TW201637089A - Semiconductor device and method of fabricating the same - Google Patents

Semiconductor device and method of fabricating the same Download PDF

Info

Publication number
TW201637089A
TW201637089A TW104110817A TW104110817A TW201637089A TW 201637089 A TW201637089 A TW 201637089A TW 104110817 A TW104110817 A TW 104110817A TW 104110817 A TW104110817 A TW 104110817A TW 201637089 A TW201637089 A TW 201637089A
Authority
TW
Taiwan
Prior art keywords
opening
barrier layer
layer
semiconductor device
dielectric layer
Prior art date
Application number
TW104110817A
Other languages
Chinese (zh)
Other versions
TWI556304B (en
Inventor
林心冠
李鴻志
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW104110817A priority Critical patent/TWI556304B/en
Publication of TW201637089A publication Critical patent/TW201637089A/en
Application granted granted Critical
Publication of TWI556304B publication Critical patent/TWI556304B/en

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A method of fabricating a semiconductor device is provided. A dielectric layer is formed on a barrier layer. A first opening is formed in the dielectric layer and exposes a portion of the barrier layer. A protection layer is formed on the barrier layer at the bottom of the first opening. The protection layer is thicker at the central portion while thinner at the edge portion thereof. A portion of the exposed barrier layer is removed by using the protection layer as a mask to form a second opening. The second opening has at least one sub-opening disposed in the barrier layer adjacent to the sidewall of the second opening. A semiconductor device formed with the method is also provided.

Description

半導體元件及其製造方法Semiconductor component and method of manufacturing same

本發明是有關於一種半導體技術,且特別是關於一種半導體元件及其製造方法。The present invention relates to a semiconductor technology, and more particularly to a semiconductor device and a method of fabricating the same.

蝕刻為相當重要的製程模組,且蝕刻主要採取濕式蝕刻與乾式蝕刻二種形式。乾式蝕刻是將反應室內的反應氣體離子化或解離以產生電漿,並使具有反應性的離子向晶圓加速,藉由離子與晶圓表面之欲蝕刻材料間的化學反應以驅使蝕刻反應進行。Etching is a very important process module, and the etching is mainly in the form of wet etching and dry etching. Dry etching is to ionize or dissociate the reaction gas in the reaction chamber to generate plasma, and accelerate the reactive ions to the wafer, and drive the etching reaction by chemical reaction between the ions and the material to be etched on the surface of the wafer. .

目前,為了提高生產機台的晶圓產能,利用高功率電漿以增加蝕刻的速度是必須的。然而,當利用高功率電漿蝕刻法以形成介層窗開口或接觸窗開口時,開口底部的金屬層容易因高功率電漿而濺擊至開口的側壁上,如此一來將導致開口的側壁上產生殘留物(如金屬聚合物)。上述殘留物在後續的製程中不容易去除,進而導致半導體元件的不正常導通,因而產生短路的現象。At present, in order to increase the wafer throughput of the production machine, it is necessary to use high-power plasma to increase the etching speed. However, when high-power plasma etching is used to form via openings or contact openings, the metal layer at the bottom of the opening is susceptible to splashing onto the sidewalls of the opening due to high power plasma, which will result in sidewalls of the opening. Residues (such as metal polymers) are produced. The above-mentioned residue is not easily removed in the subsequent process, which causes abnormal conduction of the semiconductor element, thereby causing a short circuit.

本發明提供一種半導體元件及其製造方法,其在定義開口的步驟中可避免於開口的側壁上產生殘留物。The present invention provides a semiconductor device and a method of fabricating the same that avoids the generation of residues on the sidewalls of the opening in the step of defining the opening.

本發明提供一種半導體元件的製造方法。首先,於阻障層上形成介電層。接著,於介電層中形成第一開口。第一開口裸露出部分阻障層。繼而,於第一開口的底部的阻障層上形成保護層。保護層的中央部分的厚度大於邊緣部分的厚度。然後,以保護層為罩幕,移除部分阻障層,以形成第二開口。第二開口具有至少一個次開口,所述次開口位於鄰近第二開口的側壁的阻障層中。The present invention provides a method of manufacturing a semiconductor device. First, a dielectric layer is formed on the barrier layer. Next, a first opening is formed in the dielectric layer. The first opening exposes a portion of the barrier layer. Then, a protective layer is formed on the barrier layer at the bottom of the first opening. The thickness of the central portion of the protective layer is greater than the thickness of the edge portion. Then, with the protective layer as a mask, a portion of the barrier layer is removed to form a second opening. The second opening has at least one secondary opening located in the barrier layer adjacent the sidewall of the second opening.

在本發明一實施例中,上述第二開口的底部具有W型的剖面形狀。In an embodiment of the invention, the bottom of the second opening has a W-shaped cross-sectional shape.

在本發明一實施例中,形成上述第一開口以及第二開口的方法各自包括進行電漿蝕刻法。In an embodiment of the invention, the method of forming the first opening and the second opening each comprises performing a plasma etching method.

在本發明一實施例中,形成上述第一開口所使用的蝕刻氣體包括氮氣,且氮氣的流量隨著第一開口的深度增加而增加。In an embodiment of the invention, the etching gas used to form the first opening includes nitrogen gas, and the flow rate of the nitrogen gas increases as the depth of the first opening increases.

在本發明一實施例中,形成上述第二開口所使用的蝕刻氣體包括六氟化硫(SF6 )、三氟化氮(NF3 )、氬氣(Ar)、氟烴氣體(Cx Fy )及氮氣,其中x、y均大於零。In an embodiment of the invention, the etching gas used to form the second opening includes sulfur hexafluoride (SF 6 ), nitrogen trifluoride (NF 3 ), argon (Ar), and fluorocarbon gas (C x F y ) and nitrogen, wherein x and y are both greater than zero.

在本發明一實施例中,於上述介電層中形成第一開口的同時,於第一開口的底部的阻障層上形成保護層。In an embodiment of the invention, a protective layer is formed on the barrier layer at the bottom of the first opening while forming the first opening in the dielectric layer.

在本發明一實施例中,上述方法更包括:在介電層中形成第一開口之前,於介電層中形成一淺開口;以及進行非等向性蝕刻製程以加深淺開口,進而於介電層中形成第一開口,其中形成淺開口所使用的氣體不包含氮氣。In an embodiment of the invention, the method further includes: forming a shallow opening in the dielectric layer before forming the first opening in the dielectric layer; and performing an anisotropic etching process to deepen the shallow opening, and further A first opening is formed in the electrical layer, wherein the gas used to form the shallow opening does not contain nitrogen.

本發明另提供一種半導體元件,其包括阻障層以及介電層。介電層位於阻障層上。介電層中具有一開口,所述開口裸露出部分阻障層,其中開口具有至少一個次開口,所述次開口位於鄰近開口的側壁的阻障層中。The present invention further provides a semiconductor device including a barrier layer and a dielectric layer. The dielectric layer is on the barrier layer. The dielectric layer has an opening therein, the opening exposing a portion of the barrier layer, wherein the opening has at least one secondary opening, the secondary opening being located in a barrier layer adjacent the sidewall of the opening.

在本發明一實施例中,上述開口的底部具有W型的剖面形狀。In an embodiment of the invention, the bottom of the opening has a W-shaped cross-sectional shape.

在本發明一實施例中,上述開口的中間底部的阻障層的厚度大於次開口的底部的阻障層的厚度且小於介電層下方的阻障層的厚度。In an embodiment of the invention, the thickness of the barrier layer at the middle bottom of the opening is greater than the thickness of the barrier layer at the bottom of the secondary opening and less than the thickness of the barrier layer under the dielectric layer.

基於上述,在本發明的方法中,在進行一蝕刻製程以形成U型開口的同時,於U型開口底部的阻障層上形成保護層,再以保護層為罩幕,繼續進行上述蝕刻製程,並調整氮氣的流量,以形成W型開口。並且,上述保護層可用於避免阻障層因使用高無線射頻功率的電漿而濺擊至開口的側壁上,防止於開口的側壁上產生殘留物,進而使元件的效能提升。Based on the above, in the method of the present invention, while performing an etching process to form a U-shaped opening, a protective layer is formed on the barrier layer at the bottom of the U-shaped opening, and the protective layer is used as a mask to continue the etching process. And adjust the flow rate of nitrogen to form a W-shaped opening. Moreover, the protective layer can be used to prevent the barrier layer from splashing onto the sidewall of the opening due to the use of high radio frequency power plasma, thereby preventing residue on the sidewall of the opening, thereby improving the performance of the component.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1A至圖1G為依照本發明的一實施例所繪示的半導體元件的製造方法的剖面示意圖。1A-1G are schematic cross-sectional views showing a method of fabricating a semiconductor device in accordance with an embodiment of the invention.

請參照圖1A,首先,提供基底10。基底10的材料可包括半導體材料、絕緣體材料、導體材料或上述材料的任意組合。基底10的材料例如是選自於由Si、Ge、SiGe、GaP、GaAs、SiC、SiGeC、InAs與InP所構成的群組中的至少一種材料。在一實施例中,基底10的材料例如是矽或矽化鍺。此外,基底10可為單層結構。或者,基底10亦可為包括導體層、介電層、閘極結構等的多層結構。Referring to FIG. 1A, first, a substrate 10 is provided. The material of the substrate 10 may include a semiconductor material, an insulator material, a conductor material, or any combination of the above. The material of the substrate 10 is, for example, at least one material selected from the group consisting of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs, and InP. In an embodiment, the material of the substrate 10 is, for example, tantalum or niobium. Further, the substrate 10 may have a single layer structure. Alternatively, the substrate 10 may be a multilayer structure including a conductor layer, a dielectric layer, a gate structure, and the like.

接著,於基底10上形成阻障層12。阻障層12的材料包括鈦、氮化鈦、鉭、氮化鉭、鎢、氮化鎢或其組合。在一實施例中,阻障層12的材料例如是鈦和氮化鈦的組合。在另一實施例中,阻障層12的材料例如是鉭和氮化鉭的組合。阻障層12的形成方法例如是進行化學氣相沈積法或物理氣相沈積法。阻障層12的厚度例如是介於300 Å至1,000 Å之間。Next, a barrier layer 12 is formed on the substrate 10. The material of the barrier layer 12 includes titanium, titanium nitride, tantalum, tantalum nitride, tungsten, tungsten nitride or a combination thereof. In an embodiment, the material of the barrier layer 12 is, for example, a combination of titanium and titanium nitride. In another embodiment, the material of the barrier layer 12 is, for example, a combination of tantalum and tantalum nitride. The formation method of the barrier layer 12 is, for example, a chemical vapor deposition method or a physical vapor deposition method. The thickness of the barrier layer 12 is, for example, between 300 Å and 1,000 Å.

然後,於阻障層12上形成介電層14。介電層14的材料包括氧化物、氮化物、氮氧化物或其組合。在一實施例中,介電層14的材料例如是氧化矽。在另一實施例中,介電層14也可以是介電常數低於4的介電材料層。形成介電層14的方法例如是進行熱氧化法或化學氣相沈積法。介電層14的厚度例如是介於1,000 Å至15,000 Å之間。之後,於介電層14上形成圖案化罩幕層16。圖案化罩幕層16的材料例如是光阻。Then, a dielectric layer 14 is formed on the barrier layer 12. The material of the dielectric layer 14 includes an oxide, a nitride, an oxynitride, or a combination thereof. In an embodiment, the material of the dielectric layer 14 is, for example, yttrium oxide. In another embodiment, the dielectric layer 14 can also be a layer of dielectric material having a dielectric constant of less than four. The method of forming the dielectric layer 14 is, for example, a thermal oxidation method or a chemical vapor deposition method. The thickness of the dielectric layer 14 is, for example, between 1,000 Å and 15,000 Å. Thereafter, a patterned mask layer 16 is formed on the dielectric layer 14. The material of the patterned mask layer 16 is, for example, a photoresist.

接著,請參照圖1B,以圖案化罩幕層16為罩幕,進行蝕刻製程S1,移除部分介電層14,以於介電層14中形成淺開口15。蝕刻製程S1包括非等向性蝕刻製程,例如是乾式蝕刻法。乾式蝕刻法可以是電漿蝕刻法。在此實施例中,蝕刻製程S1例如是具有高無線射頻功率(radio frequency power,RF power)的電漿蝕刻法。高無線射頻功率的電漿蝕刻法的能量例如是介於1000瓦至5000瓦之間。蝕刻製程S1所使用的蝕刻氣體包括六氟化硫(SF6 )、三氟化氮(NF3 )、氬氣(Ar)及氟烴氣體(Cx Fy ),其中x、y均大於零,例如x是介於1-5之間的整數,y是介於4-8之間的整數。氟烴氣體可包括氟烷類、氟烯類或氟炔類氣體。在一實施例中,蝕刻製程S1所使用的蝕刻氣體中不含氮氣。Next, referring to FIG. 1B , the mask layer 16 is patterned as a mask, and an etching process S1 is performed to remove a portion of the dielectric layer 14 to form a shallow opening 15 in the dielectric layer 14 . The etching process S1 includes an anisotropic etching process, such as a dry etching process. The dry etching method may be a plasma etching method. In this embodiment, the etching process S1 is, for example, a plasma etching method having high radio frequency power (RF power). The energy of the plasma etching method for high radio frequency power is, for example, between 1000 watts and 5,000 watts. The etching gas used in the etching process S1 includes sulfur hexafluoride (SF 6 ), nitrogen trifluoride (NF 3 ), argon (Ar), and a fluorocarbon gas (C x F y ), wherein x and y are both greater than zero. For example, x is an integer between 1-5 and y is an integer between 4-8. The fluorocarbon gas may include a fluorocarbon, a fluoroolefin or a fluoroacetylene gas. In one embodiment, the etching gas used in the etching process S1 does not contain nitrogen.

值得一提的是,於介電層14中形成淺開口15的同時,於淺開口15的底部的介電層14上形成沈積物20。沈積物20例如是經由蝕刻製程S1所使用的上述蝕刻氣體反應而得到的聚合物殘留物。It is worth mentioning that deposits 20 are formed on the dielectric layer 14 at the bottom of the shallow opening 15 while forming the shallow openings 15 in the dielectric layer 14. The deposit 20 is, for example, a polymer residue obtained by reacting the above-described etching gas used in the etching process S1.

淺開口15的深度D例如是介電層14的厚度h1的約1/2至4/5。更具體地說,淺開口15並未貫穿介電層14,且淺開口15的深度D與淺開口15下方的介電層的厚度h2的總和實質上等於介電層14的厚度h1。在一實施例中,介電層14的厚度h1例如是介8,000 Å至15,000 Å之間,且淺開口15的深度D例如是介於4,000 Å至12,000 Å之間。然而,上述數值範圍僅為舉例說明,不用以限定本發明。The depth D of the shallow opening 15 is, for example, about 1/2 to 4/5 of the thickness h1 of the dielectric layer 14. More specifically, the shallow opening 15 does not penetrate the dielectric layer 14, and the sum of the depth D of the shallow opening 15 and the thickness h2 of the dielectric layer below the shallow opening 15 is substantially equal to the thickness h1 of the dielectric layer 14. In one embodiment, the thickness h1 of the dielectric layer 14 is, for example, between 8,000 Å and 15,000 Å, and the depth D of the shallow opening 15 is, for example, between 4,000 Å and 12,000 Å. However, the above numerical ranges are merely illustrative and are not intended to limit the invention.

然後,請參照圖1C,以圖案化罩幕層16為罩幕,進行蝕刻製程S2,以使淺開口15加深,進而於介電層14中形成開口17,且開口17裸露出部分阻障層12。並且,於開口17的底部的阻障層12上形成保護層22。蝕刻製程S2包括非等向性蝕刻製程,例如是乾式蝕刻法。乾式蝕刻法可以是電漿蝕刻法。蝕刻製程S2所使用的蝕刻氣體與蝕刻製程S1所使用的蝕刻氣體不同。蝕刻製程S2所使用的蝕刻氣體中包含有氮氣;而蝕刻製程S1所使用的蝕刻氣體不包含有氮氣。在一實施例中,蝕刻製程S2例如是具有高無線射頻功率的電漿蝕刻法,其能量例如是介於1000瓦至5000瓦之間。蝕刻製程S2所使用的蝕刻氣體包括六氟化硫(SF6 )、三氟化氮(NF3 )、氬氣(Ar)、氟烴氣體(Cx Fy )及氮氣,其中x、y均大於零,例如x是介於1-5之間的整數,y是介於4-8之間的整數。此外,氮氣與氟烴氣體的流量比例如是約1:6至1:4。Then, referring to FIG. 1C, the mask layer 16 is patterned as a mask, and an etching process S2 is performed to deepen the shallow opening 15, thereby forming an opening 17 in the dielectric layer 14, and the opening 17 is partially exposed. 12. Further, a protective layer 22 is formed on the barrier layer 12 at the bottom of the opening 17. The etching process S2 includes an anisotropic etching process, such as a dry etching process. The dry etching method may be a plasma etching method. The etching gas used in the etching process S2 is different from the etching gas used in the etching process S1. The etching gas used in the etching process S2 contains nitrogen gas; and the etching gas used in the etching process S1 does not contain nitrogen gas. In one embodiment, the etching process S2 is, for example, a plasma etching method having high radio frequency power, the energy of which is, for example, between 1000 watts and 5,000 watts. The etching gas used in the etching process S2 includes sulfur hexafluoride (SF 6 ), nitrogen trifluoride (NF 3 ), argon (Ar), fluorocarbon gas (C x F y ), and nitrogen, wherein x and y are both Greater than zero, for example x is an integer between 1-5 and y is an integer between 4-8. Further, the flow ratio of nitrogen to fluorocarbon gas is, for example, about 1:6 to 1:4.

在一實施例中,形成開口17所使用的氮氣的流量隨著開口17的深度增加而增加。舉例而言,蝕刻製程S2一開始所使用的氮氣的流量例如是介於0 sccm至50 sccm之間。之後,隨著開口17的深度增加,再將氮氣的流量調整至介於50 sccm至300 sccm之間。然而,本發明不以此為限。本發明所屬技術領域中具有通常知識者可依所需自行調整氮氣的流量。In an embodiment, the flow of nitrogen used to form the opening 17 increases as the depth of the opening 17 increases. For example, the flow rate of nitrogen used at the beginning of the etching process S2 is, for example, between 0 sccm and 50 sccm. Thereafter, as the depth of the opening 17 increases, the flow rate of nitrogen gas is adjusted to be between 50 sccm and 300 sccm. However, the invention is not limited thereto. Those skilled in the art to which the present invention pertains can adjust the flow rate of nitrogen gas as needed.

在一實施例中,當進行蝕刻製程S2時,在介電層14中形成開口17的同時,於開口17的底部的阻障層12上形成保護層22。換言之,保護層22與開口17為同時形成。在此實施例中,保護層22例如是經由蝕刻製程S2所使用的上述蝕刻氣體反應而得的聚合物殘留物。保護層22的材料包括含碳、氟以及氮的聚合物。在一實施例中,保護層22的材料例如是Cx Fy Nz 聚合物,其中x、y、z均大於零。保護層22的厚度可為均勻或不均勻。在一實施例中,保護層22的中央部分的厚度h3例如是大於保護層22的邊緣部分的厚度h4。在另一實施例中,保護層22例如是覆蓋部分阻障層12,以裸露出鄰近開口17的側壁的部分阻障層12。或者,保護層22的邊緣部分可具有極薄的厚度,以利後續蝕刻製程移除此極薄的邊緣部分以及位於其下方的部分阻障層12。In one embodiment, the protective layer 22 is formed on the barrier layer 12 at the bottom of the opening 17 while the opening 17 is formed in the dielectric layer 14 while the etching process S2 is being performed. In other words, the protective layer 22 and the opening 17 are formed at the same time. In this embodiment, the protective layer 22 is, for example, a polymer residue obtained by reacting the above etching gas used in the etching process S2. The material of the protective layer 22 includes a polymer containing carbon, fluorine, and nitrogen. In an embodiment, the material of the protective layer 22 is, for example, a C x F y N z polymer, wherein x, y, and z are all greater than zero. The thickness of the protective layer 22 may be uniform or non-uniform. In an embodiment, the thickness h3 of the central portion of the protective layer 22 is, for example, greater than the thickness h4 of the edge portion of the protective layer 22. In another embodiment, the protective layer 22 is, for example, covered with a portion of the barrier layer 12 to expose a portion of the barrier layer 12 adjacent the sidewalls of the opening 17. Alternatively, the edge portion of the protective layer 22 may have an extremely thin thickness to facilitate subsequent etching processes to remove the extremely thin edge portion and the portion of the barrier layer 12 underneath.

之後,請參照圖1D與圖1E,以保護層22和圖案化罩幕層16為罩幕,移除部分阻障層12,以在介電層14中形成開口19,且開口19貫穿介電層14。具體言之,保護層22會在形成開口19的步驟中逐漸消耗,同時在保護層22至少一側的阻障層12中形成至少一個次開口19a,如圖1D所示。在一實施例中,次開口19a可環繞保護層22而設置。當保護層22消耗殆盡時,開口19的中間底部的部分阻障層12也會被移除且次開口19a也會加深,如圖1E所示。在一實施例中,圖1E的步驟中,保護層24也會同時形成在開口19的中間底部的阻障層12上。保護層24與保護層22的材料相似。具體言之,保護層24與保護層22的主成分(例如C、F和N)相同,但元素間比例不同。在一實施例中,開口19的底部具有W型的剖面形狀。開口19可具有至少一個次開口19a。次開口19a例如是位於鄰近開口19的側壁的部分阻障層12中。次開口19a的深度D1例如是介於阻障層12的厚度的約1/3至2/3之間。在此實施例中,開口19的中間底部的阻障層12的厚度h5例如是大於次開口19a的底部的阻障層12的厚度h6。此外,位於介電層14下方的阻障層12的厚度h7例如是大於開口19的中間底部的阻障層12的厚度h5。1D and FIG. 1E, with the protective layer 22 and the patterned mask layer 16 as a mask, a portion of the barrier layer 12 is removed to form an opening 19 in the dielectric layer 14, and the opening 19 is through the dielectric. Layer 14. Specifically, the protective layer 22 is gradually consumed in the step of forming the opening 19, while at least one secondary opening 19a is formed in the barrier layer 12 on at least one side of the protective layer 22, as shown in FIG. 1D. In an embodiment, the secondary opening 19a can be disposed around the protective layer 22. When the protective layer 22 is exhausted, a portion of the barrier layer 12 at the middle bottom of the opening 19 is also removed and the secondary opening 19a is also deepened, as shown in FIG. 1E. In an embodiment, in the step of FIG. 1E, the protective layer 24 is also formed on the barrier layer 12 at the middle bottom of the opening 19. The protective layer 24 is similar in material to the protective layer 22. Specifically, the protective layer 24 is the same as the main components (for example, C, F, and N) of the protective layer 22, but the ratios between the elements are different. In an embodiment, the bottom of the opening 19 has a W-shaped cross-sectional shape. The opening 19 can have at least one secondary opening 19a. The secondary opening 19a is, for example, located in a portion of the barrier layer 12 adjacent the sidewall of the opening 19. The depth D1 of the secondary opening 19a is, for example, between about 1/3 and 2/3 of the thickness of the barrier layer 12. In this embodiment, the thickness h5 of the barrier layer 12 at the intermediate bottom of the opening 19 is, for example, greater than the thickness h6 of the barrier layer 12 at the bottom of the secondary opening 19a. Further, the thickness h7 of the barrier layer 12 under the dielectric layer 14 is, for example, greater than the thickness h5 of the barrier layer 12 at the intermediate bottom of the opening 19.

在本發明的實施例中,蝕刻製程S2例如是包括形成開口17以及開口19的步驟。具體地說,在上述製造方法中,當氮氣的流量隨著開口17的深度增加至裸露出阻障層12時,此時再以保護層22為罩幕,移除保護層22的至少一側的部分阻障層12,以形成具有至少一個次開口19a的開口19。形成開口19所使用的氮氣的流量例如是介於50 sccm至300 sccm之間。並且,藉由調整氮氣的流量,可形成剖面為W型的開口19。In an embodiment of the invention, the etching process S2 includes, for example, the step of forming the opening 17 and the opening 19. Specifically, in the above manufacturing method, when the flow rate of the nitrogen gas increases with the depth of the opening 17 to expose the barrier layer 12, at this time, the protective layer 22 is used as a mask to remove at least one side of the protective layer 22. A portion of the barrier layer 12 is formed to form an opening 19 having at least one secondary opening 19a. The flow rate of the nitrogen gas used to form the opening 19 is, for example, between 50 sccm and 300 sccm. Further, by adjusting the flow rate of nitrogen gas, an opening 19 having a W-shaped cross section can be formed.

值得注意的是,在上述蝕刻製程S2中,保護層22/24可用於避免阻障層12因使用高無線射頻功率的電漿而濺擊至開口17/19的側壁上,進而防止於開口17/19的側壁上產生殘留物。It should be noted that in the above etching process S2, the protective layer 22/24 can be used to prevent the barrier layer 12 from splashing onto the sidewall of the opening 17/19 due to the use of high radio frequency power plasma, thereby preventing the opening 17 Residues are produced on the sidewalls of /19.

其後,請參照圖1F,移除保護層24和圖案化罩幕層16。移除保護層24和圖案化罩幕層16的方法包括進行濕式蝕刻法。Thereafter, referring to FIG. 1F, the protective layer 24 and the patterned mask layer 16 are removed. The method of removing the protective layer 24 and the patterned mask layer 16 includes performing a wet etching process.

接著,請參照圖1G,於開口19中形成導體層26。導體層26的材料包括金屬、金屬合金、摻雜多晶矽或其組合。金屬例如是鎢。金屬合金例如是鋁矽合金。導體層26的形成方法例如是進行化學氣相沈積法。此外,在形成導體層26之前可以先在開口19的側壁與底部形成另一層阻障層(未繪示)。另一層阻障層的材料例如是包括鈦、氮化鈦、鉭、氮化鉭、鎢、氮化鎢或其組合。在一實施例中,另一層阻障層的材料例如是鈦和氮化鈦的組合。在另一實施例中,另一層阻障層的材料例如是鉭和氮化鉭的組合。另一層阻障層的形成方法例如是進行化學氣相沈積法或物理氣相沈積法。另一層阻障層的厚度例如是介於10 Å至100 Å之間。至此,完成半導體元件100的製作。Next, referring to FIG. 1G, a conductor layer 26 is formed in the opening 19. The material of the conductor layer 26 includes a metal, a metal alloy, a doped polysilicon or a combination thereof. The metal is, for example, tungsten. The metal alloy is, for example, an aluminum-bismuth alloy. The method of forming the conductor layer 26 is, for example, a chemical vapor deposition method. In addition, another barrier layer (not shown) may be formed on the sidewalls and the bottom of the opening 19 before forming the conductor layer 26. The material of the other barrier layer includes, for example, titanium, titanium nitride, tantalum, tantalum nitride, tungsten, tungsten nitride or a combination thereof. In one embodiment, the material of the other barrier layer is, for example, a combination of titanium and titanium nitride. In another embodiment, the material of the other barrier layer is, for example, a combination of tantalum and tantalum nitride. Another method of forming the barrier layer is, for example, chemical vapor deposition or physical vapor deposition. The thickness of the other barrier layer is, for example, between 10 Å and 100 Å. So far, the fabrication of the semiconductor device 100 is completed.

以下,將利用圖1F針對本發明的半導體元件結構進行說明。如圖1F所示,本發明的半導體元件包括基底10、阻障層12以及介電層14。阻障層12位於基底10上,介電層14位於阻障層12上。介電層14中具有開口19,且開口19裸露出部分阻障層12。開口19具有至少一個次開口19a,且至少一個次開口19a位於鄰近開口19的側壁的阻障層12中。在一實施例中,當開口19為介層窗開口或接觸窗開口時,一個次開口19a沿著開口19的底部周圍配置於阻障層12中。在另一實施例中,當開口19為溝渠形式的開口時,兩個次開口19a沿著開口19的底部的相對側分別配置於阻障層12中。然不管是上述何種情況,開口19的底部均具有W型的剖面形狀。Hereinafter, the structure of the semiconductor element of the present invention will be described using FIG. 1F. As shown in FIG. 1F, the semiconductor device of the present invention includes a substrate 10, a barrier layer 12, and a dielectric layer 14. The barrier layer 12 is on the substrate 10 and the dielectric layer 14 is on the barrier layer 12. The dielectric layer 14 has an opening 19 therein, and the opening 19 exposes a portion of the barrier layer 12. The opening 19 has at least one secondary opening 19a, and at least one secondary opening 19a is located in the barrier layer 12 adjacent the sidewall of the opening 19. In an embodiment, when the opening 19 is a via opening or a contact opening, a secondary opening 19a is disposed in the barrier layer 12 along the bottom of the opening 19. In another embodiment, when the opening 19 is an opening in the form of a trench, the two secondary openings 19a are respectively disposed in the barrier layer 12 along opposite sides of the bottom of the opening 19. However, regardless of the above, the bottom of the opening 19 has a W-shaped cross-sectional shape.

開口19的中間底部的阻障層12的厚度h5例如是大於次開口19a底部的阻障層12的厚度h6。此外,介電層14下方的阻障層12的厚度h7大於鄰近開口19的中間底部的阻障層12的厚度h5。亦即,h7>h5>h6。在一實施例中,h7介於50 nm至100 nm之間;h6介於15 nm至75 nm之間;以及h5介於25 nm至100 nm之間。The thickness h5 of the barrier layer 12 at the intermediate bottom of the opening 19 is, for example, greater than the thickness h6 of the barrier layer 12 at the bottom of the secondary opening 19a. Further, the thickness h7 of the barrier layer 12 under the dielectric layer 14 is greater than the thickness h5 of the barrier layer 12 adjacent to the intermediate bottom of the opening 19. That is, h7>h5>h6. In one embodiment, h7 is between 50 nm and 100 nm; h6 is between 15 nm and 75 nm; and h5 is between 25 nm and 100 nm.

本發明實施例之的半導體元件的製造方法可應用於動態隨機存取記憶體(DRAM)、反及閘快閃記憶體(NAND flash)、NOR型快閃記憶體(NOR-flash)等,但本發明不以此為限。The method for fabricating a semiconductor device according to the embodiment of the present invention can be applied to a dynamic random access memory (DRAM), a NAND flash, a NOR flash, or the like. The invention is not limited thereto.

圖2為依照本發明的一實例的半導體元件的穿透式電子顯微鏡的照片。2 is a photograph of a transmission electron microscope of a semiconductor element in accordance with an example of the present invention.

如圖2所示,開口的中間底部的阻障層的厚度h8大於次開口底部的阻障層的厚度h9。As shown in FIG. 2, the thickness h8 of the barrier layer at the middle bottom of the opening is greater than the thickness h9 of the barrier layer at the bottom of the secondary opening.

綜上所述,在本發明的方法中,在進行一蝕刻製程以形成U型開口(如開口17)的同時,於U型開口底部的阻障層上形成保護層,再以保護層為罩幕,繼續進行上述蝕刻製程,並調整氮氣的流量,以形成W型開口(如開口19)。並且,上述保護層可用於避免阻障層因使用高無線射頻功率的電漿而濺擊至開口的側壁上,防止於開口的側壁上產生殘留物,進而使元件的效能提升。In summary, in the method of the present invention, while performing an etching process to form a U-shaped opening (such as the opening 17), a protective layer is formed on the barrier layer at the bottom of the U-shaped opening, and the protective layer is used as a cover. Curtain, continue the etching process described above, and adjust the flow rate of nitrogen to form a W-shaped opening (such as opening 19). Moreover, the protective layer can be used to prevent the barrier layer from splashing onto the sidewall of the opening due to the use of high radio frequency power plasma, thereby preventing residue on the sidewall of the opening, thereby improving the performance of the component.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧基底
12‧‧‧阻障層
14‧‧‧介電層
15‧‧‧淺開口
16‧‧‧圖案化罩幕層
17、19‧‧‧開口
19a‧‧‧次開口
20‧‧‧沈積物
22、24‧‧‧保護層
26‧‧‧導體層
D、D1‧‧‧深度
h1、h2、h3、h4、h5、h6、h7、h8、h9‧‧‧厚度
S1、S2‧‧‧蝕刻製程
10‧‧‧Base
12‧‧‧Barrier layer
14‧‧‧Dielectric layer
15‧‧‧Shallow opening
16‧‧‧ patterned mask layer
17, 19‧‧‧ openings
19a‧‧ openings
20‧‧‧Sediment
22, 24‧‧ ‧ protective layer
26‧‧‧Conductor layer
D, D1‧‧ depth
H1, h2, h3, h4, h5, h6, h7, h8, h9‧‧ thickness
S1, S2‧‧‧ etching process

圖1A至圖1G為依照本發明的一實施例所繪示的半導體元件的製造方法的剖面示意圖。 圖2為依照本發明的一實例的半導體元件的穿透式電子顯微鏡(TEM)的照片。1A-1G are schematic cross-sectional views showing a method of fabricating a semiconductor device in accordance with an embodiment of the invention. 2 is a photograph of a transmission electron microscope (TEM) of a semiconductor device in accordance with an example of the present invention.

10‧‧‧基底 10‧‧‧Base

12‧‧‧阻障層 12‧‧‧Barrier layer

14‧‧‧介電層 14‧‧‧Dielectric layer

16‧‧‧圖案化罩幕層 16‧‧‧ patterned mask layer

19‧‧‧開口 19‧‧‧ openings

19a‧‧‧次開口 19a‧‧ openings

24‧‧‧保護層 24‧‧‧Protective layer

D1‧‧‧深度 D1‧‧ depth

h5、h6‧‧‧厚度 H5, h6‧‧‧ thickness

S2‧‧‧蝕刻製程 S2‧‧‧ etching process

Claims (10)

一種半導體元件的製造方法,包括: 於一阻障層上形成一介電層; 於該介電層中形成一第一開口,該第一開口裸露出部分該阻障層; 於該第一開口的底部的該阻障層上形成一保護層,該保護層的中央部分的厚度大於邊緣部分的厚度;以及 以該保護層為罩幕,移除部分該阻障層,以形成一第二開口, 其中該第二開口具有至少一個次開口,該次開口位於鄰近該第二開口的側壁的該阻障層中。A method of fabricating a semiconductor device, comprising: forming a dielectric layer on a barrier layer; forming a first opening in the dielectric layer, the first opening exposing a portion of the barrier layer; Forming a protective layer on the barrier layer at the bottom, the central portion of the protective layer has a thickness greater than the thickness of the edge portion; and the protective layer is used as a mask to remove a portion of the barrier layer to form a second opening Wherein the second opening has at least one secondary opening, the secondary opening being located in the barrier layer adjacent to a sidewall of the second opening. 如申請專利範圍第1項所述的半導體元件的製造方法,其中該第二開口的底部具有W型的剖面形狀。The method of manufacturing a semiconductor device according to claim 1, wherein a bottom portion of the second opening has a W-shaped cross-sectional shape. 如申請專利範圍第1項所述的半導體元件的製造方法,其中形成該第一開口以及該第二開口的方法各自包括進行電漿蝕刻法。The method of manufacturing a semiconductor device according to claim 1, wherein the method of forming the first opening and the second opening each comprises performing a plasma etching method. 如申請專利範圍第3項所述的半導體元件的製造方法,其中形成該第一開口所使用的蝕刻氣體包括氮氣,且氮氣的流量隨著該第一開口的深度增加而增加。The method of manufacturing a semiconductor device according to claim 3, wherein the etching gas used to form the first opening includes nitrogen gas, and a flow rate of the nitrogen gas increases as the depth of the first opening increases. 如申請專利範圍第3項所述的半導體元件的製造方法,其中形成該第二開口所使用的蝕刻氣體包括六氟化硫(SF6 )、三氟化氮(NF3 )、氬氣(Ar)、氟烴氣體(Cx Fy )及氮氣,其中x、y均大於零。The method of manufacturing a semiconductor device according to claim 3, wherein the etching gas used for forming the second opening comprises sulfur hexafluoride (SF 6 ), nitrogen trifluoride (NF 3 ), and argon (Ar) ), a fluorocarbon gas (C x F y ) and nitrogen, wherein x and y are both greater than zero. 如申請專利範圍第1項所述的半導體元件的製造方法,其中於該介電層中形成該第一開口的同時,於該第一開口的底部的該阻障層上形成該保護層。The method of fabricating a semiconductor device according to claim 1, wherein the protective layer is formed on the barrier layer at the bottom of the first opening while the first opening is formed in the dielectric layer. 如申請專利範圍第1項所述的半導體元件的製造方法,更包括: 在該介電層中形成該第一開口之前,於該介電層中形成一淺開口;以及 進行非等向性蝕刻製程以加深該淺開口,進而於該介電層中形成該第一開口, 其中形成該淺開口所使用的氣體不包含氮氣。The method for fabricating a semiconductor device according to claim 1, further comprising: forming a shallow opening in the dielectric layer before forming the first opening in the dielectric layer; and performing anisotropic etching The process is to deepen the shallow opening to form the first opening in the dielectric layer, wherein the gas used to form the shallow opening does not contain nitrogen. 一種半導體元件,包括: 一阻障層;以及 一介電層,位於該阻障層上,該介電層中具有一開口,該開口裸露出部分該阻障層, 其中該開口具有至少一個次開口,該次開口位於鄰近該開口的側壁的該阻障層中。A semiconductor device comprising: a barrier layer; and a dielectric layer on the barrier layer, the dielectric layer having an opening, the opening exposing a portion of the barrier layer, wherein the opening has at least one time An opening located in the barrier layer adjacent to a sidewall of the opening. 如申請專利範圍第8項所述的半導體元件,其中該開口的底部具有W型的剖面形狀。The semiconductor device according to claim 8, wherein the bottom of the opening has a W-shaped cross-sectional shape. 如申請專利範圍第8項所述的半導體元件,其中該開口的中間底部的該阻障層的厚度大於該次開口的底部的該阻障層的厚度且小於該介電層下方的該阻障層的厚度。The semiconductor device of claim 8, wherein a thickness of the barrier layer at a middle bottom of the opening is greater than a thickness of the barrier layer at a bottom of the sub-opening and smaller than a barrier under the dielectric layer The thickness of the layer.
TW104110817A 2015-04-02 2015-04-02 Semiconductor device and method of fabricating the same TWI556304B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104110817A TWI556304B (en) 2015-04-02 2015-04-02 Semiconductor device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104110817A TWI556304B (en) 2015-04-02 2015-04-02 Semiconductor device and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW201637089A true TW201637089A (en) 2016-10-16
TWI556304B TWI556304B (en) 2016-11-01

Family

ID=57847723

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104110817A TWI556304B (en) 2015-04-02 2015-04-02 Semiconductor device and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI556304B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252277A1 (en) * 2006-04-28 2007-11-01 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor devices and fabrication method thereof
TWI437664B (en) * 2008-12-18 2014-05-11 Byung Chun Yang High yield and high throughput method for the manufacture of integrated circuit devices of improved integrity, performance and reliability

Also Published As

Publication number Publication date
TWI556304B (en) 2016-11-01

Similar Documents

Publication Publication Date Title
US7202172B2 (en) Microelectronic device having disposable spacer
TWI283042B (en) Method for fabricating transistor of semiconductor device
JP4398467B2 (en) Manufacturing method of semiconductor device
TW201901776A (en) Selective etching of amorphous silicon over epitaxial silicon
KR20050012611A (en) Fabricating method of semiconductor device with poly/tungsten gate electrode
JP4182125B2 (en) Manufacturing method of semiconductor device
TWI793908B (en) Method of manufacturing semiconductor structure having buried word lines
KR20200102617A (en) Method of surface treatment of gallium oxide
TWI556304B (en) Semiconductor device and method of fabricating the same
KR100743618B1 (en) Gate of semiconductor and method for manufacturing the same
US7935634B2 (en) Integrated circuits, micromechanical devices, and method of making same
KR100854217B1 (en) Semiconductor device manufacturing method
US9881809B2 (en) Semiconductor device and method of fabricating the same
TWI798740B (en) Method of manufacturing semiconductor structure having fin structures
US20090261478A1 (en) Semiconductor device and method for manufacturing the same
US20240096640A1 (en) High Aspect Ratio Contact (HARC) Etch
US11699620B2 (en) Shallow trench isolation structures having uniform step heights
US20230298944A1 (en) Shallow trench isolation structures having uniform step heights
TW202201760A (en) Raised pad formations for contacts in three-dimensional structures on microelectronic workpieces
KR100920043B1 (en) Recess gate of semiconductor device and method of manufacturing the same
Luo et al. Tungsten/Silicon Oxide/Titanium Nitride Stack Etching
TW202422652A (en) Method of manufacturing semiconductor device
KR100688778B1 (en) Method for manufacturing semiconductor device
CN117637680A (en) Semiconductor element and method for manufacturing the same
TW202349493A (en) Etching of polycrystalline semiconductors