TW201629955A - Method and apparatus for providing three-dimensional integrated nonvolatile memory and dynamic random access memory memory device - Google Patents

Method and apparatus for providing three-dimensional integrated nonvolatile memory and dynamic random access memory memory device Download PDF

Info

Publication number
TW201629955A
TW201629955A TW104135120A TW104135120A TW201629955A TW 201629955 A TW201629955 A TW 201629955A TW 104135120 A TW104135120 A TW 104135120A TW 104135120 A TW104135120 A TW 104135120A TW 201629955 A TW201629955 A TW 201629955A
Authority
TW
Taiwan
Prior art keywords
dram
memory
nvm
layer
dsg
Prior art date
Application number
TW104135120A
Other languages
Chinese (zh)
Inventor
富菖 許
Original Assignee
Neo半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neo半導體股份有限公司 filed Critical Neo半導體股份有限公司
Publication of TW201629955A publication Critical patent/TW201629955A/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C14/00Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
    • G11C14/0009Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a DRAM cell
    • G11C14/0018Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a DRAM cell whereby the nonvolatile element is an EEPROM element, e.g. a floating gate or metal-nitride-oxide-silicon [MNOS] transistor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2216/00Indexing scheme relating to G11C16/00 and subgroups, for features not directly covered by these groups
    • G11C2216/12Reading and writing aspects of erasable programmable read-only memories
    • G11C2216/14Circuits or methods to write a page or sector of information simultaneously into a nonvolatile memory, typically a complete row or word line in flash memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2216/00Indexing scheme relating to G11C16/00 and subgroups, for features not directly covered by these groups
    • G11C2216/12Reading and writing aspects of erasable programmable read-only memories
    • G11C2216/18Flash erasure of all the cells in an array, sector or block simultaneously
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

A memory system able to store information using a hybrid volatile and nonvolatile memory device organized in a stacking configuration is disclosed. The memory system, in one aspect, includes memory components, a drain select gate ("DSG") transistor, and a capacitor component. Each memory component, in one example, includes a source terminal, a gate terminal, a drain terminal, and a nonvolatile cell. The memory components are organized in a string formation and the components are interconnected between source terminals and drain terminals. The drain terminal of DSG transistor is coupled to the source terminal of a memory component and the gate terminal of DSG transistor is coupled to a DSG signal. The drain terminal of the capacitor is coupled to the source terminal of the first DSG transistor. The capacitor component is configured to perform a dynamic random-access memory ("DRAM") function.

Description

用於提供三維整合揮發記憶體與動態隨機存取記憶體之記憶裝置之方法與 設備 A method for providing a three-dimensional integrated memory device of a volatile memory and a dynamic random access memory device

本發明示例性實施例係有關於半導體與積體電路領域。尤其,本發明之示例性實施例係有關於記憶和儲存裝置。 Exemplary embodiments of the invention relate to the field of semiconductor and integrated circuits. In particular, exemplary embodiments of the invention relate to memory and storage devices.

於今日科技世界中,諸如NAND或NOR型快閃記憶體之非揮發記憶體已廣為使用。其獨特之單元以及陣列結構可提供小單元尺寸、高密度、低寫入電流以及高效篩選等優點。諸如NAND型快閃記憶體之非揮發記憶體成為各式裝置及系統(例如記憶卡、USB快閃碟以及固態碟)之主要儲存記憶體種類。快閃記憶體的一些示例性應用包括個人電腦、PDA、數位音頻播放器、數位相機、行動電話、合成器、電子遊戲機、科學儀器、工業機器人以及醫療電器等。 In today's technology world, non-volatile memory such as NAND or NOR flash memory has been widely used. Its unique unit and array structure provide small cell size, high density, low write current, and efficient filtering. Non-volatile memory such as NAND-type flash memory is the main storage memory type for various devices and systems such as memory cards, USB flash drives, and solid state disks. Some exemplary applications of flash memory include personal computers, PDAs, digital audio players, digital cameras, mobile phones, synthesizers, electronic game machines, scientific instruments, industrial robots, and medical appliances.

隨著半導體製程技術於近來的發展,使NAND快閃記憶體自二維(2D)轉化至三維(3D)變為可能。舉例而言,一個三維NAND快閃記憶體可達到128至256千兆位元(Gb)的儲存容量。雖然習知例如三維NAND快閃記憶體技術可使用16奈米(nm)科技,但相較於動態隨機存取記憶體(DRAM)或靜態隨機存取記憶體(SRAM)的速度而言,NAND快閃記憶體一般的速度仍是相對較慢。 With the recent development of semiconductor process technology, it has become possible to convert NAND flash memory from two-dimensional (2D) to three-dimensional (3D). For example, a three-dimensional NAND flash memory can achieve a storage capacity of 128 to 256 gigabits (Gb). Although conventional three-dimensional NAND flash memory technology can use 16 nanometer (nm) technology, NAND is comparable to the speed of dynamic random access memory (DRAM) or static random access memory (SRAM). The general speed of flash memory is still relatively slow.

然而,與一般三維NAND型快閃記憶體相關的問題則在於非揮發記憶體(NVM)晶片以及隨機存取記憶體(例如DRAM以及/或SRAM)之間的數據傳輸。既然習知的NVM和DRAM係製作於不同的晶粒上,經由外部排線於NVM和DRAM之間所進行的通訊通常會對於整體數據傳輸速率造成妨礙。 However, a problem associated with general three-dimensional NAND-type flash memory is the transfer of data between non-volatile memory (NVM) chips and random access memory (such as DRAM and/or SRAM). Since conventional NVM and DRAM are fabricated on different dies, communication between the NVM and the DRAM via external routing typically hampers the overall data transfer rate.

另一與習知NAND型快閃記憶體相關的缺點在於其具有相對較低的編程速度。造成編程速度以及/或擦除速度較慢之一個原因在於,習知的NAND快閃記憶體所執行者為單頁編程。在一些應用方面,非揮發記憶體中較慢的編程速度以及/或擦除速度將會成為限制。 Another disadvantage associated with conventional NAND type flash memory is that it has a relatively low programming speed. One reason for slow programming speeds and/or erase speeds is that conventional NAND flash memory is performed by single page programming. In some applications, slower programming speeds and/or erase speeds in non-volatile memory will be limiting.

本發明之一實施例係揭露一種可儲存資訊之記憶系統,其係使用呈堆疊構型排列之混合式揮發與非揮發記憶裝置。一方面,該記憶系統包括有多個記憶元件、一汲極選擇閘極(DSG)電晶體以及一電容元件。於一實例中,每一記憶元件包括一源極端、一閘極端、一汲極端以及一非揮發單元。該等記憶元件係排列成串,且該等元件係連接於源極端以及汲極端之間。該DSG電晶體之汲極端係耦合於一記憶元件之源極端,且該DSG電晶體之閘極端則係耦合於一DSG訊號。該電容元件之汲極端係耦合於第一DSG電晶體之源極端。該電容元件係構型以執行一動態隨機存取記憶體(DRAM)功能。 One embodiment of the present invention discloses a memory-storable memory system that uses a hybrid volatile and non-volatile memory device arranged in a stacked configuration. In one aspect, the memory system includes a plurality of memory elements, a drain select gate (DSG) transistor, and a capacitive element. In one example, each memory element includes a source terminal, a gate terminal, a gate terminal, and a non-volatile cell. The memory elements are arranged in a string and the elements are connected between the source terminal and the drain terminal. The NMOS terminal of the DSG transistor is coupled to the source terminal of a memory device, and the gate terminal of the DSG transistor is coupled to a DSG signal. The 汲 extreme of the capacitive element is coupled to the source terminal of the first DSG transistor. The capacitive component is configured to perform a dynamic random access memory (DRAM) function.

透過下文、圖式以及申請專利範圍內容可更為清楚知曉本發明之其他特色及優點。 Other features and advantages of the present invention will become more apparent from the following description of the appended claims.

100、101、390、396、398、490、491、492、494‧‧‧方塊圖 100, 101, 390, 396, 398, 490, 491, 492, 494‧‧‧ block diagram

102‧‧‧儲存器 102‧‧‧Storage

106‧‧‧DRAM 106‧‧‧DRAM

108‧‧‧NVM 108‧‧‧NVM

150‧‧‧處理器 150‧‧‧ processor

152‧‧‧NVM儲存器 152‧‧‧NVM storage

156‧‧‧排線管理器 156‧‧‧Line Manager

158‧‧‧排線 158‧‧‧ cable

160‧‧‧記憶體 160‧‧‧ memory

170‧‧‧NVM/DRAM記憶裝置 170‧‧‧NVM/DRAM memory device

172‧‧‧NVM儲存器 172‧‧‧NVM storage

176‧‧‧DRAM部分 176‧‧‧DRAM section

178‧‧‧NVM部分 178‧‧‧NVM part

201‧‧‧DRAM單元 201‧‧‧DRAM unit

202‧‧‧NAND串 202‧‧‧NAND strings

203‧‧‧選擇電晶體 203‧‧‧Selecting a crystal

204‧‧‧MOS電容器 204‧‧‧MOS capacitor

205、206‧‧‧擴散區 205, 206‧‧‧Diffusion zone

207‧‧‧通道 207‧‧‧ channel

208‧‧‧基板 208‧‧‧Substrate

209‧‧‧介電材質 209‧‧‧Dielectric material

210‧‧‧電荷捕捉層 210‧‧‧Charge trapping layer

211‧‧‧金屬層 211‧‧‧metal layer

290、291、392、493、495‧‧‧示意圖 290, 291, 392, 493, 495 ‧ ‧ schematic

292‧‧‧時序圖 292‧‧‧ Timing diagram

301‧‧‧通道區 301‧‧‧Channel area

401-404‧‧‧電容器 401-404‧‧‧ capacitor

401‧‧‧介電材料層 401‧‧‧ dielectric material layer

402、406、507、509‧‧‧ONO層 402, 406, 507, 509‧‧‧ ONO layers

403a、403b、403c、403d‧‧‧電容器 403a, 403b, 403c, 403d‧‧‧ capacitors

404a、404b、404c‧‧‧記憶單元 404a, 404b, 404c‧‧‧ memory unit

405a、405b、405c‧‧‧記憶單元 405a, 405b, 405c‧‧‧ memory unit

405-408‧‧‧汲極選擇閘極 405-408‧‧‧Bungee selection gate

411-414‧‧‧MOS電容器 411-414‧‧‧MOS capacitor

415-418‧‧‧DSG 415-418‧‧‧DSG

501‧‧‧通道 501‧‧‧ channel

502‧‧‧選擇閘極 502‧‧‧Select gate

503‧‧‧MOS電容器 503‧‧‧MOS capacitor

504a、504b、504c、505a、505b、505c‧‧‧電容器 504a, 504b, 504c, 505a, 505b, 505c‧ ‧ capacitor

506a、506b、506c、508a、508b、508c‧‧‧NAND快閃記憶單元 506a, 506b, 506c, 508a, 508b, 508c‧‧‧ NAND flash memory unit

550、552‧‧‧垂直串 550, 552‧‧‧ vertical strings

590、592‧‧‧三維NVM/DRAM單元結構 590, 592‧‧‧Three-dimensional NVM/DRAM unit structure

601‧‧‧DRAM單元 601‧‧‧DRAM unit

602‧‧‧NAND單元串 602‧‧‧NAND cell string

603‧‧‧MOS電容器 603‧‧‧MOS capacitor

604‧‧‧極選擇閘極 604‧‧‧ extremely selective gate

605、606‧‧‧DSG 605, 606‧‧‧DSG

607、608‧‧‧MOS電容器 607, 608‧‧‧ MOS capacitors

609‧‧‧DRAM選擇閘極 609‧‧‧DRAM selection gate

610‧‧‧邏輯部分 610‧‧‧ logical part

612‧‧‧第二源極選擇閘極 612‧‧‧Second source selection gate

690‧‧‧3D混合型NVM/DRAM記憶裝置 690‧‧‧3D hybrid NVM/DRAM memory device

701-705‧‧‧NAND串 701-705‧‧‧NAND string

706、707‧‧‧源極線 706, 707‧‧‧ source line

708、1708‧‧‧基板 708, 1708‧‧‧ substrates

801、802、803‧‧‧INT層 801, 802, 803‧‧‧ INT layer

901‧‧‧第一DRAM單元 901‧‧‧First DRAM unit

902‧‧‧第二DRAM單元 902‧‧‧Second DRAM unit

903‧‧‧NAND NVM串 903‧‧‧NAND NVM string

904、905‧‧‧DPG 904, 905‧‧‧DPG

1001、1105、1205、1402、1502、1601、1701‧‧‧NAND串 1001, 1105, 1205, 1402, 1502, 1601, 1701‧‧‧ NAND strings

1002、1003、1101-1104、1201-1204、1303、1401、1501、1602、1702‧‧‧DRAM單元 1002, 1003, 1101-1104, 1201-1204, 1303, 1401, 1501, 1602, 1702‧‧ ‧ DRAM unit

1301‧‧‧管道部分 1301‧‧‧ Pipe section

1302‧‧‧選擇閘極 1302‧‧‧Selecting the gate

1390‧‧‧混合型NVM/DRAM陣列結構 1390‧‧‧Hybrid NVM/DRAM Array Structure

1392‧‧‧3D混合型NVM/DRAM陣列結構 1392‧‧‧3D hybrid NVM/DRAM array structure

1403‧‧‧DRAM單元選擇閘極 1403‧‧‧ DRAM cell selection gate

1404‧‧‧MOS電容器 1404‧‧‧MOS capacitor

1503‧‧‧圓柱型電容器 1503‧‧‧Cylindrical Capacitors

1504‧‧‧互連層 1504‧‧‧Interconnect layer

1603‧‧‧通道/路徑 1603‧‧‧Channel/Path

1604‧‧‧下方互連處 1604‧‧‧Interconnects

1605‧‧‧上方互連處 1605‧‧‧The upper interconnection

1703‧‧‧互連桿 1703‧‧‧ interconnection rod

1704‧‧‧PIP電容器 1704‧‧‧PIP capacitors

1705‧‧‧VIA 1705‧‧‧VIA

1706‧‧‧源極和汲極擴散層 1706‧‧‧Source and bungee diffusion layers

1707‧‧‧MOS選擇閘極 1707‧‧‧MOS selection gate

1709‧‧‧獨立閘極 1709‧‧‧Independence gate

1800、1900‧‧‧流程圖 1800, 1900‧‧‧ flow chart

1802、1804、1806、1902、1904、1906、1908‧‧‧方塊 1802, 1804, 1806, 1902, 1904, 1906, 1908‧‧‧

DSG‧‧‧汲極選擇閘極 DSG‧‧‧Bunge selection gate

SSG‧‧‧源極選擇閘極 SSG‧‧‧Source selection gate

CAP‧‧‧電容器 CAP‧‧‧ capacitor

WL、WL0-3‧‧‧字元線 WL, WL0-3‧‧‧ character line

SL‧‧‧半導體層 SL‧‧‧Semiconductor layer

BL、BL0-3‧‧‧位元線 BL, BL0-3‧‧‧ bit line

DWL、DWL0-3‧‧‧DRAM字元線 DWL, DWL0-3‧‧‧DRAM word line

CAP1、CAP2、CAPM‧‧‧控制訊號 CAP1, CAP2, CAPM‧‧‧ control signals

BG‧‧‧背閘極 BG‧‧‧ back gate

WL0-WLN‧‧‧串接單元 WL0-WLN‧‧‧ tandem unit

DWL0-1‧‧‧DRAM選擇閘極 DWL0-1‧‧‧DRAM selection gate

SSG1‧‧‧第一源極選擇閘極 SSG1‧‧‧First source selection gate

SSG2‧‧‧第二源極選擇閘極 SSG2‧‧‧Second source selection gate

DSG0-3‧‧‧訊號 DSG0-3‧‧‧ signal

INT‧‧‧互連 INT‧‧‧Interconnection

DPG‧‧‧DRAM傳遞閘極 DPG‧‧‧DRAM transfer gate

ISO‧‧‧獨立閘極 ISO‧‧‧ independent gate

M0-M8‧‧‧電晶體 M0-M8‧‧‧O crystal

經由下文詳細敘述以及本發明各實施例之附圖,可更為徹底地理 解本發明之示例性實施例,然而,前述內容僅供解釋與理解之用,而不應將本發明侷限於特定實施例。 More thorough geography through the detailed description below and the drawings of various embodiments of the present invention The present invention is to be construed as being limited to the specific embodiments.

第1A至1B圖係為繪示根據本發明之一實施例之使用三維(3D)非揮發記憶體(NVM)陣列以及動態隨機存取記憶體(DRAM)而可儲存數據之數位處理系統之方塊圖。 1A to 1B are diagrams showing a digital processing system capable of storing data using a three-dimensional (3D) non-volatile memory (NVM) array and a dynamic random access memory (DRAM) according to an embodiment of the present invention. Figure.

第2A至2B圖係為繪示根據本發明之一實施例之具有多個呈3D構型排列之NVM串之混合型NVM/DRAM記憶裝置之示意圖。 2A-2B are schematic diagrams showing a hybrid NVM/DRAM memory device having a plurality of NVM strings arranged in a 3D configuration in accordance with an embodiment of the present invention.

第2C圖係為繪示根據本發明之一實施例之與供管理三維NVM及DRAM(NVM/DRAM)儲存構型之各種閘極訊號有關之波形的時序圖。 2C is a timing diagram showing waveforms associated with various gate signals for managing three-dimensional NVM and DRAM (NVM/DRAM) storage configurations in accordance with an embodiment of the present invention.

第3A至3D圖係為顯示根據本發明之一實施例之與3D混合型NVM/DRAM記憶裝置相關之3D實體布局於垂直方向上之方塊圖。 3A through 3D are block diagrams showing a 3D physical layout associated with a 3D hybrid NVM/DRAM memory device in a vertical direction in accordance with an embodiment of the present invention.

第4A至4F圖係為繪示根據本發明之一實施例之顯示3D混合型NVM/DRAM記憶裝置垂直方向上之實體布局之其他態樣之方塊圖。 4A through 4F are block diagrams showing other aspects of displaying a physical layout in a vertical direction of a 3D hybrid NVM/DRAM memory device in accordance with an embodiment of the present invention.

第5A至5F圖係為繪示根據本發明之一實施例之顯示3D混合型NVM/DRAM記憶裝置垂直方向上之實體布局之其他態樣之方塊圖。 5A through 5F are block diagrams showing other aspects of the physical layout in the vertical direction of the 3D hybrid NVM/DRAM memory device in accordance with an embodiment of the present invention.

第6A至6F圖係顯示與根據本發明之一實施例之與3D混合型NVM/DRAM記憶裝置相關之實體布局之3D方塊圖。 Figures 6A through 6F show 3D block diagrams of physical layouts associated with 3D hybrid NVM/DRAM memory devices in accordance with an embodiment of the present invention.

第7A至7B圖係為顯示根據本發明之一實施例之使用不同串接模式之3D混合型NVM/DRAM記憶裝置之實體布局之3D方塊圖。 7A through 7B are 3D block diagrams showing the physical layout of a 3D hybrid NVM/DRAM memory device using different serial mode in accordance with an embodiment of the present invention.

第8A至8C圖係為顯示根據本發明之一實施例之使用不同的DRAM字元線(DWL)構型之3D混合型NVM/DRAM記憶裝置之實體布局之3D方塊圖。 8A through 8C are 3D block diagrams showing the physical layout of a 3D hybrid NVM/DRAM memory device using different DRAM word line (DWL) configurations in accordance with an embodiment of the present invention.

第9A至9B圖係為顯示根據本發明之一實施例之使用不同的DRAM傳遞閘極(DPG)構型之3D混合型NVM/DRAM記憶裝置之實體布局之3D方塊圖。 9A through 9B are 3D block diagrams showing the physical layout of a 3D hybrid NVM/DRAM memory device using different DRAM transfer gate (DPG) configurations in accordance with an embodiment of the present invention.

第10A至10B圖係為顯示根據本發明之一實施例之使用不同的DRAM傳遞閘極(DPG)構型之3D混合型NVM/DRAM記憶裝置之實體布局之其他態樣之3D方塊圖。 10A through 10B are 3D block diagrams showing other aspects of a physical layout of a 3D hybrid NVM/DRAM memory device using different DRAM transfer gate (DPG) configurations in accordance with an embodiment of the present invention.

第11A至11B圖係為顯示根據本發明之一實施例之具有多層電容層之3D混合型NVM/DRAM記憶裝置之實體布局之3D方塊圖。 11A through 11B are 3D block diagrams showing the physical layout of a 3D hybrid NVM/DRAM memory device having a multi-layered capacitor layer in accordance with an embodiment of the present invention.

第12A至12B圖係為顯示根據本發明之一實施例之具有多層電容層之3D混合型NVM/DRAM記憶裝置之實體布局之其他態樣之3D方塊圖。 12A through 12B are 3D block diagrams showing other aspects of the physical layout of a 3D hybrid NVM/DRAM memory device having a multi-layered capacitive layer in accordance with an embodiment of the present invention.

第13A至13B圖係為顯示根據本發明之一實施例之使用其他垂直結構之3D混合型NVM/DRAM記憶裝置之實體布局之3D方塊圖。 13A through 13B are 3D block diagrams showing the physical layout of a 3D hybrid NVM/DRAM memory device using other vertical structures in accordance with an embodiment of the present invention.

第14圖係為顯示根據本發明之一實施例之3D混合型NVM/DRAM記憶裝置之實體布局之側視角之3D方塊圖。 Figure 14 is a 3D block diagram showing a side view of a physical layout of a 3D hybrid NVM/DRAM memory device in accordance with an embodiment of the present invention.

第15至17圖係為顯示根據本發明之一實施例之使用不同電容層之3D混合型NVM/DRAM記憶裝置之實體布局之3D方塊圖。 15 through 17 are 3D block diagrams showing the physical layout of a 3D hybrid NVM/DRAM memory device using different capacitance layers in accordance with an embodiment of the present invention.

第18圖係為繪示操作根據本發明之一實施例之3D混合型NVM/DRAM記憶裝置之流程圖。 Figure 18 is a flow chart showing the operation of a 3D hybrid NVM/DRAM memory device in accordance with an embodiment of the present invention.

第19圖係為繪示根據本發明之一實施例之3DNVM/DRAM記憶裝置之製造程序之流程圖。 Figure 19 is a flow chart showing the manufacturing procedure of a 3DNVM/DRAM memory device in accordance with an embodiment of the present invention.

本發明於下文中示例性實施例將敘述用以提供同時使用揮發與非 揮發記憶裝置之儲存裝置之方法、裝置以及設備。 The present invention will be described below in order to provide simultaneous use of volatiles and non-volatiles. A method, apparatus and apparatus for a storage device for a volatile memory device.

本領域中具有普通技藝者應理解到,本發明於下文中的詳細敘述僅用以說明,而並非意欲作為限制。對於具有技藝者而言,可很容易想到本發明之其他實施例所具有的優點。本發明之示例性實施例於實施上的詳細內容則參照附圖所繪示者。於圖式以及下文詳細說明中,相同的參考指示符號(數字)將指稱相同或相似部分。 It is to be understood by those skilled in the art that the invention The advantages of other embodiments of the present invention are readily apparent to those skilled in the art. The details of the exemplary embodiments of the present invention are described with reference to the accompanying drawings. In the drawings and the detailed description below, the same reference numerals (numbers) will refer to the same or similar parts.

根據本發明之實施例,於本文中所述之元件、製程步驟以及/或數據結構可經由各種操作系統、計算平台、電腦程式以及/或一般用途機器而加以實施。其中,包括一連串製程步驟之方法係以一電腦或一機器加以執行,且此等製程步驟可以一連串可讀指令之形式而被該機器所儲存,其可被儲存於一有形媒體上,例如:電腦記憶裝置,如ROM(唯讀記憶體)、PROM(可編程唯讀記憶體)、EEPROM(電子抹除式可編程唯讀記憶體)、快閃記憶體、隨身碟及類似者;磁性儲存媒體,如磁帶、磁碟機及類似者;光學儲存媒體,如CD-ROM、DVD-ROM、紙卡及紙帶與類似者;以及其他已知種類的程式記憶體。 In accordance with embodiments of the present invention, the components, process steps, and/or data structures described herein can be implemented via various operating systems, computing platforms, computer programs, and/or general purpose machines. Wherein, the method comprising a series of process steps is performed by a computer or a machine, and the process steps can be stored by the machine in the form of a series of readable instructions, which can be stored on a tangible medium, such as a computer. Memory devices such as ROM (read only memory), PROM (programmable read-only memory), EEPROM (electronic erasable programmable read-only memory), flash memory, flash drives, and the like; magnetic storage media Such as tapes, drives and the like; optical storage media such as CD-ROMs, DVD-ROMs, paper cards and tapes and the like; and other known types of program memory.

本領域中具有普通技藝者可瞭解的是,本文中所敘述的裝置可形成於一習知的半導體基板上,或其可以薄膜電晶體(TFT)形式簡單形成於基板上方,或於諸如玻璃(SOG)、藍寶石(SOS)之絕緣層覆矽(SOI)內,或其他本領域中具有普通技藝者已知基板上。本領域中具有普通技藝者亦可瞭解到,前述基板於一摻雜濃度範圍內亦可執行其功能。基本上,任何可形成pFET以及nFET皆可起作用。摻雜區域可經擴散或植入形成。 It will be appreciated by those skilled in the art that the devices described herein can be formed on a conventional semiconductor substrate, or they can be simply formed over a substrate, such as glass, in the form of a thin film transistor (TFT). SOG), sapphire (SOS) within the insulating layer (SOI), or other substrates known to those of ordinary skill in the art. It will also be appreciated by those skilled in the art that the substrate can perform its function within a range of doping concentrations. Basically, any pFET and nFET can be formed to function. The doped regions can be formed by diffusion or implantation.

「系統」一詞於本文中係用於一般性敘述任何數目之組件、元件、次系統、裝置、組合開關元件、組合開關、路由器、網路、電腦以及/或 通訊裝置或機構或前述元件之組合。「電腦」一詞於本文中係用於一般性敘述任何數目之電腦,包括(但不限於)個人電腦、嵌入式處理器和系統、控制邏輯、ASIC、晶片、工作站、主機等。「裝置」一詞於本文中係用於一般性敘述任何形式的機構,包括一電腦或系統或其元件。「任務」以及「程序」一詞於本文中係用於一般性敘述任何種類的程式執行,包括(但不限於)一電腦程序、任務、線程、執行應用程式、作業系統、使用者程序、裝置驅動程式、原始碼、機器或其他語言等,且可為互動式以及/或非互動式、本地以及/或遠端執行、於前景以及/或背景執行、於使用者以及/或作業系統位址空間執行、庫存程式以及/或獨立應用程式,且並非僅限於任何特定的記憶切割技術。訊號以及資訊之步驟、聯繫以及處理係繪示於包括(但不限於)方塊以及流程圖之圖式中,且於各種實施例中,其係通常以連續或平行次序以及/或經由不同元件以及/或通過不同連接關係而被執行,但皆與本發明之範圍與精神相符。 The term "system" is used herein to describe generally any number of components, components, subsystems, devices, combination of switching elements, combination switches, routers, networks, computers, and/or A communication device or mechanism or a combination of the aforementioned elements. The term "computer" is used herein to describe any number of computers in general, including but not limited to personal computers, embedded processors and systems, control logic, ASICs, chips, workstations, mainframes, and the like. The term "device" is used herein to generally describe any form of mechanism, including a computer or system or elements thereof. The terms "task" and "program" are used throughout this document to describe any type of program execution, including but not limited to a computer program, tasks, threads, execution applications, operating systems, user programs, devices. Driver, source code, machine or other language, etc., and may be interactive and/or non-interactive, local and/or remote execution, foreground and/or background execution, user and/or operating system address Space execution, inventory programs, and/or stand-alone applications, and are not limited to any specific memory cutting technology. The steps and associations of the signals and information are illustrated in, but not limited to, the blocks and the flowcharts, and in various embodiments, which are generally in a sequential or parallel order and/or via different components and / or by different connection relationships, but are consistent with the scope and spirit of the invention.

本發明之一實施例係揭露一種可儲存資訊之記憶系統,其係使用呈堆疊構型排列之混合式揮發與非揮發記憶裝置。於一方面,該記憶系統包括多個記憶元件、一汲極選擇閘極(DSG)電晶體以及一電容元件。於一實例中,每一記憶元件包括一源極端、一閘極端、一汲極端以及一非揮發單元。該等記憶元件係排列成串,且該等元件係連接於源極端以及汲極端之間。該DSG電晶體之汲極端係耦合於一記憶元件之源極端,且該DSG電晶體之閘極端則係耦合於一DSG訊號。該電容元件之汲極端係耦合於第一DSG電晶體之源極端。該電容元件係構型以執行一動態隨機存取記憶體(DRAM)功能。 One embodiment of the present invention discloses a memory-storable memory system that uses a hybrid volatile and non-volatile memory device arranged in a stacked configuration. In one aspect, the memory system includes a plurality of memory elements, a drain select gate (DSG) transistor, and a capacitive element. In one example, each memory element includes a source terminal, a gate terminal, a gate terminal, and a non-volatile cell. The memory elements are arranged in a string and the elements are connected between the source terminal and the drain terminal. The NMOS terminal of the DSG transistor is coupled to the source terminal of a memory device, and the gate terminal of the DSG transistor is coupled to a DSG signal. The 汲 extreme of the capacitive element is coupled to the source terminal of the first DSG transistor. The capacitive component is configured to perform a dynamic random access memory (DRAM) function.

第1A圖係為一方塊圖100,其係繪示根據本發明之一實施例之一 可儲存數據之數位處理系統,該系統使用三維(3D)非揮發記憶體(NVM)陣列以及動態隨機存取記憶體(DRAM)。於一實施例,方塊圖100包括一處理器150、NVM儲存器152以及一排線158。處理器150更包括一晶片內建記憶體160以及一排線管理器156,其中該晶片內建記憶體160更包括一可依據模式選擇執行DRAM功能以及/或NVM功能之3D雙功能儲存器102。於一實施例,該儲存器102係為一3D混合型NVM以及DRAM(NVM/DRAM)記憶裝置,其中三維NVM108係位於儲存器102之一區段,而三維DRAM106則係位於該儲存器102之另一區段。於一實例,DRAM106係耦合於NVM108,以供數據儲存以及緊急備份。於一方面,NVM可為NAND型快閃記憶體、NOR型快閃記憶體、浮動閘極單元、電荷捕捉式單元、SONOS單元、PMOS單元、分離式閘極單元、相變化記憶元件(PCM)、EEPROM(抹除式可編程唯讀記憶體)或NAND、NOR、PCM以及/或EEPROM記憶體之組合。為簡化前述討論,於說明書中將以NAND型快閃記憶體作為示例性的NVM。但應注意的是,即使將一或多個方塊(或裝置)加入或自方塊圖100移除,亦不會改變本發明之示例性實施例之基本概念。 1A is a block diagram 100 showing one of the embodiments of the present invention. A digital processing system that stores data using a three-dimensional (3D) non-volatile memory (NVM) array and dynamic random access memory (DRAM). In one embodiment, block diagram 100 includes a processor 150, NVM storage 152, and a row of wires 158. The processor 150 further includes a chip built-in memory 160 and a line manager 156. The chip built-in memory 160 further includes a 3D dual function memory 102 capable of performing DRAM functions and/or NVM functions according to mode selection. . In one embodiment, the storage device 102 is a 3D hybrid NVM and DRAM (NVM/DRAM) memory device, wherein the three-dimensional NVM 108 is located in a section of the storage 102, and the three-dimensional DRAM 106 is located in the storage 102. Another section. In one example, DRAM 106 is coupled to NVM 108 for data storage and emergency backup. In one aspect, the NVM can be a NAND type flash memory, a NOR type flash memory, a floating gate unit, a charge trap type unit, a SONOS unit, a PMOS unit, a split gate unit, a phase change memory element (PCM). , EEPROM (erasable programmable read only memory) or a combination of NAND, NOR, PCM, and / or EEPROM memory. To simplify the foregoing discussion, a NAND type flash memory will be used as an exemplary NVM in the specification. It should be noted, however, that even if one or more blocks (or devices) are added or removed from block diagram 100, the basic concepts of the exemplary embodiments of the present invention are not altered.

包括混合型NVM單元108以及DRAM單元106的儲存器102可指稱為3D混合型NVM/DRAM或DRAM-NAND(DNAND)。須注意的是,DRAM單元和NAND單元係彼此耦合,以增強記憶效能。於一方面,DNAND單元具有與NAND單元相似的類NAND單元結構,其中該DNAND單元可依據操作模式用作為NAND單元以及DRAM單元。雖然記憶體160係為在一中央處理單元(CPU)150內之一內嵌式記憶體,記憶體160亦可為一可提供NVM以及DRAM雙功能之獨立記憶晶片。 The storage 102 including the hybrid NVM unit 108 and the DRAM unit 106 may be referred to as 3D hybrid NVM/DRAM or DRAM-NAND (DNAND). It should be noted that the DRAM cell and the NAND cell are coupled to each other to enhance memory performance. In one aspect, the DNAND cell has a NAND-like cell structure similar to the NAND cell, wherein the DNAND cell can be used as a NAND cell and a DRAM cell depending on the mode of operation. Although the memory 160 is an embedded memory in a central processing unit (CPU) 150, the memory 160 can also be a separate memory chip that provides dual functions of NVM and DRAM.

由於三維NVM/DRAM102使用相似的NAND串以同時提供DRAM儲 存功能以及NAND快閃記憶體功能,三維NVM/DRAM102於一方面可同時將DRAM單元以及NAND單元置於一單一晶片或晶粒上。為建立或製造與NAND製程相容之DRAM,NAND以及DRAM單元可同時製造於一單一晶片或晶粒。NAND陣列以及DRAM陣列亦可內嵌於一微控制器或任何其他晶片。 Since the three-dimensional NVM/DRAM 102 uses a similar NAND string to simultaneously provide DRAM storage The memory function and the NAND flash memory function, the three-dimensional NVM/DRAM 102 can simultaneously place the DRAM cells and the NAND cells on a single wafer or die. To create or fabricate DRAMs that are compatible with NAND processes, NAND and DRAM cells can be fabricated simultaneously on a single die or die. The NAND array and DRAM array can also be embedded in a microcontroller or any other wafer.

於操作時,晶片內建式記憶體160可便於數據經排線158在NVM/DRAM102以及NVM152之間的傳送。排線管理器156可同時將數據於記憶體160之NVM/DRAM102以及NVM152之間傳送。於另一實施例,在緊急停機或電力中斷時,晶片內建式記憶體160可將DRAM106內的數據備份至NVM單元108。 In operation, the on-chip memory 160 facilitates the transfer of data between the NVM/DRAM 102 and the NVM 152 via the cable 158. The cable manager 156 can simultaneously transfer data between the NVM/DRAM 102 of the memory 160 and the NVM 152. In another embodiment, the on-chip memory 160 can back up data within the DRAM 106 to the NVM unit 108 during an emergency shutdown or power outage.

使用同時包含DRAM以及NVM之晶片內建式記憶體160之一個優勢在於,其可便於同時進行多頁NVM之編程以及多塊區域之抹除。此外,晶片內建式記憶體160亦可改進在晶片內建式記憶體160以及使用三維NVM/DRAM 102之NVM 152之間的數據傳輸速率。再者,使用晶片內建式記憶體160之另一優勢在於,於緊急時刻可將數據自DRAM單元106備份至NVM單元108。 One advantage of using a on-chip memory 160 that includes both DRAM and NVM is that it facilitates simultaneous programming of multiple pages of NVM and erasure of multiple blocks. In addition, the on-chip memory 160 can also improve the data transfer rate between the on-chip memory 160 and the NVM 152 using the three-dimensional NVM/DRAM 102. Moreover, another advantage of using the on-chip memory 160 is that data can be backed up from the DRAM unit 106 to the NVM unit 108 in an emergency.

第1B圖係為繪示可儲存數據之一數位處理系統之方塊圖101,該系統係使用根據本發明之一實施例之一3D混合型NVM/DRAM記憶裝置。於一實施例,方塊圖101包括一處理器150、NVM儲存器172以及一排線158。NVM儲存器172更包括一或多個可執行DRAM功能以及NVM功能之3D混合型NVM/DRAM記憶裝置。於一實施例,混合型NVM/DRAM記憶裝置170包括一或多個3D陣列172,其中每一3D陣列172包括一DRAM部分176以及一NVM部分178。於一實施例,DRAM部分176包括一或多個可暫時儲存數據之 DRAM單元。NVM部分178包括一或多個可長久儲存數據之NVM串。於一方面,DRAM單元係耦合至NVM單元,以供數據之儲存以及緊急備份。 1B is a block diagram 101 showing a digital processing system for storing data using a 3D hybrid NVM/DRAM memory device in accordance with an embodiment of the present invention. In one embodiment, block diagram 101 includes a processor 150, NVM storage 172, and a row of wires 158. The NVM storage 172 further includes one or more 3D hybrid NVM/DRAM memory devices that can perform DRAM functions as well as NVM functions. In one embodiment, the hybrid NVM/DRAM memory device 170 includes one or more 3D arrays 172, wherein each 3D array 172 includes a DRAM portion 176 and an NVM portion 178. In one embodiment, DRAM portion 176 includes one or more data that can be temporarily stored. DRAM unit. The NVM portion 178 includes one or more NVM strings that can store data for a long time. In one aspect, the DRAM cell is coupled to the NVM cell for data storage and emergency backup.

第2A至2B圖為繪示根據本發明一實施例之具有多個呈3D構型排列之NVM串之混合型NVM/DRAM記憶裝置之示意圖290-291。示意圖290係顯示根據本發明之一實施例之一2D陣列實施例。該2D陣列包括至該單元串之金屬氧化物半導體(MOS)電容器401-404,其中MOS電容器401-404係可保持電荷。此外,一組次級汲極選擇閘極(DSG)405-408係加入該等串內,以管理DRAM的操作以及/或NVM的操作。應注意的是,即使將一或多個方塊(或裝置)加入或自示意圖290移除,亦不會改變本發明之示例性實施例之基本概念。 2A-2B are schematic diagrams 290-291 illustrating a hybrid NVM/DRAM memory device having a plurality of NVM strings arranged in a 3D configuration, in accordance with an embodiment of the present invention. Schematic 290 shows a 2D array embodiment in accordance with an embodiment of the present invention. The 2D array includes metal oxide semiconductor (MOS) capacitors 401-404 to the string of cells, wherein MOS capacitors 401-404 are capable of holding a charge. In addition, a set of secondary drain select gates (DSGs) 405-408 are added to the strings to manage the operation of the DRAM and/or the operation of the NVM. It should be noted that even if one or more blocks (or devices) are added or removed from the schematic 290, the basic concepts of the exemplary embodiments of the present invention are not altered.

於一實施例,該混合型NVM/DRAM記憶裝置包括多個記憶元件、一DSG電晶體以及一電容元件,構型以儲存資訊。每一記憶元件具有一源極端、一閘極端、一汲極端以及一非揮發單元。該等記憶元件係排列成串,且係連接於記憶元件之源極端以及汲極端之間。於一實例,該串係指稱NAND型NVM串、NAND串、NAND單元、NVM單元串或類似者。 In one embodiment, the hybrid NVM/DRAM memory device includes a plurality of memory elements, a DSG transistor, and a capacitive element configured to store information. Each memory element has a source terminal, a gate terminal, a terminal electrode, and a non-volatile unit. The memory elements are arranged in a string and are connected between the source terminal and the drain terminal of the memory element. In one example, the string refers to a NAND-type NVM string, a NAND string, a NAND cell, an NVM cell string, or the like.

該DSG電晶體具有一源極端、一汲極端以及一閘極端,其中該DSG電晶體之汲極端係耦合於該等記憶元件之源極端。該DSG電晶體之閘極端係耦合於一用以控制該DSG電晶體之邏輯狀態之第一DSG訊號。該混合型NVM/DRAM記憶裝置更包括一SSG(源極選擇閘極),其中該SSG元件之源極端係耦合於該等排列成串之記憶元件中之一者的一汲極端。 The DSG transistor has a source terminal, a terminal extreme, and a gate terminal, wherein a drain of the DSG transistor is coupled to a source terminal of the memory element. The gate of the DSG transistor is coupled to a first DSG signal for controlling the logic state of the DSG transistor. The hybrid NVM/DRAM memory device further includes an SSG (Source Select Gate), wherein a source terminal of the SSG component is coupled to a terminal of one of the string of memory elements.

一方面,該電容元件包括一源極端、一汲極端以及一閘極端,其中該電容元件之汲極端係耦合於該DSG電晶體之源極端。該電容元件係可執行一DRAM之功能。一方面,該混合型NVM/DRAM記憶裝置更包括一第二 DSG電晶體,其中該第二DSG電晶體之汲極端係耦合於該電容元件之源極端。該電容元件可為任何種類的半導體電容器,例如MOS電容器、PIP(聚矽-絕緣-聚矽)電容器、堆疊式電容器、圓柱型電容器以及類似者。 In one aspect, the capacitive element includes a source terminal, a drain terminal, and a gate terminal, wherein a drain of the capacitive element is coupled to a source terminal of the DSG transistor. The capacitive element can perform the function of a DRAM. In one aspect, the hybrid NVM/DRAM memory device further includes a second A DSG transistor, wherein a 汲 extreme of the second DSG transistor is coupled to a source terminal of the capacitive element. The capacitive element can be any kind of semiconductor capacitor such as a MOS capacitor, a PIP (poly-insulator-poly-capacitor) capacitor, a stacked capacitor, a cylindrical capacitor, and the like.

第2B圖係顯示與示意圖290相似之一示意圖291,其不同處在於示意圖291繪示一使用3D布局技術之三維NVM/DRAM陣列結構。於一實例,MOS電容器(CAP)411-414係用於保持電荷。另,一組次級DSG415-418係加入以管理DRAM之操作以及/或NVM之操作。於這些陣列結構中,每頁的數據係儲存於MOS電容器411-414內,隨後再編程至所選擇之單元。MOS電容器411-414閘極係連接至一適當的電容器電壓,例如可啟動MOS電容器411-414之VDD或其他電壓。 2B shows a schematic 291 similar to schematic 290, the difference being that schematic 291 illustrates a three-dimensional NVM/DRAM array structure using 3D layout techniques. In one example, MOS capacitors (CAP) 411-414 are used to hold charge. In addition, a set of secondary DSGs 415-418 are added to manage the operation of the DRAM and/or the operation of the NVM. In these array configurations, the data for each page is stored in MOS capacitors 411-414 and then reprogrammed to the selected cells. The gates of MOS capacitors 411-414 are connected to a suitable capacitor voltage, such as VDD or other voltages that can activate MOS capacitors 411-414.

使用三維NVM/DRAM記憶裝置之一優勢在於,該裝置可執行多頁讀取操作以及多頁寫入操作。 One advantage of using a three-dimensional NVM/DRAM memory device is that the device can perform multiple page read operations as well as multiple page write operations.

第2C圖係為一時序圖292,其係繪示與用以管理根據本發明之一實施例之三維NVM/DRAM儲存構型之各種閘極訊號相關之波形。時序圖292係顯示第2A或2B圖所示之三維NVM/DRAM陣列結構之編程波形。於T0時,每頁之數據係施加於BL(位元線),且DSG[0]-DSG[N]係被施加VDD脈衝以將數據逐頁載入該等MOS電容器內。於載入該等MOS電容器後,於T1時,該DSG係被施加VDD以啟動該等次級DSG,而將數據自MOS電容器載入至該等單元串。該等WL係被施加Vpgm以及Vpass以進行編程。於T2時,該等WL電壓係進行放電,而完成該編程脈衝。 2C is a timing diagram 292 depicting waveforms associated with various gate signals for managing a three-dimensional NVM/DRAM storage configuration in accordance with an embodiment of the present invention. Timing diagram 292 shows the programming waveform of the three-dimensional NVM/DRAM array structure shown in FIG. 2A or 2B. At T0, the data for each page is applied to the BL (bit line), and the DSG[0]-DSG[N] is applied with a VDD pulse to page the data into the MOS capacitors page by page. After loading the MOS capacitors, at T1, the DSG is applied with VDD to activate the secondary DSGs, and data is loaded from the MOS capacitors to the strings of cells. These WLs are applied with Vpgm and Vpass for programming. At T2, the WL voltages are discharged and the programming pulse is completed.

根據本發明之一實施例,如第2A至2B圖所示之2D以及3D陣列結構係可執行多區塊抹除操作。至少有三種方式可以進行抹除操作。第一種方式是將一高電壓Vers(例如18V至20V)施加至該等單元中的P井 區。被選擇的多個區塊的WL則被施加以0V,其可藉由Fowler-Nordheim穿隧效應使電子自一浮動閘極被注入至一通道區,以降低單元之Vt(閥值電壓)。同時,未被選擇之區塊的WL則為浮動,藉此使WL經P井區耦合於18-20V,而使該等未被選擇的單元不被抹除。 According to an embodiment of the present invention, the 2D and 3D array structures as shown in FIGS. 2A to 2B can perform a multi-block erase operation. There are at least three ways to erase. The first way is to apply a high voltage Vers (eg 18V to 20V) to the P well in the units Area. The WL of the selected plurality of blocks is applied with 0V, which can be injected into a channel region from a floating gate by the Fowler-Nordheim tunneling effect to lower the Vt (threshold voltage) of the cell. At the same time, the WL of the unselected block is floating, whereby WL is coupled to 18-20V via the P-well region, so that the unselected cells are not erased.

第二種方式則是將該等單元置於多個P井區,例如將一區塊置入一P井區。於抹除操作過程中,被選擇的多個區塊的P井區係被施加Vers(諸如18-20V之抹除電壓),同時WL則被施加0V以對於該等單元進行抹除。未被選擇區塊的P井區以及WL則被施加0V,以阻止抹除的操作。 The second way is to place the units in multiple P well areas, such as placing a block into a P well area. During the erase operation, the P wells of the selected plurality of blocks are subjected to Vers (such as an erase voltage of 18-20 V), while WL is applied with 0 V to erase the cells. The P well area of the unselected block and the WL are applied with 0V to prevent the erase operation.

第三種方式則需要負WL電壓。被選擇的多個區塊之WL係被施加負值的高電壓,例如-18V至-20V。P井區則係被施加0V,其將使電子自浮動閘極被注入該通道區,以對於該等單元進行抹除。未被選擇之區塊的WL則被施加0V,以阻止抹除的發生。 The third method requires a negative WL voltage. The WL of the selected plurality of blocks is applied with a negative high voltage, such as -18V to -20V. The P well region is applied with 0V, which will cause electrons to be injected into the channel region from the floating gate to erase the cells. The WL of the unselected block is applied with 0V to prevent the erasure from occurring.

應注意的是,在三維NVM/DRAM記憶裝置內之該等NVM單元可為任何種類的NVM單元,包括(但不限於)NAND快閃記憶體、浮動閘極(FG)單元、諸如SONOS(矽-氧-氮化矽-氧-矽)單元之電荷捕捉式單元、PMOS單元、分離型閘極單元以及類似者。 It should be noted that the NVM units within the three-dimensional NVM/DRAM memory device can be any type of NVM unit including, but not limited to, NAND flash memory, floating gate (FG) units, such as SONOS (矽a charge trapping unit of a oxy-zinc nitride-oxygen-oxide unit, a PMOS unit, a split gate unit, and the like.

第3A圖係為一方塊圖390,其係繪示與根據本發明之一實施例之3D混合型NVM/DRAM記憶裝置相關之垂直方向之3D實體布局。方塊圖390係繪示一混合型NVM以及DRAM布局,其中一DRAM單元201係堆疊於三維NAND串202之頂部。於一替代性實施例中,三維NAND型NVM串202係延伸包括DRAM單元201,其中NVM串202以及DRAM單元201兩者皆整合至一通道或聚矽通道207內。應注意的是,即使將一或多個方塊(或裝置)加入或自方塊圖390移除,亦不會改變本發明之示例性實施例之基本概念。 3A is a block diagram 390 showing a vertical 3D physical layout associated with a 3D hybrid NVM/DRAM memory device in accordance with an embodiment of the present invention. Block diagram 390 illustrates a hybrid NVM and DRAM layout in which a DRAM cell 201 is stacked on top of a three dimensional NAND string 202. In an alternative embodiment, the three-dimensional NAND-type NVM string 202 extends to include the DRAM cell 201, wherein both the NVM string 202 and the DRAM cell 201 are integrated into a channel or channel 207. It should be noted that even if one or more blocks (or devices) are added or removed from block diagram 390, the basic concepts of the exemplary embodiments of the present invention are not changed.

DRAM單元201包括一選擇電晶體203以及一MOS電容器204,其中選擇電晶體203係連接至DRAM字元線(DWL),而MOS電容器204則係連接至電容器(CAP)電壓。該CAP電壓正常情況下對於NMOS為一正值電壓,對於PMOS則為一負值電壓,其中CAP電壓之功能在於啟動該MOS電容器204之通道區。一方面,DRAM單元201包括多個電容器以增強隨機存取儲存能力。 DRAM cell 201 includes a select transistor 203 and a MOS capacitor 204, wherein select transistor 203 is coupled to the DRAM word line (DWL) and MOS capacitor 204 is coupled to the capacitor (CAP) voltage. The CAP voltage is normally a positive voltage for the NMOS and a negative voltage for the PMOS, wherein the function of the CAP voltage is to activate the channel region of the MOS capacitor 204. In one aspect, DRAM cell 201 includes a plurality of capacitors to enhance random access storage capabilities.

三維NAND串202,其亦可被指稱為三維NAND型NVM串,係為一三維NAND快閃記憶體之單元串。NAND串202包括DSG、SSG以及多個串接單元WL0-WLN。於一實例,該選擇閘極(例如DSG或SSG)具有較長通道長度,其原因部分在於對於關閉一或多個編程高電壓之需求。需注意到,NVM單元係於側向方位設置,因此可將一NVM單元堆疊至另一NVM單元之頂部。一方面,NAND串202可包括的單元數目係介於8至128個NVM單元之範圍內。NAND串202以及DRAM單元201係經由通道207耦合。 The three-dimensional NAND string 202, which may also be referred to as a three-dimensional NAND-type NVM string, is a cell string of a three-dimensional NAND flash memory. The NAND string 202 includes a DSG, an SSG, and a plurality of series connected cells WL0-WLN. In one example, the select gate (eg, DSG or SSG) has a longer channel length due in part to the need to turn off one or more programmed high voltages. It should be noted that the NVM units are placed in a lateral orientation so that one NVM unit can be stacked on top of another NVM unit. In one aspect, NAND string 202 can include a number of cells ranging from 8 to 128 NVM cells. NAND string 202 and DRAM cell 201 are coupled via channel 207.

可為聚矽通道之通道207包括有兩個擴散區205-206。擴散區205-206可經由N型摻雜程序製造或形成,因此可被指稱為一NMOS電晶體。或,擴散區係以P型摻雜程序製造,因此通常可被指稱為一PMOS電晶體。通道207係由矽或聚矽形成或製成。於一實例,通道207並未摻雜或僅以摻雜物輕度摻雜,於後者中,其係以相反種類的摻雜物或摻雜劑於擴散區205-206進行摻雜。於一方面,通道207係以閘極氧化物或高K值介電材質209所形成。或,亦可使用一ONO(氧化物-氮化物-氧化物)層或其他任何種類之電荷捕捉層210儲存諸如代表單元數據之電子或電洞之電荷。於NMOS所用基板208可為P-SUB,於PMOS所用者則可為N井,其中通道207係被建構為具有實質上與基板208相互垂直之方位。金屬層211係用以經由位元線(BL)接收或傳遞 數據。 Channel 207, which may be a polychannel, includes two diffusion regions 205-206. Diffusion regions 205-206 may be fabricated or formed via an N-type doping procedure and thus may be referred to as an NMOS transistor. Alternatively, the diffusion region is fabricated by a P-type doping procedure and thus may generally be referred to as a PMOS transistor. Channel 207 is formed or made of tantalum or polydazole. In one example, channel 207 is not doped or is only lightly doped with dopants, which in the latter are doped with diffusion species 205-206 with opposite species of dopants or dopants. In one aspect, the channel 207 is formed of a gate oxide or a high K dielectric material 209. Alternatively, an ONO (oxide-nitride-oxide) layer or any other type of charge trapping layer 210 may be used to store charge such as electrons or holes representing unit data. The substrate 208 for the NMOS can be a P-SUB, and the PMOS can be a N well, wherein the channel 207 is constructed to have an orientation substantially perpendicular to the substrate 208. The metal layer 211 is used to receive or transmit via a bit line (BL) data.

第3B圖係為一示意圖392,其係顯示與第3A圖中所示三維DRAM以及NAND單元串實質上等效之電路。示意圖392包括使用於DRAM單元之電晶體或元件M7-M8。此外,NVM單元或電晶體M0-M6係用以建構該三維NAND串。 Figure 3B is a schematic 392 showing a circuit substantially equivalent to the three-dimensional DRAM and NAND cell strings shown in Figure 3A. Schematic 392 includes a transistor or component M7-M8 for use in a DRAM cell. In addition, NVM cells or transistors M0-M6 are used to construct the three-dimensional NAND string.

使用混合型NVM/DRAM記憶裝置之一優點在於,其將三維NVM單元串與DRAM單元整合於相同之晶片上,以改良整體數據吞吐量而供高速應用。舉例而言,對於非揮發儲存而言,該DRAM單元數據可寫入該三維NAND串中所選擇之頁內。當系統需要儲存於該NAND-NVM串之數據時,其可將該數據自NVM單元中所選擇之頁讀至DRAM單元。由於在DRAM以及NAND單元之間的讀/寫操作可同時對於多個記憶串加以執行,該混合型NVM/DRAM記憶裝置可達成高速讀與寫的操作。 One advantage of using a hybrid NVM/DRAM memory device is that it integrates a three-dimensional NVM cell string with a DRAM cell on the same wafer to improve overall data throughput for high speed applications. For example, for non-volatile storage, the DRAM cell data can be written into a selected page of the three-dimensional NAND string. When the system needs to store data in the NAND-NVM string, it can read the data from the selected page in the NVM unit to the DRAM unit. Since the read/write operation between the DRAM and the NAND cell can be performed simultaneously for a plurality of memory strings, the hybrid NVM/DRAM memory device can achieve high-speed read and write operations.

第3C至3D圖係為方塊圖396、398,其係顯示與根據本發明之一實施例之三維NVM/DRAM相關之垂直方向的3D實體布局。方塊圖396係繪示一與方塊圖390(第3A圖)所示之3D布局類似之3D布局,其不同處在於MOS電容器之通道區301係摻雜有與其餘通道207所使用摻雜物之相反種類者。MOS電容器之通道區301得以便於使MOS電容器204成為一耗盡型電晶體,藉此其將不需要一閘極電壓CAP來啟動通道區。第3D圖係為一示意圖398,其係繪示第3A圖所示單元串之等效電路。應注意的是,MOS電容器M8係代表一耗盡型電晶體。 3C through 3D are block diagrams 396, 398 showing a vertical 3D physical layout associated with a three dimensional NVM/DRAM in accordance with an embodiment of the present invention. Block diagram 396 shows a 3D layout similar to the 3D layout shown in block diagram 390 (FIG. 3A), with the difference that the channel region 301 of the MOS capacitor is doped with dopants used in the remaining channels 207. The opposite category. The channel region 301 of the MOS capacitor facilitates the MOS capacitor 204 to be a depletion transistor, whereby it will not require a gate voltage CAP to activate the channel region. The 3D figure is a schematic diagram 398 which shows the equivalent circuit of the cell string shown in FIG. 3A. It should be noted that the MOS capacitor M8 represents a depletion transistor.

第4A圖係為一方塊圖490,其係繪示根據本發明之一實施例之垂直方向的三維NVM/DRAM記憶裝置之實體布局之另一態樣。方塊圖490所顯示之記憶裝置係與方塊圖390(第3A圖)所顯示之記憶裝置相似,其不同處 在於MOS電容器204包含一高K值介電材料層401,而諸如DSG以及SSG之選擇閘極則具有閘極氧化層209。該高K值介電材料係與二氧化矽相似,其中K係指稱具有高介電常數K值之材料。 4A is a block diagram 490 showing another aspect of the physical layout of a three-dimensional NVM/DRAM memory device in a vertical direction in accordance with an embodiment of the present invention. The memory device shown in block diagram 490 is similar to the memory device shown in block diagram 390 (FIG. 3A). The MOS capacitor 204 includes a high K value dielectric material layer 401, while the select gates such as DSG and SSG have a gate oxide layer 209. The high K dielectric material is similar to cerium oxide, wherein the K system refers to a material having a high dielectric constant K value.

第4B圖係為一方塊圖491,其係繪示根據本發明之一實施例之垂直方向的三維NVM/DRAM記憶裝置之實體布局之另一態樣。顯示於方塊圖491中之記憶裝置係相似於第3A圖方塊圖390所顯示之記憶裝置,其不同處在於該選擇閘極、單元以及電容器具有使用作為閘極介電層之相同或實質相同之ONO層402。使用ONO層402之好處在於,其可簡化整體製作過程,藉此降低製造成本以及資源。 4B is a block diagram 491 showing another aspect of the physical layout of a three-dimensional NVM/DRAM memory device in a vertical direction in accordance with an embodiment of the present invention. The memory device shown in block 491 is similar to the memory device shown in block 390 of FIG. 3A, except that the select gate, cell, and capacitor have the same or substantially the same use as the gate dielectric layer. ONO layer 402. The benefit of using the ONO layer 402 is that it simplifies the overall fabrication process, thereby reducing manufacturing costs and resources.

於操作時,NAND串之DSG以及SSG應該控制閘極與通道間之電壓差,以避免發生對於電容器或NVM單元之非預期編程化。舉例而言,閘極和通道間的電壓差不應超過預定所需的電壓,例如10伏特(V),因為其可能造成電子穿隧現象。應注意的是,DRAM單元之操作電壓正常而言為低,因此,在NVM單元以及電容器之間的非預期單元編程也應較低。 In operation, the DSG and SSG of the NAND string should control the voltage difference between the gate and the channel to avoid unintended programming of the capacitor or NVM cell. For example, the voltage difference between the gate and the channel should not exceed a predetermined desired voltage, such as 10 volts (V), as it may cause electron tunneling. It should be noted that the operating voltage of the DRAM cell is normally low, so the unintended cell programming between the NVM cell and the capacitor should also be low.

第4C圖係為一方塊圖492,其係繪示根據本發明之一實施例之垂直方向的三維NVM/DRAM之實體布局之另一態樣。第4D圖係繪示一示意圖493,其係顯示第4C圖之方塊圖492所示之三維NVM/DRAM單元結構之等效電路。於方塊圖492所示之記憶裝置係與第3A圖之方塊圖390所示之記憶裝置相似,其不同處在於該電容部分係分成多個電容器403a至403d。電容器403a-403d之閘極端係連接至不同的控制訊號CAP1、CAP2以及/或CAPM。於一實例,該等控制訊號CAP1、CAP2以及CAPM可連接至相同訊號。或,該等控制訊號CAP1、CAP2以及CAPM可連接至不同電壓,以啟動以及/或關閉該等電容器之通道,藉以改變或調整與諸如電容元件201之電容部分相關之 電容器之容量。使用多個電容器403a-403d之一優勢在於,其得以使用相同的製程模組以形成多個電容器之字元線。 4C is a block diagram 492 showing another aspect of the physical layout of a three-dimensional NVM/DRAM in a vertical direction in accordance with an embodiment of the present invention. 4D is a schematic diagram 493 showing an equivalent circuit of a three-dimensional NVM/DRAM cell structure shown in block 492 of FIG. 4C. The memory device shown in block 492 is similar to the memory device shown in block 390 of FIG. 3A, except that the capacitive portion is divided into a plurality of capacitors 403a through 403d. The gate terminals of capacitors 403a-403d are connected to different control signals CAP1, CAP2 and/or CAPM. In one example, the control signals CAP1, CAP2, and CAPM can be connected to the same signal. Alternatively, the control signals CAP1, CAP2, and CAPM can be connected to different voltages to activate and/or turn off the channels of the capacitors, thereby changing or adjusting the capacitance portion such as the capacitive element 201. The capacity of the capacitor. One advantage of using multiple capacitors 403a-403d is that they can use the same process module to form a plurality of capacitor word lines.

第4E圖係為一方塊圖494,其係繪示根據本發明之一實施例之垂直方向之三維NVM/DRAM記憶裝置之實體布局之一替代性示例。第4F圖係繪示一示意圖495,其係顯示第4E圖之方塊圖494所示之三維NVM/DRAM單元結構之等效電路。方塊圖494所示之記憶裝置係與第4C圖之方塊圖492所示之記憶裝置相似,其不同處在於該多個電容器係替換成多個記憶單元404a-404c。一方面,於DRAM單元201相關之通道207係使用一ONO層406或其他種類的電荷捕捉層以儲存單元數據。記憶單元404a-404c係經連接以控制訊號或字元線,例如WL0a、WL1a以及WLMa。 4E is a block diagram 494 showing an alternative example of a physical layout of a three-dimensional NVM/DRAM memory device in a vertical direction in accordance with an embodiment of the present invention. FIG. 4F is a schematic diagram 495 showing an equivalent circuit of the three-dimensional NVM/DRAM cell structure shown in block diagram 494 of FIG. 4E. The memory device shown in block 494 is similar to the memory device shown in block 492 of FIG. 4C, except that the plurality of capacitors are replaced with a plurality of memory cells 404a-404c. In one aspect, the channel 207 associated with the DRAM cell 201 uses an ONO layer 406 or other type of charge trapping layer to store cell data. Memory cells 404a-404c are coupled to control signals or word lines, such as WL0a, WL1a, and WLMa.

於一實施例中,記憶單元404a-404c可於兩種操作模式下操作。於一模式中,該等記憶單元可被用作為NAND快閃記憶單元以儲存數據。於另一模式中,該等單元可被用作為MOS電容器以將數據暫時性保存於如DRAM單元之單元通道內。在DRAM的操作模式中,數據可被編程至在NAND-NVM串或底部部分202之NAND快閃記憶單元405a-405c之所選字元線。相同地,記憶單元405a-405c亦可具有兩種操作模式。於一模式中,記憶單元405a-405c可用作為NAND快閃記憶單元。於另一模式中,記憶單元405a-405c亦可用作為DRAM單元,而暫時性保存數據,並隨後將其編程至NAND快閃記憶單元404a-404c之上部部位。一方面,DRAM選擇電晶體(DWL)203係構型為具有較長通道長度者,藉以於記憶單元404a-404c之編程循環中處理較高之電壓。 In one embodiment, memory units 404a-404c are operable in two modes of operation. In one mode, the memory cells can be used as NAND flash memory cells to store data. In another mode, the cells can be used as MOS capacitors to temporarily store data in a cell channel such as a DRAM cell. In the DRAM mode of operation, data can be programmed to the selected word line of the NAND flash memory cells 405a-405c at the NAND-NVM string or bottom portion 202. Similarly, memory units 405a-405c can also have two modes of operation. In one mode, memory cells 405a-405c can be used as NAND flash memory cells. In another mode, memory cells 405a-405c can also be used as DRAM cells to temporarily hold data and then program it to the upper portions of NAND flash memory cells 404a-404c. In one aspect, the DRAM Selective Transistor (DWL) 203 is configured to have a longer channel length, whereby higher voltages are processed in the programming loop of memory cells 404a-404c.

第5A至5F圖係維方塊圖,其係繪示根據本發明之一實施例之垂直方向之3D混合型NVM/DRAM記憶裝置之實體布局之替代性態樣。第5A圖係 顯示三維NVM/DRAM單元結構590之一實施例,其係與第3A圖所示之三維NVM/DRAM單元結構相似,其中不同處在於該串係摺入相鄰兩個垂直串550-552之間。該垂直串550-552中每一者包括該等NAND單元之一部分或一半。一方面,垂直串550-552係經通道207或部分通道501(管道)相連接,其中通道207係構型為一U型串。 5A through 5F are block diagrams showing an alternative aspect of the physical layout of a vertical 3D hybrid NVM/DRAM memory device in accordance with an embodiment of the present invention. Figure 5A An embodiment of a three-dimensional NVM/DRAM cell structure 590 is shown that is similar to the three-dimensional NVM/DRAM cell structure shown in FIG. 3A, with the difference that the string is folded between adjacent two vertical strings 550-552. . Each of the vertical strings 550-552 includes one or a half of the NAND cells. In one aspect, the vertical strings 550-552 are connected by a channel 207 or a portion of the channel 501 (duct), wherein the channel 207 is configured as a U-string.

該U型串之底部部分係為管道501,其係位於背閘極(BG)上。BG係沉積於基板208上,用以啟動管道501之通道。於一實施例,SL(半導體層)係連接至一金屬層。在製造過程中,用於垂直串550-552之多層係與NAND型NVM單元沉積於基板208上方。在將選擇閘極(即DSG以及SSG)沉積於該等串550-552之上方後,隨後將前述多層蝕刻以使該二串分離。在形成NVM型串後,其製程繼續將DRAM單元沉積於該BL側。當完成DRAM單元之沉積後,在BL和SL被施用後該製程即告結束。 The bottom portion of the U-string is a conduit 501 that is located on the back gate (BG). The BG is deposited on the substrate 208 to initiate the passage of the conduit 501. In one embodiment, the SL (semiconductor layer) is connected to a metal layer. During the manufacturing process, a multi-layer and NAND-type NVM cell for vertical strings 550-552 is deposited over substrate 208. After depositing the select gates (i.e., DSG and SSG) over the strings 550-552, the foregoing plurality of layers are etched to separate the strings. After forming the NVM type string, its process continues to deposit DRAM cells on the BL side. When the deposition of the DRAM cell is completed, the process ends after the BL and SL are applied.

第5B圖係繪示三維NVM/DRAM單元結構592,其係與第5A圖所繪示之單元結構類似,其不同處在於該二串從底部至DRAM選擇閘極係具有相同的結構。於一實施例中,三維NVM/DRAM記憶裝置包括有一額外的DRAM單元以及選擇閘極502。該額外的DRAM單元包括位於該SL側之MOS電容器503。於操作過程中,數據可儲存至二DRAM單元。於另一實施例中,DRAM單元亦可關閉。例如,DRAM單元之源極側可經由啟動選擇閘極502以及MOS電容器503而被關閉,藉以使該DRAM單元成為一停用裝置。 Figure 5B illustrates a three-dimensional NVM/DRAM cell structure 592 that is similar to the cell structure depicted in Figure 5A, except that the two strings have the same structure from the bottom to the DRAM select gate. In one embodiment, the three-dimensional NVM/DRAM memory device includes an additional DRAM cell and a select gate 502. The additional DRAM cell includes a MOS capacitor 503 on the SL side. During operation, data can be stored to two DRAM cells. In another embodiment, the DRAM cell can also be turned off. For example, the source side of the DRAM cell can be turned off via the enable select gate 502 and the MOS capacitor 503, thereby making the DRAM cell a disable device.

第5C圖係顯示與第5A圖所示單元結構相似之三維NVM/DRAM單元結構,其不同處在於一單一電容器係被分成多個電容器504a-504c。第5D圖係顯示與繪示於第5B圖中之單元結構相似之另一三維NVM/DRAM單元結構,其不同處在於,電容器204以及503係分別被分成多個電容器504a-504c以及 505a-505c。 Fig. 5C shows a three-dimensional NVM/DRAM cell structure similar to the cell structure shown in Fig. 5A, except that a single capacitor system is divided into a plurality of capacitors 504a-504c. The 5D diagram shows another three-dimensional NVM/DRAM cell structure similar to the cell structure shown in FIG. 5B, except that the capacitors 204 and 503 are respectively divided into a plurality of capacitors 504a-504c and 505a-505c.

第5E圖係顯示與第5C圖所示單元結構相似之三維NVM/DRAM單元結構,其不同處在於,多個電容器504a-504c係以多個NAND快閃記憶單元506a-506c所取代。於一實施例,ONO層507或其他任何種類之電荷捕捉層係用以儲存或捕捉單元數據。於一實例中,該等單元可具有兩種操作模式,即NAND快閃記憶體模式以及DRAM模式。 Figure 5E shows a three-dimensional NVM/DRAM cell structure similar to the cell structure shown in Figure 5C, with the difference that the plurality of capacitors 504a-504c are replaced by a plurality of NAND flash memory cells 506a-506c. In one embodiment, the ONO layer 507 or any other type of charge trapping layer is used to store or capture cell data. In one example, the units can have two modes of operation, namely NAND flash memory mode and DRAM mode.

第5F圖係顯示與第5D圖所示單元結構相似之三維NVM/DRAM單元結構,其不同處在於,多個電容器504a-504c以及505a-505c係分別以多個NAND快閃記憶單元506a-506c以及508a-508c加以取代。於一實施例中,ONO層507以及509或其他種類之電荷捕捉層可用以儲存單元數據。 Figure 5F shows a three-dimensional NVM/DRAM cell structure similar to the cell structure shown in Figure 5D, with the difference that the plurality of capacitors 504a-504c and 505a-505c are respectively a plurality of NAND flash memory cells 506a-506c And 508a-508c are replaced. In one embodiment, ONO layers 507 and 509 or other types of charge trapping layers can be used to store cell data.

第6A至6F圖係為3D方塊圖,其係顯示與本發明之一實施例之3D混合型NVM/DRAM記憶裝置相關之實體布局的實施態樣。第6A圖係為一示例性3D混合型NVM/DRAM記憶裝置690,其中該裝置690包括DRAM單元601以及NAND單元串602。為簡化敘述,僅顯示具有字元線WL0-3之四(4)NAND型NVM單元。於實際的產品中,每一串可包含超過32個NVM單元。於第3A圖中所示的裝置390係為裝置690沿著軸線C-C之剖面視圖。於一實施例中,如同其他選擇閘極以及NVM單元,MOS電容器603可由同樣的材料形成,例如聚矽或金屬。需注意的是,NAND串具有共同的汲極選擇閘極604。於操作過程中,當DSG604被啟動時,所有DRAM單元數據可被寫入自或至該NAND串之所選字元線。 6A to 6F are 3D block diagrams showing an embodiment of a physical layout related to a 3D hybrid NVM/DRAM memory device of one embodiment of the present invention. 6A is an exemplary 3D hybrid NVM/DRAM memory device 690, where the device 690 includes a DRAM cell 601 and a NAND cell string 602. To simplify the description, only the four (4) NAND type NVM cells having the word line WL0-3 are shown. In an actual product, each string can contain more than 32 NVM units. The device 390 shown in Figure 3A is a cross-sectional view of the device 690 along the axis C-C. In one embodiment, like other select gates and NVM cells, MOS capacitor 603 can be formed of the same material, such as polysilicon or metal. It should be noted that the NAND strings have a common drain select gate 604. During operation, when the DSG 604 is enabled, all DRAM cell data can be written to or from the selected word line of the NAND string.

第6B圖係繪示與第6A圖所示結構相似之3D陣列結構之一實施例,其不同處在於,該陣列係形成為一上下顛倒之構型。DRAM單元601係位於3D陣列結構之底部,NAND串602則係位於3D陣列結構之頂部。使用上下顛 倒之3D陣列結構之一優點在於,整體陣列可被建立於或沉積於邏輯部分610之頂部。邏輯部分610(例如微處理器以及排線)可自DRAM讀取數據或將數據寫入DRAM,且DRAM可自NAND型NVM單元讀取數據或將數據寫入其中。該上下顛倒之3D陣列結構適合嵌入式或SOC(晶片系統)之應用。 Fig. 6B is a view showing an embodiment of a 3D array structure similar to the structure shown in Fig. 6A, except that the array is formed in an upside down configuration. DRAM cell 601 is located at the bottom of the 3D array structure and NAND string 602 is located at the top of the 3D array structure. Use up and down One advantage of the inverted 3D array structure is that the overall array can be built or deposited on top of the logic portion 610. Logic portion 610 (eg, a microprocessor and a cable) can read data from or write data to the DRAM, and the DRAM can read data from or write data to the NAND-type NVM unit. The upside down 3D array structure is suitable for embedded or SOC (wafer system) applications.

第6C圖係顯示3D陣列結構之一實施例,其中DRAM單元601係位於NAND串602之SL側(或底部)。MOS電容器603係沉積於一沉積在SL上方之第二源極選擇閘極(SSG2)612之上方。第一源極選擇閘極(SSG1)可被啟動,而根據BL0-3之值而將數據寫入DRAM單元。SSG1亦可根據所選WL0-3而將數據自DRAM單元編程至NVM單元。於讀取操作時,SSG2 612係用於開啟或中斷NAND串以及SL之間的連接。於DRAM模式下,在關閉SSG2 612後,電容器603將會與SL分離。 Figure 6C shows an embodiment of a 3D array structure in which the DRAM cell 601 is located on the SL side (or bottom) of the NAND string 602. MOS capacitor 603 is deposited over a second source select gate (SSG2) 612 deposited over SL. The first source select gate (SSG1) can be enabled to write data to the DRAM cell based on the value of BL0-3. SSG1 can also program data from the DRAM cell to the NVM cell based on the selected WL0-3. During a read operation, SSG2 612 is used to turn on or off the connection between the NAND string and the SL. In DRAM mode, capacitor 603 will be separated from SL after SSG2 612 is turned off.

第6D圖係顯示與第6A圖所示結構相似之3D結構之一替代實施例,其不同處在於,NAND串具有獨立的DSG 605-606。例如,選擇閘極係連接至解碼器之訊號DSG0-3。該陣列結構係可將部份數據選擇性地自DRAM單元讀取以及/或寫入NAND串。第6E圖係顯示與第6D圖所示結構相似之3D陣列結構之另一實施例,其不同處在於,其具有分離的MOS電容器607-608。包含有分離的MOS電容器607-608之實體結構使DRAM選擇閘極609、MOS電容器607以及NAND之汲極選擇閘極605之圖案得以於一製程步驟中一起被蝕刻。該等分離的電容器可連接至相同的電容器電壓CAP。 Figure 6D shows an alternative embodiment of a 3D structure similar to that shown in Figure 6A, except that the NAND strings have separate DSGs 605-606. For example, the gate is connected to the signal DSG0-3 of the decoder. The array structure can selectively read and/or write portions of the data from the DRAM cells. Fig. 6E shows another embodiment of a 3D array structure similar to the structure shown in Fig. 6D, except that it has separate MOS capacitors 607-608. The physical structure including separate MOS capacitors 607-608 allows the patterns of DRAM select gate 609, MOS capacitor 607, and NAND drain select gate 605 to be etched together in a single process step. The separate capacitors can be connected to the same capacitor voltage CAP.

第7A至7B圖係為3D方塊圖,其係顯示根據本發明之一實施例之使用不同串接形式之3D混合型NVM/DRAM之實體布局。第7A圖係顯示與第6B圖所示結構相似之3D陣列結構,其不同處在於,如數字符號605以及701-705所顯示,NAND串接形式係為實體分離者。應注意到,該混合型NVM/DRAM 裝置可以某些特定半導體製程程序加以製造。各種蝕刻製程皆可用以自頂部至底部形成分層形式,其中基板係位於底部。該等位於同一水平面之分離的字元線以及源極選擇閘極係可於該陣列外彼此連接。於製造過程中,根據實際應用,DRAM單元的選擇閘極609以及電容器607可具有與NAND串不同之實體形式。根據實際應用,NAND串以及DRAM單元可具有相似或實質上相同之實體形式。為產生具有相似實體形式之NVM/DRAM裝置,可將除BL層外之自頂部至底部之分層於一製程步驟中一起被蝕刻。 7A through 7B are 3D block diagrams showing the physical layout of 3D hybrid NVM/DRAM using different serial forms in accordance with an embodiment of the present invention. Fig. 7A shows a 3D array structure similar to that shown in Fig. 6B, except that the NAND serial form is a physical separator as shown by the numerals 605 and 701-705. It should be noted that this hybrid NVM/DRAM The device can be fabricated in certain semiconductor process recipes. Various etching processes can be used to form a layered form from top to bottom with the substrate being at the bottom. The separate word lines and source select gates located at the same horizontal plane may be connected to each other outside the array. In the manufacturing process, depending on the actual application, the select gate 609 of the DRAM cell and the capacitor 607 may have a different physical form than the NAND string. Depending on the application, the NAND strings and DRAM cells can have similar or substantially identical physical forms. To create an NVM/DRAM device having a similar physical form, the top-to-bottom layering other than the BL layer can be etched together in a process step.

第7B圖係顯示與第7A圖所示結構相似之3D陣列結構之一實施例,其不同處在於,源極線706-707係形成於基板708內,而非於一SL層。該位於基板708內或井內之源極線可由特定製程產生。於一實例,該源極線可被解碼或彼此連接。 Figure 7B shows an embodiment of a 3D array structure similar to that shown in Figure 7A, except that source lines 706-707 are formed in substrate 708 rather than a SL layer. The source lines located within or within the substrate 708 can be produced by a particular process. In an example, the source lines can be decoded or connected to each other.

第8A至8C圖係為3D方塊圖,其係顯示根據本發明之一實施例之使用不同構型之DRAM字元線之三維NVM/DRAM記憶裝置之實體布局。第8A圖係顯示使用一互連(INT)層之3D混合型NVM/DRAM陣列之一實施例。INT層801-802係被加入於DRAM單元以及NAND串之間。該互連層可由傳導材料所製成,所述材料例如為可使DRAM單元連接至多個NAND串者,如聚矽或金屬。使用INT層801-802之一個優點在於可降低DRAM單元的數目。在該互連層將一DRAM單元連接至兩個NAND串後,藉由選擇NAND DSG 605-606中之一者,可將儲存於DRAM單元的數據寫入該兩個NAND串或自NAND串寫入DRAM單元。 8A through 8C are 3D block diagrams showing the physical layout of a three dimensional NVM/DRAM memory device using different configurations of DRAM word lines in accordance with an embodiment of the present invention. Figure 8A shows an embodiment of a 3D hybrid NVM/DRAM array using an interconnect (INT) layer. INT layers 801-802 are added between the DRAM cells and the NAND strings. The interconnect layer can be made of a conductive material, such as a DRAM cell that can be connected to a plurality of NAND strings, such as poly germanium or metal. One advantage of using the INT layers 801-802 is that the number of DRAM cells can be reduced. After the interconnect layer connects a DRAM cell to two NAND strings, data stored in the DRAM cell can be written to the two NAND strings or written from the NAND string by selecting one of the NAND DSGs 605-606. Into the DRAM unit.

第8B圖係顯示使用互連層803之3D混合型NVM/DRAM裝置之另一示例態樣。在將一DRAM連接至四NAND串後,儲存於該DRAM的數據可被寫入至該四NAND串或自該四NAND串取出。應注意的是,互連層的應用使 3D混合型NVM/DRAM於使用上具有彈性,藉此可使DRAM以及NAND單元於數目上的比例被最佳化。互連層可降低DRAM單元的數目,藉此如第8A至8B圖所示,其可使DRAM單元間的間距放寬。第8C圖係顯示3D混合型NVM/DRAM陣列之另一態樣,其中該DRAM選擇閘極DWL0-1以及位元線BL0-1d的數目可以減至一半。第8C圖所示布局的優點在於可使混合型NVM/DRAM陣列之實體布局的間距放寬。 Fig. 8B shows another exemplary aspect of a 3D hybrid type NVM/DRAM device using the interconnect layer 803. After a DRAM is connected to the four NAND strings, data stored in the DRAM can be written to or taken from the four NAND strings. It should be noted that the application of the interconnect layer enables The 3D hybrid NVM/DRAM is flexible in use, whereby the ratio of the number of DRAMs and NAND cells can be optimized. The interconnect layer can reduce the number of DRAM cells, whereby the pitch between the DRAM cells can be relaxed as shown in Figs. 8A to 8B. Figure 8C shows another aspect of a 3D hybrid NVM/DRAM array in which the number of DRAM select gates DWL0-1 and bit lines BL0-1d can be reduced by half. An advantage of the layout shown in Figure 8C is that the pitch of the physical layout of the hybrid NVM/DRAM array can be relaxed.

第9A至9B圖係為3D方塊圖,其係顯示根據本發明之一實施例之使用不同構型的DRAM傳遞閘極(DPG)之三維NVM/DRAM之實體布局之不同態樣。第9A圖係繪示一混合型三維NVM/DRAM陣列結構,其包含一NAND NVM串903、第一DRAM單元901以及第二DRAM單元902。雖然第9A圖所示之混合型陣列結構包含兩個DRAM單元901-902,該混合型陣列結構中每串所包含的DRAM單元可超過兩個。應注意的是,即使將一或多個方塊(或層)加入或自第9A至9B圖移除,亦不會改變本發明之示例性實施例之基本概念。 9A through 9B are 3D block diagrams showing different aspects of the physical layout of a three dimensional NVM/DRAM using different configurations of DRAM pass gates (DPGs) in accordance with an embodiment of the present invention. FIG. 9A illustrates a hybrid three-dimensional NVM/DRAM array structure including a NAND NVM string 903, a first DRAM unit 901, and a second DRAM unit 902. Although the hybrid array structure shown in FIG. 9A includes two DRAM cells 901-902, each string in the hybrid array structure may contain more than two DRAM cells. It should be noted that even if one or more blocks (or layers) are added or removed from Figures 9A through 9B, the basic concepts of the exemplary embodiments of the present invention are not changed.

一方面,該混合型NVM/DRAM陣列包含DRAM單元901-902以及NAND串903,其中DRAM單元901-902係堆疊於NAND串903之頂部。第一DRAM單元901可藉由BL0-3經DWL0-3的選擇而進行存取。於一實施例中,第二DRAM單元902係構型以經過該DRAM傳遞閘極(DPG)而為可存取者。於操作過程中,該混合型NVM/DRAM結構可使一系統在第二DRAM單元902將數據寫入至或自NAND串903中之一或多個NVM單元讀取的同時,得以對於第一DRAM單元901進行存取。 In one aspect, the hybrid NVM/DRAM array includes DRAM cells 901-902 and NAND strings 903, wherein DRAM cells 901-902 are stacked on top of NAND string 903. The first DRAM cell 901 can be accessed by BL0-3 via DWL0-3 selection. In one embodiment, the second DRAM cell 902 is configured to pass through the DRAM pass gate (DPG) as an accessor. In operation, the hybrid NVM/DRAM structure enables a system to write data to or from one or more NVM cells in NAND string 903 while the second DRAM cell 902 is being read. Unit 901 performs the access.

於MLC(多階儲存單元)之應用方面,二位元數據可被同時存入兩個DRAM單元,例如DRAM單元901-902。於儲存後,該二位元數據可被寫 入NAND串903內之NVM單元。當執行MLC讀取操作時,NAND單元之二位元數據可被讀取且儲存於前述兩個DRAM單元內。 In the application of MLC (Multi-Level Storage Cell), the two-bit metadata can be simultaneously stored in two DRAM cells, such as DRAM cells 901-902. After storage, the binary data can be written The NVM unit in the NAND string 903 is entered. When an MLC read operation is performed, the binary data of the NAND cell can be read and stored in the aforementioned two DRAM cells.

第9B圖係顯示與第9A圖所示結構相似之混合型三維NVM/DRAM陣列結構之另一實施例,其不同處在於,多個獨立的DPG 904-905係用以便於多個DRAM單元間之通訊。DPG 904-905或該傳遞閘極可由DPG0-3選擇以及/或控制。使用獨立的DPG 904-905之一優點在於,其使一記憶系統可將數據載至部份的第二DRAM單元以及寫入在NAND串內之NVM單元。 Figure 9B is a diagram showing another embodiment of a hybrid three-dimensional NVM/DRAM array structure similar to that shown in Figure 9A, in that a plurality of independent DPGs 904-905 are used to facilitate inter-cell DRAM units. Communication. DPG 904-905 or the transfer gate can be selected and/or controlled by DPG0-3. One advantage of using a stand-alone DPG 904-905 is that it enables a memory system to carry data to a portion of the second DRAM cell and NVM cells written in the NAND string.

第10A至10B圖係為3D方塊圖,其係顯示根據本發明之一實施例之使用不同構型之DRAM傳遞閘極(DPG)之3D混合型NVM/DRAM陣列結構之實體布局之替代性態樣。第10A圖係繪示一混合型NVM/DRAM陣列結構之一示例性實施例,其包含有一NAND串1001以及DRAM單元1002-1003。第10A圖所示之混合型NVM/DRAM陣列結構係與第9A圖所示陣列結構相似,其不同處在於,DRAM單元1002-1003係位於鄰近基板之結構的底部。NAND單元或NAND串1001係沉積於DRAM單元1002-1003之頂部。一方面,多個DPS係用以便於DRAM單元1002-1003以及NAND串1001間之通訊。第10B圖係顯示與第10A圖所示結構相似之三D混合型NVM/DRAM陣列結構之另一實施例,其不同處在於,位於DRAM單元1001-1002間之DPG係重新構型為多個相互獨立或分離之傳遞閘極DPG0-3。 10A through 10B are 3D block diagrams showing alternative physical states of a 3D hybrid NVM/DRAM array structure using different configurations of DRAM transfer gates (DPGs) in accordance with an embodiment of the present invention. kind. FIG. 10A illustrates an exemplary embodiment of a hybrid NVM/DRAM array structure including a NAND string 1001 and DRAM cells 1002-1003. The hybrid NVM/DRAM array structure shown in Fig. 10A is similar to the array structure shown in Fig. 9A, except that the DRAM cells 1002-1003 are located at the bottom of the structure adjacent to the substrate. A NAND cell or NAND string 1001 is deposited on top of the DRAM cells 1002-1003. In one aspect, multiple DPSs are used to facilitate communication between DRAM cells 1002-1003 and NAND string 1001. Fig. 10B is another embodiment showing a three-D hybrid NVM/DRAM array structure similar to the structure shown in Fig. 10A, except that the DPG system located between the DRAM cells 1001-1002 is reconfigured into a plurality of Transfer gates DPG0-3 that are independent or separate from each other.

第11A至11B圖係為方塊圖,其係顯示根據本發明之一實施例之具有多層電容層之3D混合型NVM/DRAM陣列結構之實體布局。第11A圖係繪示一結構,其具有四個設置於NAND串1105上方之DRAM單元1101-1104。額外的DRAM單元使一系統得以進行流水線操作(pipelining operation),其中,舉例而言,四頁數據可被載入DRAM單元110-1104之四階層內。載入的數 據可依序寫入NAND串1105之NVM單元內。第11B圖係顯示與第11A圖所示結構相似之3D混合型NVM/DRAM陣列結構之另一實施例,其不同處在於,DRAM單元1101-1104係位於該結構之底部。於一實例,NAND單元或NAND串1105係位於或沉積於DRAM單元之頂部。 11A through 11B are block diagrams showing the physical layout of a 3D hybrid NVM/DRAM array structure having a multi-layered capacitive layer in accordance with an embodiment of the present invention. FIG. 11A is a diagram showing a structure having four DRAM cells 1101-1104 disposed above the NAND string 1105. The additional DRAM cells enable a system to perform a pipelining operation in which, for example, four pages of data can be loaded into the four levels of DRAM cells 110-1104. Number loaded The NVM cells of the NAND string 1105 can be written in sequence. Figure 11B shows another embodiment of a 3D hybrid NVM/DRAM array structure similar to that shown in Figure 11A, except that DRAM cells 1101-1104 are located at the bottom of the structure. In one example, a NAND cell or NAND string 1105 is located or deposited on top of a DRAM cell.

應注意的是,第11A至11B圖所繪示之一四DRAM單元結構僅供說明,亦可將額外的DRAM單元加入至或將其自該3D混合型NVM/DRAM陣列結構移除。 It should be noted that one of the four DRAM cell structures illustrated in FIGS. 11A-11B is for illustrative purposes only, and additional DRAM cells may be added to or removed from the 3D hybrid NVM/DRAM array structure.

第12A至12B圖係為3D方塊圖,其係顯示根據本發明之一實施例之具有多層電容層之3D混合型NVM/DRAM陣列結構之替代性實體布局。第12A圖係顯示一混合型NVM/DRAM陣列結構,其包含多個堆疊於NAND串1205之頂部之DRAM單元1201-1204。於一實施例中,該等DRAM單元(例如DRAM單元1202、1203)係相互串聯。一方面,DRAM單元係經設置或製造成可以並聯方式與BL連接者,其即為一所知之NOR陣列結構。於一實例,該NOR陣列結構可使一系統得以對於該等DRAM單元以全然隨機方式進行存取。第12B圖係顯示與第12A圖所示結構相似之混合型NVM/DRAM陣列結構之另一實施例,其不同處在於,DRAM單元1201-1204係位於或設置於該結構之底部部分。一方面,NAND單元或NAND串1205係位於或設置於DRAM單元1201-1204之頂部。須注意到,繪示於第11A以及12A圖中之實施例特徵可相互組合而使DRAM單元具有多個相互串聯之階層與多個相互並聯之階層。 12A through 12B are 3D block diagrams showing an alternative physical layout of a 3D hybrid NVM/DRAM array structure having multiple layers of capacitive layers in accordance with an embodiment of the present invention. Figure 12A shows a hybrid NVM/DRAM array structure comprising a plurality of DRAM cells 1201-1204 stacked on top of NAND string 1205. In one embodiment, the DRAM cells (eg, DRAM cells 1202, 1203) are in series with each other. In one aspect, the DRAM cells are arranged or fabricated to be connectable to the BL in parallel, which is a known NOR array structure. In one example, the NOR array structure allows a system to access the DRAM cells in a completely random manner. Fig. 12B shows another embodiment of a hybrid NVM/DRAM array structure similar to that shown in Fig. 12A, except that DRAM cells 1201-1204 are located or disposed at the bottom portion of the structure. In one aspect, NAND cells or NAND strings 1205 are located or disposed on top of DRAM cells 1201-1204. It should be noted that the features of the embodiments illustrated in Figures 11A and 12A can be combined with one another such that the DRAM cell has a plurality of levels in series with each other and a plurality of levels in parallel with each other.

第13A至13B圖係為3D方塊圖,其係顯示根據本發明之一實施例之使用替代性垂直結構之三維NVM/DRAM之實體布局。第13A圖係繪示與第5A圖所示結構590有關之混合型NVM/DRAM陣列結構1390之一實施例,其中 結構590係為結構1390沿著A-A軸所獲得之剖面示意圖。該等NAND串係為折疊結構。該二折疊串係經由管道部分1301連接。該BG(背閘極)係轉入該管道1301之通道。第13B圖係顯示與第5B圖所示之結構592有關之3D混合型NVM/DRAM陣列結構1392之另一實施例。第5B圖所示之結構592係為結構1392沿著B-B軸所獲得之剖面示意圖。該混合型陣列結構1392在SL側另包括一DRAM單元1303,且係經由選擇閘極1302耦合至SL。 13A through 13B are 3D block diagrams showing the physical layout of a three-dimensional NVM/DRAM using an alternative vertical structure in accordance with an embodiment of the present invention. Figure 13A illustrates an embodiment of a hybrid NVM/DRAM array structure 1390 associated with structure 590 of Figure 5A, wherein Structure 590 is a schematic cross-sectional view of structure 1390 taken along the A-A axis. The NAND strings are of a folded structure. The two folding strings are connected via a pipe portion 1301. The BG (back gate) is routed into the conduit 1301. Figure 13B shows another embodiment of a 3D hybrid NVM/DRAM array structure 1392 associated with structure 592 shown in Figure 5B. The structure 592 shown in Fig. 5B is a schematic cross-sectional view of the structure 1392 taken along the B-B axis. The hybrid array structure 1392 further includes a DRAM cell 1303 on the SL side and is coupled to the SL via a select gate 1302.

第14圖係為一3D方塊圖,其係顯示根據本發明之一實施例之混合型NVM/DRAM陣列結構之實體布局。第14圖係顯示一具有一DRAM單元1401以及多個NAND單元或串1402之混合型結構,其中該結構係以水平方式(而非以垂直方式)坐落或設置。於一實施例,DRAM單元選擇閘極1403以及MOS電容器1404係以水平方式坐落或製得。 Figure 14 is a 3D block diagram showing the physical layout of a hybrid NVM/DRAM array structure in accordance with an embodiment of the present invention. Figure 14 shows a hybrid structure having a DRAM cell 1401 and a plurality of NAND cells or strings 1402, wherein the structures are seated or disposed in a horizontal manner, rather than in a vertical manner. In one embodiment, DRAM cell select gate 1403 and MOS capacitor 1404 are either seated or fabricated in a horizontal manner.

第15至17圖係為3D方塊圖,其係顯示根據本發明之一實施例之使用不同電容層之混合型NVM/DRAM陣列結構之實體布局。第15A圖係顯示混合型NVM/DRAM陣列結構之一實施例,其包括有多個圓柱型電容器1503。應注意的是,其他種類的半導體電容器,例如MOS電容器、PIP(聚矽-絕緣-聚矽)電容器、堆疊式電容器或類似者,亦可用以取代圓柱型電容器1503。由於DRAM單元的尺寸較大,DRAM單元1501可位於NAND串1502之頂部,而互連層1504則可用以增加DRAM單元之間距。該混合型NVM/DRAM陣列結構顯示每一DRAM單元係連接至四個NAND單元。第15B圖係顯示耦合至垂直選擇閘極DWL0-1之四個DRAM單元俯視圖。 15 through 17 are 3D block diagrams showing the physical layout of a hybrid NVM/DRAM array structure using different capacitive layers in accordance with an embodiment of the present invention. Figure 15A shows an embodiment of a hybrid NVM/DRAM array structure including a plurality of cylindrical capacitors 1503. It should be noted that other kinds of semiconductor capacitors, such as MOS capacitors, PIP (polysilicon-insulated-poly) capacitors, stacked capacitors or the like, may be used instead of the cylindrical capacitor 1503. Due to the large size of the DRAM cells, DRAM cells 1501 can be located on top of NAND string 1502, while interconnect layer 1504 can be used to increase the spacing between DRAM cells. The hybrid NVM/DRAM array structure shows that each DRAM cell is connected to four NAND cells. Figure 15B shows a top view of four DRAM cells coupled to vertical select gate DWL0-1.

第16A圖係顯示與第15A圖所示結構相似之3D混合型NVM/DRAM陣列結構之另一構型,其不同處在於,DRAM單元1602係位於該結構之下部(NAND串1601下方)。為將DRAM單元1602連接至NAND串1601,係使用多 個通道以及/或路徑1603將下方互連處1604連接至上方互連處1605。將DRAM單元設置於接近該基板之結構下部位置的一個優點在於,其使機載邏輯或CPU能更容易對於該等DRAM單元進行存取。一方面,每一DRAM單元係連接至四個NAND單元,以增加DRAM單元之間距。第16B圖係顯示使用3D垂直選擇閘極DWL0-1之DRAM單元CAP之俯視圖。 Figure 16A shows another configuration of a 3D hybrid NVM/DRAM array structure similar to that shown in Figure 15A, except that DRAM cell 1602 is located below the structure (below NAND string 1601). To connect DRAM cell 1602 to NAND string 1601, use more The channels and/or paths 1603 connect the lower interconnect 1604 to the upper interconnect 1605. One advantage of placing the DRAM cells close to the lower portion of the structure of the substrate is that it allows the onboard logic or CPU to more easily access the DRAM cells. In one aspect, each DRAM cell is connected to four NAND cells to increase the spacing between DRAM cells. Figure 16B shows a top view of a DRAM cell CAP using a 3D vertical select gate DWL0-1.

第17A圖係繪示混合型NVM/DRAM陣列結構之一3D實體布局,該結構可經由DRAM單元之2D製程製成。於一實施例,DRAM單元1702係位於NAND串1701之下方以及基板1708或井之上方。DRAM單元1702包含PIP電容器1704以及MOS選擇閘極1707。源極和汲極擴散層1706係沉積於基板1708上。一獨立閘極(ISO)1709係用以將該單元之一主動區與鄰近單元獨立或分離。由於DRAM單元1702係位於基板1708上,DRAM單元1702係連接至使用VIA1705之NAND串1701。一方面,多個互連桿1703係用以便於每一DRAM單元以及串1701之四個NAND單元之間之通訊。第17B圖係顯示經由垂直選擇閘極而連接至NVM單元之四個DRAM單元Cap之俯視圖。 Figure 17A illustrates a 3D physical layout of a hybrid NVM/DRAM array structure that can be fabricated via a 2D process of a DRAM cell. In one embodiment, DRAM cell 1702 is located below NAND string 1701 and above substrate 1708 or well. DRAM cell 1702 includes a PIP capacitor 1704 and a MOS select gate 1707. Source and drain diffusion layers 1706 are deposited on substrate 1708. A separate gate (ISO) 1709 is used to separate or separate one of the active regions of the unit from adjacent cells. Since DRAM cell 1702 is located on substrate 1708, DRAM cell 1702 is coupled to NAND string 1701 using VIA 1705. In one aspect, a plurality of interconnecting bars 1703 are used to facilitate communication between each DRAM cell and the four NAND cells of string 1701. Figure 17B shows a top view of four DRAM cells Cap connected to the NVM cell via vertical select gates.

本發明之示例包括各種處理步驟,其將敘述於下文中。該等示例步驟可經由機器或電腦可執行指令加以執行。該等指令可用於執行一通用或特用系統,該等系統係以指令編程化,而得以執行本發明之示例步驟。或,本發明之示例步驟可由包含可執行該等步驟之布線邏輯之特定硬體組件所執行,或可由編程化電腦組件或客製化硬體組件所執行。 Examples of the invention include various processing steps, which are described below. The example steps can be performed via machine or computer executable instructions. The instructions can be used to execute a general purpose or special purpose system that is programmed with instructions to perform the example steps of the present invention. Alternatively, the example steps of the present invention may be performed by a particular hardware component that includes the routing logic that can perform the steps, or by a programmed computer component or a customized hardware component.

第18圖係為一流程圖1800,其係繪示根據本發明之一實施例之混合型NVM/DRAM儲存裝置之操作。於方塊1802,當一第一DSG在第一時間框內被啟動時,用以在一混合型NVM/DRAM儲存裝置內使多頁同步編程化之程序係將第一數據自一BL鎖存至一第一DRAM單元。該第一DRAM單元係 經由一第一矽通道耦合至一第一NVM串。 Figure 18 is a flow chart 1800 showing the operation of a hybrid NVM/DRAM storage device in accordance with an embodiment of the present invention. At block 1802, when a first DSG is enabled within the first time frame, the program for programming the multi-page synchronization in a hybrid NVM/DRAM storage device latches the first data from a BL to A first DRAM cell. The first DRAM unit The first NVM string is coupled via a first channel.

於方塊1804,當一第二DSG在該第一時間框被啟動時,第二數據係自該BL被鎖存至一第二DRAM單元。要注意的是,該第二DRAM單元係經由一第二矽通道耦合至一第二NVM串。 At block 1804, when a second DSG is initiated in the first time frame, the second data is latched from the BL to a second DRAM unit. It is to be noted that the second DRAM cell is coupled to a second NVM string via a second channel.

於方塊1806,當一寫入DSG訊號被啟動時,在響應多個WL之電壓值之一第二時間框內,來自於該第一DRAM單元之第一數據係被儲存於該第一NVM串,而於此同時來自於該第二DRAM之第二數據則被儲存於該第二NVM串。該程序亦可停止SSG訊號,並在啟動該等WL之前啟動一源極線訊號。該程序進一步可使該第一數據經由一第一矽通道,沿著朝向該基板之方向,自該第一DRAM單元傳至該第一NVM串。 At block 1806, when a write DSG signal is enabled, a first data frame from the first DRAM cell is stored in the first NVM string in a second time frame responsive to one of the voltage values of the plurality of WLs. And the second data from the second DRAM is stored in the second NVM string. The program can also stop the SSG signal and initiate a source line signal before starting the WL. The program further causes the first data to pass from the first DRAM cell to the first NVM string via a first pass channel in a direction toward the substrate.

第19圖係為一流程圖1900,其係繪示一顯示根據本發明之一實施例之三維NVM/DRAM儲存裝置之製造程序。於方塊1902,一用以產生3D混合型NVM/DRAM儲存裝置之程序係將第一組多個半導體層(MSL)沉積於一基板上,藉以建構包括一源汲選擇閘極之多個源極層。 Figure 19 is a flow chart 1900 showing a manufacturing process for a three-dimensional NVM/DRAM storage device in accordance with an embodiment of the present invention. At block 1902, a program for generating a 3D hybrid NVM/DRAM memory device deposits a first plurality of semiconductor layers (MSL) on a substrate to construct a plurality of sources including a source select gate. Floor.

於方塊1904,一第二組MSL係沉積於該第一組MSL上,以形成呈一垂直構型之一串NVM單元,供長久性的數據儲存。於一實施例,32個NVM單元係沿著垂直、遠離該基板之方向相互堆疊,供長久性的數據儲存。 At block 1904, a second set of MSLs are deposited on the first set of MSLs to form a string of NVM cells in a vertical configuration for permanent data storage. In one embodiment, 32 NVM units are stacked one on another in a direction perpendicular and away from the substrate for long-term data storage.

於方塊1906,該程序係可將一第三組MSL沉積於該第二組MSL上,藉以形成包含有至少一汲極選擇閘極層之多個汲極層。 At block 1906, the program deposits a third set of MSLs on the second set of MSLs to form a plurality of drain layers including at least one drain select gate layer.

於方塊1908,一第四組MSL係沉積於該第三組MSL上,藉以形成可暫時性儲存數據之DRAM層。一第五組MSL係沉積於該第四組MSL上,藉以形成DRAM字元線(DWL)層,藉以提供電容管理。於一實施例,該程序亦可將至少一電容層設置於該第四組MSL內,使其可捕捉電荷而進行數 據的儲存。 At block 1908, a fourth set of MSLs are deposited on the third set of MSLs to form a DRAM layer that can temporarily store data. A fifth set of MSLs is deposited on the fourth set of MSLs to form a DRAM word line (DWL) layer to provide capacitance management. In an embodiment, the program may also set at least one capacitor layer in the fourth group of MSLs so that the charge can be captured and counted. According to the storage.

於前文中所顯示及所述者為本發明之特定實施例,對於所屬領域具有普通技藝者應當理解,依據本文所教示內容,可作出任何不悖離本發明之示例性實施例及其較廣泛面向之改變以及修飾。因此,所附申請專利範圍理應涵蓋任何符合本發明之示例性實施例之真正精神以及範圍之改變與修飾。 The present invention has been shown and described with respect to the specific embodiments of the present invention, and it should be understood by those of ordinary skill in the art that Change and modification. Therefore, the scope of the appended claims is intended to cover any modifications and

100‧‧‧方塊圖 100‧‧‧block diagram

102‧‧‧儲存器 102‧‧‧Storage

106‧‧‧DRAM 106‧‧‧DRAM

108‧‧‧NVM 108‧‧‧NVM

150‧‧‧處理器 150‧‧‧ processor

152‧‧‧NVM儲存器 152‧‧‧NVM storage

156‧‧‧排線管理器 156‧‧‧Line Manager

158‧‧‧排線 158‧‧‧ cable

160‧‧‧記憶體 160‧‧‧ memory

Claims (24)

一種可儲存資訊之記憶裝置,包括:複數個可儲存資訊之記憶元件,該複數個記憶元件之每一者具有一源極端、一閘極端、一汲極端以及一非揮發單元,其中該複數個記憶元件係排列成一串,且該等記憶元件係連接於源極端以及汲極端之間;一第一汲極選擇閘極(DSG)電晶體,具有一源極端、一汲極端以及一閘極端,該第一DSG電晶體之汲極端係耦合於該複數個記憶元件之源極端,該第一DSG電晶體之閘極端則係耦合於一第一DSG訊號;以及一電容元件,具有一源極端、一汲極端以及一閘極端,該電容元件之汲極端係耦合於該第一DSG電晶體之源極端,其中該電容元件係構型以執行一動態隨機存取記憶體(DRAM)功能。 A memory device capable of storing information, comprising: a plurality of memory elements capable of storing information, each of the plurality of memory elements having a source terminal, a gate terminal, a terminal extreme, and a non-volatile unit, wherein the plurality of memory elements The memory elements are arranged in a string, and the memory elements are connected between the source terminal and the drain terminal; a first drain select gate (DSG) transistor having a source terminal, a terminal and a gate terminal, The first extreme of the first DSG transistor is coupled to the source terminal of the plurality of memory elements, the gate terminal of the first DSG transistor is coupled to a first DSG signal; and a capacitive element having a source terminal, At one extreme and one gate extreme, the capacitive element is coupled to the source terminal of the first DSG transistor, wherein the capacitive element is configured to perform a dynamic random access memory (DRAM) function. 如申請專利範圍第1項所述之裝置,其更包括一第二DSG電晶體,其具有一源極端、一汲極端以及一閘極端,該第二DSG電晶體之汲極端係耦合於該電容元件之源極端。 The device of claim 1, further comprising a second DSG transistor having a source terminal, a terminal, and a gate terminal, wherein the second DSG transistor is coupled to the capacitor The source of the component is extreme. 如申請專利範圍第2項所述之裝置,其更包括一源極選擇閘極(SSG)元件,其具有一源極端、一汲極端以及一閘極端,該SSG之源極端係耦合於排列成串之複數個記憶元件中之一者的一汲極端。 The device of claim 2, further comprising a source select gate (SSG) element having a source terminal, a terminal extreme and a gate terminal, the source terminals of the SSG being coupled to each other An extreme of one of a plurality of memory elements of a string. 如申請專利範圍第3項所述之裝置,其中該SSG元件之閘極端係耦合至一SSG訊號,且該SSG元件之汲極端則係耦合至一源極線。 The device of claim 3, wherein the gate terminal of the SSG component is coupled to an SSG signal, and the drain terminal of the SSG component is coupled to a source line. 如申請專利範圍第3項所述之裝置,其中該第二DSG電晶體之閘極端係耦合於一DSG訊號,且該第二DSG電晶體之源極端則係耦合至一位元線。 The device of claim 3, wherein the gate terminal of the second DSG transistor is coupled to a DSG signal, and the source terminal of the second DSG transistor is coupled to a bit line. 如申請專利範圍第3項所述之裝置,其中該複數個記憶元件係為NAND型快閃記憶體。 The device of claim 3, wherein the plurality of memory elements are NAND type flash memories. 如申請專利範圍第3項所述之裝置,其中該複數個記憶元件之每一閘極 端係耦合於一唯一的字元線。 The device of claim 3, wherein each gate of the plurality of memory elements The end system is coupled to a unique word line. 如申請專利範圍第1項所述之裝置,其中該複數個記憶元件係為矽-氧-氮化矽-氧-矽(SONOS)型非揮發記憶儲存裝置。 The device of claim 1, wherein the plurality of memory elements are non-volatile memory storage devices of a neodymium-oxygen-niobium-oxygen-strontium (SONOS) type. 如申請專利範圍第3項所述之裝置,其中該複數個記憶元件、該第一DSG電晶體、該第二DSG電晶體以及該電容元件係構型呈一三維(3D)布局堆疊結構。 The device of claim 3, wherein the plurality of memory elements, the first DSG transistor, the second DSG transistor, and the capacitive element structure are in a three-dimensional (3D) layout stack structure. 如申請專利範圍第9項所述之裝置,其中該電容元件於該3D布局中係實體上位於該複數個記憶元件之上方。 The device of claim 9, wherein the capacitive element is physically located above the plurality of memory elements in the 3D layout. 一種可儲存數據之非揮發記憶系統,包括多組如申請專利範圍第10項所述之呈3D布局之複數個記憶元件。 A non-volatile memory system capable of storing data, comprising a plurality of sets of memory elements in a 3D layout as described in claim 10 of the patent application. 一種非揮發半導體記憶裝置,包括:一基板層;一擴散區層,其係沉積於該基板層之上,且可操作而與一源極線耦合;複數個記憶層,其係沉積於該擴散區層上,且構型以將資訊儲存於相應於字元線之非揮發記憶單元內;一電容層,其係沉積於該複數個記憶層之上,且構型為供儲存資訊之一動態隨機存取記憶體(DRAM);以及一DRAM字元線(DWL)層,其係沉積於該電容層上,且構型以啟動DRAM功能。 A non-volatile semiconductor memory device comprising: a substrate layer; a diffusion layer layer deposited on the substrate layer and operatively coupled to a source line; a plurality of memory layers deposited on the diffusion layer a layer, and configured to store information in a non-volatile memory unit corresponding to the word line; a capacitor layer deposited on the plurality of memory layers and configured to dynamically store information A random access memory (DRAM); and a DRAM word line (DWL) layer deposited on the capacitor layer and configured to initiate DRAM functionality. 如申請專利範圍第12項所述之裝置,其更包括一沉積於該DWL層之金屬層,其係為可操作一位元線者。 The device of claim 12, further comprising a metal layer deposited on the DWL layer, which is a one-dimensional line. 如申請專利範圍第12項所述之裝置,其中該複數個記憶層包括一源極選擇閘極(SSG)層,其係沉積於該擴散區層上,且可經操作而提供源極 選擇功能。 The device of claim 12, wherein the plurality of memory layers comprise a source select gate (SSG) layer deposited on the diffusion layer and operable to provide a source Select a function. 如申請專利範圍第12項所述之裝置,其中該複數個記憶層包括一汲極選擇閘極(DSG)層,其係沉積於該擴散區層上,且可經操作而提供汲極選擇功能。 The device of claim 12, wherein the plurality of memory layers comprise a drain select gate (DSG) layer deposited on the diffusion layer and operable to provide a drain selection function . 如申請專利範圍第12項所述之裝置,其更包括一聚矽通道,其係沿著一垂直於該基板層之方向,自該複數個記憶層延伸至該電容層。 The device of claim 12, further comprising a polysilicon channel extending from the plurality of memory layers to the capacitor layer along a direction perpendicular to the substrate layer. 如申請專利範圍第12項所述之裝置,其中該電容層包括一構型以儲存資訊之第一電容層,以及一構型以儲存資訊之第二電容層。 The device of claim 12, wherein the capacitor layer comprises a first capacitor layer configured to store information and a second capacitor layer configured to store information. 一種於一非揮發記憶體內同時寫入多頁之方法,包括以下步驟:當一第一汲極選擇閘極(DSG)在一第一時間框內被啟動時,經由一第一矽通道,將第一數據自一位元線(BL)鎖存至耦合於一第一非揮發記憶體(NVM)串之一第一動態隨機存取記憶體(DRAM)單元;當一第二DSG在該第一時間框內被啟動時,經由一第二矽通道,將第二數據自該位元線(BL)鎖存至耦合於一第二NVM串之一第一DRAM單元;當一寫入DSG訊號被啟動時,於一第二時間框內,響應多條字元線(WL)之電壓值,而實質上同時將來自於該第一DRAM單元和該第二DRAM單元之第一數據和第二數據存入該第一NVM串和該第二NVM串。 A method for simultaneously writing multiple pages in a non-volatile memory, comprising the steps of: when a first drain select gate (DSG) is activated in a first time frame, via a first channel, The first data is latched from a bit line (BL) to a first dynamic random access memory (DRAM) unit coupled to a first non-volatile memory (NVM) string; when a second DSG is in the When a time frame is activated, the second data is latched from the bit line (BL) to the first DRAM unit coupled to a second NVM string via a second channel; when a DSG signal is written When activated, in response to the voltage values of the plurality of word lines (WL) in a second time frame, substantially simultaneously the first data and the second data from the first DRAM unit and the second DRAM unit Data is stored in the first NVM string and the second NVM string. 如申請專利範圍第18項所述之方法,其更包括以下步驟:停止複數個源極選擇閘極(SSG)訊號,且在啟動WL之前先啟動一源極線。 The method of claim 18, further comprising the steps of: stopping a plurality of source select gate (SSG) signals, and starting a source line before starting the WL. 如申請專利範圍第18項所述之方法,允許該第一數據經由一第一矽通道沿著一朝向一基板之方向,自該第一DRAM移動至該第一NVM串。 The method of claim 18, wherein the first data is allowed to move from the first DRAM to the first NVM string via a first channel along a direction toward a substrate. 一種產生一三維(3D)儲存裝置之方法,包括以下步驟:將一第一組多層半導體(MSL)沉積於一基板上,以建構包括一源 極選擇閘極層之多層源極層;將一第二組MSL沉積於該第一組MSL上,以形成供長久儲存數據之呈垂直構型之一串非揮發記憶體(NVM);將一第三組MSL沉積於該第二組MSL上,以形成包括一汲極選擇閘極層之多層汲極層;以及將一第四組MSL沉積於該第三組MSL上,以形成可暫時儲存數據之多層動態隨機存取記憶體(DRAM)層。 A method of producing a three-dimensional (3D) memory device, comprising the steps of: depositing a first plurality of layers of semiconductor (MSL) on a substrate to construct a source comprising Selecting a plurality of source layers of the gate layer; depositing a second set of MSLs on the first set of MSLs to form a string of non-volatile memory (NVM) in a vertical configuration for long-term storage of data; A third set of MSL is deposited on the second set of MSLs to form a multi-layered drain layer comprising a drain select gate layer; and a fourth set of MSLs are deposited on the third set of MSLs to form a temporary storage A multi-layer dynamic random access memory (DRAM) layer of data. 如申請專利範圍第21項所述之方法,其更包括以下步驟:將一第五組MSL沉積於該第四組MSL上,以形成用以提供電容管理之多層DRAM字元線(DWL)層。 The method of claim 21, further comprising the step of depositing a fifth set of MSLs on the fourth set of MSLs to form a multi-layer DRAM word line (DWL) layer for providing capacitance management. . 如申請專利範圍第21項所述之方法,其中將一第四組MSL沉積於該第三組MSL上以形成多層動態隨機存取記憶體(DRAM)層之步驟更包括:沉積至少一可捕捉電荷之電容層,以儲存數據。 The method of claim 21, wherein the step of depositing a fourth set of MSLs on the third set of MSLs to form a multilayer dynamic random access memory (DRAM) layer further comprises: depositing at least one captureable A capacitive layer of charge to store data. 如申請專利範圍第21項所述之方法,其中將一第二組MSL沉積於該第一組MSL上以形成一串NVM更包括:沿著一離開該基板之垂直方向,堆疊32個NVM單元,供長久儲存數據。 The method of claim 21, wherein depositing a second set of MSLs on the first set of MSLs to form a string of NVMs further comprises: stacking 32 NVM units along a vertical direction away from the substrate For long-term storage of data.
TW104135120A 2014-10-26 2015-10-26 Method and apparatus for providing three-dimensional integrated nonvolatile memory and dynamic random access memory memory device TW201629955A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462068693P 2014-10-26 2014-10-26
US201562137242P 2015-03-24 2015-03-24
US201562242614P 2015-10-16 2015-10-16

Publications (1)

Publication Number Publication Date
TW201629955A true TW201629955A (en) 2016-08-16

Family

ID=55858221

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104135120A TW201629955A (en) 2014-10-26 2015-10-26 Method and apparatus for providing three-dimensional integrated nonvolatile memory and dynamic random access memory memory device

Country Status (3)

Country Link
CN (1) CN107112041A (en)
TW (1) TW201629955A (en)
WO (1) WO2016069487A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764128B (en) * 2019-04-09 2022-05-11 美商森恩萊斯記憶體公司 Quasi-volatile memory device with a back-channel usage

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018067168A1 (en) 2016-10-07 2018-04-12 Hewlett-Packard Development Company, L.P. Hybrid memory devices
US10748903B2 (en) 2018-04-19 2020-08-18 Tc Lab, Inc. Multi-layer random access memory and methods of manufacture
CN109314117B (en) * 2018-08-14 2019-08-30 长江存储科技有限责任公司 The method for operating 3D memory device
CN111402942B (en) * 2019-08-08 2021-03-19 长江存储科技有限责任公司 Nonvolatile memory and method of manufacturing the same
CN112349311B (en) * 2019-08-08 2023-01-31 中电海康集团有限公司 Memory and read-write method thereof
US11355496B2 (en) 2020-01-31 2022-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. High-density 3D-dram cell with scaled capacitors
DE102020129019B4 (en) * 2020-01-31 2024-04-25 Taiwan Semiconductor Manufacturing Co. Ltd. HIGH DENSITY 3D DRAM CELL WITH SCALED CAPACITORS
WO2021232233A1 (en) 2020-05-19 2021-11-25 Yangtze Memory Technologies Co., Ltd. Control method and controller of program suspending and resuming for memory
CN113454722B (en) 2020-05-19 2022-08-19 长江存储科技有限责任公司 Memory device and program operation thereof
JP2023004446A (en) * 2021-06-25 2023-01-17 キオクシア株式会社 semiconductor storage device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652723A (en) * 1991-04-18 1997-07-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device
JP3279453B2 (en) * 1995-03-20 2002-04-30 シャープ株式会社 Non-volatile random access memory
US5585303A (en) * 1996-02-28 1996-12-17 United Microelectronics Corporation Method for manufacturing a stacked/trench DRAM capacitor
US6850438B2 (en) * 2002-07-05 2005-02-01 Aplus Flash Technology, Inc. Combination nonvolatile memory using unified technology with byte, page and block write and simultaneous read and write operations
US7112815B2 (en) * 2004-02-25 2006-09-26 Micron Technology, Inc. Multi-layer memory arrays
KR100806339B1 (en) * 2006-10-11 2008-02-27 삼성전자주식회사 Nand flash memory devices having 3-dimensionally arranged memory cells and methods of fabricating the same
US20090026524A1 (en) * 2007-07-27 2009-01-29 Franz Kreupl Stacked Circuits
US8581349B1 (en) * 2011-05-02 2013-11-12 Monolithic 3D Inc. 3D memory semiconductor device and structure
JP5631750B2 (en) * 2010-03-19 2014-11-26 株式会社東芝 Compound memory
US8559232B2 (en) * 2010-05-03 2013-10-15 Aplus Flash Technology, Inc. DRAM-like NVM memory array and sense amplifier design for high temperature and high endurance operation
US8273610B2 (en) * 2010-11-18 2012-09-25 Monolithic 3D Inc. Method of constructing a semiconductor device and structure
US9214465B2 (en) * 2012-07-24 2015-12-15 Flashsilicon Incorporation Structures and operational methods of non-volatile dynamic random access memory devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764128B (en) * 2019-04-09 2022-05-11 美商森恩萊斯記憶體公司 Quasi-volatile memory device with a back-channel usage

Also Published As

Publication number Publication date
CN107112041A (en) 2017-08-29
WO2016069487A1 (en) 2016-05-06

Similar Documents

Publication Publication Date Title
US10008265B2 (en) Method and apparatus for providing three-dimensional integrated nonvolatile memory (NVM) and dynamic random access memory (DRAM) memory device
TW201629955A (en) Method and apparatus for providing three-dimensional integrated nonvolatile memory and dynamic random access memory memory device
JP7242818B2 (en) semiconductor memory
KR102205335B1 (en) Memory device with multiple select gates and different bias conditions
CN112700812A (en) Three-dimensional memory device programming with reduced disturb
KR102468978B1 (en) Content addressable memory using threshold-adjustable vertical transistors and methods of forming the same
US10453531B1 (en) Content addressable memory using threshold-adjustable vertical transistors and methods of forming the same
US9741768B1 (en) Controlling memory cell size in three dimensional nonvolatile memory
CN113994480B (en) Assembly having conductive structures comprising three or more different materials
US9601207B2 (en) Semiconductor memory device and method of operating the same
US10109680B1 (en) Methods and apparatus for three-dimensional nonvolatile memory
US10839909B2 (en) Parallel-connected merged-floating-gate nFET-pFET EEPROM cell and array
US20190034125A1 (en) Methods and apparatus for three-dimensional nonvolatile memory
US20240186313A1 (en) Capacitor structures
US20170278926A1 (en) Shallow trench isolation trenches and methods for nand memory
US20180286920A1 (en) Methods and apparatus for three-dimensional nonvolatile memory
EP4397151A1 (en) Memory array structures having multiple sub-blocks, apparatus containing such memory array structures, and operation of such apparatus
US11114171B2 (en) Non-volatile memory device
TW202243187A (en) Semiconductor devices and method of forming the same
JP2017153057A (en) Reconfigurable semiconductor logic circuit
CN112309953A (en) Isolation structure for integrated circuit device
US9779983B2 (en) Methods for forming air gaps in shallow trench isolation trenches for NAND memory
US20230215915A1 (en) Semiconductor devices, memory devices, and methods for forming the same
JP2017153058A (en) Reconfigurable semiconductor logic circuit
JP2007066984A (en) Nonvolatile semiconductor memory element and nonvolatile semiconductor memory device using the same