TW201633825A - Bandwidth prediction and prefetching for enhancing the QoE of applications over wireless networks - Google Patents

Bandwidth prediction and prefetching for enhancing the QoE of applications over wireless networks Download PDF

Info

Publication number
TW201633825A
TW201633825A TW105102852A TW105102852A TW201633825A TW 201633825 A TW201633825 A TW 201633825A TW 105102852 A TW105102852 A TW 105102852A TW 105102852 A TW105102852 A TW 105102852A TW 201633825 A TW201633825 A TW 201633825A
Authority
TW
Taiwan
Prior art keywords
wtru
location
predicted
future
future location
Prior art date
Application number
TW105102852A
Other languages
Chinese (zh)
Inventor
徐天逸
馬良平
拉爾夫 内夫
Original Assignee
Vid衡器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vid衡器股份有限公司 filed Critical Vid衡器股份有限公司
Publication of TW201633825A publication Critical patent/TW201633825A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/75Media network packet handling
    • H04L65/752Media network packet handling adapting media to network capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/568Storing data temporarily at an intermediate stage, e.g. caching
    • H04L67/5681Pre-fetching or pre-delivering data based on network characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/61Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources taking into account QoS or priority requirements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • H04L67/63Routing a service request depending on the request content or context
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management

Abstract

Systems and methods for adaptively streaming video content to a wireless transmit/receive unit (WTRU) may comprise determining current information associated with the WTRU, the current information including at least one of a location, a speed, a time, a data throughput, and a day; comparing the current information with previously determined information for the WTRU; predicting a future location for the WTRU; predicting an available network bandwidth at the future location; and determining a bit rate for the WTRU to request for a content segment, based on the predicted available network bandwidth for the predicted future location.

Description

增強無線網路應用QoE之頻寬預測及預取Enhanced bandwidth prediction and prefetching for wireless network applications QoE

相關申請的交叉引用 本申請要求享有於2015年1月29日遞交的美國臨時專利申請號 61/109,590的優先權,其全部內容通過引用而在此併入。CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application claims priority to US Provisional Patent Application No. 61/109,590, filed on Jan.

視訊流傳輸使用者端、網路存取點(例如,WiFi網路中的存取點、LTE網路中的eNB)和/或內容傳遞網路(CDN)邊緣伺服器可使用通過HTTP的動態適應流傳輸(DASH),其中將視訊檔案作為一連串小視訊分段儲存在HTTP伺服器上。每個視訊分段可包含若干秒的視訊內容,並且可通過不同的位元速率(例如視訊品質)編碼。視訊使用者端可確定應該請求哪一後續視訊分段的位元速率。Video streaming client, network access point (eg, access point in WiFi network, eNB in LTE network) and/or content delivery network (CDN) edge server can use dynamics over HTTP Adaptive Streaming (DASH), in which video files are stored as a series of small video segments on an HTTP server. Each video segment can contain several seconds of video content and can be encoded by a different bit rate (eg, video quality). The video client can determine which bit rate of the subsequent video segment should be requested.

將視訊內容適應性流傳輸到無線發射/接收單元(WTRU)的系統和方法可包括:確定與該WTRU相關聯的目前資訊,該目前資訊包括位置、速度、時間、資料輸送量和日期中的至少一個;將該目前資訊與為該WTRU之前確定的資訊相比較;預該WTRU的未來位置;預測該未來位置處的可用網路頻寬;以及基於針對所預測的未來位置的所預測的可用網路頻寬,確定該WTRU請求內容分段的位元速率。Systems and methods for adaptively streaming video content to a wireless transmit/receive unit (WTRU) may include determining current information associated with the WTRU, including current location, speed, time, data throughput, and date At least one; comparing the current information with information previously determined for the WTRU; pre-determining the future location of the WTRU; predicting available network bandwidth at the future location; and basing based on predicted availability for the predicted future location The network bandwidth determines the bit rate at which the WTRU requests content segmentation.

現在參考不同的附圖對描述性實施例進行詳細的描述。雖然這些描述提供了可能實施的具體示例,但應說明的是,這些細節並不作為典型,並且不會限制申請的範圍。 將視訊內容適應性地流傳輸到無線發射/接收單元(WTRU)的系統和方法可通過預測可用頻寬來提高應用的QoE(“體驗品質”)。該預測可以基於對過去和/或目前行程、和/或預取資料的之前測量。雖然可用頻寬可改變並可在無線網路中快速改變,但是在一天中的相同時刻以及一周中的同一天(或例如,工作日或週末之外日)測量的相同位置處的頻寬可展示出顯著的相似性。該觀測結果可以提供預測同一位置在未來的可用頻寬的機會。使用該預測,系統可以提高和/或最佳化DASH的位元速率選擇演算法,以根據視訊位元速率提高視訊品質。該提高和/或最佳化可避免重新緩衝和/或可減少視訊位元速率切換的頻率。該預測可用於其他應用和/或可用來為路線選擇提供使用者回饋。目前服務無線電存取點可通知下一個無線電存取點,該下一無線電存取點然後可為無線發射/接收單元(WTRU)預取資料。 可提供單獨頻寬預測系統,其允許視訊使用者端(例如WTRU)基於其自己在過去和目前行程中進行的測量來預測頻寬和/或車輛速度。 可使用可用頻寬演算法和/或卡爾曼(Kalman)濾波器。離線演算法可用來確定Kalman濾波器的狀態轉變模型中的參數和/或基於Kalman濾波器的預測演算法。可包括車輛速度預測演算法,該演算法可與用來確定Kalman濾波器的狀態轉變中的參數的演算法類似。 針對DASH的視訊位元速率適應演算法可提高和/或最大化視訊品質和/或避免緩衝器下溢(underflow)。 可以利用基於WTRU路線的可用頻寬的路線選擇。 目前服務無線電存取點可被用來通知下一個無線電存取點,該下一無線電存取點然後可為WTRU預取資料。 描述了針對DASH的頻寬預測的多個系統結構。但是,應用不限於DASH,並且可包括視訊電話、網路瀏覽、雲遊戲、雲計算、增強現實等。本文揭露的一個或多個示例可涉及預測未來位置處的可用頻寬、改善DASH的位元速率選擇演算法和/或用於改善應用的“體驗品質”(QoE)的資料預取機制,例如,諸如基於DASH的視訊流傳輸。一個或多個系統和方法可包括協作頻寬預測,其中一個或多個使用者可與伺服器共用頻寬測量,並且伺服器可為使用者進行預測。一個或多個系統和方法可包括單獨頻寬預測,其中使用者(例如WTRU或使用者的移動裝置)可基於其自己之前的測量進行預測。 所揭露的系統和方法中的一個或多個可用於許多無線網路(例如Hotspot 2.0)。系統和方法可使用車輛中的無線發射/接收單元(WTRU)。系統和方法可使用不在車輛中的WTRU。系統和方法可用於由路人攜帶的WTRU。例如,系統和方法可用於由在購物中心中走動的路人攜帶的WTRU。系統和方法可用於DASH環境中,並且應用於其他環境。 第1圖是協作頻寬預測(CBP)系統和方法的示例的圖。在第1圖中,DASH媒體伺服器可儲存根據視訊內容的不同編碼版本生成的視訊分段。DASH媒體呈現描述(MPD)伺服器可包括MPD檔描述基本分段資訊,其包括URL、視訊解析度、位元速率、編解碼器、時間和/或持續時間中的任何一個。CBP伺服器可收集使用者的頻寬測量,其包括以下中的任何一個:時間、裝置類型資訊(例如長期演進(LTE)、演進型高速封包存取(HSPA+)、天線配置等)和無線載波資訊(例如AT&T、Verizon等)。CBP伺服器可選擇使用過或正在使用將要進行預測的位置處的同一無線網路的使用者的子集。CBP伺服器可為使用者進行預測。網路中的使用者可週期性地向CBP伺服器報告他們自己的頻寬,並且例如即使他們不處於視訊流傳輸會話中也可以這樣做。使用該頻寬資訊,CBP伺服器可維持包括不同位置處的即時頻寬的頻寬圖。DASH使用者端可預測其自己的移動。DASH使用者端可從CBP伺服器請求其可能在隨後的時間期間到達的位置處的可用頻寬。通過使用所預測的頻寬、移動和/或MPD,WTRU可確定合適的視訊分段和/或可從DASH媒體伺服器請求媒體資料。 CBP方法的一個優點是,其可以向視訊使用者端提供準確和/或即時的預測,其包括視訊使用者端之前從未去過的位置處的預測。CBP伺服器可維持針對多種使用者端模型的頻寬圖,這是因為不同的使用者端模型可使用不同的無線網路或可具有不同的技術規範(例如,不同數量的天線),這可導致在相同的位置處在相同的時刻具有不同的頻寬。 在WTRU處進行的測量不必具有原始形式,例如,為了節約通訊頻寬。測量可包括概要統計。例如,如果針對該測量的原始距離間隔是d米,則概要統計可以在kd米內,其中k是大於1的整數。 可將應用下載到WTRU。應用可執行WTRU和CBP之間的訊息發送。應用可以向使用者端提供是否將其測量共用的選項,並且可將不同的定價方案與該選擇相關聯。例如,如果使用者共用,則使用該服務的成本可以較低或免費。否則,成本可能較高。 應用可以檢查WTRU正在採用的路線的可用頻寬,並且如果可用頻寬不足以維持該應用的品質,則其可建議(例如通過在GUI上提出建議)使用者採用不同的路線。 第2圖是單獨頻寬預測(SBP)系統和方法的示例的圖。在使用單獨頻寬預測(SBP)的系統和方法中,使用者(例如WTRU或使用者的移動裝置)基於其自己之前的測量進行預測。SBP和CBP之間的差別在於在SBP網路中不存在任何CBP伺服器。使用SBP系統,DASH使用者端(例如WTRU)可測量其自己的頻寬,並可在其本地存放區中保存頻寬測量和相應的位置。例如,DASH使用者端(例如WTRU)可在其每次訪問位置時測量其自己的頻寬,並可在其本機存放區中保存頻寬測量和相應的位置。DASH使用者端(例如WTRU)可在下一次訪問該位置之前預測該位置的頻寬,例如在訪問該位置若干次之後。DASH使用者端(例如WTRU)可使用所預測的頻寬和/或移動從DASH媒體呈現伺服器(例如與CBP架構類似)請求合適的視訊分段。 SBP方法的一個優點在於易於實現,不必為了存取LTE網路的頻寬資訊而在網路處需要新節點。在SBP方法中,DASH使用者端(例如WTRU)可能需要習知其頻寬圖,並且在學習階段期間,頻寬預測和/或DASH位元速率選擇可能是不準確的。 第3圖示出了用來改善和/或最佳化視訊品質的本地預測和速率適應的架構。目前位置、時間、速度和/或頻寬用來預測將要到來的位置的速度和/或頻寬。Kalman濾波器可用來預測速度和/或頻寬。狀態轉變參數可通過歷史資料確定。頻寬、速度預測和/或目前緩衝器尺寸可被饋入到位元速率適應演算法,以便選擇合適的位元速率。 歷史資料可包括以下資訊:網路營運商;可用頻寬和/或以位置和/或時間為函數的速度。 本地預測器可檢查WTRU的路線的可用頻寬。如果可用頻寬不足以維持呼叫的品質,則本地預測器可建議(例如通過在GUI上提出建議)使用者採用不同的路線。 在給定該可用頻寬預測的情況下,WTRU可通過多種方式使用該可用頻寬預測。如果在所預測的路徑的一些部分中存在過多的可用頻寬,並且該預測指示路徑的之後部分在之前不具有足夠的頻寬,則WTRU可使用或可以計畫使用一些部分中的過多的可用頻寬來預取將要在路徑的之後部分中使用的內容(假定WTRU具有足夠的緩衝空間)。這可提高未來部分的內容品質。 如果在所預測的路徑的一些部分中不存在過多的可用頻寬,例如,可用頻寬已經完全用於將要在該部分中播放的內容,則WTRU可請求針對該部分請求降低位元速率的內容,且這可使得一些可用頻寬未使用,這些未使用的頻寬可用來預取將要為未來部分播放的內容。這可避免重新緩衝。 單獨頻寬預測方法可導致零通訊開銷,這與協作頻寬預測方法相比是一優點。 第4圖是預取資料的系統和方法的圖的示例。目前無線電存取點可預測WTRU可採用的路線,並且可向該路線上的後續無線電存取點進行通知。該通知可包括以下各項中的一個或多個:WTRU可進入後續無線電存取點的預測時間、WTRU正在消費的資料的源、WTRU正在消費何種資料物件和/或WTRU在未來預計將消費何種資料物件。在預計WTRU將在未來訪問它們各自的服務區域的情況下,這些後續無線電存取點可預取資料。所預取的資料可以被快取,並可在WTRU進入快取了該資料的無線電存取點的服務區域時被發送。 舉例來講,第4圖示出了LTE網路的架構。eNB 1可向eNB 2通知WTRU可能進入eNB 2的服務區域的時間T 。eNB 1可向eNB 2通知WTRU可能需要的資料的源,並且eNB 2可預取所需要的資料。為了輔助從eNB 1到eNB 2的轉變,在eNB 2處預取的資料可與在eNB 1處預取的資料重疊。當WTRU進入eNB 2的服務區域時,WTRU可直接從eNB 2下載資料,這可減少RTT,並可增加輸送量。WTRU可直接從eNB 2下載資料,而不是從網際網路下載資料。該方法可適用於但不限於DASH。 由一個存取點快取的內容可與由下一存取點快取的內容重疊,這可有助於維持內容的連續性。如果預測是不準確的,這可以是有益的。重疊的量可以是預測不準確度的函數。作為示例,針對第4圖中示出的網路,如第5圖所示,可按照回播時間將內容分割(例如按秒)。第一存取點eNB 1可預取從第一秒到第五秒的內容,第二存取點eNB 2可預取從第五秒到第九秒的內容。如第5圖所示,兩個預取的內容可在第5秒重疊。 第6圖是示出了針對WTRU在eNB 1和eNB 2之間轉變的位元速率與時間之間的關係的圖的示例。如第6圖所示,假定WTRU(其可以是DASH視訊播放機)在時刻T 進入eNB 2的服務區域,並且其所緩衝的資料播放至時刻T' 。在不進行預取的情況下,WTRU在T 之後繼續播放低品質的視訊。如果賦能了在eNB 2處的預取,則可在eNB 2處預取高位元速率視訊。由於已經預取了高位元速率視訊並且該高位元速率視訊在存取點處是可用的,所以到WTRU的輸送量可增加。從而,可改善T 之後的視訊位元速率。 輸送量由於以下原因可增加:TCP連接的輸送量(throughput)由下式確定上限:(1) M是最大分段大小,RTT是往返路程時間,P是封包丟失的幾率,以及C是通過TCP實現確定的常數。RTT是RTT_1和RTT_2之和,這兩者分別是UE與eNB之間的往返路程時間和eNB與網際網路伺服器之間的往返路程時間。針對LTE網路,RTT_1通常在30到60毫秒之間,並且針對5G網路,提議為小於1毫秒。RTT通常以RTT_2為主,當連接經過洲際路線時,RTT_2可以是幾百毫秒。當賦能了預取時,RTT減少到RTT_1,這將增加輸送量。 第7圖是客戶端(例如WTRU)、DASH媒體內容提供者和內容分發網路(CDN)邊緣伺服器之間的信令的圖的示例。邊緣伺服器可以與無線存取點(比如eNB)位於同一位置。內容提供者可基於WTRU提供的資訊來預測該路線。客戶端可發送覆蓋範圍更新,這可包括例如以下中的一個或多個:視訊內容的位址(例如,所請求的視訊內容的那一部分)、位元速率、頻寬、位置和速度、和/或電話號碼或其他識別符。客戶端可週期性地向媒體伺服器提供覆蓋範圍更新。內容提供者可預測客戶端(例如WTRU)的路線,決定將要預先快取的邊緣伺服器,和/或可以向客戶端(例如WTRU)發送這些邊緣伺服器的位址。內容提供者可為使用者端建議位元速率。 內容提供者可從包括位置服務的第三方(比如Google等)獲得所預測的路線。可通過多種途徑獲得該位置。例如,與該使用者端相關聯的電話號碼可被傳送到第三方位置服務,以查詢使用者端的位置。 針對單獨方法,使用者端可預測其自己的移動,並且可以向內容提供者發送其未來的位置。媒體伺服器可將媒體資料預先快取到相應的邊緣伺服器(例如,基於由使用者端提供的預測路線資訊)。只是網路的方法可涉及沿路線的多個內容提供者。雲計算可用來減少包括RTT、演算法的計算時間等的延遲。WTRU可使用參照SBP方法描述的相同的預測演算法和位元速率選擇演算法。 在網路中儲存了關於一個或多個WTRU的可用頻寬和速度的歷史資料。網路可預測WTRU的未來位置和/或與該位置相關聯的時間。網路可決定哪個(或哪些)無線存取點可預取WTRU很有可能在未來使用的內容。網路可向使用者端提供關於將要請求的內容的品質和/或位元速率的資訊。 使用者端(例如WTRU)可觀測其目前位置、速度和可用頻寬、裝置類型、和/或相關聯的網路營運商(例如AT&T或Verizon),並向網路中的實體(網路服務增強節點或NSEN)提供該資訊。NSEN可以聚集來自一個或多個使用者端的這種資訊。 NSEN可以預測WTRU在未來可以訪問哪個存取點。NSEN可以指導存取點預取在未來將很有可能被WTRU訪問的內容。 NSEN可向WTRU提供關於WTRU將要在未來需要哪個品質等級(例如,視訊的位元速率)的資訊。該資訊可與WTRU在本地觀測的可用頻寬一起用來決定將請求哪個品質等級。 NSEN可構建預計可用頻寬的圖,例如,根據位置、時間、一周中的天、網路營運商、裝置類型中的一個或多個。針對特定的WTRU,NSEN可使用例如該WTRU的目前位置、速度、可用頻寬、使用相同網路的其他裝置的訊務需求和其他裝置的數量中的一個或多個來細緻化對可用頻寬的預測。 可基於對目前和/或之前行程的測量來預測未來位置處的可用頻寬和/或車輛速度。預測方法和系統可與CBP和SBP架構兩者都合作工作。預測方法和系統可包含移動預測和/或頻寬預測,它們分別預測未來位置處的車輛速度和可用頻寬。針對移動和頻寬預測的演算法可以相似。 以下描述頻寬預測演算法的示例。假定給定了行進路線並且將其分成具有相等長度L的多個分段,舉例來講,L=300米。分別使用Vi和Bi來表示第i個分段處的車輛速度和頻寬的隨機變數。令隨機變數bi為第i個分段處測量的頻寬。一般地,測量是不準確的,並且包含隨機變化。如果進行重複行程,以便收集歷史資料,則令為在第t個行程期間第i 個分段處測量的頻寬。基於目前測量的頻寬,在歷史測量的幫助下,頻寬預測可產生對頻寬的更為精確的估計,並且還可預測後續分段中的可用頻寬。預測方法基於Kalman濾波器,這在車輛導航中廣泛應用。可將頻寬建模為以下形式:(2) 針對所有的i是從的狀態轉變參數,且是過程雜訊,假定該過程雜訊是從具有方差的零均值高斯分佈提取的。假定針對所有的獨立。在第i 個分段處,從以下模型中獲得對頻寬的測量:(3) 其中ni是測量誤差,假定其是從具有方差qi的零均值高斯分佈提取的。假定ni針對所有的j與Bj、bj和Nj獨立。 在執行Kalman濾波之前,可從歷史資料確定(1)和(2)中的參數。從(1)和(2)測量的頻寬bi+1、bi和bi-1可被表達為:測量的頻寬bi+1的均值可被寫為:由於隨機變數Bi-1、Ni-1和ni的獨立性,測量的頻寬bi的方差可根據(4)得到,由於隨機變數Bi、Ni和ni針對所有i的獨立性,可獲得以下協方差,參見上式,測量的頻寬的均值、方差和協方差可通過歷史資料的樣本均值、樣本方差和樣本協方差來估計,其中。則等式變成: 假定是已知的,事實上它們可以是在如下所述的演算法的之前步驟中獲得的。以上等式(13)-(21)中的左手側可以通過函數來表示。確定簡化到解以下最佳化問題,該演算法可按如下所述寫出。該演算法可離線執行,並且不會增加DASH層的複雜性或潛時。參數可被提供給DASH層。在一個示例中,該演算法包括以下內容: 示例演算法1:分別確定雜訊Ni和ni的狀態轉變參數和/或方差使用該參數,系統和方法可使用Kalman濾波器預測以下分段處的頻寬。令Ki為第i個分段處的Kalman增益,為預測估計誤差方差。當測量bi可用時,可通過下式來更新該估計:其中,是沒有的先驗估計(prior estimate),而是更新的估計。可按下式計算更新的估計的誤差方差:可計算針對下一分段的先驗估計,並且可計算針對下一分段的預測估計誤差方差和Kalman增益:可使用Kalman濾波器。使用對第i個分段的bi的測量,可預測下一分段的速度。 與上述頻寬預測類似,可通過以下等式來對車輛速度建模:其中,是第i個分段處的測量速度;是從的狀態轉變參數,以及是過程雜訊和測量雜訊,它們是獨立的,並且假定分別從具有方差的零均值高斯分佈提取。在該系統和方法中,可預測目前分段的測量的下一分段的速度。根據以上示例演算法1和Kalman濾波器,可以獲得下一分段的預測頻寬。 雖然可用頻寬可改變並且在一些示例中可在無線網路中相對快速地改變,但是在一天中的同一時刻以及一周中的同一天(例如,或與週末相對的工作日)測量的相同位置處的頻寬示出一定的相似性。基於該觀測,系統和方法可選擇一天中的同一時刻以及一周中的同一天的測量作為歷史資料,以計算mi、,並且最佳化上述問題(Ai)中的、Qi-1和qi。 視訊位元速率適應演算法可應用於多種應用(例如,DASH或另一應用)。視訊位元速率適應可使用基於對目前和/或之前行程的測量對未來位置處的可用頻寬和/或車輛速度進行的預測。例如,在視訊位元速率適應中,假定目前分段的測量是可用的,並且針對下一分段的預測是可用的。位元速率適應演算法的目標是選擇位元速率以改善和/或最大化視訊品質,且這可在避免緩衝器下溢的情況下實現。假定分段(例如每個分段)的長度是L米。在一個示例中,該演算法針對後續M個分段最佳化視訊品質。通過BS表示即時測量的目前緩衝器大小,其是緩衝資料的視訊重播時間。令為第i+j個分段的預測速度和預測頻寬(當第i個分段之前的測量(例如,只是測量)是分別可用時),其中針對。通過第i+m個分段的持續時間()是在第i+m個分段期間下載的總資料是如果緩衝器大小BS不大於下界BS_low,則有顯著大的幾率發生重新緩衝,並且該使用者端可被強制切換到最低位元速率。否則,為了避免重新緩衝,可使用下式:, (36) 針對,其中BR是所選位元速率。根據以上不等式:時,所選位元速率具有上界,時,不可對BR施加任何上界。 位元速率適應演算法可如下所示。在一個示例中,演算法包括以下內容: __________________________________________________________________示例演算法 2 :針對 ,給定預測速度 和預測可用頻寬 以及目前緩衝器大小 BS ,確定視訊位元速率的上界,以避免重新緩衝,和 / 或選擇位元速率以最大化視訊品質。 __________________________________________________________________ 媒體呈現描述(MPD)可包含媒體流的資訊,例如編解碼器、媒體分段的持續時間和/或每個表示的解析度和頻寬。可獲得來自上述演算法2的最大位元速率BR_max。下一個具有不大於BR_max的最高位元速率的視訊表示可被選擇。 在示例演算法2的第13行中,最大值可取代MPD檔案中規定的可用位元速率。例如,MPD檔案可如下包含10個位元速率:另一應用是視訊電話。使用視訊電話,WTRU可維持可用頻寬的測量,並可經由CBP與其他使用者共用該測量。當使用者進行視訊呼叫時,應用可以檢查WTRU移動所沿的線路的可用頻寬。如果可用頻寬不足以維持呼叫的品質,則應用可建議(例如通過在GUI上提出建議)使用者採用不同的路線。 這裡描述的系統和方法可基於對目前和之前行程的測量來預測可用頻寬。此外,系統和方法可包括針對應用的視訊位元速率應用演算法,該應用包括DASH,該DASH涉及確定預測頻寬和/或考慮目前緩衝器大小。該系統和方法可實現於LTE網路或其他無線網路中。在一個示例中,WTRU具有自包含的(self-contained)使用者端。舉例來講,WTRU可具有增強型DASH使用者端和/或可以演算法程式化,以構建位置和輸送量的歷史資料庫。歷史資料庫可包括以下各項中的任何或全部:記錄位置歷史與時間的關係,以及識別模式;記錄行程速度歷史和/或速度/位置的改變等,以及記錄頻寬/輸送量歷史與時間和位置的關係。WTRU使用者可通過使用以下各項中的任何或全部來選擇視訊內容進行流傳輸(例如,經由網站或DASH使用者端或其他流傳輸使用者端):使用者端獲得內容資訊(例如,DASH MPD)並且開始對內容進行流傳輸;使用者端隨著穿過的路線觀測位置狀態(例如位置、速度、進展。。。);使用者端使用歷史(例如位置/輸送量模式)、內容資訊和/或位置狀態,以預測(例如,並且週期性地更新預測)路徑與時間和/或BW/輸送量與時間的關係。使用前述內容的任何或全部,使用者端可提前計畫,並可執行預測性的本地快取(例如預取),以便改善重播品質並防止重新緩衝。例如,如果沿WTRU路徑的部分被預測為不具有足夠的頻寬來進行高品質流傳輸,則使用者端可提前預取所需要的內容分段的高品質版本。例如,WTRU可使用該路徑的之前部分中的過多的可用頻寬。這假定WTRU具有足夠的緩衝來進行預取。在實現該演算法的過程中考慮本地快取管理。如果沿WTRU路徑的部分被預測為不具有足夠的頻寬來進行高品質流傳輸,則如果路徑的之前部分中不存在過多的可用頻寬的話,WTRU可提前預取所需要的內容分段的低品質版本。在網路側可能不需要任何改變,並且不需要在WTRU和網路之間進行任何特別/附加通訊。可經由例如可下載app或增強型DASH使用者端,完全在WTRU內實現該實施。 系統和方法包括使用網路中的預測性快取的使用者端路徑預測。WTRU可具有增強型DASH使用者端,其與網路進行通訊,以便實現預測性的預取,以對與網路存取點相關聯的(例如位置相同的)的元素進行快取。使用者端可被裝備為進行以下各項中的任何或全部:記錄位置歷史與時間的關係,以及識別模式;記錄行程速度歷史、速度/位置的改變等;以及記錄頻寬/輸送量歷史與時間和位置的關係。使用者可通過使用以下各項中的任何或全部來選擇視訊內容進行流傳輸(例如,經由網站或DASH使用者端或其他流傳輸使用者端):使用者端獲得內容資訊(例如,dash mpd)並且開始對內容進行流傳輸;使用者端隨著穿過的路線觀測位置狀態(例如位置、速度、進展...);使用者端使用歷史(例如位置/輸送量模式)、內容資訊和/或位置狀態,以預測(例如,並且週期性地更新預測)路徑與時間的關係;並且使用者端向網路發送對路徑與時間的關係的更新。 網路可確定改善和/或最佳化的預取針對內容分段的位置(例如,與網路存取點位於同一位置的特定快取)和時間。針對預計當使用者端經過網路存取點的通訊範圍內時使用者端所需的內容(基於所預測的路徑與時間的關係),可預取內容。網路可以基於在WTRU可能經過網路存取點的通訊範圍的時刻針對該WTRU的預計可用頻寬以特定位元速率將內容預取到特定網存取點的快取。網路可以(例如可選地)向WTRU提供訊息,該訊息指示將要請求的一個或多個較佳位元速率,這可以基於網路對存取點處的可用頻寬的瞭解和/或對在存取點處已經預測性地快取的位元速率的瞭解。隨著WTRU走過該路徑,WTRU可向網路發送對預測的路徑和時間的關係的更新。WTRU可請求內容分段,以對該內容進行獲取、解碼和重播。WTRU可從網路接收指示將要請求的一個或多個較佳位元速率的訊息。WTRU或網路可基於以下中的任何或全部確定將要請求的位元速率:關於該內容的資訊(例如,DASH MPD)、WTRU的記錄的位置&頻寬/輸送量與時間的關係的歷史,和/或基於網路所發送的一個或多個較佳的位元速率。 WTRU可具有標準DASH使用者端,該DASH使用者端可能不會意識到也不會具有與網路的基於位置的預測功能相關的特別信令。WTRU可向網路中的實體報告對位置和/或可用網路頻寬的觀測。這可以是現有位置服務和網路回饋的一部分;這與增強型DASH使用者端的功能相對。例如,許多電話預設地將位置服務和相關的報告開啟,或用來支援其他應用。網路可為使用者端記錄對位置和/或可用網路頻寬的觀測(以及相關聯的觀測時間)。網路可聚集來自多個使用者端的可用網路頻寬資料,以便構建預計可用網路頻寬的圖。該圖可以是位置、時間、和/或一周中的日子的函數。WTRU可請求流傳輸內容(例如,請求MPD;開始DASH會話)。網路可基於記錄的對WTRU的過去的位置&時間的觀測和/或基於WTRU的目前位置、方向和/或速度來預測WTRU的路徑。網路可預測(例如基於WTRU的目前位置/速度,以及WTRU正在請求的目前內容分段)如何將未來內容預取到與沿WTRU的預測路徑的網路存取點相關聯的快取。要預取的內容分段可以基於使用者可能處於特定網路存取點的範圍中的預測時間處將要需要的預測分段。將要獲取的內容分段的位元速率可以基於在預測時間和位置處的預計可用網路頻寬。網路可(例如可選地)向WTRU提供訊息,該訊息指示內容分段和/或WTRU應該請求的位元速率(例如,其推薦WTRU請求內容分段的合適位元速率)。這些內容分段和/或位元速率可以基於網路已經選擇用來預取到位於給定網路存取點處的快取的位元速率。訊息可以是推薦位元速率的顯式信令。訊息可採用更新的MPD的形式。例如,更新的MPD可限制針對給定內容分段列出的可用位元速率。更新的MPD的受限可用位元速率可反映在快取中預取並且可用的內容分段的一個或多個位元速率。可能不會對WTRU上的DASH使用者端進行修改。WTRU可繼續沿該路徑行進,並可以隨著其行進接收所需的視訊分段。WTRU可接收、解碼並重播視訊分段。 使用SBP方法的示例進行了測試(例如,參照第2圖所述)。在該測試中,DASH MPD伺服器是運行在Ubuntu 14.04上的Apache網路伺服器,其還容宿(host)Javascript程式DASH.sj。在該測試中,WTRU是存取Verizon LTE網路的三星Galaxy Tab 4。在測試中使用了視訊序列“Big Buck Bunny”,並且該視訊序列是通過DASH.sj程式提供的。所使用的視訊序列具有大約600秒的持續時間,並且視訊分段(例如,每個視訊分段)包含大約三秒的視訊內容。存在十種視訊位元速率:0.23、0.33、0.45、0.67、0.99、1.43、2.06、2.96、5.03和6 Mbps。 在實驗中,在聖地牙哥地區選擇了兩條路線。兩條路線具有相同的起點和終點。第一條路線大多在高速路上,而另一條路線則主要在當地街道上。在2014年9月到2015年1月間,在兩條路線上在雙向進行了多於三十五次的重複實驗。實驗是在高峰時段和非高峰時段兩者中進行的,而且結果,每個都持續大約20分鐘到大約50分鐘。每條路線都被分成大約300米的分段。 歷史資料被收集(這模仿測量的積累),例如人規律地通勤上班。針對每條路線,存在歷史資料的相應集合。該資料包含位置和速度,這是由使用者端上的GPS裝置提供的,其準確度為4米,該資料還包括通過將下載資料的大小除以請求和接收之間的持續時間獲得的頻寬。在分段中,可獲得多於一次測量,並且如果這樣的話,分段中所有測量的平均被用作針對該分段的測量。使用歷史資料,上述演算法1可離線運行,以確定狀態轉變模型中的參數,並且它們被饋入DASH播放機。通過向DASH.js使用Kalman濾波器和位元速率適應演算法來實現預測。 對性能進行評估。考慮頻寬預測演算法的準確性。在第8圖中,示出了預測頻寬和測量頻寬之差的百分比的累積分佈函數(CDF)。幾乎60%的預測的誤差小於20%。由於將視訊位元速率量化成0.23Mbps到6Mbps的10個級別,位元速率選擇演算法在誤差小於20%的情況下仍能做出正確決定。 在第9圖和第10圖中,示出了在相同的通道實現下通過該演算法和Thang氏演算法選擇的視訊位元速率。Thang氏演算法計算測量頻寬的移動平均而作為預測,並且然後選擇不大於該預測的最大可用位元速率。Thang氏演算法的性能是通過使用從使用上述高速公路資料運行的實驗獲得的歷史資料(可用頻寬作為時間/分段的函數)進行的類比獲得的。第10圖的示例中示出了通過該演算法的示例選擇的位元速率的平均值大於通過Thang氏演算法選擇的位元速率的平均值,在第11圖中,通過這兩種演算法的視訊位元速率的CDF來確認了這一點。所揭露的演算法與Thang氏演算法相比提供了更為平滑的位元速率選擇,其中針對所揭露的演算法的切換幾率是6.1%,而對於Thang氏演算法則是27.8%。 系統和方法預測可用頻寬,並且可以基於目前和之前行程的測量來這樣做。該系統和方法可提供針對DASH的視訊位元速率適應演算法。該系統和方法可考慮預測頻寬和/或目前緩衝器大小。在LTE網路中進行的測試示出了所揭露的系統和方法在對視訊使用者端的QoE的改善是如何有效的。 第12A圖為可以實現一個或多個揭露的實施例所在的示例通訊系統100的示意圖。該通訊系統100可以是將諸如語音、資料、視訊、訊息發送、廣播等之類的內容提供給多個無線使用者的多重存取系統。該通訊系統100可以通過系統資源(包括無線頻寬)的共用使得多個無線使用者能夠存取這些內容。例如,該通訊系統100可以使用一種或多種通道存取方法,例如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)等等。 如第12A圖所示,通訊系統100可以包括無線發射/接收單元(WTRU)102a、102b、102c和/或102d(一般或統稱為WTRU 102)、無線電存取網路(RAN)103/104/105、核心網路106/107/109、公共交換電話網路(PSTN)108、網際網路110和其他網路112,但將理解的是所揭露的實施例可實施任意數量的WTRU、基地台、網路和/或網路元件。WTRU 102a、102b、102c、102d中的每一個可以是被配置成在無線環境中運行和/或通訊的任何類型的裝置。作為示例,WTRU 102a、102b、102c、102d可以被配置成發送和/或接收無線信號,並且可以包括使用者設備(UE)、WTRU、固定或移動訂戶單元、傳呼機、行動電話、個人數位助理(PDA)、智慧型電話、可擕式電腦、上網本、個人電腦、無線感測器、消費電子產品等等。 通訊系統100還可以包括基地台114a和基地台114b。基地台114a、114b中的每一個可以是被配置成與WTRU 102a、102b、102c、102d中的至少一者有無線介面,以便於存取一個或多個通訊網路(例如,核心網路106/107/109、網際網路110和/或網路112)的任何類型的裝置。例如,基地台114a、114b可以是基地台收發站(BTS)、節點B、e節點B、家用節點B、家用e節點B、網站控制器、存取點(AP)、無線路由器等。儘管基地台114a、114b每個均被描述為單個元件,但是基地台114a、114b可以包括任何數量的互聯基地台和/或網路元件。 基地台114a可以是RAN 103/104/105的一部分,該RAN還可以包括諸如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點之類的其他基地台和/或網路元件(未示出)。基地台114a和/或基地台114b可以被配置成發送和/或接收特定地理區域內的無線信號,該特定地理區域可以被稱作胞元(未示出)。胞元還可以被劃分成胞元扇區。例如與基地台114a相關聯的胞元可以被劃分成三個扇區。由此,在一種實施方式中,基地台114a可以包括三個收發器,即針對該胞元的每個扇區都有一個收發器。基地台114a可以使用多輸入多輸出(MIMO)技術,並且可以使用針對胞元的每個扇區的多個收發器。 基地台114a、114b可以通過空中介面115/116/117與WTRU 102a、102b、102c、102d中的一者或多者通訊,該空中介面115/116/117可以是任何合適的無線通訊鏈路(例如,射頻(RF)、微波、紅外(IR)、紫外(UV)、可見光等)。空中介面115/116/117可以使用任何合適的無線電存取技術(RAT)來建立。 更具體地,如上所述,通訊系統100可以是多重存取系統,並且可以使用一種或多種通道存取方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等。例如,在RAN 103/104/105中的基地台114a和WTRU 102a、102b、102c可以實施諸如通用移動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,其可以使用寬頻CDMA(WCDMA)來建立空中介面115/116/117。WCDMA可以包括諸如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)的通訊協定。HSPA可以包括高速下行鏈路封包存取(HSDPA)和/或高速上行鏈路封包存取(HSUPA)。 基地台114a和WTRU 102a、102b、102c可以實施諸如演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,其可以使用長期演進(LTE)和/或高級LTE(LTE-A)來建立空中介面115/116/117。 基地台114a和WTRU 102a、102b、102c可以實施諸如IEEE 802.16(即,全球互通微波存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球移動通訊系統(GSM)、增強型資料速率GSM演進(EDGE)、GSM EDGE(GERAN)之類的無線電技術。 第12A圖中的基地台114b可以是例如無線路由器、家用節點B、家用e節點B或者存取點,並且可以使用任何合適的RAT,以用於促進在諸如商業區、家庭、車輛、校園之類的局部區域的無線連接。在一個實施方式中,基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.11之類的無線電技術以建立無線區域網路(WLAN)。基地台114b和WTRU 102c、102d可以實施諸如IEEE 802.15之類的無線電技術以建立無線個人區域網路(WPAN)。基地台114b和WTRU 102c、102d可以使用基於胞元的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A等)以建立微微(picocell)胞元或毫微微胞元(femtocell)。如第12A圖所示,基地台114b可以具有至網際網路110的直接連接。由此,基地台114b可不經由核心網路106/107/109來存取網際網路110。 RAN 103/104/105可以與核心網路106/107/109通訊,該核心網路106/107/109可以是被配置成將語音、資料、應用和/或網際網路協定語音(VoIP)服務提供到WTRU 102a、102b、102c、102d中的一者或多者的任何類型的網路。例如,核心網路106/107/109可以提供呼叫控制、帳單服務、基於移動位置的服務、預付費呼叫、網際網路互聯、視訊分配等,和/或執行高級安全性功能,例如使用者驗證。儘管第12A圖中未示出,RAN 103/104/105和/或核心網路106/107/109可以直接或間接地與其他RAN進行通訊,這些其他RAN使用與RAN 103/104/105相同的RAT或者不同的RAT。例如,除了連接到可以採用E-UTRA無線電技術的RAN 103/104/105,核心網路106/107/109也可以與使用GSM無線電技術的其他RAN(未顯示)通訊。 核心網路106/107/109也可以用作WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供普通老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用公共通訊協定的互聯電腦網路及裝置的全球系統,該公共通訊協定例如是傳輸控制協定(TCP)/網際網路協定(IP)網際網路協定套件中的傳輸控制協定(TCP)、使用者資料包通訊協定(UDP)和網際網路協定(IP)。該網路112可以包括由其他服務提供者擁有和/或營運的無線或有線通訊網路。例如,網路112可以包括連接到一個或多個RAN的另一核心網路,這些RAN可以使用與RAN 103/104/105相同的RAT或者不同的RAT。 通訊系統100中的WTRU 102a、102b、102c、102d中的一些或者全部可以包括多模式能力,即WTRU 102a、102b、102c、102d可以包括用於通過不同的無線鏈路與不同的無線網路進行通訊的多個收發器。例如,第12A圖中顯示的WTRU 102c可以被配置成與可使用基於胞元的無線電技術的基地台114a進行通訊,並且與可使用IEEE 802無線電技術的基地台114b進行通訊。 第12B圖是示例WTRU 102的系統圖。如第12B圖所示,WTRU 102可以包括處理器118、收發器120、發射/接收元件122、揚聲器/麥克風124、數字鍵盤126、顯示器/觸控板128、不可移動記憶體130、可移動記憶體132、電源134、全球定位系統(GPS)晶片組136和其他週邊設備138。將理解的是,在保持與實施例一致的情況下,WTRU 102可以包括上述元件的任何子集。同樣,實施例可設想基地台114a和114b和/或基地台114a和114b可表示的節點(比如收發器站(BTS)、節點B、網站控制器、存取點(AP)、家庭節點B、演進型家庭節點B(e節點B)、家庭演進型節點B(HeNB)、家庭演進型節點B閘道和代理伺服器節點等)可包括第12B圖和這裡所述的元件中的一些或全部。 處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心相關聯的一個或多個微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、任何其它類型的積體電路(IC)、狀態機等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理和/或使得WTRU 102能夠運行在無線環境中的其他任何功能。處理器118可以耦合到收發器120,該收發器120可以耦合到發射/接收元件122。儘管第12B圖中將處理器118和收發器120描述為分別的組件,但是處理器118和收發器120可以被一起整合到電子封包或者晶片中。 發射/接收元件122可以被配置成通過空中介面115/116/117將信號發送到基地台(例如,基地台114a),或者從基地台(例如,基地台114a)接收信號。例如,發射/接收元件122可以是被配置成發送和/或接收RF信號的天線。發射/接收元件122可以是被配置成發送和/或接收例如IR、UV或者可見光信號的發射器/檢測器。發射/接收元件122可以被配置成發送和接收RF信號和光信號兩者。發射/接收元件122可以被配置成發送和/或接收無線信號的任意組合。 儘管發射/接收元件122在第12B圖中被描述為單個元件,但是WTRU 102可以包括任何數量的發射/接收元件122。更具體地,WTRU 102可以使用MIMO技術。由此,在一個實施方式中,WTRU 102可以包括兩個或更多個發射/接收元件122(例如,多個天線)以用於通過空中介面115/116/117發射和/或接收無線信號。 收發器120可以被配置成對將由發射/接收元件122發送的信號進行調變,並且被配置成對由發射/接收元件122接收的信號進行解調。如上所述,WTRU 102可以具有多模式能力。由此,收發器120可以包括多個收發器以用於使得WTRU 102能夠經由多個RAT進行通訊,例如UTRA和IEEE 802.11。 WTRU 102的處理器118可以被耦合到揚聲器/麥克風124、數字鍵盤126和/或顯示器/觸控板128(例如,液晶顯示器(LCD)顯示單元或者有機發光二極體(OLED)顯示單元),並且可以從上述裝置接收使用者輸入資料。處理器118還可以向揚聲器/麥克風124、數字鍵盤126和/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以存取來自任何類型的合適的記憶體中的資訊,以及在任何類型的合適的記憶體中儲存資料,該記憶體例如可以是不可移動記憶體130和/或可移動記憶體132。不可移動記憶體器130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或者任何其他類型的記憶體儲存裝置。可移動記憶體器132可以包括訂戶身份模組(SIM)卡、記憶棒、安全數位(SD)記憶卡等。在其他實施方式中,處理器118可以存取來自實體上未位於WTRU 102上(例如位於伺服器或者家用電腦(未示出)上)的記憶體的資料,以及向上述記憶體中儲存資料。 處理器118可以從電源134接收電能,並且可以被配置成將該電能分配給WTRU 102中的其他組件和/或對至WTRU 102中的其他元件的電能進行控制。電源134可以是任何適用於給WTRU 102供電的裝置。例如,電源134可以包括一個或多個乾電池(鎳鎘(NiCd)、鎳鋅(NiZn)、鎳氫(NiMH)、鋰離子(Li-ion)等)、太陽能電池、燃料電池等。 處理器118還可以耦合到GPS晶片組136,該GPS晶片組136可以被配置成提供關於WTRU 102的目前位置的位置資訊(例如,經度和緯度)。WTRU 102可以通過空中介面115/116/117從基地台(例如,基地台114a、114b)接收加上或取代GPS晶片組136的資訊位置資訊,和/或基於從兩個或更多個相鄰基地台接收到的信號的定時(timing)來確定其位置。在保持一致於實施例的同時,WTRU 102可以通過任何合適的位置確定方法來獲取位置資訊。 處理器118還可以耦合到其他週邊設備138,該週邊設備138可以包括提供附加特徵、功能和/或無線或有線連接的一個或多個軟體和/或硬體模組。例如,週邊設備138可以包括加速度計、電子指南針(e-compass)、衛星收發器、數位相機(用於照片或者視訊)、通用序列匯流排(USB)埠、震動裝置、電視收發器、免持耳機、藍芽®模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲機模組、網際網路瀏覽器等等。 第12C圖為根據一個實施方式的RAN 103及核心網路106的示例系統圖。如上所述,RAN 103可使用UTRA無線電技術通過空中介面115與WTRU 102a、102b和102c通訊。RAN 103還可以與核心網路106進行通訊。如第12C圖所示,RAN 103可包括節點B 140a、140b、140c,節點B 140a、140b、140c每一者均可包括一個或多個用於通過空中介面115與WTRU 102a、102b、102c通訊的收發器。節點B 140a、140b、140c中的每一者均可與RAN 103中的特定胞元(未示出)相關聯。RAN 103還可以包括RNC 142a、142b。將理解的是,在保持與實施例一致的情況下,RAN 103可以包括任意數量的節點B和RNC。 如第12C圖所示,節點B 140a、140b可以與RNC 142a通訊。此外,節點B 140c可以與RNC 142b通訊。節點B 140a、140b、140c可以經由Iub介面與各自的RNC 142a、142b通訊。RNC 142a、142b可以經由Iur介面彼此通訊。RNC 142a、142b的每一個可以被配置成控制其連接的各自的節點B 140a、140b、140c。此外,RNC 142a、142b的每一個可以被配製成執行或支持其他功能,例如外環功率控制、負載控制、准許控制、封包排程、交接控制、巨集分集、安全功能、資料加密等。 第12C圖中示出的核心網路106可以包括媒體閘道(MGW)144、移動交換中心(MSC)146、服務GPRS支援節點(SGSN)148和/或閘道GPRS支持節點(GGSN)150。儘管前述每一個元件被描述為核心網路106的一部分,但這些元件的任何一個可以由除核心網路營運方之外的實體所擁有和/或操作。 RAN 103中的RNC 142a可以經由IuCS介面連接到核心網路106中的MSC 146。MSC 146可以連接到MGW 144。MSC 146和MGW 144可以給WTRU 102a、102b、102c提供對例如PSTN 108的電路切換式網路的存取,以促進WTRU 102a、102b、102c與傳統路線通訊裝置之間的通訊。 RAN 103中的RNC 142a還可以經由IuPS介面連接到核心網路106中的SGSN 148。SGSN 148可以連接到GGSN 150。SGSN 148和GGSN 150可以給WTRU 102a、102b、102c提供對例如網際網路110的封包交換網路的存取,以促進WTRU 102a、102b、102c與IP賦能裝置之間的通訊。 如上所述,核心網路106還可以連接到網路112,網路112可以包括其他服務提供者擁有和/或營運的其他有線或無線網路。 第12D圖為根據一個實施方式的RAN 104及核心網路107的系統圖。如上所述,RAN 104可使用E-UTRA無線電技術通過空中介面116與WTRU 102a、102b和102c通訊。RAN 104可以與核心網路107進行通訊。 RAN 104可包括e節點B 160a、160b、160c,將理解的是,在保持與實施例一致的情況下,RAN 104可以包括任意數量的e節點B。e節點B 160a、160b、160c每一者均可包括用於通過空中介面116與WTRU 102a、102b、102c通訊的一個或多個收發器。e節點B 160a、160b、160c可以實施MIMO技術。從而,例如e節點B 160a可以使用多個天線來向WTRU 102a發射無線信號並從WTRU 102a接收無線信號。 e節點B 160a、160b、160c中的每一個可以與特定胞元(未示出)相關聯,並可被配置為處理無線電資源管理決定、交接決定、在上行鏈路和/或下行鏈路中對使用者進行排程等。如第12D圖所示,e節點B 160a、160b、160c可以在X2介面上互相通訊。 第12D圖中示出的核心網路107可以包括移動性管理閘道(MME)162、服務閘道164和封包資料網(PDN)閘道166。雖然上述元素中的每一個都被描述為核心網路107的一部分,但應當理解的是,這些元素中的任何一個都可被不同於核心網路營運商的實體所擁有和/或操作。 MME 162可經由S1介面連接到RAN 104中的e節點B 160a、160b、160c中的每一個,並可充當控制節點。例如,MME 162可負責認證WTRU 102a、102b、102c的使用者、承載啟動/去啟動、在WTRU 102a、102b、102c的初始附著期間選擇特定服務閘道,等等。MME 162還可提供控制平面功能,以用於在RAN 104和使用其它無線電技術(比如GSM或WCDMA)的其它RAN(未示出)之間進行切換。 服務閘道164可經由S1介面連接到RAN 104中的e節點B 160a、160b、160c中的每一個。服務閘道164可以一般地向/從WTRU 102a、102b、102c路由並轉發使用者資料封包。服務閘道164還可執行其它功能,比如在e節點B間交接期間錨定使用者平面、當下行鏈路資料對WTRU 102a、102b、102c是可用的時觸發傳呼、管理並儲存WTRU 102a、102b、102c的上下文等等。 服務閘道164還可連接到PDN 166,其可向WTRU 102a、102b、102c到封包交換網路(比如網際網路110)的存取,以促進WTRU 102a、102b、102c和IP賦能裝置之間的通訊。 核心網路107可以促進與其它網路的通訊。例如,核心網路107可以向WTRU 102a、102b、102c提供到電路切換式網路(比如PSTN 108)的存取,以促進WTRU 102a、102b、102c和傳統陸線通訊裝置之間的通訊。例如,核心網路107可以包括充當核心網路107與PSTN 108之間的介面的IP閘道(例如IP多媒體子系統(IMS)伺服器)或者可以與該IP閘道通訊。此外,核心網路107可以向WTRU 102a、102b、102c提供到網路112的存取,其可包括由其他服務提供者擁有和/或操作的其它有線或無線網路。 第12E圖是根據一個實施方式的RAN 105和核心網路109的系統圖。RAN 105可以是利用IEEE 802.16無線電技術通過空中介面117與WTRU 102a、102b、102c進行通訊的存取服務網路(ASN)。如將在下面進一步討論的,WTRU 102a、102b、102c、RAN 105和核心網路109中的不同功能實體之間的通訊鏈路可被定義為參考點。 如第12E圖中所示,RAN 105可包括基地台180a、180b、180c和ASN閘道182,但將理解的是,在保持與實施例一致的情況下,RAN 105可以包括任意數量的基地台和ASN閘道。基地台 180a、180b、180c每一個都與RAN 105中的特定胞元(未示出)相關聯並且均可包括用於通過空中介面117與WTRU 102a、102b、102c通訊的一個或多個收發器。在一個實施方式中,基地台180a、180b、180c可以實施MIMO技術。從而,舉例來講,基地台180a可以使用多個天線來向WTRU 102a發射無線信號並從WTRU 102a接收無線信號。基地台180a、180b、180c還可提供移動性管理功能,比如交遞觸發、隧道建立、無線電資源管理、訊務分類、服務品質(QoS)策略執行等。ASN閘道182可以充當流量聚集點並可負責傳呼、快取訂戶設定檔、路由到核心網路109等。 WTRU 102a、102b、102c與RAN 105之間的空中介面117可被定義為實施IEEE 802.16規範的R1參考點。此外,WTRU 102a、102b、102c中的每一個可與核心網路109建立邏輯介面(未示出)。WTRU 102a、102b、102c和核心網路109之間的邏輯介面可被定義為R2參考點,其可用於認證、授權、IP主機配置管理、和/或移動性管理。 基地台180a、180b、180c中的每一個之間的通訊鏈路可被定義為包括用於促進WTRU交接和基地台之間的資料轉移的協定的R8參考點。基地台180a、180b、180c和ASN閘道182之間的通訊鏈路可被定義為R6參考點。R6參考點可包括用於基於與WTRU 102a、102b、102c中的每一個相關聯的移動性事件促進移動性管理的協定。 如第12E圖所示,RAN 105可連接到核心網路109。RAN 105和核心網路109之間的通訊鏈路可被定義為例如包括用於促進資料轉移和移動性管理能力的協定的R3參考點。核心網路109可包括移動性IP家庭代理(MIP-HA)184、認證、授權、記帳(AAA)伺服器186、和閘道188。雖然上述元素中的每一個都被描述為核心網路109的一部分,但應當理解的是,這些元素中的任何一個都可被不同於核心網路營運商的實體所擁有和/或操作。 MIP-HA可負責IP位址管理,並可使得WTRU 102a、102b、102c能夠在不同ASN和/或不同核心網路之間漫遊。MIP-HA 184可以向WTRU 102a、102b、102c提供到封包交換網路(比如網際網路110)的存取,以促進WTRU 102a、102b、102c和IP賦能裝置之間的通訊。AAA伺服器186可負責使用者認證和支援使用者服務。閘道188可促進與其它網路的交互工作。例如,閘道188可向WTRU 102a、102b、102c提供到電路切換式網路(比如PSTN 108)的存取,以促進WTRU 102a、102b、102c和傳統陸線通訊裝置之間的通訊。此外,閘道188可向WTRU 102a、102b、102c提供到網路112的存取,該網路112可包括由其他服務提供者擁有或操作的其它有線或無線網路。 雖然第12E圖中未示出,但應當理解的是,RAN 105可以連接到其它ASN,並且核心網路109可連接到其它核心網路。RAN 105和其它ASN之間的通訊鏈路可被定義為R4參考點,R4參考點可包括用於在RAN 105和其它ASN之間協調WTRU 102a、102b、102c的移動性的協定。核心網路109和其它核心網路之間的通訊鏈路可被定義為R5參考,其可包括用於促進家庭核心網路和訪問核心網路之間的交互工作之協定。 雖然上面以特定組合的方式描述了特徵和元素,但是本領域技術人員應當理解,每個特徵或元素都可單獨使用,或與其他特徵和元素進行各種組合。此外,此處所述的方法可在結合至電腦可讀媒體中的電腦程式、軟體或韌體中實現,以由電腦或處理器執行。電腦可讀媒體的示例包括電子信號(通過有線或無線連接傳送)和電腦可讀儲存媒體。電腦可讀儲存媒體的例子包括但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體存放裝置、例如內置磁片和抽取式磁碟的磁媒體、磁光媒體和光媒體(例如CD-ROM碟片和數位多用途碟片(DVD))。與軟體相關聯的處理器可被用於實施在WTRU、UE、終端、基地台、RNC或任何主機中使用的射頻收發器。The illustrative embodiments are now described in detail with reference to the various drawings. While these descriptions provide specific examples of possible implementations, it should be noted that these details are not intended to be limiting, and do not limit the scope of the application. Systems and methods for adaptively streaming video content to a wireless transmit/receive unit (WTRU) can improve the QoE ("experience quality") of the application by predicting the available bandwidth. The prediction may be based on previous measurements of past and/or current itineraries, and/or prefetched data. Although the available bandwidth can be changed and can be changed quickly in a wireless network, the bandwidth at the same time of day and the same location measured on the same day of the week (or, for example, a weekday or weekend) can be Shows significant similarities. This observation can provide an opportunity to predict the available bandwidth for the same location in the future. Using this prediction, the system can improve and/or optimize the bit rate selection algorithm for DASH to improve video quality based on the video bit rate. This increase and/or optimization may avoid re-buffering and/or may reduce the frequency of video bit rate switching. This prediction can be used for other applications and/or can be used to provide user feedback for route selection. The serving radio access point can now notify the next radio access point, which can then prefetch the data for the wireless transmit/receive unit (WTRU). A separate bandwidth prediction system can be provided that allows a video consumer (e.g., a WTRU) to predict bandwidth and/or vehicle speed based on measurements made by itself in past and current trips. Available bandwidth algorithms and/or Kalman filters can be used. The offline algorithm can be used to determine parameters in the state transition model of the Kalman filter and/or prediction algorithms based on Kalman filters. A vehicle speed prediction algorithm may be included, which may be similar to the algorithm used to determine the parameters in the state transition of the Kalman filter. The video bit rate adaptation algorithm for DASH can improve and/or maximize video quality and/or avoid buffer underflow. Route selection based on the available bandwidth of the WTRU route may be utilized. The current serving radio access point can be used to notify the next radio access point, which can then prefetch the data for the WTRU. A number of system architectures for bandwidth prediction for DASH are described. However, applications are not limited to DASH, and may include video telephony, web browsing, cloud gaming, cloud computing, augmented reality, and the like. One or more examples disclosed herein may relate to predicting available bandwidth at future locations, improving bit rate selection algorithms for DASH, and/or data prefetch mechanisms for improving the "quality of experience" (QoE) of applications, such as , such as DASH-based video streaming. One or more systems and methods can include cooperative bandwidth prediction in which one or more users can share bandwidth measurements with a server and the server can predict for the user. One or more systems and methods may include separate bandwidth prediction, where a user (eg, a WTRU or a user's mobile device) may make predictions based on their own previous measurements. One or more of the disclosed systems and methods are applicable to many wireless networks (e.g., Hotspot 2.0). Systems and methods may use a wireless transmit/receive unit (WTRU) in a vehicle. Systems and methods may use WTRUs that are not in the vehicle. Systems and methods are available for WTRUs carried by passersby. For example, systems and methods are available for WTRUs carried by passersby walking around a shopping mall. The system and method can be used in a DASH environment and applied to other environments. Figure 1 is a diagram of an example of a Cooperative Broadband Prediction (CBP) system and method. In Figure 1, the DASH media server can store video segments generated from different encoded versions of the video content. The DASH Media Presentation Description (MPD) server may include an MPD file describing basic segmentation information including any of a URL, a video resolution, a bit rate, a codec, a time, and/or a duration. The CBP server collects user bandwidth measurements, including any of the following: time, device type information (eg, Long Term Evolution (LTE), Evolved High Speed Packet Access (HSPA+), antenna configuration, etc.) and wireless carrier Information (eg AT&T, Verizon, etc.). The CBP server may select a subset of users of the same wireless network at the location where the prediction is to be used or is being used. The CBP server can predict the user. Users in the network can periodically report their own bandwidth to the CBP server and can do so, for example, even if they are not in a video streaming session. Using this bandwidth information, the CBP server maintains a bandwidth map that includes real-time bandwidth at different locations. The DASH client can predict its own movement. The DASH client can request the available bandwidth at the location that it may arrive during the subsequent time from the CBP server. By using the predicted bandwidth, mobility, and/or MPD, the WTRU may determine the appropriate video segment and/or may request media material from the DASH media server. One advantage of the CBP method is that it can provide accurate and/or immediate predictions to the video client, including predictions at locations that have never been visited by the video client. The CBP server maintains a bandwidth map for a variety of consumer-end models because different user-side models can use different wireless networks or can have different technical specifications (eg, different numbers of antennas), which can Resulting in different bandwidths at the same time at the same location. The measurements made at the WTRU do not have to have the original form, for example, to save communication bandwidth. Measurements can include summary statistics. For example, if the raw distance interval for the measurement is d meters, the summary statistics may be within kd meters, where k is an integer greater than one. The application can be downloaded to the WTRU. The application can perform messaging between the WTRU and the CBP. The application can provide the consumer with an option to share its measurements, and can associate different pricing schemes with the selection. For example, if the user is sharing, the cost of using the service can be lower or free. Otherwise, the cost may be higher. The application can check the available bandwidth of the route the WTRU is using, and if the available bandwidth is not sufficient to maintain the quality of the application, it can suggest (eg, by making a suggestion on the GUI) that the user takes a different route. Figure 2 is a diagram of an example of a separate bandwidth prediction (SBP) system and method. In systems and methods that use Individual Bandwidth Prediction (SBP), a user (eg, a WTRU or a user's mobile device) makes predictions based on their own previous measurements. The difference between SBP and CBP is that there are no CBP servers in the SBP network. Using the SBP system, a DASH client (such as a WTRU) can measure its own bandwidth and can store bandwidth measurements and corresponding locations in its local storage area. For example, a DASH client (e.g., a WTRU) can measure its own bandwidth each time it accesses a location and can store bandwidth measurements and corresponding locations in its native storage area. The DASH client (e.g., the WTRU) may predict the bandwidth of the location before the next access to the location, such as after accessing the location several times. A DASH client (e.g., a WTRU) may request a suitable video segment from a DASH media presence server (e.g., similar to the CBP architecture) using the predicted bandwidth and/or movement. One advantage of the SBP approach is that it is easy to implement and does not require new nodes at the network in order to access the bandwidth information of the LTE network. In the SBP method, a DASH client (e.g., a WTRU) may need to know its bandwidth map, and during the learning phase, bandwidth prediction and/or DASH bit rate selection may be inaccurate. Figure 3 shows the architecture for local prediction and rate adaptation to improve and/or optimize video quality. The current position, time, speed and/or bandwidth is used to predict the speed and/or bandwidth of the upcoming location. Kalman filters can be used to predict speed and/or bandwidth. The state transition parameters can be determined from historical data. The bandwidth, speed prediction, and/or current buffer size can be fed into the bit rate adaptation algorithm to select the appropriate bit rate. Historical data may include the following information: network operator; available bandwidth and/or speed as a function of location and/or time. The local predictor can check the available bandwidth of the WTRU's route. If the available bandwidth is not sufficient to maintain the quality of the call, the local predictor can suggest (eg, by making a suggestion on the GUI) that the user takes a different route. Given the available bandwidth prediction, the WTRU may use the available bandwidth prediction in a variety of ways. If there is too much available bandwidth in some portions of the predicted path and the prediction indicates that the subsequent portion of the path did not have sufficient bandwidth before, the WTRU may use or may plan to use too much of the available portions The bandwidth is used to prefetch what will be used in the later part of the path (assuming the WTRU has sufficient buffer space). This will improve the quality of the content in the future. If there is not too much available bandwidth in some portions of the predicted path, for example, the available bandwidth is already fully used for content to be played in that portion, the WTRU may request that the bit rate reduced content be requested for the portion And this can make some of the available bandwidth unused, and these unused bandwidths can be used to prefetch content that will be played for future portions. This avoids re-buffering. The separate bandwidth prediction method can result in zero communication overhead, which is an advantage over the cooperative bandwidth prediction method. Figure 4 is an illustration of a diagram of a system and method for prefetching data. Current radio access points can predict the routes that the WTRU can take and can notify subsequent radio access points on the route. The notification may include one or more of the following: a predicted time at which the WTRU may enter a subsequent radio access point, a source of data being consumed by the WTRU, what data item the WTRU is consuming, and/or a WTRU is expected to consume in the future What kind of information object. These subsequent radio access points may prefetch data in anticipation that the WTRU will access their respective service areas in the future. The prefetched material may be cached and may be sent when the WTRU enters a service area of a radio access point that has cached the data. For example, Figure 4 shows the architecture of an LTE network. The eNB 1 may inform the eNB 2 when the WTRU may enter the service area of the eNB 2T . The eNB 1 may inform the eNB 2 of the source of the data that the WTRU may need, and the eNB 2 may prefetch the required data. To assist in the transition from eNB 1 to eNB 2, the data prefetched at eNB 2 may overlap with the data prefetched at eNB 1. When the WTRU enters the service area of eNB 2, the WTRU may download data directly from eNB 2, which may reduce RTT and may increase throughput. The WTRU can download data directly from eNB 2 instead of downloading data from the Internet. This method can be applied to, but not limited to, DASH. Content cached by one access point may overlap with content cached by the next access point, which may help to maintain continuity of the content. This can be beneficial if the prediction is inaccurate. The amount of overlap can be a function of prediction inaccuracy. As an example, for the network shown in FIG. 4, as shown in FIG. 5, the content may be divided according to the playback time (for example, in seconds). The first access point eNB 1 may prefetch content from the first second to the fifth second, and the second access point eNB 2 may prefetch content from the fifth second to the ninth second. As shown in Figure 5, the two prefetched content can overlap at the 5th second. Figure 6 is a diagram showing an example of a graph of the relationship between bit rate and time for a transition between eNB 1 and eNB 2 for a WTRU. As shown in Figure 6, assume the WTRU (which can be a DASH video player) at the momentT Enter the service area of eNB 2, and the data buffered by it is played to the timeT' . Without prefetching, the WTRU isT ' Then continue to play low quality video. If prefetching at eNB 2 is enabled, high bit rate video can be prefetched at eNB 2. Since high bit rate video has been prefetched and the high bit rate video is available at the access point, the amount of traffic to the WTRU may increase. Thereby improvingT ' The subsequent video bit rate. The throughput can be increased for the following reasons: The throughput of the TCP connection is determined by the following equation:(1) M is the maximum segment size, RTT is the round trip time, P is the probability of packet loss, and C is the constant determined by TCP implementation. The RTT is the sum of RTT_1 and RTT_2, which are the round-trip time between the UE and the eNB and the round-trip time between the eNB and the Internet server, respectively. For LTE networks, RTT_1 is typically between 30 and 60 milliseconds, and for 5G networks, it is proposed to be less than 1 millisecond. RTT is usually dominated by RTT_2, which can be hundreds of milliseconds when connected through an intercontinental route. When prefetching is enabled, the RTT is reduced to RTT_1, which will increase the throughput. Figure 7 is an illustration of a diagram of signaling between a client (e.g., a WTRU), a DASH media content provider, and a content distribution network (CDN) edge server. The edge server can be co-located with a wireless access point (such as an eNB). The content provider can predict the route based on information provided by the WTRU. The client may send a coverage update, which may include, for example, one or more of the following: an address of the video content (eg, the portion of the requested video content), a bit rate, a bandwidth, a location, and a speed, and / or phone number or other identifier. The client can periodically provide coverage updates to the media server. The content provider can predict the route of the client (e.g., WTRU), decide on the edge server to be pre-cached, and/or can send the address of these edge servers to the client (e.g., the WTRU). The content provider can suggest a bit rate for the client. The content provider can obtain the predicted route from a third party including a location service (such as Google, etc.). This location is available in a number of ways. For example, the phone number associated with the user terminal can be transmitted to a third party location service to query the location of the user terminal. For a single method, the consumer can predict its own movement and can send its future location to the content provider. The media server can pre-cache the media data to the corresponding edge server (eg, based on predicted route information provided by the user). Just a web approach can involve multiple content providers along the route. Cloud computing can be used to reduce delays including RTT, computation time of algorithms, and the like. The WTRU may use the same prediction algorithm and bit rate selection algorithm as described with reference to the SBP method. Historical data on the available bandwidth and speed of one or more WTRUs is stored in the network. The network may predict the future location of the WTRU and/or the time associated with the location. The network can decide which (or which) wireless access point can prefetch content that the WTRU is likely to use in the future. The network can provide the consumer with information about the quality and/or bit rate of the content to be requested. The client (eg, WTRU) can observe its current location, speed and available bandwidth, device type, and/or associated network operator (eg, AT&T or Verizon) and provide an entity to the network (network service) The enhanced node or NSEN) provides this information. NSEN can aggregate this information from one or more clients. NSEN can predict which access point the WTRU can access in the future. NSEN can direct the access point to prefetch content that will most likely be accessed by the WTRU in the future. The NSEN may provide the WTRU with information as to which quality level the WTRU will need in the future (eg, the bit rate of the video). This information can be used along with the available bandwidth observed by the WTRU locally to determine which quality level will be requested. NSEN can construct a graph of expected available bandwidth, for example, based on one or more of location, time, day of the week, network operator, device type. For a particular WTRU, NSEN may fine-grain the available bandwidth using, for example, one or more of the WTRU's current location, speed, available bandwidth, traffic requirements of other devices using the same network, and the number of other devices. Prediction. The available bandwidth and/or vehicle speed at future locations may be predicted based on measurements of current and/or previous trips. The prediction method and system can work in conjunction with both the CBP and SBP architectures. The prediction method and system can include motion prediction and/or bandwidth prediction that predict vehicle speed and available bandwidth at future locations, respectively. Algorithms for motion and bandwidth prediction can be similar. An example of a bandwidth prediction algorithm is described below. It is assumed that the travel route is given and divided into a plurality of segments having an equal length L, for example, L = 300 meters. Vi and Bi are used to represent random variables of vehicle speed and bandwidth at the i-th segment, respectively. Let the random variable bi be the bandwidth measured at the ith segment. Generally, measurements are inaccurate and contain random variations. If you repeat the itinerary to collect historical information, thenFor the first time during the tth tripi The bandwidth measured at each segment. Based on the currently measured bandwidth, with historical measurements, bandwidth prediction can produce a more accurate estimate of the bandwidth and can also predict the available bandwidth in subsequent segments. The prediction method is based on the Kalman filter, which is widely used in vehicle navigation. The bandwidth can be modeled as:(2) for alli ,FromToState transition parameter, andIs process noise, assuming that the process noise is from varianceThe zero-mean Gaussian distribution is extracted. assumedFor allversuswithindependent. In the firsti At the segment, the measurement of the bandwidth is obtained from the following model:(3) where ni is the measurement error, assuming it is extracted from a zero-mean Gaussian distribution with variance qi. It is assumed that ni is independent of all j and Bj, bj and Nj. The parameters in (1) and (2) can be determined from historical data before performing Kalman filtering.,with. The bandwidths bi+1, bi, and bi-1 measured from (1) and (2) can be expressed as:The mean of the measured bandwidth bi+1 can be written as:Due to the independence of the random variables Bi-1, Ni-1 and ni, the variance of the measured bandwidth bi can be obtained according to (4).Due to the independence of the random variables Bi, Ni and ni for all i, the following covariance can be obtained,See above, the mean of the measured bandwidth,varianceAnd covarianceSample mean value of historical data availableSample varianceSample covarianceTo estimate, among themmake. Then the equation becomes: assumedwithIt is known that in fact they can be obtained in the previous steps of the algorithm as described below. The left-hand side in equations (13)-(21) above can pass the function,,,,withTo represent. determine,withSimplify to solve the following optimization problems,The algorithm can be written as described below. The algorithm can be executed offline without increasing the complexity or latency of the DASH layer. parameter,withCan be provided to the DASH layer. In one example, the algorithm includes the following: Example Algorithm 1: Determining the state transition parameters of the noise Ni and ni, respectivelyAnd/or variancewith.Using this parameter, the system and method can use the Kalman filter to predict the bandwidth at the following segments. Let Ki be the Kalman gain at the i-th segment,To estimate the estimated error variance. When the measurement bi is available, the estimate can be updated by:among them,Yes noPrior estimateIs an updated estimate. The updated estimated error variance can be calculated as follows:An a priori estimate for the next segment can be calculated, and the predicted estimated error variance and Kalman gain for the next segment can be calculated:A Kalman filter can be used. Using the measurement of the bi of the i-th segment, the next segment can be predictedspeed. Similar to the bandwidth prediction described above, the vehicle speed can be modeled by the following equation:among them,Is the measurement speed at the i-th segment;FromToState transition parameters, andwithIs process noise and measurement noise, they are independent, and are assumed to have variances respectivelywithZero mean Gaussian distribution extraction. In the system and method, the current segmentation measurement can be predictedSpeed of the next segment. According to the above example algorithm 1 and Kalman filter, the prediction bandwidth of the next segment can be obtained.. Although the available bandwidth can vary and can change relatively quickly in a wireless network in some examples, the same location measured at the same time of day and the same day of the week (eg, or a working day as opposed to a weekend) The bandwidth at the location shows a certain similarity. Based on this observation, the system and method can select the same time of day and the same day of the week as historical data to calculate mi,withAnd optimize the above problem (Ai), Qi-1 and qi. The video bit rate adaptation algorithm can be applied to a variety of applications (eg, DASH or another application). Video bit rate adaptation may use predictions of available bandwidth and/or vehicle speed at future locations based on measurements of current and/or previous trips. For example, in video bit rate adaptation, assume the current segmentation measurementwithIs available and predicts for the next segmentwithIt's useful. The goal of the bit rate adaptation algorithm is to select the bit rate to improve and/or maximize video quality, and this can be achieved without buffer underflow. It is assumed that the length of the segment (for example, each segment) is L meters. In one example, the algorithm optimizes video quality for subsequent M segments. The current buffer size, which is measured instantaneously by the BS, is the video replay time of the buffered data. makewithThe predicted speed and predicted bandwidth for the i+jth segment (when the measurement before the i-th segment (for example, just measurement) is available separately), whereFor. Through the duration of the i+mth segment ()YesThe total information downloaded during the i+m segment isIf the buffer size BS is not greater than the lower bound BS_low, there is a significant probability that rebuffering occurs and the user end can be forced to switch to the lowest bit rate. Otherwise, to avoid re-buffering, use the following:, (36) againstWhere BR is the selected bit rate. According to the above inequality:whenWhen the selected bit rate has an upper bound,whenDo not apply any upper bounds to the BR. The bit rate adaptation algorithm can be as follows. In one example, the algorithm includes the following: __________________________________________________________________Sample algorithm 2 : Targeted Given the predicted speed And predictable available bandwidth And current buffer size BS , determining the upper bound of the video bit rate to avoid re-buffering, and / Or choose a bit rate to maximize video quality. __________________________________________________________________ The Media Presentation Description (MPD) may contain information about the media stream, such as the codec, the duration of the media segment, and/or the resolution and bandwidth of each representation. The maximum bit rate BR_max from Algorithm 2 above can be obtained. The next video representation having the highest bit rate no greater than BR_max can be selected. In the 13th line of the example algorithm 2, the maximum value can replace the available bit rate specified in the MPD file. For example, an MPD file can contain 10 bit rates as follows:Another application is video telephony. Using a video telephony, the WTRU can maintain measurements of available bandwidth and can share the measurement with other users via CBP. When the user makes a video call, the application can check the available bandwidth of the line along which the WTRU moves. If the available bandwidth is not sufficient to maintain the quality of the call, the application can suggest (eg, by making a suggestion on the GUI) that the user takes a different route. The systems and methods described herein can predict available bandwidth based on measurements of current and previous trips. Moreover, the system and method can include applying an algorithm to the video bit rate of the application, the application including DASH, which involves determining the predicted bandwidth and/or considering the current buffer size. The system and method can be implemented in an LTE network or other wireless network. In one example, the WTRU has a self-contained user end. For example, a WTRU may have an enhanced DASH client and/or may be algorithmically programmed to build a historical repository of locations and throughput. The historical database may include any or all of the following: record position history versus time, and recognition mode; record travel speed history and/or speed/position change, etc., and record bandwidth/conveyance history and time Relationship with location. A WTRU user may select video content for streaming (eg, via a website or DASH client or other streaming client) by using any or all of the following: the user obtains content information (eg, DASH) MPD) and begin to stream the content; the user end observes the position status (such as position, speed, progress...); the user end usage history (such as position/delivery mode), content information And/or positional state to predict (eg, and periodically update the predicted) path versus time and/or BW/delivery amount versus time. Using any or all of the foregoing, the user can plan ahead and perform predictive local caches (e.g., prefetch) to improve replay quality and prevent re-buffering. For example, if a portion along the WTRU path is predicted to not have sufficient bandwidth for high quality streaming, the UE may prefetch the high quality version of the required content segment in advance. For example, the WTRU may use too much available bandwidth in the previous portion of the path. This assumes that the WTRU has sufficient buffering for prefetching. Local cache management is considered in the process of implementing the algorithm. If a portion along the WTRU path is predicted not to have sufficient bandwidth for high quality streaming, the WTRU may prefetch the required content segments in advance if there is not too much available bandwidth in the previous portion of the path. Low quality version. No changes may be required on the network side and no special/additional communication between the WTRU and the network is required. This implementation can be implemented entirely within the WTRU via, for example, a downloadable app or an enhanced DASH client. Systems and methods include user-side path prediction using predictive caches in the network. The WTRU may have an enhanced DASH client that communicates with the network to enable predictive prefetching to cache elements (eg, the same location) associated with the network access point. The user terminal can be equipped to perform any or all of the following: record position history versus time, and recognition mode; record travel speed history, speed/position change, etc.; and record bandwidth/conveyance history and The relationship between time and location. The user can select the video content for streaming by using any or all of the following (for example, via a website or a DASH client or other streaming client): the user obtains content information (eg, dash mpd) And start streaming the content; the user observes the location state (such as location, speed, progress) as it passes through the route. . . User-side usage history (eg, location/delivery mode), content information, and/or location status to predict (eg, and periodically update predictions) path versus time; and the client sends to the network An update to the relationship between path and time. The network may determine improved and/or optimized prefetch locations for content segments (eg, specific caches that are co-located with the network access point) and time. The content can be prefetched for what is expected by the user when the user end is within the communication range of the network access point (based on the predicted path and time). The network may prefetch content to a particular network access point cache at a particular bit rate for a predicted available bandwidth of the WTRU at a time when the WTRU may go through the communication range of the network access point. The network may, for example, optionally provide a message to the WTRU indicating one or more preferred bit rates to be requested, which may be based on the network's knowledge and/or pair of available bandwidth at the access point. An understanding of the bit rate that has been predictively cached at the access point. As the WTRU walks through the path, the WTRU may send an update to the network regarding the predicted path and time. The WTRU may request content segmentation to acquire, decode, and replay the content. The WTRU may receive a message from the network indicating one or more preferred bit rates to be requested. The WTRU or network may determine a bit rate to be requested based on any or all of: information about the content (eg, DASH MPD), history of the WTRU's recorded location & bandwidth/delivery amount versus time, And/or based on one or more preferred bit rates transmitted by the network. The WTRU may have a standard DASH client that may not be aware of and will not have special signaling related to the location based prediction function of the network. The WTRU may report observations of location and/or available network bandwidth to entities in the network. This can be part of existing location services and network feedback; this is in contrast to the functionality of the enhanced DASH client. For example, many phones pre-set location services and related reports, or to support other applications. The network can record observations of the location and/or available network bandwidth (and associated observation times) for the consumer. The network aggregates available network bandwidth data from multiple consumers to build a graph of the estimated available network bandwidth. The map can be a function of location, time, and/or days of the week. The WTRU may request streaming content (eg, requesting an MPD; starting a DASH session). The network may predict the WTRU's path based on recorded observations of the WTRU's past location & time and/or based on the WTRU's current location, direction, and/or speed. The network can predict (eg, based on the current location/speed of the WTRU, and the current content segment that the WTRU is requesting) how to prefetch future content to the cache associated with the network access point along the predicted path of the WTRU. The content segment to be prefetched may be based on a prediction segment that the user may be in need of at a predicted time in the range of a particular network access point. The bit rate of the content segment to be acquired may be based on the estimated available network bandwidth at the predicted time and location. The network may, for example, optionally provide a message to the WTRU indicating the content segment and/or the bit rate that the WTRU should request (eg, its recommended WTRU requesting a suitable bit rate for the content segment). These content segments and/or bit rates may be based on a bit rate that the network has selected to prefetch to the cache at a given network access point. The message can be explicit signaling of the recommended bit rate. The message can take the form of an updated MPD. For example, an updated MPD may limit the available bit rate listed for a given content segment. The limited available bit rate of the updated MPD may reflect one or more bit rates of the content segments prefetched and available in the cache. Modifications may not be made to the DASH client on the WTRU. The WTRU may continue to travel along the path and may receive the required video segments as it travels. The WTRU may receive, decode, and replay video segments. The test was performed using an example of the SBP method (for example, as described with reference to Figure 2). In this test, the DASH MPD server is running on Ubuntu 14. The Apache web server on 04, which also hosts the Javascript program DASH. Sj. In this test, the WTRU is a Samsung Galaxy Tab 4 that accesses the Verizon LTE network. The video sequence "Big Buck Bunny" was used in the test, and the video sequence was passed through DASH. Sj program provided. The video sequence used has a duration of approximately 600 seconds, and the video segment (e.g., each video segment) contains approximately three seconds of video content. There are ten video bit rates: 0. 23, 0. 33, 0. 45, 0. 67, 0. 99, 1. 43, 2. 06, 2. 96, 5. 03 and 6 Mbps. In the experiment, two routes were selected in the San Diego area. Both routes have the same starting and ending points. Most of the first route is on the highway, while the other route is mainly on the local street. Between September 2014 and January 2015, more than thirty-five repeated experiments were conducted in both directions on both routes. The experiment was conducted in both peak and off-peak hours, and as a result, each lasted from about 20 minutes to about 50 minutes. Each route is divided into sections of approximately 300 meters. Historical data is collected (this mimics the accumulation of measurements), such as people commuting to work regularly. For each route, there is a corresponding collection of historical data. The data includes location and speed, which is provided by the GPS device on the user's side, with an accuracy of 4 meters. The data also includes the frequency obtained by dividing the size of the downloaded data by the duration between the request and the reception. width. In a segment, more than one measurement can be obtained, and if so, the average of all measurements in the segment is used as a measure for that segment. Using historical data, the above algorithm 1 can be run offline to determine the parameters in the state transition model and they are fed into the DASH player. By going to DASH. Js uses Kalman filters and bit rate adaptation algorithms to implement predictions. Evaluate performance. Consider the accuracy of the bandwidth prediction algorithm. In Fig. 8, a cumulative distribution function (CDF) showing the percentage of the difference between the predicted bandwidth and the measured bandwidth is shown. Almost 60% of the predicted errors are less than 20%. Because the video bit rate is quantized to 0. With 10 levels from 23Mbps to 6Mbps, the bit rate selection algorithm can still make the right decision with less than 20% error. In Figures 9 and 10, the video bit rate selected by the algorithm and the Thang algorithm is shown under the same channel implementation. The Thang algorithm calculates the moving average of the measured bandwidth as a prediction and then selects the maximum available bit rate that is not greater than the prediction. The performance of the Thang algorithm is obtained by analogy using historical data (available bandwidth as a function of time/segment) obtained from experiments run using the above highway data. The example of Fig. 10 shows that the average of the bit rates selected by the example of the algorithm is greater than the average of the bit rates selected by the Thang algorithm, and in Fig. 11, the two algorithms are adopted. The CDF of the video bit rate confirms this. The disclosed algorithm provides a smoother bit rate selection compared to the Thang algorithm, where the switching probability for the disclosed algorithm is 6. 1%, and for the Thang algorithm is 27. 8%. The system and method predict the available bandwidth and can do so based on measurements of current and previous trips. The system and method can provide a video bit rate adaptation algorithm for DASH. The system and method can consider the predicted bandwidth and/or the current buffer size. Tests conducted in an LTE network show how the disclosed system and method are effective in improving the QoE of the video client. FIG. 12A is a schematic diagram of an example communication system 100 in which one or more disclosed embodiments may be implemented. The communication system 100 can be a multiple access system that provides content such as voice, data, video, messaging, broadcast, etc. to multiple wireless users. The communication system 100 can enable multiple wireless users to access the content through the sharing of system resources, including wireless bandwidth. For example, the communication system 100 can use one or more channel access methods, such as code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal FDMA (OFDMA). Single carrier FDMA (SC-FDMA) and the like. As shown in FIG. 12A, communication system 100 can include wireless transmit/receive units (WTRUs) 102a, 102b, 102c, and/or 102d (generally or collectively referred to as WTRU 102), Radio Access Network (RAN) 103/104/ 105, core network 106/107/109, public switched telephone network (PSTN) 108, internet 110 and other networks 112, but it will be understood that the disclosed embodiments can implement any number of WTRUs, base stations , network and / or network components. Each of the WTRUs 102a, 102b, 102c, 102d may be any type of device configured to operate and/or communicate in a wireless environment. By way of example, the WTRUs 102a, 102b, 102c, 102d may be configured to transmit and/or receive wireless signals, and may include user equipment (UE), WTRUs, fixed or mobile subscriber units, pagers, mobile phones, personal digital assistants. (PDA), smart phones, portable computers, netbooks, personal computers, wireless sensors, consumer electronics, and more. The communication system 100 can also include a base station 114a and a base station 114b. Each of the base stations 114a, 114b can be configured to have a wireless interface with at least one of the WTRUs 102a, 102b, 102c, 102d to facilitate access to one or more communication networks (eg, core network 106/ Any type of device of 107/109, Internet 110, and/or network 112). For example, base stations 114a, 114b may be base station transceiver stations (BTS), node B, eNodeB, home node B, home eNodeB, website controller, access point (AP), wireless router, and the like. Although base stations 114a, 114b are each depicted as a single component, base stations 114a, 114b may include any number of interconnected base stations and/or network elements. The base station 114a may be part of the RAN 103/104/105, which may also include other base stations and/or networks such as a base station controller (BSC), a radio network controller (RNC), a relay node, and the like. Road component (not shown). Base station 114a and/or base station 114b may be configured to transmit and/or receive wireless signals within a particular geographic area, which may be referred to as cells (not shown). Cells can also be divided into cell sectors. For example, a cell associated with base station 114a can be divided into three sectors. Thus, in one embodiment, base station 114a may include three transceivers, i.e., one transceiver for each sector of the cell. Base station 114a may use multiple input multiple output (MIMO) technology and may use multiple transceivers for each sector of the cell. The base stations 114a, 114b may communicate with one or more of the WTRUs 102a, 102b, 102c, 102d via the null planes 115/116/117, which may be any suitable wireless communication link ( For example, radio frequency (RF), microwave, infrared (IR), ultraviolet (UV), visible light, etc.). The null intermediaries 115/116/117 can be established using any suitable radio access technology (RAT). More specifically, as noted above, communication system 100 can be a multiple access system and can utilize one or more channel access schemes such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and the like. For example, base station 114a and WTRUs 102a, 102b, 102c in RAN 103/104/105 may implement a radio technology such as Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA), which may use wideband CDMA ( WCDMA) to establish an empty intermediate plane 115/116/117. WCDMA may include communication protocols such as High Speed Packet Access (HSPA) and/or Evolved HSPA (HSPA+). HSPA may include High Speed Downlink Packet Access (HSDPA) and/or High Speed Uplink Packet Access (HSUPA). The base station 114a and the WTRUs 102a, 102b, 102c may implement a radio technology such as Evolved UMTS Terrestrial Radio Access (E-UTRA), which may use Long Term Evolution (LTE) and/or LTE-Advanced (LTE-A) Establish an empty intermediary plane 115/116/117. The base station 114a and the WTRUs 102a, 102b, 102c may implement such as IEEE 802. 16 (ie, Worldwide Interoperability for Microwave Access (WiMAX)), CDMA2000, CDMA2000 1X, CDMA2000 EV-DO, Provisional Standard 2000 (IS-2000), Provisional Standard 95 (IS-95), Provisional Standard 856 (IS-856) Radio technologies such as Global System for Mobile Communications (GSM), Enhanced Data Rates for GSM Evolution (EDGE), and GSM EDGE (GERAN). The base station 114b in Figure 12A may be, for example, a wireless router, a home Node B, a home eNodeB, or an access point, and any suitable RAT may be used for facilitating in, for example, a business district, home, vehicle, campus A wireless connection to a local area of the class. In one embodiment, base station 114b and WTRUs 102c, 102d may implement such as IEEE 802. A radio technology such as 11 to establish a wireless local area network (WLAN). The base station 114b and the WTRUs 102c, 102d may implement such as IEEE 802. Radio technology such as 15 to establish a wireless personal area network (WPAN). Base station 114b and WTRUs 102c, 102d may use cell-based RATs (e.g., WCDMA, CDMA2000, GSM, LTE, LTE-A, etc.) to establish picocell cells or femtocells. As shown in FIG. 12A, the base station 114b can have a direct connection to the Internet 110. Thus, base station 114b can access Internet 110 without going through core network 106/107/109. The RAN 103/104/105 can communicate with a core network 106/107/109, which can be configured to voice, data, application, and/or Voice over Internet Protocol (VoIP) services. Any type of network is provided to one or more of the WTRUs 102a, 102b, 102c, 102d. For example, the core network 106/107/109 can provide call control, billing services, mobile location based services, prepaid calling, internetworking, video distribution, etc., and/or perform advanced security functions such as users. verification. Although not shown in FIG. 12A, the RAN 103/104/105 and/or the core network 106/107/109 may communicate directly or indirectly with other RANs that use the same RAN 103/104/105 RAT or different RAT. For example, in addition to being connected to the RAN 103/104/105, which may employ E-UTRA radio technology, the core network 106/107/109 may also be in communication with other RANs (not shown) that use GSM radio technology. The core network 106/107/109 can also be used as a gateway for the WTRUs 102a, 102b, 102c, 102d to access the PSTN 108, the Internet 110, and/or other networks 112. The PSTN 108 may include a circuit switched telephone network that provides Plain Old Telephone Service (POTS). The Internet 110 may include a global system of interconnected computer networks and devices that use public communication protocols such as transmission control in a Transmission Control Protocol (TCP)/Internet Protocol (IP) Internet Protocol Suite. Protocol (TCP), User Datagram Protocol (UDP), and Internet Protocol (IP). The network 112 can include a wireless or wired communication network that is owned and/or operated by other service providers. For example, network 112 may include another core network connected to one or more RANs that may use the same RAT as RAN 103/104/105 or a different RAT. Some or all of the WTRUs 102a, 102b, 102c, 102d in the communication system 100 may include multi-mode capabilities, i.e., the WTRUs 102a, 102b, 102c, 102d may be configured to communicate with different wireless networks over different wireless links. Multiple transceivers for communication. For example, the WTRU 102c shown in FIG. 12A can be configured to communicate with a base station 114a that can use a cell-based radio technology and with a base station 114b that can use an IEEE 802 radio technology. FIG. 12B is a system diagram of an example WTRU 102. As shown in FIG. 12B, the WTRU 102 may include a processor 118, a transceiver 120, a transmit/receive element 122, a speaker/microphone 124, a numeric keypad 126, a display/trackpad 128, a non-removable memory 130, a removable memory. Body 132, power source 134, Global Positioning System (GPS) chipset 136, and other peripheral devices 138. It will be understood that the WTRU 102 may include any subset of the above-described elements while remaining consistent with the embodiments. Likewise, embodiments may envision nodes (e.g., transceiver stations (BTS), Node Bs, website controllers, access points (APs), home node Bs) that base stations 114a and 114b and/or base stations 114a and 114b may represent. Evolved Home Node B (eNode B), Home Evolved Node B (HeNB), Home Evolved Node B Gateway, Proxy Server Node, etc. may include some or all of the elements of Figure 12B and the elements described herein. . The processor 118 can be a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors associated with the DSP core, a controller, a micro control , dedicated integrated circuit (ASIC), field programmable gate array (FPGA) circuits, any other type of integrated circuit (IC), state machine, etc. The processor 118 can perform signal coding, data processing, power control, input/output processing, and/or any other functionality that enables the WTRU 102 to operate in a wireless environment. The processor 118 can be coupled to a transceiver 120 that can be coupled to the transmit/receive element 122. Although processor 118 and transceiver 120 are depicted as separate components in FIG. 12B, processor 118 and transceiver 120 may be integrated together into an electronic package or wafer. The transmit/receive element 122 can be configured to transmit signals to or from the base station (e.g., base station 114a) via the null planes 115/116/117. For example, the transmit/receive element 122 can be an antenna configured to transmit and/or receive RF signals. Transmit/receive element 122 may be a transmitter/detector configured to transmit and/or receive, for example, IR, UV, or visible light signals. The transmit/receive element 122 can be configured to transmit and receive both RF signals and optical signals. The transmit/receive element 122 can be configured to transmit and/or receive any combination of wireless signals. Although the transmit/receive element 122 is depicted as a single element in FIG. 12B, the WTRU 102 may include any number of transmit/receive elements 122. More specifically, the WTRU 102 may use MIMO technology. Thus, in one embodiment, the WTRU 102 may include two or more transmit/receive elements 122 (e.g., multiple antennas) for transmitting and/or receiving wireless signals over the null intermediaries 115/116/117. The transceiver 120 can be configured to modulate a signal to be transmitted by the transmit/receive element 122 and configured to demodulate a signal received by the transmit/receive element 122. As noted above, the WTRU 102 may have multi-mode capabilities. Thus, the transceiver 120 can include multiple transceivers for enabling the WTRU 102 to communicate via multiple RATs, such as UTRA and IEEE 802. 11. The processor 118 of the WTRU 102 may be coupled to a speaker/microphone 124, a numeric keypad 126, and/or a display/touchpad 128 (eg, a liquid crystal display (LCD) display unit or an organic light emitting diode (OLED) display unit), And the user input data can be received from the above device. The processor 118 can also output user profiles to the speaker/microphone 124, the numeric keypad 126, and/or the display/trackpad 128. In addition, processor 118 can access information from any type of suitable memory and store the data in any type of suitable memory, such as non-removable memory 130 and/or removable memory. Body 132. The non-removable memory 130 can include random access memory (RAM), read only memory (ROM), hard disk, or any other type of memory storage device. The removable memory 132 can include a Subscriber Identity Module (SIM) card, a memory stick, a secure digital (SD) memory card, and the like. In other embodiments, the processor 118 can access data from memory that is not physically located on the WTRU 102 (e.g., on a server or a home computer (not shown), and store data in the memory. The processor 118 can receive power from the power source 134 and can be configured to distribute the power to other components in the WTRU 102 and/or to control power to other elements in the WTRU 102. Power source 134 can be any device suitable for powering WTRU 102. For example, the power source 134 may include one or more dry cells (nickel cadmium (NiCd), nickel zinc (NiZn), nickel hydrogen (NiMH), lithium ion (Li-ion), etc.), solar cells, fuel cells, and the like. The processor 118 may also be coupled to a GPS chipset 136 that may be configured to provide location information (eg, longitude and latitude) with respect to the current location of the WTRU 102. The WTRU 102 may receive information location information from or to replace the GPS chipset 136 from the base station (e.g., base station 114a, 114b) via the null plane 115/116/117, and/or based on two or more neighbors. The timing of the signal received by the base station determines its position. While remaining consistent with the embodiments, the WTRU 102 may obtain location information by any suitable location determination method. The processor 118 can also be coupled to other peripheral devices 138, which can include one or more software and/or hardware modules that provide additional features, functionality, and/or wireless or wired connections. For example, peripheral device 138 may include an accelerometer, an e-compass, a satellite transceiver, a digital camera (for photo or video), a universal serial bus (USB) port, a vibrating device, a television transceiver, and a hands-free Headphones, Bluetooth® modules, FM radio units, digital music players, media players, video game console modules, Internet browsers, and more. Figure 12C is a diagram of an example system of RAN 103 and core network 106, in accordance with one embodiment. As described above, the RAN 103 can communicate with the WTRUs 102a, 102b, and 102c over the null plane 115 using UTRA radio technology. The RAN 103 can also communicate with the core network 106. As shown in FIG. 12C, the RAN 103 may include Node Bs 140a, 140b, 140c, each of which may include one or more for communicating with the WTRUs 102a, 102b, 102c over the null plane 115. Transceiver. Each of Node Bs 140a, 140b, 140c can be associated with a particular cell (not shown) in RAN 103. The RAN 103 may also include RNCs 142a, 142b. It will be understood that the RAN 103 may include any number of Node Bs and RNCs while remaining consistent with the embodiments. As shown in Figure 12C, Node Bs 140a, 140b can communicate with RNC 142a. Additionally, Node B 140c can communicate with RNC 142b. Node Bs 140a, 140b, 140c can communicate with respective RNCs 142a, 142b via an Iub interface. The RNCs 142a, 142b can communicate with each other via the Iur interface. Each of the RNCs 142a, 142b can be configured to control the respective Node Bs 140a, 140b, 140c to which they are connected. In addition, each of the RNCs 142a, 142b can be configured to perform or support other functions, such as outer loop power control, load control, admission control, packet scheduling, handover control, macro diversity, security functions, data encryption, and the like. The core network 106 shown in FIG. 12C may include a media gateway (MGW) 144, a mobile switching center (MSC) 146, a Serving GPRS Support Node (SGSN) 148, and/or a Gateway GPRS Support Node (GGSN) 150. Although each of the foregoing elements is described as being part of the core network 106, any of these elements may be owned and/or operated by entities other than the core network operator. The RNC 142a in the RAN 103 can be connected to the MSC 146 in the core network 106 via an IuCS interface. The MSC 146 can be connected to the MGW 144. The MSC 146 and MGW 144 may provide the WTRUs 102a, 102b, 102c with access to a circuit switched network, such as the PSTN 108, to facilitate communication between the WTRUs 102a, 102b, 102c and conventional route communication devices. The RNC 142a in the RAN 103 can also be connected to the SGSN 148 in the core network 106 via an IuPS interface. The SGSN 148 can be connected to the GGSN 150. The SGSN 148 and GGSN 150 may provide the WTRUs 102a, 102b, 102c with access to, for example, the packet switched network of the Internet 110 to facilitate communication between the WTRUs 102a, 102b, 102c and the IP-enabled devices. As noted above, the core network 106 can also be connected to the network 112, which can include other wired or wireless networks owned and/or operated by other service providers. Figure 12D is a system diagram of RAN 104 and core network 107, in accordance with one embodiment. As described above, the RAN 104 can communicate with the WTRUs 102a, 102b, and 102c over the null plane 116 using E-UTRA radio technology. The RAN 104 can communicate with the core network 107. The RAN 104 may include eNodeBs 160a, 160b, 160c, it being understood that the RAN 104 may include any number of eNodeBs while remaining consistent with the embodiments. Each of the eNodeBs 160a, 160b, 160c can include one or more transceivers for communicating with the WTRUs 102a, 102b, 102c over the null plane 116. The eNodeBs 160a, 160b, 160c may implement MIMO technology. Thus, for example, eNodeB 160a may use multiple antennas to transmit wireless signals to, and receive wireless signals from, WTRU 102a. Each of the eNodeBs 160a, 160b, 160c may be associated with a particular cell (not shown) and may be configured to handle radio resource management decisions, handover decisions, in the uplink and/or downlink Schedule the user, etc. As shown in Fig. 12D, the eNodeBs 160a, 160b, 160c can communicate with each other on the X2 interface. The core network 107 shown in FIG. 12D may include a mobility management gateway (MME) 162, a service gateway 164, and a packet data network (PDN) gateway 166. While each of the above elements is described as being part of the core network 107, it should be understood that any of these elements may be owned and/or operated by entities other than the core network operator. The MME 162 may be connected to each of the eNodeBs 160a, 160b, 160c in the RAN 104 via an S1 interface and may serve as a control node. For example, the MME 162 may be responsible for authenticating the users of the WTRUs 102a, 102b, 102c, bearer activation/deactivation, selecting a particular service gateway during initial attachment of the WTRUs 102a, 102b, 102c, and the like. The MME 162 may also provide control plane functionality for switching between the RAN 104 and other RANs (not shown) that use other radio technologies, such as GSM or WCDMA. The service gateway 164 can be connected to each of the eNodeBs 160a, 160b, 160c in the RAN 104 via an S1 interface. The service gateway 164 can generally route and forward user data packets to/from the WTRUs 102a, 102b, 102c. The service gateway 164 may also perform other functions, such as anchoring the user plane during handover between eNodeBs, triggering paging, managing and storing the WTRUs 102a, 102b when downlink data is available to the WTRUs 102a, 102b, 102c , the context of 102c, and so on. The service gateway 164 may also be coupled to the PDN 166, which may access the WTRUs 102a, 102b, 102c to a packet switched network, such as the Internet 110, to facilitate the WTRUs 102a, 102b, 102c and IP-enabled devices. Communication between. The core network 107 can facilitate communication with other networks. For example, core network 107 may provide WTRUs 102a, 102b, 102c with access to a circuit-switched network, such as PSTN 108, to facilitate communications between WTRUs 102a, 102b, 102c and conventional landline communication devices. For example, core network 107 may include an IP gateway (e.g., an IP Multimedia Subsystem (IMS) server) that acts as an interface between core network 107 and PSTN 108 or may be in communication with the IP gateway. In addition, core network 107 can provide WTRUs 102a, 102b, 102c with access to network 112, which can include other wired or wireless networks that are owned and/or operated by other service providers. Figure 12E is a system diagram of RAN 105 and core network 109, in accordance with one embodiment. The RAN 105 can be utilizing IEEE 802. An access service network (ASN) in which the radio technology communicates with the WTRUs 102a, 102b, 102c over the null plane 117. As will be discussed further below, the communication links between the different functional entities in the WTRUs 102a, 102b, 102c, RAN 105, and core network 109 may be defined as reference points. As shown in FIG. 12E, the RAN 105 may include base stations 180a, 180b, 180c and ASN gateway 182, but it will be understood that the RAN 105 may include any number of base stations while remaining consistent with the embodiments. And ASN gateway. The base stations 180a, 180b, 180c are each associated with a particular cell (not shown) in the RAN 105 and may each include one or more transceivers for communicating with the WTRUs 102a, 102b, 102c over the null plane 117 . In one embodiment, base stations 180a, 180b, 180c may implement MIMO technology. Thus, for example, base station 180a can use multiple antennas to transmit wireless signals to, and receive wireless signals from, WTRU 102a. Base stations 180a, 180b, 180c may also provide mobility management functions such as handover triggering, tunnel establishment, radio resource management, traffic classification, quality of service (QoS) policy enforcement, and the like. The ASN gateway 182 can act as a traffic aggregation point and can be responsible for paging, caching subscriber profiles, routing to the core network 109, and the like. The null interfacing plane 117 between the WTRUs 102a, 102b, 102c and the RAN 105 may be defined to implement IEEE 802. 16 specification R1 reference point. In addition, each of the WTRUs 102a, 102b, 102c can establish a logical interface (not shown) with the core network 109. The logical interface between the WTRUs 102a, 102b, 102c and the core network 109 can be defined as an R2 reference point that can be used for authentication, authorization, IP host configuration management, and/or mobility management. The communication link between each of the base stations 180a, 180b, 180c can be defined to include an R8 reference point for facilitating the agreement between the WTRU handover and the data transfer between the base stations. The communication link between the base stations 180a, 180b, 180c and the ASN gateway 182 can be defined as an R6 reference point. The R6 reference point can include an agreement to facilitate mobility management based on mobility events associated with each of the WTRUs 102a, 102b, 102c. As shown in FIG. 12E, the RAN 105 can be connected to the core network 109. The communication link between the RAN 105 and the core network 109 can be defined, for example, as an R3 reference point that includes protocols for facilitating data transfer and mobility management capabilities. The core network 109 may include a Mobility IP Home Agent (MIP-HA) 184, an Authentication, Authorization, Accounting (AAA) server 186, and a gateway 188. While each of the above elements is described as being part of the core network 109, it should be understood that any of these elements may be owned and/or operated by entities other than the core network operator. The MIP-HA may be responsible for IP address management and may enable the WTRUs 102a, 102b, 102c to roam between different ASNs and/or different core networks. The MIP-HA 184 may provide the WTRUs 102a, 102b, 102c with access to a packet switched network, such as the Internet 110, to facilitate communications between the WTRUs 102a, 102b, 102c and IP-enabled devices. The AAA server 186 can be responsible for user authentication and support for user services. Gateway 188 facilitates interworking with other networks. For example, gateway 188 can provide WTRUs 102a, 102b, 102c with access to a circuit-switched network, such as PSTN 108, to facilitate communication between WTRUs 102a, 102b, 102c and conventional landline communication devices. In addition, gateway 188 can provide access to network 112 to WTRUs 102a, 102b, 102c, which can include other wired or wireless networks that are owned or operated by other service providers. Although not shown in FIG. 12E, it should be understood that the RAN 105 can be connected to other ASNs and the core network 109 can be connected to other core networks. The communication link between the RAN 105 and other ASNs may be defined as an R4 reference point, which may include a protocol for coordinating the mobility of the WTRUs 102a, 102b, 102c between the RAN 105 and other ASNs. The communication link between the core network 109 and other core networks can be defined as an R5 reference, which can include protocols for facilitating interworking between the home core network and the access core network. Although features and elements have been described above in a particular combination, those skilled in the art will understand that each feature or element can be used alone or in various combinations with other features and elements. Moreover, the methods described herein can be implemented in a computer program, software or firmware incorporated in a computer readable medium for execution by a computer or processor. Examples of computer readable media include electronic signals (transmitted over a wired or wireless connection) and computer readable storage media. Examples of computer readable storage media include, but are not limited to, read only memory (ROM), random access memory (RAM), scratchpad, cache memory, semiconductor storage devices, such as internal magnetic disks and removable disks. Magnetic media, magneto-optical media, and optical media (such as CD-ROM discs and digital versatile discs (DVD)). A processor associated with the software can be used to implement a radio frequency transceiver for use in a WTRU, UE, terminal, base station, RNC, or any host.

1、2‧‧‧使用者 100‧‧‧示例通訊系統 102‧‧‧無線發射/接收單元(WTRU) 103、104、105‧‧‧無線電存取網路(RAN) 106、107、109‧‧‧核心網路 108‧‧‧公共交換電話網路(PSTN) 110‧‧‧網際網路 112‧‧‧其他網路 114、180‧‧‧基地台 115、116、117‧‧‧空中介面 118‧‧‧處理器 120‧‧‧收發器 122‧‧‧發射/接收元件 124‧‧‧揚聲器/麥克風 126‧‧‧數字鍵盤 128‧‧‧顯示器/觸控板 130‧‧‧不可移動記憶體 132‧‧‧可移動記憶體 134‧‧‧電源 136‧‧‧GPS晶片組 138‧‧‧周邊設備 140、160‧‧‧e節點B 142‧‧‧無線電網路控制器(RNC) 144‧‧‧媒體閘道(MGW) 146‧‧‧移動交換中心(MSC) 148‧‧‧服務GPRS支援節點(SGSN) 150‧‧‧閘道GPRS支持節點 162‧‧‧移動性管理閘道(MME) 164‧‧‧服務閘道 166‧‧‧封包資料網(PDN)閘道 182‧‧‧存取服務網路(ASN)閘道 184‧‧‧移動性IP家庭代理(MIP-HA) 186‧‧‧認證、授權、記帳(AAA)伺服器 188‧‧‧閘道 CDF‧‧‧累積分佈函數 DASH‧‧‧動態適應流傳輸 GPS‧‧‧全球定位系統 IP‧‧‧網際網路協定 IuCS、IuPS、iur、Iub、S1、X2‧‧‧介面 MPD‧‧‧DASH媒體呈現描述 R‧‧‧參考點 T‧‧‧時刻 UE‧‧‧使用者設備1, 2‧‧‧ users 100‧‧‧example communication system 102‧‧‧Wireless Transmitting/Receiving Unit (WTRU) 103, 104, 105‧‧‧ Radio Access Network (RAN) 106, 107, 109‧‧‧ core network 108‧‧‧Public Switched Telephone Network (PSTN) 110‧‧‧Internet 112‧‧‧Other networks 114, 180‧‧‧ base station 115, 116, 117‧‧ ‧ empty mediation 118‧‧‧Processor 120‧‧‧Transceiver 122‧‧‧transmit/receive components 124‧‧‧Speaker/Microphone 126‧‧‧Digital keyboard 128‧‧‧Display/Touchpad 130‧‧‧immovable memory 132‧‧‧Removable memory 134‧‧‧Power supply 136‧‧‧GPS chipset 138‧‧‧ Peripherals 140, 160‧‧‧e Node B 142‧‧‧ Radio Network Controller (RNC) 144‧‧‧Media Gateway (MGW) 146‧‧‧Mobile Exchange Center (MSC) 148‧‧‧Serving GPRS Support Node (SGSN) 150‧‧‧Gateway GPRS Support Node 162‧‧‧Mobility Management Gateway (MME) 164‧‧‧ service gateway 166‧‧‧ Packet Data Network (PDN) Gateway 182‧‧‧Access Service Network (ASN) Gateway 184‧‧‧Mobile IP Home Agent (MIP-HA) 186‧‧‧Authentication, Authorization, Accounting (AAA) Server 188‧‧ ‧ gateway CDF‧‧‧ cumulative distribution function DASH‧‧‧Dynamic adaptive streaming GPS‧‧‧Global Positioning System IP‧‧‧Internet Protocol IuCS, IuPS, iur, Iub, S1, X2‧‧ interface MPD‧‧‧DASH media presentation description R‧‧‧ reference point T‧‧‧ moments UE‧‧‧User equipment

第1圖是協作頻寬預測的示例圖。 第2圖是單獨頻寬預測的示例圖。 第3圖是預測和速率適應的示例圖。 第4圖是預取資料的示例圖。 第5圖是所預取的資料的示例圖。 第6圖是預取對位元速率的作用的示例圖。 第7圖是邊緣伺服器、使用者端和DASH媒體內容提供者之間的信令的示例圖。 第8圖是示出了頻寬預測的誤差的累積分佈函數(CDF)的示例圖。 第9圖是示出了WTRU的視訊位元速率的示例圖。 第10圖是示出了WTRU的視訊位元速率的示例圖。 第11圖是示出了視訊位元速率的CDF的示例圖。 第12A圖是可在其中實現一個或多個揭露的實施方式的示例通訊系統的系統圖。 第12B圖是可在第12A圖中所示的通訊系統中使用的示例無線發射/接收單元(WTRU)的系統圖。 第12C圖是可在第12A圖中所示的通訊系統中使用的示例無線電存取網路和示例核心網路的系統圖。 第12D圖是可在第12A圖中所示的通訊系統中使用的另一示例無線電存取網路和示例核心網路的系統圖。 第12E圖是可在第12A圖中所示的通訊系統中使用的另一示例無線電存取網路和示例核心網路的系統圖。Figure 1 is an example diagram of cooperative bandwidth prediction. Figure 2 is an example diagram of individual bandwidth prediction. Figure 3 is an example diagram of prediction and rate adaptation. Figure 4 is an illustration of prefetched data. Figure 5 is an illustration of the prefetched data. Figure 6 is an illustration of the effect of prefetching on the bit rate. Figure 7 is an exemplary diagram of signaling between the edge server, the consumer, and the DASH media content provider. Fig. 8 is a diagram showing an example of a cumulative distribution function (CDF) of the error of the bandwidth prediction. Figure 9 is a diagram showing an example of the WTRU's video bit rate. Figure 10 is a diagram showing an example of the WTRU's video bit rate. Figure 11 is an exemplary diagram showing the CDF of the video bit rate. Figure 12A is a system diagram of an example communication system in which one or more disclosed embodiments may be implemented. Figure 12B is a system diagram of an example wireless transmit/receive unit (WTRU) that can be used in the communication system shown in Figure 12A. Figure 12C is a system diagram of an example radio access network and an example core network that can be used in the communication system shown in Figure 12A. Figure 12D is a system diagram of another example radio access network and example core network that may be used in the communication system shown in Figure 12A. Figure 12E is a system diagram of another example radio access network and example core network that may be used in the communication system shown in Figure 12A.

Claims (27)

一種使用一無線發射/接收單元(WTRU)對視訊內容進行適應性流傳輸的方法,該方法包括: 確定與該WTRU相關聯的目前資訊,所述目前資訊包括一位置、一速度、一 時間、一資料輸送量和一日期中的至少一個; 將該目前資訊與之前為所述WTRU確定的資訊相比較; 預測該WTRU的一未來位置; 預測該未來位置處的一可用網路頻寬;以及 基於針對該所預測的未來位置的該所預測的可用網路頻寬,確定所述WTRU 請求一內容分段的一位元速率。A method for adaptively streaming video content using a wireless transmit/receive unit (WTRU), the method comprising: determining current information associated with the WTRU, the current information including a location, a speed, a time, At least one of a data throughput and a date; comparing the current information to information previously determined for the WTRU; predicting a future location of the WTRU; predicting an available network bandwidth at the future location; A one-bit rate at which the WTRU requests a content segment is determined based on the predicted available network bandwidth for the predicted future location. 如申請專利範圍第1項所述的方法,該方法還包括以該所確定的位元速率請求該內容分段。The method of claim 1, wherein the method further comprises requesting the content segment at the determined bit rate. 如申請專利範圍第1項所述的方法,該方法還包括確定該目前緩衝器大小。The method of claim 1, wherein the method further comprises determining the current buffer size. 如申請專利範圍第1項所述的方法,該方法還包括:請求附加內容分段,以及如果預測該未來位置將具有相對較小的可用網路頻寬,則為後續重播快取該附加內容分段。The method of claim 1, further comprising: requesting additional content segments, and if the predicted future location will have a relatively small available network bandwidth, then caching the additional content for subsequent replays Segmentation. 如申請專利範圍第1項所述的方法,該方法還包括應用一卡爾曼濾波器來預測所述WTRU的未來位置。The method of claim 1, further comprising applying a Kalman filter to predict a future location of the WTRU. 如申請專利範圍第5項所述的方法,其中,通過預測所述速度來預測所述WTRU的該未來位置。The method of claim 5, wherein the future location of the WTRU is predicted by predicting the speed. 如申請專利範圍第1項所述的方法,其中,基於之前確定的位置和與該之前確定的位置相關聯的一速度、一時間和一日期中的至少一個來預測所述WTRU的所述未來位置。The method of claim 1, wherein the future of the WTRU is predicted based on at least one of a previously determined location and a speed, a time, and a date associated with the previously determined location position. 如申請專利範圍第7項所述的方法,其中,僅由所述WTRU確定所述未來位置、之前確定的位置、與該之前確定的位置相關聯的一速度、一時間和一日期中的至少一個。The method of claim 7, wherein the WTRU determines at least the future location, the previously determined location, a speed associated with the previously determined location, a time, and a date. One. 如申請專利範圍第1項所述的方法,其中,基於對位置以及與所述位置相關聯的一速度、一時間和一日期中的至少一個的後續確定來調整所述WTRU的所述未來位置。The method of claim 1, wherein the future location of the WTRU is adjusted based on a subsequent determination of a location and at least one of a speed, a time, and a date associated with the location . 如申請專利範圍第1項所述的方法,其中,預測該WTRU的多個未來位置。The method of claim 1, wherein the plurality of future locations of the WTRU are predicted. 如申請專利範圍第1項所述的方法,該方法還包括應用卡爾曼濾波器來預測所述WTRU的該未來位置處的該可用網路頻寬。The method of claim 1, further comprising applying a Kalman filter to predict the available network bandwidth at the future location of the WTRU. 如申請專利範圍第1項所述的方法,該方法還包括:繪製位置和可用網路頻寬的重新出現模式的圖。The method of claim 1, wherein the method further comprises: drawing a map of the location and the reappearance pattern of the available network bandwidth. 如申請專利範圍第1項所述的方法,該方法還包括當預測所述未來位置將具有相對較小的可用網路頻寬時,發送警報。The method of claim 1, wherein the method further comprises transmitting an alert when predicting that the future location will have a relatively small available network bandwidth. 一種無線發射接收單元(WTRU),該WTRU包括: 一處理器,具有可執行指令,該可執行指令用於: 確定與該WTRU相關聯的目前資訊,所述目前資訊包括一位置、一速度、一時間、一資料輸送量和一日期中的至少一個; 將該目前資訊與之前為該WTRU確定的資訊相比較; 預測所述WTRU的一未來位置; 預測所述未來位置處的一可用網路頻寬;以及 基於針對該所預測的未來位置的該所預測的可用網路頻寬,確定所述WTRU 請求一內容分段的一位元速率。A wireless transmit receive unit (WTRU), the WTRU comprising: a processor having executable instructions for: determining current information associated with the WTRU, the current information including a location, a speed, Predicting at least one of a time, a data throughput, and a date; comparing the current information to information previously determined for the WTRU; predicting a future location of the WTRU; predicting an available network at the future location a bandwidth; and determining a one-bit rate at which the WTRU requests a content segment based on the predicted available network bandwidth for the predicted future location. 如申請專利範圍第14項所述的WTRU,其中,所述處理器具有用於以下的可執行指令:以該所確定的位元速率請求所述內容分段。A WTRU as claimed in claim 14, wherein the processor has executable instructions for requesting the content segment at the determined bit rate. 如申請專利範圍第14項所述的WTRU,其中,所述處理器具有用於以下操作的可執行指令:確定目前緩衝器大小。The WTRU of claim 14, wherein the processor has executable instructions for determining a current buffer size. 如申請專利範圍第14項所述的WTRU,其中,所述處理器具有用於以下的可執行指令:請求附加內容分段,以及如果預測該未來位置將具有相對較小的可用網路頻寬,則為後續重播快取所述附加內容分段。A WTRU as claimed in claim 14, wherein the processor has executable instructions for requesting additional content segments, and if the future location is predicted to have a relatively small available network bandwidth, The additional content segment is cached for subsequent replays. 如申請專利範圍第14項所述的WTRU,其中,所述處理器具有用於以下的可執行指令:應用一卡爾曼濾波器來預測所述WTRU的未來位置。A WTRU as claimed in claim 14, wherein the processor has executable instructions for applying a Kalman filter to predict a future location of the WTRU. 如申請專利範圍第18項所述的WTRU,其中,通過預測所述速度來預測該WTRU的該未來位置。A WTRU as claimed in claim 18, wherein the future location of the WTRU is predicted by predicting the speed. 如申請專利範圍第14項所述的WTRU,其中,基於之前確定的位置和與該之前確定的位置相關聯的一速度、一時間和一日期中的至少一個來預測該WTRU的該未來位置。The WTRU of claim 14, wherein the future location of the WTRU is predicted based on at least one of a previously determined location and a speed, a time, and a date associated with the previously determined location. 如申請專利範圍第20項所述的WTRU,其中,僅由該WTRU確定該未來位置、之前確定的位置、以及與該之前確定的位置相關聯的一速度、一時間和一日期中的至少一個。The WTRU as claimed in claim 20, wherein the WTRU determines at least one of the future location, the previously determined location, and a speed, a time, and a date associated with the previously determined location. . 如申請專利範圍第14項所述的WTRU,其中,基於對位置以及與所述位置相關聯的一速度、一時間和一日期中的至少一個的後續確定來調整所述WTRU的該未來位置。The WTRU of claim 14, wherein the future location of the WTRU is adjusted based on a subsequent determination of a location and at least one of a speed, a time, and a date associated with the location. 如申請專利範圍第14項所述的WTRU,其中,預測所述WTRU的多個未來位置。The WTRU of claim 14, wherein the plurality of future locations of the WTRU are predicted. 如申請專利範圍第14項所述的WTRU,其中,所述處理器具有用於以下的可執行指令:應用一卡爾曼濾波器來預測所述WTRU的所述未來位置處的該可用網路頻寬。A WTRU as claimed in claim 14, wherein the processor has executable instructions for: applying a Kalman filter to predict the available network bandwidth at the future location of the WTRU . 如申請專利範圍第14項所述的WTRU,其中,所述處理器具有用於以下的可執行指令:繪製位置和可用網路頻寬的重新出現模式的圖。The WTRU as claimed in claim 14, wherein the processor has a map for executable instructions: a rendering location and a re-emergence mode of available network bandwidth. 如申請專利範圍第14項所述的WTRU,其中,所述處理器具有用於以下的可執行指令:當預測所述未來位置將具有相對較小的可用網路頻寬時,發送一警報。A WTRU as claimed in claim 14, wherein the processor has executable instructions for transmitting an alert when predicting that the future location will have a relatively small available network bandwidth. 一種使用一無線發射/接收單元(WTRU)對視訊內容進行適應性流傳輸的方法,該方法包括: 預測該WTRU的一未來位置; 基於由該WTRU之前在所述未來位置處測量的資訊,預測該未來位置處的一可用網路頻寬;以及 基於針對該未來位置的所預測的可用網路頻寬,確定該WTRU請求一內容分段的一位元速率。A method for adaptively streaming video content using a wireless transmit/receive unit (WTRU), the method comprising: predicting a future location of the WTRU; predicting based on information previously measured by the WTRU at the future location An available network bandwidth at the future location; and determining a one-bit rate at which the WTRU requests a content segment based on the predicted available network bandwidth for the future location.
TW105102852A 2015-01-29 2016-01-29 Bandwidth prediction and prefetching for enhancing the QoE of applications over wireless networks TW201633825A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201562109590P 2015-01-29 2015-01-29

Publications (1)

Publication Number Publication Date
TW201633825A true TW201633825A (en) 2016-09-16

Family

ID=55405463

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105102852A TW201633825A (en) 2015-01-29 2016-01-29 Bandwidth prediction and prefetching for enhancing the QoE of applications over wireless networks

Country Status (2)

Country Link
TW (1) TW201633825A (en)
WO (1) WO2016123497A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015502696A (en) 2011-11-10 2015-01-22 アダプティブ スペクトラム アンド シグナル アラインメント インコーポレイテッド Method, apparatus and system for optimizing communication unit performance with a remote server
US9756112B2 (en) * 2015-02-11 2017-09-05 At&T Intellectual Property I, L.P. Method and system for managing service quality according to network status predictions
US20180176325A1 (en) * 2016-12-15 2018-06-21 Huawei Technologies Co., Ltd. Data pre-fetching in mobile networks
US10547662B2 (en) 2017-08-17 2020-01-28 Cisco Technology, Inc. Bitrate stream selection for downloading video content to a client device
CN109729437B (en) * 2017-10-30 2021-02-02 中国电信股份有限公司 Streaming media self-adaptive transmission method, terminal and system
CN108712302B (en) * 2018-04-19 2020-08-14 上海帝联网络科技有限公司 Method and device for calculating regional bandwidth and computer readable medium
US10778547B2 (en) 2018-04-26 2020-09-15 At&T Intellectual Property I, L.P. System for determining a predicted buffer condition based on flow metrics and classifier rules generated in response to the creation of training data sets
US10785297B2 (en) 2018-10-23 2020-09-22 International Business Machines Corporation Intelligent dataset migration and delivery to mobile internet of things devices using fifth-generation networks
US10868726B2 (en) 2018-12-07 2020-12-15 At&T Intellectual Property I, L.P. Apparatus and method for selecting a bandwidth prediction source
JP2022051973A (en) * 2019-02-08 2022-04-04 ソニーグループ株式会社 Information processing device, information processing method, and program
MX2021010315A (en) 2019-02-28 2021-11-12 Assia Spe Llc Ergodic spectrum management systems and methods.
US11381657B2 (en) * 2019-04-05 2022-07-05 Citrix Systems, Inc. Enhanced file sharing systems and methods
DE112020002310T5 (en) * 2019-05-07 2022-02-17 Intel Corporation V2X SERVICES TO PROVIDE TRIP-SPECIFIC QOS PREDICTIONS
EP3876559A1 (en) * 2020-03-02 2021-09-08 Nokia Technologies Oy Future position estimation for improved reliability of connectivity
CN111654824B (en) * 2020-05-29 2023-07-25 Oppo广东移动通信有限公司 Network condition prompting method, device, electronic equipment and storage medium
US20220103655A1 (en) * 2020-09-29 2022-03-31 International Business Machines Corporation Proactively selecting virtual reality content contexts
CN112995979B (en) * 2021-03-04 2022-01-25 中国科学院计算技术研究所 Wireless network cache recommendation method for QoE (quality of experience) requirements of user
EP4068718A1 (en) * 2021-03-29 2022-10-05 Unify Patente GmbH & Co. KG Predictive streaming adaptation over a network
CN114157578B (en) * 2021-11-24 2023-10-31 北京达佳互联信息技术有限公司 Network state prediction method and device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2073486A1 (en) * 2007-12-17 2009-06-24 Alcatel Lucent Method for providing multimedia service to a mobile device in case of foreseen network unavailability
US7894367B2 (en) * 2007-12-31 2011-02-22 Industrial Technology Research Institute Methods and systems for bandwidth protection
US8391896B2 (en) * 2010-07-09 2013-03-05 Nokia Corporation Method and apparatus for providing a geo-predictive streaming service
US9210714B2 (en) * 2012-09-06 2015-12-08 Dell Products, Lp Method and apparatus for predicting mobile device wireless link quality of service requirements along a predicted path
US8495237B1 (en) * 2012-09-27 2013-07-23 Google Inc. Techniques for providing a media stream to a mobile computing device based on a predicted route of the mobile computing device
US9596670B2 (en) * 2013-01-16 2017-03-14 Apple Inc. Location assisted service capability monitoring
US9049134B2 (en) * 2013-03-08 2015-06-02 Disney Enterprises, Inc. Network condition predictions for multimedia streaming

Also Published As

Publication number Publication date
WO2016123497A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
TW201633825A (en) Bandwidth prediction and prefetching for enhancing the QoE of applications over wireless networks
CN107852403B (en) DASH caching proxy application
US11696158B2 (en) Network Data Analytics in a communications network
TWI575948B (en) Method and apparatus for distribution and reception of content
US9338212B2 (en) Multi-interface adaptive bit rate session management
KR101632018B1 (en) Retrieving content by a multi-rat communication device
US11924650B2 (en) System, method and service product for content delivery
US9258666B2 (en) State migration of edge-of-network applications
CN115004769A (en) Seamless edge application switching
Fund et al. Performance of DASH and WebRTC video services for mobile users
CN104854839A (en) Multi-hypothesis rate adaptation for HTTP streaming
TW201720194A (en) Content delivery network interconnection (CDNI) mechanism
US11050706B2 (en) Automated autonomous system based DNS steering
EP2875616B1 (en) Content optimization based on real time network dynamics
US11477644B2 (en) Network application programming interface guided service placement
US8978056B2 (en) Video loading control
JP6073448B2 (en) Method and apparatus for managing a content storage subsystem within a communication network
Sharafeddine et al. Optimized device centric aggregation mechanisms for mobile devices with multiple wireless interfaces
US20220174485A1 (en) Network application programming interface service for application guidance and control
WO2018058463A1 (en) Adaptive media service
US20240049090A1 (en) Facilitating conditional fast return to stand alone advanced networks after voice fall back based on network congestion awareness
US20240049063A1 (en) Facilitating conditional fast return to stand alone advanced networks after voice fall back
한빙 A Testbed for Mobile Named-Data Network integrated with 4G networking devices