TW201629844A - Fingerprint detection circuit and electronic device - Google Patents

Fingerprint detection circuit and electronic device Download PDF

Info

Publication number
TW201629844A
TW201629844A TW104129618A TW104129618A TW201629844A TW 201629844 A TW201629844 A TW 201629844A TW 104129618 A TW104129618 A TW 104129618A TW 104129618 A TW104129618 A TW 104129618A TW 201629844 A TW201629844 A TW 201629844A
Authority
TW
Taiwan
Prior art keywords
signal amplifier
circuit
capacitor
terminal
voltage
Prior art date
Application number
TW104129618A
Other languages
Chinese (zh)
Other versions
TWI560617B (en
Inventor
李振剛
徐坤平
楊雲
Original Assignee
比亞迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510082139.XA external-priority patent/CN105447438B/en
Application filed by 比亞迪股份有限公司 filed Critical 比亞迪股份有限公司
Publication of TW201629844A publication Critical patent/TW201629844A/en
Application granted granted Critical
Publication of TWI560617B publication Critical patent/TWI560617B/en

Links

Landscapes

  • Image Input (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

In a fingerprint detection circuit disclosed in the present invention, a negative input end of a signal amplifier is connected with a finger capacitance, and a positive input end of the signal amplifier is connected with a reference voltage terminal. The signal amplifier outputs voltage from an output end thereof according to the capacitance value of the finger capacitance. A switch unit is connected with the negative input end and the output end of the signal amplifier respectively, to control the capacitance to be communicated between the negative input end and the output end of the signal amplifier, such that the voltage is in a non-linear relationship with the capacitance value of the finger capacitance. In the fingerprint detection circuit, the voltage output by the signal amplifier is in a non-linear relationship with the finger capacitance (a capacitance to be detected). In a subsequence processing, the voltage output by the signal amplifier is partially linear amplified, to make the SNR (signal to noise ratio) higher and the subsequent calculation easier, so as to improve the fingerprint detection effect. The present invention further discloses an electronic device.

Description

指紋檢測電路及電子裝置Fingerprint detection circuit and electronic device

本發明涉及於指紋檢測領域,更具體而言,涉及一種指紋檢測電路及一種電子裝置。The present invention relates to the field of fingerprint detection, and more particularly to a fingerprint detection circuit and an electronic device.

在指紋檢測領域中,由於電容晶片式的指紋檢測電路由於體積小、功耗低等優勢,因此,此類檢測電路在手機及平板市場上快速突圍,成為首選。 上述檢測電路檢測手指的指紋脊谷資訊,由於指紋的脊線與指紋檢測電路的感應單元之間的距離較近,指紋的谷線處與指紋檢測檢測電路的感應單元之間的距離較遠,所以脊線與感應單元之間形成的電容和谷線與感應單元之間形成的電容是有差異的,只要檢測到上述電容(下稱手指電容),就可以分出指紋資訊的脊谷特徵。 上述指紋檢測電路的輸出電壓是與手指電容(待測電容)為線性正比關係,最後的結果對應於脊線的手指電容的輸出電壓和對應於谷線的手指電容的輸出電壓的數值差距一般都很小,而手指電容對應的輸出電壓需放大一定倍數後進行處理,但是放大倍數會受到量程限制,如果放大倍數太大,輸出電壓就會超過量程造成資料溢出,放大倍數小,後續計算脊線對應的輸出電壓及谷線對應的輸出電壓的差值就會很小,不好識別,指紋檢測效果得不到優化。In the field of fingerprint detection, due to the advantages of small size and low power consumption of the capacitive chip type fingerprint detection circuit, such detection circuits are rapidly becoming the first choice in the mobile phone and tablet market. The detecting circuit detects the fingerprint ridge valley information of the finger. Since the distance between the ridge line of the fingerprint and the sensing unit of the fingerprint detecting circuit is relatively close, the distance between the valley line of the fingerprint and the sensing unit of the fingerprint detecting and detecting circuit is far. Therefore, the capacitance formed between the ridge line and the sensing unit and the capacitance formed between the valley line and the sensing unit are different. As long as the above capacitance (hereinafter referred to as finger capacitance) is detected, the ridge characteristics of the fingerprint information can be separated. The output voltage of the fingerprint detecting circuit is linearly proportional to the finger capacitance (capacitance to be measured), and the final result corresponds to the numerical difference between the output voltage of the finger capacitance of the ridge line and the output voltage of the finger capacitance corresponding to the valley line. Very small, and the output voltage corresponding to the finger capacitance needs to be amplified by a certain multiple, then the amplification factor will be limited by the range. If the amplification factor is too large, the output voltage will exceed the range and the data will overflow. The magnification is small, and the ridge line is calculated later. The difference between the corresponding output voltage and the output voltage corresponding to the valley line is small, which is not well recognized, and the fingerprint detection effect is not optimized.

本發明旨在至少解決現有技術中存在的技術問題之一。為此,本發明需要提供一種指紋檢測電路及一種電子裝置。 一種指紋檢測電路,該指紋檢測電路用於向手指傳遞激發信號以採集手指電容。該指紋檢測電路包括信號放大器、電路電容及開關單元。該信號放大器的負向輸入端連接該手指電容,該信號放大器的正向輸入端連接參考電壓端,該信號放大器根據該手指電容的電容值,從該信號放大器的輸出端輸出電壓。該開關單元分別與該信號放大器的負向輸入端和該信號放大器的輸出端連接,用於控制該電路電容連通在該信號放大器的負向輸入端與該信號放大器的輸出端之間,使得該電壓與該手指電容的電容值的關係為非線性關係。 上述指紋檢測電路中,信號放大器輸出的電壓與手指電容(待測電容)的關係為非線性關係,在後續處理時,對信號放大器輸出的電壓是進行局部線性的放大,使輸出的脊線對應的電壓和谷線對應的電壓之間的差值變大,信噪比更高,使後續演算法更容易識別,進而提高了指紋檢測效果。 在一個實施方式中,該參考電壓端為地端,該指紋檢測電路還包括電源。該電源通過該開關單元與該電容連接,該開關單元用於控制該電源為該電路電容充電及控制該電路電容與該電源斷開。 在一個實施方式中,該開關單元包括第一開關及第二開關。該第一開關包括第一選擇端、第一電源端及第一連接端,該第一選擇端連接該電路電容的一端,該第一電源端連接該電源的第一極,該第一連接端連接該信號放大器的負向輸入端。該第二開關包括第二選擇端、第二電源端及第二連接端,該第二選擇端連接該電路電容的另一端,該第二電源端連接該電源的第二極,該第二連接端連接該信號放大器的輸出端。該第一選擇端連接該第一連接端並與該第一電源端斷開,該第二選擇端連接該第二連接端並與該第二電源端斷開,使得該電路電容連通在該信號放大器的負向輸入端與該信號放大器的輸出端之間,及使得該電路電容與該電源斷開。或該第一選擇端連接該第一電源端並與該第一連接端斷開,該第二選擇端連接該第二電源端並與該第二連接端斷開,使得該電源為該電路電容充電。 在一個實施方式中,該手指電容的電容值由以下公式確定:Vo=(Vc-Vt*Cx/Ci),其中,Vo為該電壓,Vt為該激發信號的電壓幅值,Cx為該手指電容的電容值,Ci為該電路電容的電容值,Vc為該電路電容兩端的電壓。 在一個實施方式中,該指紋檢測電路還包括電源,該參考電壓端是該電源的輸出端,該開關單元與該電容並聯。該開關單元斷開使該電路電容連通在該信號放大器的負向輸入端與該信號放大器的輸出端之間。該開關單元閉合使該電路電容不連通在該信號放大器的負向輸入端與該信號放大器的輸出端之間。 在一個實施方式中,該手指電容的電容值由以下公式確定:Vo=(Vs-Vt*Cx/Ci),其中,Vo為該電壓,Vt為該激發信號的電壓幅值,Cx為該手指電容的電容值,Ci為該電路電容的電容值,Vs為該電源的電壓。 在一個實施方式中,該指紋檢測電路還包括採樣保持電路及模數轉換器,該採樣保持電路連接在該信號放大器的輸出端與該模數轉換器之間。 一種電子裝置,包括指紋檢測電路,該指紋檢測電路用於向手指傳遞激發信號以採集手指電容。該指紋檢測電路包括信號放大器、電路電容及開關單元。該信號放大器的負向輸入端連接該手指電容,該信號放大器的正向輸入端連接參考電壓端,該信號放大器根據該手指電容的電容值,從該信號放大器的輸出端輸出電壓。該開關單元分別與該信號放大器的負向輸入端和該信號放大器的輸出端連接,用於控制該電路電容連通在該信號放大器的負向輸入端與該信號放大器的輸出端之間,使得該電壓與該手指電容的電容值的關係為非線性關係。 在一個實施方式中,該參考電壓端為地端,該指紋檢測電路還包括電源。該電源通過該開關單元與該電路電容連接,該開關單元用於控制該電源為該電路電容充電及控制該電路電容與該電源斷開。 在一個實施方式中,該指紋檢測電路還包括電源,該參考電壓端是該電源的輸出端,該開關單元與該電路電容並聯。該開關單元斷開使該電路電容連通在該信號放大器的負向輸入端與該信號放大器的輸出端之間。該開關單元閉合使該電路電容不連通在該信號放大器的負向輸入端與該信號放大器的輸出端之間。 在一個實施方式中,該指紋檢測電路還包括採樣保持電路及模數轉換器,該採樣保持電路連接在該信號放大器的輸出端與該模數轉換器之間。 本發明的附加方面和優點將在下面的描述中部分給出,部分將從下面的描述中變得明顯,或通過本發明的實踐瞭解到。The present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention needs to provide a fingerprint detecting circuit and an electronic device. A fingerprint detecting circuit for transmitting an excitation signal to a finger to collect a finger capacitance. The fingerprint detecting circuit includes a signal amplifier, a circuit capacitor and a switching unit. The negative input of the signal amplifier is connected to the finger capacitor, and the forward input of the signal amplifier is connected to the reference voltage terminal. The signal amplifier outputs a voltage from the output of the signal amplifier according to the capacitance value of the finger capacitor. The switching unit is respectively connected to the negative input terminal of the signal amplifier and the output end of the signal amplifier for controlling the circuit capacitance to be connected between the negative input terminal of the signal amplifier and the output end of the signal amplifier, so that the switch unit The relationship between the voltage and the capacitance of the finger capacitance is a non-linear relationship. In the above fingerprint detecting circuit, the relationship between the voltage outputted by the signal amplifier and the finger capacitance (capacitance to be measured) is a nonlinear relationship. In the subsequent processing, the voltage output from the signal amplifier is locally linearly amplified, so that the output ridge line corresponds. The difference between the voltage corresponding to the voltage and the valley line becomes larger, and the signal-to-noise ratio is higher, which makes the subsequent algorithm easier to recognize, thereby improving the fingerprint detection effect. In one embodiment, the reference voltage terminal is a ground terminal, and the fingerprint detecting circuit further includes a power source. The power source is connected to the capacitor through the switch unit, and the switch unit is configured to control the power source to charge the circuit capacitor and control the circuit capacitor to be disconnected from the power source. In one embodiment, the switch unit includes a first switch and a second switch. The first switch includes a first selection end, a first power end, and a first connection end, the first selection end is connected to one end of the circuit capacitor, and the first power end is connected to the first pole of the power source, the first connection end Connect the negative input of the signal amplifier. The second switch includes a second selection end connected to the other end of the circuit capacitor, and a second power connection end connected to the second pole of the power source, the second connection The terminal is connected to the output of the signal amplifier. The first selection end is connected to the first connection end and disconnected from the first power supply end, and the second selection end is connected to the second connection end and disconnected from the second power supply end, so that the circuit is capacitively connected to the signal The negative input of the amplifier is coupled to the output of the signal amplifier and the circuit capacitor is disconnected from the power supply. Or the first selection end is connected to the first power supply end and disconnected from the first connection end, the second selection end is connected to the second power supply end and disconnected from the second connection end, so that the power source is the circuit capacitor Charging. In one embodiment, the capacitance value of the finger capacitance is determined by the following formula: Vo=(Vc−Vt*Cx/Ci), where Vo is the voltage, Vt is the voltage amplitude of the excitation signal, and Cx is the finger. The capacitance of the capacitor, Ci is the capacitance of the capacitor of the circuit, and Vc is the voltage across the capacitor of the circuit. In one embodiment, the fingerprint detecting circuit further includes a power source, the reference voltage terminal is an output end of the power source, and the switching unit is connected in parallel with the capacitor. The switching unit is disconnected to capacitively connect the circuit between the negative input of the signal amplifier and the output of the signal amplifier. The switching unit is closed such that the circuit capacitance is not connected between the negative input of the signal amplifier and the output of the signal amplifier. In one embodiment, the capacitance value of the finger capacitance is determined by the following formula: Vo=(Vs−Vt*Cx/Ci), where Vo is the voltage, Vt is the voltage amplitude of the excitation signal, and Cx is the finger. The capacitance value of the capacitor, Ci is the capacitance value of the circuit capacitor, and Vs is the voltage of the power source. In one embodiment, the fingerprint detection circuit further includes a sample and hold circuit and an analog to digital converter coupled between the output of the signal amplifier and the analog to digital converter. An electronic device includes a fingerprint detection circuit for transmitting an excitation signal to a finger to collect a finger capacitance. The fingerprint detecting circuit includes a signal amplifier, a circuit capacitor and a switching unit. The negative input of the signal amplifier is connected to the finger capacitor, and the forward input of the signal amplifier is connected to the reference voltage terminal. The signal amplifier outputs a voltage from the output of the signal amplifier according to the capacitance value of the finger capacitor. The switching unit is respectively connected to the negative input terminal of the signal amplifier and the output end of the signal amplifier for controlling the circuit capacitance to be connected between the negative input terminal of the signal amplifier and the output end of the signal amplifier, so that the switch unit The relationship between the voltage and the capacitance of the finger capacitance is a non-linear relationship. In one embodiment, the reference voltage terminal is a ground terminal, and the fingerprint detecting circuit further includes a power source. The power source is connected to the circuit capacitor through the switch unit, and the switch unit is configured to control the power source to charge the circuit capacitor and control the circuit capacitor to be disconnected from the power source. In one embodiment, the fingerprint detecting circuit further includes a power source, the reference voltage terminal is an output end of the power source, and the switch unit is connected in parallel with the circuit capacitor. The switching unit is disconnected to capacitively connect the circuit between the negative input of the signal amplifier and the output of the signal amplifier. The switching unit is closed such that the circuit capacitance is not connected between the negative input of the signal amplifier and the output of the signal amplifier. In one embodiment, the fingerprint detection circuit further includes a sample and hold circuit and an analog to digital converter coupled between the output of the signal amplifier and the analog to digital converter. The additional aspects and advantages of the invention will be set forth in part in the description which follows.

下面詳細描述本發明的實施方式,該實施方式的示例在附圖中示出,其中自始至終相同或類似的標號表示相同或類似的元件或具有相同或類似功能的元件。下面通過參考附圖描述的實施方式是示例性的,僅用於解釋本發明,而不能理解為對本發明的限制。 在本發明的描述中,需要理解的是,術語“第一”、“第二”僅用於描述目的,而不能理解為指示或暗示相對重要性或者隱含指明所指示的技術特徵的數量。由此,限定有“第一”、“第二”的特徵可以明示或者隱含地包括一個或者更多個所述特徵。在本發明的描述中,“多個”的含義是兩個或兩個以上,除非另有明確具體的限定。 在本發明的描述中,需要說明的是,除非另有明確的規定和限定,術語“安裝”、“相連”、“連接”應做廣義理解,例如,可以是固定連接,也可以是可拆卸連接,或一體地連接;可以是機械連接,也可以是電連接或可以相互通信;可以是直接相連,也可以通過中間媒介間接相連,可以是兩個元件內部的連通或兩個元件的相互作用關係。對於本領域的普通技術人員而言,可以根據具體情況理解上述術語在本發明中的具體含義。 下文的揭露提供了許多不同的實施方式或例子用來實現本發明的不同結構。為了簡化本發明的揭露,下文中對特定例子的部件和設定進行描述。當然,它們僅僅為示例,並且目的不在於限制本發明。此外,本發明可以在不同例子中重複參考數位及/或參考字母,這種重複是為了簡化和清楚的目的,其本身不指示所討論各種實施方式及/或設定之間的關係。此外,本發明提供了的各種特定的製程和材料的例子,但是本領域普通技術人員可以意識到其他製程的應用及/或其他材料的使用。 請參閱第1圖,本發明第一較佳實施方式的指紋檢測電路100包括信號放大器102、電路電容104、開關單元106、電源108、採樣保持電路110及模數轉換器112。 在採集指紋時,請結合第2圖,該指紋檢測電路100可向手指500傳遞激發信號以採集手指電容114。例如,指紋檢測電路100可通過信號發生器116輸出該激發信號,並通過發射電極(圖未示出)向手指500傳遞激發信號。該激發信號可為交流信號,如正弦波、方波或者三角波的交流信號。該交流信號的電壓幅值為Vt(下稱激發電壓),該交流信號的頻率為S。 該手指電容114是指手指500指紋與指紋感測器502之間形成的電容,例如,指紋的脊線與指紋感測器502之間形成脊線電容,指紋的谷線與指紋感測器502之間形成谷線電容。脊線電容及谷線電容可統稱為手指電容114,也就是待測電容。 例如,請結合第2圖,指紋感測器502包括邊框504及由多個指紋感應單元506通過排列組成的二維檢測陣列508。 該邊框504環繞在該二維檢測陣列508的周圍,並在指紋檢測時向手指500提供激發信號(例如交流信號)。例如,邊框504可與發射電極連接以輸出該激發信號。 指紋感應單元506完成對指紋圖像的單個像素的採集。例如,每個指紋感應單元506的大小一般約為50um*50um。位於指紋感應單元506與手指500之間形成的電容114的大小就代表了指紋的脊線或谷線的特徵,所以檢測陣列508的所有感應單元506與手指500形成的多個手指電容114就代表了指紋圖像的脊谷特徵。 本實施方式中,信號放大器102對應於一個指紋感應單元506,並輸出手指電容對應的電壓。 該信號放大器102的負向輸入端連接該手指電容114,該信號放大器102的正向輸入端連接參考電壓端118,該信號放大器102根據該手指電容114的電容值,從該信號放大器102的輸出端輸出電壓。 本實施方式中,參考電壓端118為地端,即信號放大器102的正向輸入端連接地端118。 該電路電容104可以是指紋感測器的內部電容或其它電容,該電路電容104的電容值一般是固定的。 該開關單元106分別與該信號放大器102的負向輸入端和該信號放大器102的輸出端連接,用於控制該電路電容104連通在該信號放大器102的負向輸入端與該信號放大器102的輸出端之間,使得該電壓與該手指電容114的電容值的關係為非線性關係。 具體地,該電源108通過該開關單元106與該電路電容104連接,該開關單元106用於控制該電源108為該電路電容104充電及控制該電路電容104與該電源108斷開。電源108可為指紋檢測電路100的內部電源,例如,電源108的第一極為負極,電源的第二極為正極。 進一步地,該開關單元106包括第一開關S1及第二開關S2。 該第一開關S1包括第一選擇端A1、第一電源端B1及第一連接端C1,該第一選擇端A1連接該電路電容104的一端,該第一電源端B1連接該電源108的第一極,該第一連接端C1連接該信號放大器102的負向輸入端。 該第二開關S2包括第二選擇端A2、第二電源端B2及第二連接端C2,該第二選擇端A2連接該電路電容104的另一端,該第二電源端B2連接該電源108的第二極,該第二連接端C2連接該信號放大器102的輸出端。 該第一選擇端A1連接該第一連接端C1並與該第一電源端B1斷開,該第二選擇端A2連接該第二連接端C2並與該第二電源端B2斷開,使得該電路電容104連通在該信號放大器102的負向輸入端與該信號放大器102的輸出端之間,及使得該電路電容104與該電源108斷開。 該第一選擇端A1連接該第一電源端B1並與該第一連接端C1斷開,該第二選擇端A2連接該第二電源端B2並與該第二連接端C2斷開,使得該電源108為該電路電容104充電。此時,電源108為電路電容104充電,使電路電容104兩端帶有一定的電壓。 該採樣保持電路110連接在該信號放大器102的輸出端及該模數轉換器112之間。該採樣保持電路110用於以設定倍數對信號放大器102的輸出端輸出的電壓進行放大。該模數轉換器112用於將放大後的該電壓轉化為數值並保存下來。該指紋檢測電路100還可包括處理數位信號的數位訊號處理器(圖未示出),該數位訊號處理器連接在模數轉換器112的輸出端。數位化信號放大器102的輸出端輸出的電壓,可方便後續的計算。 該手指電容的電容值由以下公式確定:Vo=(Vc-Vt*Cx/Ci),其中,Vo為該電壓,Vt為該激發電壓,Cx為該手指電容114的電容值,Ci為該電路電容104的電容值,Vc為該電路電容104兩端的電壓。由該公式可知,信號放大器102輸出的電壓Vo與手指電容114的電容值Cx的關係是非線性關係。 當指紋檢測電路100初始化時,第一選擇端A1連接到第一電源端B1,第二選擇端A2連接到第二電源端B2,第二電源端B2連接電源108的正極,第一電源端B1連接電源108的負極,由電源108為電路電容104充電。充電後電路電容104兩端的電壓為Vc,本示例中,Vc=Vs,Vs為電源的電壓。手指電容114初始化時兩端接地,信號發生器116接地(Vt接地)。然後,第一選擇端A1連接到第一連接端C1,第二選擇端A2第二連接端C2,電路電容104接入至信號放大器102的負向輸入端與信號放大器102的輸出端之間。這時信號放大器102的輸出端輸出的電壓Vo為Vc,初始化動作完成。 在指紋檢測電路100採集指紋的過程中,信號發生器116使激發電壓Vt上升,上升的過程中為手指電容114充電,充入的電荷為電量Q=Vt*Cx,由於運放的虛短虛斷的原理,信號放大器102輸出的電壓Vo會下降,對電路電容104充同樣多的電荷來保證運放的輸入端保持到地電位。這時對電路電容104充的電量Q為(Vc-Vo)*Ci=Vt*Cx,所以信號放大器102輸出的電壓Vo=Vc-Vt*Cx/Ci。電壓Vo進入採樣保持電路110時進行放大設定倍數n倍,進入模數轉換器112的最終的檢測電壓Va=n*(Vc-Vt*Cx/Ci)。 舉個例子,比如一個手指500放在指紋感測器502上,傳統的電路檢測時,指紋脊線對應的輸出電壓Vo1=-2V,假設對於這個手指500,指紋谷線對應的輸出電壓(下稱第一電壓)比指紋脊線對應的輸出電壓(下稱第二電壓)差15%,即第二電壓Vo2=-1.7V。如果模數轉換器112的輸入範圍是0~-5V,那採樣保持電路110最多可以放大2.5倍(n=2.5),放大後的第一電壓Va1=-5V,放大後的第二電壓Va2=-4.25V,Va1-Va2=-0.75V。 在利用本發明的指紋檢測電路100檢測指紋時,假設電路電容104初始化時兩端的電壓Vc=1.5V,那在採集過程中,第一電壓Vo1變為1.5-2=-0.5V,第二電壓Vo2變為1.5-1.7=-0.2V。這時採樣保持電路110就可以放大10倍,放大後的第一電壓Va1=-5V,放大後的第二電壓Va2=-2V,Va1-Va2=-3V,這個差值比上述差值放大了-3/-0.75=4倍。兩個輸出電壓差60%,放大了4倍。這時指紋檢測電路100採集到的兩個輸出電壓的差距就比較大,信噪比更高,後續演算法就更容易識別。 因此,以第一電壓為例,可以判斷第一電壓Vo1是否大於等於-0.5V(設定值),若是,該第一電壓可用於手指指紋圖像的形成。 若否,則指紋檢測電路100可以調整激發電壓Vt及電路電容104兩端的電壓Vc中的至少一個參數來調整第一電壓Vo1。設定值的設定可考慮模數轉換器112的量程、激發電壓Vt及電路電容104兩端的電壓Vc的安全電壓範圍等因素。 綜上所述,上述指紋檢測電路100中,信號放大器102輸出的電壓與手指電容114的關係為非線性關係,在後續處理時,對信號放大器102輸出的電壓是進行局部線性的放大,使輸出的脊線對應的電壓和谷線對應的電壓之間的差值變大,信噪比更高,使後續演算法更容易識別,進而提高了指紋檢測效果。 請參閱第3圖,本發明第二較佳實施方式的指紋檢測電路200包括信號放大器202、電容204、開關單元206、電源(圖未示出)、採樣保持電路210及模數轉換器212。 本實施方式的指紋檢測電路200可利用第一實施方式揭示的指紋感測器502向手指500傳遞激發信號以採集手指電容214。 該信號放大器202的負向輸入端連接手指電容214,該信號放大器202的正向輸入端連接參考電壓端216,該信號放大器202根據該手指電容214的電容值,從該信號放大器202的輸出端輸出電壓。 本實施方式中,參考電壓端216為電源的輸出端,即信號放大器202的正向輸入端連接該電源。 該電路電容204可以是指紋感測器的內部電容或其它電容,該電路電容204的電容值一般是固定的。 該開關單元206分別與該信號放大器202的負向輸入端和該信號放大器202的輸出端連接,用於控制該電路電容204連通在該信號放大器202的負向輸入端與該信號放大器202的輸出端之間,使得該電壓與該手指電容214的電容值的關係為非線性關係。 具體地,該開關單元206與該電路電容204並聯。該開關單元206斷開使該電路電容204連通在該信號放大器202的負向輸入端與該信號放大器202的輸出端之間。 該開關單元206閉合使該電路電容204不連通在該信號放大器202的負向輸入端與該信號放大器202的輸出端之間。連通可以理解為連接和導通,在本實施方式中,當開關單元206閉合時,電路電容204雖然連接在信號放大器202的負向輸入端及信號放大器202的輸出端之間,但電路電容204被開關單元206短接,使電路電容204沒有導通在信號放大器202的負向輸入端及信號放大器202的輸出端之間。 開關單元206包括第一連接端D1及第二連接端D2。 第一連接端D1連接電路電容204的一端及連接在手指電容214與信號放大器202的負向輸入端之間。第二連接端D2連接電路電容204的另一端及連接在信號放大器202的輸出端。 該開關單元206斷開使該電路電容204連通在該信號放大器202的負向輸入端與該信號放大器202的輸出端之間,即,第一連接端D1與第二連接端D2斷開。 該開關單元206閉合使該電容不連通在該信號放大器202的負向輸入端與該信號放大器202的輸出端之間,即,第一連接端D1連接第二連接端D2。這樣,信號放大器202的輸出端輸出的電壓與電源的電壓相等。電路電容204被短接而不連通在該信號放大器202的負向輸入端與該信號放大器202的輸出端之間,對信號放大器202的輸出端輸出的電壓沒有影響。 該採樣保持電路210連接在該信號放大器202的輸出端及該模數轉換器212之間。該採樣保持電路210用於以設定倍數對信號放大器202的輸出端輸出的該電壓進行放大。該模數轉換器212用於將放大後的該電壓轉化為數值並保存下來。該指紋檢測電路200還可包括處理數位信號的數位訊號處理器(圖未示出),該數位訊號處理器連接在模數轉換器212的輸出端。數位化信號放大器202的輸出端輸出的該電壓,可方便後續的計算。 該手指電容214的電容值由以下公式確定:Vo=(Vs-Vt*Cx/Ci),其中,Vo為信號放大器202的輸出端輸出的電壓,Vt為該激發信號的電壓幅值(激發電壓),Cx為該手指電容214的電容值,Ci為該電路電容204的電容值,Vs為該電源的電壓。由該公式可知,信號放大器202輸出的電壓Vo與手指電容214的電容值Cx的關係是非線性關係。 當指紋檢測電路100初始化時,開關單元206閉合,手指電容214初始化時兩端接地,信號發生器218接地(Vt接地)。這時信號放大器202的輸出端輸出的電壓Vo=Vs,初始化動作完成。 在指紋檢測電路200採集指紋的過程中,開關單元206斷開,信號發生器218使激發電壓Vt上升,上升的過程中為手指電容214充電,充入的電荷為電量Q=Vt*Cx,由於運放的虛短虛斷的原理,信號放大器202輸出的電壓Vo會下降,對電路電容204充同樣多的電荷來保證運放的輸入端保持到Vs電位。這時對電路電容204充的電量Q為(Vs-Vo)*Ci=Vt*Cx,所以信號放大器202輸出的電壓Vo=Vs-Vt*Cx/Ci。電壓Vo進入採樣保持電路210時進行放大設定倍數n倍,進入模數轉換器212的最終的檢測電壓Va=n*(Vs-Vt*Cx/Ci)。因此,可以通過調整激發電壓Vt及電源的電壓Vs中的至少一個參數,來調整信號放大器202輸出的電壓Vo。 綜上所述,上述指紋檢測電路200中,信號放大器202輸出的電壓與手指電容214的關係為非線性關係,在後續處理時,對信號放大器202輸出的電壓是進行局部線性的放大,使輸出的脊線對應的電壓和谷線對應的電壓之間的差值變大,信噪比更高,使後續演算法更容易識別,進而提高了指紋檢測效果。 請參第4圖並結合第1圖至第3圖,本發明第三較佳實施方式的電子裝置300包括指紋檢測電路(圖未示出)。該指紋檢測電路可設置在電子裝置300的內部。該指紋檢測電路可為以上任一實施方式的指紋檢測電路。 本實施方式中,該電子裝置300以手機為例進行說明。可以理解,在其它實施方式中,電子裝置300可還為平板電腦、筆記型電腦、智慧穿戴設備、音訊播放機或視訊播放機等對指紋檢測有需求的電子裝置。 指紋感測器502的採集視窗302設置在電子裝置300的前面板304,方便採集用戶指紋。當然,採集視窗302還可根據其它需求設置在電子裝置300的側面及背面等的其它位置。 綜上所述,上述電子裝置300能夠提高指紋檢測效果。 在本說明書的描述中,參考術語“一個實施方式”、“一些實施方式”、“示意性實施方式”、“示例”、“具體示例”、或“一些示例”等的描述意指結合該實施方式或示例描述的具體特徵、結構、材料或者特點包含於本發明的至少一個實施方式或示例中。在本說明書中,對上述術語的示意性表述不一定指的是相同的實施方式或示例。而且,描述的具體特徵、結構、材料或者特點可以在任何的一個或多個實施方式或示例中以合適的方式結合。 此外,術語“第一”、“第二”僅用於描述目的,而不能理解為指示或暗示相對重要性或者隱含指明所指示的技術特徵的數量。由此,限定有“第一”、“第二”的特徵可以明示或者隱含地包括至少一個該特徵。在本發明的描述中,“多個”的含義是至少兩個,例如兩個、三個等,除非另有明確具體的限定。 流程圖中或在此以其他方式描述的任何過程或方法描述可以被理解為,表示包括一個或更多個用於實現特定邏輯功能或過程的步驟的可執行指令的代碼的模組、片段或部分,並且本發明的較佳實施方式的範圍包括另外的實現,其中可以不按所示出或討論的順序,包括根據所涉及的功能按基本同時的方式或按相反的順序,來執行功能,這應被本發明的實施例所屬技術領域的技術人員所理解。 在流程圖中表示或在此以其他方式描述的邏輯及/或步驟,例如,可以被認為是用於實現邏輯功能的可執行指令的定序列表,可以具體實現在任何電腦可讀介質中,以供指令執行系統、裝置或設備(如基於電腦的系統、包括處理器的系統或其他可以從指令執行系統、裝置或設備取指令並執行指令的系統)使用,或結合這些指令執行系統、裝置或設備而使用。就本說明書而言,“電腦可讀介質”可以是任何可以包含、儲存、通信、傳播或傳輸程式以供指令執行系統、裝置或設備或結合這些指令執行系統、裝置或設備而使用的裝置。電腦可讀介質的更具體的示例(非窮盡性列表)包括以下:具有一個或多個佈線的電連接部(電子裝置)、可攜式電腦盤盒(磁裝置)、隨機存取記憶體(RAM)、唯讀記憶體(ROM)、可抹除可編輯唯讀記憶體(EPROM或快閃記憶體)、光纖裝置,以及可攜式光碟唯讀記憶體(CDROM)。另外,電腦可讀介質甚至可以是可在其上列印該程式的紙或其他合適的介質,因為可以例如通過對紙或其他介質進行光學掃描,接著進行編輯、解譯或必要時以其他合適方式進行處理來以電子方式獲得該程式,然後將其儲存在電腦記憶體中。 應當理解,本發明的各部分可以用硬體、軟體、韌體或它們的組合來實現。在上述實施方式中,多個步驟或方法可以用儲存在記憶體中且由合適的指令執行系統執行的軟體或韌體來實現。例如,如果用硬體來實現,和在另一實施方式中一樣,可用本領域公知的下列技術中的任一項或他們的組合來實現:具有用於對資料信號實現邏輯功能的邏輯門電路的離散邏輯電路、具有合適的組合邏輯門電路的專用積體電路、可程式設計閘陣列(PGA)、現場可程式設計閘陣列(FPGA)等。 本技術領域的普通技術人員可以理解實現上述實施例方法攜帶的全部或部分步驟是可以通過程式來指令相關的硬體完成,所述的程式可以儲存於一種電腦可讀儲存介質中,該程式在執行時,包括方法實施例的步驟之一或其組合。 此外,在本發明各個實施例中的各功能單元可以集成在一個處理模組中,也可以是各個單元單獨物理存在,也可以兩個或兩個以上單元集成在一個模組中。上述集成的模組既可以採用硬體的形式實現,也可以採用軟體功能模組的形式實現。該集成的模組如果以軟體功能模組的形式實現並作為獨立的產品銷售或使用時,也可以儲存在一個電腦可讀取儲存介質中。 上述提到的儲存介質可以是唯讀記憶體、磁片或光碟等。儘管上面已經示出和描述了本發明的實施例,可以理解的是,上述實施例是示例性的,不能理解為對本發明的限制,本領域的普通技術人員在本發明的範圍內可以對上述實施例進行變化、修改、替換和變型。The embodiments of the present invention are described in detail below, and the examples of the embodiments are illustrated in the drawings, wherein the same or similar reference numerals indicate the same or similar elements or elements having the same or similar functions. The embodiments described below with reference to the drawings are intended to be illustrative of the invention and are not to be construed as limiting. In the description of the present invention, it is to be understood that the terms "first" and "second" are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining "first" or "second" may include one or more of the described features either explicitly or implicitly. In the description of the present invention, the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise. In the description of the present invention, it should be noted that the terms "installation", "connected", and "connected" are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, or may be electrically connected or may communicate with each other; may be directly connected or indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis. The disclosure below provides many different embodiments or examples for implementing the different structures of the present invention. In order to simplify the disclosure of the present invention, the components and settings of the specific examples are described below. Of course, they are merely examples and are not intended to limit the invention. In addition, the present disclosure may repeat reference numerals and/or reference letters in different examples, which are for the purpose of simplicity and clarity, and do not indicate the relationship between the various embodiments and/or settings discussed. Moreover, the present invention provides examples of various specific processes and materials, but one of ordinary skill in the art will recognize the use of other processes and/or the use of other materials. Referring to FIG. 1 , a fingerprint detecting circuit 100 according to a first preferred embodiment of the present invention includes a signal amplifier 102 , a circuit capacitor 104 , a switching unit 106 , a power source 108 , a sample and hold circuit 110 , and an analog to digital converter 112 . When acquiring a fingerprint, in conjunction with FIG. 2, the fingerprint detecting circuit 100 can transmit an excitation signal to the finger 500 to collect the finger capacitance 114. For example, the fingerprint detecting circuit 100 can output the excitation signal through the signal generator 116 and transmit an excitation signal to the finger 500 through a transmitting electrode (not shown). The excitation signal can be an alternating current signal, such as an alternating current signal of a sine wave, a square wave or a triangular wave. The voltage amplitude of the AC signal is Vt (hereinafter referred to as an excitation voltage), and the frequency of the AC signal is S. The finger capacitance 114 refers to a capacitance formed between the fingerprint of the finger 500 and the fingerprint sensor 502. For example, a ridge line capacitance is formed between the ridge line of the fingerprint and the fingerprint sensor 502, and the valley line of the fingerprint and the fingerprint sensor 502 A valley capacitance is formed between them. The ridge capacitance and the valley capacitance can be collectively referred to as a finger capacitance 114, that is, a capacitance to be measured. For example, in conjunction with FIG. 2, the fingerprint sensor 502 includes a bezel 504 and a two-dimensional detection array 508 that is composed of a plurality of fingerprint sensing units 506. The bezel 504 surrounds the two-dimensional detection array 508 and provides an excitation signal (e.g., an alternating current signal) to the finger 500 upon fingerprint detection. For example, the bezel 504 can be coupled to the transmit electrode to output the excitation signal. Fingerprint sensing unit 506 completes the acquisition of a single pixel of the fingerprint image. For example, each fingerprint sensing unit 506 is typically about 50 um * 50 um in size. The size of the capacitor 114 formed between the fingerprint sensing unit 506 and the finger 500 represents the feature of the ridge or valley line of the fingerprint, so that all of the sensing units 506 of the detection array 508 and the plurality of finger capacitors 114 formed by the finger 500 represent The ridge valley feature of the fingerprint image. In the present embodiment, the signal amplifier 102 corresponds to one fingerprint sensing unit 506, and outputs a voltage corresponding to the finger capacitance. The negative input of the signal amplifier 102 is coupled to the finger capacitor 114. The forward input of the signal amplifier 102 is coupled to a reference voltage terminal 118. The signal amplifier 102 is output from the signal amplifier 102 based on the capacitance of the finger capacitor 114. Terminal output voltage. In this embodiment, the reference voltage terminal 118 is the ground terminal, that is, the forward input terminal of the signal amplifier 102 is connected to the ground terminal 118. The circuit capacitance 104 can be an internal capacitance or other capacitance of the fingerprint sensor, and the capacitance value of the circuit capacitance 104 is generally fixed. The switch unit 106 is coupled to the negative input of the signal amplifier 102 and the output of the signal amplifier 102 for controlling the circuit capacitor 104 to communicate with the output of the signal amplifier 102 and the output of the signal amplifier 102. Between the ends, the relationship between the voltage and the capacitance value of the finger capacitor 114 is a non-linear relationship. Specifically, the power source 108 is connected to the circuit capacitor 104 through the switch unit 106. The switch unit 106 is configured to control the power source 108 to charge the circuit capacitor 104 and control the circuit capacitor 104 to be disconnected from the power source 108. The power source 108 can be an internal power source of the fingerprint detection circuit 100, for example, a first pole of the power source 108, and a second pole of the power source. Further, the switch unit 106 includes a first switch S1 and a second switch S2. The first switch S1 includes a first selection terminal A1, a first power supply terminal B1, and a first connection terminal C1. The first selection terminal A1 is connected to one end of the circuit capacitor 104. The first power terminal B1 is connected to the power source 108. In one pole, the first connection terminal C1 is connected to the negative input terminal of the signal amplifier 102. The second switch S2 includes a second selection terminal A2, a second power supply terminal B2, and a second connection terminal C2. The second selection terminal A2 is connected to the other end of the circuit capacitor 104. The second power terminal B2 is connected to the power source 108. The second terminal, the second terminal C2 is connected to the output of the signal amplifier 102. The first connection end A1 is connected to the first connection end C1 and disconnected from the first power supply end B1, and the second selection end A2 is connected to the second connection end C2 and disconnected from the second power supply end B2, so that the Circuit capacitance 104 is coupled between the negative input of signal amplifier 102 and the output of signal amplifier 102, and causes circuit capacitor 104 to be disconnected from power supply 108. The first selection terminal A1 is connected to the first power supply terminal B1 and disconnected from the first connection terminal C1, and the second selection terminal A2 is connected to the second power terminal B2 and disconnected from the second connection terminal C2, so that the first selection terminal A1 is disconnected from the second connection terminal C2. Power source 108 charges the circuit capacitor 104. At this point, the power supply 108 charges the circuit capacitor 104 with a certain voltage across the circuit capacitor 104. The sample and hold circuit 110 is coupled between the output of the signal amplifier 102 and the analog to digital converter 112. The sample and hold circuit 110 is for amplifying the voltage output from the output of the signal amplifier 102 by a set multiple. The analog to digital converter 112 is used to convert the amplified voltage into a value and save it. The fingerprint detection circuit 100 can also include a digital signal processor (not shown) that processes the digital signal, the digital signal processor being coupled to the output of the analog to digital converter 112. The voltage output from the output of the digital signal amplifier 102 facilitates subsequent calculations. The capacitance value of the finger capacitance is determined by the following formula: Vo=(Vc-Vt*Cx/Ci), where Vo is the voltage, Vt is the excitation voltage, Cx is the capacitance value of the finger capacitance 114, and Ci is the circuit. The capacitance value of the capacitor 104, Vc, is the voltage across the circuit capacitor 104. As can be seen from the equation, the relationship between the voltage Vo output by the signal amplifier 102 and the capacitance value Cx of the finger capacitor 114 is nonlinear. When the fingerprint detecting circuit 100 is initialized, the first selection terminal A1 is connected to the first power terminal B1, the second selection terminal A2 is connected to the second power terminal B2, and the second power terminal B2 is connected to the anode of the power source 108, and the first power terminal B1 is connected. The negative terminal of the power source 108 is connected, and the circuit capacitor 104 is charged by the power source 108. After charging, the voltage across circuit capacitor 104 is Vc. In this example, Vc = Vs, and Vs is the voltage of the power supply. When the finger capacitor 114 is initialized, both ends are grounded, and the signal generator 116 is grounded (Vt is grounded). Then, the first selection terminal A1 is connected to the first connection terminal C1, the second selection terminal A2 is connected to the second connection terminal C2, and the circuit capacitor 104 is connected between the negative input terminal of the signal amplifier 102 and the output terminal of the signal amplifier 102. At this time, the voltage Vo outputted from the output terminal of the signal amplifier 102 is Vc, and the initialization operation is completed. In the process of fingerprint collection by the fingerprint detecting circuit 100, the signal generator 116 raises the excitation voltage Vt, and charges the finger capacitor 114 during the rising process. The charged charge is the electric quantity Q=Vt*Cx, due to the virtual shortness of the operational amplifier. According to the principle of disconnection, the voltage Vo outputted by the signal amplifier 102 is lowered, and the circuit capacitor 104 is charged with the same amount of charge to ensure that the input end of the operational amplifier is maintained at ground potential. At this time, the electric quantity Q charged to the circuit capacitor 104 is (Vc - Vo) * Ci = Vt * Cx, so the voltage output from the signal amplifier 102 is Vo = Vc - Vt * Cx / Ci. When the voltage Vo enters the sample-and-hold circuit 110, it is amplified by a factor of n and enters the final detection voltage Va=n* (Vc-Vt*Cx/Ci) of the analog-to-digital converter 112. For example, if a finger 500 is placed on the fingerprint sensor 502, the output voltage of the fingerprint ridge line corresponds to the output voltage Vo1=-2V, and the output voltage corresponding to the fingerprint valley line is assumed for this finger 500. The first voltage is equal to the output voltage corresponding to the fingerprint ridge (hereinafter referred to as the second voltage) by 15%, that is, the second voltage Vo2 = -1.7V. If the input range of the analog-to-digital converter 112 is 0~-5V, the sample-and-hold circuit 110 can be amplified by a maximum of 2.5 times (n=2.5), the amplified first voltage Va1=-5V, and the amplified second voltage Va2= -4.25V, Va1-Va2 = -0.75V. When detecting the fingerprint by the fingerprint detecting circuit 100 of the present invention, it is assumed that the voltage Vc of the two ends when the circuit capacitor 104 is initialized is 1.5 V, and the first voltage Vo1 becomes 1.5-2=-0.5 V during the acquisition process, and the second voltage is obtained. Vo2 becomes 1.5-1.7=-0.2V. At this time, the sample and hold circuit 110 can be amplified by 10 times, the amplified first voltage Va1 = -5V, the amplified second voltage Va2 = -2V, Va1 - Va2 = -3V, and the difference is amplified by the difference - 3/-0.75=4 times. The two output voltages are 60% different and are amplified by a factor of four. At this time, the difference between the two output voltages collected by the fingerprint detecting circuit 100 is relatively large, the signal-to-noise ratio is higher, and the subsequent algorithm is easier to recognize. Therefore, taking the first voltage as an example, it can be determined whether the first voltage Vo1 is greater than or equal to -0.5 V (set value), and if so, the first voltage can be used for the formation of a finger fingerprint image. If not, the fingerprint detecting circuit 100 can adjust the first voltage Vo1 by adjusting at least one of the excitation voltage Vt and the voltage Vc across the circuit capacitor 104. The setting of the set value may take into consideration factors such as the range of the analog-to-digital converter 112, the excitation voltage Vt, and the safe voltage range of the voltage Vc across the circuit capacitor 104. In summary, in the fingerprint detecting circuit 100, the relationship between the voltage outputted by the signal amplifier 102 and the finger capacitance 114 is nonlinear, and in the subsequent processing, the voltage output from the signal amplifier 102 is locally linearly amplified to make the output The difference between the voltage corresponding to the ridge line and the voltage corresponding to the valley line becomes larger, and the signal-to-noise ratio is higher, which makes the subsequent algorithm easier to recognize, thereby improving the fingerprint detection effect. Referring to FIG. 3, the fingerprint detecting circuit 200 of the second preferred embodiment of the present invention includes a signal amplifier 202, a capacitor 204, a switching unit 206, a power source (not shown), a sample and hold circuit 210, and an analog to digital converter 212. The fingerprint detecting circuit 200 of the present embodiment can transmit the excitation signal to the finger 500 by using the fingerprint sensor 502 disclosed in the first embodiment to collect the finger capacitance 214. The negative input terminal of the signal amplifier 202 is connected to the finger capacitor 214. The forward input terminal of the signal amplifier 202 is connected to the reference voltage terminal 216. The signal amplifier 202 is output from the output of the signal amplifier 202 according to the capacitance value of the finger capacitor 214. The output voltage. In this embodiment, the reference voltage terminal 216 is the output end of the power source, that is, the forward input terminal of the signal amplifier 202 is connected to the power source. The circuit capacitance 204 can be an internal capacitance or other capacitance of the fingerprint sensor, and the capacitance of the circuit capacitance 204 is generally fixed. The switch unit 206 is coupled to the negative input of the signal amplifier 202 and the output of the signal amplifier 202 for controlling the circuit capacitor 204 to communicate with the output of the signal amplifier 202 and the output of the signal amplifier 202. Between the terminals, the relationship between the voltage and the capacitance value of the finger capacitance 214 is a nonlinear relationship. Specifically, the switch unit 206 is connected in parallel with the circuit capacitor 204. The switching unit 206 is disconnected to connect the circuit capacitor 204 between the negative input of the signal amplifier 202 and the output of the signal amplifier 202. The switching unit 206 is closed such that the circuit capacitance 204 is not connected between the negative input of the signal amplifier 202 and the output of the signal amplifier 202. The connection can be understood as a connection and conduction. In the present embodiment, when the switch unit 206 is closed, the circuit capacitance 204 is connected between the negative input terminal of the signal amplifier 202 and the output terminal of the signal amplifier 202, but the circuit capacitance 204 is Switch unit 206 is shorted such that circuit capacitance 204 is not conducted between the negative input of signal amplifier 202 and the output of signal amplifier 202. The switch unit 206 includes a first connection end D1 and a second connection end D2. The first connection terminal D1 is connected to one end of the circuit capacitor 204 and is connected between the finger capacitor 214 and the negative input terminal of the signal amplifier 202. The second connection terminal D2 is connected to the other end of the circuit capacitor 204 and is connected to the output terminal of the signal amplifier 202. The switching unit 206 is disconnected to connect the circuit capacitor 204 between the negative input terminal of the signal amplifier 202 and the output terminal of the signal amplifier 202, that is, the first connection terminal D1 and the second connection terminal D2 are disconnected. The switch unit 206 is closed such that the capacitor is disconnected between the negative input terminal of the signal amplifier 202 and the output of the signal amplifier 202, that is, the first connection terminal D1 is connected to the second connection terminal D2. Thus, the output of the signal amplifier 202 outputs a voltage equal to the voltage of the power supply. The circuit capacitance 204 is shorted and not connected between the negative input of the signal amplifier 202 and the output of the signal amplifier 202, and has no effect on the voltage output at the output of the signal amplifier 202. The sample and hold circuit 210 is coupled between the output of the signal amplifier 202 and the analog to digital converter 212. The sample and hold circuit 210 is configured to amplify the voltage outputted from the output of the signal amplifier 202 by a set multiple. The analog to digital converter 212 is configured to convert the amplified voltage into a value and save it. The fingerprint detection circuit 200 can also include a digital signal processor (not shown) that processes the digital signal, the digital signal processor being coupled to the output of the analog to digital converter 212. The voltage output from the output of the digital signal amplifier 202 facilitates subsequent calculations. The capacitance value of the finger capacitance 214 is determined by the following formula: Vo = (Vs - Vt * Cx / Ci), where Vo is the voltage outputted from the output of the signal amplifier 202, and Vt is the voltage amplitude of the excitation signal (excitation voltage) Cx is the capacitance value of the finger capacitor 214, Ci is the capacitance value of the circuit capacitor 204, and Vs is the voltage of the power source. It can be seen from the formula that the relationship between the voltage Vo output by the signal amplifier 202 and the capacitance value Cx of the finger capacitance 214 is a nonlinear relationship. When the fingerprint detecting circuit 100 is initialized, the switch unit 206 is closed, the finger capacitor 214 is initialized with both ends grounded, and the signal generator 218 is grounded (Vt is grounded). At this time, the voltage output from the output of the signal amplifier 202 is Vo=Vs, and the initialization operation is completed. In the process of fingerprint collection by the fingerprint detecting circuit 200, the switching unit 206 is turned off, and the signal generator 218 causes the excitation voltage Vt to rise, and during the rising process, the finger capacitor 214 is charged, and the charged charge is the electric quantity Q=Vt*Cx due to The principle of the virtual short-circuit of the op amp, the voltage Vo output by the signal amplifier 202 will drop, charging the circuit capacitor 204 with the same amount of charge to ensure that the input end of the op amp is maintained at the Vs potential. At this time, the electric quantity Q charged to the circuit capacitor 204 is (Vs - Vo) * Ci = Vt * Cx, so the voltage output from the signal amplifier 202 Vo = Vs - Vt * Cx / Ci. When the voltage Vo enters the sample-and-hold circuit 210, it is amplified by a factor of n and enters the final detection voltage Va=n* (Vs-Vt*Cx/Ci) of the analog-to-digital converter 212. Therefore, the voltage Vo output from the signal amplifier 202 can be adjusted by adjusting at least one of the excitation voltage Vt and the voltage Vs of the power source. In summary, in the fingerprint detecting circuit 200, the relationship between the voltage outputted by the signal amplifier 202 and the finger capacitance 214 is nonlinear, and in the subsequent processing, the voltage output from the signal amplifier 202 is locally linearly amplified to make the output The difference between the voltage corresponding to the ridge line and the voltage corresponding to the valley line becomes larger, and the signal-to-noise ratio is higher, which makes the subsequent algorithm easier to recognize, thereby improving the fingerprint detection effect. Referring to FIG. 4 and in conjunction with FIGS. 1 to 3, the electronic device 300 of the third preferred embodiment of the present invention includes a fingerprint detecting circuit (not shown). The fingerprint detecting circuit can be disposed inside the electronic device 300. The fingerprint detecting circuit can be the fingerprint detecting circuit of any of the above embodiments. In the present embodiment, the electronic device 300 will be described by taking a mobile phone as an example. It can be understood that in other embodiments, the electronic device 300 can also be an electronic device that requires fingerprint detection, such as a tablet computer, a notebook computer, a smart wearable device, an audio player, or a video player. The collection window 302 of the fingerprint sensor 502 is disposed on the front panel 304 of the electronic device 300 to facilitate collection of user fingerprints. Of course, the collection window 302 can also be disposed at other positions on the side and the back of the electronic device 300 according to other requirements. In summary, the electronic device 300 can improve the fingerprint detection effect. In the description of the present specification, the description with reference to the terms "one embodiment", "some embodiments", "illustrative embodiment", "example", "specific example", or "some examples", etc. Particular features, structures, materials or features described in the manner or examples are included in at least one embodiment or example of the invention. In the present specification, the schematic representation of the above terms does not necessarily mean the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples. Moreover, the terms "first" and "second" are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining "first" or "second" may include at least one of the features, either explicitly or implicitly. In the description of the present invention, the meaning of "a plurality" is at least two, such as two, three, etc., unless specifically defined otherwise. Any process or method description in the flowcharts or otherwise described herein can be understood as a module, segment or code representing code that includes one or more executable instructions for implementing the steps of a particular logical function or process. The scope of the preferred embodiments of the invention includes additional implementations, in which the functions may be performed in a substantially simultaneous manner or in the reverse order, depending on the order in which they are illustrated, This should be understood by those skilled in the art to which the embodiments of the present invention pertain. The logic and/or steps represented in the flowchart or otherwise described herein, for example, may be considered as an ordered list of executable instructions for implementing logical functions, and may be embodied in any computer readable medium, Used in conjunction with, or in conjunction with, an instruction execution system, apparatus, or device (eg, a computer-based system, a system including a processor, or other system that can fetch instructions and execute instructions from an instruction execution system, apparatus, or device) Or use with equipment. For the purposes of this specification, a "computer readable medium" can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with such an instruction execution system, apparatus, or device. More specific examples (non-exhaustive list) of computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory ( RAM), read-only memory (ROM), erasable editable read-only memory (EPROM or flash memory), fiber optic devices, and portable CD-ROM (CDROM). In addition, the computer readable medium may even be a paper or other suitable medium on which the program may be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory. It should be understood that portions of the invention may be implemented in hardware, software, firmware, or combinations thereof. In the above embodiments, multiple steps or methods may be implemented with software or firmware stored in memory and executed by a suitable instruction execution system. For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals Discrete logic circuits, dedicated integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), and more. A person skilled in the art can understand that all or part of the steps carried in the method of the above embodiment can be implemented by a program to instruct the related hardware, and the program can be stored in a computer readable storage medium. When executed, one or a combination of the steps of the method embodiments is included. In addition, each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module. The above integrated modules can be implemented in the form of hardware or in the form of software functional modules. The integrated module can also be stored in a computer readable storage medium if it is implemented as a software function module and sold or used as a standalone product. The storage medium mentioned above may be a read only memory, a magnetic sheet or a compact disc or the like. Although the embodiments of the present invention have been shown and described, it is understood that the above-described embodiments are illustrative and are not to be construed as limiting the scope of the invention. The embodiments are subject to variations, modifications, substitutions and variations.

100、200‧‧‧指紋檢測電路
102、202‧‧‧信號放大器
104、204‧‧‧電路電容
106、206‧‧‧開關單元
108‧‧‧電源
110、210‧‧‧採樣保持電路
112、212‧‧‧模數轉換器
114、214‧‧‧手指電容
116、218‧‧‧信號發生器
118、216‧‧‧參考電壓端
300‧‧‧電子裝置
302‧‧‧採集視窗
304‧‧‧前面板
500‧‧‧手指
502‧‧‧指紋感測器
504‧‧‧邊框
506‧‧‧指紋感應單元
508‧‧‧二維檢測陣列
A1‧‧‧第一選擇端
A2‧‧‧第二選擇端
B1‧‧‧第一電源端
B2‧‧‧第二電源端
C1、D1‧‧‧第一連接端
C2、D2‧‧‧第二連接端
Ci‧‧‧電路電容的電容值
Cx‧‧‧手指電容的電容值
S‧‧‧交流信號的頻率
S1‧‧‧第一開關
S2‧‧‧第二開關
Va‧‧‧檢測電壓
Vo‧‧‧電壓
Vs‧‧‧電源的電壓
Vt‧‧‧激發電壓
100, 200‧‧‧ fingerprint detection circuit
102, 202‧‧‧Signal Amplifier
104, 204‧‧‧ circuit capacitance
106, 206‧‧‧ Switching unit
108‧‧‧Power supply
110, 210‧‧‧Sampling and holding circuit
112, 212‧‧‧ Analog to Digital Converter
114, 214‧‧‧ finger capacitance
116, 218‧‧‧ signal generator
118, 216‧‧‧ reference voltage terminal
300‧‧‧Electronic devices
302‧‧‧ Collection window
304‧‧‧ front panel
500‧‧‧ fingers
502‧‧‧Finger sensor
504‧‧‧Border
506‧‧‧Finger sensing unit
508‧‧‧Two-dimensional inspection array
A1‧‧‧ first choice
A2‧‧‧ second choice
B1‧‧‧First power terminal
B2‧‧‧second power terminal
C1, D1‧‧‧ first connection
C2, D2‧‧‧ second connection
Capacitance value of Ci‧‧‧ circuit capacitor
Capacitance value of Cx‧‧‧ finger capacitor
Frequency of S‧‧‧ AC signals
S1‧‧‧ first switch
S2‧‧‧ second switch
Va‧‧‧Detection voltage
Vo‧‧‧ voltage
Vs‧‧‧ power supply voltage
Vt‧‧‧ excitation voltage

本發明的上述及/或附加的方面和優點從結合下面附圖對實施方式的描述中將變得明顯和容易理解,其中: 第1圖是本發明較佳實施方式的指紋檢測電路的示意圖; 第2圖是本發明較佳實施方式的指紋檢測電路採集指紋時的示意圖; 第3圖是本發明較佳實施方式的指紋檢測電路的另一示意圖;及 第4圖是本發明較佳實施方式的電子裝置的平面示意圖。The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the following description of the embodiments of the present invention in which: FIG. 1 is a schematic diagram of a fingerprint detection circuit in accordance with a preferred embodiment of the present invention; 2 is a schematic diagram of a fingerprint detecting circuit for collecting fingerprints according to a preferred embodiment of the present invention; FIG. 3 is another schematic diagram of a fingerprint detecting circuit according to a preferred embodiment of the present invention; and FIG. 4 is a preferred embodiment of the present invention. A schematic plan view of an electronic device.

100‧‧‧指紋檢測電路 100‧‧‧Fingerprint detection circuit

102‧‧‧信號放大器 102‧‧‧Signal Amplifier

104‧‧‧電路電容 104‧‧‧Circuit capacitance

106‧‧‧開關單元 106‧‧‧Switch unit

108‧‧‧電源 108‧‧‧Power supply

110‧‧‧採樣保持電路 110‧‧‧Sampling and holding circuit

112‧‧‧模數轉換器 112‧‧• Analog to Digital Converter

114‧‧‧手指電容 114‧‧‧ finger capacitance

116‧‧‧信號發生器 116‧‧‧Signal Generator

118‧‧‧參考電壓端 118‧‧‧reference voltage terminal

A1‧‧‧第一選擇端 A1‧‧‧ first choice

A2‧‧‧第二選擇端 A2‧‧‧ second choice

B1‧‧‧第一電源端 B1‧‧‧First power terminal

B2‧‧‧第二電源端 B2‧‧‧second power terminal

C1‧‧‧第一連接端 C1‧‧‧ first connection

C2‧‧‧第二連接端 C2‧‧‧second connection

Ci‧‧‧電路電容的電容值 Capacitance value of Ci‧‧‧ circuit capacitor

Cx‧‧‧手指電容的電容值 Capacitance value of Cx‧‧‧ finger capacitor

S‧‧‧交流信號的頻率 Frequency of S‧‧‧ AC signals

S1‧‧‧第一開關 S1‧‧‧ first switch

S2‧‧‧第二開關 S2‧‧‧ second switch

Va‧‧‧檢測電壓 Va‧‧‧Detection voltage

Vo‧‧‧電壓 Vo‧‧‧ voltage

Vs‧‧‧電源的電壓 Vs‧‧‧ power supply voltage

Vt‧‧‧激發電壓 Vt‧‧‧ excitation voltage

Claims (11)

一種指紋檢測電路,該指紋檢測電路用於向手指傳遞激發信號以採集手指電容,其特徵在於,該指紋檢測電路包括信號放大器、電路電容及開關單元;         該信號放大器的負向輸入端連接該手指電容,該信號放大器的正向輸入端連接參考電壓端,該信號放大器根據該手指電容的電容值,從該信號放大器的輸出端輸出電壓;         該開關單元分別與該信號放大器的負向輸入端和該信號放大器的輸出端連接,用於控制該電路電容連通在該信號放大器的負向輸入端與該信號放大器的輸出端之間,使得該電壓與該手指電容的電容值的關係為非線性關係。A fingerprint detecting circuit for transmitting an excitation signal to a finger to collect a finger capacitance, wherein the fingerprint detecting circuit comprises a signal amplifier, a circuit capacitor and a switch unit; and a negative input end of the signal amplifier is connected to the finger a capacitor, a forward input of the signal amplifier is connected to a reference voltage terminal, and the signal amplifier outputs a voltage from an output end of the signal amplifier according to a capacitance value of the finger capacitor; the switch unit is respectively connected to a negative input terminal of the signal amplifier The output of the signal amplifier is connected to control the capacitance of the circuit between the negative input terminal of the signal amplifier and the output end of the signal amplifier, so that the relationship between the voltage and the capacitance value of the finger capacitor is nonlinear. . 如申請專利範圍第1項所述的指紋檢測電路,其特徵在於,該參考電壓端為地端,該指紋檢測電路還包括電源;         該電源通過該開關單元與該電路電容連接,該開關單元用於控制該電源為該電路電容充電及控制該電路電容與該電源斷開。The fingerprint detecting circuit of claim 1, wherein the reference voltage terminal is a ground end, and the fingerprint detecting circuit further comprises a power source; the power source is connected to the circuit capacitor through the switch unit, and the switch unit is used by the switch unit The power supply is controlled to charge the circuit capacitor and the circuit capacitor is disconnected from the power source. 如申請專利範圍第2項所述的指紋檢測電路,其特徵在於,該開關單元包括第一開關及第二開關;         該第一開關包括第一選擇端、第一電源端及第一連接端,該第一選擇端連接該電路電容的一端,該第一電源端連接該電源的第一極,該第一連接端連接該信號放大器的負向輸入端;         該第二開關包括第二選擇端、第二電源端及第二連接端,該第二選擇端連接該電路電容的另一端,該第二電源端連接該電源的第二極,該第二連接端連接該信號放大器的輸出端;         該第一選擇端連接該第一連接端並與該第一電源端斷開,該第二選擇端連接該第二連接端並與該第二電源端斷開,使得該電路電容連通在該信號放大器的負向輸入端與該信號放大器的輸出端之間,及使得該電路電容與該電源斷開;         或該第一選擇端連接該第一電源端並與該第一連接端斷開,該第二選擇端連接該第二電源端並與該第二連接端斷開,使得該電源為該電路電容充電。The fingerprint detecting circuit of claim 2, wherein the switch unit comprises a first switch and a second switch; the first switch includes a first selection end, a first power end, and a first connection end, The first selection end is connected to one end of the circuit capacitor, the first power end is connected to the first pole of the power source, and the first connection end is connected to the negative input end of the signal amplifier; the second switch includes a second selection end, a second power terminal and a second terminal, the second terminal is connected to the other end of the circuit capacitor, the second power terminal is connected to the second pole of the power source, and the second terminal is connected to the output end of the signal amplifier; The first selection end is connected to the first connection end and disconnected from the first power supply end, and the second selection end is connected to the second connection end and disconnected from the second power supply end, so that the circuit is capacitively connected to the signal amplifier Between the negative input terminal and the output of the signal amplifier, and disconnecting the circuit capacitor from the power source; or the first selection terminal is connected to the first And disconnect the power source terminal is connected to the first terminal, the second selection terminal connected to the second power supply terminal and the second connecting terminal is disconnected, so that the power supply circuit for charging the capacitor. 如申請專利範圍第2項所述的指紋檢測電路,其特徵在於,該手指電容的電容值由以下公式確定:Vo=(Vc-Vt*Cx/Ci),其中,Vo為該電壓,Vt為該激發信號的電壓幅值,Cx為該手指電容的電容值,Ci為該電路電容的電容值,Vc為該電路電容兩端的電壓。The fingerprint detecting circuit according to claim 2, wherein the capacitance value of the finger capacitor is determined by the following formula: Vo=(Vc-Vt*Cx/Ci), wherein Vo is the voltage, and Vt is The voltage amplitude of the excitation signal, Cx is the capacitance value of the finger capacitance, Ci is the capacitance value of the circuit capacitor, and Vc is the voltage across the capacitance of the circuit. 如申請專利範圍第1項所述的指紋檢測電路,其特徵在於,該指紋檢測電路還包括電源,該參考電壓端是該電源的輸出端,該開關單元與該電路電容並聯;         該開關單元斷開使該電路電容連通在該信號放大器的負向輸入端與該信號放大器的輸出端之間;         該開關單元閉合使該電路電容不連通在該信號放大器的負向輸入端與該信號放大器的輸出端之間。The fingerprint detecting circuit of claim 1, wherein the fingerprint detecting circuit further comprises a power source, the reference voltage terminal is an output end of the power source, and the switch unit is connected in parallel with the circuit capacitor; Opening the capacitor between the negative input of the signal amplifier and the output of the signal amplifier; the switching unit is closed such that the circuit capacitor is not connected to the negative input of the signal amplifier and the output of the signal amplifier Between the ends. 如申請專利範圍第5項所述的指紋檢測電路,其特徵在於,該手指電容的電容值由以下公式確定:Vo=(Vs-Vt*Cx/Ci),其中,Vo為該電壓,Vt為該激發信號的電壓幅值,Cx為該手指電容的電容值,Ci為該電路電容的電容值,Vs為該電源的電壓。The fingerprint detecting circuit according to claim 5, wherein the capacitance value of the finger capacitance is determined by the following formula: Vo=(Vs−Vt*Cx/Ci), wherein Vo is the voltage, and Vt is The voltage amplitude of the excitation signal, Cx is the capacitance value of the finger capacitor, Ci is the capacitance value of the circuit capacitor, and Vs is the voltage of the power source. 如申請專利範圍第1項所述的指紋檢測電路,其特徵在於,該指紋檢測電路還包括採樣保持電路及模數轉換器,該採樣保持電路連接在該信號放大器的輸出端與該模數轉換器之間。The fingerprint detecting circuit of claim 1, wherein the fingerprint detecting circuit further comprises a sample and hold circuit and an analog to digital converter, wherein the sample and hold circuit is connected to the output end of the signal amplifier and the analog to digital conversion Between the devices. 一種電子裝置,包括指紋檢測電路,該指紋檢測電路用於向手指傳遞激發信號以採集手指電容,其特徵在於,該指紋檢測電路包括信號放大器、電路電容及開關單元;         該信號放大器的負向輸入端連接該手指電容,該信號放大器的正向輸入端連接參考電壓端,該信號放大器根據該手指電容的電容值,從該信號放大器的輸出端輸出電壓;         該開關單元分別與該信號放大器的負向輸入端和該信號放大器的輸出端連接,用於控制該電路電容連通在該信號放大器的負向輸入端與該信號放大器的輸出端之間,使得該電壓與該手指電容的電容值的關係為非線性關係。An electronic device includes a fingerprint detecting circuit for transmitting an excitation signal to a finger to collect a finger capacitance, wherein the fingerprint detecting circuit comprises a signal amplifier, a circuit capacitor and a switching unit; and a negative input of the signal amplifier The finger is connected to the finger capacitor, and the forward input end of the signal amplifier is connected to the reference voltage end, and the signal amplifier outputs a voltage from the output end of the signal amplifier according to the capacitance value of the finger capacitor; the switch unit is respectively negative with the signal amplifier Connecting the input end to the output end of the signal amplifier for controlling the capacitance of the circuit to be connected between the negative input terminal of the signal amplifier and the output end of the signal amplifier such that the voltage is related to the capacitance value of the finger capacitor It is a nonlinear relationship. 如申請專利範圍第8項所述的電子裝置,其特徵在於,該參考電壓端為地端,該指紋檢測電路還包括電源;         該電源通過該開關單元與該電路電容連接,該開關單元用於控制該電源為該電路電容充電及控制該電路電容與該電源斷開。The electronic device of claim 8, wherein the reference voltage terminal is a ground end, the fingerprint detecting circuit further comprises a power source; the power source is connected to the circuit capacitor through the switch unit, and the switch unit is used for The power supply is controlled to charge the circuit capacitor and control the circuit capacitance to be disconnected from the power source. 如申請專利範圍第8項所述的電子裝置,其特徵在於,該指紋檢測電路還包括電源,該參考電壓端是該電源的輸出端,該開關單元與該電路電容並聯;         該開關單元斷開使該電路電容連通在該信號放大器的負向輸入端與該信號放大器的輸出端之間;         該開關單元閉合使該電路電容不連通在該信號放大器的負向輸入端與該信號放大器的輸出端之間。The electronic device of claim 8, wherein the fingerprint detecting circuit further comprises a power source, the reference voltage terminal is an output end of the power source, and the switch unit is connected in parallel with the circuit capacitor; the switch unit is disconnected Having the circuit capacitively coupled between a negative input of the signal amplifier and an output of the signal amplifier; the switch unit is closed such that the circuit capacitance is not connected at a negative input of the signal amplifier and an output of the signal amplifier between. 如申請專利範圍第8項所述的電子裝置,其特徵在於,該指紋檢測電路還包括採樣保持電路及模數轉換器,該採樣保持電路連接在該信號放大器的輸出端與該模數轉換器之間。The electronic device of claim 8, wherein the fingerprint detecting circuit further comprises a sample and hold circuit and an analog to digital converter, the sample and hold circuit being connected to the output end of the signal amplifier and the analog to digital converter between.
TW104129618A 2015-02-13 2015-09-08 Fingerprint detection circuit and electronic device TWI560617B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510082139.XA CN105447438B (en) 2015-02-13 2015-02-13 Fingerprint detection circuit and electronic installation
CN201520110891 2015-02-13

Publications (2)

Publication Number Publication Date
TW201629844A true TW201629844A (en) 2016-08-16
TWI560617B TWI560617B (en) 2016-12-01

Family

ID=57182196

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104129618A TWI560617B (en) 2015-02-13 2015-09-08 Fingerprint detection circuit and electronic device

Country Status (1)

Country Link
TW (1) TWI560617B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106293299A (en) * 2016-08-16 2017-01-04 北京集创北方科技股份有限公司 Apparatus and method for capacitive sensing identification system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451978B (en) * 2010-12-28 2014-09-11 Hiti Digital Inc Stereoscopic image printing device with enhanced printing efficiency and related printing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689906B2 (en) * 2009-10-09 2017-06-27 Egalax_Empia Technology Inc. Method and device for position detection
US8724038B2 (en) * 2010-10-18 2014-05-13 Qualcomm Mems Technologies, Inc. Wraparound assembly for combination touch, handwriting and fingerprint sensor
US9195877B2 (en) * 2011-12-23 2015-11-24 Synaptics Incorporated Methods and devices for capacitive image sensing
US9740343B2 (en) * 2012-04-13 2017-08-22 Apple Inc. Capacitive sensing array modulation
JP6042763B2 (en) * 2012-12-26 2016-12-14 株式会社ジャパンディスプレイ Display device with touch detection function and electronic device
TW201439865A (en) * 2013-04-12 2014-10-16 Bruce Zheng-San Chou Fingerprint sensor device and method of manufacturing the same
CN203964928U (en) * 2013-12-27 2014-11-26 比亚迪股份有限公司 For the capacitance detecting device of fingerprint recognition with there is its fingerprint identification device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106293299A (en) * 2016-08-16 2017-01-04 北京集创北方科技股份有限公司 Apparatus and method for capacitive sensing identification system
CN106293299B (en) * 2016-08-16 2018-01-12 北京集创北方科技股份有限公司 Apparatus and method for capacitive sensing identifying system
US10496866B2 (en) 2016-08-16 2019-12-03 Chipone Technology (Beijing) Co., Ltd. Device and method for capacitive sensing identification system

Also Published As

Publication number Publication date
TWI560617B (en) 2016-12-01

Similar Documents

Publication Publication Date Title
TWI575461B (en) Fingerprint detection circuit, fingerprint detection method and electronic device
JP6538864B2 (en) Fingerprint detection circuit and electronic device
CN107562227B (en) Self-sensing touch panel
US9524056B2 (en) Capacitive voltage information sensing circuit and related anti-noise touch circuit
US9692439B2 (en) Apparatus using a differential analog-to-digital converter
CN103810479A (en) Fingerprint collection system and fingerprint information collection method
CN110008860B (en) Fingerprint identification framework and touch panel
US11507228B2 (en) Acoustic wave signal reading circuits, control methods, and acoustic wave signal reading apparatuses
CN108509094A (en) Capacitance determining method and the capacitance detecting device for using this method
TW201629845A (en) Fingerprint detection circuit and electronic device
KR101912870B1 (en) A non-contact electrocardiography monitoring circuit and a method for non-contact electrocardiography monitoring and an appratus for electrocardiography monitoring
CN105608437A (en) Hybrid fingerprint acquisition chip and acquisition method
TW201629844A (en) Fingerprint detection circuit and electronic device
KR20130072537A (en) Touch signal processing circuit and touch signal detection system including the circuit
TW201234225A (en) Touch sensing apparatus
TWI692712B (en) Capacitive sensing and sampling circuit and sensing and sampling method thereof
CN106354345A (en) Touch unit, touch module, embedded touch screen and display device
TW201432536A (en) Touch detection system of terminal device and terminal device
CN110959148A (en) Dynamic range enhancement for self-capacitance measurement
CN105491308B (en) A kind of image sensing circuit and method