TW201636615A - Method of release testing - Google Patents

Method of release testing Download PDF

Info

Publication number
TW201636615A
TW201636615A TW104134095A TW104134095A TW201636615A TW 201636615 A TW201636615 A TW 201636615A TW 104134095 A TW104134095 A TW 104134095A TW 104134095 A TW104134095 A TW 104134095A TW 201636615 A TW201636615 A TW 201636615A
Authority
TW
Taiwan
Prior art keywords
nanoparticle
drug
azd1152 hqpa
sample
metabolite
Prior art date
Application number
TW104134095A
Other languages
Chinese (zh)
Inventor
麥可 沃克
柯林 豪維斯
Original Assignee
阿斯特捷利康公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿斯特捷利康公司 filed Critical 阿斯特捷利康公司
Publication of TW201636615A publication Critical patent/TW201636615A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/94Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving narcotics or drugs or pharmaceuticals, neurotransmitters or associated receptors

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Methods of measuring systemic release of active drug from a nanoparticle, and their use, for example in assessing bioequivalence are described.

Description

釋放測試之方法 Release test method

本發明係關於釋放測試之方法。 The present invention relates to a method of release testing.

已經長久地認為區別地將某些藥物遞送至患者(例如,比至正常組織更多地優先分配至具體組織或細胞類型或至特定患病組織)或控制藥物釋放的系統是有益的。 It has long been recognized that it is beneficial to differentially deliver certain drugs to a patient (e.g., more preferentially assigned to a particular tissue or cell type or to a particular diseased tissue than to normal tissue) or to control drug release.

例如,包括比至正常組織更多地優先分配至特定患病組織的活性劑之療法可以增加藥物在那些組織中的暴露,超過身體中的其他部分。當治療病症(例如癌症,其中希望將細胞毒性劑量的藥物遞送至癌細胞而不殺死周圍非癌組織)時,這係特別重要的。有效的藥物分佈可以減少在抗癌劑治療中常見的不希望的並且有時是危及生命的副作用。此外,此類療法可以允許藥物到達在其他情況下它們將不能到達的某些組織。 For example, a therapy that includes an active agent that is preferentially assigned to a particular diseased tissue more than normal tissue can increase exposure of the drug in those tissues beyond other parts of the body. This is especially important when treating conditions such as cancer where it is desirable to deliver a cytotoxic dose of the drug to the cancer cells without killing surrounding non-cancerous tissue. Effective drug distribution can reduce undesirable and sometimes life-threatening side effects that are common in anticancer agents. In addition, such therapies can allow drugs to reach certain tissues that they would otherwise not reach.

提供活性成分的控制釋放之療法還會是有利的。 It would also be advantageous to provide a controlled release therapy of the active ingredient.

實現靶向的組織分佈和控制釋放的一個方式可以是藉由將活性成分配製為奈米顆粒配製物,雖然任何具體配製物的示差分佈和控制釋放、給予途徑和特異性的相對貢獻在不同腫瘤類型之間可以變化。 One way to achieve targeted tissue distribution and controlled release may be by formulating the active ingredient into a nanoparticle formulation, although the differential distribution and controlled release, the route of administration, and the specific contribution of any particular formulation are different in different tumors. Types can vary.

癌症(和其他過度增生性疾病)之特徵在於不受控制的細胞繁殖。細胞繁殖的正常調節的喪失常常顯現是由於對藉由細胞週期控制進展的細胞通路的遺傳損害而發生。 Cancer (and other hyperproliferative diseases) are characterized by uncontrolled cell proliferation. The loss of normal regulation of cell proliferation is often manifested by genetic damage to cellular pathways that progress through cell cycle control.

在真核生物中,蛋白質磷酸化之有序級聯被認為是控制了細胞週期。現在已經鑒定了在這一級聯中起到關鍵作用的蛋白激酶的若干家族。當與正常組織比較時,很多該等激酶的活性在人腫瘤中增加。藉由增加蛋白的表現水平(例如由於基因擴增),或藉由在輔啟動子或抑制蛋白的表現中之改變,這係可以發生的。 In eukaryotes, the ordered cascade of protein phosphorylation is thought to control the cell cycle. Several families of protein kinases that play a key role in this cascade have now been identified. The activity of many of these kinases is increased in human tumors when compared to normal tissues. This can occur by increasing the level of protein expression (eg, due to gene amplification), or by altering the expression of the co-promoter or inhibitory protein.

極光激酶(極光-A、極光-B和極光-C)編碼調控細胞週期的絲胺酸-蘇胺酸蛋白激酶(總結在亞當斯(Adams)等人,2001,細胞生物學趨勢(Trends in Cell Biology).11(2):49-54中)。該等示出貫穿G2和有絲分裂的表現和激酶活性之峰值,並且已經長久地牽涉在癌症中人極光激酶的作用。 Aurora kinases (Aurora-A, Aurora-B, and Aurora-C) encode a serine-threonine protein kinase that regulates cell cycle (summarized in Adams et al., 2001, Trends in Cell Biology). ).11(2): 49-54). These show peaks in G2 and mitosis and peaks in kinase activity and have long been implicated in the role of human aurora kinase in cancer.

極光激酶抑制劑被稱為AZD1152(2-(乙基(3-((4-((5-(2-((3-氟苯基)胺基)-2-側氧基乙基)-1H-吡唑-3-基)胺基)喹唑啉-7-基)氧基)丙基)胺基)乙基二氫磷酸酯),如下圖所示,首先揭露於國際專利申請案WO 2004/058781(實例39)並且已經由阿斯利康公司(AstraZeneca)研究,作為針對不同癌症之潛在治療。 The Aurora kinase inhibitor is called AZD1152 (2-(ethyl(3-((4-((3-fluorophenyl))amino))))))) -pyrazol-3-yl)amino)quinazolin-7-yl)oxy)propyl)amino)ethyldihydrophosphate), as shown in the following figure, first disclosed in International Patent Application WO 2004 /058781 (Example 39) and has been studied by AstraZeneca as a potential treatment for different cancers.

已知AZD1152在體內被代謝為稱為AZD1152 hqpa(2-(3-((7-(3-(乙基(2-羥乙基)胺基)丙氧基)喹唑啉-4-基)胺基)-1H-吡唑-5-基)-N-(3-氟苯基)乙醯胺之化合物,該化合物也揭露於WO 2004/058781中。事實上,AZD1152 hqpa在很大程度上是當給予AZD1152自身時,發揮生物效應的部分。 AZD1152 is known to be metabolized in vivo to be called AZD1152 hqpa(2-(3-((7-(3-(ethyl(2-hydroxyethyl))amino)propoxy)quinazolin-4-yl) A compound of amino)-1H-pyrazol-5-yl)-N-(3-fluorophenyl)acetamide, which is also disclosed in WO 2004/058781. In fact, AZD1152 hqpa is largely It is the part that exerts the biological effect when AZD1152 itself is given.

我們的PCT申請案PCT/GB2014/052787(公開號WO 2015/036792)描述了AZD1152 hqpa之奈米顆粒配製物。 Our PCT application PCT/GB2014/052787 (Publication No. WO 2015/036792) describes a nanoparticle formulation of AZD1152 hqpa.

描述於這一PCT申請中的治療性奈米顆粒包括約50至約99.75重量%的二嵌段聚(乳)酸-聚(乙)二醇共聚物或二嵌段聚(乳酸-乙醇酸共聚物)-聚(乙)二醇共聚物,其中該治療性奈米顆粒包括約10至約30重量%的聚(乙)二醇,以及約0.2至約30重量%的AZD1152 hqpa或其藥學上可接受之鹽,特別是AZD1152 hqpa。描述了具有數目平均分子量為約15kDa至約20kDa的聚(乳酸)和數目平均分子量為約4kDa至約6kDa的聚(乙)二醇的聚(乳)酸-聚(乙)二醇共聚物,例如例示了具有數目平均分子量為約16kDa的聚(乳酸)和數目平均分子量為約5kDa的聚(乙)二醇的聚(乳)酸-聚(乙)二醇共聚物。 The therapeutic nanoparticle described in this PCT application comprises from about 50 to about 99.75 wt% of a diblock poly(lactic)-poly(ethylene) glycol copolymer or a diblock poly(lactic acid-glycolic acid copolymer). - a poly(ethyl) glycol copolymer, wherein the therapeutic nanoparticle comprises from about 10 to about 30% by weight of poly(ethylene) glycol, and from about 0.2 to about 30% by weight of AZD1152 hqpa or a pharmaceutical thereof Acceptable salts, especially AZD1152 hqpa. Poly(lactic)-poly(ethylene) glycol copolymers having a poly(lactic acid) having a number average molecular weight of from about 15 kDa to about 20 kDa and a poly(ethylene) glycol having a number average molecular weight of from about 4 kDa to about 6 kDa are described, For example, a poly(lactic)-poly(ethylene) glycol copolymer having a poly(lactic acid) having a number average molecular weight of about 16 kDa and a poly(ethyl) glycol having a number average molecular weight of about 5 kDa is exemplified.

在該PCT申請中例示的奈米顆粒還包括一基本上疏水的酸,在該奈米顆粒中,該酸可以與AZD1152 hqpa形成疏水離子對。用例示的配製物描述了很多適合的疏水的酸,包括去氧膽酸、膽酸、二辛基磺基琥珀酸(即多庫酸(docusate acid))、油酸和撲酸(pamoic acid)。 The nanoparticles exemplified in the PCT application also include a substantially hydrophobic acid in which the acid can form a hydrophobic ion pair with AZD1152 hqpa. The exemplified formulations describe a number of suitable hydrophobic acids including deoxycholic acid, cholic acid, dioctyl sulfosuccinic acid (i.e., docusate acid), oleic acid, and pamoic acid. .

在將此類治療性奈米顆粒開發為潛在新藥期間,重要的是要能夠理解,活性成分係如何隨時間流逝而從奈米顆粒中釋放的,即它的“釋放曲線”。此外,一般,用於證明包含此類奈米顆粒的一種配製物與另一種此類配製物生物等效的要求之一係證明兩種配製物具有相同的體內釋放曲線。這可以作為體內生物等效性研究的一部分而測 量。 During the development of such therapeutic nanoparticle as a potential new drug, it is important to understand how the active ingredient is released from the nanoparticle over time, ie its "release profile". Moreover, in general, one of the requirements for demonstrating that one formulation comprising such nanoparticles is bioequivalent to another such formulation demonstrates that both formulations have the same in vivo release profile. This can be measured as part of an in vivo bioequivalence study the amount.

在奈米顆粒配製物的情況下,藉由直接測量釋放的藥物而準確地表徵釋放曲線係困難的。 In the case of nanoparticle formulations, it is difficult to accurately characterize the release profile by directly measuring the released drug.

要使用的方法之一係提供載藥奈米顆粒至受試者,並且然後在已經過去一段時間後,嘗試測量在來自受試者的樣品中“游離”藥物的濃度。 One of the methods to be used is to provide drug-loaded nanoparticles to the subject, and then, after a period of time has elapsed, attempt to measure the concentration of the "free" drug in the sample from the subject.

替代方法係測量最初提供至受試者的載藥奈米顆粒之總量,並且然後,在其中藥物能夠從該等奈米顆粒釋放進入受試者體內的設定時間後,測量在受試者的血流中保持循環的囊封藥物之量。這幅圖代表了然後從最初提供的量中減去循環中存在的剩餘囊封藥物,以產生釋放的藥物量之指示。 An alternative method is to measure the total amount of drug-loaded nanoparticle initially provided to the subject, and then, after a set time in which the drug can be released from the nanoparticle into the subject, is measured in the subject The amount of encapsulated drug that remains circulating in the bloodstream. This graph represents the subsequent subtraction of the remaining encapsulated drug present in the cycle from the initially provided amount to produce an indication of the amount of drug released.

儘管該等方法可能看上去在理論上適合,但是在實踐中,它們要經受多次技術失敗。該等困難中的一些的出現係由於需要能夠從保留在該等奈米顆粒中的藥物中區別已經釋放的藥物之量。這係重要的,因為只有釋放的藥物才能對受試者起作用。然而,在實踐中,已經證明,在準確地區分並且測量兩個不同的藥物“池”(在奈米顆粒中釋放的和保留的)中的藥物的能力方面係有問題的。 Although these methods may seem to be theoretically suitable, in practice they are subject to multiple technical failures. Some of these difficulties arise due to the need to be able to distinguish the amount of drug that has been released from the drug retained in the nanoparticles. This is important because only the released drug can work for the subject. However, in practice, it has been demonstrated that there is a problem in accurately distinguishing and measuring the ability of two different drug "pools" (released and retained in the nanoparticle).

與此類技術相關而出現的一顯著困難涉及難以處理包含載藥奈米顆粒之離體樣品。很多因素會導致此類奈米顆粒自發釋放它們的囊封藥物,並且是以並不準確地反映體內情況之方式釋放。例如藉由藥物分子擴散出奈米顆粒,或藉由引起從奈米顆粒“洩漏”的降解,或者突然地,如果多個條件引起多個奈米顆粒破裂,會逐步地發生此類釋放。在等待分析時,或者在分析過程期間,樣品內可能發生這類釋放。 A significant difficulty associated with such techniques involves the difficulty of handling ex vivo samples containing drug-loaded nanoparticles. A number of factors can cause such nanoparticles to spontaneously release their encapsulated drugs and are released in a manner that does not accurately reflect the condition in the body. Such release occurs stepwise, for example, by diffusion of the drug molecules out of the nanoparticles, or by causing degradation of the "leakage" from the nanoparticles, or abruptly, if multiple conditions cause the plurality of nanoparticles to rupture. Such release may occur within the sample while waiting for analysis, or during the analysis process.

囊封藥物的僅小量的此類自發釋放係顯著使測量中獲得的圖偏斜所必然的,導致對受試者體內釋放的藥物量的過高估計。因為如與 已經釋放的藥物的量相比,在奈米顆粒中存在的藥物的量通常表示樣品(例如血液源的,例如血液或血漿)中存在的總量的較大比例,所以僅較小比例的奈米顆粒需要以此方式“爆發”或“洩漏”,以便造成顯著不準確的圖。 Only a small amount of such spontaneous release of the encapsulated drug significantly inevitably skews the map obtained in the measurement, resulting in an overestimation of the amount of drug released in the subject. Because as with The amount of drug that has been released in the nanoparticle is generally a large proportion of the total amount present in the sample (eg, blood source, such as blood or plasma), so only a small proportion of the naphthalene is present. Rice granules need to "burst" or "leak" in this way to cause a significantly inaccurate map.

與該方式相關而出現的另一困難係,其中關於正測量的量,測量技術之靈敏性會變化。在此,待測量的關於保留在奈米顆粒中的藥物之濃度,與已經釋放的藥物之濃度(它傾向於遠遠更低)之間的大差異會不利地影響選擇的測量方法的準確度。 Another difficulty that arises in connection with this approach is that the sensitivity of the measurement technique varies with respect to the amount being measured. Here, the large difference between the concentration of the drug to be measured remaining in the nanoparticle and the concentration of the drug that has been released (which tends to be much lower) adversely affects the accuracy of the selected measurement method. .

另一個因素會係AZD1152 hqpa之低溶解度。 Another factor is the low solubility of AZD1152 hqpa.

當以整體來說,該等困難會引起對此類技術能夠測量釋放的並且受試者可用的載藥奈米顆粒的量的準確度之懷疑。因此,對於開發能夠避免或減輕該等問題中的至少一些的新方法存在需要。 When viewed on a whole, such difficulties can raise doubts about the accuracy with which such techniques can measure the amount of drug-loaded nanoparticles that are released and available to the subject. Therefore, there is a need to develop new methods that can avoid or mitigate at least some of these problems.

普魯伊姆(Pluim)等人(層析法雜誌(J Chromatography)B,877(2009),3549-3555)描述了用於同時確定人和小鼠血漿以及小鼠組織中的AZD1152和AZD1152的反相液體層析方法。 Pluim et al. (J Chromatography B, 877 (2009), 3549-3555) describe the simultaneous determination of AZD1152 and AZD1152 in human and mouse plasma and mouse tissues. Reversed phase liquid chromatography method.

施特恩(Stern)等人(控制釋放雜誌(J Controlled Release),172(2013),558-567)描述了在膽管插管大鼠中,三種多西他賽(docetaxel)(包括前藥)相關配製物(包括奈米級膠束配製物)的比較藥物代謝動力學研究。 Stern et al. (J Controlled Release, 172 (2013), 558-567) describe three docetaxel (including prodrugs) in bile duct cannulated rats. Comparative pharmacokinetic studies of related formulations, including nanomicelle micelle formulations.

在第一方面,提供了在給予含AZD1152 hqpa的奈米顆粒後,測量在受試者體內全身性地釋放的AZD1152 hqpa的量之方法,該方法包括:●測定來自該受試者之樣品,以確定在該樣品中存在的AZD1152 hqpa的代謝物之量;並且●基於所確定的該代謝物之量,應用藥物動力學模型,以導出 該受試者體內全身性地釋放的AZD1152 hqpa之量。 In a first aspect, there is provided a method of measuring the amount of AZD1152 hqpa that is systemically released in a subject after administration of a nanoparticle comprising AZD1152 hqpa, the method comprising: • determining a sample from the subject, Determining the amount of metabolites of AZD1152 hqpa present in the sample; and • applying a pharmacokinetic model based on the determined amount of the metabolite to derive The amount of AZD1152 hqpa released systemically in the subject.

在第二方面,在此提供了在具有代謝AZD1152 hqpa的能力的生物系統中,確定負載AZD1152 hqpa的奈米顆粒之釋放曲線之方法,該方法包括:●在第一時間點,測定來自該生物系統之樣品,以確定在該樣品中存在的這種負載AZD1152 hqpa的奈米顆粒的代謝物之第一量;●在第二時間點,測定來自該生物系統之樣品,以確定在該樣品中存在的這種負載AZD1152 hqpa的奈米顆粒的代謝物之第二量;●基於所確定的第一量和第二量,應用藥物動力學模型,以導出代表在該第一時間點釋放的這種負載AZD1152 hqpa的奈米顆粒之量之第一值,以及代表在該第二時間點釋放的這種負載AZD1152 hqpa的奈米顆粒之量之第二值;並且●使用該第一值和該第二值以產生這種負載AZD1152 hqpa的奈米顆粒之釋放曲線。 In a second aspect, there is provided a method of determining a release profile of a nanoparticle loaded with AZD1152 hqpa in a biological system having the ability to metabolize AZD1152 hqpa, the method comprising: • determining the derived organism from the first time point a sample of the system to determine the first amount of metabolite of the nanoparticle loaded with the AZD1152 hqpa present in the sample; • at a second time point, the sample from the biological system is determined to determine in the sample The second amount of the metabolite of the nanoparticle loaded with AZD1152 hqpa present; • based on the determined first amount and the second amount, applying a pharmacokinetic model to derive representative of the release at the first time point a first value of the amount of nanoparticle loaded with AZD1152 hqpa, and a second value representing the amount of nanoparticle of such load AZD1152 hqpa released at the second time point; and • using the first value and the The second value is used to generate a release profile of the nanoparticle of this load AZD1152 hqpa.

在第三方面,提供了一種對給予至受試者的負載AZD1152 hqpa的奈米顆粒之生物等效性進行評估的方法,該方法包括:●測定來自該受試者之血液源樣品,以確定在該樣品中存在的這種負載AZD1152 hqpa的奈米顆粒的代謝物之量;●基於所確定的該代謝物之量,應用藥物動力學模型,以導出該受試者體內全身性地釋放的這種負載AZD1152 hqpa的奈米顆粒之量;並且●比較基於該受試者體內全身性地釋放的這種負載AZD1152 hqpa的奈米顆粒之量的值與關於從第二藥物產品釋放的AZD1152 hqpa的對比值,並且可隨意地與其他對比實驗參數 相結合,由此評估這種負載AZD1152 hqpa的奈米顆粒和該第二藥物之生物等效性。 In a third aspect, there is provided a method of assessing the bioequivalence of a nanoparticle loaded with AZD1152 hqpa administered to a subject, the method comprising: determining a blood source sample from the subject to determine The amount of metabolite of the nanoparticle loaded with AZD1152 hqpa present in the sample; • based on the determined amount of the metabolite, applying a pharmacokinetic model to derive systemic release in the subject The amount of nanoparticle loaded with AZD1152 hqpa; and ● comparing the value of the amount of nanoparticle loaded with such a load AZD1152 hqpa systemically released in the subject with AZD1152 hqpa released from the second drug product Contrast value, and can be compared with other experimental parameters at will In combination, the bioequivalence of the nanoparticle loaded with AZD1152 hqpa and the second drug was evaluated.

此外,在不同時間點確定AZD1152 hqpa的代謝物的水平,提供了該代謝物的暴露曲線。直接比較這樣一個暴露曲線與來自另一種藥物產品的代謝物暴露曲線,可以用作生物等效性評估的一部分,而不需要使代謝物水平與釋放的AZD1152 hqpa的水平關聯。 In addition, the level of metabolites of AZD1152 hqpa was determined at different time points, providing an exposure profile for the metabolite. Direct comparison of such an exposure curve with a metabolite exposure curve from another drug product can be used as part of the bioequivalence assessment without the need to correlate metabolite levels with the level of released AZD1152 hqpa.

因此,在第四方面,提供了對給予至受試者的負載AZD1152 hqpa的奈米顆粒之生物等效性進行評估之方法,該方法包括:●測定來自該受試者之血液源樣品,以確定在該樣品中存在的這種負載AZD1152 hqpa的奈米顆粒的代謝物之量;●比較由此獲得的該代謝物之量與關於從包含AZD1152 hqpa的第二藥物產品釋放的相同代謝物之對比值,並且可隨意地與其他對比實驗參數相結合,由此評估這種負載AZD1152 hqpa的奈米顆粒和該第二藥物之生物等效性。 Accordingly, in a fourth aspect, there is provided a method of assessing bioequivalence of a nanoparticle loaded with AZD1152 hqpa administered to a subject, the method comprising: determining a blood source sample from the subject, Determining the amount of metabolite of such a nanoparticle loaded with AZD1152 hqpa present in the sample; - comparing the amount of the metabolite thus obtained with the same metabolite released from the second drug product comprising AZD1152 hqpa The values were compared and optionally combined with other comparative experimental parameters to assess the bioequivalence of the nanoparticle loaded with AZD1152 hqpa and the second drug.

在第五方面,提供了一在具有代謝AZD1152 hqpa的能力的生物系統中,確定在負載AZD1152 hqpa的奈米顆粒中AZD1152 hqpa的代謝物的暴露曲線之方法,該方法包括:●在第一時間點,測定來自該生物系統之樣品,以確定在該樣品中存在的這種負載AZD1152 hqpa的奈米顆粒的代謝物之第一量;●在第二時間點,測定來自該生物系統之樣品,以確定在該樣品中存在的這種負載AZD1152 hqpa的奈米顆粒的代謝物之第二量;並且●使用該第一值和該第二值以產生該代謝物的暴露曲線。 In a fifth aspect, there is provided a method of determining an exposure profile of a metabolite of AZD1152 hqpa in a nanoparticle loaded with AZD1152 hqpa in a biological system having the ability to metabolize AZD1152 hqpa, the method comprising: Point, the sample from the biological system is determined to determine the first amount of the metabolite of the nanoparticle loaded with the AZD1152 hqpa present in the sample; • at the second time point, the sample from the biological system is determined, A second amount of metabolite of such a nanoparticle loaded with AZD1152 hqpa present in the sample is determined; and • the first value and the second value are used to generate an exposure profile for the metabolite.

在此的揭露內容至少部分是基於諸位發明人的發現,即與測量藥物(例如在奈米顆粒中負載的AZD1152 hqpa)的全身釋放相關聯 的困難可以藉由測量來自已經給予藥物的受試者的樣品中的藥物代謝物水平來克服。這種間接測量的方法提供了超過先前已經描述的技術的大量益處。 The disclosure herein is based, at least in part, on the discovery by the inventors that it is associated with systemic release of measured drugs (eg, AZD1152 hqpa loaded in nanoparticle). The difficulty can be overcome by measuring the level of drug metabolites in the sample from the subject to whom the drug has been administered. This method of indirect measurement provides a number of benefits over the techniques that have been previously described.

在此描述的方法考慮到由受試者體內的奈米顆粒實際上全身性地釋放的AZD1152 hqpa之量,因為僅這一部分藥物能夠被處理,以產生在本發明的方法中被評估的代謝物。 The methods described herein allow for the amount of AZD1152 hqpa that is actually systemically released by the nanoparticles in the subject, since only this portion of the drug can be processed to produce the metabolites that are evaluated in the methods of the invention. .

儘管不是所有釋放的AZD1152 hqpa將都是在受試者體內全身性地釋放,並且不是所有全身性地釋放的AZD1152 hqpa都將由受試者代謝,但是藥物動力學模型考慮到這一點,並且由此允許準確地確定已經全身性地釋放(釋放並且變為全身性可用的)的AZD1152 hqpa。 Although not all released AZD1152 hqpa will be systemically released in the subject, and not all systemically released AZD1152 hqpa will be metabolized by the subject, but the pharmacokinetic model takes this into account, and Allows accurate determination of AZD1152 hqpa that has been systemically released (released and becomes systemically available).

在此描述的方法還避免了與已經引起先前方法中的困難的處理奈米顆粒、測量技術的靈敏性關聯之問題。即使是在負載AZD1152 hqpa的奈米顆粒破裂或洩漏的情況下,這將不會引起導致不準確的污染,因為測量的不是藥物自身,而是其代謝物。類似地,不需要鑒定針對化合物的高和低濃度這二者提供適合的準確度的測量技術,因為僅需要使用能夠準確地測量代謝物的相對濃度的技術。 The methods described herein also avoid the problems associated with the sensitivity of processing nanoparticles, measurement techniques that have caused difficulties in prior methods. Even in the case of a broken or leaked nanoparticle loaded with AZD1152 hqpa, this will not cause inaccurate contamination because the drug itself is not measured, but its metabolite. Similarly, there is no need to identify measurement techniques that provide suitable accuracy for both high and low concentrations of the compound, as only techniques that accurately measure the relative concentrations of metabolites need to be used.

此類方法可以用於準確測量在受試者體內全身性地釋放負載AZD1152 hqpa的奈米顆粒之量的認識導致諸位發明人認識到,此類方法還可以用於確定負載AZD1152 hqpa的奈米顆粒之釋放曲線,並且還可以用於評估生物等效性之方法(無論是比較負載AZD1152 hqpa的奈米顆粒與充當標準品的另一包含AZD1152 hqpa的藥物,還是比較第二藥物與作為標準品的負載AZD1152 hqpa的奈米顆粒)。在此描述的方法特別方便用於評估生物等效性,因為它們可以對容易地(並且重複地)獲得自患者之生物樣品(例如血液或血漿,如在此描述的)進行。技術人員將理解,如下文描述的,可能需要對負載 AZD1152 hqpa的奈米顆粒配製物與潛在生物等效的配製物的其他方面進行比較的另外測試,來證明與控制藥物註冊的監管機構(例如美國食品和藥品管理局)所要求的標準品之生物等效性。 The recognition that such methods can be used to accurately measure the amount of nanoparticle loaded with AZD1152 hqpa in a subject is led to the inventors' recognition that such a method can also be used to determine nanoparticles loaded with AZD1152 hqpa. Release curve, and can also be used to evaluate bioequivalence (whether comparing the nanoparticle loaded with AZD1152 hqpa to another drug containing AZD1152 hqpa serving as a standard, or comparing the second drug with the standard) Load AZD1152 hqpa nano particles). The methods described herein are particularly convenient for assessing bioequivalence as they can be performed on biological samples (e.g., blood or plasma, as described herein) that are readily (and repeatedly) obtained from a patient. The skilled person will understand that as described below, the load may be required Additional testing of AZD1152 hqpa nanoparticle formulations compared to other aspects of potentially bioequivalent formulations to demonstrate organisms with standards required by regulatory agencies that control drug registration (eg, US Food and Drug Administration) Equivalence.

在此提及的組成物之“生物等效形式”旨在表示該組成物的形式,其在生物等效於(即具有相同生物效應)該組成物的基礎上具有或可以是由一監管機構授予上市許可。 A "bioequivalent form" of a composition as referred to herein is intended to mean a form of the composition that has or may be a regulatory body based on a bioequivalent (ie having the same biological effect) composition. Grant a marketing license.

以下提供了如在此使用的某些術語之定義,隨後是基於確定存在的代謝物之量,描述了允許導出負載AZD1152 hqpa的奈米顆粒之量的不同參數之間的關係的示例性等式之詳細描述。以下進一步提供了進一步說明不同方面的示例性方法和特定非限制性實例。 The definitions of certain terms as used herein are provided below, followed by an exemplary equation describing the relationship between different parameters that allow the derivation of the amount of nanoparticles of the load AZD1152 hqpa based on determining the amount of metabolite present. Detailed description. Exemplary methods and specific non-limiting examples that further illustrate various aspects are further provided below.

定義definition “奈米顆粒”"Nano particles"

如在以上“背景”部分中提及的,由於奈米顆粒在組織分佈和控制遞送中的有利特性,奈米顆粒最近已經變為用於藥物遞送的日益流行之藥劑。出於本揭露之目的,奈米顆粒可以被認為是可以用於囊封AZD1152 hqpa的任何顆粒,具有1和150nm之間的尺寸,例如1和130之間,例如50和130nm之間,例如1和100nm之間的尺寸。 As mentioned in the "Background" section above, nanoparticle has recently become an increasingly popular agent for drug delivery due to the advantageous properties of nanoparticles in tissue distribution and controlled delivery. For the purposes of the present disclosure, nanoparticle can be considered to be any particle that can be used to encapsulate AZD1152 hqpa, having a size between 1 and 150 nm, such as between 1 and 130, such as between 50 and 130 nm, such as 1 And the size between 100nm.

在一適合的實施方式中,奈米顆粒可以被認為是能夠以與在此例示的奈米顆粒生物等效的方式而起作用的任何顆粒。例如,此類潛在生物等效的顆粒可以按與在此例示的奈米顆粒可比較的釋放速率來釋放AZD1152 hqpa。 In a suitable embodiment, the nanoparticles can be considered to be any particles that can function in a manner that is bioequivalent to the nanoparticles exemplified herein. For example, such potentially bioequivalent particles can release AZD1152 hqpa at a release rate comparable to the nanoparticles exemplified herein.

在一適合的實施方式中,出於本揭露之目的,奈米顆粒可以由選自由以下各項組成之群組之材料:二嵌段聚(乳)酸-聚(乙)二醇共聚物;以及二嵌段聚(乳酸-乙醇酸共聚物)-聚(乙)二醇共聚物。 In a suitable embodiment, for the purposes of the present disclosure, the nanoparticles may be composed of a material selected from the group consisting of diblock poly(lactic)-poly(ethylene) glycol copolymers; And a diblock poly(lactic-co-glycolic acid copolymer)-poly(ethylene) glycol copolymer.

涵蓋AZD1152 hqpa的奈米顆粒可以涵蓋與另外的一種或多種化合物相結合的、或實質上獨立的藥物。在一適合的實施方式中, AZD1152 hqpa可以與另一種化合物相結合,該化合物與AZD1152 hqpa一起形成疏水離子對。例如,AZD1152 hqpa可以與奈米顆粒內基本上疏水的酸相結合。適合地,疏水的酸可以是選自由以下各項組成之群組:去氧膽酸;膽酸;二辛基磺基琥珀酸;油酸;以及撲酸。 Nanoparticles encompassing AZD1152 hqpa may encompass drugs that are combined with, or substantially independent of, one or more additional compounds. In a suitable embodiment, AZD1152 hqpa can be combined with another compound that forms a hydrophobic ion pair with AZD1152 hqpa. For example, AZD1152 hqpa can be combined with a substantially hydrophobic acid in the nanoparticle. Suitably, the hydrophobic acid may be selected from the group consisting of deoxycholic acid; cholic acid; dioctyl sulfosuccinic acid; oleic acid;

任何以上考慮的實例都適合用於封裝AZD1152 hqpa的奈米顆粒。 Any of the above considerations are suitable for encapsulating nanoparticles of AZD1152 hqpa.

在一個適合的實施方式中,本發明的方法包括將包含AZD1152 hqpa的奈米顆粒給予至受試者的步驟。這種給予可以使用任何適合的途徑。在一個適合的實施方式中,包含AZD1152 hqpa的奈米顆粒係靜脈內給予受試者的。 In a suitable embodiment, the method of the invention comprises the step of administering a nanoparticle comprising AZD1152 hqpa to a subject. This administration can be carried out using any suitable route. In a suitable embodiment, a nanoparticle comprising AZD1152 hqpa is administered intravenously to a subject.

在一具體實施方式中,適合的包含AZD1152 hqpa的奈米顆粒係描述於WO 2015/036792中的那些,特別是在WO 2015/036792中例示的那些配製物,並且具體地,是在WO 2015/036792中例示的包含撲酸的配製物。 In a specific embodiment, suitable nanoparticles comprising AZD1152 hqpa are described in those of WO 2015/036792, in particular those exemplified in WO 2015/036792, and in particular in WO 2015/ A formulation comprising oxalic acid exemplified in 036792.

例如,適合的奈米顆粒包括治療性奈米顆粒,該治療性奈米顆粒包括AZD1152 hqpa、撲酸、以及二嵌段聚(乳)酸-聚(乙)二醇共聚物(其中該治療性奈米顆粒包括約10至約30重量%的聚(乙)二醇,並且該聚(乳)酸-聚(乙)二醇共聚物具有數目平均分子量為約16kDa的聚(乳酸)和數目平均分子量為約5kDa的聚(乙)二醇)。 For example, suitable nanoparticles include therapeutic nanoparticles comprising AZD1152 hqpa, pamoic acid, and diblock poly(lactic)-poly(ethylene) glycol copolymers (wherein the therapeutic The nanoparticle comprises from about 10 to about 30% by weight of the poly(ethylene) glycol, and the poly(lactic) acid-poly(ethylene) glycol copolymer has a poly(lactic acid) having a number average molecular weight of about 16 kDa and a number average Poly(ethylene) glycol having a molecular weight of about 5 kDa.

例如,適合的奈米顆粒包括治療性奈米顆粒,該治療性奈米顆粒包括約12至約25重量%的AZD1152 hqpa、約7至約15重量%的撲酸、以及二嵌段聚(乳)酸-聚(乙)二醇共聚物(其中該治療性奈米顆粒包括約10至約30重量%的聚(乙)二醇,並且該聚(乳)酸-聚(乙)二醇共聚物具有數目平均分子量為約16kDa的聚(乳酸)和數目平均分子量為約5kDa的聚(乙)二醇)。 For example, suitable nanoparticles include therapeutic nanoparticles comprising from about 12 to about 25 weight percent AZD 1152 hqpa, from about 7 to about 15 weight percent pamoate, and diblock poly (milk) An acid-poly(ethylene) glycol copolymer (wherein the therapeutic nanoparticle comprises from about 10 to about 30% by weight of a poly(ethylene) glycol, and the poly(lactic) acid-poly(ethylene) glycol copolymer The material has a poly(lactic acid) having a number average molecular weight of about 16 kDa and a poly(ethylene) glycol having a number average molecular weight of about 5 kDa.

例如,適合的奈米顆粒包括治療性奈米顆粒,該治療性奈米顆 粒包括約15至約25重量%的AZD1152 hqpa、約7至約15重量%的撲酸、以及二嵌段聚(乳)酸-聚(乙)二醇共聚物(其中該治療性奈米顆粒包括約10至約30重量%的聚(乙)二醇,並且該聚(乳)酸-聚(乙)二醇共聚物具有數目平均分子量為約16kDa的聚(乳酸)和數目平均分子量為約5kDa的聚(乙)二醇)。 For example, suitable nanoparticles include therapeutic nanoparticles, the therapeutic nanoparticles The granules comprise from about 15 to about 25% by weight of AZD1152 hqpa, from about 7 to about 15% by weight of pamoic acid, and a diblock poly(lactic)-poly(ethylene) diol copolymer (wherein the therapeutic nanoparticle) The poly(ethylene) glycol is included in an amount of from about 10 to about 30% by weight, and the poly(lactic) acid-poly(ethylene) glycol copolymer has a poly(lactic acid) having a number average molecular weight of about 16 kDa and a number average molecular weight of about 5kDa poly(B) diol).

出於以上適合的奈米顆粒之目的,術語“約”係指對於<10的數位,+/- 0.5,並且是指對於10或更大的數位,+/- 1。 For the purposes of the above suitable nanoparticles, the term "about" refers to a digit of <10, +/- 0.5, and refers to a digit of 10 or greater, +/- 1.

“AZD1152 hqpa”"AZD1152 hqpa"

貫穿本揭露使用的AZD1152 hqpa係指化合物(2-(3-((7-(3-(乙基(2-羥乙基)胺基)丙氧基)喹唑啉-4-基)胺基)-1H-吡唑-5-基)-N-(3-氟苯基)乙醯胺)。 AZD1152 hqpa used throughout the disclosure refers to the compound (2-(3-((7-(3-(ethyl(2-hydroxyethyl))amino)) oxy) quinazolin-4-yl)) -1H-pyrazol-5-yl)-N-(3-fluorophenyl)acetamidine).

“AZD1152”"AZD1152"

有時,本說明書係指AZD1152。該等引用應被視為針對化合物(2-(乙基(3-((4-((5-(2-((3-氟苯基)胺基)-2-側氧基乙基)-1H-吡唑-3-基)胺基)喹唑啉-7-基)氧基)丙基)胺基)乙基二氫磷酸酯)。 Sometimes, this specification refers to AZD1152. These references should be considered for the compound (2-(ethyl(3-((4-())))))) 1H-Pyrazol-3-yl)amino)quinazolin-7-yl)oxy)propyl)amino)ethyldihydrophosphate).

“第二”(或“另一”)“包含AZD1152 hqpa的藥物(或產品)”"Second" (or "another") "drug (or product) containing AZD1152 hqpa"

第二(或另一)包含AZD1152 hqpa的藥物(或產品)係可以充當AZD1152 hqpa的來源並且未必限於另一奈米顆粒配製物之物品,其條件係它釋放AZD1152 hqpa,並且它可以在例如聚合物偶聯物或樹枝狀聚合物的樣品處理或分析期間,自發地洩漏AZD1152 hqpa。 The second (or another) drug (or product) comprising AZD1152 hqpa can serve as a source of AZD1152 hqpa and is not necessarily limited to an article of another nanoparticle formulation, provided that it releases AZD1152 hqpa and it can be, for example, polymerized AZD1152 hqpa spontaneously leaks during sample processing or analysis of the conjugate or dendrimer.

“全身性地釋放”"Systemically released"

出於本揭露之目的,如果AZD1152 hqpa已經在受試者體內從奈米顆粒釋放,這樣使得AZD1152 hqpa然後能夠由受試者代謝的話,則負載AZD1152 hqpa的奈米顆粒可以被稱為“全身性地釋放”。將理解,出於本揭露之目的,未從奈米顆粒釋放的AZD1152 hqpa不能被稱為已經全身性地釋放。還有一種情況也不能稱為全身性地釋放,那 就是在某些情況下,例如在它不能由受試者代謝的位置中,AZD1152 hqpa已經從奈米顆粒釋放。 For the purposes of this disclosure, if AZD1152 hqpa has been released from the nanoparticle in the subject, such that AZD1152 hqpa can then be metabolized by the subject, then the nanoparticle loaded with AZD1152 hqpa can be referred to as "systemic" Release." It will be appreciated that for the purposes of the present disclosure, AZD1152 hqpa not released from the nanoparticles cannot be said to have been systemically released. There is another situation that cannot be called systemic release, that It is in some cases, such as where it cannot be metabolized by the subject, AZD1152 hqpa has been released from the nanoparticles.

“受試者”"subject"

出於本揭露之目的,受試者可以是已經被給予負載AZD1152 hqpa的奈米顆粒的任何動物。 For the purposes of this disclosure, the subject can be any animal that has been administered a nanoparticle loaded with AZD 1152 hqpa.

在適合的實施方式中,受試者係人類。如上下文要求,適合的人類受試者可以是參與了調查這種負載AZD1152 hqpa的奈米顆粒之特性例如生體可用率的臨床試驗的個體。可替代地或另外地,適合的人類受試者可以是經歷了用負載AZD1152 hqpa的奈米顆粒進行治療的個體。 In a suitable embodiment, the subject is a human. Suitable human subjects, as the context requires, may be individuals involved in a clinical trial investigating the characteristics of such nanoparticles loaded with AZD1152 hqpa, such as bioavailability. Alternatively or additionally, a suitable human subject may be an individual who has undergone treatment with nanoparticle loaded with AZD1152 hqpa.

在一個替代實施方式中,該受試者係非人類動物。在一適合的實施方式中,該非人類動物可以是用於負載AZD1152 hqpa的奈米顆粒的臨床前調查的動物。僅藉由舉例,非人類動物可以是齧齒動物,例如大鼠。 In an alternate embodiment, the subject is a non-human animal. In a suitable embodiment, the non-human animal can be an animal for preclinical investigation of nanoparticle loaded with AZD1152 hqpa. By way of example only, a non-human animal can be a rodent, such as a rat.

技術人員將理解,如何使模型適合不同的受試者物種。 The skilled person will understand how to adapt the model to different subject species.

“樣品”"sample"

來自受試者的樣品係提供了代表受試者體內的代謝的資訊之樣品。樣品將是能夠保留AZD1152 hqpa的代謝物之樣品。具體地,樣品可以是能夠保留AZD1152 hqpa(例如hqpa去氟苯胺(desfluoraniline))(在此進一步描述,並且還稱為AZ12102238)的代謝物之樣品。 The sample from the subject provides a sample of information representative of the metabolism in the subject. The sample will be a sample capable of retaining the metabolite of AZD1152 hqpa. In particular, the sample may be a sample of a metabolite capable of retaining AZD 1152 hqpa (eg, hqpa desfluoraniline) (described further herein, and also referred to as AZ 12102238).

在適合的實施方式中,樣品係取自受試者之樣品。此類樣品可以適合於體外的或離體的分析。 In a suitable embodiment, the sample is taken from a sample of the subject. Such samples may be suitable for in vitro or ex vivo analysis.

在任一實施方式中,該樣品可以是適合地選自由以下各項組成之群組:組織樣品;以及體液樣品。體液樣品的適合實例可以是選自由以下各項組成之群組:血液樣品;血清樣品;血漿樣品;尿樣品; 淋巴液樣品;組織間隙液樣品;膽汁樣品;唾液樣品;以及糞便樣品。將理解,多種不同樣品類型可以源自血液,包括血液樣品、血清樣品、和血漿樣品。出於本揭露之目的,該等樣品類型中的每一種可以被認為是“血液源樣品”。 In any embodiment, the sample may be suitably selected from the group consisting of: a tissue sample; and a body fluid sample. A suitable example of a body fluid sample may be selected from the group consisting of: a blood sample; a serum sample; a plasma sample; a urine sample; Lymph samples; interstitial fluid samples; bile samples; saliva samples; and stool samples. It will be appreciated that a variety of different sample types may be derived from blood, including blood samples, serum samples, and plasma samples. For the purposes of this disclosure, each of these sample types can be considered a "blood source sample."

在一個實施方式中,樣品係血液樣品。在另一個實施方式中,樣品係血漿樣品。在另一個實施方式中,樣品係血清樣品。 In one embodiment, the sample is a blood sample. In another embodiment, the sample is a plasma sample. In another embodiment, the sample is a serum sample.

在另一個實施方式中,樣品係尿樣品。在另一個實施方式中,樣品係糞便樣品。 In another embodiment, the sample is a urine sample. In another embodiment, the sample is a stool sample.

在一適合的實施方式中,本發明的方法可以包括取待測定的一種或多種樣品之步驟。 In a suitable embodiment, the method of the invention may comprise the step of taking one or more samples to be determined.

將理解,給予包含AZD1152 hqpa的奈米顆粒和取樣品之間過去的時間將影響將已經在受試者體內全身性地釋放的負載AZD1152 hqpa的奈米顆粒之量。一般可以在足以允許AZD1152 hqpa釋放並且代謝至準確地可量化的程度的時段已經過去後取得第一樣品。 It will be appreciated that the time elapsed between administration of the nanoparticle comprising AZD1152 hqpa and taking the sample will affect the amount of nanoparticle loaded with AZD1152 hqpa that will have been systemically released in the subject. The first sample can generally be taken after a period of time sufficient to allow AZD 1152 hqpa to be released and metabolized to an accurately quantifiable extent has elapsed.

在其中經一個時程取得多個樣品之實施方式中,關於不同樣品所致的量能夠提供有關AZD1152 hqpa隨時間釋放的資訊。適合地,可以在給予以下考慮的包含AZD1152 hqpa的奈米顆粒後,在一個或多個時間點取得樣品。 In embodiments in which multiple samples are taken over a time course, the amount due to the different samples can provide information about the release of AZD1152 hqpa over time. Suitably, the sample can be taken at one or more time points after giving the following considerations of the nanoparticle comprising AZD1152 hqpa.

用於取樣的適當時程將取決於在具體物種中AZD1152 hqpa和具體奈米顆粒配製物的藥物動力學連同給予AZD1152 hqpa所經歷的時間這二者。使用藉由靜脈內團注(intravenous bolus)給予至大鼠或小鼠的AZD1152 hqpa作為實例,適合的的取樣程序表將利用以下時間點:給予前藥、活性藥物或代謝物藥物後5、10和30分鐘以及1、3、6、24、30和48小時,以及給予奈米顆粒配製物後5、10和30分鐘以及1、6、24、72、168、240、336、432和504小時。 The appropriate time course for sampling will depend on both the pharmacokinetics of the AZD1152 hqpa and the specific nanoparticle formulation in the particular species, as well as the time elapsed with the administration of AZD1152 hqpa. Using AZD1152 hqpa administered to rats or mice by intravenous bolus as an example, a suitable sampling schedule will utilize the following time points: 5, 10 after administration of a prodrug, active drug or metabolite drug And 30 minutes and 1, 3, 6, 24, 30 and 48 hours, and 5, 10 and 30 minutes and 1, 6, 24, 72, 168, 240, 336, 432 and 504 hours after the administration of the nanoparticle formulation .

用於取樣的類似時程可以應用至向人類的給予,但取樣可以持 續略微更長。例如,對於藉由靜脈內團注給予至人類的AZD1152 hqpa,適合的的取樣程序表可以利用以下時間點:給予前藥、活性藥物或代謝物藥物後5、10和30分鐘以及1、3、6、24、30、48和72小時,以及給予奈米顆粒配製物後5、10和30分鐘以及1、6、24、72、168、240、336、432、504和672小時。 A similar time course for sampling can be applied to humans, but sampling can be The continuation is slightly longer. For example, for AZD1152 hqpa administered to humans by intravenous bolus injection, a suitable sampling schedule can utilize the following time points: 5, 10 and 30 minutes and 1, 3, after administration of the prodrug, active drug or metabolite drug. 6, 24, 30, 48 and 72 hours, and 5, 10 and 30 minutes and 1, 6, 24, 72, 168, 240, 336, 432, 504 and 672 hours after administration of the nanoparticle formulation.

技術人員將理解,為了方便,可以改編以上示例取樣程序表(更多/更少/不同時間),並且此類變化都在本文所述之方法的範圍內。 The skilled artisan will appreciate that the above example sampling schedules (more/less/different times) may be adapted for convenience, and such variations are within the scope of the methods described herein.

“代謝物”"Metabolites"

出於本揭露之目的,代謝物應被認為涵蓋對負載AZD1152 hqpa的奈米顆粒進行代謝所產生的任何化合物。 For the purposes of this disclosure, metabolites should be considered to encompass any compound produced by the metabolism of nanoparticles loaded with AZD1152 hqpa.

適合地,可以使用AZD1152 hqpa的任何代謝物。然而,諸位發明人已經發現,某些代謝物具有在利用該等代謝物的方法中賦予顯著優勢之特性。 Suitably, any metabolite of AZD1152 hqpa can be used. However, the inventors have discovered that certain metabolites have properties that confer significant advantages in methods of utilizing such metabolites.

在一適合的實施方式中,該代謝物係選自由以下各項組成之群組:2-(3-((7-(3-(乙基(2-羥乙基)胺基)丙氧基)喹唑啉-4-基)胺基)-1H-吡唑-5-基)乙酸(也稱為AZD1152 hqpa去氟苯胺(desfluoroaniline),或AZ12102238);AZD1152 hqpa去氟苯胺N-乙酸;AZD1152 hqpa N-乙酸;AZD1152 hqpa N-氧化物;以及AZD1152 hqpa N-去乙基。諸位發明人已經發現,AZD1152 hqpa的該等代謝物係以對於有待在本發明的方法中準確測量的代謝物而言總體上應是充足的量形成的。 In a suitable embodiment, the metabolite is selected from the group consisting of 2-(3-((7-(3-(ethyl(2-hydroxyethyl))amino)propoxy) Quinazolin-4-yl)amino)-1H-pyrazol-5-yl)acetic acid (also known as AZD1152 hqpa desfluoroaniline, or AZ12102238); AZD1152 hqpa defluoroaniline N-acetic acid; AZD1152 Hqpa N-acetic acid; AZD1152 hqpa N-oxide; and AZD1152 hqpa N-deethyl. The inventors have discovered that such metabolites of AZD1152 hqpa are generally formed in sufficient amounts for metabolites to be accurately measured in the methods of the invention.

以下示出了該等化合物之全名和結構:AZD1152 hqpa去氟苯胺(AZ12102238):2-(3-((7-(3-(乙基(2-羥乙基)胺基)丙氧基)喹唑啉-4-基)胺基)-1H-吡唑-5-基)乙酸: The full name and structure of the compounds are shown below: AZD1152 hqpa defluoroaniline (AZ12102238): 2-(3-((7-(3-(ethyl(2-hydroxyethyl))amino)propoxy)) Quinazolin-4-yl)amino)-1H-pyrazol-5-yl)acetic acid:

AZD1152 hqpa去氟苯胺N-乙酸:2-[5-[[7-[3-[羧甲基(乙基)胺基]丙氧基]喹唑啉-4-基]胺基]-1H-吡唑-3-基]乙酸: AZD1152 hqpa defluoroaniline N-acetic acid: 2-[5-[[7-[3-[carboxymethyl(ethyl)amino]propoxy]quinazolin-4-yl]amino]-1H- Pyrazol-3-yl]acetic acid:

AZD1152 hqpa N-乙酸:2-[乙基-[3-[4-[[3-[2-(3-氟苯胺基)-2-側氧基-乙基]-1H-吡唑-5-基]胺基]喹唑啉-7-基]氧基丙基]胺基]乙酸: AZD1152 hqpa N-acetic acid: 2-[ethyl-[3-[4-[[3-[2-(3-fluoroanilino)-2-yloxy-ethyl]-1H-pyrazole-5- Amino]quinazolin-7-yl]oxypropyl]amino]acetic acid:

AZD1152-hqpa N-去乙基:N-(3-氟苯基)-2-[5-[[7-[3-(2-羥乙基胺基)丙氧基]喹唑啉-4-基]胺基]-1H-吡唑-3-基]乙醯胺: AZD1152-hqpa N-desethyl: N-(3-fluorophenyl)-2-[5-[[7-[3-(2-hydroxyethylamino)propoxy]quinazoline-4- Amino]-1H-pyrazol-3-yl]acetamide:

AZD1152-hqpa N-氧化物:N-乙基-3-[4-[[3-[2-(3-氟苯胺基)-2-側氧基-乙基]-1H-吡唑-5-基]胺基]喹唑啉-7-基]氧基-N-(2-羥乙基)丙烷-1-胺氧化物: AZD1152-hqpa N-oxide: N-ethyl-3-[4-[[3-[2-(3-fluoroanilino)-2-yloxy-ethyl]-1H-pyrazole-5- Amino]quinazolin-7-yl]oxy-N-(2-hydroxyethyl)propane-1-amine oxide:

在一適合的實施方式中,該代謝物係選自由以下各項組成之群組:AZD1152 hqpa去氟苯胺;以及AZD1152 hqpa去氟苯胺乙酸。諸位發明人已經發現,由允許在該等重要的臨床物種和臨床前物種之間迅速建模的人和大鼠受試者之一或二者形成了AZD1152 hqpa的該等代謝物。 In a suitable embodiment, the metabolite is selected from the group consisting of AZD1152 hqpa defluoroaniline; and AZD1152 hqpa defluoroaniline acetic acid. The inventors have discovered that these metabolites of AZD1152 hqpa are formed by one or both of human and rat subjects that allow rapid modeling between such important clinical and preclinical species.

在一適合的實施方式中,選擇的代謝物係在不同患者群體內一致的形式之一。這在可以放入在多個患者群體內產生的結果中的置信方面提供了顯著優勢。 In a suitable embodiment, the selected metabolite is one of a consistent form within a different patient population. This provides a significant advantage in the confidence that it can be placed in results produced within multiple patient populations.

在一適合的實施方式中,選擇的代謝物係僅由身體對釋放的活性AZD1152 hqpa的作用形成的代謝物,並且所以僅對於已經全身性地釋放並且代謝的藥物出現了代謝物的存在。 In a suitable embodiment, the selected metabolite is a metabolite formed only by the body's action on the released active AZD1152 hqpa, and thus the presence of metabolites occurs only for drugs that have been systemically released and metabolized.

在一適合的實施方式中,選擇的代謝物係展現出有助於它們的收集和準確分析的在生物系統內的清除率、和分佈體積的代謝物。 In a suitable embodiment, the selected metabolites exhibit clearance and distribution volume metabolites within the biological system that facilitate their collection and accurate analysis.

在一適合的實施方式中,選擇的代謝物係易於合成的、允許製造充足的量以產生有助於樣品中的代謝物之量化的標準曲線之代謝物。 In a suitable embodiment, the selected metabolite is readily synthesizable, allowing for the production of a sufficient amount to produce a metabolite of a standard curve that contributes to the quantification of metabolites in the sample.

適合的用於本發明的方法的代謝物應不是可以在不含需要全身性地釋放並且代謝的AZD1152 hqpa的奈米顆粒內形成的AZD1152 hqpa的顯著分解產物。適合的用於本發明的方法的代謝物應不是AZD1152 hqpa配製物內的顯著雜質,否則它可以被檢測到,而不需要AZD1152 hqpa被全身性地釋放並且代謝。 Suitable metabolites for use in the methods of the invention should not be significant decomposition products of AZD1152 hqpa that can be formed in nanoparticles that are free of AZD1152 hqpa that require systemic release and metabolism. A suitable metabolite for use in the method of the invention should not be a significant impurity in the AZD1152 hqpa formulation, which would otherwise be detected without the need for systemic release and metabolism of AZD1152 hqpa.

在一個實施方式中,用於測量的代謝物係2-(3-((7-(3-(乙基(2-羥乙基)胺基)丙氧基)喹唑啉-4-基)胺基)-1H-吡唑-5-基)乙酸,它也被稱為AZ12102238或AZD1152 hqpa去氟苯胺。 In one embodiment, the metabolite for measurement is 2-(3-((7-(3-(ethyl(2-hydroxyethyl))amino)propoxy)quinazolin-4-yl)) Amino)-1H-pyrazol-5-yl)acetic acid, which is also known as AZ12102238 or AZD1152 hqpa defluoroaniline.

在此後的實例中闡述了用於製造AZD1152 hqpa去氟苯胺和AZD1152-hqpa N-氧化物的適合過程。在此部分中描述的用於製造其他代謝物的適合過程將易於由技術人員理解為類似於應用所需常規化學,用於製造AZD1152 hqpa或AZD1152 hqpa去氟苯胺、或本領域已知的其他類似化合物的已知過程。 Suitable processes for the manufacture of AZD1152 hqpa defluoroaniline and AZD1152-hqpa N-oxide are set forth in the examples that follow. Suitable processes for the manufacture of other metabolites described in this section will be readily understood by the skilled person to be similar to the conventional chemistry required for the application, for the manufacture of AZD1152 hqpa or AZD1152 hqpa defluoroaniline, or other similarities known in the art. A known process for compounds.

在另一個方面,提供了AZD1152 hqpa的代謝物的分離的合成樣品。在一個實施方式中,所述分離的合成樣品係2-(3-((7-(3-(乙基(2-羥乙基)胺基)丙氧基)喹唑啉-4-基)胺基)-1H-吡唑-5-基)乙酸的樣品。 在另一個實施方式中,所述分離的樣品係2-[5-[[7-[3-[羧甲基(乙基)胺基]丙氧基]喹唑啉-4-基]胺基]-1H-吡唑-3-基]乙酸的樣品。在另一個實施方式中,所述分離的樣品係2-[乙基-[3-[4-[[3-[2-(3-氟苯胺基)-2-側氧基-乙基]-1H-吡唑-5-基]胺基]喹唑啉-7-基]氧基丙基]胺基]乙酸的樣品。在另一個實施方式中,所述分離的樣品係N-(3-氟苯基)-2-[5-[[7-[3-(2-羥乙基胺基)丙氧基]喹唑啉-4-基]胺基]-1H-吡唑-3-基]乙醯胺的樣品。在另一個實施方式中,所述分離的樣品係N-乙基-3-[4-[[3-[2-(3-氟苯胺基)-2-側氧基-乙基]-1H-吡唑-5-基]胺基]喹唑啉-7-基]氧基-N-(2-羥乙基)丙烷-1-胺氧化物的樣品。應理解,分離的合成樣品係已經在人體或動物體外製造的樣品。 In another aspect, an isolated synthetic sample of a metabolite of AZD1152 hqpa is provided. In one embodiment, the isolated synthetic sample is 2-(3-((7-(3-(ethyl(2-hydroxyethyl))amino)propoxy)quinazolin-4-yl)) A sample of the amino)-1H-pyrazol-5-yl)acetic acid. In another embodiment, the isolated sample is 2-[5-[[7-[3-[carboxymethyl(ethyl)amino]propoxy]quinazolin-4-yl]amino) a sample of -1H-pyrazol-3-yl]acetic acid. In another embodiment, the isolated sample is 2-[ethyl-[3-[4-[[3-[2-(3-fluoroanilinido)-2-yloxy-ethyl]-) A sample of 1H-pyrazol-5-yl]amino]quinazolin-7-yl]oxypropyl]amino]acetic acid. In another embodiment, the isolated sample is N-(3-fluorophenyl)-2-[5-[[7-[3-(2-hydroxyethylamino)propoxy] quinazoline A sample of phenyl-4-yl]amino]-1H-pyrazol-3-yl]acetamide. In another embodiment, the isolated sample is N-ethyl-3-[4-[[3-[2-(3-fluoroanilino)-2-oxo-ethyl]-1H- A sample of pyrazol-5-yl]amino]quinazolin-7-yl]oxy-N-(2-hydroxyethyl)propan-1-amine oxide. It should be understood that the isolated synthetic sample is a sample that has been made in vitro from humans or animals.

在另一個方面,提供了AZD1152-hqpa的代謝物在用於測量生物樣品中的AZD1152 hqpa的分析方法中的用途。適合地,如下文描述的,分析方法係HPLC方法。在一個適合的實施方式中,該代謝物係選自由以下各項組成之群組:AZD1152 hqpa去氟苯胺;以及AZD1152 hqpa去氟苯胺乙酸。 In another aspect, there is provided the use of a metabolite of AZD1152-hqpa in an analytical method for measuring AZD1152 hqpa in a biological sample. Suitably, the analytical method is an HPLC method as described below. In a suitable embodiment, the metabolite is selected from the group consisting of AZD1152 hqpa defluoroaniline; and AZD1152 hqpa defluoroaniline acetic acid.

在另一個方面,提供了在已經被給予所述藥物產品的人類或非人類動物中,AZD1152的代謝物在確定來自包含AZD1152 hqpa的藥物產品的AZD1152 hqpa的體內釋放曲線中的用途。在一適合的實施方式中,該代謝物係選自由以下各項組成之群組:AZD1152 hqpa去氟苯胺;以及AZD1152 hqpa去氟苯胺乙酸。 In another aspect, there is provided the use of a metabolite of AZD1152 in determining an in vivo release profile of AZD1152 hqpa from a pharmaceutical product comprising AZD1152 hqpa in a human or non-human animal to which the pharmaceutical product has been administered. In a suitable embodiment, the metabolite is selected from the group consisting of AZD1152 hqpa defluoroaniline; and AZD1152 hqpa defluoroaniline acetic acid.

在另一個方面,提供了在已經被給予所述藥物產品的人類或非人類動物中,AZD1152的代謝物的分離的合成樣品在確定來自包含AZD1152 hqpa的藥物產品的所述代謝物的體內釋放曲線中的用途。在一適合的實施方式中,該代謝物係選自由以下各項組成之群組:AZD1152 hqpa去氟苯胺;以及AZD1152 hqpa去氟苯胺乙酸。 In another aspect, there is provided an in vivo release profile of an isolated synthetic sample of a metabolite of AZD1152 in a human or non-human animal to which the pharmaceutical product has been administered, in determining the metabolite from a pharmaceutical product comprising AZD1152 hqpa Use in. In a suitable embodiment, the metabolite is selected from the group consisting of AZD1152 hqpa defluoroaniline; and AZD1152 hqpa defluoroaniline acetic acid.

“針對負載AZD1152 hqpa的奈米顆粒測定樣品”或“針對代謝物測定樣品”“Measurement of Nanoparticles for Load AZD1152 hqpa” or “Measurement of Samples for Metabolites”

適合地,用於在針對負載AZD1152 hqpa的奈米顆粒對樣品進行測定中或在針對代謝物(例如AZ12102238)對樣品進行測定中使用的方法係液相層析-質譜(LC-MS)技術。 Suitably, the method used in the determination of the sample for nanoparticles loaded with AZD1152 hqpa or the determination of the sample for metabolites (eg AZ12102238) is liquid chromatography-mass spectrometry (LC-MS).

在一適合的實施方式中,用於在針對負載AZD1152 hqpa的奈米顆粒對樣品進行測定中或在針對代謝物(例如AZ12102238)對樣品進行測定中使用的方法係液相層析-質譜(LC-MS)技術。LC-MS技術可以有利地被使用,因為它們能夠彼此區別密切相關的化合物,例如代謝物與作為該等代謝物來源的藥物。LC-MS技術還非常好地適合辨別多種化合物,例如在源自動物受試者的樣品中發現的那一類的複雜混合物中的負載AZD1152 hqpa的奈米顆粒或代謝物。當針對AZ12102238或針對AZD1152 hqpa對樣品進行測定時,可以用於此類LC-MS技術的適合參數的細節進一步描述於本說明書的實例中。 In a suitable embodiment, the method used in the determination of a sample for a nanoparticle loaded with AZD1152 hqpa or the determination of a sample for a metabolite (eg AZ12102238) is liquid chromatography-mass spectrometry (LC) -MS) technology. LC-MS techniques can be advantageously used because they are capable of distinguishing closely related compounds from each other, such as metabolites and drugs that are sources of such metabolites. The LC-MS technique is also very well suited for discriminating a variety of compounds, such as nanoparticle or metabolites loaded with AZD1152 hqpa in a complex mixture of those found in samples derived from animal subjects. Details of suitable parameters that can be used for such LC-MS techniques are further described in the examples of this specification when assaying samples for AZ12102238 or for AZD1152 hqpa.

在一適合的實施方式中,用於在針對負載AZD1152 hqpa的奈米顆粒對樣品進行測定中或在針對代謝物(例如AZ12102238)對樣品 進行測定中使用的方法係質譜(MS)成像技術。在其中樣品係組織樣品的本發明之方法中,用來針對代謝物或負載AZD1152 hqpa的奈米顆粒對樣品進行測定的MS成像技術的使用會具有特別的實用性。 In a suitable embodiment, the sample is used to measure the sample against nanoparticles loaded with AZD1152 hqpa or against the metabolite (eg AZ12102238) The method used in the assay was a mass spectrometry (MS) imaging technique. In the method of the invention in which the sample is a tissue sample, the use of MS imaging techniques for determining the sample against metabolites or nanoparticles loaded with AZD1152 hqpa would be of particular utility.

“確定存在的負載AZD1152 hqpa的奈米顆粒之量”或“確定存在的代謝物之量”"Determining the amount of nanoparticle present in the load AZD1152 hqpa" or "determining the amount of metabolite present"

本發明之方法可以利用允許對樣品內負載AZD1152 hqpa的奈米顆粒或代謝物(例如AZ12102238)的量做出確定的任何適合技術。適合地,本發明之方法允許藉由其中對樣品與使用AZD1152 hqpa或代謝物的一系列濃度製備的標準曲線進行比較之技術,來確定樣品中負載AZD1152 hqpa的奈米顆粒或代謝物之量。 The method of the present invention can utilize any suitable technique that allows for the determination of the amount of nanoparticle or metabolite (e.g., AZ12102238) loaded with AZD1152 hqpa in the sample. Suitably, the method of the invention allows for the determination of the amount of nanoparticle or metabolite loaded with AZD1152 hqpa in the sample by a technique in which the sample is compared to a standard curve prepared using a series of concentrations of AZD1152 hqpa or metabolite.

如以上進一步討論,製造充足量的代謝物以允許產生標準曲線的能力係使用代謝物AZ12102238的方法之益處。 As discussed further above, the ability to make a sufficient amount of metabolites to allow for the generation of a standard curve is a benefit of the method of using metabolite AZ12102238.

第一方面方法之可隨意修改The first aspect of the method can be modified at will

第一方面的方法還可以包括測定來自受試者的樣品以確定樣品中存在的AZD1152 hqpa的量之步驟。AZD1152 hqpa可以保留在奈米顆粒內。由此確定的量可以用於所應用的藥物動力學模型,以導出受試者體內全身性地釋放AZD1152 hqpa之量。適合地,由此確定的量可以被用於群體藥物動力學模型。 The method of the first aspect can also include the step of determining a sample from the subject to determine the amount of AZD1152 hqpa present in the sample. AZD1152 hqpa can be retained in the nanoparticle. The amount thus determined can be used in the applied pharmacokinetic model to derive the amount of systemically released AZD1152 hqpa in the subject. Suitably, the amount thus determined can be used in a population pharmacokinetic model.

參考代謝物,在此描述的測定和確定方法還一般適用於(其中必要時可以進行修改)關於AZD1152 hqpa進行實踐之程序。 With reference to metabolites, the assays and determination methods described herein are also generally applicable to (where necessary modifications can be made) procedures for the practice of AZD1152 hqpa.

在本說明書實例部分中,提供了可以測定樣品存在AZD1152 hqpa、並且確定存在的這一化合物的量的此類方法的說明性實例。 In the Examples section of this specification, an illustrative example of such a method that can determine the presence of AZD 1152 hqpa in a sample and determine the amount of this compound present is provided.

在此類方法的適合實施方式中,從中確定代謝物的樣品和從中確定AZD1152 hqpa的量之樣品都源自同一樣品。在一替代實施方式中,從中確定代謝物的樣品和從中確定AZD1152 hqpa的量的樣品係不同的樣品。 In a suitable embodiment of such a method, the sample from which the metabolite is determined and the sample from which the amount of AZD1152 hqpa is determined are derived from the same sample. In an alternate embodiment, the sample from which the metabolite is determined and the sample from which the amount of AZD1152 hqpa is determined are different samples.

第二方面、或第三方面方法之可隨意修改The second aspect, or the method of the third aspect, can be modified at will

第二方面或第三方面之方法還可以包括測定來自受試者的樣品之步驟,以確定樣品中存在的負載AZD1152 hqpa的奈米顆粒之量。負載AZD1152 hqpa的奈米顆粒可以保留在奈米顆粒內。由此確定的量可以用於所應用的藥物動力學模型,以導出受試者體內已經全身性地釋放的負載AZD1152 hqpa的奈米顆粒之量。適合地,由此確定的量可以被用於群體藥物動力學模型。 The method of the second aspect or the third aspect may further comprise the step of determining a sample from the subject to determine the amount of nanoparticle loaded with AZD1152 hqpa present in the sample. Nanoparticles loaded with AZD1152 hqpa can be retained in the nanoparticles. The amount thus determined can be used in the applied pharmacokinetic model to derive the amount of nanoparticle loaded with AZD1152 hqpa that has been systemically released in the subject. Suitably, the amount thus determined can be used in a population pharmacokinetic model.

參考代謝物並且參考示例性負載藥物AZD1152 hqpa的奈米顆粒,在此描述的測定和確定方法還一般適用於(其中必要時可以進行修改)關於其他負載藥物(例如在本發明的第三方面或第四方面的方法中考慮的第二藥物)的奈米顆粒進行實踐之程序。 With reference to metabolites and with reference to the exemplary loaded drug AZD1152 hqpa of nanoparticle, the assays and determination methods described herein are also generally applicable (where modifications may be made) with respect to other loaded drugs (eg, in the third aspect of the invention or The second drug considered in the method of the fourth aspect) is subjected to a procedure of practice.

在本說明書實例部分中,提供了可以測定樣品存在負載AZD1152 hqpa之奈米顆粒、以及確定存在的此類負載AZD1152 hqpa的奈米顆粒之量的此類方法的說明性實例。 In the Examples section of this specification, an illustrative example of such a method that can determine the presence of a nanoparticle loaded with AZD1152 hqpa in a sample, and the amount of such a nanoparticle of such a load AZD1152 hqpa present is provided.

第二方面和第五方面方法之可隨意修改(在適用情況下)The second and fifth aspects of the method can be modified at will (where applicable)

如以上進一步討論,第二方面提供了確定負載AZD1152 hqpa的奈米顆粒之釋放曲線之方法,該方法包括在第一時間點和第二時間點測定來自生物系統的樣品,以確定樣品中存在的代謝物之量,並且由此導出代表在對應時間點釋放的負載AZD1152 hqpa的奈米顆粒之量之第一值和第二值。然後該等值用於產生釋放曲線。 As further discussed above, the second aspect provides a method of determining a release profile of a nanoparticle of a load AZD1152 hqpa, the method comprising determining a sample from a biological system at a first time point and a second time point to determine the presence of the sample The amount of metabolite, and thus the first and second values representing the amount of nanoparticle of the load AZD1152 hqpa released at the corresponding time point. This value is then used to generate a release profile.

相同數據可以用於產生代謝物之暴露曲線,而不進而導出AZD1152 hqpa之量。將理解,術語“暴露曲線”係指在多個時間點,樣品中存在的代謝物之量之圖。 The same data can be used to generate an exposure curve for metabolites without further deriving the amount of AZD1152 hqpa. It will be understood that the term "exposure curve" refers to a graph of the amount of metabolite present in a sample at multiple time points.

在適合的實施方式中,此第二方面的方法可進一步涉及在第三或後續時間點測定來自生物系統的樣品以確定在此第三時間點或後續時間點樣品中所存在的負載AZD1152 hqpa的奈米顆粒的代謝物之 量。然後應用藥物動力學模型來導出代表在第三時間點所釋放的負載AZD1152 hqpa的奈米顆粒之量的第三值,並且使用此第三值來產生負載AZD1152 hqpa的奈米顆粒之釋放曲線。 In a suitable embodiment, the method of this second aspect may further involve determining a sample from the biological system at a third or subsequent time point to determine a load AZD1152 hqpa present in the sample at the third or subsequent time point. Metabolite of nanoparticle the amount. A pharmacokinetic model was then applied to derive a third value representative of the amount of nanoparticle of the load AZD1152 hqpa released at the third time point, and this third value was used to generate a release profile of the nanoparticle loaded with AZD1152 hqpa.

應瞭解,所述方法可包含來自相應時間點的第四、第五、第六、第七、第八、第九、第十和其他樣品,並且該等樣品可用於導出可用於產生釋放曲線的第四、第五、第六、第七、第八、第九、第十和其他值。 It will be appreciated that the method can include fourth, fifth, sixth, seventh, eighth, ninth, tenth, and other samples from respective time points, and that the samples can be used to derive a release curve that can be used to generate a release profile. Fourth, fifth, sixth, seventh, eighth, ninth, tenth and other values.

應瞭解,類似地,在任一第三或後續時間點處的代謝物之量可用於生成本發明第五方面代謝物之暴露曲線。 It will be appreciated that similarly, the amount of metabolite at any third or subsequent time point can be used to generate an exposure profile for the metabolite of the fifth aspect of the invention.

在適合的實施方式中,第二或第五方面方法可包括向生物系統中引入一定量的含有AZD1152 hqpa的奈米顆粒之步驟。 In a suitable embodiment, the method of the second or fifth aspect may comprise the step of introducing into the biological system an amount of nanoparticle comprising AZD1152 hqpa.

在適合的實施方式中,具有代謝AZD1152 hqpa的能力的生物系統可以是體內系統。這種體內系統將利用動物個體(人類或其他動物),如在本揭露中其他地方所考慮。在適合的實施方式中,從這種體內系統獲取的樣品可為本文已涵蓋的各種種類,包含血液、血清、或血漿樣品。 In a suitable embodiment, the biological system having the ability to metabolize AZD1152 hqpa can be an in vivo system. Such in vivo systems will utilize individual animals (human or other animals) as considered elsewhere in this disclosure. In a suitable embodiment, the samples obtained from such an in vivo system can be of various types encompassed herein, including blood, serum, or plasma samples.

可替代地,具有代謝AZD1152 hqpa的能力的生物系統可以是體外系統。這種體外系統可利用維持於培養物中的生物細胞。該等生物細胞可為肝細胞。可替代地,體外系統可使用細胞片段,例如肝微粒體;細胞部分,例如肝S9部分;或與酶(例如特定的酶同種型)一起培養。在此類體外方法的情形下,從該系統獲取的適合樣品可包括其中培養生物細胞的培養基。 Alternatively, a biological system having the ability to metabolize AZD1152 hqpa can be an in vitro system. Such an in vitro system can utilize biological cells maintained in culture. The biological cells can be liver cells. Alternatively, the in vitro system can use cell fragments, such as liver microsomes; cell parts, such as the liver S9 portion; or culture with an enzyme, such as a particular enzyme isotype. In the case of such an in vitro method, a suitable sample obtained from the system can include a medium in which the biological cells are cultured.

第二或第五方面的方法可適合地用於質量保證方案中。僅舉例來說,預計可使用依據本發明的第二或第五方面之方法來確保具有AZD1152 hqpa的奈米顆粒的不同批次之間的一致性。 The method of the second or fifth aspect can be suitably used in a quality assurance scheme. By way of example only, it is contemplated that the method according to the second or fifth aspect of the invention can be used to ensure consistency between different batches of nanoparticle having AZD1152 hqpa.

第三方面和第四方面(如果適用)方法之可隨意修改The third and fourth aspects (if applicable) can be modified at will.

如同上文所考慮的第二方面的方法,在適合的實施方式中,第三方面方法可利用多個時間點來獲取樣品。可使用以此方式生成的多個樣品來導出在該等不同時間點全身性釋放的負載AZD1152 hqpa的奈米顆粒之量,且使用該等量生成關於所釋放的AZD1152 hqpa的量的曲線(例如濃度曲線)。關於隨著該等時間點AZD1152 hqpa濃度的此資訊可用於評估負載AZD1152 hqpa的奈米顆粒和第二藥物之生物等效性。類似地,對於第四方面來說,在適合的實施方式中,第四方面的方法可利用多個時間點來獲取樣品,且使用該等量來生成關於所形成的AZD1152 hqpa代謝物的量的曲線(例如濃度曲線/暴露曲線)。 As with the method of the second aspect considered above, in a suitable embodiment, the third aspect method can utilize multiple time points to acquire a sample. A plurality of samples generated in this manner can be used to derive the amount of nanoparticle loaded AZD1152 hqpa that is systemically released at the different time points, and use the same amount to generate a curve for the amount of released AZD1152 hqpa (eg, Concentration curve). This information regarding the concentration of hZpa at AZD1152 with these time points can be used to assess the bioequivalence of the nanoparticle and the second drug loaded with AZD1152 hqpa. Similarly, for a fourth aspect, in a suitable embodiment, the method of the fourth aspect can utilize a plurality of time points to acquire a sample and use the equal amount to generate an amount of the formed AZD1152 hqpa metabolite. Curve (eg concentration curve / exposure curve).

在適合的實施方式中,基於受試者中全身性釋放的負載AZD1152 hqpa的奈米顆粒之量或AZD1152 hqpa的代謝物之量的值(將其與關於第二藥物的對比值進行比較)可選自由以下各項組成之群組:曲線下面積(AUC);峰濃度(Cmax);以及達峰濃度時間(Tmax)。 In a suitable embodiment, the value of the amount of nanoparticle loaded AZD1152 hqpa or the amount of metabolite of AZD1152 hqpa based on systemic release in the subject (compared to the comparison value with respect to the second drug) may be The following groups of components are selected: area under the curve (AUC); peak concentration ( Cmax ); and peak concentration time ( Tmax ).

在適合的實施方式中,針對以不同劑量給予至一個或多個個體的負載AZD1152 hqpa的奈米顆粒進行本發明此類方法。 In a suitable embodiment, such a method of the invention is carried out on nanoparticle loaded with AZD 1152 hqpa administered to one or more individuals at different doses.

可藉由針對第二藥物實踐與針對負載AZD1152 hqpa的奈米顆粒所進行的相同的步驟(包括測定來自受試者的樣品以確定存在於樣品中的負載AZD1152 hqpa的奈米顆粒的代謝物之量,並且(對於第三方面來說)應用藥物動力學模型基於所確定的該代謝物之量導出全身性釋放的負載AZD1152 hqpa的奈米顆粒之量)來生成對比值。 The same procedure can be performed for the second drug practice with the nanoparticle loaded against AZD1152 hqpa (including determining the sample from the subject to determine the metabolite of the nanoparticle loaded with AZD1152 hqpa present in the sample) And, (for the third aspect) applying a pharmacokinetic model to derive a systemically released amount of nanoparticle loaded AZD1152 hqpa based on the determined amount of the metabolite) to generate a contrast value.

在適合的實施方式中,第二藥物也係載藥奈米顆粒。 In a suitable embodiment, the second drug is also a drug-loaded nanoparticle.

可參照在評估生物等效性的領域中的常規標準來選擇用於根據本發明第三或第四方面的方法中的受試者。舉例來說,可針對基於性別、年齡或種族的具體分類來選擇受試者。適合的方式可使用參考上文所考慮標準中的一者或多者彼此相同的受試者的群組,或可使用經 選擇以相對於不同標準包含所需多樣性水平之群組。 The subject for use in the method according to the third or fourth aspect of the invention may be selected with reference to conventional criteria in the field of assessing bioequivalence. For example, a subject can be selected for a specific classification based on gender, age, or ethnicity. A suitable way may be to use a group of subjects that reference one or more of the criteria considered above to be identical to each other, or may use Choose to include groups of desired levels of diversity relative to different criteria.

在本發明(無論是第一方面、第二方面還是第三方面)的方法的適合的實施方式中(其中確定負載AZD1152 hqpa的奈米顆粒之量),可較佳的是針對在兩個或更多個時間點收集的樣品來確定相關量。本發明方法的此類實施方式使得可產生隨時間而言負載AZD1152 hqpa的奈米顆粒之濃度曲線。然後此類曲線可用於藥物動力學模型中。此類實施方式較為有用,因為其能夠提供關於在代謝之前的AZD1152 hqpa釋放的其他資訊。對於第四方面類似地,可針對在兩個或更多個時間點收集的樣品來確定代謝物的相關量。本發明方法之此類實施方式使得可產生隨時間而言代謝物的濃度曲線。 In a suitable embodiment of the method of the invention (whether the first aspect, the second aspect or the third aspect) wherein the amount of nanoparticles supporting the load AZD1152 hqpa is determined, it may preferably be for two or Samples collected at more time points to determine the relevant amount. Such an embodiment of the method of the invention makes it possible to produce a concentration profile of nanoparticles loaded with AZD 1152 hqpa over time. Such curves can then be used in pharmacokinetic models. Such an embodiment is useful because it can provide additional information about the release of AZD1152 hqpa prior to metabolism. Similarly for the fourth aspect, the relative amount of metabolite can be determined for samples collected at two or more time points. Such an embodiment of the method of the invention makes it possible to generate a concentration profile of the metabolite over time.

本發明的第三或第四方面之生物等效性評估可需要測量其他對比參數,這可能取決於待治療癌症之類型。舉例來說,藉由測量生物標記物(例如pHH3,參見WO 2015/036792中的實例)、在靶組織中的暴露水平(例如在腫瘤或骨髓等中的水平)、功效(反應速率)、成像(例如藉由質譜),或藉由測量奈米顆粒之屬性(例如藉由動態光散射測量之粒度、來自奈米顆粒的藥物之體外釋放(或溶解))。監管機構(例如美國食品和藥品管理局(US Food and Drug Administration))可頒佈關於如何評估新產品之生物等效性的導則,例如再現於下文參考實例中的關於奈米顆粒多西他賽之導則草案。 Bioequivalence assessment of the third or fourth aspect of the invention may require measurement of other contrast parameters, which may depend on the type of cancer being treated. For example, by measuring biomarkers (eg, pHH3, see examples in WO 2015/036792), exposure levels in target tissues (eg, levels in tumors or bone marrow, etc.), efficacy (reaction rate), imaging (eg by mass spectrometry), or by measuring the properties of the nanoparticle (eg, particle size as measured by dynamic light scattering, in vitro release (or dissolution) of the drug from the nanoparticle). Regulators (such as the US Food and Drug Administration) may issue guidelines on how to evaluate the bioequivalence of new products, such as the nanoparticle docetaxel reproduced in the reference examples below. Draft guidelines.

在第三方面的一個實施方式中,提供了對給予至患有實體腫瘤疾病的受試者的負載AZD1152 hqpa的奈米顆粒之生物等效性進行評估之方法,該方法包括:●測定來自該受試者之血液源樣品,以確定在該樣品中存在的這種負載AZD1152 hqpa的奈米顆粒的代謝物之量;●基於所確定的該代謝物之量,應用藥物動力學模型,以導出該受試者體內全身性地釋放的這種負載AZD1152 hqpa的奈米 顆粒之量;並且●比較基於該受試者體內全身性地釋放的這種負載AZD1152 hqpa的奈米顆粒之量的值與關於從第二藥物產品釋放的AZD1152 hqpa的對比值,並且可隨意地與一種或多種另外的對比實驗參數相結合,由此評估這種負載AZD1152 hqpa的奈米顆粒和該第二藥物之生物等效性。 In one embodiment of the third aspect, there is provided a method of assessing the bioequivalence of a nanoparticle loaded with AZD1152 hqpa administered to a subject having a solid tumor disease, the method comprising: a blood source sample of the subject to determine the amount of metabolite of the nanoparticle loaded with the AZD1152 hqpa present in the sample; • based on the determined amount of the metabolite, applying a pharmacokinetic model to derive The subject is a systemically released nanoparticle of this load AZD1152 hqpa The amount of particles; and - comparing the value of the amount of nanoparticle loaded with such a load AZD1152 hqpa systemically released in the subject with respect to AZD1152 hqpa released from the second drug product, and optionally The bioequivalence of the nanoparticle loaded with AZD1152 hqpa and the second drug was evaluated in conjunction with one or more additional comparative experimental parameters.

在第三方面的另一個實施方式中,提供了給予至患有血液學癌症的受試者的負載AZD1152 hqpa的奈米顆粒之生物等效性進行評估之方法,該方法包括:●測定來自該受試者之血液源樣品,以確定在該樣品中存在的這種負載AZD1152 hqpa的奈米顆粒的代謝物之量;●基於所確定的該代謝物之量,應用藥物動力學模型,以導出該受試者體內全身性地釋放的這種負載AZD1152 hqpa的奈米顆粒之量;並且●比較基於該受試者體內全身性地釋放的這種負載AZD1152 hqpa的奈米顆粒之量的值與關於從第二藥物產品釋放的AZD1152 hqpa的對比值,並且可隨意地與一種或多種另外的對比實驗參數相結合,由此評估這種負載AZD1152 hqpa的奈米顆粒和該第二藥物之生物等效性。 In another embodiment of the third aspect, there is provided a method of assessing the bioequivalence of a nanoparticle loaded with AZD1152 hqpa administered to a subject having hematological cancer, the method comprising: a blood source sample of the subject to determine the amount of metabolite of the nanoparticle loaded with the AZD1152 hqpa present in the sample; • based on the determined amount of the metabolite, applying a pharmacokinetic model to derive The amount of such a nanoparticle loaded with AZD1152 hqpa that is systemically released in the subject; and • comparing the amount of nanoparticle based on the amount of such loaded AZD1152 hqpa that is systemically released in the subject Regarding the comparative value of AZD1152 hqpa released from the second drug product, and optionally combining with one or more additional comparative experimental parameters, thereby evaluating the nanoparticle of the load AZD1152 hqpa and the organism of the second drug, etc. Effectiveness.

因此,在第四方面中,提供了對給予至患有實體腫瘤疾病的受試者的負載AZD1152 hqpa的奈米顆粒之生物等效性進行評估之方法,該方法包括:●測定來自該受試者之血液源樣品,以確定在該樣品中存在的這種負載AZD1152 hqpa的奈米顆粒的代謝物之量;●比較由此獲得的該代謝物之量與關於從包含AZD1152 hqpa的第二藥物產品釋放的相同代謝物之對比值,並且可隨意地與 其他對比實驗參數相結合,由此評估這種負載AZD1152 hqpa的奈米顆粒和該第二藥物之生物等效性。 Accordingly, in a fourth aspect, there is provided a method of assessing the bioequivalence of a nanoparticle loaded with AZD1152 hqpa administered to a subject having a solid tumor disease, the method comprising: • determining from the subject a blood source sample to determine the amount of metabolite of the nanoparticle loaded with AZD1152 hqpa present in the sample; - comparing the amount of the metabolite thus obtained with respect to the second drug from HZpa containing AZD1152 The contrast value of the same metabolite released by the product, and optionally The other comparative experimental parameters were combined to evaluate the bioequivalence of the nanoparticle loaded with AZD1152 hqpa and the second drug.

因此,在第四方面中,提供了對給予至患有血液學癌症的受試者的負載AZD1152 hqpa的奈米顆粒之生物等效性進行評估之方法,該方法包括:●測定來自該受試者之血液源樣品,以確定在該樣品中存在的這種負載AZD1152 hqpa的奈米顆粒的代謝物之量;●比較由此獲得的該代謝物之量與關於從包含AZD1152 hqpa的第二藥物產品釋放的相同代謝物之對比值,並且可隨意地與其他對比實驗參數相結合,由此評估這種負載AZD1152 hqpa的奈米顆粒和該第二藥物之生物等效性。 Accordingly, in a fourth aspect, there is provided a method of assessing the bioequivalence of a nanoparticle loaded with AZD1152 hqpa administered to a subject having hematological cancer, the method comprising: • determining from the subject a blood source sample to determine the amount of metabolite of the nanoparticle loaded with AZD1152 hqpa present in the sample; - comparing the amount of the metabolite thus obtained with respect to the second drug from HZpa containing AZD1152 The comparative values of the same metabolites released by the product, and optionally combined with other comparative experimental parameters, thereby assessing the bioequivalence of the nanoparticle loaded with AZD1152 hqpa and the second drug.

實體腫瘤疾病的適合實例包含前列腺癌、胃癌、結腸直腸癌、皮膚癌(例如黑素瘤或基底細胞癌瘤)、肺癌(例如非小細胞肺癌(NSCLC)、小細胞肺癌(SCLC))、乳癌、卵巢癌、頭頸癌、支氣管癌、胰臟癌、膀胱癌、腦癌或中樞神經系統癌、周邊神經系統癌、食管癌、口腔癌或咽癌、肝癌(例如肝細胞癌瘤)、腎癌(例如腎細胞癌瘤)、睾丸癌、膽管癌、小腸或闌尾癌、胃腸道間質腫瘤、唾液腺癌甲狀腺癌、腎上腺癌、骨肉瘤、軟骨肉瘤等等。在一個實施方式中,實體腫瘤疾病係選自NSCLC、SCLC、卵巢癌和結腸直腸癌。 Suitable examples of solid tumor diseases include prostate cancer, gastric cancer, colorectal cancer, skin cancer (such as melanoma or basal cell carcinoma), lung cancer (such as non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC)), breast cancer. , ovarian cancer, head and neck cancer, bronchial cancer, pancreatic cancer, bladder cancer, brain cancer or central nervous system cancer, peripheral nervous system cancer, esophageal cancer, oral cancer or pharyngeal cancer, liver cancer ( such as hepatocellular carcinoma), kidney cancer (eg, renal cell carcinoma), testicular cancer, cholangiocarcinoma, small intestine or appendix cancer, gastrointestinal stromal tumor, salivary gland cancer, thyroid cancer, adrenal cancer, osteosarcoma, chondrosarcoma, and the like. In one embodiment, the solid tumor disease is selected from the group consisting of NSCLC, SCLC, ovarian cancer, and colorectal cancer.

血液學癌症的適合實例包含慢性骨髓性白血病、慢性骨髓單核細胞性白血病、費城染色體陽性急性成淋巴細胞性白血病(Philadelphia chromosome positive acute lymphoblastic leukemia)、外套細胞淋巴瘤、急性骨髓性白血病、彌漫性大B細胞淋巴瘤、骨髓瘤、周邊T細胞淋巴瘤和骨髓增生異常綜合症。在一個實施方式中,血液學癌症係選自AML、DLBCL和骨髓增生異常綜合症。 Suitable examples of hematological cancer include chronic myelogenous leukemia, chronic myelomonocytic leukemia, Philadelphia chromosome positive acute lymphoblastic leukemia, mantle cell lymphoma, acute myeloid leukemia, diffuse Large B-cell lymphoma, myeloma, peripheral T-cell lymphoma, and myelodysplastic syndrome. In one embodiment, the hematological cancer is selected from the group consisting of AML, DLBCL, and myelodysplastic syndrome.

適用於該等方法中的藥物動力學模型Pharmacokinetic models suitable for use in these methods

技術人員將能夠容易地選擇適合的藥物動力學模型,藉由該模型可使用經確定存在於樣品中的代謝物之量來導出產生該代謝物的AZD1152 hqpa的量。下文提供了用於本發明方法中的適合的藥物動力學模型的說明。 The skilled artisan will be able to readily select a suitable pharmacokinetic model by which the amount of AZD1152 hqpa that produces the metabolite can be derived using the amount of metabolite determined to be present in the sample. An illustration of a suitable pharmacokinetic model for use in the methods of the invention is provided below.

出於建模目的,如同小分子一般來處理體內奈米顆粒中的囊封藥物。以與小分子相同的方式來處理既在體內又含於奈米顆粒內的藥物的量。在此模型中,既在體內又含於奈米顆粒內的囊封藥物的清除涉及任一減小既在體內又含於奈米顆粒內的活性藥物的量的過程,此清除可視為由兩組機制組成。第一組清除機制係那些使得將活性藥物釋放到體內的機制,並且可包含諸如以下的機制:從完整奈米顆粒擴散,留下含有較少藥物的完整奈米顆粒;或分裂個別奈米顆粒,奈米顆粒內部的一些或全部活性藥物釋放到體內,在體內留下含有較少藥物的奈米顆粒。第二組清除機制係那些不向體內釋放活性藥物的機制,並且可包含以下機制:從身體損失完整的含藥物奈米顆粒;或在完整活性藥物含於奈米顆粒內時或在奈米顆粒被破壞時,在完整活性藥物中發生化學變化。 For modeling purposes, encapsulated drugs in the nanoparticles of the body are treated as small molecules. The amount of the drug, both in the body and in the nanoparticles, is treated in the same manner as the small molecule. In this model, the clearance of the encapsulated drug, both in vivo and in the nanoparticle, involves any process that reduces the amount of active drug both in the body and in the nanoparticle, which can be considered as Group mechanism. The first group of clearance mechanisms are those that cause release of the active drug into the body, and may include mechanisms such as diffusion from intact nanoparticles, leaving intact nanoparticles containing less drug; or cleavage of individual nanoparticles. Some or all of the active drug inside the nanoparticle is released into the body, leaving nanoparticle containing less drug in the body. The second group of clearance mechanisms are those that do not release the active drug into the body, and may include the following mechanisms: loss of intact drug-containing nanoparticle from the body; or when the intact active drug is contained in the nanoparticle or in the nanoparticle When destroyed, chemical changes occur in intact active drugs.

從奈米顆粒釋放活性藥物(例如AZD1152 hqpa)的例示組合藥物動力學模型由4個子模型組成。該等子模型都為標準藥物動力學乳突型房室模型,其各自由一個中心房室和多個周邊房室構成。中心房室係連接的,從而以一定比例清除既在體內又含於奈米顆粒內的藥物使得活性藥物中心房室內的活性藥物量有所增加。因為AZD1152係前藥,因此使前藥中心房室連接到活性藥物中心房室,從而以一定比例清除前藥使得活性藥物中心房室內的活性藥物量有所增加。在一般情形下,以前藥形式給予的藥物僅需要該模型的前藥部分。應理解,此部分中提到的“前藥”應意指AZD1152。類似地,以一定比例清除活性 藥物(AZD1152 hqpa)使得代謝物中心房室內的代謝物之量有所增加。應理解,此部分中提到的“活性藥物”應意指AZD1152hqpa。 An exemplary combined pharmacokinetic model for the release of an active drug from a nanoparticle (eg, AZD1152 hqpa) consists of four sub-models. These submodels are all standard pharmacokinetic papillary compartment models, each consisting of a central compartment and multiple peripheral compartments. The central compartment is connected to remove a dose of the drug in both the body and the nanoparticle in a certain ratio to increase the amount of active drug in the active drug central chamber. Because AZD1152 is a prodrug, the prodrug central chamber is connected to the active drug center compartment, so that the prodrug is cleared in a certain proportion to increase the amount of active drug in the active drug center chamber. In the general case, the drug administered in the form of a prodrug only requires the prodrug portion of the model. It should be understood that the "prodrug" referred to in this section shall mean AZD1152. Similarly, the activity is cleared in a certain ratio The drug (AZD1152 hqpa) increased the amount of metabolites in the metabolite central chamber. It should be understood that the "active drug" referred to in this section shall mean AZD1152hqpa.

在下文所使用的模型中包含AZD1152,這係因為其提供額外數據以增加模型的穩固性,但通常藉由本文所描述的方法分析AZD1152 hqpa從奈米顆粒的釋放並不需要AZD1152。 AZD1152 is included in the model used below because it provides additional data to increase the robustness of the model, but analysis of the release of AZD1152 hqpa from nanoparticles by AZD1152 is generally not required by the methods described herein.

在用於AZD1152的適合的大鼠模型中,對於前藥、含於奈米顆粒中的藥物和代謝物,周邊房室的數量為1,且對於活性藥物為2,然而,用於每一組分的周邊房室的確切數量將取決於所論述的化合物和代謝物、所使用物種和可用數據的量與質量。所屬領域技術人員將無需任何過度實驗或無需實施發明性活動即可確定周邊房室的適合的數量。 In a suitable rat model for AZD1152, the number of peripheral compartments is 1 for prodrugs, drugs and metabolites contained in nanoparticles, and 2 for active drugs, however, for each group The exact number of peripheral compartments will depend on the compound and metabolite being discussed, the species used, and the amount and quality of available data. One of ordinary skill in the art will be able to determine the appropriate number of peripheral compartments without any undue experimentation or without the need to perform an inventive activity.

適合的大鼠模型Suitable rat model

可用於大鼠中的AZD1152hqpa的適合的模型以數學方式表示於下文中。 A suitable model of AZD1152hqpa that can be used in rats is shown mathematically below.

對於既在體內又含於奈米顆粒內的活性藥物來說: For active drugs that are both in the body and contained in the nanoparticles:

其中:Vn1為奈米顆粒中心房室的分佈之表觀體積;Vn2為奈米顆粒周邊房室的分佈之表觀體積;Cn1為既在體內又含於奈米顆粒內並且在奈米顆粒中心房室中的藥物之濃度;Cn2為既在體內又含於奈米顆粒內並且在奈米顆粒周邊房室中的藥物之濃度;CLn為既在體內又含於奈米顆粒內的藥物從奈米顆粒中心房室之清除 率;Qn為既在體內又含於奈米顆粒內的藥物在奈米顆粒中心房室與周邊房室之間的房室間清除率或流量;輸入n為描述源自奈米顆粒配製物給予的既在體內又含於奈米顆粒內的藥物的輸入之函數;dCn1/dt和dCn2/dt分別為Cn1和Cn2隨時間的變化速率。 Wherein: V n1 is the apparent volume of the distribution of the central compartment of the nanoparticle; V n2 is the apparent volume of the distribution of the compartment surrounding the nanoparticle; C n1 is both in vivo and contained in the nanoparticle and in the nai The concentration of the drug in the central compartment of the rice granule; C n2 is the concentration of the drug in both the body and the nanoparticle and in the compartment surrounding the nanoparticle; CL n is both in vivo and in the nanoparticle Drug within the clearance from the central compartment of the nano particles; Q n is contained in both in vivo and atrioventricular clearance or flow of drug particles in the nanometer nano particles between the central compartment and the peripheral compartment of The input n is a function describing the input of the drug from both the in vivo and the nanoparticle administered from the nanoparticle formulation; dC n1 /dt and dC n2 /dt are C n1 and C n2 over time, respectively Rate of change.

對於前藥來說: 其中:Vp1為前藥中心房室的分佈之表觀體積;Vp2為前藥周邊房室的分佈之表觀體積;Cp1為前藥中心房室中的前藥之濃度;Cp2為前藥周邊房室中的前藥之濃度;CLp為前藥從前藥中心房室之清除率;Qp為前藥在其中心和周邊房室之間的房室間清除率或流量;輸入p為描述源自前藥給予的前藥輸入的函數;dCp1/dt和dCp2/dt分別為Cp1和Cp2隨時間的變化速率。 For prodrugs: Where: V p1 is the apparent volume of the distribution of the central compartment of the prodrug; V p2 is the apparent volume of the distribution of the peripheral compartment of the prodrug; C p1 is the concentration of the prodrug in the atrioventricular center; C p2 is The concentration of prodrug in the peripheral compartment of the prodrug; CL p is the clearance rate of the prodrug from the center of the prodrug; Q p is the interventricular clearance or flow rate of the prodrug between its center and the surrounding compartment; p is a function describing the prodrug input from the prodrug; dC p1 /dt and dC p2 /dt are the rates of change of C p1 and C p2 over time, respectively.

對於活性藥物來說: 其中:Va1為活性藥物中心房室的分佈之表觀體積; Va2為2號活性藥物周邊房室的分佈之表觀體積;Va3為3號活性藥物周邊房室的分佈之表觀體積;Ca1為活性藥物中心房室中的活性藥物的濃度;Ca2為2號活性藥物周邊房室中的活性藥物之濃度;Ca3為3號活性藥物周邊房室中的活性藥物之濃度;Mna為使得活性藥物釋放到體內的既在體內又含於奈米顆粒內的藥物之清除比例;Mpa為使得活性藥物釋放到體內的前藥之清除比例;CLa為活性藥物從活性藥物中心房室之清除率;Qa2為活性藥物在其中心房室與2號周邊房室之間的房室間清除率或流量;Qa3為活性藥物在其中心房室與3號周邊房室之間的房室間清除率或流量;輸入a為描述源自活性藥物給予的活性藥物輸入之函數;dCa1/dt、dCa2/dt和dCa3/dt分別為Ca1、Ca2和Ca3隨時間的變化速率。 For active drugs: Where: V a1 is the apparent volume of the distribution of the central compartment of the active drug; V a2 is the apparent volume of the distribution of the peripheral compartment of the active drug 2; V a3 is the apparent volume of the distribution of the surrounding compartment of the active drug No. 3 C a1 is the concentration of the active drug in the chamber of the active drug center; C a2 is the concentration of the active drug in the peripheral compartment of the active drug No. 2; C a3 is the concentration of the active drug in the peripheral compartment of the active drug No. 3; M na is the clearance ratio of the drug which is released into the body both in the body and in the nanoparticle; M pa is the clearance ratio of the prodrug which releases the active drug into the body; CL a is the active drug from the active drug Clearance rate of central compartment; Q a2 is the clearance or flow rate of active drug between the central compartment and the peripheral compartment of No. 2; Q a3 is the active drug in its central compartment and the surrounding compartment of No. 3 Interventricular clearance or flux; input a is a function describing the input of the active drug from the active drug; dC a1 /dt, dC a2 /dt and dC a3 /dt are C a1 , C a2 and C respectively The rate of change of a3 over time.

對於代謝物來說: 其中:Vm1為代謝物中心房室的分佈之表觀體積;Vm2為代謝物周邊房室的分佈之表觀體積;Cm1為代謝物中心房室中的代謝物之濃度;Cm2為代謝物周邊房室中的代謝物之濃度;Mam為使得代謝物釋放到體內的活性藥物之清除比例;CLm為代謝物從代謝物中心房室之清除率; Qm為代謝物在其中心房室與周邊房室之間的房室間清除率或流量;輸入m為描述源自代謝物給予的代謝物輸入之函數;dCm1/dt和dCm2/dt分別為Cm1和Cm2隨時間的變化速率。 For metabolites: Where: V m1 is the apparent volume of the distribution of the central compartment of the metabolite; V m2 is the apparent volume of the distribution of the compartment surrounding the metabolite; C m1 is the concentration of the metabolite in the atrioventricular compartment; C m2 is The concentration of metabolites in the peripheral compartment of the metabolite; Ma is the clearance ratio of the active drug that releases the metabolite into the body; CL m is the clearance rate of the metabolite from the central compartment of the metabolite; Q m is the metabolite in it Interventricular clearance or flow between the central and peripheral compartments; input m is a function describing metabolite input from metabolites; dC m1 /dt and dC m2 /dt are C m1 and C m2 , respectively The rate of change over time.

為構建如上文所書寫的模型,需要下列資訊:●既在體內又含於奈米顆粒內的藥物的濃度時間數據以及在靜脈內給予奈米顆粒後活性藥物(AZD1152 hqpa)或代謝物中的至少一者的濃度時間數據;●如果使用前藥(即AZD1152),則前藥的濃度時間數據以及在靜脈內給予前藥後活性藥物或代謝物中的至少一者的濃度時間數據;●活性藥物(即AZD1152 hqpa)的濃度時間數據以及在靜脈內給予活性藥物後代謝物的濃度時間數據;和●在靜脈內給予代謝物後總代謝物的濃度時間數據。 In order to construct a model as described above, the following information is required: • concentration time data of the drug in both the body and the nanoparticle, and the active drug (AZD1152 hqpa) or metabolite after intravenous administration of the nanoparticles. Concentration time data of at least one; ● concentration time data of the prodrug and concentration time data of at least one of the active drug or metabolite after intravenous administration of the prodrug if a prodrug (ie, AZD1152) is used; Concentration time data of the drug (ie, AZD1152 hqpa) and concentration time data of metabolites after intravenous administration of the active drug; and ● concentration time data of total metabolite after intravenous administration of the metabolite.

如果無法獲得在靜脈內給予代謝物後的數據,則需要以下列方式改變代謝物子模型的參數化。 If data after intravenous administration of metabolites are not available, the parameterization of the metabolite submodel needs to be altered in the following manner.

其中下列參數為複合參數:Vm1/Mam為關於使得代謝物釋放到全身性循環中的活性藥物的清除比例的代謝物中心房室的分佈之表觀體積;Vm2/Mam為關於使得代謝物釋放到全身性循環中的活性藥物的清除比例的代謝物周邊房室的分佈之表觀體積;CLm/Mam為關於代謝成代謝物的活性藥物的分數的代謝物從代謝物中心房室之清除率;Qm/Mam為關於代謝成代謝物的活性藥物的分數的代謝物在其中心房 室與周邊房室之間的房室間清除率或流量。 Wherein the following parameter is a composite parameter: V m1 /M am is the apparent volume of the distribution of the metabolite central compartment with respect to the clearance ratio of the active drug that releases the metabolite into the systemic circulation; V m2 /M am is about active metabolites released into the systemic circulation of drug clearance ratio of the apparent volume of distribution of the peripheral compartment of the metabolite; CL m / m am is metabolized into the active metabolite on drug metabolites metabolite fraction from the center Atrioventricular clearance; Q m /M am is the interventricular clearance or flux between metabolites at the central and peripheral compartments of the fraction of active drug metabolized to metabolites.

該等參數類似於在無法獲得靜脈內給藥後數據時用於對經口給予藥物後的數據建模的V1/F、V2/F、CL/F和Q/F參數。 These parameters are similar to the V 1 /F, V 2 /F, CL/F, and Q/F parameters used to model data after oral administration of the drug when data after intravenous administration is not available.

因為不可能在單一個體中獲得所需的所有資訊,所以使用群體建模方式。在此方式中,假設每一個體的參數係來自從一大組個體的數據確定的統計學分佈。然後該建模方式使用來自個體自身數據集和來自更廣泛群體的資訊來估計用於該個體的最可能參數組,然後可使用該等參數來估計在該給藥階段中在該個體中的所有相關化合物的濃度。作為一個實例,如果存在活性藥物和在活性藥物給藥後的代謝物的數據集和群體中代謝物的數據,且還存在含於奈米顆粒中的藥物的數據和給予奈米顆粒配製物的個體中的代謝物的數據,則該模型可視為使用個體自身數據來確定既在體內又含於奈米顆粒內的藥物的藥物動力學。然後將此與藥物從奈米顆粒的消除速率和代謝物的出現速率以及活性藥物的群體數據組合,以估計用於既在體內又含於奈米顆粒內的藥物、已在體內釋放的活性藥物和該個體中的代謝物的最可能參數組。 Because it is not possible to get all the information you need in a single individual, a population modeling approach is used. In this manner, it is assumed that the parameters of each individual are derived from statistical distributions determined from data from a large group of individuals. The modeling approach then uses information from the individual's own dataset and from a broader population to estimate the most likely set of parameters for that individual, which can then be used to estimate all of the individuals in the dosing phase. The concentration of the relevant compound. As an example, if there is data on the active drug and the metabolite data and the metabolites in the population after administration of the active drug, and there are also data on the drug contained in the nanoparticle and the administration of the nanoparticle formulation The data for metabolites in an individual can be viewed as using the individual's own data to determine the pharmacokinetics of the drug both in the body and in the nanoparticle. This is then combined with the elimination rate of the drug from the nanoparticle and the rate of occurrence of the metabolite and the population data of the active drug to estimate the drug that is used both in the body and in the nanoparticle, the active drug that has been released in the body. And the most likely parameter set of metabolites in the individual.

現將參照描述本發明方法的大鼠實驗模型的隨附實例和附圖來進一步描述本發明。技術人員將理解如何將下列實驗(在大鼠中實施)應用於人類。 The invention will now be further described with reference to the accompanying examples and drawings of the experimental model of the rat which describes the method of the invention. The skilled person will understand how to apply the following experiments (implemented in rats) to humans.

圖1係展示了在0h的活性藥物給予、在168h的前藥給予和在336h的在奈米顆粒配製物中的活性藥物後,在實驗大鼠模型中產生的血漿樣品中,前藥的觀察的和預測的血漿濃度之圖。 Figure 1 shows the observation of prodrugs in plasma samples produced in experimental rat models after active drug administration at 0 h, prodrug administration at 168 h, and active drug in 326 h of nanoparticle formulation. And predicted plasma concentration plots.

圖2係展示了在0h的活性藥物給予、在168h的前藥給予和在336h的在奈米顆粒配製物中的活性藥物後,在實驗大鼠模型中產生的血漿樣品中,活性藥物的觀察的和預測的血漿濃度之圖。 Figure 2 shows the observation of active drug in plasma samples produced in experimental rat models after active drug administration at 0 h, prodrug administration at 168 h, and active drug in 326 h of nanoparticle formulation. And predicted plasma concentration plots.

圖3係展示了在0h的活性藥物給予、在168h的前藥給予和在336h的在奈米顆粒配製物中的活性藥物後,在實驗大鼠模型中產生的血漿樣品中,奈米顆粒內的活性藥物的觀察的和預測的血漿濃度之圖。 Figure 3 is a graph showing the plasma samples produced in the experimental rat model in the plasma samples after administration of the active drug at 0 h, the prodrug administration at 168 h, and the active drug in the 326 h of the nanoparticle formulation. A graph of observed and predicted plasma concentrations of active drugs.

圖4係展示了在0h的活性藥物給予、在168h的前藥給予和在336h的在奈米顆粒配製物中的活性藥物後,在實驗大鼠模型中產生的血漿樣品中,代謝物的觀察的和預測的血漿濃度之圖。 Figure 4 is a graph showing the observation of metabolites in plasma samples produced in experimental rat models after active drug administration at 0 h, prodrug administration at 168 h, and active drug in 326 h of nanoparticle formulation. And predicted plasma concentration plots.

1 用來測量來自給予奈米顆粒的體內樣品的總藥物和代謝物的生物分析方法之概述 1 Overview of bioanalytical methods for measuring total drugs and metabolites from in vivo samples administered to nanoparticles

以下提供了示例性方法,借此可以從樣品提取負載AZD1152 hqpa的奈米顆粒、或負載AZD1152 hqpa的奈米顆粒的代謝物,並對其進行測定,並且確定存在的AZD1152 hqpa或代謝物之量。描述的方法係應在冰上進行的多步驟過程,在一切可能之處阻止AZD1152 hqpa藥物從奈米顆粒自發釋放。 An exemplary method is provided below whereby a metabolite of AZD1152 hqpa loaded nanoparticles or a nanoparticle loaded with AZD1152 hqpa can be extracted from a sample and assayed, and the amount of AZD1152 hqpa or metabolite present is determined. . The method described is a multi-step process that should be performed on ice to prevent the spontaneous release of AZD1152 hqpa drug from the nanoparticle wherever possible.

1.1 總藥物提取方法:1.1 Total drug extraction method:

●將固體母體藥物溶解在DMSO中,至2mM濃度。 • Dissolve the solid parent drug in DMSO to a concentration of 2 mM.

●使用適當稀釋倍數,將每一血漿樣品的50μl等分試樣注入96孔板中。 • A 50 [mu]l aliquot of each plasma sample was injected into a 96 well plate using the appropriate dilution factor.

●使用漢密爾頓星自動機器(Hamilton Star Robot),從DMSO中的2mM儲備液製作標準校準曲線(對於製備細節,參見附錄1) • Prepare a standard calibration curve from a 2 mM stock solution in DMSO using a Hamilton Star Robot (see Appendix 1 for preparation details)

●與內標一起添加150μl的乙腈。 • Add 150 μl of acetonitrile with the internal standard.

●搖動該板以混合樣品。 • Shake the plate to mix the samples.

●按4500rpm,在離心機中旋轉10分鐘。 • Rotate in a centrifuge for 10 minutes at 4500 rpm.

●轉移50μl的上清液至清潔96孔板中。 • Transfer 50 μl of supernatant to a clean 96-well plate.

●添加300μl的水。 • Add 300 μl of water.

●經由LCMSMS進行分析。 • Analysis via LCMSMS.

1.2 代謝物提取方法:1.2 Metabolite extraction method:

●將代謝物溶解在DMSO中,至2mM濃度。 • Dissolve the metabolite in DMSO to a concentration of 2 mM.

●將每一血漿樣品的12.5μl等分試樣注入96孔板中。 - A 12.5 [mu]l aliquot of each plasma sample was injected into a 96 well plate.

●使用漢密爾頓星自動機器(Hamilton Star Robot),從DMSO中的2mM儲備液製作標準校準曲線(對於製備細節,參見附錄1) • Prepare a standard calibration curve from a 2 mM stock solution in DMSO using a Hamilton Star Robot (see Appendix 1 for preparation details)

●與內標一起添加37.5μl的乙腈。 • Add 37.5 μl of acetonitrile with the internal standard.

●搖動該板以混合樣品。 • Shake the plate to mix the samples.

●按4500rpm,在離心機中旋轉10分鐘。 • Rotate in a centrifuge for 10 minutes at 4500 rpm.

●轉移25μl的上清液至清潔96孔板中。 • Transfer 25 μl of supernatant to a clean 96-well plate.

●添加150μl的水。 • Add 150 μl of water.

●經由LCMSMS進行分析。 • Analysis via LCMSMS.

2 標準曲線製作細節2 standard curve making details

產生標準曲線在確定樣品中存在的藥物或代謝物的量方面係有用的。 Generating a standard curve is useful in determining the amount of drug or metabolite present in a sample.

可以合成代謝物2-(3-((7-(3-(乙基(2-羥乙基)胺基)丙氧基)喹唑啉-4-基)胺基)-1H-吡唑-5-基)乙酸,也稱為AZ12102238,以產生對於迅速產生標準曲線而言充足的量。 It is possible to synthesize the metabolite 2-(3-((7-(3-(ethyl(2-hydroxyethyl))amino)propoxy)quinazolin-4-yl)amino)-1H-pyrazole- 5-Base) Acetic Acid, also known as AZ12102238, is produced in an amount sufficient to rapidly produce a standard curve.

起始材料(2-(3-((7-(3-氯丙氧基)喹唑啉-4-基)胺基)-1H-吡唑-5-基)乙酸)已經描述於以下文獻中:莫特洛克(Mortlock)等人,作為極光B激酶的選擇性抑制劑,新一類吡唑基胺基喹唑啉的發現、合成、和體內活性(Discovery,Synthesis,and in Vivo Activity of a New Class of Pyrazolylamino Quinazolines as Selective Inhibitors of Aurora B Kinase);醫藥化學雜誌(Journal of Medicinal Chemistry)(2007),50(9),2213-2224。 The starting material (2-(3-((7-(3-chloropropoxy)quinazolin-4-yl)amino)-1H-pyrazol-5-yl)acetic acid) has been described in the following literature : Mortlock et al., a selective inhibitor of Aurora B kinase, the discovery, synthesis, and in vivo activity of a new class of pyrazolylamine quinazolines (Discovery, Synthesis, and in Vivo Activity of a New Class of Pyrazolylamino Quinazolines as Selective Inhibitors of Aurora B Kinase); Journal of Medicinal Chemistry (2007), 50(9), 2213-2224.

可以用以下方法合成代謝物:在90℃,在氮氣下,將2-(乙胺基)乙醇(15.04ml,154.24mmol)一次性添加進DMA(20ml)中的2-(3-((7-(3-氯丙氧基)喹唑啉-4-基)胺基)-1H-吡唑-5-基)乙酸(5g,12.85mmol)中。在90℃下攪拌所得溶液12小時。冷卻反應混合物至RT並且倒入水(100mL)中,並且用HCl酸化至pH 7,並且用DCM(3x 100mL)萃取。藉由凍幹法蒸發水,以給出黃色油(11.3g),主要是過量胺乙基乙醇和希望的產物。 The metabolite can be synthesized by adding 2-(ethylamino)ethanol (15.04 ml, 154.24 mmol) to 2-(3-((7)) in DMA (20 ml) at 90 ° C under nitrogen. -(3-Chloropropoxy)quinazolin-4-yl)amino)-1H-pyrazol-5-yl)acetic acid (5 g, 12.85 mmol). The resulting solution was stirred at 90 ° C for 12 hours. The reaction mixture was cooled to EtOAc EtOAc (EtOAc)EtOAc. The water was evaporated by lyophilization to give a yellow oil (11.3 g), mainly an excess of amine ethylethanol and the desired product.

藉由製備型HPLC(沃特斯(Waters)SunFire柱,5μm二氧化矽,50mm直徑,100mm長度),使用水(含0.1% TFA)和MeCN的極性混合物作為洗脫劑,純化1g批次的這一產物。將包含希望的化合物的部分蒸幹,以給出呈淡黃色膠質的2-(3-((7-(3-(乙基(2-羥乙基)胺基)丙氧基)喹唑啉-4-基)胺基)-1H-吡唑-5-基)乙酸(0.418g,6.15%)。1H NMR(400MHz,DMSO,30℃)1.24(3H,t),2.12-2.28(2H,m),3.17-3.38(6H,m),3.68(2H,s),3.73-3.85(2H,m),4.27(2H,t),6.66(1H,s),7.29-7.32(1H,m),7.33(1H,d),8.66(1H,d),8.75(1H,s),9.56(1H,s),11.16(1H,s)。未觀察到2x NH/OH。Hs的期望值:26賦值的Hs:24。m/z:ES+[M+]414 Purification of 1 g batch by preparative HPLC (Waters SunFire column, 5 μm ceria, 50 mm diameter, 100 mm length) using a polar mixture of water (containing 0.1% TFA) and MeCN as eluent This product. The fractions containing the desired compound are evaporated to dryness to give 2-(3-((7-(3-(ethyl(2-hydroxyethyl))amino)propoxy)quinazoline as a pale yellow gum. 4-yl)amino)-1H-pyrazol-5-yl)acetic acid (0.418 g, 6.15%). 1H NMR (400MHz, DMSO, 30 ° C) 1.24 (3H, t), 2.12 - 2.28 (2H, m), 3.17-3.38 (6H, m), 3.68 (2H, s), 3.73-3.85 (2H, m) , 4.27 (2H, t), 6.66 (1H, s), 7.29-7.32 (1H, m), 7.33 (1H, d), 8.66 (1H, d), 8.75 (1H, s), 9.56 (1H, s ), 11.16 (1H, s). No 2x NH/OH was observed. Expected value of Hs: 26 assigned Hs: 24. m/z: ES+[M+]414

以下給出了對這一合成方法的略微改變:向DMF(250.00mL)中2-(3-((7-(3-氯丙氧基)喹唑啉-4-基)胺基)-1H-吡唑-5-基)乙酸(26.00g,65.29mmol)的懸浮液中添加2-(乙胺基)乙醇(46.56g,522.32mmol),該黃色懸浮液變為黃色溶液。然後在90℃下攪拌黃色溶液6小時。使用油泵,在減壓下除去DMF。藉由製備型HPLC(柱:Phenomenex luna C18,250 x 77mm x 10μm,使用水(含0.1% TFA)和MeCN的遞減極性混合物作為洗脫劑,純化產物。在真空下除去大部分水。向在H2O(70mL)中的溶液添加MeCN(200 mL),然後在0℃攪拌混合物1h。將所得沈澱進行過濾,並且用MeCN(100mL)進行洗滌,然後在真空下乾燥。獲得呈淺黃色固體的產物AZ12102238(5.10g,12.23mmol,18.73%產率,99.4%純度)。 A slight change to this synthesis is given below: 2-(3-((7-(3-chloropropoxy)quinazolin-4-yl)amino)-1H in DMF (250.00 mL) 2-(Ethylamino)ethanol (46.56 g, 522.32 mmol) was added to a suspension of pyrazole-5-yl)acetic acid (26.00 g, 65.29 mmol). The yellow solution was then stirred at 90 ° C for 6 hours. The DMF was removed under reduced pressure using an oil pump. The product was purified by preparative HPLC (column: Phenomenex luna C18, 250 x 77 mm x 10 μm, using a decreasing polar mixture of water (containing 0.1% TFA) and MeCN as eluent. Most of the water was removed under vacuum. in H 2 O (70mL) was added MeCN (200 mL), and then the mixture was stirred at 0 ℃ 1h. the resulting precipitate was filtered and washed with MeCN (100mL), then dried under vacuum was obtained as a pale yellow solid Product AZ12102238 (5.10 g, 12.23 mmol, 18.73% yield, 99.4% purity).

可以由自動化設備產生標準曲線。在微板中從右至左連續稀釋儲備液之前,自動機器將首先添加適合的稀釋劑至微板中,用於稀釋,每一種化合物一列(表1)。 A standard curve can be generated by an automated device. Prior to serial dilution of the stock solution from right to left in the microplate, the automated machine will first add the appropriate diluent to the microplate for dilution, one for each compound (Table 1).

然後將來自柱1-11的2.5μl從左至右點入矩陣板的孔2-12,以生成十一點曲線(表2)。 2.5 μl from column 1-11 was then placed from left to right into wells 2-12 of the matrix plate to generate an eleven point curve (Table 2).

將來自表1的柱1-11點入矩陣板的柱2-12,以產生如以上的十一點校準曲線。 Columns 1-11 from Table 1 were placed into columns 2-12 of the matrix plate to produce an eleven point calibration curve as above.

3 負載奈米顆粒的藥物或它們的代謝物之評估3 Evaluation of drugs loaded with nanoparticle or their metabolites

如以上提及的,LC-MS或MS方法可以被用於評估負載藥物或它們的代謝物的奈米顆粒,並且確定存在的該等化合物的量。藉由舉例,表3和4中列出的以下參數可以被用於利用AZD1152 hqpa、或為AZ12102238的其代謝物的實施方式中。 As mentioned above, LC-MS or MS methods can be used to assess the nanoparticles of the loaded drug or their metabolites and to determine the amount of such compounds present. By way of example, the following parameters listed in Tables 3 and 4 can be used in embodiments that utilize AZD1152 hqpa, or its metabolites of AZ12102238.

4 實例模型擬合4 example model fitting

這一實例模型擬合係針對在0h接受單一靜脈內團注給予活性藥物AZD1152 hqpa、在168h單一靜脈內團注給予前藥AZD1152、以及在336h單一靜脈內團注給予奈米顆粒配製物中的活性藥物的大鼠。在給予AZD1152 hqpa後並且直至給予AZD1152,在多個時間點測量活性藥物和代謝物的血漿濃度。在給予前藥後並且直至給予奈米顆粒配製物,在多個時間點測量前藥、活性藥物和代謝物的血漿濃度。在給予奈米顆粒配製物後,在多個時間點測量奈米顆粒中的活性藥物的血漿濃度和代謝物的血漿濃度。 This example model fit was performed by administering a single intravenous bolus injection of the active drug AZD1152 hqpa at 0 h, a single intravenous bolus injection of the prodrug AZD 1152 at 168 h, and a single intravenous bolus injection of the nanoparticle formulation at 336 h. Active drug in rats. Plasma concentrations of active drugs and metabolites were measured at various time points after administration of AZD 1152 hqpa and until AZD 1152 was administered. Plasma concentrations of prodrugs, active drugs, and metabolites were measured at various time points after administration of the prodrug and until the administration of the nanoparticle formulation. After administration of the nanoparticle formulation, the plasma concentration of the active drug and the plasma concentration of the metabolite in the nanoparticles were measured at various time points.

針對個體大鼠示出該等參數,但是該等參數係源自使用來自850個大鼠的3600個數據點構建的群體藥物動力學模型,其中針對前藥、 活性藥物、代謝物和奈米顆粒配製物中囊封的活性藥物中的每一個進行多種給藥方案。 These parameters are shown for individual rats, but these parameters are derived from a population pharmacokinetic model constructed using 3600 data points from 850 rats, for prodrugs, Each of the encapsulated active agents in the active drug, metabolite, and nanoparticle formulation is administered in a variety of dosage regimens.

4.1 奈米顆粒囊封藥物和比較器配製物之製備4.1 Preparation of nanoparticle encapsulated drugs and comparator formulations

縮寫: abbreviation:

可以使用以下縮寫: The following abbrils can be used:

“聚合物PEG”係指PLA-PEG共聚物,其中該共聚物具有數目平均分子量為約16kDa的聚(乳酸)和數目平均分子量為約5kDa的聚(乙)二醇)。此類聚合物係可商購的或可以藉由本領域已知的方法製造。此類聚合物被用於WO 2010/005721中的實例。 "Polymer PEG" refers to a PLA-PEG copolymer wherein the copolymer has a poly(lactic acid) having a number average molecular weight of about 16 kDa and a poly(ethylene) glycol having a number average molecular weight of about 5 kDa. Such polymers are commercially available or can be made by methods known in the art. Such polymers are used in the examples in WO 2010/005721.

4.2 使用標稱1g批次之實例4.2 Example of using a nominal 1g batch

製備具有撲酸的AZD1152 hqpa奈米顆粒,具有如表5中列出的組成。 AZD1152 hqpa nanoparticles having pumice acid were prepared with the compositions as listed in Table 5.

4.2.1 撲酸溶液的製備。藉由在容器中混合2.9g的撲酸與7.1g的 DMSO,製備撲酸在DMSO中的29%(w/w)溶液。在70-80℃,在加熱烘箱中加熱該容器,直至所有撲酸都溶解。 4.2.1 Preparation of the acid solution. By mixing 2.9 g of pamoate with 7.1 g in a container DMSO, a 29% (w/w) solution of chloric acid in DMSO was prepared. The vessel was heated in a heated oven at 70-80 ° C until all the acid was dissolved.

4.2.2 8% TFA/7.5%水/84.5%苯甲醇(wt%)溶液的製備。將三氟乙酸(TFA)(3.2g)、去離子(DI)水(3.0g)、和苯甲醇(BA)(33.8g)進行合併,以製備8% TFA/7.5%水/84.5%苯甲醇(wt%)溶液。 4.2.2 Preparation of 8% TFA/7.5% water/84.5% benzyl alcohol (wt%) solution. Trifluoroacetic acid (TFA) (3.2 g), deionized (DI) water (3.0 g), and benzyl alcohol (BA) (33.8 g) were combined to prepare 8% TFA / 7.5% water / 84.5% benzyl alcohol (wt%) solution.

4.2.3 緩衝液製備: 4.2.3 Buffer preparation:

為了製造1000ml的0.17M磷酸鹽(pKa2=7.2)緩衝液:pH=6.5,配製兩份儲備緩衝液:A.將13.26g的磷酸二氫鈉、無水NaH2PO4 H2O(Mr=119.98)溶解在650ml的純水中,以及B.將10.82g的磷酸氫二鈉、無水NaH2PO4(Mr=141.96)溶解在650ml的純水中。添加緩衝液B至緩衝液A,同時進行混合,直至在25℃的實驗室溫度下,pH=6.50。 To make 1000 ml of 0.17 M phosphate (pKa2 = 7.2) buffer: pH = 6.5, prepare two stock buffers: A. 13.26 g of sodium dihydrogen phosphate, anhydrous NaH 2 PO 4 H 2 O (Mr = 119.98 Dissolved in 650 ml of pure water, and B. Dissolved 10.82 g of disodium hydrogen phosphate and anhydrous NaH 2 PO 4 (Mr = 141.96) in 650 ml of pure water. Buffer B was added to Buffer A while mixing until pH = 6.50 at a laboratory temperature of 25 °C.

替代方案: alternative plan:

為了製造在pH 6.5的1000ml的0.17M磷酸鈉緩衝液:向大約800ml的DI水,溶解16.26g的磷酸二氫鈉二水合物(NaH2PO4-2H20;FW=156.01)以及11.70g的磷酸氫二鈉二水合物(Na2HPO4-2H20;FW=177.99),並且添加足夠的額外量的水以達到1000ml,在25℃的實驗室溫度下。 To make 1000 ml of 0.17 M sodium phosphate buffer at pH 6.5: to approximately 800 ml of DI water, 16.26 g of sodium dihydrogen phosphate dihydrate (NaH 2 PO 4 -2H 2 0; FW = 156.01) and 11.70 g were dissolved. Disodium hydrogen phosphate dihydrate (Na 2 HPO 4 -2H 2 0; FW = 177.99), and adding enough additional amount of water to reach 1000 ml at a laboratory temperature of 25 °C.

4.2.4 聚合物溶液之製備 4.2.4 Preparation of polymer solution

●向20mL玻璃小瓶添加聚合物-PEG,591.3mg ● Add polymer-PEG to a 20 mL glass vial, 591.3 mg

●添加5978.6mg的乙酸乙酯至玻璃小瓶,並且渦旋過夜,以給出聚合物-EA溶液。 - Add 5978.6 mg of ethyl acetate to a glass vial and vortex overnight to give a polymer-EA solution.

4.2.5 水溶液之製備 4.2.5 Preparation of aqueous solution

●在水中,0.12% Brij®100、4%苯甲醇、5.7% DMSO ● In water, 0.12% Brij® 100, 4% benzyl alcohol, 5.7% DMSO

●向1L瓶中添加1.4g Brij® 100、和901.6g的DI水,並且在攪拌盤上混合直至溶解。 • Add 1.4 g Brij® 100, and 901.6 g DI water to a 1 L bottle and mix on a stir plate until dissolved.

●添加40g的苯甲醇和57g的DMSO至Brij®/水,並且在攪拌盤上混合直至溶解。 • Add 40 g of benzyl alcohol and 57 g of DMSO to Brij®/water and mix on a stir plate until dissolved.

4.2.6 藥物溶液之製備 4.2.6 Preparation of drug solution

●在20ml閃爍瓶中稱取253.4mg的AZD1152 hqpa ● Weigh 253.4mg of AZD1152 hqpa in a 20ml scintillation vial

●添加2026.8mg的上述8% TFA/7.5%水/BA溶液至AZD1152 Add 2026.8 mg of the above 8% TFA/7.5% water/BA solution to AZD1152

●添加535.5mg的上述29%撲酸/DMSO溶液至藥物溶液,並且渦旋以給出澄清的藥物溶液。 - 535.5 mg of the above 29% pamoate/DMSO solution was added to the drug solution and vortexed to give a clear drug solution.

●就在配製前,合併藥物溶液和聚合物溶液。 • Combine the drug solution and the polymer solution just prior to formulation.

4.2.7 乳液的配製水相與有機相之比率係5.5:1 4.2.7 Preparation of emulsion The ratio of aqueous phase to organic phase is 5.5:1

●在室溫下,將有機相倒入水溶液並且使用手提式轉子/定子式勻漿器勻漿10秒,以形成粗乳液。儲存在冰中10-15分鐘。 • The organic phase was poured into an aqueous solution at room temperature and homogenized using a hand-held rotor/stator homogenizer for 10 seconds to form a crude emulsion. Store in ice for 10-15 minutes.

●在壓縮空氣入口壓力錶上設置在大約9,000psi的壓力下,進料溶液謹慎地穿過高壓勻漿器(110S)一次,以形成奈米乳液奈米顆粒的配製 • Set the feed solution carefully through a high pressure homogenizer (110S) at a pressure of approximately 9,000 psi on a compressed air inlet pressure gauge to form a nanoemulsion nanoparticle formulation.

●在<5℃下,將乳液倒入猝滅液(0.17M磷酸鈉,pH 6.5),同時在攪拌盤上攪拌。確保在淬滅前從開始收集起至少過了5分鐘。淬滅液與乳液的比率係按重量計3:1。 • Pour the emulsion into a quenching solution (0.17 M sodium phosphate, pH 6.5) at <5 ° C while stirring on a stir plate. Make sure at least 5 minutes have elapsed since the start of collection before quenching. The ratio of quenching liquid to emulsion is 3:1 by weight.

●將Tween® 80與藥物按照按重量計20:1的比率,在水中添加35%(w/w)Tween® 80,以便進行淬滅。 • Add 35% (w/w) Tween® 80 to Tween® 80 and the drug at a ratio of 20:1 by weight for quenching.

●藉由切向流過濾(TFF)濃縮奈米顆粒。 • Concentration of nanoparticles by tangential flow filtration (TFF).

●用300kDa頗爾(Pall)盒(3x 0.1m2膜),濃縮TFF上的淬滅液至大約200mL。 - Using a 300 kDa Pall box (3 x 0.1 m2 membrane), concentrate the quench on TFF to approximately 200 mL.

●使用周圍溫度DI水,滲濾大約20個滲濾體積(4升)。 • Percolation of approximately 20 percolation volumes (4 liters) using ambient temperature DI water.

●使體積下降至最小體積 ● Reduce the volume to the minimum volume

●添加100mL的DI水至器皿,並且泵送穿過膜以進行清洗。 • Add 100 mL of DI water to the vessel and pump through the membrane for cleaning.

●在玻璃小瓶(大約100mL)中收集材料 ● Collect materials in glass vials (approximately 100 mL)

4.2.8 確定未過濾的最終漿料之固體濃度。 4.2.8 Determine the solids concentration of the unfiltered final slurry.

●向稱皮重的20mL閃爍瓶添加一個體積的最終漿料,並且在Lyo/烘箱上在真空下乾燥。 • Add one volume of the final slurry to a tared 20 mL scintillation vial and dry under vacuum on a Lyo/oven.

●確定乾燥的該體積的漿料中的奈米顆粒的重量。 • Determine the weight of the nanoparticle in the dried slurry of this volume.

4.2.9 確定0.45μm過濾的最終漿料之固體濃度: 4.2.9 Determine the solids concentration of the final slurry filtered at 0.45 μm:

●在添加蔗糖穿過0.45μm針筒式濾器之前,過濾一部分最終漿料樣品。 • A portion of the final slurry sample was filtered prior to the addition of sucrose through the 0.45 [mu]m syringe filter.

●向稱皮重的20mL閃爍瓶添加一個體積的過濾的樣品,並且在Lyo/烘箱上在真空下乾燥。 • Add one volume of filtered sample to a tared 20 mL scintillation vial and dry under vacuum on a Lyo/oven.

4.2.10 添加一份蔗糖至最終9份未過濾的漿料樣品中,以達到按重量計10%蔗糖。 4.2.10 Add a portion of sucrose to the final 9 unfiltered slurry samples to achieve 10% sucrose by weight.

4.2.11 冷凍具有蔗糖的未過濾的最終漿料的剩餘樣品。 4.2.11 Free sample of the unfiltered final slurry with sucrose was frozen.

用於製造配製物G1之替代方法:(使用標稱1g批次)Alternative method for making formulation G1: (using a nominal 1g batch)

4.2a.1 聚合物溶液之製備 4.2a.1 Preparation of polymer solution

●向20mL玻璃小瓶添加聚合物-PEG,700mg ● Add polymer-PEG to a 20 mL glass vial, 700 mg

●添加7078mg的乙酸乙酯至玻璃小瓶,並且渦旋過夜,以給出聚合物-EA溶液。 • Add 7078 mg of ethyl acetate to a glass vial and vortex overnight to give a polymer-EA solution.

4.2a.2 水溶液之製備 4.2a.2 Preparation of aqueous solution

●在水中,0.12% Brij®100、4%苯甲醇 ● In water, 0.12% Brij® 100, 4% benzyl alcohol

●向1L瓶中添加1.2g Brij® 100、和958.8g的DI水,並且在攪拌盤上混合直至溶解。 • Add 1.2 g Brij® 100, and 958.8 g DI water to a 1 L bottle and mix on a stir plate until dissolved.

●添加40g的苯甲醇至Brij®/水,並且在攪拌盤上混合直至溶解。 • Add 40 g of benzyl alcohol to Brij®/water and mix on a stir plate until dissolved.

4.2a.3 藥物溶液之製備 4.2a.3 Preparation of drug solution

●在20ml閃爍瓶中稱取300mg的AZD1152 hqpa ● Weigh 300mg of AZD1152 hqpa in a 20ml scintillation vial

●添加2399mg的上述8% TFA/7.5%水/BA溶液至AZD1152 Add 2399mg of the above 8% TFA/7.5% water/BA solution to AZD1152

●添加634mg的上述29%撲酸/DMSO溶液至藥物溶液,並且渦旋以給出澄清的藥物溶液。 - 634 mg of the above 29% pamoate/DMSO solution was added to the drug solution and vortexed to give a clear drug solution.

●就在配製前,合併藥物溶液和聚合物溶液。 • Combine the drug solution and the polymer solution just prior to formulation.

4.2a.4 乳液的配製水相與有機相之比率係5:1 4.2a.4 Preparation of emulsion The ratio of aqueous phase to organic phase is 5:1

●在室溫下,將有機相倒入水溶液並且使用手提式轉子/定子式勻漿器勻漿10秒,以形成粗乳液。儲存在冰中10-15分鐘。 • The organic phase was poured into an aqueous solution at room temperature and homogenized using a hand-held rotor/stator homogenizer for 10 seconds to form a crude emulsion. Store in ice for 10-15 minutes.

●在壓縮空氣入口壓力錶上設置在大約9000psi的壓力下,進料溶液謹慎地穿過高壓勻漿器(110S)一次,以形成奈米乳液 • Set the feed solution carefully through a high pressure homogenizer (110S) at a pressure of approximately 9000 psi on a compressed air inlet pressure gauge to form a nanoemulsion

奈米顆粒之配製Preparation of nanoparticle

●在<5℃下,將乳液倒入猝滅液(0.17M磷酸鈉,pH 6.5),同時在攪拌盤上攪拌。確保在淬滅前從開始收集起至少過了5分鐘。淬滅液與乳液的比率係10:1 • Pour the emulsion into a quenching solution (0.17 M sodium phosphate, pH 6.5) at <5 ° C while stirring on a stir plate. Make sure at least 5 minutes have elapsed since the start of collection before quenching. The ratio of quenching liquid to emulsion is 10:1

●將Tween® 80與藥物按照按重量計20:1的比率,在水中添加35%(w/w)Tween® 80,以便進行淬滅。 • Add 35% (w/w) Tween® 80 to Tween® 80 and the drug at a ratio of 20:1 by weight for quenching.

●藉由切向流過濾(TFF)濃縮奈米顆粒。 • Concentration of nanoparticles by tangential flow filtration (TFF).

●用300kDa頗爾(Pall)盒(3x 0.1m2膜),濃縮TFF上的淬滅液至大約200mL。 - Using a 300 kDa Pall box (3 x 0.1 m2 membrane), concentrate the quench on TFF to approximately 200 mL.

●使用冷DI水,滲濾大約20個滲濾體積(4升)。 • Use cold DI water to diafilter approximately 20 percolation volumes (4 liters).

●使體積下降至最小體積 ● Reduce the volume to the minimum volume

●添加100mL的冷水至器皿,並且泵送穿過膜以進行清洗。 • Add 100 mL of cold water to the vessel and pump through the membrane for cleaning.

●在玻璃小瓶(大約100mL)中收集材料 ● Collect materials in glass vials (approximately 100 mL)

4.2a.5 確定未過濾的最終漿料之固體濃度。 4.2a.5 Determine the solids concentration of the unfiltered final slurry.

●向稱皮重的20mL閃爍瓶添加一個體積的最終漿料,並且在Lyo/烘箱上在真空下乾燥。 • Add one volume of the final slurry to a tared 20 mL scintillation vial and dry under vacuum on a Lyo/oven.

●確定乾燥的該體積的漿料中的奈米顆粒的重量 Determine the weight of the nanoparticles in the dried slurry of this volume

4.2a.6 確定0.45μm過濾的最終漿料之固體濃度: 4.2a.6 Determine the solids concentration of the final slurry filtered at 0.45 μm:

●在添加蔗糖穿過0.45μm針筒式濾器之前,過濾一部分最終漿料樣品。 • A portion of the final slurry sample was filtered prior to the addition of sucrose through the 0.45 [mu]m syringe filter.

●向稱皮重的20mL閃爍瓶添加一個體積的過濾的樣品,並且在Lyo/烘箱上在真空下乾燥。 • Add one volume of filtered sample to a tared 20 mL scintillation vial and dry under vacuum on a Lyo/oven.

4.2a.7 添加一份蔗糖至最終9份漿料樣品中,以達到10%蔗糖。 4.2a.7 Add a portion of sucrose to the final 9 samples of the slurry to achieve 10% sucrose.

4.2a.8 冷凍具有蔗糖的未過濾的最終漿料的剩餘樣品。 4.2a.8 Free the remaining sample of the unfiltered final slurry with sucrose.

另一撲酸配製物,下文稱為配製物G2,製備如下,使用標稱1g批次,並且具有如在表5a中示出的組成: Another acid-promoting formulation, hereinafter referred to as Formulation G2, was prepared as follows, using a nominal 1 g batch and having the composition as shown in Table 5a:

實例4.2bExample 4.2b

4.2b.1 撲酸溶液的製備。藉由在容器中混合2.9g的撲酸與7.1g的DMSO,製備撲酸在DMSO中的29%(w/w)溶液。在70-80℃,在加熱烘箱中加熱該容器,直至所有撲酸都溶解。 4.2b.1 Preparation of the acid solution. A 29% (w/w) solution of pamoic acid in DMSO was prepared by mixing 2.9 g of pamoate with 7.1 g of DMSO in a container. The vessel was heated in a heated oven at 70-80 ° C until all the acid was dissolved.

4.2b.2 8% TFA/7.5%水/84.5%苯甲醇(wt%)溶液的製備。將三氟乙酸(TFA)(3.2g)、去離子(DI)水(3.0g)、和苯甲醇(BA)(33.8g)進行合併,以製備8% TFA/7.5%水/84.5%苯甲醇(wt%)溶液。 4.2b.2 Preparation of 8% TFA/7.5% water/84.5% benzyl alcohol (wt%) solution. Trifluoroacetic acid (TFA) (3.2 g), deionized (DI) water (3.0 g), and benzyl alcohol (BA) (33.8 g) were combined to prepare 8% TFA / 7.5% water / 84.5% benzyl alcohol (wt%) solution.

4.2b.3 緩衝液製備: 4.2b.3 Buffer preparation:

為了製造1000ml的0.17M磷酸鹽(pKa2=7.2)緩衝液:pH=6.5,配製兩份儲備緩衝液:A.將13.26g的磷酸二氫鈉、無水NaH2PO4 H2O(Mr=119.98)溶解在650ml的純水中,以及B.將10.82g的磷酸氫二鈉、無水NaH2PO4(Mr=141.96)溶解在650ml的純水中。添加緩衝液B至緩衝液A,同時進行混合,直至在25℃的實驗室溫度下,pH=6.50。 To make 1000 ml of 0.17 M phosphate (pKa2 = 7.2) buffer: pH = 6.5, prepare two stock buffers: A. 13.26 g of sodium dihydrogen phosphate, anhydrous NaH 2 PO 4 H 2 O (Mr = 119.98 Dissolved in 650 ml of pure water, and B. Dissolved 10.82 g of disodium hydrogen phosphate and anhydrous NaH 2 PO 4 (Mr = 141.96) in 650 ml of pure water. Buffer B was added to Buffer A while mixing until pH = 6.50 at a laboratory temperature of 25 °C.

替代方案: alternative plan:

為了製造在pH 6.5的1000ml的0.17M磷酸鈉緩衝液:向大約800ml的DI水,溶解16.26g的磷酸二氫鈉二水合物(NaH2PO4-2H20;FW=156.01)以及11.70g的磷酸氫二鈉二水合物(Na2HPO4-2H20;FW=177.99),並且添加足夠的額外量的水以達到1000ml,在25℃的實驗室溫度下。 To make 1000 ml of 0.17 M sodium phosphate buffer at pH 6.5: to approximately 800 ml of DI water, 16.26 g of sodium dihydrogen phosphate dihydrate (NaH 2 PO 4 -2H 2 0; FW = 156.01) and 11.70 g were dissolved. Disodium hydrogen phosphate dihydrate (Na 2 HPO 4 -2H 2 0; FW = 177.99), and adding enough additional amount of water to reach 1000 ml at a laboratory temperature of 25 °C.

4.2b.4 聚合物溶液之製備 4.2b.4 Preparation of polymer solution

●向20mL玻璃小瓶添加聚合物-PEG,700mg ● Add polymer-PEG to a 20 mL glass vial, 700 mg

●添加6572mg的乙酸乙酯至玻璃小瓶,並且渦旋過夜,以給出聚合物-EA溶液。 • Add 6572 mg of ethyl acetate to a glass vial and vortex overnight to give a polymer-EA solution.

4.2b.5 水溶液之製備 4.2b.5 Preparation of aqueous solution

●在水中,0.15% Brij®100、4%苯甲醇 ● In water, 0.15% Brij® 100, 4% benzyl alcohol

●向1L瓶中添加1.5g Brij® 100、和958.5g的DI水,並且在攪拌盤上混合直至溶解。 • Add 1.5 g Brij® 100, and 958.5 g DI water to a 1 L bottle and mix on a stir plate until dissolved.

●添加40g的苯甲醇至Brij®/水,並且在攪拌盤上混合直至溶解。 • Add 40 g of benzyl alcohol to Brij®/water and mix on a stir plate until dissolved.

4.2b.6 藥物溶液之製備 4.2b.6 Preparation of drug solution

●在20ml閃爍瓶中稱取300mg的AZD1152 hqpa ● Weigh 300mg of AZD1152 hqpa in a 20ml scintillation vial

●添加2746mg的上述8% TFA/7.5%水/BA溶液至AZD1152 Add 2746 mg of the above 8% TFA/7.5% water/BA solution to AZD1152

●添加792mg的上述29%撲酸/DMSO溶液至藥物溶液,並且渦旋以給出澄清的藥物溶液。 - 792 mg of the above 29% pamoate/DMSO solution was added to the drug solution and vortexed to give a clear drug solution.

●就在配製前,合併藥物溶液和聚合物溶液。 • Combine the drug solution and the polymer solution just prior to formulation.

4.2b.7 乳液的配製水相與有機相之比率係5:1 4.2b.7 Preparation of emulsion The ratio of aqueous phase to organic phase is 5:1

●在室溫下,將有機相倒入水溶液並且使用手提式轉子/定子式勻漿器勻漿10秒,以形成粗乳液。儲存在冰中10分鐘。 • The organic phase was poured into an aqueous solution at room temperature and homogenized using a hand-held rotor/stator homogenizer for 10 seconds to form a crude emulsion. Store in ice for 10 minutes.

●在壓縮空氣入口壓力錶上設置在大約9000psi的壓力下,進料溶液謹慎地穿過高壓勻漿器(110S)一次,以形成奈米乳液 奈米顆粒的配製 • Set the feed solution carefully through a high pressure homogenizer (110S) at a pressure of approximately 9000 psi on a compressed air inlet pressure gauge to form a nanoemulsion Preparation of nanoparticle

●在<5℃下,立即將乳液倒入猝滅液(0.17M磷酸鈉,pH 6.5),同時在攪拌盤上攪拌。淬滅液與乳液的比率係10:1 • Immediately at <5 ° C, pour the emulsion into a quenching solution (0.17 M sodium phosphate, pH 6.5) while stirring on a stir plate. The ratio of quenching liquid to emulsion is 10:1

●將Tween® 80與藥物按照按重量計20:1的比率,在水中添加35%(w/w)Tween® 80,以便進行淬滅。 • Add 35% (w/w) Tween® 80 to Tween® 80 and the drug at a ratio of 20:1 by weight for quenching.

●藉由切向流過濾(TFF)濃縮奈米顆粒。 • Concentration of nanoparticles by tangential flow filtration (TFF).

●用300kDa頗爾(Pall)盒(3x 0.1m2膜),濃縮TFF上的淬滅液至大約200mL。 - Using a 300 kDa Pall box (3 x 0.1 m2 membrane), concentrate the quench on TFF to approximately 200 mL.

●使用冷DI水,滲濾大約20個滲濾體積(4升)。 • Use cold DI water to diafilter approximately 20 percolation volumes (4 liters).

●使體積下降至最小體積 ● Reduce the volume to the minimum volume

●添加100mL的冷水至器皿,並且泵送穿過膜以進行清洗。 • Add 100 mL of cold water to the vessel and pump through the membrane for cleaning.

●在玻璃小瓶(大約100mL)中收集材料 ● Collect materials in glass vials (approximately 100 mL)

4.2b.8 確定未過濾的最終漿料之固體濃度。 4.2b.8 Determine the solids concentration of the unfiltered final slurry.

●向稱皮重的20mL閃爍瓶添加一個體積的最終漿料,並且在Lyo/烘箱上在真空下乾燥。 • Add one volume of the final slurry to a tared 20 mL scintillation vial and dry under vacuum on a Lyo/oven.

●確定乾燥的該體積的漿料中的奈米顆粒的重量 Determine the weight of the nanoparticles in the dried slurry of this volume

4.2b.9 確定0.45μm過濾的最終漿料之固體濃度: 4.2b.9 Determine the solids concentration of the final slurry filtered at 0.45 μm:

●在添加蔗糖穿過0.45μm針筒式濾器之前,過濾一部分最終漿料樣品。 • A portion of the final slurry sample was filtered prior to the addition of sucrose through the 0.45 [mu]m syringe filter.

●向稱皮重的20mL閃爍瓶添加一個體積的過濾的樣品,並且在Lyo/烘箱上在真空下乾燥。 • Add one volume of filtered sample to a tared 20 mL scintillation vial and dry under vacuum on a Lyo/oven.

4.2b.10添加一份蔗糖至最終9份漿料樣品中,以達到按重量計10%蔗糖。 4.2b.10 Add a portion of sucrose to the final 9 parts of the slurry sample to achieve 10% sucrose by weight.

4.2b.11冷凍具有蔗糖的未過濾的最終漿料的剩餘樣品。 4.2b.11 Free the remaining sample of the unfiltered final slurry with sucrose.

4.3 模型方程4.3 Model equation

在標題“實例大鼠模型”下先前描述了在這一實例中使用的模型方程: The model equations used in this example were previously described under the heading "Example Rat Model":

4.4 模型參數:4.4 Model parameters:

模型參數列於表6中。 The model parameters are listed in Table 6.

4.5 給藥史和觀察的和預測的濃度4.5 History of administration and observed and predicted concentrations

在表7中列出的時間下,用以下化合物,藉由靜脈內團注來給藥大鼠。 At the times listed in Table 7, rats were administered by intravenous bolus with the following compounds.

針對前藥、活性藥物、包含在奈米顆粒內的活性藥物以及代謝物中的每一個的觀察的和預測的濃度都示出於表8中,並且圖示於圖1至4中。 The observed and predicted concentrations for each of the prodrug, the active drug, the active drug contained within the nanoparticle, and the metabolite are shown in Table 8, and are illustrated in Figures 1-4.

在0h的活性藥物給予、在168h的前藥給予和在336h的奈米顆粒配製物中的活性藥物後對前藥觀察的和預測的血漿濃度都示出於圖1中。 The observed and predicted plasma concentrations of the prodrugs after administration of active drug at 0 h, prodrug administration at 168 h, and active drug in 336 h of nanoparticle formulation are shown in Figure 1.

在0h的活性藥物給予、在168h的前藥給予和在336h的奈米顆粒配製物中的活性藥物後對活性藥物觀察的和預測的血漿濃度都示出於圖2中。 The observed and predicted plasma concentrations of the active drug after administration of the active drug at 0 h, the prodrug administration at 168 h, and the active drug in the 336 h nanoparticle formulation are shown in Figure 2.

在0h的活性藥物給予、在168h的前藥給予和在336h的奈米顆粒配製物中的活性藥物後對奈米顆粒內的活性藥物觀察的和預測的血漿濃度都示出於圖3中。 The observed and predicted plasma concentrations of the active drug in the nanoparticles after the active drug administration at 0 h, the prodrug administration at 168 h, and the active drug in the 336 h nanoparticle formulation are shown in Figure 3.

在0h的活性藥物給予、在168h的前藥給予和在336h的奈米顆粒配製物中的活性藥物後對代謝物觀察的和預測的血漿濃度都示出於圖4中。 Metabolite observed and predicted plasma concentrations after active drug administration at 0 h, prodrug administration at 168 h, and active drug in 336 h of nanoparticle formulation are shown in Figure 4.

5 討論5 Discussion

在上述實例中,假定給予途徑不改變活性藥物的藥物動力學行為(即使得藉由靜脈內團注給予的活性藥物按與形成自前藥的或釋放自奈米顆粒配製物的藥物相同的方式起作用)。類似地,假定給予途徑不改變代謝物的藥物動力學行為(即形成自已經藉由靜脈內團注給予的活性藥物的代謝物按與形成自從前藥形成的活性藥物的或形成自 從奈米顆粒配製物釋放的活性藥物的代謝物相同的方式起作用)。 In the above examples, it is assumed that the route of administration does not alter the pharmacokinetic behavior of the active drug (ie, such that the active drug administered by intravenous bolus is in the same manner as the drug formed from the prodrug or released from the nanoparticle formulation) effect). Similarly, it is hypothesized that the route of administration does not alter the pharmacokinetic behavior of the metabolite (ie, the metabolite formed from the active drug that has been administered by intravenous bolus is formed or formed from the active drug formed from the prodrug. The metabolite of the active drug released from the nanoparticle formulation acts in the same manner).

由於以上假定,可能描述奈米顆粒給予後的活性藥物的濃度時間曲線,而不具有釋放的活性藥物的測量,只要進入體內的釋放的活性藥物的輸入曲線係已知的。假定輸入曲線係來自包含在奈米顆粒中的活性藥物的第一級釋放(即速率與仍在奈米顆粒中的活性藥物的量成比例)。 Due to the above assumptions, it is possible to describe the concentration time curve of the active drug after administration of the nanoparticles, without the measurement of the released active drug, as long as the input curve of the released active drug entering the body is known. The input curve is assumed to be from the first stage release of the active drug contained in the nanoparticle (i.e., the rate is proportional to the amount of active drug still in the nanoparticle).

仍包含在奈米顆粒中的活性藥物的濃度時間曲線的知識提供了活性藥物的輸入形狀,但是這一資訊自身並不提供從奈米顆粒配製物釋放的程度。在給予奈米顆粒配製物後觀察到的代謝物濃度時間曲線提供了關於活性藥物從奈米顆粒釋放的程度,連同從活性藥物形成代謝物的程度的資訊。因為已經從給予活性藥物和前藥後的濃度時間曲線這二者獲得了關於來自活性藥物的代謝物的形成的程度的資訊,則可能推出活性藥物從奈米顆粒配製物的釋放的程度。 Knowledge of the concentration time profile of the active drug still contained in the nanoparticle provides the input shape of the active drug, but this information does not by itself provide the extent of release from the nanoparticle formulation. The metabolite concentration time profile observed after administration of the nanoparticle formulation provides information on the extent to which the active drug is released from the nanoparticle, along with the extent to which metabolites are formed from the active drug. Since information on the extent of formation of metabolites from the active drug has been obtained from both the concentration time curves after administration of the active drug and the prodrug, it is possible to introduce the extent of release of the active drug from the nanoparticle formulation.

在以上實例中,並不需要關於前藥的血漿濃度隨時間變化的資訊(雖然它可以提供用於模型的有用資訊)。然而,必須知道給予活性藥物後,活性藥物和代謝物的血漿濃度如何變化。如在本說明書中其他地方討論,具有關於給予代謝物後,血漿濃度如何隨時間變化的資訊會有助於準確地確定受試者體內全身性地釋放活性藥物的量,但這不是必要的。 In the above example, information about the plasma concentration of the prodrug over time is not required (although it can provide useful information for the model). However, it is necessary to know how the plasma concentrations of active drugs and metabolites change after administration of the active drug. As discussed elsewhere in this specification, having information about how plasma concentrations change over time after administration of a metabolite can help to accurately determine the amount of systemically released active drug in a subject, but this is not necessary.

關於奈米顆粒中藥物的濃度的資訊係必需的,以提供輸入速率。使用群體模型中所有其他資訊的優勢係模型用於擬合產生自個體大鼠的數據的參數使用了來自這一個體連同來自多個的個體的遠遠更大的數據集的資訊。在本實例中,並不過度重要的是使來自整個群體的資訊作為給予活性藥物和奈米顆粒配製物可供用於這一個體後的資訊。也就是說,正常地,將僅給予大鼠奈米顆粒配製物。 Information about the concentration of the drug in the nanoparticle is necessary to provide an input rate. The advantage system model that uses all other information in the population model to fit the data generated from the individual rat uses information from this individual along with a much larger data set from multiple individuals. In this example, it is not of utmost importance to have information from the entire population as information available to the active drug and nanoparticle formulation for use in this individual. That is, normally, only the rat nanoparticle formulation will be administered.

6 結果概述6 Summary of results

從圖2中可見,存在於樣品中的AZD1152 hqpa的代謝物之量隨時間變化的知識允許準確導出在受試者體內全身性地釋放的AZD1152 hqpa的量。因此,雖然不能準確測量釋放的活性藥物的濃度(由於在樣品製備或測定期間奈米顆粒破裂或洩漏藥物的潛力),但是可以基於代謝物水平的知識,並且應用適合的藥物動力學模型,準確預測該濃度。然後釋放的活性藥物的預測濃度可以用於構建藥物動力學-藥效動力學(pkpd)模型,以關聯給予奈米顆粒囊封藥物與導致的生物學變化(例如生物標記物水平、或毒性方面的變化,或腫瘤生長抑制方面的變化)。 As can be seen from Figure 2, knowledge of the amount of metabolites of AZD1152 hqpa present in the sample over time allows for accurate derivation of the amount of AZD1152 hqpa that is systemically released in the subject. Therefore, although the concentration of the released active drug cannot be accurately measured (due to the potential of the nanoparticle to rupture or leak the drug during sample preparation or measurement), it can be based on knowledge of metabolite levels and the application of a suitable pharmacokinetic model, accurate This concentration is predicted. The predicted concentration of the released active drug can then be used to construct a pharmacokinetic-pharmacodynamic (pkpd) model to correlate the administration of the nanoparticle encapsulating drug with the resulting biological changes (eg, biomarker levels, or toxicity). Changes, or changes in tumor growth inhibition).

化合物A:2-乙基-4-{[2’-(1H-四唑-5-基)聯苯-4-基]甲氧基}喹啉(內標)。參見實例WO 92/02508和WO 92/13853。 Compound A: 2-ethyl-4-{[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methoxy}quinoline (internal standard). See examples WO 92/02508 and WO 92/13853.

7. 替代代謝物之合成 7. Alternative metabolite synthesis

可以如下裂造AZD1152-hqpa N-氧化物(N-乙基-3-[4-[[3-[2-(3-氟苯胺 基)-2-側氧基-乙基]-1H-吡唑-5-基]胺基]喹唑啉-7-基]氧基-N-(2-羥乙基)丙烷-1-胺氧化物):向在CH2Cl2(400.00mL)中的AZD1152 hqpa(10.00g,19.70mmol,1.00當量)的懸浮液添加m-CPBA(8.00g,39.40mmol,2.00當量,85% w/w),然後在0℃攪拌該黃色懸浮液8小時,黃色固體沈澱。過濾該固體,然後在真空中乾燥該固體,並且用Na2S2O3溶液(10%,300mL*1)洗滌CH2Cl2層,然後用飽和鹽水(300mL*1)洗滌,用無水Na2SO4乾燥,過濾並且在真空中濃縮。藉由製備型HPLC(TFA條件並且然後是鹼性條件)純化合並的固體,在真空下除去CH3CN,並且然後藉由凍干進行乾燥。獲得呈黃色固體的產物AZD1152 hqpa N-氧化物(1.70g,3.16mmol,16.05%產率,97.4%純度)。 AZD1152-hqpa N-oxide (N-ethyl-3-[4-[[3-[2-(3-fluoroanilino))-2-oxo-ethyl]-1H-pyridyl can be cleaved as follows Zyrid-5-yl]amino]quinazolin-7-yl]oxy-N-(2-hydroxyethyl)propan-1-amine oxide: to CH 2 Cl 2 (400.00 mL) m-CPBA (8.00 g, 39.40 mmol, 2.00 equiv, 85% w/w) was added to a suspension of AZD 1152 hqpa (10.00 g, 19.70 mmol, 1.00 equiv), then the yellow suspension was stirred at 0 ° C for 8 hours, yellow solid precipitation. The solid was filtered, then the solid was dried in vacuo and the CH 2 Cl 2 layer was washed with Na 2 S 2 O 3 (10%, 300 mL*1) then washed with saturated brine (300 mL*1) with anhydrous Na 2 SO 4 dried, filtered, and concentrated in vacuo. By prep HPLC (TFA conditions and then basic conditions) The combined solid was purified to remove CH 3 CN, and then dried by lyophilization in vacuo. The product AZD1152 hqpa N-oxide (1.70 g, 3.16 mmol, 16.05% yield, 97.4% purity) was obtained as a yellow solid.

LCMS:MS(ESI)m/z 524.2[M+H]+ LCMS: MS (ESI) m/z 524.2 [M+H]+

HPLC:5.184(純度:97.40%) HPLC: 5.184 (purity: 97.40%)

1 H NMR:(400MHz,甲醇-d4)δ=8.55(br.s.,1H),8.25(d,J=9.3Hz,1H),7.57(d,J=11.5Hz,1H),7.36~7.21(m,3H),7.17(br.s.,1H),6.86~6.79(m,1H),4.27(t,J=5.5Hz,1H),4.06~3.98(m,1H),3.79(br.s.,1H),3.55(dd,J=5.5,10.4Hz,1H),3.50-3.39(m,2H),2.36(dd,J=5.5,10.4Hz,2H),1.36(t,J=7.1Hz,3H)。 1 H NMR: (400 MHz, methanol-d 4 ) δ=8.55 (br.s., 1H), 8.25 (d, J = 9.3 Hz, 1H), 7.57 (d, J = 11.5 Hz, 1H), 7.36~ 7.21(m,3H), 7.17(br.s.,1H), 6.86~6.79(m,1H), 4.27(t, J =5.5Hz,1H), 4.06~3.98(m,1H),3.79(br .s., 1H), 3.55 (dd, J = 5.5, 10.4 Hz, 1H), 3.50-3.39 (m, 2H), 2.36 (dd, J = 5.5, 10.4 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H).

參考實例:對阿黴素(Doxorubicin)的FDA指導原則草案(2010年2月推薦;2013年11月,2014年12月修改) Reference example: Draft FDA guidelines for doxorubicin ( recommended in February 2010; November 2013, revised December 2014)

活性成分:阿黴素鹽酸鹽 Active ingredient: doxorubicin hydrochloride

劑型;途徑:脂質體注射;靜脈內的 Dosage form; route: liposome injection; intravenous

推薦的研究:兩個研究 Recommended study: two studies

當測試的以及參照的聚乙二醇化脂質體產品 When tested and referenced PEGylated liposome products

●具有相同藥物產品組成並且●係藉由具有硫酸銨梯度的主動脂質體裝載過程製造,並且 ●具有等價的脂質體特徵,包括脂質體組成、囊封藥物狀態、脂質體內環境、脂質體尺寸分佈、薄層數、在脂質體表面的接枝PEG、電表面電勢或電荷、以及體外洩露率時。 Having the same pharmaceutical product composition and ● is produced by an active liposome loading process with an ammonium sulfate gradient, and • Equivalent liposome characteristics, including liposome composition, encapsulated drug status, liposome environment, liposome size distribution, thin layer number, grafted PEG on the surface of liposomes, electrical surface potential or charge, and extracorporeal leakage Rate time.

推薦以下臨床的和體外的研究來證明生物等效性: The following clinical and in vitro studies are recommended to demonstrate bioequivalence:

體內生物等效性研究:In vivo bioequivalence studies:

1.研究類型:禁食* 1. Type of study: fasting*

設計:體內單劑量,雙向交叉實驗 Design: single dose in vivo, two-way crossover experiment

強度:50mg/小瓶或20mg/小瓶 Strength: 50mg / vial or 20mg / vial

劑量:50mg/m2 Dosage: 50mg/m 2

受試者:卵巢癌患者,在基於鉑的化學療法後他們的疾病已經進展或復發並且已經接收或計畫開始用參考目錄藥物(RLD)或參考標準產品進行治療。 Subject: Ovarian cancer patients whose disease has progressed or relapsed after platinum-based chemotherapy and have been received or planned to begin treatment with a reference list drug (RLD) or a reference standard product.

附加評論:Additional comments:

●阿黴素係細胞毒性藥物。因此,對於阿黴素脂質體注射之生物等效性研究,需要Bio-IND,以確保人類測試受試者的安全性。 ● Adriamycin-based cytotoxic drugs. Therefore, Bio-IND is required for bioequivalence studies of doxorubicin liposome injection to ensure the safety of human test subjects.

●當患者計畫接收他們通常的治療時,交叉研究的兩臂係在該等天中的兩天上進行的,這樣使得治療方案不被改變或延遲。 • When the patient plans to receive their usual treatment, the two arm systems of the crossover study were performed on two days of the day so that the treatment regimen was not altered or delayed.

●保健治療方案的標準不應被改變,除了在指定給藥的那天,將患者隨機化至測試治療或參照治療。 • The criteria for a health care regimen should not be changed except that on the day of the indicated dosing, the patient is randomized to a test treatment or a reference treatment.

●在劑量係每4週一次的情況下,應將兩個連續治療週期用於兩個治療期。 • In the case of a dose system every 4 weeks, two consecutive treatment cycles should be used for both treatment periods.

●在兩個研究時期,任何相伴的藥療法必須是嚴格相同的。 • In the two study periods, any accompanying medication must be strictly the same.

●由於關注心臟毒性,所以用文件證明心臟狀況在基線處。 • Due to concerns about cardiotoxicity, documented cardiac conditions at baseline.

●必須從研究中中斷並且從分析中排除在研究期間體重發生變 化而需要±5%劑量調節的任何患者。 ● Must be interrupted from the study and excluded from the analysis during the study period Any patient who requires ±5% dose adjustment.

排除標準: Exclusion criteria:

●在四個治療週期後,將導致550mg/m2或更多的總生命期暴露。 • After four treatment cycles, it will result in a total lifetime exposure of 550 mg/m 2 or more.

●方案必須排除具有他們的排除標準中顯著受損的肝功能的患者。 • The protocol must exclude patients with significantly impaired liver function in their exclusion criteria.

●對阿黴素HCl的常規配製物或RLD或參照標準品的組分具有超敏反應病史的患者不應進入研究。 • Patients with a history of hypersensitivity to conventional formulations of doxorubicin HCl or components of RLD or reference standards should not enter the study.

●女性應不是懷孕的或泌乳的。 ● Women should not be pregnant or lactating.

●患者係<18歲或>75歲。 ● The patient is <18 years old or >75 years old.

●如果在用骨髓毒性藥物治療下,被分枝桿菌、巨細胞病毒、弓形體屬、卡氏肺囊蟲或其他微生物主動機會性感染。 ● If it is treated with a myelotoxic drug, it is actively opportunistically infected by mycobacteria, cytomegalovirus, Toxoplasma, Pneumocystis carinii or other microorganisms.

●臨床上顯著的心臟的、肝的、或腎的疾病。 ● Clinically significant disease of the heart, liver, or kidney.

* 如果患者的健康狀況阻止禁食,則在提出的研究期間,主辦者可以提供非高脂肪膳食。可替代地,可以在標準的(非高脂肪的)早餐後2小時開始治療。 * If the patient's health condition prevents fasting, the sponsor can provide a non-high fat diet during the proposed study period. Alternatively, treatment can be initiated 2 hours after a standard (non-high fat) breakfast.

要測量的分析物(在適當生物學流體中):游離阿黴素和脂質體囊封的阿黴素。 Analyte to be measured (in a suitable biological fluid): free doxorubicin and liposomal encapsulated doxorubicin.

基於(90% CI)之生物等效性針對游離阿黴素和脂質體囊封的阿黴素的AUC和Cmax。 Bioequivalence based on (90% CI) : AUC and Cmax for doxorubicin encapsulated with free doxorubicin and liposomes.

注釋:應使用藉由提出的商業規模製造過程生產的測試產品來進行關鍵之生物等效性研究。 Note: Critical bioequivalence studies should be performed using test products produced by the proposed commercial scale manufacturing process.

體外研究:In vitro studies:

2.研究類型:脂質體尺寸分佈 2. Type of study: liposome size distribution

設計:對至少三個批次的測試的和參照的產品的體外生物等效性研究 Design: in vitro bioequivalence study of at least three batches of tested and referenced products

要測量的參數:D10、D50、D90 Parameters to be measured: D10, D50, D90

基於(95%置信上界)之生物等效性:使用群體生物等效性方法,D50和SPAN[(即D90-D10)/D50]或多分散性指數。 Bioequivalence based on (95% confidence upper bound): using population bioequivalence methods, D50 and SPAN [(ie D90-D10)/D50] or polydispersity index.

溶解測試方法和取樣時間:可以在以下位置:http://www.accessdata.fda.gov/scripts/cder/dissolution/公眾可獲得的FDA推薦溶解方法網站上發現針對此藥物產品的溶解資訊。對測試的和參照的產品的所有強度中的每一個的12個劑量單位進行對比溶解測試。將在評審簡略新藥申請時確定規格。 Dissolution test method and sampling time: Dissolution information for this drug product can be found on the publicly available FDA recommended dissolution method website at http://www.accessdata.fda.gov/scripts/cder/dissolution/ publicly available. A comparative dissolution test was performed on 12 dosage units for each of all the strengths of the tested and referenced products. The specifications will be determined at the time of reviewing the abbreviated new drug application.

附加資訊:Additional information: 相同的藥物產品組成Same drug product composition

作為腸胃外藥物產品,一般阿黴素HCl脂質體注射必須定性地並且定量地與RLD或參照標準品相同,除了在緩衝液、防腐劑和抗氧化劑方面存在差異,其條件係,申請人將該等差異鑒定並特徵化,並且證明該等差異並不影響藥物產品的安全性/功效特性。目前,FDA並未推薦需要證明緩衝液、防腐劑和抗氧化劑方面的差異並不影響藥物產品的安全性/功效特性的研究類型。 As a parenteral drug product, the general doxorubicin HCl liposome injection must be qualitatively and quantitatively identical to the RLD or reference standard, except for differences in buffers, preservatives and antioxidants, the conditions of which The differences were identified and characterized, and it was demonstrated that these differences did not affect the safety/efficacy characteristics of the drug product. Currently, the FDA does not recommend a type of study that requires proof that the differences in buffers, preservatives, and antioxidants do not affect the safety/efficacy characteristics of the drug product.

在脂質體配製物中,脂質賦形劑係關鍵的。ANDA主辦者應從與RLD或參照標準品中發現的相同類別的合成途徑(天然的或合成的)來獲得脂質。應在與在脂質體藥物產品指導原則草案1中建議的預期針對一藥物物質的相同細節水平提供涉及脂質組分的化學、製造和控制的資訊。ANDA主辦者應具有關於類似於用於生產RLD或參照標準品的那些的脂質賦形劑的規格。應提供,包括分子種類的分佈的脂質賦形劑的附加對比表徵(超過滿足規格)。 Lipid excipients are critical in liposome formulations. The ANDA sponsor should obtain lipids from the same class of synthetic pathways (natural or synthetic) as found in RLD or reference standards. Information should be provided with chemical manufacturing and control involve a lipid component for the same level of detail in a drug substance is expected to draft guidelines for liposomal drug product in 1 suggested in. The ANDA sponsor should have specifications for lipid excipients similar to those used to produce RLD or reference standards. Additional comparative characterization of lipid excipients including distribution of molecular species should be provided (beyond meeting specifications).

具有硫酸銨梯度的主動脂質體裝載過程Active liposome loading process with ammonium sulfate gradient

為了滿足組成等價性和其他等價性測試,將預期ANDA主辦者使用具有硫酸銨梯度的主動裝載過程。主要步驟包括1)形成包含硫酸銨的脂質體,2)脂質體尺寸減小,3)產生硫酸銨梯度,以及4)主動藥物裝 載。主動裝載過程使用脂質體內部環境和外部環境之間的硫酸銨濃度梯度,來驅動阿黴素擴散進入脂質體2,3In order to meet compositional equivalence and other equivalence tests, the ANDA sponsor is expected to use an active loading process with an ammonium sulfate gradient. The main steps include 1) formation of liposomes containing ammonium sulfate, 2) reduction in liposome size, 3) production of ammonium sulfate gradient, and 4) active drug loading. The active loading process uses a gradient of ammonium sulfate concentration between the internal and external environment of the liposome to drive the diffusion of doxorubicin into the liposomes 2,3 .

主辦者應使用藉由設計方法的質量,來鑒定關鍵材料屬性和關鍵過程參數,並且指導過程優化。建議藉由評定脂質體特徵對過程參數和屬性中的變化的敏感性,來鑒定關鍵過程參數和關鍵材料屬性。應基於所得脂質體特徵與RLD或參照標準品的那些的比較,來選擇關鍵過程參數的最優值。 Sponsors should use the quality of the design methodology to identify key material properties and key process parameters and guide process optimization. It is recommended to identify key process parameters and key material properties by assessing the sensitivity of liposome characteristics to changes in process parameters and attributes. The optimal value of the key process parameters should be selected based on the comparison of the resulting liposome characteristics with those of the RLD or reference standard.

等效脂質體特徵Equivalent liposome characteristics

用具有複雜生物等效性要求的其他局部作用產品(例如鼻用噴霧和吸入產品),應對至少三個批次的ANDA和RLD或參照標準產品(至少一個ANDA批次應是藉由商業規模過程生產的並且被用於體內生物等效性研究)進行體外脂質體表徵。應包括在要求與RLD或參照標準品等效的多個ANDA的表徵中的屬性係: Use at least three batches of ANDA and RLD or reference standard products with other topical products with complex bioequivalence requirements (eg nasal spray and inhalation products) (at least one ANDA batch should be processed by commercial scale In vitro liposome characterization was performed and was used in in vivo bioequivalence studies. Attributes in the characterization of multiple ANDAs that require equivalent to RLD or reference standards should be included:

●脂質體組成:應測量包括脂質含量、游離的和囊封的藥物、內部的和總的硫酸根和銨濃度、組胺酸濃度、以及蔗糖濃度之脂質體組成。可以從脂質體組成值計算藥物脂質比和藥物封裝的百分比。 Liposomal composition: Liposomal compositions including lipid content, free and encapsulated drugs, internal and total sulfate and ammonium concentrations, histidine concentration, and sucrose concentration should be measured. The drug lipid ratio and the percentage of drug encapsulation can be calculated from the liposome composition values.

●囊封藥物的狀態:RLD或參照標準品中的阿黴素大部分是處於脂質體內的阿黴素硫酸鹽沈澱的形式。一般阿黴素HCl脂質體必須包含脂質體內等效的阿黴素沈澱。 The state of the encapsulated drug: The doxorubicin in the RLD or reference standard is mostly in the form of doxorubicin sulfate precipitate in the liposome. In general, doxorubicin HCl liposomes must contain an equivalent of the doxorubicin precipitate in the liposome.

●內環境(體積、pH、硫酸根和銨離子濃度):脂質體的內環境(包括其體積、pH、硫酸根和銨濃度,維持沈澱的阿黴素。在脂質體組成部分中描述的組分(包括硫酸根離子)的總濃度和游離濃度的測量允許推斷脂質體內之內部濃度。 • Internal environment (volume, pH, sulfate and ammonium ion concentration): the internal environment of the liposome (including its volume, pH, sulfate and ammonium concentrations, maintenance of precipitated doxorubicin. Groups described in the liposome component) Measurement of the total and free concentrations of the fractions (including sulfate ions) allows for the inference of internal concentrations within the liposomes.

●脂質體形態學和薄層數:應將脂質體形態學和薄層確定為藥物裝載、藥物停留、以及藥物從脂質體釋放的速率最可能受 薄層程度的影響。 Liposomal morphology and thin layer number: Liposomal morphology and thin layer should be determined as drug loading, drug retention, and the rate at which drugs are released from the liposome. The effect of the extent of the thin layer.

●脂質雙層相變:脂質雙層相變中的等效性將有助於證明雙層流動性和一致性方面的等效性。粗脂質賦形劑和脂質體的相變曲線應與RLD或參照標準品的那些曲線可比較。 • Lipid bilayer phase transition: Equivalence in lipid bilayer phase transitions will help to demonstrate equivalence in two-layer flow and consistency. The phase transition curves of the crude lipid excipients and liposomes should be comparable to those of the RLD or reference standards.

●脂質體尺寸分佈:對於確保等效被動靶向,脂質體尺寸分佈係關鍵的。ANDA主辦者應選擇最適當的粒度分析方法,以確定測試的和參照的產品這二者的粒度分佈。對於每個測試的和參照的產品,待研究的脂質體產品小瓶數應不少於30個(即不少於來自三個批次中每一批次的10個)。對於推薦的統計等效性測試的細節,參見推薦的研究2(上文)。 Liposomal size distribution: Liposomal size distribution is critical to ensure equivalent passive targeting. The ANDA sponsor should select the most appropriate particle size analysis method to determine the particle size distribution of both the tested and referenced products. For each tested and referenced product, the number of vials of liposome product to be studied should be no less than 30 (ie no less than 10 from each of the three batches). For details of the recommended statistical equivalence test, see Recommended Study 2 (above).

●在脂質體表面的接枝PEG:表面結合的甲氧基聚乙二醇(MPEG)聚合物塗層保護了脂質體不被單核巨噬細胞系統(MPS)清除,並且增加了血液循環時間。已知PEG層厚度係熱力學方面受限的,並且估計處於幾奈米的級別。應確定PEG層厚度。 ● Grafted PEG on the surface of liposomes: Surface-bound methoxypolyethylene glycol (MPEG) polymer coating protects liposomes from being removed by the mononuclear macrophage system (MPS) and increases blood circulation time . The thickness of the PEG layer is known to be thermodynamically limited and is estimated to be on the order of a few nanometers. The thickness of the PEG layer should be determined.

●電表面電勢或電荷:脂質體上的表面電荷會影響清除、組織分佈、和細胞攝取。應測量脂質體表面電荷。 Electrical surface potential or charge: The surface charge on the liposome affects clearance, tissue distribution, and cellular uptake. The surface charge of the liposome should be measured.

●在多種條件下的體外洩漏:應調查用以表徵脂質雙層和囊封的阿黴素的物理狀態的體外藥物洩漏測試,以支持在一系列生理條件下不受控制的洩漏的缺失和至腫瘤細胞的等效遞送。以下是提出的條件的一些實例。 • In vitro leakage under a variety of conditions: In vitro drug leak testing to characterize the physical state of the lipid bilayer and encapsulated doxorubicin should be investigated to support the loss of uncontrolled leakage under a range of physiological conditions and Equivalent delivery of tumor cells. The following are some examples of the proposed conditions.

游離的和囊封的藥物的等效體內血漿藥物動力學Equivalent in vivo plasma pharmacokinetics of free and encapsulated drugs

需要Bio-IND來進行人類中阿黴素脂質體注射之生物等效性研究,因為阿黴素係細胞毒性藥物。我們推薦,在卵巢癌患者中,按50mg/m2劑量,單一劑量禁食雙向交叉生物等效性研究。主辦者應測量脂質體囊封的和游離的阿黴素這二者,以證明一般脂質體配製物和.RLD或參照標準品具有相同的體內穩定性。取決於患者需要,可以在禁食的或標準的膳食條件下進行該等研究。對於推薦的統計等效 性測試的細節,參見推薦的研究1(上文)。 Bio-IND is required for bioequivalence studies of doxorubicin liposomal injections in humans because of the doxorubicin-based cytotoxic drugs. We recommend a two-way cross-biological bioequivalence study in a single-dose fasting dose of 50 mg/m 2 in patients with ovarian cancer. The sponsor should measure both liposome encapsulated and free doxorubicin to demonstrate that the general liposome formulation has the same in vivo stability as the .RLD or reference standard. These studies can be performed under fasted or standard dietary conditions depending on the needs of the patient. For details of the recommended statistical equivalence test, see Recommended Study 1 (above).

1用於工業的指導原則草案:脂質體藥物產品化學、製造、和控制;人藥物動力學和生體可用率;以及標記文件,FDA(2002),2 A.蓋比宗(A.Gabizon)、西姆達(H.Sheemda)、拜倫霍茲(Y.Barenholz.)聚乙二醇化脂質體阿黴素的藥物動力學:動物和人類研究綜述(Pharmacokinetics of pegylated liposome doxorubicin:review of animal and human studies).臨床藥物動力學(Clin Pharmcokinet)42(5):419-436(2003) 1 Draft guiding principles for industry: chemistry, manufacturing, and control of lipopharmaceutical products; human pharmacokinetics and bioavailability; and labeling documents, FDA (2002), 2 A. Gabyon (A.Gabizon) , H. Sheemda, Y. Barenholz. Pharmacokinetics of PEGylated liposomal doxorubicin: a review of animal and human studies (Pharmacokinetics of pegylated liposome doxorubicin: review of animal and Human studies). Clin Pharmcokinet 42(5): 419-436 (2003)

3 F.馬丁(F.Martin).產品進化和配製物對藥物特性和藥理學的影響(Product evolution and influence of formulation on pharmaceutical properties and pharmacology),藥物科學顧問委員會報告(Advisory Committee for Pharmaceutical Science Presentation)(2001年7月),http://www.fda.gov/ohrms/dockets/AC/01/slides/3763s2_08_martin.ppt.提供了以下另外的方面: 3 F. Martin. Product evolution and influence of formulation on pharmaceutical properties and pharmacology, Advisory Committee for Pharmaceutical Science Presentation (July 2001), http://www.fda.gov/ohrms/dockets/AC/01/slides/3763s2_08_martin.ppt. provides the following additional aspects:

1. 一種在給予包含AZD1152 hqpa的奈米顆粒之後對在受試者體內全身性地釋放的AZD1152 hqpa的量進行測量之方法,該方法包括:●測定來自該受試者之樣品,以確定在該樣品中存在的AZD1152 hqpa的代謝物之量;並且●基於所確定的該代謝物之量,應用藥物動力學模型,以導出該受試者體內全身性地釋放的AZD1152 hqpa之量。 CLAIMS 1. A method of measuring the amount of AZD1152 hqpa that is systemically released in a subject after administration of a nanoparticle comprising AZD1152 hqpa, the method comprising: determining a sample from the subject to determine The amount of metabolite of AZD1152 hqpa present in the sample; and • based on the determined amount of the metabolite, a pharmacokinetic model is applied to derive the amount of AZD1152 hqpa that is systemically released in the subject.

2. 一種在具有代謝該AZD1152 hqpa的能力的生物系統中對負載AZD1152 hqpa的奈米顆粒之釋放曲線進行確定之方法,該方法包括:●在第一時間點,測定來自該生物系統之樣品,以確定在該樣品中存在的這種負載AZD1152 hqpa的奈米顆粒的代謝物之第一量; ●在第二時間點,測定來自該生物系統之樣品,以確定在該樣品中存在的這種負載AZD1152 hqpa的奈米顆粒的代謝物之第二量;●基於所確定的第一量和第二量,應用藥物動力學模型,以導出代表在該第一時間點釋放的這種負載AZD1152 hqpa的奈米顆粒之量之第一值,以及代表在該第二時間點釋放的這種負載AZD1152 hqpa的奈米顆粒之量之第二值;並且●使用該第一值和該第二值以產生這種負載AZD1152 hqpa的奈米顆粒之釋放曲線。 2. A method for determining a release profile of a nanoparticle loaded with AZD1152 hqpa in a biological system having the ability to metabolize the AZD1152 hqpa, the method comprising: • determining a sample from the biological system at a first time point, Determining a first amount of metabolites of such nanoparticles loaded with AZD1152 hqpa present in the sample; • at a second time point, the sample from the biological system is determined to determine a second amount of the metabolite of the nanoparticle loaded with the AZD1152 hqpa present in the sample; • based on the determined first amount and Two quantities, applying a pharmacokinetic model to derive a first value representative of the amount of nanoparticle of the load AZD1152 hqpa released at the first time point, and representing the load AZD1152 released at the second time point a second value of the amount of nanoparticle of hqpa; and • the first value and the second value are used to produce a release profile of the nanoparticle of the load AZD1152 hqpa.

3. 一種對給予至受試者的負載AZD1152 hqpa的奈米顆粒之生物等效性進行評估之方法,該方法包括:●測定來自該受試者之樣品,以確定在該樣品中存在的這種負載AZD1152 hqpa的奈米顆粒的代謝物之量;●基於所確定的該代謝物之量,應用藥物動力學模型,以導出該受試者體內全身性地釋放的這種負載AZD1152 hqpa的奈米顆粒之量;並且●比較基於該受試者體內全身性地釋放的這種負載AZD1152 hqpa的奈米顆粒之量的值與關於第二藥物的對比值,並且由此評估這種負載AZD1152 hqpa的奈米顆粒和該第二藥物之生物等效性。 3. A method of assessing the bioequivalence of a nanoparticle loaded with AZD1152 hqpa administered to a subject, the method comprising: - determining a sample from the subject to determine the presence of the sample in the sample The amount of the metabolite of the nanoparticle loaded with AZD1152 hqpa; ● based on the determined amount of the metabolite, applying a pharmacokinetic model to derive the systemically released AZD1152 hqpa nai of the subject in vivo The amount of rice granules; and • the value based on the amount of the nanoparticle loaded with such a load AZD1152 hqpa which is systemically released in the subject and the comparison value with respect to the second drug, and thereby evaluating the load AZD1152 hqpa The bioequivalence of the nanoparticle and the second drug.

4. 根據方面1至3項中任一項所述之方法,其中該代謝物係選自由以下各項組成之群組:AZD1152 hqpa去氟苯胺(也稱為AZ12102238);AZD1152 hqpa去氟苯胺N-乙酸;AZD1152 hqpa N-乙酸;AZD1152 hqpa N-氧化物;以及AZD1152 hqpa N-去乙基。 The method of any one of aspects 1 to 3, wherein the metabolite is selected from the group consisting of AZD1152 hqpa defluoroaniline (also known as AZ12102238); AZD1152 hqpa defluoroaniline N - acetic acid; AZD1152 hqpa N-acetic acid; AZD1152 hqpa N-oxide; and AZD1152 hqpa N-deethyl.

5. 根據方面4所述之方法,其中該代謝物係AZ12102238。 5. The method of aspect 4, wherein the metabolite is AZ12102238.

6. 根據任一以上方面所述之方法,其中該奈米顆粒係由選自由以 下各項組成之群組之材料:二嵌段聚(乳)酸-聚(乙)二醇共聚物;以及二嵌段聚(乳酸-乙醇酸共聚物)-聚(乙)二醇共聚物。 6. The method of any of the above aspects, wherein the nanoparticle is selected from the group consisting of Materials of the following groups: diblock poly(lactic) acid-poly(ethylene) glycol copolymer; and diblock poly(lactic-glycolic acid copolymer)-poly(ethylene) glycol copolymer .

7. 根據任一以上方面所述之方法,其中該AZD1152 hqpa與該等奈米顆粒內的基本上疏水的酸相結合。 7. The method of any of the preceding aspects, wherein the AZD1152 hqpa is combined with a substantially hydrophobic acid within the nanoparticles.

8. 根據方面7所述之方法,其中該疏水的酸係選自由以下各項組成之群組:去氧膽酸;膽酸;二辛基磺基琥珀酸;油酸;以及撲酸。 8. The method of aspect 7, wherein the hydrophobic acid is selected from the group consisting of: deoxycholic acid; cholic acid; dioctyl sulfosuccinic acid; oleic acid;

9. 根據任一以上方面所述之方法,其中該受試者係人類。 9. The method of any of the preceding aspects, wherein the subject is a human.

10. 根據方面9所述之方法,其中該受試者係參與了調查這種負載AZD1152 hqpa的奈米顆粒的特性例如生體可用率的臨床試驗的個體。 10. The method of aspect 9, wherein the subject is involved in an individual investigating the characteristics of such a nanoparticle loaded with AZD1152 hqpa, such as a clinical trial of bioavailability.

11. 根據方面9或方面10所述之方法,其中該受試者係經歷了用這種負載AZD1152 hqpa的奈米顆粒治療的個體。 The method of aspect 9 or aspect 10, wherein the subject has experienced an individual treated with such a nanoparticle loaded with AZD1152 hqpa.

12. 根據方面1至8項中任一項所述之方法,其中該受試者係非人類動物。 The method of any of aspects 1 to 8, wherein the subject is a non-human animal.

13. 根據方面12所述之方法,其中該受試者係用於這種負載AZD1152 hqpa的奈米顆粒的臨床前調查中的動物。 13. The method of aspect 12, wherein the subject is for use in an animal in a preclinical investigation of such nanoparticles loaded with AZD1152 hqpa.

14. 根據方面12或方面13所述之方法,其中該受試者係大鼠。 The method of aspect 12 or aspect 13, wherein the subject is a rat.

15. 根據任一以上方面所述之方法,其中該樣品係選自由以下各項組成之群組:組織樣品;以及體液樣品。 15. The method of any of the above aspects, wherein the sample is selected from the group consisting of: a tissue sample; and a body fluid sample.

16. 根據方面17所述之方法,其中該體液樣品係選自由以下各項組成之群組:血液樣品;血清樣品;血漿樣品;尿樣品;淋巴液樣品;組織間隙液樣品;膽汁樣品;唾液樣品;以及糞便樣品。 16. The method of aspect 17, wherein the body fluid sample is selected from the group consisting of: a blood sample; a serum sample; a plasma sample; a urine sample; a lymph fluid sample; a tissue interstitial fluid sample; a bile sample; Sample; and stool sample.

17. 根據任一以上方面所述之方法,其中針對該代謝物對該樣品進行的測定使用了液相層析-質譜技術。 17. The method of any of the preceding aspects, wherein the assay for the sample for the metabolite uses liquid chromatography-mass spectrometry.

18. 根據任一以上方面所述之方法,其中針對該代謝物對該樣品進行的測定使用了質譜成像技術。 18. The method of any of the preceding aspects, wherein the assay performed on the sample for the metabolite uses mass spectrometry imaging techniques.

19. 根據任一以上方面所述之方法,進一步包括對來自該受試者的樣品進行測定以確定該樣品中負載AZD1152 hqpa的奈米顆粒之量之步驟。 19. The method of any of the preceding aspects, further comprising the step of determining a sample from the subject to determine the amount of nanoparticle loaded with AZD1152 hqpa in the sample.

20. 根據方面19所述之方法,該方法包括對來自該受試者的一種或多種另外的樣品進行測定並且由此導出在該等另外的樣品中存在的負載AZD1152 hqpa的奈米顆粒之量的另一個步驟。 20. The method of aspect 19, comprising measuring one or more additional samples from the subject and thereby deriving the amount of nanoparticle loaded AZD1152 hqpa present in the additional samples Another step.

21. 根據方面3至20項中任一項所述之方法,其中關於在該受試者體內隨時間全身性地釋放的這種負載AZD1152 hqpa的奈米顆粒之量來製作曲線。 The method of any one of aspects 3 to 20, wherein the curve is made with respect to the amount of such a nanoparticle loaded with AZD1152 hqpa that is systemically released over time in the subject.

22. 根據方面21所述之方法,其中該曲線係濃度曲線。 22. The method of aspect 21, wherein the curve is a concentration curve.

23. 根據方面22所述之方法,其中關於與涉及該第二藥物的對比值進行比較的這種負載AZD1152 hqpa的奈米顆粒之量的值係選自由以下各項組成之群組:曲線下面積(AUC);峰濃度(Cmax);以及達峰濃度時間(Tmax)。 23. The method of aspect 22, wherein the value of the amount of nanoparticle of the load AZD1152 hqpa for comparison with a comparative value relating to the second drug is selected from the group consisting of: Area (AUC); peak concentration ( Cmax ); and peak concentration time ( Tmax ).

TW104134095A 2014-10-17 2015-10-16 Method of release testing TW201636615A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462065050P 2014-10-17 2014-10-17

Publications (1)

Publication Number Publication Date
TW201636615A true TW201636615A (en) 2016-10-16

Family

ID=54324989

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104134095A TW201636615A (en) 2014-10-17 2015-10-16 Method of release testing

Country Status (2)

Country Link
TW (1) TW201636615A (en)
WO (1) WO2016059149A1 (en)

Also Published As

Publication number Publication date
WO2016059149A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
US10772898B2 (en) Combination therapies and methods of use thereof for treating cancer
US20180177771A1 (en) Biomarkers for nanoparticle compositions
AU2016218000A1 (en) Pharmaceutical compositions comprising N-(3,5-dimethoxyphenyl)-N&#39;-(1-methylethyl)-N-[3-(1-methyl-1H-pyrazol-4-yl)quinoxalin-6-yl]ethane-1,2-diamine
JP6890659B2 (en) HDM2-p53 Interaction Inhibitor Dose and Regimen
US8426418B2 (en) Method to treat melanoma in BRAF inhibitor-resistant subjects
TW201032796A (en) Treatment of lung cancer with a PARP inhibitor in combination with a growth factor inhibitor
Chen et al. Anti-tumor effects of B-2, a novel 2, 3-disubstituted 8-arylamino-3H-imidazo [4, 5-g] quinazoline derivative, on the human lung adenocarcinoma A549 cell line in vitro and in vivo
WO2019165473A1 (en) Methods of treatment of cancer comprising cdc7 inhibitors
JP2012072140A (en) Method of treating abnormal cell growth
EP3758678A1 (en) Methods of treatment of cancer comprising chk1 inhibitors
US20220241294A1 (en) Bisfluoroalkyl-1,4-benzodiazepinone compounds for treating notch-activated breast cancer
EP3302483B1 (en) Pharmaceutical compositions and use thereof
US11209420B2 (en) Cancer diagnostics, therapeutics, and drug discovery associated with macropinocytosis
US20210393620A1 (en) Methods of Treatment of Cancer Comprising CDC7 Inhibitors
US20210236492A1 (en) Method for treating pancreatic cancer
TW201636615A (en) Method of release testing
CN103841828B (en) Denibulin dihydrochloride
TWI554502B (en) Receptor-type kinase modulator and methods of treating polycystic kidney disease
US20220054484A1 (en) Fgfr tyrosine kinase inhibitors for the treatment of urothelial carcinoma
Dessai et al. Precision nanomedicine to treat non-small cell lung cancer
Strachowska et al. Characteristics of anticancer activity of CBP/p300 inhibitors–Features of their classes, intracellular targets and future perspectives of their application in cancer treatment
TW202337469A (en) Methods of treating small cell lung cancer
JP2022507686A (en) Pharmaceutical method