具亦選擇將輸入圖像的低色度解析度版本的相應取樣值編碼為第一經譯碼圖像的一部分的區域時,區域資料亦識別這樣的區域。舉例而言,如第X.B節所述格式化區域資料。可替代地,以一些其他方式格式化區域資料。
編碼工具可重複用於一或更多個其他輸入圖像中之每一者的技術(1700)。在一些情況下,第二經譯碼圖像可被丟棄(並因此而未編碼),而使得沒有第二經譯碼圖像的經編碼資料被輸出。亦可利用零運動略過第一經譯碼圖像或第二經譯碼圖像(或其區域),而使得沒有經譯碼圖像(或區域)的經編碼資料被輸出,並經譯碼圖像(或區域)係重複子序列中的先前經譯碼圖像。因此,當編碼來自輸入圖像的第一與第二經譯碼圖像時,編碼工具可產生不用於第一經譯碼圖像的經編碼資料,用於第一經譯碼圖像的一些區域或所有第一經譯碼圖像的經編碼資料,而編碼工具可產生不用於第二經譯碼圖像的經編碼資料,用於第二經譯碼圖像的一些區域或所有第二經譯碼圖像的經編碼資料。
第18圖圖示用於高色度解析度細節的區域中選擇性解碼取樣值的通用技術(1800)。視訊解碼工具(如參照第5圖描述之解碼器系統(500))或另一解碼工具可執行技術(1800)。
解碼工具接收(1810)經編碼資料,並解碼(1820)第一與第二經譯碼圖像格式(可以是相同經譯碼圖像格式或不同經譯碼圖像格式)的第一與第二經譯碼圖像。第一經譯碼圖像包含用於輸出圖像格式的輸出圖像的低色度解析度版本的取樣值。第二經譯碼圖像包含用於輸出圖像的高色度解析度細節的取樣值。在一般情況下,輸出圖像格式具有第一色度取樣率,而第一與第二經譯碼圖像格式中之至少一者具有比第一色度取樣率更低的第二色度取樣率。舉例而言,第一色度取樣率係為4:4:4,而第二色度取樣率係為4:2:0。經編碼資料可接收為一個位元串流的一部分。位元串流的語法允許第一經譯碼圖像及/或第二經譯碼圖像缺乏輸出圖像的至少一部分的經編碼取樣值。如第IX節描述,第一與第二經譯碼圖像可解碼成經譯碼圖像的不同子序列的一部分。當利用零運動略過經譯碼圖像(或其區域),而使得沒有接收到用於經譯碼圖像(或區域)的經編碼資料時,可藉由重複先前的經譯碼圖像解碼經譯碼圖像(或區域)。
解碼工具亦接收(1830)識別用於輸出圖像的高色度解析度細節的相應取樣值已編碼成第二經譯碼圖像的一部分的一或更多個區域的區域資料。在一些示例性實現中,區域資料亦識別用於輸出圖像的低色度解析度版本的相應取樣值已編碼成第一經譯碼圖像的一部分的一或更多個區域。舉例而言,如第X.B.節所描述,格式化區域資料。可替代地,以一些其他方式格式化區域資料。
至少部分依據區域資料,解碼工具將第一與第二經譯碼圖像的取樣值解封包(1840)到輸出圖像。舉例而言,解碼工具反轉任何參照第8a-8e圖所描述的方式或另一方式,以從第一與第二經譯碼圖像的區域解封包取樣值。在一些情況下,第二經譯碼圖像僅包括經譯碼圖像的一部分(例如,經譯碼圖像的一或更多個區域,但並非經譯碼圖像的所有區域)的取樣值,這將影響解封包期間取樣值的重排。若利用零運動略過任一經譯碼圖像(或其區域),則在相同子序列中的先前的經譯碼圖像(或共同定位區域)可提供構成輸出圖像時使用的取樣值(用於當前經譯碼圖像或其區域)。
解碼工具可以重複技術(1800),以用於一或更多個其他輸出圖像的每一者。在一些情況下,第二經譯碼圖像可以被丟棄(並因此而未編碼),而使得沒有接收到或解碼第二經譯碼圖像的經編碼資料。此外,如本節中所解釋,可利用零運動略過第一經譯碼圖像或第二經譯碼圖像(或其區域),而使得沒有接收到經譯碼圖像(或區域)的經編碼資料,而經譯碼圖像(或區域)係替代地重複子序列中的先前的經譯碼圖像。因此,當解碼輸出圖像的第一與第二經譯碼圖像時,解碼工具可使用不用於第一經譯碼圖像的經編碼資料,用於第一經譯碼圖像的一些區域或所有第一經譯碼圖像的經編碼資料,而解碼工具可使用不用於第二經譯碼圖像的經編碼資料,用於第二經譯碼圖像的一些區域或所有第二經譯碼圖像的經編碼資料。XI. 用於選擇性編碼區域的決策規則
本節呈現圖像的低色度解析度版本與高色度解析度細節的編碼區域的範圍中的創新。具體而言,本節描述在選擇性編碼高色度解析度細節的區域時使用的決策規則,而使得針對一些區域而非其他區域編碼高色度解析度細節的取樣值。舉例而言,根據一組決策規則,在逐區域的基礎上選擇性編碼高色度解析度細節。決策規則亦可控制區域的選擇,以編碼圖像的低色度解析度版本。以此方式,操作於低解析度色度取樣格式的經譯碼圖像上的可取得編碼器可以有效地用於提供圖像的低色度解析度版本以及高色度解析度細節。
利用關於編碼哪些高色度解析度細節的區域的逐區域決策,位元率的增加(由於高色度解析度細節的取樣值的編碼)發生於可能明顯提高品質的色度解析度的相應增加的時間與地點。舉例而言,當運動繁重或譯碼品質低時,由於所增加的色度解析度細節不太可能由觀看者注意,不編碼高色度解析度細節的區域。另一方面,當區域是靜止的而譯碼品質是高的時,由於所增加的色度解析度細節更有可能明顯提高品質,編碼色度解析度細節的區域。
除了明智分配位元率以增加色度解析度,如本文所述之逐區域決策可在編碼及解碼期間節省計算資源。對於高色度解析度細節不太可能明顯提高品質的區域,資源並不用於編碼或解碼細節。A. 輸入圖像的低色度解析度版本與高色度解析度細節的區域選擇的示例性決策規則
第19圖圖示可在選擇性編碼輸入圖像的低色度解析度版本與高色度解析度細節的區域中的取樣值的示例性決策規則之中考慮的經譯碼圖像。在第19圖中,將輸入圖像的取樣值重排成經譯碼圖像的二個子序列,經譯碼圖像的YUV 4:2:0子序列與經譯碼圖像的UUV 4:2:0子序列。在YUV 4:2:0子序列中,經譯碼圖像包括輸入圖像的低色度解析度版本的取樣值。在UUV 4:2:0子序列中,經譯碼圖像包括輸入圖像的高色度解析度細節的取樣值。
當前YUV 4:2:0圖像(1920)係為當前輸入圖像的低色度解析度版本,而當前UUV 4:2:0圖像(1925)包括當前輸入圖像的高色度解析度細節。先前的YUV 4:2:0圖像(1910)係為先前輸入圖像的低色度解析度版本。當前YUV 4:2:0圖像(1920)包括區域(1922)。先前的YUV 4:2:0圖像(1910)係為相應的共同定位區域(1912)經編碼的YUV 4:2:0子序列中的最近的先前經譯碼圖像。先前的UUV 4:2:0圖像(1935)包括先前輸入圖像的高色度解析度細節。當前UUV 4:2:0圖像(1925)亦包括區域(1926)。先前的UUV 4:2:0圖像(1935)係為相應的共同定位區域(1936)經編碼的UUV 4:2:0的子序列中的最近的先前經譯碼圖像。先前的YUV 4:2:0圖像(1910)與先前的UUV 4:2:0圖像(1935)可包括來自相同輸入圖像的取樣值,或者可包括來自不同輸入圖像的取樣值。對於當前YUV 4:2:0圖像(1920)的不同區域,先前的YUV 4:2:0圖像(1910)亦可以不同(例如,若區域在不同時間改變)。類似地,對於當前UUV 4:2:0圖像(1925)的不同區域,先前的YUV 4:2:0圖像(1935)可以不同(例如,若區域在不同時間改變)。
將YUV 4:2:0圖像(1910、1920)與UUV 4:2:0圖像(1925、1935)分割為區域(亦稱為子區域)。區域的尺寸取決於實現。舉例而言,區域的尺寸係為16x16(例如,16x16、32x32、或64x64)的倍數,以促進具有習知編解碼器的實現(例如,使用MB或CTU)。可替代地,區域具有一些其他尺寸。
第20a-20e圖圖示用於選擇性編碼輸入圖像低色度解析度版本與高色度解析度細節的區域的取樣值的示例性決策規則(2000-2004)。在示例性決策規則(2000-2004)中,在多個經譯碼圖像與(在一些情況下)當前輸入圖像中評估區域的一或更多個屬性。當在多個圖像之間評估給定區域的屬性時,評估每一圖像的共同定位區域的屬性。亦即,在每一圖像中,評估圖像中的相應位置且具有相應尺寸的區域的屬性。舉例而言,如第19圖所示,可評估YUV 4:2:0圖像(1920、1910)中的共同定位區域(1922、1912)的屬性。或者,作為另一實例,可評估UUV 4:2:0圖像(1925、1935)的共同定位區域(1926、1936)的屬性。或者,當作出關於當前UUV 4:2:0圖像(1925)的區域(1926)的決策時,可評估輸入圖像的共同定位區域的屬性。
第20a-20e圖圖示對於YUV 4:2:0圖像與當前UUV 4:2:0圖像中的區域在逐區域基礎上作成的決策的示例性決策規則。可替代地,在逐區域基礎上將決策規則應用於當前YUV 4:2:0圖像中的區域,然後在逐區域基礎上將決策規則應用於當前UUV 4:2:0圖像中的區域。1. 第一示例性決策規則 - 變化檢查
第20a圖圖示第一示例性決策規則(2000)。在第一示例性決策規則(2000)的數個階段中,編碼工具檢查給定區域是否靜止(未隨時間變化)。在輸入圖像的低色度解析度版本的區域靜止之後,編碼區域的高色度解析度細節。藉由將色度解析度的增加限制於靜止區域,編碼工具可降低與編碼高色度解析度細節相關聯的位元率,並增加總編碼/解碼速度。
編碼工具可使用數個方式的任一者檢查區域是否靜止。舉例而言,編碼工具計算當前YUV 4:2:0圖像(1920)的區域(1922)的取樣值與先前的YUV 4:2:0圖像( 1910)的區域(1912)的取樣值之間的差,並評估差的大小(例如,檢查是否有任何差為非零)。類似地,編碼工具可計算當前UUV 4:2:0圖像(1925)的區域(1926)的取樣值與先前的UUV 4:2:0圖像(1935)的區域(1936)的取樣值之間的差,並評估差的大小(例如,檢查是否有任何差為非零)。或者,作為另一實例,編碼工具比較當前YUV 4:2:0圖像(1920)的區域(1922)中的一或更多個運動向量(「MV」)值與MV閥值(例如,檢查是否有任何MV值為非零)。類似地,編碼工具可比較當前UUV 4:2:0圖像(1925)的區域(1926)的一或更多個MV值與MV閥值(例如,檢查是否有任何MV值為非零)。
參照第20a圖,根據第一示例性決策規則(2000),編碼工具獲取(2010)下一個區域。編碼工具檢查(2020)區域是否已在經譯碼圖像的YUV 4:2:0子序列中改變。若是,則編碼工具將當前輸入圖像(亦即,當前YUV 4:2:0圖像)的區域的取樣值編碼為低色度解析度版本(2021)。因此,只要區域在YUV 4:2:0子序列中並非靜止,編碼區域的低色度解析度版本。編碼工具檢查(2090)是否完成,若否,則繼續下一個區域。
若區域並未在YUV 4:2:0子序列中改變,則編碼工具檢查(2060)區域是否已在經譯碼圖像的UUV 4:2:0子序列中改變。若是,則編碼工具將當前輸入圖像(亦即,當前UUV 4:2:0圖像)的區域的取樣值編碼為高色度解析度細節(2061)。因此,區域在YUV 4:2:0子序列中靜止之後,編碼區域的高色度解析度細節。然而,在已編碼高色度解析度細節之後,只要高色度解析度細節的區域不改變,就不重新編碼。
在編碼(2061)之後,或者是若區域並未在UUV 4:2:0子序列中改變,編碼工具檢查(2090)是否完成。若否,則編碼工具藉由獲取(2010)下一個區域而繼續。
返回參照第15圖所示的區域資料(1500),對於YUV 4:2:0圖像(1510)的區域的每一者,YUV 4:2:0圖像(1510)的映射(1512)指示區域相較於共同定位區域中的取樣值已編碼的最近的先前YUV 4:2:0的共同定位區域是否改變(「已變更」)或是並未改變(「非已變更」)。對於第一示例性決策規則(2000),這樣的映射(1512)可代表當前YUV 4:2:0圖像(1920)的各別區域是否已改變或並未改變。類似地,對於UUV 4:2:0圖像(1520)的區域的每一者,UUV 4:2:0圖像(1520)的映射(1522)指示區域相較於共同定位區域的取樣值已編碼的最近的先前UUV 4:2:0圖像的共同定位區域是否改變(「已變更」)或是並未改變(「非已變更」)。對於第一示例性決策規則(2000),這樣的映射(1522)可代表當前UUV 4:2:0圖像(1925)的各別區域是否已改變或並未改變。
對於第一示例性決策規則(2000),如參照第20a圖所述,編碼工具可利用與映射(1512、1522)中的索引值一致的方式編碼經譯碼圖像的區域。相應解碼工具可利用與映射(1512、1522)中的索引值一致的方式解碼區域。2. 第二示例性決策規則 - 檢查 YUV 4 2 0 圖像的品質
第20b圖圖示第二示例性決策規則(2001)。除了檢查給定區域隨著時間是否靜止,在第二示例性決策規則(2001)中,編碼工具檢查輸入圖像的低色度解析度版本中的區域的譯碼品質是否是高的。在區域靜止且輸入圖像的低色度解析度版本的品質足夠高之後,編碼給定區域的高色度解析度細節。藉由進一步將色度解析度增加限制於具有高品質的靜止區域,編碼工具可進一步減少與編碼高色度解析度細節相關聯的位元率,並進一步提高整體的編碼/解碼速度。
根據第二示例性決策規則(2001),編碼工具獲取(2010)下一個區域。編碼工具檢查(2020)區域是否已在YUV 4:2:0子序列中改變(見第XI.A.1節)。若是,則編碼工具將當前輸入圖像(亦即,當前YUV 4:2:0圖像)的區域的取樣值以初始品質等級(例如,H.264編碼或H.265編碼的QP=30)編碼(2022)為低色度解析度版本。因此,只要區域在YUV 4:2:0子序列中並非靜止,區域的低色度解析度版本係以初始品質等級編碼。編碼工具檢查(2090)是否完成,若否,則繼續下一個區域。
若區域並未在經譯碼圖像的YUV 4:2:0子序列中改變,則編碼工具檢查(2030)區域的譯碼品質在YUV 4:2:0子序列中是否是高的。舉例而言,編碼工具比較先前的YUV 4:2:0圖像的區域的一或更多個QP值與QP閥值。QP閥值取決於實現(例如,H.264編碼或H.265編碼的16)。若區域的譯碼品質在YUV 4:2:0子序列中不高,則編碼工具將當前輸入圖像(亦即,當前YUV 4:2:0圖像)的區域的取樣值以高品質等級(例如,H.264編碼或H.265編碼的QP=16)編碼(2032)為低色度解析度版本。因此,若區域在YUV 4:2:0子序列中是靜止的,但尚未以高品質等級編碼,則編碼工具增加當前輸入圖像的低色度解析度版本的區域的譯碼品質。編碼工具檢查(2090)是否完成,若否,則繼續下一個區域。
另一方面,若(靜止)區域的譯碼品質在YUV 4:2:0子序列中是高的,則編碼工具檢查(2060)區域是否已在UUV 4:2:0子序列中改變(見第XI.A.1節)。若是,則編碼工具將當前輸入圖像(亦即,當前UUV 4:2:0圖像)的區域的取樣值編碼(2061)為高色度解析度細節。因此,區域在YUV 4:2:0子序列中是靜止的並以高品質等級編碼之後,編碼區域的高色度解析度細節。然而,在已編碼高色度解析度細節之後,只要高色度解析度細節的區域不改變,就不重新編碼。
在編碼(2061)之後,或者是若區域並未在UUV 4:2:0子序列中改變,編碼工具檢查(2090)是否完成。若否,則編碼工具藉由獲取(2010)下一個區域而繼續。
根據第二示例性決策規則(2001),當前輸入圖像(亦即,當前UUV 4:2:0圖像)的高色度解析度細節的區域中的取樣值係以預設的固定品質等級編碼。舉例而言,預設的品質等級係為高品質等級。可替代地,對於如下所述的第三示例性決策規則(2002),高色度解析度細節的區域中的取樣值可以用不同的品質級別編碼。
根據第二示例性決策規則(2001),輸入圖像的低色度解析度版本的區域中的取樣值可以用二個不同的品質級別(初始品質與高品質)編碼。可替代地,輸入圖像的低色度解析度版本的區域中的取樣值可利用在達到完全品質(在該點編碼高色度解析度細節的區域)之前逐漸增加品質的額外檢查點,以用更多的品質級別編碼。3. 第三示例性決策規則 - 檢查 YUV 4 2 0 圖像與 UUV 4 2 0 圖像的品質
第20c圖圖示第三示例性決策規則(2002)。第三示例性決策規則(2002)係在編碼高色度解析度細節的區域中的取樣值時,藉由支援多個品質級別而延伸第二示例性決策規則(2001)。
第三示例性決策規則(2002)的初始階段(2010、2020、2022、2030、2032)如在第二示例性決策規則(2001)中操作。若用於YUV 4:2:0子序列的(靜止)區域的譯碼品質是高的,則編碼工具檢查(2060)區域是否已在UUV 4:2:0子序列中改變(見第XI.A.1節)。若是,則編碼工具將當前輸入圖像(亦即,當前UUV 4:2:0圖像)的區域的取樣值以初始品質等級(例如,H.264編碼或H.265編碼的QP=30)編碼(2062)為高色度解析度細節。因此,區域在YUV 4:2:0子序列中是靜止的並以高品質等級編碼之後,區域的高色度解析度細節首先以初始品質等級編碼。
若區域並未在UUV 4:2:0子序列中改變,則編碼工具檢查(2070)區域的譯碼品質在UUV 4:2:0子序列中是否是高的。舉例而言,編碼工具比較先前的UUV 4:2:0圖像中的區域的一或更多個QP值與QP閥值。QP閥值取決於實現(例如,H.264編碼或H.265編碼的16)。若區域的譯碼品質在UUV 4:2:0子序列中不高,則編碼工具將區域的取樣值以高品質等級(例如,H.264編碼或H.265編碼的QP=16)編碼(2072)為高色度解析度細節(亦即,用於當前UUV 4:2:0圖像)。因此,若區域在UUV 4:2:0子序列中是靜止的,但尚未以高品質等級編碼,則編碼工具增加高色度解析度細節的區域的譯碼品質。編碼工具檢查(2090)是否完成,若否,則繼續下一個區域。
另一方面,若用於UUV 4:2:0子序列的(靜止)區域的譯碼品質是高的,則編碼工具略過區域的進一步編碼。在高色度解析度細節已經用高品質等級編碼之後,只要高色度解析度細節的區域不改變,就不重新編碼。編碼工具檢查(2090)是否已經完成。若否,則編碼工具藉由獲取(2010)下一個區域而繼續。
舉例而言,在體現於第三示例性決策規則(2002)的進展中,YUV 4:2:0圖像中的經改變區域首先以初始品質級別編碼。若區域成為靜止,則增加YUV 4:2:0子序列中的區域的譯碼品質。在YUV 4:2:0子序列中的靜止區域已經用高品質等級編碼之後,UUV 4:2:0圖像中的區域係以初始品質等級編碼。只要區域是靜止的,進一步增加UUV 4:2:0子序列中的區域的譯碼品質,直到在UUV 4:2:0子序列中到達高品質等級。
根據第三示例性決策規則(2002),高色度解析度細節的區域中的取樣值可以用二個不同的品質級別(初始品質與高品質)編碼。可替代地,高色度解析度細節的區域中的取樣值可利用在達到完全品質之前逐漸增加品質的額外檢查點,以用更多的品質級別編碼。
返回參照第16圖所示的區域資料(1600),YUV 4:2:0圖像(1610)的映射(1612)指示,對於YUV 4:2:0圖像(1610)的每一區域,(1)區域相較於共同定位區域的取樣值已編碼的最近的先前YUV 4:2:0圖像的共同定位區域是否改變(「已變更」)或者並未改變(「非已變更」),以及(2)區域是否已經用高品質等級編碼。對於第三示例性決策規則(2002),這樣的映射(1612)可代表當前YUV 4:2:0圖像(1920)的各別區域是否改變或者並未改變,以及各別區域是否已經用高品質等級編碼。類似地,UUV 4:2:0圖像(1620)的映射(1622)指示,對於UUV 4:2:0圖像(1620)的每一區域,(1)區域相較於共同定位區域的取樣值已編碼的最近的先前UUV 4:2:0圖像的共同定位區域是否改變(「已變更」)或者並未改變(「非已變更」),以及(2)區域是否已經用高品質等級編碼。對於第三示例性決策規則(2002),這樣的映射(1622)可代表當前UUV 4:2:0圖像(1925)的各別區域是否改變或者並未改變,以及各別區域是否已經用高品質等級編碼。
對於第三示例性決策規則(2002),如參照第20c圖所述,編碼工具可利用與映射(1612、1622)中的索引值一致的方式編碼經譯碼圖像的區域。相應解碼工具可利用與映射(1612、1622)中的索引值一致的方式解碼區域。舉例而言,若區域在YUV 4:2:0子序列中靜止,在YUV 4:2:0子序列中已經用高品質編碼,且在UUV 4:2:0子序列中並非靜止,則以初始品質編碼/解碼當前UUV 4:2:0圖像的區域的取樣值。4. 第四示例性決策規則 - 檢查內容分類
第20d圖圖示第四示例性決策規則(2003)。第四示例性決策規則(2003)藉由亦檢查區域的內容分類而延伸第一示例性決策規則(2000)。
第四示例性決策規則(2003)的一些階段(2010、2020、2021、2060、2061)如在第一示例性決策規則(2000)中操作。然而,檢查新條件讓高色度解析度細節的編碼更選擇性。藉由進一步將色度解析度的增加限制到具有某些類型的內容的區域,編碼工具可進一步減少與編碼高色度解析度細節相關聯的位元率,並進一步提高整體的編碼/解碼速度。
在第四示例性決策規則(2003)中,若區域並未在YUV 4:2:0子序列中改變,則編碼工具檢查(2040)區域是否包括文本內容或高色度內容。若是,則編碼工具前進到下一階段(2060)。否則,編碼工具檢查(2090)是否完成,若否,藉由獲取(2010)下一個區域而繼續。因此,區域的高色度解析度細節僅在區域的分類指示區域包括文本內容或其他高色度內容時編碼。
為了估計區域是否包括文本內容,編碼工具可使用文本分類的任何可取得方式。舉例而言,編碼工具使用將區域分類為包括文本內容或映像內容的方式。編碼用於文本內容(但並非用於映像內容)的高色度解析度細節係利用觀察到更高的色度解析度通常有益於文本內容,但是對於映像內容並不明顯。
為了估計區域是否否則包括高色度內容,編碼工具可評估相較於顯著性閥值,色度取樣值是否顯著(例如,比較色度取樣值平均絕對值與閥值)。以此方式,編碼工具可考慮區域中的顏色的混合。若區域主要包含黑色與白色值,則色度取樣值將具有低幅度。另一方面,若區域主要包括紅色與綠色值,則色度取樣值通常將具有更高的幅度。編碼用於高色度內容(但並非用於低色度內容)的高色度解析度細節係利用觀察到更高的色度解析度通常有益於高色度內容,但是對於低色度內容較少幫助。
在第20d圖中,第四示例性決策規則(2003)延伸第一示例性決策規則(2000)。可替代地,如在本節中描述,延伸第二示例性決策規則(2001)或第三示例性決策規則(2002),以檢查區域的內容分類。5. 第五示例性決策規則 - 檢查穩定性的週期
第20e圖圖示第五示例性決策規則(2004)。第五示例性決策規則(2004)藉由亦檢查在編碼高色度解析度細節之前區域已靜止一段閥值週期(例如,圖像的計數),以延伸第一示例性決策規則(2000)。
第五示例性決策規則(2004)的一些階段(2010、2020、2021、2060、2061)如在第一示例性決策規則(2000)中操作。然而,檢查新條件讓高色度解析度細節的編碼更選擇性。藉由進一步將色度解析度的增加限制於在圖像的閥值計數期間靜止的區域,編碼工具可進一步減少與編碼高色度解析度細節相關聯的位元率,並進一步提高整體的編碼/解碼速度。
在第五示例性決策規則(2004)中,若區域並未在YUV 4:2:0子序列中改變,則編碼工具檢查(2050)區域是否已在至少n 個YUV 4:2:0圖像中未改變,其中n 指示圖像的閥值計數。若是,則編碼工具前進到下一個階段(2060)。否則,編碼工具檢查(2090)是否完成,若否,藉由獲取(2010)下一個區域而繼續。因此,僅若區域在YUV 4:2:0子序列中在圖像的閥值計數期間靜止,則編碼區域的高色度解析度細節。
圖像的閥值計數取決於實現。舉例而言,圖像的閥值計數為1張圖像、3張圖像、5張圖像、10張圖像、或一些其他數量的圖像。滿足閥值計數的等待執行輸入圖像的低色度解析度版本的取樣值的編碼與高色度解析度細節的取樣值的編碼之間的延遲時間。延遲時間可讓可取得位元率的需求平穩,並讓編碼與解碼期間的計算資源的需求平穩。在區域靜止一段閥值期間之後編碼高色度解析度細節亦利用觀察到更高的色度解析度通常有益於靜止內容,但是對於移動內容並不明顯。
在第20e圖中,第五示例性決策規則(2004)延伸第一示例性決策規則(2000)。可替代地,如本節所述,延伸第二示例性決策規則(2001)或第三示例性決策規則(2002),以檢查在編碼高色度解析度細節之前區域已靜止一段閥值週期(例如,圖像的計數)。編碼工具亦可結合如本節所述之檢查新條件,以檢查內容分類(如在第四示例性決策規則(2003)中所述)。B. 區域選擇的示例性技術
第21圖圖示用於在選擇性編碼高色度解析度細節的區域的取樣值時應用決策規則的通用技術(2100)。視訊編碼工具(如參照第4圖所述之編碼器系統(400))或另一編碼工具可執行技術(2100)。
編碼工具分別將根據輸入圖像格式組織的輸入圖像的取樣值封包(2110)到根據第一與第二經譯碼圖像格式組織的第一與第二經譯碼圖像。第一與第二經譯碼圖像格式可以是相同的經譯碼圖像格式或不同的經譯碼圖像格式(例如,不同的色度取樣率)。一般情況下,輸入圖像格式具有第一色度取樣率,以及第一與第二經譯碼圖像格式中之至少一者具有較第一色度取樣率更低的第二色度取樣率。舉例而言,第一色度取樣率係為4:4:4,而第二色度取樣率係為4:2:0。第一經譯碼圖像包含輸入圖像的低色度解析度版本的取樣值。第二經譯碼圖像包含輸入圖像的高色度解析度細節的取樣值。舉例而言,編碼工具使用任何參照第8a-8e圖所述之方式或另一方式,以將取樣值封包到第一與第二經譯碼圖像。
編碼工具編碼(2120)第一與第二經譯碼圖像,藉此產生經編碼資料。對於編碼,對於一或更多個區域中之每一者,編碼工具評估區域的一或更多個屬性。舉例而言,編碼工具評估區域中的改變的程度、區域的經編碼資料的品質、及/或區域的內容分類。可替代地,編碼工具評估區域的其他及/或附加屬性。編碼工具至少部分依據評估結果決定是否編碼輸入圖像的高色度解析度細節的區域中的取樣值,以作為第二經譯碼圖像的一部分。編碼工具亦可至少部分依據評估結果決定是否編碼輸入圖像的低色度解析度版本的區域中的取樣值,以作為第一經譯碼圖像的一部分。如第IX節所述,第一與第二經譯碼圖像可編碼為經譯碼圖像的不同子序列的一部分。在極端的情況下,第一與第二經譯碼圖像中之每一者係作為單一區域處理。編碼工具輸出(2130)經編碼資料,包括第一與第二經譯碼圖像的一或二者的經編碼資料。
舉例而言,對於區域的一個屬性,編碼工具評估在第一與第二經譯碼圖像與最近的區域已編碼的先前圖像之間的區域的改變的程度。為了評估區域中的改變的程度,編碼工具可以,例如:(a)計算經譯碼圖像的區域中的取樣值與最近的區域已編碼的先前圖像(例如,用於YUV 4:2:0圖像,或UUV 4:2:0圖像)中的取樣值之間的差,以及評估的差的幅度;及/或(b)比較區域(例如,用於YUV 4:2:0圖像)中的一或更多個MV值與MV閥值。可替代地,在一些其他方式,編碼工具可評估區域中的改變的程度。
當評估區域中的改變的程度時,編碼工具可比較區域在低色度解析度版本未改變期間的圖像計數與閥值計數。因此,編碼器可決定區域是否在最後3張圖像、5張圖像、10張圖像、或一些其他數量的圖像期間未改變。
作為另一實例,對於區域的另一屬性,編碼工具評估區域的經編碼資料的品質是否滿足品質的閥值等級。為了評估區域中的經編碼資料的品質,編碼工具可以比較區域(例如,最近的區域已編碼的先前圖像的低色度解析度版本)中的一或更多個QP值與QP閥值。若QP值等於或低於QP閥值,則區域的經編碼資料滿足品質的閥值等級。否則,區域的經編碼資料未滿足品質的閥值等級。可替代地,以一些其他方式,編碼工具可評估區域的經編碼資料的品質是否滿足品質的閥值等級。
作為另一實例,對於區域的另一屬性,編碼工具分類區域中的內容。舉例而言,編碼工具將區域中的內容分類為文本內容或非文本內容。或者,編碼工具將區域中的內容分類為高色度內容(其中相較於取決於實現的顯著性閥值,色度取樣值是顯著的)或低色度內容(其中相較於顯著性閥值,色度取樣值為不顯著)。可替代地,以一些其他方式,編碼工具可分類區域中的內容。
區域中的各種屬性可以結合考慮,以用於YUV 4:2:0子序列及/或UUV 4:2:0子序列。舉例而言,編碼工具應用如第XI.A.節所述的多組決策規則中之一者。
返回到第21圖,編碼工具可重複用於一或更多個其他輸入圖像中之每一者的技術(2100)。在一些情況下,第二經譯碼圖像可能被丟棄(並因此而未編碼),而使得沒有第二經譯碼圖像的經編碼資料被輸出。第一經譯碼圖像或第二經譯碼圖像(或其區域)亦可利用零運動略過,而使得沒有經譯碼圖像(或區域)的經編碼資料被輸出,而經譯碼圖像(或區域)係重複子序列中的先前的經譯碼圖像。因此,當編碼來自輸入圖像的第一與第二經譯碼圖像,編碼工具可產生不用於第一經譯碼圖像的經編碼資料,用於第一經譯碼圖像的一些區域或所有第一經譯碼圖像的經編碼資料,以及編碼工具可產生不用於第二經譯碼圖像的經編碼資料,用於第二經譯碼圖像的一些區域或所有第二經譯碼圖像的經編碼資料。XII. 色度取樣值的濾波
本節介紹輸出圖像的高色度解析度區域之中與周圍的濾波的範圍的創新。舉例而言,本節描述將恢復濾波器應用到輸出圖像的高色度解析度區域的方式,以補償先前在色度子取樣期間執行反鋸齒濾波,但略過將恢復濾波器應用到輸出圖像的低色度解析度區域。本節亦描述將解區塊濾波器應用到輸出圖像的色度取樣值的方式,該方式可藉由減輕在低色度解析度區域與高色度解析度區域之間的邊界的可察覺異常,而改善視覺品質。最後,本節描述將去環濾波器應用到輸出圖像的色度取樣值的方式,該方式可藉由減輕由於高色度解析度細節的低品質譯碼的可察覺異常,而改善視覺品質。A. 反鋸齒濾波器與相應恢復濾波器。
較高解析度色度取樣格式的訊框的色度取樣值的簡單子取樣可能引導出下取樣的色度取樣值的鋸齒異常。為了減輕鋸齒,封包(見第VIII節)可包括濾波色度取樣值的操作。這種濾波可稱為反鋸齒濾波。然後,相應解封包可包括補償色度取樣值的反鋸齒濾波的恢復操作。本節描述反鋸齒濾波與恢復濾波操作的實例。
當YUV 4:4:4圖像分成YUV 4:2:0格式的二個圖像(亦即,分成YUV 4:2:0圖像與UUV 4:2:0圖像,如第VIII節所解釋)時,反鋸齒濾波可以僅在YUV 4:2:0圖像用於顯示時有助於改善品質。此舉可允許解碼器忽略UUV 4:2:0圖像,而不需冒著由色度資訊的簡單子取樣造成的鋸齒異常的風險。不利用反鋸齒濾波(亦即,在由來自YUV 4:4:4圖像的色度取樣值的直接子取樣取得YUV 4:2:0圖像的色度取樣值時),鋸齒異常可以是僅在YUV 4:2:0圖像用於產生輸出時在一些內容上看到(例如,在ClearType文本內容的厚度中的扭曲)。另一方面,當解碼器結合UUV 4:2:0圖像與YUV 4:2:0圖像時,解碼器可執行恢復濾波操作,以作為解封包的一部分,以從(YUV 4:2:0圖像的)經濾波的色度取樣值與(UUV 4:2:0圖像的)其他色度取樣值恢復YUV 4:4:4圖像的原始色度取樣值(在由於有損壓縮的近似限制內)。
在一些示例性實現中,限制反鋸齒濾波操作與恢復濾波操作,而使得他們僅影響YUV 4:2:0的一部分的色度取樣值。亦即,經濾波的取樣值係為YUV 4:2:0圖像的色度分量的一部分,而UUV 4:2:0圖像的一部分的取樣值並未濾波。
濾波操作的細節可取決於色度取樣位置類型(指示利用亮度取樣格的色度取樣格對齊)。在色度子取樣期間可使用許多不同類型的濾波器。對於給定色度取樣位置類型,若色度取樣值對準特定方向(水平或垂直)的亮度取樣值,然後奇數分接對稱濾波器(如[1 2 1]/4或[0.25 0.5 0.25],以及捨入操作)係用於在該方向濾波色度。另一方面,若色度取樣值並未對準特定方向(水平或垂直)的亮度取樣值,且色度取樣格位置係在特定方向(水平/垂直)的亮度取樣位置之間的中心,然後偶數分接對稱濾波器(通常為[1 1]/2或[0.5 0.5],以及捨入操作)係用於在該方向濾波色度。後者的情況下的另一可能的濾波器選擇為[1 3 3 1]/8或[0.125 0.375 0.375 0.125],以及捨入操作。稍後在本節中呈現的實例使用偶數分接對稱濾波器,但可替代地,可使用奇數分接對稱濾波器或其他濾波器。
通常作出恢復濾波操作的選擇,而使得恢復濾波操作補償反鋸齒濾波操作。在一些情況下,恢復濾波直接反轉反鋸齒濾波,而在其他情況下,恢復濾波僅大致上反轉反鋸齒濾波,如下面所解釋。
在第22a與22b圖中,在反鋸齒濾波之後,色度取樣值在水平或垂直方向上不與亮度取樣值對準,並且因此在水平及垂直方向二者應用濾波器[0.5 0.5],以用於反鋸齒濾波。第22a圖圖示應用反鋸齒濾波器與相應恢復濾波器以在四個位置使用色度取樣值的處理流程(2201)。第22b圖圖示應用替代反鋸齒濾波器與相應恢復濾波器以在三個位置使用色度取樣值的處理流程(2202)。
第22a圖圖示來自YUV 4:4:4圖像的U444 頻道的四個色度取樣值U0、U1、U2、及U3。四個色度取樣值的位置係為U0=U444 (2x,2y)、U1=U444 (2x+1,2y)、U2=U444 (2x,2y+1)、及U3=U444 (2x+1,2y+1)。作為封包操作的一部分,應用反鋸齒濾波器以決定將取代YUV 4:2:0圖像中的U0的經濾波的像素值。由於此濾波,在位置U444 (2x,2y)的來自YUV 4:4:4圖像的取樣值U0並不直接表示在YUV 4:2:0圖像中;相反地,經濾波的取樣值UF係分配在YUV 4:2:0圖像中的相應位置。YUV 4:4:4圖像中的分別在位置U444 (2x+1,2y)、U444 (2x,2y+1)、及U444 (2x+1,2y+1)的色度取樣值U1、U2、及U3仍然直接表示在UUV 4:2:0圖像中。
在一般情況下,對於反鋸齒濾波操作,不同的權重可分配給不同取樣位置。用於YUV 4:4:4圖像的位置U444 (2x,2y)的經濾波的取樣值UF可產生如下:其中對於YUV 4:4:4的圖像的寬度W與高度H ,(x,y)的範圍係為[0,-1]×[0,-1],且其中α、β、γ、及δ係為取決於實現的加權因子。若加權因子都等於1,則經濾波的取樣值UF係為簡單的或U0、U1、U2、及U3的平均值。否則,若因子α、β、γ、及δ中之任何者具有相同值,則可消除某些乘法操作。
在沒有量化誤差、捨入誤差等的情況下,藉由直接反轉在反鋸齒濾波中執行的操作,可完美重建原始取樣值U0。然而,當考慮量化誤差時,可建議使用小於1的β、γ、及δ的值,以減少可察覺異常。在一般情況下,β、γ、及δ應在0.0到1.0的範圍中、而當量化步長較大時,β、γ、及δ應該較小。使用β、γ、及δ的高值可能加劇由於有損壓縮所引導出的異常。α、β、γ、及δ的值可使用交叉相關分析而設計以用於條件最佳化。
返回到第22a圖,將色度取樣值分離到經編碼的經譯碼圖像(例如,YUV 4:2:0圖像與UUV 4:2:0圖像)。在傳輸之後,解碼(重建)經譯碼圖像,然後解封包到輸出圖像。經重建的取樣值UF'、U1'、U2'、及U3'係分別為YUV 4:4:4圖像的U444 頻道在位置U444 (2x,2y)、U444 (2x+1,2y)、U444 (2x,2y+1)、及U444 (2x+1,2y+1)的經重建的色度取樣值(「'」標記指示從(可能有損)譯碼、計算量化的效果、捨入等的重建)
作為解封包處理的一部分,色度取樣值U0的重建版本U0'可從經重建的經濾波取樣值UF'與其他經重建的色度取樣值U1'、U2'、及U3'恢復。用於YUV 4:4:4圖像的位置U444 (2x,2y)的經重建的取樣值U0'為可恢復如下:其中(x,y)的範圍係為[0,-1]×[0,-1],且其中α、β、γ、及δ係為取決於實現的加權因子。若加權因子都等於1,則經重建的取樣值U0'係為簡單的
舉例而言,對於反鋸齒濾波,利用加權值α =β=γ=δ=1濾波用於位置(2x,2y)、(2x+1,2y)、(2x,2y+1)、及(2x+1,2y+1)的色度取樣值29、23、27、及10,以產生色度取樣值22.25,並捨入到22。經濾波的色度取樣值22係用於代替原始色度取樣值29。在恢復濾波期間,用於位置(2x,2y)的取樣值係重建為88-23-27-10=28。原始取樣值(29)與經重建的取樣值(28)之間的差展示由於反鋸齒濾波的精度損失。
第22b圖圖示來自YUV 4:4:4圖像的U444 頻道的相同的四個色度取樣值U0、U1、U2、及U3。第22b圖所示的處理流程反映第22a圖所示的處理流程,但應用不同的反鋸齒濾波器與恢復濾波器。在第22b圖中,反鋸齒濾波器與恢復濾波器在三個位置使用色度取樣值,這在邊緣貫穿色度取樣值U0、U1、及U2,但不包括U3時可提供更好的平穩品質。
作為封包操作的一部分,在第22b圖所示的方式中,用於YUV 4:4:4圖像的位置U444 (2x,2y)的經濾波的取樣值UF可產生如下:其中對於YUV4:4:4的圖像的寬度W與高度H ,(x,y)的範圍係為[0,-1]×[0,-1],且其中α、β、γ、及δ係為取決於實現的加權因子。若加權因子都等於1,則經濾波的取樣值UF係為簡單的或U0、U1、及U2的平均。加權因子α、β、及γ的值的選項係參照第22a圖描述。
作為解封包處理的一部分,色度取樣值U0的重建版本U0'可從經重建的經濾波的取樣值UF'與其他經重建的色度取樣值U1'與U2'恢復。用於YUV 4:4:4圖像的位置U444 (2x,2y)的經重建的取樣值U0'可恢復如下:其中(x,y)的範圍係為[0,-1]×[0,-1],且其中α、β、γ、及δ係為取決於實現的加權因子。若加權因子都等於1,則經重建的取樣值U0'係為簡單的
舉例而言,對於反鋸齒濾波,利用加權值α =β=γ=1濾波用於位置(2x,2y)、(2x+1,2y)、及(2x,2y+1)的色度取樣值29、23、及27,以產生色度取樣值26.33,並捨入為26。經濾波的色度取樣值26係用於代替原始色度取樣值29。在恢復濾波期間,用於位置(2x,2y)的取樣值重建為78-23-27=28。原始取樣值(29)與經重建的取樣值(28)之間的差展示由於反鋸齒濾波的濾波的精度損失。然而,請注意,由於忽略離群取樣值U3的貢獻,利用第22b圖的三位置濾波器的經濾波的值(26)比利用第22a圖的四位置濾波器的經濾波的值(22)更接近原始取樣值(29)。
第22b圖所示的三位置濾波器可選擇性應用於「邊緣感知」的方式。如第22c圖所示,在封包操作期間,編碼工具可檢查條件,以指示是否應用三位置反鋸齒濾波器或四位置反鋸齒濾波器。舉例而言,編碼工具檢查(2210)U1+U2-2*U3的絕對值是否大於閥值,其中閥值取決於實現(例如,0、10、或20)。若是,則編碼工具應用(2230)第22b圖所示的三位置反鋸齒濾波器。否則,編碼工具應用(2220)第22a圖所示的四位置反鋸齒濾波器。閥值可在實驗中決定。在一般情況下,具有較高閥值讓三位置濾波器較不會被應用。
如第22d圖所示,在相應解封包操作期間,解碼工具可檢查條件,以指示是否應用三位置恢復濾波器或四位置恢復濾波器。舉例而言,解碼工具檢查(2240)U1'+U2'-2*U3'的絕對值是否大於閥值,其中閥值取決於實現(例如,0、10、或20)。若是,則解碼工具應用(2260)第22b圖所示的三位置恢復濾波器。否則,解碼工具應用(2250)第22a圖所示的四位置恢復濾波器。通常,編碼工具(依據原始值U1、U2、及U3作出決策)與解碼工具(依據經重建的值U1'、U2'、及U3'作出決策)作出相同決策,但由於原始值與經重建的值之間的差,而可能在一些色度取樣值中作出不同決策。非相同的決策可能稍微影響品質,但不影響隨後的解碼。可替代地,編碼工具可訊令資訊,以指示要應用的恢復濾波器。
儘管第22a-22d圖圖示來自YUV 4:4:4圖像的U444 頻道的色度取樣值,來自YUV 4:4:4圖像的V444 頻道的色度取樣值可以用相同方式濾波及重建。
可替代地,封包與解封包期間的濾波操作並不限於YUV 4:2:0圖像的一部分的YUV 4:4:4圖像的色度取樣值。相反地,亦執行濾波操作,以用於UUV 4:2:0圖像的一部分的YUV 4:4:4圖像的色度取樣值。這種附加的濾波操作可使用與作為YUV 4:2:0圖像的一部分的YUV 4:4:4圖像的色度取樣值的抗鋸齒與恢復濾波不同的操作。
在反鋸齒濾波操作與恢復濾波操作的前述實例中,在反鋸齒濾波期間使用平均濾波,而在恢復期間中使用相應濾波。可替代地,反鋸齒濾波操作與恢復濾波操作可實現變換/反轉變換對。舉例而言,變換/反轉變換對可以是小波變換、提升變換、及其他轉換的類別中之一者。具體的變換亦可取決於使用情況場景而設計。或者,反鋸齒濾波與恢復濾波可使用其他濾波器結構與支援的其他濾波器區域或其他濾波器分接,或使用可調適於內容及/或保真度的濾波(例如,可調適於用於編碼的量化步長)。因此,對於呈現於本案之實例,第一經譯碼圖像與第二經譯碼圖像的取樣值可以是小波係數或在像素位置的值。二進(dyadic)乘法與除法操作可利用位元平移操作實現。正規化(normalization)可以略過(例如,當經譯碼圖像具有更高的取樣位元深度,如在下一個段落中所述),或者推遲到最後階段。對於關於濾波的這些選項與其他選項的附加細節,參見美國專利申請案公開號2014/0112394 A1。
在一些示例性實現中,經譯碼圖像的表示及/或壓縮可使用比輸入圖像更高的取樣位元深度。舉例而言,輸入圖像的取樣位元深度係為每一取樣8位元,而經譯碼圖像的取樣位元深度係為每一取樣10位元。此舉可幫助減少應用反鋸齒濾波操作與恢復濾波操作期間的精度損失。或者,此舉可幫助在使用有損壓縮編碼經譯碼圖像時,到達更高等級的保真度。舉例而言,若輸入圖像具有每一取樣8位元的取樣位元深度,而經譯碼圖像具有每一取樣10位元的取樣位元深度,則每一取樣10位元的位元深度可維持在編碼器與解碼器的全部或大部分的內部模組中。在接收端將內容解封包到輸出圖像之後,取樣位元深度可減少到每一取樣8位元(若有需要)。更一般而言,輸入圖像格式的輸入圖像的取樣值可具有第一位元深度(如每一取樣8、10、12、或16位元),而經譯碼圖像格式的經譯碼圖像的取樣值(之後的封包操作)具有比第一位元深度更高的第二位元深度。因此,對於本案所呈現的實例,第一經譯碼圖像與第二經譯碼圖像的取樣值可具有不同的位元深度。B. 選擇性將恢復濾波器應用到高色度解析度區域
根據本節所述之方式,視訊處理工具應用輸出圖像的高色度解析度區域中的恢復濾波器,但略過輸出圖像的低色度解析度區域中的恢復濾波器的應用。以此方式,視訊處理工具可以選擇性補償先前在色度子取樣期間執行的反鋸齒濾波。此舉允許視訊處理工具在執行4:4:4顏色轉換之前或同時,應用高色度解析度區域中的恢復濾波器,以恢復來自輸入圖像的原始色度取樣值(在量化誤差、捨入誤差等內)。另一方面,對於低色度解析度區域,視訊處理工具可以不對於習知4:2:0顏色轉換應用恢復濾波器。
第23圖圖示用於選擇性應用輸出圖像的一或更多個高色度的解析度區域中的恢復濾波器的通用技術(2300)。視訊解碼工具(如參照第5圖所述的解碼器系統(500))或另一解碼工具可執行技術(2300)。
解碼工具接收(2310)經編碼資料,並解碼(2320)根據第一與第二經譯碼圖像格式組織的第一與第二經譯碼圖像(可以是相同的經譯碼圖像格式或不同經譯碼圖像格式)。第一經譯碼圖像包含用於輸出圖像的低色度解析度版本的取樣值。第二經譯碼圖像包含用於輸出圖像的高色度解析度細節的取樣值。
解碼工具將第一與第二經譯碼圖像的取樣值解封包(2330)到根據輸出圖像格式組織的輸出圖像。舉例而言,解碼工具反轉任何參照第8a-8e圖所述之方式或另一方式,以解封包來自第一與第二經譯碼圖像的取樣值。在一些情況下,第二經譯碼圖像僅包括經譯碼圖像的一部分的取樣值(例如,經譯碼圖像的一或更多個區域,但不是經譯碼圖像的所有區域),這將影響解封包期間重排哪些取樣值。更特定言之,根據第23圖所示之技術(2300),輸出圖像的高色度解析度區域取決於第一與第二經譯碼圖像,但輸出圖像的低色度解析度區域僅取決於第一經譯碼圖像。亦即,第二經譯碼圖像包括用於高色度解析度區域的取樣值,而不是用於低色度解析度區域。
作為解封包(2330)的一部分,解碼工具將恢復濾波器應用到高色度解析度區域的多個色度取樣值。舉例而言,對於給定色度取樣值(在高色度解析度區域的色度取樣值中),以及對於輸出圖像的給定位置,解碼工具依據給定色度取樣值與輸出圖像中的相鄰位置的其他色度取樣值,恢復給定位置的原始色度取樣值的重建。其他色度取樣值可以是三個色度取樣值(例如,用於參照第22a圖所述的四位置恢復濾波器)、二個色度取樣值(例如,用於參照第22b圖所述的三位置恢復濾波器)、或一些其他數量的色度取樣值。或者,解碼工具可以在二或多個恢復濾波器之間切換。舉例而言,對於給定色度取樣值,解碼工具評估取決於相鄰位置的其他色度取樣值的條件的條件,並取決於評估結果選擇使用其他色度取樣值中的三個(如第22a圖)或其他色度取樣值中的二個(如第22b圖),以調整給定色度取樣值。可替代地,解碼工具將另一恢復濾波器應用到高色度解析度區域的色度取樣值。
作為解封包(2330)的一部分,解碼工具略過將恢復濾波器應用到低色度解析度區域的多個色度取樣值。代替於應用恢復濾波器,解碼工具可將低通濾波器應用到低色度解析度區域的色度取樣值。舉例而言,解碼工具使用低通濾波器藉由在來自第一經譯碼圖像的經重建色度取樣值之間內插,以產生用於輸出圖像中的位置的色度取樣值(代替缺少的高色度解析度細節)。
解碼工具可以重複技術(2300),以用於一或更多個其他輸出圖像的每一者。在一些情況下,第二經譯碼圖像可被丟棄(並因此而未編碼),而使得沒有第二經譯碼圖像的經編碼資料被接收或解碼,在這種情況下,不應用恢復濾波器。
可替代地,即使在執行反鋸齒濾波時,解碼工具可選擇性略過高色度解析度區域的恢復濾波操作。舉例而言,解碼工具可略過恢復濾波,以減少解碼與播放的計算負荷。C. 將解區塊濾波器應用到低與高色度解析度區域的邊界之間
當輸出圖像包括高色度解析度區域與低色度解析度區域時,在二個區域之間可能有明顯的不連續性。不連續性可以是二個區域的尖銳邊緣或接縫,可能在輸出圖像的平穩區域或逐漸改變區域中尤其明顯。解區塊濾波器可使用低通濾波以平穩不連續性。
根據本節所述之方式,視訊處理工具將解區塊濾波器應用到輸出圖像的低色度解析度區域與高色度解析度區域之間的邊界的色度取樣值。應用解區塊濾波器可藉由減少邊界的壓縮異常以改善視覺品質。舉例而言,解區塊濾波器混合邊界的不同側的取樣值以平穩邊界的可察覺異常的不連續性。
第24圖圖示輸出圖像(2401)的低與高色度解析度區域之間的邊界的解區塊濾波的態樣。輸出圖像(2401)包括具有低色度解析度的二個區域(2410、2440)與具有高色度解析度的二個區域(2420、2430)。水平邊界(2421)分隔低色度解析度區域(2440)與相鄰的高色度解析度區域(2420)。另一水平邊界(2431)分隔另一低色度解析度區域(2410)與相鄰的高色度解析度區域(2430)。二個垂直邊界(2422、2432)分隔低色度解析度區域(2410、2440)與相鄰的高色度解析度區域(2420、2430)。
對於給定垂直邊界(2422、2432),視訊處理工具將解區塊濾波應用到交叉於垂直邊界(2422、2432)的色度取樣值的一或更多個(水平)線。對於給定水平邊界(2421、2431),視訊處理工具將解區塊濾波應用到交叉於水平邊界(2421、2431)的色度取樣值的一或更多個(垂直)線。解區塊濾波器可以是標準(如H.264、H.265、或VC-1)或專有格式(如VP8或VP9)中指定用於迴路濾波或後處理的解區塊濾波器,或者可以是另一解區塊濾波器。
解區塊濾波器在不合適地使用時可能引導出明顯的模糊。可調適解區塊濾波器可以改變如何及何時應用解區塊濾波器,以平衡移除異常不連續性的傾向與引導出不期望模糊的傾向。通常,解區塊濾波器係為內容可調適。取決於交叉於邊界的給定線中的某些取樣值的值(及/或環繞濾波的站點的其他本地資訊),可將解區塊濾波器應用或不應用到給定線中的色度取樣值。舉例而言,視訊處理工具可執行解區塊濾波,以在色度取樣值的平穩或相對平穩的線中平穩出現為(依據取樣值)異常不連續性者。然而,對於在圖像的內容中出現為(依據取樣值)實際邊緣的不連續性,視訊處理工具可略過解區塊濾波。取決於交叉於邊界的給定線中的某些取樣值的值(及/或環繞濾波的站點的其他本地資訊),在給定線中應用於色度取樣值的解區塊濾波器的強度亦可能改變(例如,藉由改變濾波器的濾波器係數或改變濾波多少色度取樣值)。
視訊處理工具可以在輸出圖像的低與高色度解析度區域之間的邊界自動使用解區塊濾波。或者,解區塊濾波的使用(或強度)可透過設定(例如,使用者設定或應用設定)控制。或者,解區塊濾波的使用(或強度)可利用訊令為位元串流中的元資料的一或更多個語法元件(稱為「濾波提示」)指定。
第25圖示用於在輸出圖像的低與高色度解析度區域之間的一或更多個邊界應用解區塊濾波器的通用技術(2500)。視訊解碼工具(如參照第5圖所述的解碼器系統(500))或另一解碼工具可執行技術(2500)。
解碼工具接收(2510)經編碼資料,並解碼(2520)根據第一與第二經譯碼圖像格式組織的第一與第二經譯碼圖像(可以是相同的經譯碼圖像格式或不同經譯碼圖像格式)。第一經譯碼圖像包含用於輸出圖像的低色度解析度版本的取樣值。第二經譯碼圖像包含用於輸出圖像的高色度解析度細節的取樣值。
解碼工具將第一與第二經譯碼圖像的取樣值解封包(2530)到根據輸出圖像格式組織的輸出圖像。舉例而言,解碼工具反轉任何參照第8a-8e圖所述的方式或另一方式,以解封包來自第一與第二經譯碼圖像的取樣值。在一些情況下,第二經譯碼圖像僅包括經譯碼圖像的一部分的取樣值(例如,經譯碼圖像的一或更多個區域,但並非經譯碼圖像的所有區域),這將影響解封包期間重排哪些取樣值。更特定言之,根據第25圖所示之技術(2500),輸出圖像的高色度解析度區域取決於第一與第二經譯碼圖像,但輸出圖像的低色度解析度區域僅取決於第一經譯碼圖像。亦即,第二經譯碼圖像包括用於高色度解析度區域的取樣值,而不是用於低色度解析度區域。
解碼工具沿著輸出圖像的高色度解析度區域與低色度解析度區域之間的邊界將解區塊濾波器應用(2540)到至少一些取樣值。舉例而言,解碼工具應用上面所列的解區塊濾波器中之一者。可替代地,解碼工具應用另一解區塊濾波器。對於非可調適濾波器,解碼工具在交叉於邊界的多個色度取樣值的多個線中之每一者中,且在邊界的每一側上,調整線中的多個色度取樣值的一或更多者。或者,對於可調適解區塊濾波器,在交叉於邊界的多個色度取樣值的多個線中之每一者中,解碼工具(1)評估取決於線中的至少一些取樣值(如亮度取樣值及/或色度取樣值)的條件,以及(2)取決於評估結果,在邊界的每一側上,調整線中的多個色度取樣值的一或更多者。
解碼工具可以重複技術(2500),以用於一或更多個其他輸出圖像的每一者。在一些情況下,第二經譯碼圖像可能被丟棄(並因此而未編碼),而使得沒有第二經譯碼圖像的經編碼資料被接收或解碼,在這種情況下,不在高色度解析度區域的任何邊界應用解區塊濾波器。
可替代地,解碼工具可在後處理期間選擇性略過解區塊濾波操作。舉例而言,解碼工具可在後處理期間略過解區塊濾波,以減少解碼及播放的計算負荷,或隨著由位元串流中的濾波提示而指定以略過解區塊濾波。D. 將去環濾波器應用到高色度解析度區域
當輸出圖像包括高色度解析度區域時,區域的高色度解析度細節可能已經用比區域的低色度解析度細節更低的品質編碼(例如,量化參數的較高值)。在這種情況下,高色度解析度區域可包括環狀異常、高頻雜訊、或由於高色度解析度細節的低譯碼品質的其他明顯失真。舉例而言,當來自高品質YUV 4:2:0圖像的取樣值係利用來自低品質UUV 4:2:0圖像的取樣值構成時,環狀異常可能出現在高色度解析度區域中。環狀異常可以觀察為經重建內容中環繞真實邊緣的模糊重複邊緣。這樣的環狀異常可能是由於高頻係數的量化。在極端情況下,失真甚至可能比單獨使用YUV 4:2:0圖像而建立的區域更糟。
去環濾波器可用於保存內容中的實際邊緣,並移除環繞邊緣的環狀異常,但可能在使用不當時模糊邊緣。去環濾波器可以是可調適的邊緣保留濾波器,依據經重建內容中的邊緣的偵測改變濾波器模式與濾波器強度。舉例而言,去環濾波器可利用Markov隨機域依據邊緣保留最大後驗(「MAP」)估計,但這樣的去環狀濾波器傾向於具有高計算成本。去環狀濾波器的其他實例描述於下。
根據本節所述之方式,視訊處理工具選擇性將去環濾波器應用到輸出圖像的高色度解析度區域中的色度取樣值。應用去環濾波器可藉由減少由於高色度解析度細節的低品質譯碼的壓縮異常而改善視覺品質。
第26圖圖示用於輸出圖像的區域的可調適去環濾波的技術(2600)。視訊解碼工具(如參照第5圖所述的解碼器系統(500))或另一解碼工具可執行技術(2600)。
對於輸出圖像的給定區域,解碼工具檢查(2610)區域是否為高色度解析度區域。若是,則解碼工具藉由檢查(2620)區域是否由區域的高品質低色度解析度版本與區域的低品質高色度解析度細節組成而繼續。可替代地,解碼工具檢查其他一些條件。若條件被滿足,則解碼工具在區域中應用(2630)去環濾波器。去環濾波器可依據標準(如VC-1)或專有格式指定用於後處理的去環濾波器,或者可以是另一去環濾波器。通常,去環濾波器係為內容可調適。
對於在第26圖中檢查的條件(2620),選擇性應用的去環濾波器加權來自區域的高品質低色度解析度細節的色度取樣值,比加權區域的低品質高色度解析度細節的色度取樣值更重。舉例而言,去環濾波器加權取決於第一經譯碼圖像(低色度解析度版本)的取樣值,比加權來自第二經譯碼圖像(高色度解析度細節)的取樣值更重。此舉可藉由有效利用來自第二經譯碼圖像的色度取樣值,以改善而非取代從第一經譯碼圖像衍生的近似高解析度色度取樣值,以改善視覺品質。
第27a-27d圖圖示用於輸出圖像的高色度解析度區域的這樣的去環濾波器的實例。第27a-27d圖圖示具有3x3濾波器內核且具有取決於輸出圖像中內核的位置而變化的濾波器分接(儘管正規化因子(等於16)並未改變)的去環濾波器。整體而言,濾波器分接高於使用來自第一經譯碼圖像的值恢復的色度取樣值的位置。第27a-27d圖中的色度取樣值包括使用來自第一經譯碼圖像的值恢復的經重建色度取樣值(表示為U0')以及來自第二經譯碼圖像的經重建色度取樣值(表示為U1'、U2'、U3')。
第27a圖圖示濾波器內核的第一位置(2701)。對於第一位置(2701),內核包括使用來自第一編碼圖像的值恢復的四個色度取樣值U0'。中心色度取樣值具有最高加權(4),但四個U0'值具有次高加權(2)。
第27b圖圖示濾波器內核的第二位置(2702)。對於第二位置(2702),內核包括具有最高加權(4)的二個經恢復的色度取樣值U0'。中心色度取樣值具有次高加權(2)。第27c圖圖示濾波器內核的第三位置(2703)。對於第三位置(2703),濾波器分接係與第二位置(2702)相同,但經旋轉。
第27d圖圖示濾波器內核的第四位置(2704)。對於第四位置(2704),內核包括具有最高加權(4)的單一經恢復的色度取樣值U0'。四個相鄰色度取樣值具有次高加權(2)。
視訊處理工具可在輸出圖像的高色度解析度區域中自動使用去環濾波。或者,去環濾波的使用(或強度)可透過設定(例如,使用者設定或應用設定)控制。或者,去環濾波的使用(或強度)可利用訊令為位元串流中的元資料的一或更多個語法元件(稱為「濾波提示」)指定。
第28圖圖示用於在輸出圖像的高色度解析度區域中應用去環濾波器的通用技術(2800)。視訊解碼工具(如參照第5圖所述的解碼器系統(500))或另一解碼工具可執行技術(2800)。
解碼工具接收(2810)經編碼資料,並解碼(2820)根據第一與第二經譯碼圖像格式組織的第一與第二經譯碼圖像(可以是相同的經譯碼圖像格式或不同經譯碼圖像格式)。第一經譯碼圖像包含用於輸出圖像的低色度解析度版本的取樣值。第二經譯碼圖像包含用於輸出圖像的高色度解析度細節的取樣值。
解碼工具將第一與第二經譯碼圖像的取樣值解封包(2830)到根據輸出圖像格式組織的輸出圖像。舉例而言,解碼工具反轉任何參考第8a-8e圖所述的方式或另一方式,以解封包來自第一與第二經譯碼圖像的取樣值。更特定言之,根據第28圖所示之技術(2800),輸出圖像的高色度解析度區域取決於第一與第二經譯碼圖像。亦即,第二經譯碼圖像包括用於高色度解析度區域的取樣值。
解碼工具將去環濾波器應用(2840)到輸出圖像的高色度解析度區域中的至少一些取樣值。舉例而言,解碼工具應用上面所列的去環濾波器中之一者。可替代地,解碼工具應用另一去環濾波器。去環濾波器可以相對於那些來自第二經譯碼圖像的高色度解析度區域的取樣值,強調那些取決於第一經譯碼圖像的高色度解析度區域的取樣值。當決定是否應用去環濾波器時,解碼工具可評估取決於用於高色度解析度區域的第一經譯碼圖像的譯碼品質與用於高色度解析度區域的第二經譯碼圖像的譯碼品質的條件,其中關於是否應用去環濾波器的決策取決於評估結果。可替代地,當決定是否應用去環濾波器時,解碼工具可評估一些其他條件。
解碼工具可重複技術(2800),以用於一或更多個其他輸出圖像中之每一者。在一些情況下,第二經譯碼圖像可能被丟棄(並因此而未編碼),而使得沒有第二經譯碼圖像的經編碼資料被接收或解碼,在這種情況下,去環濾波器不應用在任何高色度解析度區域中。
可替代地,解碼工具可在後處理期間選擇性略過去環濾波操作。舉例而言,解碼工具可在後處理期間略過去環濾波,以減少解碼及播放的計算負荷,或隨在由位元串流中的濾波提示而指定以略過去環濾波。E. 替代與改變
對於第XII.B、XII.C、及XII.D節所述之方式,經編碼資料可接收為一個位元串流的一部分。位元串流的語法允許第一經譯碼圖像及/或第二經譯碼圖像缺乏輸出圖像的至少一部分的經編碼取樣值。如第IX節所述,第一與第二經譯碼圖像可解碼為經譯碼圖像的不同子序列的一部分。當利用零運動略過經譯碼圖像(或其區域),而使得沒有用於經譯碼圖像(或區域)的經編碼資料被接收時,經譯碼圖像(或區域)可藉由重複先前的經譯碼圖像而解碼。因此,當解碼用於輸出圖像的第一與第二經譯碼圖像時,解碼工具可以使用不用於第一經譯碼圖像的經編碼資料、用於第一經譯碼圖像的一些區域或所有第一經譯碼圖像的經編碼資料,解碼工具可使用不用於第二經譯碼圖像的經編碼資料、用於第二經譯碼圖像的一些區域或所有第二經譯碼圖像的經編碼資料。此外,若已利用零運動略過任一經譯碼圖像(或其區域),則相同子序列中的先前的經譯碼圖像(或共同定位區域)可提供在構成輸出圖像時使用的取樣值(用於當前經譯碼圖像或其區域)。
對於第XII.B、XII.C、及XII.D節所述之方式,在一般情況下,輸出圖像格式具有第一色度取樣率,而第一與第二經譯碼圖像格式中之至少一者具有比第一色度取樣率更低的第二色度取樣率。舉例而言,第一色度取樣率係為4:4:4,而第二色度取樣率係為4:2:0。可替代地,圖像格式的一或更多者具有一些其他色度取樣率。
除了應用解區塊濾波器及/或去環濾波器以作為後處理操作的一部分,視訊處理工具可應用一或更多個其他類型的濾波器(例如,去雜訊濾波器)。
所揭示之本發明的原理可應用到許多可能的實施例,但應瞭解,所示實施例僅為本發明的較佳實例,而不應被視為限制本發明的範圍。相反地,本發明的範圍係由以下的專利請求範圍所限定。因此,我們要求我們的發明係都在這些專利請求範圍的範圍與精神內。
100‧‧‧電腦系統
110‧‧‧處理單元
115‧‧‧處理單元
120‧‧‧記憶體
125‧‧‧記憶體
140‧‧‧儲存
150‧‧‧輸入裝置
160‧‧‧輸出裝置
170‧‧‧通訊連接
180‧‧‧軟體
201‧‧‧網路環境
202‧‧‧網路環境
210‧‧‧即時通訊工具
212‧‧‧編碼工具
214‧‧‧播放工具
220‧‧‧編碼器
250‧‧‧網路
270‧‧‧解碼器
300‧‧‧系統
310‧‧‧視訊源
311‧‧‧圖像
315‧‧‧分離器
316‧‧‧圖像
317‧‧‧元資料
340‧‧‧編碼器
341‧‧‧經譯碼資料
350‧‧‧頻道
360‧‧‧解碼器
381‧‧‧重建圖像
385‧‧‧組合器
386‧‧‧輸出圖像
390‧‧‧輸出目的地
400‧‧‧編碼器系統
410‧‧‧視訊源
411‧‧‧圖像
415‧‧‧分離器
416‧‧‧圖像
420‧‧‧暫時記憶體儲存區域
421-42n‧‧‧圖像緩衝器儲存區域
430‧‧‧圖像選擇器
431‧‧‧圖像
440‧‧‧編碼器
441‧‧‧經譯碼圖像
442‧‧‧參照圖像設置資訊
450‧‧‧解碼處理模擬器
451‧‧‧經解碼圖像
460‧‧‧暫時記憶體儲存區域
461‧‧‧圖像緩衝器儲存區域
462‧‧‧圖像緩衝器儲存區域
463‧‧‧圖像緩衝器儲存區域
469‧‧‧圖像
46n‧‧‧圖像緩衝器儲存區域
470‧‧‧暫時經譯碼資料區域
471‧‧‧經聚集資料
480‧‧‧頻道編碼器
490‧‧‧頻道
500‧‧‧解碼器系統
510‧‧‧頻道
520‧‧‧頻道解碼器
521‧‧‧經譯碼資料
530‧‧‧暫時經譯碼資料區域
531‧‧‧經譯碼圖像
532‧‧‧RPS資訊
550‧‧‧解碼器
551‧‧‧經解碼圖像
560‧‧‧暫時記憶體儲存區域
561‧‧‧圖像緩衝器儲存區域
562‧‧‧圖像緩衝器儲存區域
563‧‧‧圖像緩衝器儲存區域
569‧‧‧圖像
56n‧‧‧圖像緩衝器儲存區域
580‧‧‧輸出序列器
581‧‧‧圖像
585‧‧‧組合器
586‧‧‧輸出圖像
590‧‧‧輸出目的地
600‧‧‧編碼器
605‧‧‧輸入視訊訊號
610‧‧‧拼貼模組
618‧‧‧剩餘
620‧‧‧一般編碼控制
622‧‧‧一般控制資料
630‧‧‧變換器/定標器/量化器
632‧‧‧量化變化係數資料
635‧‧‧定標器/反向變換器
638‧‧‧重建
640‧‧‧圖像內估計器
642‧‧‧訊框內預測資料
645‧‧‧圖像內預測器
650‧‧‧運動估計器
652‧‧‧運動資料
655‧‧‧運動補償器
658‧‧‧預測
660‧‧‧濾波控制
662‧‧‧濾波器控制資料
665‧‧‧合併器/濾波器
670‧‧‧經解碼圖像緩衝器
690‧‧‧標頭格式化器/熵編碼器
695‧‧‧經譯碼視訊位元串流
700‧‧‧解碼器
705‧‧‧經譯碼視訊位元串流
710‧‧‧解析器/熵解碼器
720‧‧‧一般解碼控制
722‧‧‧一般控制資料
732‧‧‧量化變換係數資料
735‧‧‧定標器/反向變換器
738‧‧‧重建
742‧‧‧訊框內預測資料
745‧‧‧圖像內預測器
752‧‧‧運動資料
755‧‧‧運動補償器
758‧‧‧預測
762‧‧‧濾波器控制資料
765‧‧‧合併器/濾波器
770‧‧‧經解碼圖像緩衝器
795‧‧‧視訊
800‧‧‧方式
801‧‧‧YUV4:4:4圖像
802‧‧‧YUV4:2:0圖像
803‧‧‧UUV4:2:0圖像
810‧‧‧方式
812‧‧‧YUV4:2:0圖像
813‧‧‧UUV4:2:0圖像
820‧‧‧方式
822‧‧‧YUV4:2:0圖像
823‧‧‧UUV4:2:0圖像
830‧‧‧方式
832‧‧‧YUV4:2:0圖像
833‧‧‧UUV4:2:0圖像
840‧‧‧方式
842‧‧‧YUV4:2:0圖像
843‧‧‧UUV4:2:0圖像
900‧‧‧序列
910-919‧‧‧經譯碼圖像
920-929‧‧‧經譯碼圖像
1000‧‧‧實例
1005‧‧‧序列
1010‧‧‧YUV4:2:0圖像
1020‧‧‧UUV4:2:0圖像
1030‧‧‧YUV4:2:0圖像
1040‧‧‧UUV4:2:0圖像
1090‧‧‧UUV4:2:0圖像
1100‧‧‧技術
1110‧‧‧封包
1120‧‧‧編碼
1130‧‧‧輸出
1200‧‧‧技術
1210‧‧‧接收
1220‧‧‧解碼
1230‧‧‧封包
1300‧‧‧實例
1310‧‧‧輸入圖像
1320‧‧‧經譯碼圖像
1330‧‧‧經譯碼圖像
1340‧‧‧輸出圖像
1400‧‧‧實例
1410‧‧‧輸入圖像
1420‧‧‧輸入圖像
1430‧‧‧輸入圖像
1440‧‧‧輸入圖像
1450‧‧‧輸入圖像
1500‧‧‧區域資料
1510‧‧‧經譯碼圖像
1512‧‧‧映射
1520‧‧‧經譯碼圖像
1522‧‧‧映射
1600‧‧‧區域資料
1610‧‧‧經譯碼圖像
1612‧‧‧映射
1620‧‧‧經譯碼圖像
1622‧‧‧映射
1700‧‧‧技術
1710‧‧‧封包
1720‧‧‧編碼
1730‧‧‧輸出
1740‧‧‧輸出
1800‧‧‧技術
1810‧‧‧接收
1820‧‧‧解碼
1830‧‧‧接收
1840‧‧‧解封包
1910‧‧‧先前的YUV4:2:0圖像
1912‧‧‧共同定位區域
1920‧‧‧當前YUV4:2:0圖像
1922‧‧‧區域
1925‧‧‧當前UUV4:2:0圖像
1926‧‧‧區域
1935‧‧‧先前的UUV4:2:0圖像
1936‧‧‧共同定位區域
2000-2004‧‧‧決策規則
2010‧‧‧獲取
2020‧‧‧檢查
2021‧‧‧低色度解析度版本
2022‧‧‧編碼
2030‧‧‧檢查
2032‧‧‧編碼
2050‧‧‧檢查
2060‧‧‧檢查
2061‧‧‧高色度解析度細節
2062‧‧‧編碼
2070‧‧‧檢查
2072‧‧‧編碼
2090‧‧‧檢查
2100‧‧‧技術
2110‧‧‧封包
2120‧‧‧編碼
2130‧‧‧輸出
2201‧‧‧處理流程
2202‧‧‧處理流程
2210‧‧‧檢查
2220‧‧‧應用
2230‧‧‧應用
2240‧‧‧檢查
2250‧‧‧應用
2260‧‧‧應用
2300‧‧‧技術
2310‧‧‧接收
2320‧‧‧解碼
2330‧‧‧解封包
2401‧‧‧輸出圖像
2410‧‧‧區域
2420‧‧‧區域
2421‧‧‧水平邊界
2422‧‧‧垂直邊界
2430‧‧‧區域
3431‧‧‧水平邊界
2432‧‧‧垂直邊界
2440‧‧‧區域
2500‧‧‧技術
2510‧‧‧接收
2520‧‧‧解碼
2530‧‧‧解封包
2540‧‧‧應用
2600‧‧‧技術
2610‧‧‧檢查
2620‧‧‧檢查
2630‧‧‧應用
2701‧‧‧第一位置
2702‧‧‧第二位置
2703‧‧‧第三位置
2704‧‧‧第四位置
2800‧‧‧技術
2810‧‧‧接收
2820‧‧‧解碼
2830‧‧‧解封包
2840‧‧‧應用
第1圖係為示例性電腦系統的圖,其中可實現一些描述實施例。
第2a與2b圖係為示例性網路環境的圖,其中可實現一些描述實施例。
第3圖係為通用訊框封包/解封包系統的圖,其中可實現一些描述實施例。
第4圖係為結合可實現一些描述實施例的示例性編碼器系統的圖。
第5圖係為結合可實現一些描述實施例的示例性解碼器系統的圖。
第6a與6b圖係為圖示結合可實現一些描述實施例的示例性視訊編碼器的圖。
第7圖係為圖示結合可實現一些描述實施例的示例性視訊解碼器的圖。
第8a-8e圖係為圖示訊框封包的示例性方法的圖。
第9圖係為圖示包括YUV 4:2:0圖像的子序列與UUV 4:2:0圖像的子序列的經譯碼圖像的序列的圖。
第10a與10b圖係為圖示YUV 4:2:0圖像的子序列的經譯碼圖像之間的時間依賴關係與UUV 4:2:0圖像的子序列的經譯碼圖像之間的時間依賴關係圖像的圖。
第11與12圖係為圖示分別在用於輸入/輸出圖像的低色度解析度版本與高色度解析度細節的不同子序列中的經譯碼圖像用於編碼及解碼的通用技術的流程圖。
第13圖係為圖示在用於輸入/輸出圖像的高色度解析度細節的區域中的取樣值的選擇性編碼及解碼的圖。
第14圖係為圖示在用於輸入圖像的低色度解析度版本與高色度解析度細節的區域中的取樣值的選擇性編碼的圖。
第15與16圖係為圖示當選擇性編碼及解碼輸入/輸出圖像的低色度解析度版本與高色度解析度細節的區域中的取樣值時所使用的區域資料的實例的圖。
第17與18圖係為圖示用於分別在高色度解析度細節的區域中的取樣值的選擇性編碼及解碼的通用技術的流程圖。
第19圖係為圖示考慮到輸入圖像的低色度解析度版本與高色度解析度細節的區域中的取樣值的選擇性編碼的示例性決策規則的區域的圖。
第20a-20e圖係為圖示用於輸入圖像的低色度解析度版本與高色度解析度細節的區域中的取樣值的選擇性編碼的示例性決策規則的流程圖。
第21圖係為圖示用於當選擇性編碼高色度解析度細節的區域中的取樣值時應用決策規則的通用技術的流程圖。
第22a-22d圖係為圖示色度取樣值的反鋸齒濾波與相應恢復濾波的態樣的圖。
第23圖係為圖示選擇性將恢復濾波器應用在輸出圖像的一或更多個高色度解析度區域中的通用技術的流程圖。
第24圖係為圖示輸出圖像的低與高色度解析度區域之間的邊界的解區塊濾波的態樣的圖。
第25圖係為圖示用於將解區塊濾波器應用在輸出圖像的低與高色度解析度區域之間的一或更多個邊界的通用技術的流程圖。
第26圖係為圖示在輸出圖像的區域中的可調適去環(dering)濾波的態樣的流程圖。
第27a-27d圖係為圖示用於輸出圖像的高色度解析度區域的去環濾波器的實例的圖。
第28圖係為圖示用於將去環狀濾波器應用在輸出圖像的高色度解析度區域中的通用技術的流程圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
(請換頁單獨記載) 無
2100‧‧‧技術
2110‧‧‧封包
2120‧‧‧編碼
2130‧‧‧輸出

Claims (20)

  1. 一種包含一處理器、記憶體、及儲存的電腦系統,其中該電腦系統經配置以實現一視訊處理工具,該視訊處理工具包含: 一格式化器,經配置以將根據一輸入圖像格式組織的一輸入圖像的取樣值分別封包到根據第一及第二經譯碼圖像格式組織的第一及第二經譯碼圖像,該第一經譯碼圖像包含用於該輸入圖像的一低色度解析度版本的取樣值,而該第二經譯碼圖像包含用於該輸入圖像的高色度解析度細節的取樣值;一視訊編碼器系統,經配置以編碼該第一及第二經譯碼圖像,以產生經編碼資料,針對一或更多個區域中之每一者包括以下步驟:評估該區域的一或更多個屬性;以及至少部分依據該評估的結果,決定是否將用於該輸入圖像的該等高色度解析度細節的該區域中的取樣值編碼成該第二經譯碼圖像的一部分;以及一緩衝器,經配置以輸出該經編碼資料。
  2. 如請求項1所述之電腦系統,其中該輸入圖像格式具有一第一色度取樣率,且其中該第一與第二經譯碼圖像格式中之至少一者具有比該第一色度取樣率更低的一第二色度取樣率。
  3. 如請求項2所述之電腦系統,其中該第一色度取樣率係為4:4:4,且其中該第二色度取樣率係為4:2:0。
  4. 如請求項1所述之電腦系統,其中評估該區域的一或更多個屬性之該步驟包括以下步驟: 評估該第一與第二經譯碼圖像中之一者與用於該區域已編碼的一最近的先前圖像之間在該區域中的改變的範圍。
  5. 如請求項4所述之電腦系統,其中評估該區域中的改變的該範圍之該步驟包括下列步驟的一或更多者: 計算在用於該第一與第二經譯碼圖像中之該者的該區域中的取樣值與用於該區域已編碼的該最近的先前圖像的該區域中的取樣值的差,並評估該等差的大小;以及比較該區域中的一或更多個運動向量值與運動向量閥值。
  6. 如請求項4所述之電腦系統,其中評估該區域中的改變的該範圍之該步驟包括以下步驟:比較一閥值計數與用於低色度解析度版本的該區域未改變的圖像的一計數。
  7. 如請求項1所述之電腦系統,其中評估該區域的一或更多個屬性之該步驟包括以下步驟: 評估該區域的經編碼資料的品質是否滿足品質的閥值等級。
  8. 如請求項7所述之電腦系統,其中評估該區域的經編碼資料的該品質之該步驟包含比較該區域中的一或更多個量化參數值與量化參數閥值之步驟。
  9. 如請求項1所述之電腦系統,其中評估該區域的一或更多個屬性之該步驟包括以下步驟: 分類該區域中的內容。
  10. 如請求項9所述之電腦系統,其中分類該區域中的內容之該步驟包括將該內容分類為文本內容或非文本內容之步驟。
  11. 如請求項9所述之電腦系統,其中分類該區域中的內容之該步驟包括以下步驟:將該內容分類為色度取樣值相較於一顯著性閥值為顯著的高色度內容,或色度取樣值相較於該顯著性閥值為不顯著的低色度內容。
  12. 如請求項1所述之電腦系統,其中編碼該第一及第二經譯碼圖像之該步驟進一步針對該一或更多個區域中之每一者包括以下步驟: 至少部分依據該評估步驟的結果,決定是否將用於該輸入圖像的該低色度解析度版本的該區域中的取樣值編碼成該第一經譯碼圖像的一部分。
  13. 如請求項12所述之電腦系統,其中針對該一或更多個區域中之每一者: 若在該輸入圖像的該低色度解析度版本與該區域已編碼的一最近的先前圖像的一低色度解析度版本之間該區域已改變,則用於該輸入圖像的該低色度解析度版本的該區域中的該等取樣值以一初始品質等級編碼成該第一經譯碼圖像的一部分;否則,若該區域的經編碼資料的品質未滿足品質的一閥值等級,則用於該輸入圖像的該低色度解析度版本的該區域中的該等取樣值以一高品質等級編碼成該第一經譯碼圖像的一部分;以及否則,將用於該輸入圖像的該等高色度解析度細節的該區域的取樣值編碼成該第二經譯碼圖像的一部分。
  14. 如請求項13所述之電腦系統,其中用於該輸入圖像的該等高色度解析度細節的該區域的該等取樣值以一預設品質等級編碼。
  15. 如請求項13所述之電腦系統,其中在編碼用於該輸入圖像的該等高色度解析度細節的該區域的該等取樣值時: 若在該輸入圖像的該等高色度解析度細節與該區域已編碼的一最近的先前圖像的高色度解析度細節之間該區域已改變,則用於該輸入圖像的該等高色度解析度細節的該區域中的該等取樣值以一初始品質等級編碼;以及否則,用於該輸入圖像的該等高色度解析度細節的該區域中的該等取樣值以一高品質等級編碼。
  16. 如請求項13所述之電腦系統,其中編碼該第一及第二經譯碼圖像之該步驟進一步針對該區域包括以下步驟: 比較用於低色度解析度版本的該區域未改變的圖像的一計數與一閥值計數,其中用於該輸入圖像的該等高色度解析度細節的該區域中的該等取樣值的該編碼步驟取決於圖像的該計數與該閥值計數的比較。
  17. 如請求項13所述之電腦系統,其中編碼該第一及第二經譯碼圖像之該步驟進一步針對該區域包括以下步驟: 分類該區域的內容,其中用於該輸入圖像的該等高色度解析度細節的該區域中的該等取樣值的該編碼步驟取決於被分類為文本內容的該區域的該內容。
  18. 如請求項13所述之電腦系統,其中編碼該第一及第二經譯碼圖像之該步驟進一步針對該區域包括以下步驟: 分類該區域的內容,其中用於該輸入圖像的該等高色度解析度細節的該區域中的該等取樣值的該編碼步驟取決於被分類為色度取樣值相較於一顯著性閥值為顯著的高色度內容的該區域的該內容。
  19. 一種在實現一視訊編碼系統的一電腦系統中的方法,該方法包含以下步驟: 將根據一輸入圖像格式組織的一輸入圖像的取樣值分別封包到根據第一及第二經譯碼圖像格式組織的第一及第二經譯碼圖像,該第一經譯碼圖像包含用於該輸入圖像的一低色度解析度版本的取樣值,而該第二經譯碼圖像包含用於該輸入圖像的高色度解析度細節的取樣值;編碼該第一及第二經譯碼圖像,以產生經編碼資料,針對一或更多個區域中之每一者包括以下步驟:評估該區域的一或更多個屬性;以及至少部分依據該評估的結果,決定是否將用於該輸入圖像的該等高色度解析度細節的該區域中的取樣值編碼成該第二經譯碼圖像的一部分;以及輸出該經編碼資料。
  20. 一種儲存電腦可執行指令的電腦可讀取媒體,該等電腦可執行指令用於使一電腦系統在程式化時執行視訊處理,包含: 將根據一輸入圖像格式組織的一輸入圖像的取樣值分別封包到根據第一及第二經譯碼圖像格式組織的第一及第二經譯碼圖像,該第一經譯碼圖像包含用於該輸入圖像的一低色度解析度版本的取樣值,而該第二經譯碼圖像包含用於該輸入圖像的高色度解析度細節的取樣值;編碼該第一及第二經譯碼圖像,以產生經編碼資料,針對一或更多個區域中之每一者包括以下步驟:評估該區域的一或更多個屬性;以及至少部分依據該評估的結果,決定是否將用於該輸入圖像的該等高色度解析度細節的該區域中的取樣值編碼成該第二經譯碼圖像的一部分;以及輸出該經編碼資料。
TW105100367A 2015-01-16 2016-01-07 動態將品質更新到更高色度取樣率 TW201637447A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/599,412 US9854201B2 (en) 2015-01-16 2015-01-16 Dynamically updating quality to higher chroma sampling rate

Publications (1)

Publication Number Publication Date
TW201637447A true TW201637447A (zh) 2016-10-16

Family

ID=55398397

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105100367A TW201637447A (zh) 2015-01-16 2016-01-07 動態將品質更新到更高色度取樣率

Country Status (5)

Country Link
US (2) US9854201B2 (zh)
EP (1) EP3245789B1 (zh)
CN (1) CN107211150B (zh)
TW (1) TW201637447A (zh)
WO (1) WO2016115185A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692754B (zh) * 2017-09-07 2020-05-01 大陸商電信科學技術研究院有限公司 有限衝激回應濾波器係數向量的可持續更新方法及裝置
TWI751571B (zh) * 2020-06-02 2022-01-01 仁寶電腦工業股份有限公司 環境氛圍調整系統及環境氛圍調整方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9979960B2 (en) 2012-10-01 2018-05-22 Microsoft Technology Licensing, Llc Frame packing and unpacking between frames of chroma sampling formats with different chroma resolutions
US9749646B2 (en) 2015-01-16 2017-08-29 Microsoft Technology Licensing, Llc Encoding/decoding of high chroma resolution details
US9854201B2 (en) 2015-01-16 2017-12-26 Microsoft Technology Licensing, Llc Dynamically updating quality to higher chroma sampling rate
US10575007B2 (en) 2016-04-12 2020-02-25 Microsoft Technology Licensing, Llc Efficient decoding and rendering of blocks in a graphics pipeline
TWI629892B (zh) * 2016-05-09 2018-07-11 國立成功大學 景深包裝及解包裝之rgb格式與yuv格式的轉換與反轉換的方法及電路
US10771795B2 (en) 2016-06-13 2020-09-08 Intel Corporation Switchable chroma sampling for wireless display
US10157480B2 (en) 2016-06-24 2018-12-18 Microsoft Technology Licensing, Llc Efficient decoding and rendering of inter-coded blocks in a graphics pipeline
US10554976B2 (en) * 2016-07-25 2020-02-04 Synamedia Limited Framework for embedding data in encoded video
US20170366819A1 (en) * 2016-08-15 2017-12-21 Mediatek Inc. Method And Apparatus Of Single Channel Compression
CN106358040B (zh) * 2016-08-30 2020-07-14 上海交通大学 一种基于显著性的码率控制比特分配方法
JPWO2018056181A1 (ja) * 2016-09-26 2019-07-04 ソニー株式会社 符号化装置、符号化方法、復号化装置、復号化方法、送信装置および受信装置
US11197010B2 (en) 2016-10-07 2021-12-07 Microsoft Technology Licensing, Llc Browser-based video decoder using multiple CPU threads
US10368080B2 (en) 2016-10-21 2019-07-30 Microsoft Technology Licensing, Llc Selective upsampling or refresh of chroma sample values
US20180343449A1 (en) * 2017-05-26 2018-11-29 Ati Technologies Ulc Application specific filters for high-quality video playback
US11212539B2 (en) * 2017-07-28 2021-12-28 Nvidia Corporation Efficient lossless compression of captured raw image information systems and methods
WO2019082291A1 (ja) * 2017-10-25 2019-05-02 株式会社ソシオネクスト 符号化方法、復号方法、符号化装置、復号装置、符号化プログラム及び復号プログラム
CN107948652B (zh) * 2017-11-21 2021-04-13 海信视像科技股份有限公司 一种进行图像转换的方法和设备
US20200007872A1 (en) 2018-06-29 2020-01-02 Industrial Technology Research Institute Video decoding method, video decoder, video encoding method and video encoder
US11030777B2 (en) 2018-09-14 2021-06-08 Sony Group Corporation Adaptive subband coding for lifting transform
US11606569B2 (en) * 2018-09-25 2023-03-14 Apple Inc. Extending supported components for encoding image data
CN109472270B (zh) * 2018-10-31 2021-09-24 京东方科技集团股份有限公司 图像风格转换方法、装置及设备
CN109379630B (zh) * 2018-11-27 2021-03-12 Oppo广东移动通信有限公司 视频处理方法、装置、电子设备及存储介质
US11019374B2 (en) * 2019-02-04 2021-05-25 Netflix, Inc. Techniques for efficiently performing subsequence-based encoding for a media title
EP4358036A2 (en) * 2019-03-11 2024-04-24 Huawei Technologies Co., Ltd. Interpolation filter clipping for sub-picture motion vectors
WO2020192180A1 (zh) * 2019-03-25 2020-10-01 Oppo广东移动通信有限公司 图像分量的预测方法、编码器、解码器及计算机存储介质
US11909991B2 (en) * 2019-08-30 2024-02-20 Tencent America LLC Restrictions on picture width and height
WO2021051047A1 (en) 2019-09-14 2021-03-18 Bytedance Inc. Chroma quantization parameter in video coding
CN110719484B (zh) * 2019-09-17 2020-08-04 广州魅视电子科技有限公司 图像处理方法
CN110677676B (zh) * 2019-09-27 2024-02-09 腾讯科技(深圳)有限公司 视频编码方法和装置、视频解码方法和装置及存储介质
CN110572654B (zh) * 2019-09-27 2024-03-15 腾讯科技(深圳)有限公司 视频编码、解码方法和装置、存储介质及电子装置
CN111182303A (zh) * 2019-10-08 2020-05-19 腾讯科技(深圳)有限公司 共享屏幕的编码方法、装置、计算机可读介质及电子设备
CN114651442A (zh) 2019-10-09 2022-06-21 字节跳动有限公司 视频编解码中的跨分量适应性回路滤波
KR20220073746A (ko) 2019-10-14 2022-06-03 바이트댄스 아이엔씨 비디오 처리에서 크로마 양자화 파라미터 사용
US20210127125A1 (en) * 2019-10-23 2021-04-29 Facebook Technologies, Llc Reducing size and power consumption for frame buffers using lossy compression
CN114788279A (zh) 2019-12-09 2022-07-22 字节跳动有限公司 视频编解码中使用的量化组
WO2021138293A1 (en) 2019-12-31 2021-07-08 Bytedance Inc. Adaptive color transform in video coding
CN111970565A (zh) * 2020-09-21 2020-11-20 Oppo广东移动通信有限公司 视频数据处理方法、装置、电子设备及存储介质
US11689598B1 (en) * 2021-03-17 2023-06-27 Amazon Technologies, Inc. Synchronized out-of-order live video encoding for reduced latency

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5047853A (en) 1990-03-16 1991-09-10 Apple Computer, Inc. Method for compresssing and decompressing color video data that uses luminance partitioning
JP3381855B2 (ja) 1992-12-28 2003-03-04 ソニー株式会社 画像信号符号化方法および画像信号符号化装置、並びに画像信号復号化方法および画像信号復号化装置
JP2933487B2 (ja) 1994-07-15 1999-08-16 松下電器産業株式会社 クロマフォーマット変換の方法
US5742892A (en) 1995-04-18 1998-04-21 Sun Microsystems, Inc. Decoder for a software-implemented end-to-end scalable video delivery system
EP1711015A3 (en) 1996-02-05 2006-11-08 Matsushita Electric Industrial Co., Ltd. Video signal recording apparatus, video signal regenerating apparatus, image coding apparatus and image decoding apparatus
US5712687A (en) 1996-04-25 1998-01-27 Tektronix, Inc. Chrominance resampling for color images
US6208350B1 (en) 1997-11-04 2001-03-27 Philips Electronics North America Corporation Methods and apparatus for processing DVD video
US6937659B1 (en) 1997-11-14 2005-08-30 Ac Capital Management, Inc. Apparatus and method for compressing video information
US6829301B1 (en) 1998-01-16 2004-12-07 Sarnoff Corporation Enhanced MPEG information distribution apparatus and method
US6570579B1 (en) 1998-11-09 2003-05-27 Broadcom Corporation Graphics display system
US6674479B2 (en) 2000-01-07 2004-01-06 Intel Corporation Method and apparatus for implementing 4:2:0 to 4:2:2 and 4:2:2 to 4:2:0 color space conversion
US7576748B2 (en) 2000-11-28 2009-08-18 Nintendo Co. Ltd. Graphics system with embedded frame butter having reconfigurable pixel formats
JP2002204356A (ja) 2000-10-27 2002-07-19 Canon Inc データ処理装置、プロセッサ、及びその制御方法
US20030112863A1 (en) 2001-07-12 2003-06-19 Demos Gary A. Method and system for improving compressed image chroma information
US7076108B2 (en) 2001-12-11 2006-07-11 Gen Dow Huang Apparatus and method for image/video compression using discrete wavelet transform
US7643675B2 (en) 2003-08-01 2010-01-05 Microsoft Corporation Strategies for processing image information using a color information data structure
US7724827B2 (en) 2003-09-07 2010-05-25 Microsoft Corporation Multi-layer run level encoding and decoding
US7551792B2 (en) 2003-11-07 2009-06-23 Mitsubishi Electric Research Laboratories, Inc. System and method for reducing ringing artifacts in images
US20050129130A1 (en) 2003-12-10 2005-06-16 Microsoft Corporation Color space coding framework
US20050228654A1 (en) 2004-03-30 2005-10-13 Yolanda Prieto Method and apparatus for improved bit rate efficiency in wavelet based codecs by means of subband correlation
US7515759B2 (en) 2004-07-14 2009-04-07 Sharp Laboratories Of America, Inc. 3D video coding using sub-sequences
EP2228994A3 (en) 2005-09-20 2012-07-25 Mitsubishi Electric Corporation Image encoding method and image decoding method, image encoder and image decoder, and image encoded bit stream and recording medium
US8879857B2 (en) 2005-09-27 2014-11-04 Qualcomm Incorporated Redundant data encoding methods and device
KR100873636B1 (ko) 2005-11-14 2008-12-12 삼성전자주식회사 단일 부호화 모드를 이용하는 영상 부호화/복호화 방법 및장치
WO2007060498A1 (en) 2005-11-22 2007-05-31 Freescale Semiconductor, Inc. Method and system for filtering image data
KR100771879B1 (ko) 2006-08-17 2007-11-01 삼성전자주식회사 내부 메모리 용량을 감소시키는 디블록킹 필터링 방법 및그 방법을 이용하는 영상 처리 장치
US9001899B2 (en) 2006-09-15 2015-04-07 Freescale Semiconductor, Inc. Video information processing system with selective chroma deblock filtering
CN101589625B (zh) * 2006-10-25 2011-09-21 弗劳恩霍夫应用研究促进协会 质量可缩放编码
US8315466B2 (en) * 2006-12-22 2012-11-20 Qualcomm Incorporated Decoder-side region of interest video processing
KR101490534B1 (ko) 2007-01-04 2015-02-05 톰슨 라이센싱 멀티 뷰 코딩된 비디오에서 조도 보상 및/또는 컬러 보상에 대한 코딩 아티팩트 감소 방법 및 장치
US8054886B2 (en) 2007-02-21 2011-11-08 Microsoft Corporation Signaling and use of chroma sample positioning information
KR102044130B1 (ko) 2007-04-12 2019-11-12 돌비 인터네셔널 에이비 비디오 인코딩 및 디코딩의 타일링
KR20080114388A (ko) 2007-06-27 2008-12-31 삼성전자주식회사 스케일러블 영상 부호화장치 및 방법과 그 영상 복호화장치및 방법
US7924292B2 (en) 2007-08-31 2011-04-12 Broadcom Corportion Device and method for reducing visual artifacts in color images
US8139081B1 (en) 2007-09-07 2012-03-20 Zenverge, Inc. Method for conversion between YUV 4:4:4 and YUV 4:2:0
US8953673B2 (en) * 2008-02-29 2015-02-10 Microsoft Corporation Scalable video coding and decoding with sample bit depth and chroma high-pass residual layers
JP5035154B2 (ja) 2008-03-07 2012-09-26 富士通株式会社 映像信号処理装置及び映像信号処理方法
CN106507117B (zh) * 2008-07-20 2020-01-21 杜比实验室特许公司 立体视频传送系统的编码器优化的方法和设备
US9571856B2 (en) 2008-08-25 2017-02-14 Microsoft Technology Licensing, Llc Conversion operations in scalable video encoding and decoding
CN102356635A (zh) * 2009-01-12 2012-02-15 美信集成产品公司 视频获取和处理系统
CN104702960B (zh) 2009-01-26 2018-01-02 汤姆森特许公司 用于视频解码的装置
JP4947389B2 (ja) 2009-04-03 2012-06-06 ソニー株式会社 画像信号復号装置、画像信号復号方法、および画像信号符号化方法
KR101422096B1 (ko) 2010-02-12 2014-07-23 캐논 가부시끼가이샤 화상 처리장치 및 화상 처리방법
US20110280311A1 (en) 2010-05-13 2011-11-17 Qualcomm Incorporated One-stream coding for asymmetric stereo video
US8625666B2 (en) * 2010-07-07 2014-01-07 Netzyn, Inc. 4:4:4 color space video with 4:2:0 color space video encoders and decoders systems and methods
CN103155568B (zh) 2010-07-08 2016-07-27 杜比实验室特许公司 用于使用参考处理信号进行多层图像和视频传输的系统和方法
CN103262532B (zh) 2010-07-19 2018-03-09 杜比实验室特许公司 用于经采样复用的图像和视频数据的增强方法
US9872019B2 (en) 2010-07-20 2018-01-16 Sk Telecom Co., Ltd. Method and device for deblocking-filtering, and method and device for encoding and decoding using same
US9596447B2 (en) 2010-07-21 2017-03-14 Qualcomm Incorporated Providing frame packing type information for video coding
US8787443B2 (en) 2010-10-05 2014-07-22 Microsoft Corporation Content adaptive deblocking during video encoding and decoding
WO2012047047A2 (ko) * 2010-10-06 2012-04-12 에스케이텔레콤 주식회사 고정밀 필터를 이용한 영상 부호화/복호화 방법 및 장치
US10327008B2 (en) 2010-10-13 2019-06-18 Qualcomm Incorporated Adaptive motion vector resolution signaling for video coding
EP2456204A1 (en) 2010-11-18 2012-05-23 Koninklijke Philips Electronics N.V. Method and apparatus for encoding or generating an image
US20120236115A1 (en) 2011-03-14 2012-09-20 Qualcomm Incorporated Post-filtering in full resolution frame-compatible stereoscopic video coding
US8780996B2 (en) 2011-04-07 2014-07-15 Google, Inc. System and method for encoding and decoding video data
US8743291B2 (en) * 2011-04-12 2014-06-03 Dolby Laboratories Licensing Corporation Quality assessment for images that have extended dynamic ranges or wide color gamuts
US9288500B2 (en) 2011-05-12 2016-03-15 Texas Instruments Incorporated Luma-based chroma intra-prediction for video coding
US9167247B2 (en) 2011-05-20 2015-10-20 Panasonic Intellectual Property Corporation Of America Methods and apparatuses for encoding and decoding video using inter-color-plane prediction
US9414086B2 (en) 2011-06-04 2016-08-09 Apple Inc. Partial frame utilization in video codecs
EP2727354A1 (en) * 2011-06-30 2014-05-07 Huawei Technologies Co., Ltd Encoding of prediction residuals for lossless video coding
US8787454B1 (en) 2011-07-13 2014-07-22 Google Inc. Method and apparatus for data compression using content-based features
TWI606718B (zh) 2012-01-03 2017-11-21 杜比實驗室特許公司 規定視覺動態範圍編碼操作及參數
US9363516B2 (en) 2012-01-19 2016-06-07 Qualcomm Incorporated Deblocking chroma data for video coding
KR102013240B1 (ko) * 2012-02-02 2019-08-22 삼성전자주식회사 영역별 특성에 기초한 영상 부호화 방법 및 그 장치, 그리고 영상 복호화 방법 및 그 장치
WO2013128010A2 (en) 2012-03-02 2013-09-06 Canon Kabushiki Kaisha Method and devices for encoding a sequence of images into a scalable video bit-stream, and decoding a corresponding scalable video bit-stream
US8958474B2 (en) 2012-03-15 2015-02-17 Virtualinx, Inc. System and method for effectively encoding and decoding a wide-area network based remote presentation session
US8639057B1 (en) 2012-03-19 2014-01-28 The Modern Video Company Artifact removal method and system for contoured images and video
CN102801988B (zh) 2012-07-20 2014-10-08 浙江工业大学 一种基于色度分量幅度的yuv444转yuv420的视频格式转换方法
GB2506345A (en) 2012-09-06 2014-04-02 British Broadcasting Corp Video encoding and decoding with chrominance sub-sampling
US20140072027A1 (en) 2012-09-12 2014-03-13 Ati Technologies Ulc System for video compression
US20140072048A1 (en) 2012-09-13 2014-03-13 Samsung Electronics Co., Ltd Method and apparatus for a switchable de-ringing filter for image/video coding
US9185421B2 (en) 2012-10-01 2015-11-10 Texas Instruments Incorporated System and method for video transcoding
US9979960B2 (en) 2012-10-01 2018-05-22 Microsoft Technology Licensing, Llc Frame packing and unpacking between frames of chroma sampling formats with different chroma resolutions
US9661340B2 (en) 2012-10-22 2017-05-23 Microsoft Technology Licensing, Llc Band separation filtering / inverse filtering for frame packing / unpacking higher resolution chroma sampling formats
US9426469B2 (en) 2012-12-17 2016-08-23 Broadcom Corporation Combination HEVC deblocker/SAO filter
US8817179B2 (en) 2013-01-08 2014-08-26 Microsoft Corporation Chroma frame conversion for the video codec
JP2014171097A (ja) 2013-03-04 2014-09-18 Toshiba Corp 符号化装置、符号化方法、復号装置、および、復号方法
US20140301463A1 (en) * 2013-04-05 2014-10-09 Nokia Corporation Method and apparatus for video coding and decoding
US9749627B2 (en) 2013-04-08 2017-08-29 Microsoft Technology Licensing, Llc Control data for motion-constrained tile set
GB2516021A (en) 2013-07-05 2015-01-14 Canon Kk Method, device, and computer program for pre-encoding and post-decoding high bit-depth content in video encoder and decoder
WO2015004606A1 (en) * 2013-07-09 2015-01-15 Nokia Corporation Method and apparatus for video coding involving syntax for signalling motion information
US9558567B2 (en) * 2013-07-12 2017-01-31 Qualcomm Incorporated Palette prediction in palette-based video coding
US8837826B1 (en) 2014-06-12 2014-09-16 Spinella Ip Holdings, Inc. System and method for transmission, reception, and restoration of decimated color channels in image data
US9153017B1 (en) 2014-08-15 2015-10-06 Google Inc. System and method for optimized chroma subsampling
US9749646B2 (en) 2015-01-16 2017-08-29 Microsoft Technology Licensing, Llc Encoding/decoding of high chroma resolution details
US9854201B2 (en) 2015-01-16 2017-12-26 Microsoft Technology Licensing, Llc Dynamically updating quality to higher chroma sampling rate
US10455249B2 (en) 2015-03-20 2019-10-22 Qualcomm Incorporated Downsampling process for linear model prediction mode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692754B (zh) * 2017-09-07 2020-05-01 大陸商電信科學技術研究院有限公司 有限衝激回應濾波器係數向量的可持續更新方法及裝置
US11295752B2 (en) 2017-09-07 2022-04-05 China Academy Of Telecommunications Technology Method and device of sustainably updating coefficient vector of finite impulse response filter
TWI751571B (zh) * 2020-06-02 2022-01-01 仁寶電腦工業股份有限公司 環境氛圍調整系統及環境氛圍調整方法

Also Published As

Publication number Publication date
CN107211150A (zh) 2017-09-26
WO2016115185A1 (en) 2016-07-21
CN107211150B (zh) 2020-02-28
EP3245789A1 (en) 2017-11-22
US20180091764A1 (en) 2018-03-29
US20160212373A1 (en) 2016-07-21
EP3245789B1 (en) 2021-09-08
US10044974B2 (en) 2018-08-07
US9854201B2 (en) 2017-12-26

Similar Documents

Publication Publication Date Title
US10044974B2 (en) Dynamically updating quality to higher chroma sampling rate
CN107251557B (zh) 高色度分辨率细节的编码/解码
US11910005B2 (en) Block vector prediction in video and image coding/decoding
US10567769B2 (en) Adjusting quantization/scaling and inverse quantization/scaling when switching color spaces
TW201637443A (zh) 在改變色度取樣率時濾波以減輕異常
CN107211155B (zh) 图内块拷贝预测模式下的合并的色度块的特殊情况处理
CN107113422B (zh) 一种用于视频编码和解码的参考图片管理的计算机系统
CN110049325B (zh) 色彩空间、色彩采样率和/或比特深度的自适应切换
US10735725B2 (en) Boundary-intersection-based deblock filtering
JP2017535145A (ja) 波面並列処理が可能にされた場合のピクチャ内予測モードに関する規則
WO2015131330A1 (en) Encoding strategies for adaptive switching of color spaces, color sampling rates and/or bit depths
JP2019154067A (ja) 波面並列処理が可能にされた場合のピクチャ内予測モードに関する規則