TW201635608A - Memory device and manufacturing method of the same - Google Patents

Memory device and manufacturing method of the same Download PDF

Info

Publication number
TW201635608A
TW201635608A TW104109447A TW104109447A TW201635608A TW 201635608 A TW201635608 A TW 201635608A TW 104109447 A TW104109447 A TW 104109447A TW 104109447 A TW104109447 A TW 104109447A TW 201635608 A TW201635608 A TW 201635608A
Authority
TW
Taiwan
Prior art keywords
layer
hole
stacked
memory device
oxide layer
Prior art date
Application number
TW104109447A
Other languages
Chinese (zh)
Other versions
TWI580086B (en
Inventor
賴二琨
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW104109447A priority Critical patent/TWI580086B/en
Publication of TW201635608A publication Critical patent/TW201635608A/en
Application granted granted Critical
Publication of TWI580086B publication Critical patent/TWI580086B/en

Links

Abstract

A memory device including a substrate, at least one first stacked structure and at least one second stacked structure disposed on the substrate is provided. The first stacked structure includes a plurality of alternately stacked metal layers and oxide layers. The second stacked structure is disposed adjacent to the first stacked structure and includes a plurality of alternately stacked semiconductor layers and oxide layers. The metal layers of the first stacked structure are connected to the semiconductor layers of the second stacked structure.

Description

記憶體裝置及其製造方法Memory device and method of manufacturing same 【0001】【0001】

本發明是有關於一種記憶體裝置及其製造方法。The present invention relates to a memory device and a method of fabricating the same.

【0002】【0002】

記憶體裝置係使用於許多產品之中,例如MP3播放器、數位相機、電腦檔案等儲存元件中。隨著記憶體製造技術的進步,對於記憶體裝置的需求也趨向較小的尺寸、較大的記憶容量。因應這種需求,係需要製造高元件密度的記憶體裝置。Memory devices are used in many products, such as MP3 players, digital cameras, computer files and other storage components. With the advancement of memory manufacturing technology, the demand for memory devices has also tended to be smaller in size and larger in memory capacity. In response to this demand, it is required to manufacture a memory device having a high component density.

【0003】[0003]

設計者開發一種提高記憶體裝置密度的方法係使用三維堆疊記憶裝置,以達到更高的記憶容量,同時降低每一位元之成本。然而,由於重複的導體與絕緣體堆疊,三維堆疊記憶體裝置可能會承受較大的字元線電容,因此,如何製造出能有效降低字元線電容的三維堆疊記憶體裝置,係成為本領域之重要課題。Designers have developed a way to increase the density of memory devices by using a three-dimensional stacked memory device to achieve higher memory capacity while reducing the cost per bit. However, due to the repeated stacking of conductors and insulators, the three-dimensional stacked memory device may be subjected to a large word line capacitance. Therefore, how to manufacture a three-dimensional stacked memory device capable of effectively reducing the word line capacitance has become a field in the art. important topic.

【0004】[0004]

本發明係有關於一種記憶體裝置及其製造方法,透過在堆疊結構中插入薄膜電晶體,能有效降低記憶體裝置內的字元線電容。The present invention relates to a memory device and a method of fabricating the same, which can effectively reduce word line capacitance in a memory device by inserting a thin film transistor in a stacked structure.

【0005】[0005]

根據本發明,提出一種記憶體裝置,包括一基板、至少一第一堆疊結構以及至少一第二堆疊結構。第一堆疊結構設置於基板上,且包括複數個交錯堆疊之金屬層與氧化層。第二堆疊結構設置於基板上並鄰接於第一堆疊結構,且包括複數個交錯堆疊之半導體層與氧化層。第一堆疊結構之金屬層連接第二堆疊結構之半導體層。According to the present invention, a memory device is provided comprising a substrate, at least a first stacked structure, and at least a second stacked structure. The first stack structure is disposed on the substrate and includes a plurality of staggered stacked metal layers and an oxide layer. The second stack structure is disposed on the substrate and adjacent to the first stack structure, and includes a plurality of staggered stacked semiconductor layers and an oxide layer. The metal layer of the first stacked structure is connected to the semiconductor layer of the second stacked structure.

【0006】[0006]

根據本發明,提出一種記憶體裝置的製造方法,包括以下步驟。交錯堆疊複數個氧化層與氮化矽層於一基板上。形成至少一第一貫孔穿過氧化層與氮化矽層。依序沉積一電荷儲存層與一通道層於第一貫孔中。沉積一介電結構,以填滿第一貫孔。形成至少一第二貫孔於一預定區域。移除預定區域內的氮化矽層。沉積複數個半導體層於預定區域內的氧化層之間。沉積至少一閘極氧化層於第二貫孔內,且閘極氧化層位於半導體層的表面。填充一閘極結構於第二貫孔。形成一第三貫孔穿過預定區域外的氧化層與氮化矽層。移除預定區域外的氮化矽層。填充金屬材料於預定區域外的氧化層之間,以形成複數個金屬層。According to the present invention, a method of fabricating a memory device is provided, comprising the following steps. A plurality of oxide layers and a tantalum nitride layer are alternately stacked on a substrate. Forming at least one first through hole through the oxide layer and the tantalum nitride layer. A charge storage layer and a channel layer are sequentially deposited in the first through hole. A dielectric structure is deposited to fill the first via. Forming at least one second through hole in a predetermined area. The tantalum nitride layer in the predetermined area is removed. A plurality of semiconductor layers are deposited between the oxide layers in the predetermined region. Depositing at least one gate oxide layer in the second via hole, and the gate oxide layer is on the surface of the semiconductor layer. A gate structure is filled in the second through hole. A third through hole is formed to pass through the oxide layer and the tantalum nitride layer outside the predetermined region. The tantalum nitride layer outside the predetermined area is removed. The filling metal material is between the oxide layers outside the predetermined area to form a plurality of metal layers.

【0007】【0007】

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式,作詳細說明如下:In order to provide a better understanding of the above and other aspects of the present invention, the following detailed description of the embodiments and the accompanying drawings

【0044】[0044]

100‧‧‧記憶體裝置
10‧‧‧基板
1‧‧‧第一堆疊結構
11‧‧‧金屬層
12、120、121、122‧‧‧氧化層
13‧‧‧電荷儲存層
14‧‧‧通道層
15‧‧‧介電結構
16‧‧‧遮蔽層
19、190‧‧‧氮化矽層
2‧‧‧第二堆疊結構
21‧‧‧半導體層
23、231‧‧‧閘極氧化層
24‧‧‧閘極結構
31‧‧‧第一貫孔
32‧‧‧第二貫孔
33‧‧‧第三貫孔
51‧‧‧導電結構
52‧‧‧氧化間隔物
61、62‧‧‧導電線
A-A’、B-B’、C-C’、D-D’‧‧‧剖面線
X、Y、Z‧‧‧坐標軸
100‧‧‧ memory device
10‧‧‧Substrate
1‧‧‧First stack structure
11‧‧‧metal layer
12, 120, 121, 122‧‧‧ oxide layer
13‧‧‧Charge storage layer
14‧‧‧Channel layer
15‧‧‧Dielectric structure
16‧‧‧Shielding layer
19, 190‧‧‧ layer of tantalum nitride
2‧‧‧Second stacking structure
21‧‧‧Semiconductor layer
23, 231‧‧ ‧ gate oxide layer
24‧‧‧ gate structure
31‧‧‧ first through hole
32‧‧‧Second through hole
33‧‧‧Through hole
51‧‧‧Electrical structure
52‧‧‧Oxidation spacer
61, 62‧‧‧ conductive lines
A-A', B-B', C-C', D-D'‧‧‧ hatching
X, Y, Z‧‧‧ axes

【0008】[0008]


第1圖繪示本發明實施例之記憶體裝置的俯視圖。
第2A圖為第1圖之記憶體裝置沿A-A’線所繪製的剖面圖。
第2B圖為第1圖之記憶體裝置沿B-B’線所繪製的剖面圖。
第2C圖為第1圖之記憶體裝置沿C-C’線所繪製的剖面圖。
第2D圖為第1圖之記憶體裝置沿D-D’線所繪製的剖面圖。
第3A至9圖繪示本發明之記憶體結構的一製造實施例。

FIG. 1 is a plan view showing a memory device according to an embodiment of the present invention.
Fig. 2A is a cross-sectional view of the memory device of Fig. 1 taken along line A-A'.
Fig. 2B is a cross-sectional view of the memory device of Fig. 1 taken along line BB'.
Figure 2C is a cross-sectional view of the memory device of Figure 1 taken along line C-C'.
Figure 2D is a cross-sectional view of the memory device of Figure 1 taken along line DD'.
3A to 9 are views showing a manufacturing embodiment of the memory structure of the present invention.

【0009】【0009】

以下係參照所附圖式詳細敘述本發明之實施例。圖式中相同的標號係用以標示相同或類似之部分。需注意的是,圖式係已簡化以利清楚說明實施例之內容,圖式上的尺寸比例並非按照實際產品等比例繪製,因此並非作為限縮本發明保護範圍之用。Embodiments of the present invention will be described in detail below with reference to the drawings. The same reference numerals are used to designate the same or similar parts. It is to be noted that the drawings have been simplified to clearly illustrate the contents of the embodiments, and the dimensional ratios in the drawings are not drawn to the scale of the actual products, and thus are not intended to limit the scope of the present invention.

【0010】[0010]

第1圖繪示本發明實施例之記憶體裝置100的俯視圖。第2A圖為第1圖之記憶體裝置100沿A-A’線所繪製的剖面圖。第2B圖為第1圖之記憶體裝置100沿B-B’線所繪製的剖面圖。第2C圖為第1圖之記憶體裝置100沿C-C’線所繪製的剖面圖。第2D圖為第1圖之記憶體裝置100沿D-D’線所繪製的剖面圖。本發明實施例之記憶體裝置100包括一基板10、至少一第一堆疊結構1以及至少一第二堆疊結構2。第一堆疊結構1與第二堆疊結構2係設置於基板10上,且第二堆疊結構2鄰接於第一堆疊結構1。FIG. 1 is a plan view of a memory device 100 according to an embodiment of the present invention. Fig. 2A is a cross-sectional view of the memory device 100 of Fig. 1 taken along line A-A'. Fig. 2B is a cross-sectional view of the memory device 100 of Fig. 1 taken along line B-B'. Fig. 2C is a cross-sectional view of the memory device 100 of Fig. 1 taken along the line C-C'. Fig. 2D is a cross-sectional view of the memory device 100 of Fig. 1 taken along line D-D'. The memory device 100 of the embodiment of the invention includes a substrate 10, at least one first stacked structure 1 and at least one second stacked structure 2. The first stacked structure 1 and the second stacked structure 2 are disposed on the substrate 10, and the second stacked structure 2 is adjacent to the first stacked structure 1.

【0011】[0011]

如第1、2A圖所示,第一堆疊結構1包括複數個交錯堆疊之金屬層11與氧化層12。第一堆疊結構1可包括至少一第一貫孔31、一電荷儲存層13及一通道層14。第一貫孔31穿過金屬層11與氧化層12,且曝露基板10的部分表面。電荷儲存層13設置於第一貫孔31的側壁。通道層14設置於電荷儲存層13與曝露之基板10的部分表面上。As shown in FIGS. 1 and 2A, the first stacked structure 1 includes a plurality of staggered stacked metal layers 11 and oxide layers 12. The first stacked structure 1 may include at least one first through hole 31, a charge storage layer 13 and a channel layer 14. The first hole 31 passes through the metal layer 11 and the oxide layer 12, and exposes a part of the surface of the substrate 10. The charge storage layer 13 is disposed on a sidewall of the first through hole 31. The channel layer 14 is disposed on a portion of the surface of the charge storage layer 13 and the exposed substrate 10.

【0012】[0012]

舉例來說,電荷儲存層13可為一氧化矽/氮化矽/氧化矽/氮化矽/氧化矽(ONONO)結構,通道層14可為多晶矽(polysilicon)或氧化銦鎵鋅(Indium Gallium Zinc Oxide, IGZO),但本發明並未限定於此。For example, the charge storage layer 13 may be a hafnium oxide/tantalum nitride/yttria/tantalum nitride/anthracene oxide (ONONO) structure, and the channel layer 14 may be polysilicon or indium gallium zinc (Indium Gallium Zinc). Oxide, IGZO), but the invention is not limited thereto.

【0013】[0013]

此外,第一堆疊結構1可包括介電結構15,介電結構15係填滿第一貫孔31。也就是說,介電結構15可設置於通道層14的表面,並填滿第一貫孔31剩餘的空間。In addition, the first stacked structure 1 may include a dielectric structure 15 that fills the first through holes 31. That is, the dielectric structure 15 may be disposed on the surface of the channel layer 14 and fill the remaining space of the first through hole 31.

【0014】[0014]

在一實施例中,位於第一堆疊結構1之最頂部的氧化層121可作為一硬遮罩(Hard Mask, HM)層,位於第一堆疊結構1之最底部的氧化層122可作為一埋藏氧化(buried oxide)。此外,第一堆疊結構1也可包括遮蔽層(cap layer)16,也就是說,遮蔽層16可覆蓋於氧化層(硬遮罩層)121與介電結構15的上表面。In an embodiment, the oxide layer 121 located at the top of the first stacked structure 1 can serve as a hard mask (HM) layer, and the oxide layer 122 located at the bottom of the first stacked structure 1 can be used as a buried layer. Boiled oxide. In addition, the first stacked structure 1 may also include a cap layer 16 , that is, the shielding layer 16 may cover the upper surface of the oxide layer (hard mask layer) 121 and the dielectric structure 15 .

【0015】[0015]

在本發明實施例中,第一堆疊結構1更包括一高介電材料層(未繪示),高介電材料層係設置於金屬層11與氧化層12之間,以形成一高介電金屬閘極(High-κ Metal Gate, HKMG)結構。In the embodiment of the present invention, the first stacked structure 1 further includes a high dielectric material layer (not shown), and a high dielectric material layer is disposed between the metal layer 11 and the oxide layer 12 to form a high dielectric. High-κ Metal Gate (HKMG) structure.

【0016】[0016]

如第1、2B圖所示,第二堆疊結構2包括複數個交錯堆疊之半導體層21與氧化層12,且第二堆疊結構2之半導體層21係連接第一堆疊結構1之金屬層11。第二堆疊結構2可包括至少一第二貫孔32、至少一閘極氧化層23及一閘極結構24。第二貫孔32穿過半導體層21與氧化層12,且曝露基板10的部分表面。閘極氧化層23設置於第二貫孔32內,且位於半導體層21的表面。閘極結構24填滿第二貫孔32。在一實施例中,閘極氧化層23也可設置於曝露之基板10的部分表面上,例如第2B圖中的閘極氧化層231。As shown in FIGS. 1 and 2B, the second stacked structure 2 includes a plurality of staggered stacked semiconductor layers 21 and oxide layers 12, and the semiconductor layer 21 of the second stacked structure 2 is connected to the metal layer 11 of the first stacked structure 1. The second stack structure 2 can include at least one second via 32, at least one gate oxide layer 23, and a gate structure 24. The second through hole 32 passes through the semiconductor layer 21 and the oxide layer 12, and exposes a part of the surface of the substrate 10. The gate oxide layer 23 is disposed in the second through hole 32 and is located on the surface of the semiconductor layer 21. The gate structure 24 fills the second through hole 32. In an embodiment, the gate oxide layer 23 may also be disposed on a portion of the surface of the exposed substrate 10, such as the gate oxide layer 231 in FIG. 2B.

【0017】[0017]

如第2C、2D圖所示,在本發明實施例中,記憶體裝置100可包括複數個第一堆疊結構1與第二堆疊結構2。此外,記憶體裝置100更包括至少一導電結構51與至少一氧化間隔物(oxide spacer)52。導電結構51可設置於第一堆疊結構1(或第二堆疊結構2)之間,氧化間隔物52設置於第一堆疊結構1(或第二堆疊結構2)與導電結構51之間。舉例來說,第1、2C、2D圖係繪示兩個第一堆疊結構1與兩個第二堆疊結構2,且導電結構51設置於兩個第一堆疊結構1(或兩個第二堆疊結構2)之間,而氧化間隔物52係分離第一堆疊結構1(或第二堆疊結構2)與導電結構51。導電結構51可為一源極線(source line),用以連接底部的反及閘(NAND)源極側(source side)。As shown in FIG. 2C and FIG. 2D, in the embodiment of the present invention, the memory device 100 may include a plurality of first stacked structures 1 and a second stacked structure 2. In addition, the memory device 100 further includes at least one conductive structure 51 and at least one oxide spacer 52. The conductive structure 51 may be disposed between the first stacked structure 1 (or the second stacked structure 2), and the oxidized spacer 52 is disposed between the first stacked structure 1 (or the second stacked structure 2) and the conductive structure 51. For example, the first, second, and second embodiments show two first stacked structures 1 and two second stacked structures 2, and the conductive structures 51 are disposed on the two first stacked structures 1 (or two second stacked Between the structures 2), the oxidized spacer 52 separates the first stacked structure 1 (or the second stacked structure 2) from the conductive structure 51. The conductive structure 51 can be a source line for connecting the NAND source side of the bottom.

【0018】[0018]

在一實施例中,導電結構51例如包括TiN/W或TaN/W,第一堆疊結構1之金屬層11包括TiN/W,第二堆疊結構2之半導體層21包括未摻雜之多晶矽(undoped polysilicon)。以TiN/W為材料製作的導電結構51,可用以減少源極線電阻(resistance)。In an embodiment, the conductive structure 51 includes, for example, TiN/W or TaN/W, the metal layer 11 of the first stacked structure 1 includes TiN/W, and the semiconductor layer 21 of the second stacked structure 2 includes undoped polysilicon (undoped) Polysilicon). The conductive structure 51 made of TiN/W can be used to reduce the source line resistance.

【0019】[0019]

第3A至9圖繪示本發明之記憶體結構100的一製造實施例。首先,如第3A圖所示,交錯堆疊複數個氧化層120與氮化矽層190於一基板10上。在此,基板10可例如為一P型矽基板。3A through 9 illustrate a manufacturing embodiment of the memory structure 100 of the present invention. First, as shown in FIG. 3A, a plurality of oxide layers 120 and a tantalum nitride layer 190 are alternately stacked on a substrate 10. Here, the substrate 10 can be, for example, a P-type germanium substrate.

【0020】[0020]

接著,如第3B圖所示,形成至少一第一貫孔31穿過氧化層120與氮化矽層190,且曝露基板10的部分表面,即形成複數個交錯堆疊之氧化層12與氮化矽層19。在本實施例中,位於最頂部的氧化層121可作為一硬遮罩層,位於最底部的氧化層122可作為一埋藏氧化層。此外,可例如以微影蝕刻的方式形成第一貫孔31。Next, as shown in FIG. 3B, at least one first through hole 31 is formed through the oxide layer 120 and the tantalum nitride layer 190, and a part of the surface of the substrate 10 is exposed, that is, a plurality of staggered stacked oxide layers 12 and nitride are formed.矽 layer 19. In this embodiment, the topmost oxide layer 121 can serve as a hard mask layer, and the bottommost oxide layer 122 can serve as a buried oxide layer. Further, the first through holes 31 may be formed, for example, by photolithography.

【0021】[0021]

如第3C圖所示,依序沉積一電荷儲存層13與一通道層14於第一貫孔31中。在本實施例中,電荷儲存層13例如沉積於第一貫孔31的側壁並曝露基板10的部分表面,通道層14例如沉積於電荷儲存層13與曝露之基板10的部分表面上。此外,電荷儲存層13可為一氧化矽/氮化矽/氧化矽(ONO)結構、一氧化矽/氮化矽/氧化矽/氮化矽/氧化矽(ONONO)結構或一氧化矽/氮化矽/氧化矽/氮化矽/氧化矽/氮化矽/氧化矽(ONONONO)結構。接著,沉積一介電結構15,以填滿第一貫孔31。As shown in FIG. 3C, a charge storage layer 13 and a channel layer 14 are sequentially deposited in the first through holes 31. In the present embodiment, the charge storage layer 13 is deposited, for example, on the sidewall of the first via 31 and exposes a portion of the surface of the substrate 10. The channel layer 14 is deposited, for example, on the surface of the charge storage layer 13 and the exposed substrate 10. In addition, the charge storage layer 13 may be a hafnium oxide/tantalum nitride/yttria (ONO) structure, a hafnium niobium/tantalum nitride/yttria/yttria/anthracene oxide (ONONO) structure or niobium oxide/nitrogen矽 矽 / 矽 矽 / tantalum nitride / yttria / tantalum nitride / 矽 矽 (ONONONO) structure. Next, a dielectric structure 15 is deposited to fill the first through holes 31.

【0022】[0022]

接著,形成一遮蔽層16於介電結構15與交錯堆疊之氧化層12與氮化矽層19上(即介電結構15與氧化層121)上。在一實施例中,形成遮蔽層16之前可平坦化介電結構15與交錯堆疊之氧化層12與氮化矽層19的上表面。舉例來說,可進行一化學機械研磨(chemical mechanic polish, CMP)製程,並停止於氧化層(硬遮罩層)121。介電結構15可形成空氣間隙(air gap)結構,以降低電容與耦合效應(coupling effect)。Next, a masking layer 16 is formed on the dielectric structure 15 and the staggered stacked oxide layer 12 and the tantalum nitride layer 19 (i.e., the dielectric structure 15 and the oxide layer 121). In an embodiment, the dielectric structure 15 and the upper surfaces of the staggered stacked oxide layer 12 and tantalum nitride layer 19 may be planarized prior to forming the masking layer 16. For example, a chemical mechanical polish (CMP) process can be performed and stopped at the oxide layer (hard mask layer) 121. The dielectric structure 15 can form an air gap structure to reduce capacitance and coupling effects.

【0023】[0023]

第4圖為本製造實施例於此階段的俯視圖。也就是說,第3C圖例如為為第4圖之結構沿A-A’線所繪製的剖面圖。在第4圖中,虛線所圍繞之區域即為第二堆疊結構2之預定區域,虛線外的區域即為第一堆疊結構1之預定區域。也就是說,接續的第5A至5D圖的製程,係於第二堆疊結構2之預定區域內完成。Fig. 4 is a plan view of the manufacturing embodiment at this stage. That is, the 3C diagram is, for example, a cross-sectional view taken along line A-A' of the structure of Fig. 4. In Fig. 4, the area surrounded by the broken line is the predetermined area of the second stacked structure 2, and the area outside the broken line is the predetermined area of the first stacked structure 1. That is to say, the processes of the subsequent 5A to 5D drawings are completed in a predetermined region of the second stack structure 2.

【0024】[0024]

如第5A圖所示,形成至少一第二貫孔32於第二堆疊結構2之預定區域,第二貫孔32穿過氧化層120、氮化矽層190與遮蔽層16,且曝露基板10的部分表面,即形成複數個交錯堆疊之氧化層12與氮化矽層19。類似地,位於最頂部的氧化層121可作為一硬遮罩層,位於最底部的氧化層122可作為一埋藏氧化層。此外,可例如以微影蝕刻的方式形成第二貫孔32。As shown in FIG. 5A, at least one second through hole 32 is formed in a predetermined region of the second stacked structure 2, and the second through hole 32 passes through the oxide layer 120, the tantalum nitride layer 190 and the shielding layer 16, and the substrate 10 is exposed. A portion of the surface, that is, a plurality of staggered stacked oxide layers 12 and tantalum nitride layers 19 are formed. Similarly, the topmost oxide layer 121 can serve as a hard mask layer and the bottommost oxide layer 122 can serve as a buried oxide layer. Further, the second through holes 32 may be formed, for example, by photolithography.

【0025】[0025]

在此,第二貫孔32與第一貫孔31的臨界尺度(critical dimension, CD)可不相同。Here, the critical dimension (CD) of the second through hole 32 and the first through hole 31 may be different.

【0026】[0026]

接著,如第5B圖所示,移除第二堆疊結構2之預定區域內的氮化矽層19。舉例來說,可以化學乾蝕刻(chemical dry etching, CDE)或磷酸(phosphoric acid)(H3 PO4 )移除氮化矽層19。化學乾蝕刻或磷酸對於氧化物具有高度的選擇性,因此,可移除氮化矽層19,但保留氧化層12。Next, as shown in FIG. 5B, the tantalum nitride layer 19 in the predetermined region of the second stacked structure 2 is removed. For example, the tantalum nitride layer 19 can be removed by chemical dry etching (CDE) or phosphoric acid (H 3 PO 4 ). The chemical dry etching or phosphoric acid is highly selective to the oxide, and therefore, the tantalum nitride layer 19 can be removed, but the oxide layer 12 is retained.

【0027】[0027]

如第5C圖所示,沉積半導體層21於氧化層12之間。在此,半導體層21例如包括未摻雜之多晶矽或本質多晶矽(intrinsic polysilicon)。半導體層21可為一通道材料,且被之後形成(即第2B圖)之閘極結構24所控制。As shown in FIG. 5C, the semiconductor layer 21 is deposited between the oxide layers 12. Here, the semiconductor layer 21 includes, for example, undoped polysilicon or intrinsic polysilicon. The semiconductor layer 21 can be a channel of material and is controlled by a gate structure 24 that is subsequently formed (i.e., Figure 2B).

【0028】[0028]

接著,如第5D圖所示,沉積至少一閘極氧化層23於第二貫孔32內,且位於半導體層21的表面。在一實施例中,閘極氧化層23也可設置於曝露之基板10的部分表面上,例如第5D圖中的閘極氧化層231。在此,閘極氧化層23的厚度可介於50至500 Å,例如介於300至400 Å。閘極氧化層23可承受更高的字元線電壓操作。Next, as shown in FIG. 5D, at least one gate oxide layer 23 is deposited in the second via hole 32 and on the surface of the semiconductor layer 21. In an embodiment, the gate oxide layer 23 may also be disposed on a portion of the surface of the exposed substrate 10, such as the gate oxide layer 231 in FIG. 5D. Here, the gate oxide layer 23 may have a thickness of 50 to 500 Å, for example, 300 to 400 Å. The gate oxide layer 23 can withstand higher word line voltage operation.

【0029】[0029]

第6圖本製造實施例於此階段的俯視圖。也就是說,第5D圖例如為第6圖之結構沿B-B’線所繪製的剖面圖。Figure 6 is a plan view of the manufacturing embodiment at this stage. That is, the 5D diagram is, for example, a cross-sectional view of the structure of Fig. 6 taken along line B-B'.

【0030】[0030]

接著,將閘極結構24填滿第二貫孔32,即可形成如第2B圖所繪示之第二堆疊結構2。在此,閘極結構24可例如包括N+多晶矽或金屬,例如為TiN/W。也就是說,第二堆疊結構2可作為一薄膜電晶體結構,閘極結構24為此薄膜電晶體的閘極,半導體層21為此薄膜電晶體的通道。Then, the gate structure 24 is filled with the second through holes 32, so that the second stacked structure 2 as shown in FIG. 2B can be formed. Here, the gate structure 24 may, for example, comprise N+ polysilicon or a metal, such as TiN/W. That is to say, the second stack structure 2 can be used as a thin film transistor structure, the gate structure 24 is the gate of the thin film transistor, and the semiconductor layer 21 is the channel of the thin film transistor.

【0031】[0031]

如第7圖所示,形成一第三貫孔33於第二堆疊結構2之預定區域外(即虛線所圍繞之區域外)。類似地,第三貫孔33穿過氧化層12與氮化矽層19。第8A圖為第7圖之結構沿C-C’線所繪製的剖面圖。第8B圖為第7圖之結構沿D-D’線所繪製的剖面圖。As shown in Fig. 7, a third through hole 33 is formed outside the predetermined area of the second stacked structure 2 (i.e., outside the area surrounded by the broken line). Similarly, the third through holes 33 pass through the oxide layer 12 and the tantalum nitride layer 19. Fig. 8A is a cross-sectional view of the structure of Fig. 7 taken along the line C-C'. Fig. 8B is a cross-sectional view of the structure of Fig. 7 taken along line D-D'.

【0032】[0032]

如第7、8A圖所示,移除第一堆疊結構1之預定區域內(即第二堆疊結構2之預定區域外)的氮化矽層19。類似地,可以化學乾蝕刻或磷酸移除氮化矽層19。化學乾蝕刻或磷酸對於氧化物具有高度的選擇性,因此,可移除氮化矽層19,但保留氧化層12。此外,由於磷酸對於多晶矽與氧化物的高度選擇性,在此步驟中也不會對第二堆疊結構2中的半導體層21(即薄膜電晶體的通道)造成損傷。As shown in FIGS. 7 and 8A, the tantalum nitride layer 19 in the predetermined region of the first stacked structure 1 (ie, outside the predetermined region of the second stacked structure 2) is removed. Similarly, the tantalum nitride layer 19 can be removed by chemical dry etching or phosphoric acid. The chemical dry etching or phosphoric acid is highly selective to the oxide, and therefore, the tantalum nitride layer 19 can be removed, but the oxide layer 12 is retained. Furthermore, due to the high selectivity of phosphoric acid to polycrystalline germanium and oxide, the semiconductor layer 21 (i.e., the channel of the thin film transistor) in the second stacked structure 2 is not damaged in this step.

【0033】[0033]

接著,填入金屬材料於氧化層12之間,以形成金屬層11。在此,金屬層11可例如包括TiN/W。此外,在填入金屬材料於氧化層12之間的步驟前,可先填入高介電材料(未繪示),以形成高介電材料層(未繪示)於金屬層11與氧化層12之間。Next, a metal material is filled between the oxide layers 12 to form the metal layer 11. Here, the metal layer 11 may include, for example, TiN/W. In addition, a high dielectric material (not shown) may be filled in before the step of filling the metal material between the oxide layers 12 to form a high dielectric material layer (not shown) on the metal layer 11 and the oxide layer. Between 12.

【0034】[0034]

在填入金屬材料於氧化層12之間後,即可形成第一堆疊結構1如第7、8A圖所示,第三貫孔33可分離兩個第一堆疊結構1。類似地,如第7、8B圖所示,第三貫孔33可分離兩個第二堆疊結構2。After filling the metal material between the oxide layers 12, the first stacked structure 1 can be formed as shown in FIGS. 7 and 8A, and the third through holes 33 can separate the two first stacked structures 1. Similarly, as shown in FIGS. 7 and 8B, the third through hole 33 can separate the two second stacked structures 2.

【0035】[0035]

接著,如第9圖所示,依序形成氧化間隔物52與導電結構51於第三貫孔33中。也就是說,氧化間隔物52係位於第一堆疊結構1(或第二堆疊結構2)與導電結構51之間。在此,導電結構51可例如包括TiN/W或TaN/W。Next, as shown in FIG. 9, the oxide spacer 52 and the conductive structure 51 are sequentially formed in the third through hole 33. That is, the oxidized spacer 52 is located between the first stacked structure 1 (or the second stacked structure 2) and the conductive structure 51. Here, the conductive structure 51 may include, for example, TiN/W or TaN/W.

【0036】[0036]

在依序形成氧化間隔物52與導電結構51於第三貫孔33後,即可形成如1圖所繪示之記憶體結構100。也就是說,在依序形成氧化間隔物52與導電結構51於第8A圖之第三貫孔33後,即可形成如2C圖所繪示之結構;在依序形成氧化間隔物52與導電結構51於第8B圖之第三貫孔33後,即可形成如2D圖所繪示之結構。After the oxide spacer 52 and the conductive structure 51 are sequentially formed in the third through hole 33, the memory structure 100 as shown in FIG. 1 can be formed. That is, after the oxide spacer 52 and the conductive structure 51 are sequentially formed in the third through hole 33 of FIG. 8A, a structure as shown in FIG. 2C can be formed; the oxide spacer 52 and the conductive layer are sequentially formed. After the structure 51 is in the third through hole 33 of FIG. 8B, the structure as shown in FIG. 2D can be formed.

【0037】[0037]

此外,本發明實施例之記憶體裝置100可包括一導電線,導電線設置於第二堆疊結構2上,且電性連接閘極結構24。舉例來說,如第9圖所示,導電線61、62分別設置於兩個堆疊結構2上,以分別控制這兩個堆疊結構2。In addition, the memory device 100 of the embodiment of the present invention may include a conductive line disposed on the second stacked structure 2 and electrically connected to the gate structure 24. For example, as shown in FIG. 9, the conductive lines 61, 62 are respectively disposed on the two stacked structures 2 to control the two stacked structures 2, respectively.

【0038】[0038]

本發明實施例之記憶體裝置100,可以下列方式操作。首先,選擇部分第二堆疊結構2為一選擇的薄膜電晶體結構,其他的第二堆疊結構2為一非選擇的薄膜電晶體結構。接著,施加一閘極偏壓於選擇的薄膜電晶體結構。在本實施例中,閘極偏壓可介於為2 V至10 V,例如為3.3 V。The memory device 100 of the embodiment of the present invention can be operated in the following manner. First, a portion of the second stacked structure 2 is selected as a selected thin film transistor structure, and the other second stacked structure 2 is a non-selected thin film transistor structure. Next, a gate bias is applied to the selected thin film transistor structure. In this embodiment, the gate bias can be between 2 V and 10 V, for example 3.3 V.

【0039】[0039]

此外,選擇第一堆疊結構1之複數個金屬層11的其中之一為一選定陣列,其他的金屬層11為非選定陣列。其中,與選定陣列連接之選擇的薄膜電晶體結構的半導體層21係被導通,使選定陣列之金屬層11可通電。在此,金屬層11可作為記憶體裝置100的字元線。In addition, one of the plurality of metal layers 11 of the first stacked structure 1 is selected to be a selected array, and the other metal layers 11 are non-selected arrays. The semiconductor layer 21 of the selected thin film transistor structure connected to the selected array is turned on to enable the metal layer 11 of the selected array to be energized. Here, the metal layer 11 can serve as a word line of the memory device 100.

【0040】[0040]

舉例來說,如第9圖所示,可藉由導電線61施加一閘極偏壓於部分第二堆疊結構2,導電線62則不施加偏壓。也就是說,電性連接於導電線61的第二堆疊結構2即為選擇的薄膜電晶體結構,電性連接於導電線62的第二堆疊結構2即為非選擇的薄膜電晶體結構。For example, as shown in FIG. 9, a gate bias can be applied to the portion of the second stacked structure 2 by the conductive line 61, and the conductive line 62 is not biased. That is, the second stacked structure 2 electrically connected to the conductive line 61 is a selected thin film transistor structure, and the second stacked structure 2 electrically connected to the conductive line 62 is a non-selected thin film transistor structure.

【0041】[0041]

當選定陣列連接於選擇的薄膜電晶體結構,由於選擇的薄膜電晶體結構具有閘極偏壓,其半導體層21係被導通,使選定陣列之金屬層11可通電。當選定陣列連接於非選擇的薄膜電晶體結構,由於非選擇的薄膜電晶體結構不具有閘極偏壓,其半導體層21無法導通,使金屬層11無法通電。When the selected array is connected to the selected thin film transistor structure, since the selected thin film transistor structure has a gate bias, its semiconductor layer 21 is turned on, allowing the metal layer 11 of the selected array to be energized. When the selected array is connected to the non-selected thin film transistor structure, since the non-selected thin film transistor structure does not have a gate bias, the semiconductor layer 21 cannot be turned on, so that the metal layer 11 cannot be energized.

【0042】[0042]

因此,可透過第二堆疊結構2(薄膜電晶體結構)決定選定的陣列中的金屬層11是否導通。此外,不需要額外的解碼方式,即可決定選擇的薄膜電晶體結構。這是因為閘極結構24係連接於(反及閘)串列選擇線(SSL),當選擇的串列選擇線為導通(on),位於相同選擇串列的閘極結構24也會導通,使第二堆疊結構2不需要額外的解碼電路。由於僅有連接於選擇的薄膜電晶體結構的金屬層11可通電,因此,能大幅降低金屬層11(字元線)的電容。Therefore, whether or not the metal layer 11 in the selected array is turned on can be determined through the second stacked structure 2 (thin film transistor structure). In addition, the selected thin film transistor structure can be determined without additional decoding. This is because the gate structure 24 is connected to the (reverse gate) series select line (SSL). When the selected string select line is on, the gate structure 24 located in the same selected string is also turned on. The second stack structure 2 is made to require no additional decoding circuitry. Since only the metal layer 11 connected to the selected thin film transistor structure can be energized, the capacitance of the metal layer 11 (word line) can be greatly reduced.

【0043】[0043]

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In conclusion, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100‧‧‧記憶體裝置 100‧‧‧ memory device

1‧‧‧第一堆疊結構 1‧‧‧First stack structure

13‧‧‧電荷儲存層 13‧‧‧Charge storage layer

14‧‧‧通道層 14‧‧‧Channel layer

15‧‧‧介電結構 15‧‧‧Dielectric structure

2‧‧‧第二堆疊結構 2‧‧‧Second stacking structure

51‧‧‧導電結構 51‧‧‧Electrical structure

52‧‧‧氧化間隔物 52‧‧‧Oxidation spacer

A-A’、B-B’、C-C’、D-D’‧‧‧剖面線 A-A’, B-B’, C-C’, D-D’‧‧‧ hatching

X、Y‧‧‧坐標軸 X, Y‧‧‧ axes

Claims (10)

【第1項】[Item 1] 一種記憶體裝置,包括:
一基板;
至少一第一堆疊結構,設置於該基板上,該第一堆疊結構包括複數個交錯堆疊之金屬層與氧化層;以及
至少一第二堆疊結構,設置於該基板上,該第二堆疊結構鄰接於該第一堆疊結構,且包括複數個交錯堆疊之半導體層與氧化層,
其中該些金屬層連接該些半導體層。
A memory device comprising:
a substrate;
At least one first stacked structure disposed on the substrate, the first stacked structure includes a plurality of staggered stacked metal layers and an oxide layer; and at least one second stacked structure disposed on the substrate, the second stacked structure abutting In the first stacked structure, and comprising a plurality of staggered stacked semiconductor layers and an oxide layer,
The metal layers are connected to the semiconductor layers.
【第2項】[Item 2] 如申請專利範圍第1項所述之記憶體裝置,其中該第一堆疊結構包括:
至少一第一貫孔,穿過該些金屬層與氧化層,且曝露該基板的部分表面;
一電荷儲存層,設置於該第一貫孔的側壁;及
一通道層,設置於該電荷儲存層與曝露之該基板的部分表面上。
The memory device of claim 1, wherein the first stack structure comprises:
At least one first through hole, passing through the metal layer and the oxide layer, and exposing a portion of the surface of the substrate;
a charge storage layer disposed on a sidewall of the first via hole; and a channel layer disposed on the surface of the charge storage layer and the exposed substrate.
【第3項】[Item 3] 如申請專利範圍第2項所述之記憶體裝置,其中該第一堆疊結構包括:
一介電結構,填滿該第一貫孔。
The memory device of claim 2, wherein the first stack structure comprises:
A dielectric structure fills the first through hole.
【第4項】[Item 4] 如申請專利範圍第1項所述之記憶體裝置,其中該第二堆疊結構包括:
至少一第二貫孔,穿過該些半導體層與氧化層,且曝露該基板的部分表面;
至少一閘極氧化層,設置於該第二貫孔內,且位於該些半導體層的表面;及
一閘極結構,填滿該第二貫孔。
The memory device of claim 1, wherein the second stack structure comprises:
At least one second through hole, passing through the semiconductor layer and the oxide layer, and exposing a portion of the surface of the substrate;
At least one gate oxide layer is disposed in the second via hole and located on a surface of the semiconductor layers; and a gate structure fills the second via hole.
【第5項】[Item 5] 如申請專利範圍第4項所述之記憶體裝置,其中該閘極氧化層設置於曝露之該基板的部分表面上。The memory device of claim 4, wherein the gate oxide layer is disposed on a portion of the surface of the exposed substrate. 【第6項】[Item 6] 如申請專利範圍第1項所述之記憶體裝置,更包括:
複數個該第一堆疊結構;及
至少一導電結構,設置於該些第一堆疊結構之間。
The memory device according to claim 1, further comprising:
a plurality of the first stacked structures; and at least one conductive structure disposed between the first stacked structures.
【第7項】[Item 7] 一種記憶體裝置的製造方法,包括:
交錯堆疊複數個氧化層與氮化矽層於一基板上;
形成至少一第一貫孔穿過該些氧化層與氮化矽層;
依序沉積一電荷儲存層與一通道層於該第一貫孔中;
沉積一介電結構,以填滿該第一貫孔;
形成至少一第二貫孔於一預定區域;
移除該預定區域內的該些氮化矽層;
沉積複數個半導體層於該預定區域內的該些氧化層之間;
沉積至少一閘極氧化層於該第二貫孔內,且該閘極氧化層位於該些半導體層的表面;
填充一閘極結構於該第二貫孔;
形成一第三貫孔穿過該預定區域外的該些氧化層與氮化矽層;
移除該預定區域外的該些氮化矽層;以及
填充金屬材料於該預定區域外的該些氧化層之間,以形成複數個金屬層。
A method of manufacturing a memory device, comprising:
Stacking a plurality of oxide layers and a tantalum nitride layer on a substrate;
Forming at least one first through hole through the oxide layer and the tantalum nitride layer;
Depositing a charge storage layer and a channel layer in the first through hole in sequence;
Depositing a dielectric structure to fill the first through hole;
Forming at least one second through hole in a predetermined area;
Removing the layer of tantalum nitride in the predetermined area;
Depositing a plurality of semiconductor layers between the oxide layers in the predetermined region;
Depositing at least one gate oxide layer in the second via hole, and the gate oxide layer is located on a surface of the semiconductor layers;
Filling a gate structure in the second through hole;
Forming a third through hole through the oxide layer and the tantalum nitride layer outside the predetermined region;
Removing the tantalum nitride layers outside the predetermined region; and filling the metal material between the oxide layers outside the predetermined region to form a plurality of metal layers.
【第8項】[Item 8] 如申請專利範圍第7項所述之製造方法,更包括:
依序形成一氧化間隔物與一導電結構於該第三貫孔中。
The manufacturing method described in claim 7 of the patent scope further includes:
An oxidized spacer and a conductive structure are sequentially formed in the third through hole.
【第9項】[Item 9] 如申請專利範圍第7項所述之製造方法,更包括:
平坦化該介電結構與交錯堆疊之該些氧化層與氮化矽層的上表面;及
形成一遮蔽層於該介電結構與交錯堆疊之該些氧化層與氮化矽層上。
The manufacturing method described in claim 7 of the patent scope further includes:
The dielectric structure is planarized and the upper surfaces of the oxide layer and the tantalum nitride layer are alternately stacked; and a shielding layer is formed on the oxide layer and the tantalum nitride layer of the dielectric structure and the staggered stack.
【第10項】[Item 10] 如申請專利範圍第7項所述之製造方法,其中該電荷儲存層係沉積於該第一貫孔的側壁並曝露該基板的部分表面,該通道層沉積於該電荷儲存層與曝露之該基板的部分表面上。
The manufacturing method of claim 7, wherein the charge storage layer is deposited on a sidewall of the first via hole and exposes a portion of the surface of the substrate, the channel layer being deposited on the charge storage layer and the exposed substrate Part of the surface.
TW104109447A 2015-03-24 2015-03-24 Memory device and manufacturing method of the same TWI580086B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104109447A TWI580086B (en) 2015-03-24 2015-03-24 Memory device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104109447A TWI580086B (en) 2015-03-24 2015-03-24 Memory device and manufacturing method of the same

Publications (2)

Publication Number Publication Date
TW201635608A true TW201635608A (en) 2016-10-01
TWI580086B TWI580086B (en) 2017-04-21

Family

ID=57847415

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104109447A TWI580086B (en) 2015-03-24 2015-03-24 Memory device and manufacturing method of the same

Country Status (1)

Country Link
TW (1) TWI580086B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI617008B (en) * 2017-03-30 2018-03-01 旺宏電子股份有限公司 Memory structure, method of operating the same, and method of manufacturing the same
CN108630701A (en) * 2017-03-20 2018-10-09 旺宏电子股份有限公司 Storage organization, its operating method and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045073B1 (en) * 2009-08-07 2011-06-29 주식회사 하이닉스반도체 Vertical channel type non-volatile memory device and method for fabricating the same
KR20110020533A (en) * 2009-08-24 2011-03-03 삼성전자주식회사 Method for fabricating rewriteable three dimensional memory device
TWI453897B (en) * 2011-03-03 2014-09-21 Macronix Int Co Ltd Memory device, manufacturing method and operating method of the same
US20120327714A1 (en) * 2011-06-23 2012-12-27 Macronix International Co., Ltd. Memory Architecture of 3D Array With Diode in Memory String

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630701A (en) * 2017-03-20 2018-10-09 旺宏电子股份有限公司 Storage organization, its operating method and its manufacturing method
CN108630701B (en) * 2017-03-20 2020-10-16 旺宏电子股份有限公司 Memory structure, method of operating the same, and method of manufacturing the same
TWI617008B (en) * 2017-03-30 2018-03-01 旺宏電子股份有限公司 Memory structure, method of operating the same, and method of manufacturing the same

Also Published As

Publication number Publication date
TWI580086B (en) 2017-04-21

Similar Documents

Publication Publication Date Title
CN111211133B (en) Memory device using comb routing structure to reduce metal line loading
TWI713203B (en) Memory device and method for fabricating the same
KR102238791B1 (en) Trench structure for 3D memory devices
JP2023052638A (en) Memory device and method for forming the same
US11765892B2 (en) Three-dimensional memory device and method of manufacture
TWI770897B (en) Memory array and manufacturing method thereof and semiconductor device
US10283519B2 (en) Three dimensional NAND string memory device
TWI697105B (en) 3-dimensional junction semiconductor memory device and fabrication method thereof
US10475806B2 (en) Semiconductor memory device including stacked body with conductivity and insulating members and method for manufacturing the same
KR102508754B1 (en) Memory array including dummy regions
JP2015060874A (en) Nonvolatile semiconductor storage device
TWI595601B (en) Memory device and method for fabricating the same
CN113437079A (en) Memory device and method of manufacturing the same
US11695073B2 (en) Memory array gate structures
TW201707193A (en) Memory device and method for fabricating the same
TWI575714B (en) Three-dimensional memory
TWI759075B (en) Ferroelectric random access memory devices and methods of forming
TWI580086B (en) Memory device and manufacturing method of the same
US20150325585A1 (en) Method for forming three-dimensional memory and product thereof
TWI796617B (en) Memory cell, memory device, and method of forming the same
TW202310359A (en) Memory cell
TW202228272A (en) Method of fabricating memory structure
TWI599021B (en) Memory device and method for fabricating the same
CN106158871B (en) Memory device and method of manufacturing the same
TWI789295B (en) Memory device