TW201629219A - 以染色質重塑基因之親代RNA干擾(RNAi)抑制作用來控制半翅目害蟲之技術 - Google Patents

以染色質重塑基因之親代RNA干擾(RNAi)抑制作用來控制半翅目害蟲之技術 Download PDF

Info

Publication number
TW201629219A
TW201629219A TW104142140A TW104142140A TW201629219A TW 201629219 A TW201629219 A TW 201629219A TW 104142140 A TW104142140 A TW 104142140A TW 104142140 A TW104142140 A TW 104142140A TW 201629219 A TW201629219 A TW 201629219A
Authority
TW
Taiwan
Prior art keywords
identification number
sequence identification
sequence
polynucleotide
complement
Prior art date
Application number
TW104142140A
Other languages
English (en)
Inventor
布萊爾 西格弗萊德
肯尼士E 納爾瓦
卡尼卡 阿羅拉
莎拉E 沃登
哲凡 卡哈傑拉
伊蓮 費希萊維奇
尼可拉斯P 史托爾
梅根 弗瑞
隆達 哈姆
亞納 沃茲
Original Assignee
陶氏農業科學公司
內布拉斯加大學董事會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陶氏農業科學公司, 內布拉斯加大學董事會 filed Critical 陶氏農業科學公司
Publication of TW201629219A publication Critical patent/TW201629219A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8286Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for insect resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
    • A01N57/16Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing heterocyclic radicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/60Isolated nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pest Control & Pesticides (AREA)
  • Cell Biology (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Virology (AREA)
  • Insects & Arthropods (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Diabetes (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)

Abstract

此揭示係有關於核酸分子及使用其等用於控制半翅目害蟲的方法,其係透過RNA干擾-媒介的靶定編碼與轉錄的非編碼序列在半翅目害蟲中之抑制作用。本揭示亦有關於用於製造基因轉殖植物的方法,該植物表現對控制半翅目害蟲有用的核酸分子,以及由此獲得的植物細胞與植物。

Description

以染色質重塑基因之親代RNA干擾(RNAi)抑制作用來控制半翅目害 蟲之技術 優先權主張
此申請案主張提申日期2014年12月16日提申之美國專利臨時申請案第62/092,747號之利益,其之內容係以其之全體在此併入以作為此參考資料。
發明領域
本發明一般而言係有關於由半翅目害蟲造成的植物損害之遺傳控制。在特定的具體例中,本揭示有關於辨識靶定的編碼與非編碼多核苷酸,以及使用重組DNA技術用於轉錄後壓制或抑制靶定的編碼與非編碼多核苷酸在半翅目害蟲細胞中的表現,以提供植物防護的效果。
發明背景
臭蟲(Stink Bug)及其他的半翅目昆蟲(異翅亞目(heteroptera))為一種重要的農業害蟲綜合體。已知在世界各地有超過50種密切相關的臭蟲會造成作物損傷。McPherson & McPherson(2000)Stink bugs of economic importance in America north of Mexico,CRC Press。半翅目昆蟲存在於大 量重要的作物中,包括玉蜀黍(maize)、大豆、水果、蔬菜,以及穀類。
臭蟲於達到成體階段之前,經歷多個若蟲的階段。此等昆蟲於大約30-40天期間從卵發育至成體。若蟲和成體二者均取食軟組織的汁液,其等亦注入消化酵素至軟組織之內,引致口外組織消化及壞死。繼而攝入消化的植物材料和營養物。植物的維管束系統耗盡水及營養物導致植物組織損傷。發育的穀物和種子損傷為最顯著的,因產量及發芽顯著地下降。於溫暖的氣候下出現多個世代,導致重大的昆蟲壓力。現在的臭蟲管理倚賴在個別田野之殺蟲劑處理。因而,迫切地需要替代的管理策略來使不間斷的作物損失達到最小。
RNA干擾(RNAi)係為一種利用內源性細胞途徑之方法,憑此,對一靶定基因之適當大小的全部或任何部分有特異性的干擾RNA(iRNA)分子(例如,一種雙股RNA(dsRNA)分子),會引致由此編碼的mRNA之降解。近年來,RNAi在許多物種與實驗系統中已被使用於執行基因“減量(knockdown)”;舉例而言,秀麗隱桿線蟲(Caenorhabditis elegans)、植物、昆蟲胚胎及組織培養中的細胞。參閱,例如,Fire等人之(1998)Nature 391:806-11;Martinez等人之(2002)Cell 110:563-74;McManus及Sharp之(2002)Nature Rev.Genetics 3:737-47。
RNAi透過內源性途徑,包括DICER蛋白複合體,來達到mRNA之降解。DICER將長的dsRNA分子切割成為大 約20個核苷酸的短片段,命名為短小干擾RNA(siRNA)。siRNA解開成兩個單股RNA:過客股(passenger strand)及引導股(guide strand)。過客股被降解,而引導股係併入RNA誘導的靜默複合體(RISC)內。微抑制核糖核酸(Micro inhibitory ribonucleic acid)(miRNA)為結構非常類似的分子,其等可從含有與雜交的過客股及引導股相連接的多核苷酸“環”之前驅體切割,且其等可以類似地併入至RISC之內。當引導股特異地結合至互補的mRNA分子且誘導藉由阿革蛋白家族(Argonaute)之切割時-阿革蛋白家族(Argonaute)為RISC複合體的催化組份-會發生轉錄後基因靜默作用。儘管初始限制的siRNA及/或miRNA濃度,但是此過程已知係系統性散布遍及一些真核生物體中,諸如植物、線蟲及一些昆蟲。
僅有互補於siRNA及/或miRNA的轉錄本被切割與降解,且因此mRNA表現的減量(knockdown)為序列特異性的。在植物中,DICER基因存在著數種的官能團。該RNAi的基因沈默效應存留數天且,在實驗條件下,可以導致該靶定轉錄本的豐度下降90%或更多,伴隨隨後在該相應蛋白質位準的降低。於昆蟲方面,有至少二種DICER基因,DICER1促進阿革蛋白家族1(Argonaute1)指引的miRNA降解。Lee等人之(2004)Cell 117(1):69-81。DICER2促進siRNA由阿革蛋白家族2(Argonaute2)指引的降解。
於使用做為dsRNA或siRNA時,互補於昆蟲DNAs(例如舉例而言,在美國專利第7,612,194號及美國專 利公開案第2007/0050860號、第2010/0192265號,以及第2011/0154545號中辨識的9,000+序列)的序列中壓倒性的多數,不會提供植物防護的效果。舉例而言,Baum等人(2007),Nature Biotechnology 25:1322-1326,描述藉由RNAi來抑制數個西方玉米根蟲(Western corn rootworm)(WCR)基因的標靶的效果。這些作者報導26個他們測試的靶定基因中,有8者在超過520ng/cm2之非常高的iRNA(例如,dsRNA)濃度時,無法提供實驗上顯著的鞘翅目害蟲死亡率。
美國專利第7,612,194號以及美國專利公開案第2007/0050860號的作者首先報導於玉米植物中靶定西方玉米根蟲之植物界RNAi。Baum等人(2007)Nat.Biotechnol.25(11):1322-6。這些作者描述一種高輸出量活體內飲食RNAi系統,用來篩選可能的靶定基因供開發基因轉殖的RNAi玉蜀黍(maize)。在起始的290個標靶基因池(gene pool)中,只有14者展現出幼蟲控制的潛力。最有效的雙股RNA(dsRNA)中之一者係靶定一種編碼液泡型ATP酶次單元A(V-ATP酶),以低濃度的dsRNA導致快速抑制對應的內源性mRNA且觸發特異性RNAi反應。因而,這些作者首次用充分的證據證明植物界RNAi作為可能的害蟲管理工具之潛力,而同時證明有效的標靶不能正確地先驗(a priori)鑑定,即使是來自相對小的候選基因組。
RNAi於昆蟲控制方面另一種潛在的應用涉及親代RNAi(pRNAi)。首次描述於秀麗隱桿線蟲(Caenorhabditis elegans),pRNAi之確認係藉由注入dsRNA至體腔內(或是經 由攝入而應用dsRNA),造成子代的胚胎去活化。Fire等人(1998),如前文;Timmons and Fire(1998)Nature 395(6705):854。相似的過程描述於模型鞘翅目,擬穀盜(Tribolium castaneum)中,藉此將相應於三種獨特的基因之dsRNA注入雌性蛹內,該等基因控制胚胎發育期間的卵割(segmentation),引致子代的胚胎之合子胚基因的減量。Bucher等人之(2002)Curr.Biol.12(3):R85-6。此研究中幾乎所有的子代幼蟲於注入後一週展現出基因特異性表型。縱然注入dsRNA用於功能基因體學研究業已於各種昆蟲成功,但是必需經由口腔接觸dsRNA而從腸環境攝入dsRNA且隨後向下調控必要基因,以使RNAi成為作為有效的昆蟲管理工具。Auer and Frederick(2009)Trends Biotechnol.27(11):644-51。
親代RNAi業已用來描述一些昆蟲物種之胚胎基因的功能,包括彈尾蟲,長角長跳(Orchesella cincta)(Konopova and Akam(2014)Evodevo 5(1):2);褐稻飛虱(brown plant hopper),褐飛虱(Nilaparvata lugens);鋸蜂(sawfly),新疆菜葉蜂(Athalia rosae)(Yoshiyama等人之(2013)J.Insect Physiol.59(4):400-7);德國蟑螂(German cockroach),德國蟑螂(Blattella germanica)(Piulachs等人之(2010)Insect Biochem.Mol.Biol.40:468-75);以及豌豆蚜蟲(pea aphid),苜蓿豌豆蚜(Acyrthosiphon pisum)(Mao等人之(2013)Arch Insect Biochem Physiol 84(4):209-21)。於此等所有的例子中,pRNAi反應係透過將dsRNA注入至親代 雌體血腔內來完成。
發明概要
本文揭露的為核酸分子(例如,靶定基因、DNAs、dsRNAs、siRNAs、shRNAs、miRNAs及hpRNAs)及其等之使用方法,用於控制半翅目害蟲,包括舉例而言,英雄美洲蝽(Euschistus heros)(Fabr.)(新熱帶區褐臭蟲(Neotropical Brown Stink Bug),“BSB”);褐美洲蝽(E.servus)(Say)(棕色椿象(Brown Stink Bug));南方綠蝽象(Nezara viridula)(L.)(南方綠臭蟲(Southern Green Stink Bug));蓋德擬壁蝽(Piezodorus guildinii)(Westwood)(紅帶臭蟲(Red-banded Stink Bug));褐翅蝽(Halyomorpha halys)(Stål)(褐紋臭蟲(Brown Marmorated Stink Bug));綠色蝽(Chinavia hilare)(Say)(綠臭蟲(Green Stink Bug));C.marginatum(Palisot de Beauvois);Dichelops melacanthus(Dallas);D.furcatus(F.);Edessa meditabunda(F.);肩蝽(Thyanta perditor)(F.)(新熱帶區紅肩臭蟲(Neotropical Red Shouldered Stink Bug);植物臭蟲(Horcias nobilellus)(Berg)(棉花臭蟲(Cotton Bug));Taedia stigmosa(Berg);秘魯棉紅蝽(Dysdercus peruvianus)(Guérin-Méneville);Neomegalotomus parvus(Westwood);喙綠蝽(Leptoglossus zonatus)(Dallas);Niesthrea sidae(F.);豆莢草盲蝽(Lygus hesperus)(Knight)(西部牧草盲蝽(Western Tarnished Plant Bug));以及美國牧草盲蝽(L.lineolaris)(Palisot de Beauvois)。在特定例子中,揭露了示範性的核酸分子,其等可能同源於在一種半翅目害蟲中的一個或多個核酸序列之至少一部分。於一些具體例中,半翅目害蟲係透過降低害蟲現存一代生產後續世代的能力來控制。在某些例子中,遞送核酸分子至半翅目害蟲不會導致害蟲顯著的死亡率,但是會降低半翅目害蟲生產的存活後代的數目。
在此些及進一步的實例中,核酸可以為一種靶定基因,該靶定基因可以為下列之產物,舉例而言但不限於:涉及代謝過程;涉及生殖過程;及/或涉及胚胎及/或若蟲發育。在一些例子中,藉由一種包含同源於其等之多核苷酸的核酸分子,予以轉譯後抑制一種靶定基因的表現,可能引致半翅目害蟲降低的生長及/或生殖。在具體的實例中,選擇一種染色質重塑基因作為用於轉錄後靜默之靶定基因。在特定實例中,一種有用於轉錄後抑制之靶定基因係新穎的染色質重塑基因,於此稱為BSB_婆羅賀摩(brahma)(序列辨識編號:1以及序列辨識編號:63)。在特定實例中,一種有用於轉錄後抑制之靶定基因係新穎的染色質重塑基因,於此稱為BSB_mi-2(序列辨識編號:8以及序列辨識編號:64)。在特定實例中,一種有用於轉錄後抑制之靶定基因係新穎的染色質重塑基因,於此稱為BSB_iswi-1(序列辨識編號:10以及序列辨識編號:65)。在特定實例中,一種有用於轉錄後抑制之靶定基因係新穎的染色質重塑基因,於此稱為BSB_chd1(序列辨識編號:14以及序列辨識編號:67)。在特定實例中,一種有用於轉錄後抑制之靶定基因係新穎 的染色質重塑基因,於此稱為BSB_iswi-2(序列辨識編號:12以及序列辨識編號:66)。在特定實例中,一種有用於轉錄後抑制之靶定基因係新穎的染色質重塑基因,於此稱為BSB_ino80(序列辨識編號:30)。在特定實例中,一種有用於轉錄後抑制之靶定基因係新穎的染色質重塑基因,於此稱為BSB_domino(序列辨識編號:32)。
本文因而揭露一種經單離的核酸分子,其包含下列多核苷酸:序列辨識編號:1;序列辨識編號:1之互補物;序列辨識編號:8;序列辨識編號:8之互補物;序列辨識編號:10;序列辨識編號:10之互補物;序列辨識編號:12;序列辨識編號:12之互補物;序列辨識編號:14;序列辨識編號:14之互補物;序列辨識編號:30;序列辨識編號:30之互補物;序列辨識編號:32;序列辨識編號:32之互補物;序列辨識編號:63;序列辨識編號:63之互補物;序列辨識編號:64;序列辨識編號:64之互補物;序列辨識編號:65;序列辨識編號:65之互補物;序列辨識編號:66;序列辨識編號:66之互補物;序列辨識編號:67;序列辨識編號:67之互補物;及/或前述之任何片段(例如,序列辨識編號:3;序列辨識編號:16;序列辨識編號:17;序列辨識編號:18,及序列辨識編號:19)。
亦揭露了核酸分子,其包含編碼一種多肽之多核苷酸,該多肽係至少大約85%同一於一種靶定染色質重塑基因產物(舉例而言,婆羅賀摩(brahma)、mi-2iswi-1chd1iswi-2ino80,或domino基因之產物)之內的胺基酸序列。 舉例而言,一種核酸分子可以包含編碼一種多肽之多核苷酸,該多肽係至少85%同一於選自於以下所組成之群組之多肽:序列辨識編號:2(BSB婆羅賀摩(BRAHMA));BSB婆羅賀摩(brahma)產物內的胺基酸序列;序列辨識編號:9(BSB MI-2);BSB mi-2產物內的胺基酸序列;序列辨識編號:11(BSB ISWI-1);BSB iswi-1產物內的胺基酸序列;序列辨識編號:15(BSB CHD1);BSB chd1產物內的胺基酸序列;序列辨識編號:13(BSB ISWI-2);BSB iswi-2產物內的胺基酸序列;序列辨識編號:31(BSB INO80);BSB ino80產物內的胺基酸序列;序列辨識編號:33(BSB DOMINO);以及BSB domino產物內的胺基酸序列。進一步揭露包含一種多核苷酸之核酸分子,其中該多核苷酸係為編碼一種多肽之多核苷酸的反向互補物,其中該多肽係至少85%同一於一種靶定染色質重塑基因產物內的胺基酸序列。
亦揭露可以使用於生產iRNA(例如,dsRNA、siRNA、shRNA、miRNA及hpRNA)分子的cDNA多核苷酸,該iRNA係互補於一種半翅目害蟲靶定基因的全部或部分,舉例而言一種染色質重塑基因。在特定具體例中,dsRNAs、siRNAs、shRNAs、miRNAs及/或hpRNAs可以藉由一種基因改造生物體,諸如植物或細菌,在活體外或活體內生產。在特定實例中,揭露了cDNA分子,其等可以使用來生產互補於從以下轉錄的mRNA之全部或部分之iRNA分子:BSB_婆羅賀摩(brahma)(序列辨識編號:1以及序列辨識編號:63);BSB_mi-2(序列辨識編號:8及序列辨識編號:64); BSB_iswi-1(序列辨識編號:10及序列辨識編號:65);BSB_chd1(序列辨識編號:14及序列辨識編號:67);BSB_iswi-2(序列辨識編號:12及序列辨識編號:66);BSB_ino80(序列辨識編號:30);以及BSB_domino(序列辨識編號:32)。
進一步揭露用於抑制半翅目害蟲中一種必要基因表現的構件,以及用於防護植物不受半翅目害蟲傷害的構件。一種用於抑制半翅目中的一種必要基因表現的構件為一種單股或雙股RNA分子,其係由選自於下列所構成的群組之多核苷酸:序列辨識編號:44;序列辨識編號:49;序列辨識編號:50;序列辨識編號:51;序列辨識編號:52;及其之互補物。用於抑制半翅目害蟲中一種必要的基因表現的構件之功能均等物包括單股或雙股RNA分子,其實質上同源於從一種BSB基因轉錄之mRNA的全部或部分,該BSB基因編碼一種ATP依賴型重塑酵素,例如含有下列之mRNAs:序列辨識編號:43;序列辨識編號:45;序列辨識編號:46;序列辨識編號:47;序列辨識編號:48;序列辨識編號:53;或是序列辨識編號:54。一種用於防護植物不受半翅目害蟲傷害的構件係一種DNA分子,該DNA分子包含可操縱地鏈接至一啟動子之一種多核苷酸,該多核苷酸編碼用於抑制在一種半翅目害蟲中一種必要的基因表現的構件,其中該DNA分子係能夠整合到大豆植物之基因組中。
揭露了用於控制一種半翅目害蟲族群之方法,該 方法包含提供一種iRNA(例如dsRNA、siRNA、shRNA、miRNA及hpRNA)分子至一種半翅目害蟲,該iRNA分子一旦被該害蟲攝取時,作用以抑制該害蟲內的生物功能,其中該iRNA分子包含選自於下列所組成的群組之多核苷酸的全部或部分(例如,至少15個連續核苷酸):序列辨識編號:43;序列辨識編號:43之互補物;序列辨識編號:44;序列辨識編號:44之互補物;序列辨識編號:45;序列辨識編號:45之互補物;序列辨識編號:46;序列辨識編號:46之互補物;序列辨識編號:47;序列辨識編號:47之互補物;序列辨識編號:48;序列辨識編號:48之互補物;序列辨識編號:49;序列辨識編號:49之互補物;序列辨識編號:50;序列辨識編號:50之互補物;序列辨識編號:51;序列辨識編號:51之互補物;序列辨識編號:52;序列辨識編號:52之互補物;序列辨識編號:53;序列辨識編號:53之互補物;序列辨識編號:54;序列辨識編號:54之互補物;序列辨識編號:55;序列辨識編號:55之互補物;序列辨識編號:56;序列辨識編號:56之互補物;序列辨識編號:57;序列辨識編號:57之互補物;序列辨識編號:58;序列辨識編號:58之互補物;序列辨識編號:59;序列辨識編號:59之互補物;序列辨識編號:60;序列辨識編號:60之互補物;序列辨識編號:61;序列辨識編號:61之互補物;序列辨識編號:62;序列辨識編號:62之互補物;序列辨識編號:68;序列辨識編號:68之互補物;序列辨識編號:69;序列辨識編號:69之互補物; 序列辨識編號:70;序列辨識編號:70之互補物;序列辨識編號:71;序列辨識編號:71之互補物;序列辨識編號:72;序列辨識編號:72之互補物;一種與半翅目生物體(例如BSB)之編碼多核苷酸雜交之多核苷酸,該編碼多核苷酸包含下列任一者的全部或部分:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,以及序列辨識編號:67;以及與一種半翅目生物體之編碼多核苷酸雜交之多核苷酸的互補物,該天然編碼多核苷酸包含下列任一者的全部或部分:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,以及序列辨識編號:67。
於此亦揭露的方法係為在其中可在一種飲食為基礎的分析中,或在表現dsRNAs、siRNAs、shRNAs、miRNAs及/或hpRNAs的基因改造植物細胞中,提供dsRNAs、siRNAs、shRNAs、miRNAs及/或hpRNAs至一種半翅目害蟲。在這些及進一步實例中,該dsRNAs、siRNAs、shRNAs、miRNAs及/或hpRNAs可以由半翅目害蟲予以攝入。攝入本發明的dsRNAs、siRNAs、shRNAs、miRNAs及/或hpRNAs可能繼而引致害蟲中的RNAi,該者轉而可能引致對代謝過 程;生殖過程;及/或若蟲發育必要的基因之靜默作用。因此,揭露了方法,其中包含對半翅目害蟲親代控制有用之示範性多核苷酸(等)的核酸分子,係被提供至一種半翅目害蟲。在特定實例中,藉由使用本發明之核酸分子而控制的半翅目害蟲可以為BSB。在一些例子中,遞送核酸分子至半翅目害蟲不會導致害蟲顯著的死亡率,但是會降低半翅目害蟲生產的活的後代數目。在一些例子中,遞送核酸分子至半翅目害蟲會導致害蟲顯著的死亡率,並且也會降低半翅目害蟲生產的活的後代數目。
從下列數個參照附圖進行的具體例之詳細說明,前述特徵及其它特徵將變得更為明顯。
圖1包括從單一轉錄模板及單一對引子(圖1A),以及從二個轉錄模板(圖1B),來產生dsRNA使用的策略之描述。
圖2包括源自玉米根螢葉甲(D.v.virgifera)(WCR)、英雄美洲蝽(E.heros)(BSB),以及黑腹果蠅(Drosophila melanogaster)之ATP依賴型重塑物(ATP dependent remodelers)的序列排列比對之種系發生樹圖。為了比較,該樹亦包含人類婆羅賀摩(BRAHMA)、釀酒酵母菌(Saccharomyces cerevisiae)SNF2,以及源自褐紋臭蟲(brown marmorated stink bug),褐翅蝽(Halyomorpha halys)之Iswi同源物。使用MEGA 6.06之MUSCLE(100疊代)來執行排列比對。步長值(Bootstrap values)(MEGA)支持ATP依賴 型重塑體家族分支於最大概率種系發生樹上之拓樸學(topology)。
圖3包括玉米根螢葉甲(Diabrotica virgifera virgifera)(WCR)、英雄美洲蝽(Euschistus heros)(BSB),及黑腹果蠅(Drosophila melanogaster)(Dme)之ATP依賴型染色質重塑酵素之領域架構的圖。圖示法為Pfam輸出,以及領域以陰影和標記表示。蛋白質係以家族來安排以及關於SNF2領域來排列。為表示的目的,“彎彎曲曲地(Squiggly)”線表示截斷/不連續性。
圖4包括關於注入靶定染色質重塑ATP酶的dsRNA後,英雄美洲蝽(E.heros)成年雌體存活、產卵,及卵孵化率之資料。於成體蛻皮0至2天時,將dsRNA注入雌體。圖4A顯示雌體存活的效應:將各dsRNA注入20隻雌體,以及監測存活率歷時23天。圖4B顯示產卵的效應:於注入後9天開始從注入dsRNA的雌體收集卵。繪製的產卵率係根據每隻雌體每天各週的收集物。圖4C顯示卵孵化的效應:孵化的卵係根據圖4B中所生的卵數目。平均值比較係以YFP作為對照、用鄧奈特檢定(Dunnett’s test)來執行,† p<0.001,**p<0.05。
圖5包括顯示英雄美洲蝽(E.heros)的卵巢中,染色質重塑ATP酶的減量百分比之資料。相對表現係用2-ΔΔCt來表示。使用英雄美洲蝽的肌肉肌動蛋白轉錄本作為參考基因,以及從無注入雌體的卵巢作為陰性對照。各qRT-PCR實驗使用四組卵巢。平均值比較係利用司徒頓t檢定 (Student’s t-test)來執行;† p<0.001。
圖6包括顯示注入婆羅賀摩(brahma)dsRNA的英雄美洲蝽(E.heros)雌體所產的卵之發育及卵孵化率之資料。於成體蛻皮14至16天時,將dsRNA注入產卵的雌體。圖6A顯示對於產卵的效應:於注入後1天開始從注入dsRNA的雌體收集卵。以三天間隔來分級(binned)之每隻雌體每天的卵數目來繪製。圖6B顯示對於卵孵化的效應:孵化的卵係根據圖6A中的數目。平均值比較係使用無注入昆蟲作為對照、以鄧奈特檢定(Dunnett’s test)來執行,*表示p值<0.05之顯著性。**表示p值<0.001之顯著性。
圖7包括顯示注入brmmi-2 dsRNA的英雄美洲蝽(E.heros)雌體的卵巢的效應之資料。圖7(A-B)顯示於成體蛻皮後零及四天時,無注入英雄美洲蝽雌體的卵巢,提供發育的比較。圖7(C-D)顯示注入YFP dsRNA之雌體的卵巢,以及圖7(E-F)顯示注入後9天及14天之婆羅賀摩(brahma)dsRNA卵巢。圖7(E)顯示缺乏卵巢小管伸長且缺乏卵母細胞發育,以及圖7(F)顯示衰退的卵母細胞。圖7(G-H)顯示注入9天及14天後之mi-2 dsRNA。圖7(H)顯示缺乏卵巢小管伸長,以及圖7(G)顯示稍微延長的卵巢且無成熟的卵母細胞。
圖8包括建模資料(modeling data)之摘要,其顯示從“避難處區(refuge patch)”(亦即,其不表現殺蟲iRNAs或重組蛋白質於基因轉殖作物中)出現的雌體BSB成蟲上之pRNAi效應。圖8闡釋當非避難處植物表現殺蟲蛋白質及親 代活性iRNA時,對於殺蟲蛋白質(R)及RNAi(Y)之抗性的對偶基因頻率之增長率的效應。
圖9包括建模資料(modeling data)之摘要,其顯示從“避難處嵌塊(refuge patch)”(亦即,其不表現殺蟲iRNAs或重組蛋白質於含有BSB若蟲活性干擾dsRNA之基因轉殖作物中,組合以BSB活性殺蟲蛋白質於基因轉殖作物中)出現的雌體BSB成蟲上,pRNAi效應的相對值。圖9闡釋當非避難處植物表現殺蟲蛋白質以及幼蟲活性與親代活性iRNA分子二者時,對於殺蟲蛋白質(R)及RNAi(Y)之抗性的對偶基因頻率之增長率的效應。
較佳實施例之詳細說明 序列表
在附隨的序列表中列出的核酸序列係使用核苷酸鹼基的標準字母縮寫來表示,如在37 C.F.R.§ 1.822中所界定者。所列之核酸及胺基酸序列係界定具有以所述方式配置的核苷酸及胺基酸單體之分子(亦即,分別為多核苷酸及多肽)。所列之核酸及胺基酸序列亦各自界定一類的多核苷酸或多肽,其包含以所述方式配置的核苷酸及胺基酸單體。鑑於遺傳密碼的冗餘性(redundancy),會瞭解到含括編碼序列之核苷酸序列亦描述該類的多核苷酸,其編碼如參考序列所組成的多核苷酸同樣的多肽。進一步會瞭解到一胺基酸序列係描述編碼該多肽之該類的多核苷酸ORFs。
每一核酸序列僅有顯示一股,但是會瞭解互補股 係藉由參照至展現股而含括。由於初級核酸序列之互補物及反向互補物必需由該初級序列予以揭露,所以一核酸序列之互補序列與反向互補序列係藉由參照至該核酸序列而含括,除非其係另有明確聲明(或其從序列出現之上下文中係清楚的)。再者,因本技藝瞭解一RNA股之核苷酸序列係由轉錄成該RNA之DNA的序列所決定(但是尿嘧啶(U)核鹼基取代胸腺嘧啶(T)),所以一RNA序列係藉由參照編碼該RNA之DNA序列而含括。在附隨的序列表中:
序列辨識編號:1顯示一種示範性英雄美洲蝽(Euschistus heros)染色質重塑基因DNA,在本文中一些地方稱為婆羅賀摩(brahma)。
序列辨識編號:2顯示一種英雄美洲蝽婆羅賀摩(E.heros BRAHMA)多肽之胺基酸序列,其係由一種示範性英雄美洲蝽染色質重塑基因DNA所編碼。
序列辨識編號:3顯示一種示範性英雄美洲蝽染色質重塑基因DNA,在本文中一些地方稱為BSB_brm-1,其於一些實例中用來生產一種dsRNA。
序列辨識編號:4顯示一種T7噬菌體啟動子之核苷酸序列。
序列辨識編號:5顯示一種示範性YFPv2基因的一區段,其於一些實例中用來生產一種dsRNA。
序列辨識編號:6及7顯示使用於YFPv2序列之PCR擴增的引子,其在一些實例中使用來於dsRNA生產。
序列辨識編號:8顯示一種另外的示範性英雄美洲蝽染 色質重塑基因DNA,在本文中一些地方稱為BSB_mi-2
序列辨識編號:9顯示一種英雄美洲蝽MI-2多肽之胺基酸序列,其係由一種示範性英雄美洲蝽染色質重塑基因DNA所編碼。
序列辨識編號:10顯示一種另外的示範性英雄美洲蝽染色質重塑基因DNA,在本文中一些地方稱為BSB_iswi-1
序列辨識編號:11顯示一種英雄美洲蝽ISWI-1多肽之胺基酸序列,其係由一種示範性英雄美洲蝽染色質重塑基因DNA所編碼。
序列辨識編號:12顯示一種另外的示範性英雄美洲蝽染色質重塑基因DNA,在本文中一些地方稱為BSB_iswi-2
序列辨識編號:13顯示一種英雄美洲蝽ISWI-2多肽之胺基酸序列,其係由一種示範性英雄美洲蝽染色質重塑基因DNA所編碼。
序列辨識編號:14顯示一種另外的示範性英雄美洲蝽染色質重塑基因DNA,在本文中一些地方稱為BSB_chd1
序列辨識編號:15顯示一種英雄美洲蝽CHD1多肽之胺基酸序列,其係由一種示範性英雄美洲蝽染色質重塑基因DNA所編碼。
序列辨識編號:16顯示一種示範性英雄美洲蝽染色質重塑基因DNA,在本文中一些地方稱為BSB_mi-2-1,其於一些實例中用來生產一種dsRNA。
序列辨識編號:17顯示一種示範性英雄美洲蝽染色質重塑基因DNA,在本文中一些地方稱為BSB_iswi-1-1,其於一些實例中用來生產一種dsRNA。
序列辨識編號:18顯示一種另外的示範性英雄美洲蝽染色質重塑基因DNA,在本文中一些地方稱為BSB_iswi-2-1,其於一些實例中用來生產一種dsRNA。
序列辨識編號:19顯示一種另外的示範性英雄美洲蝽染色質重塑基因DNA,在本文中一些地方稱為BSB_chd1-1,其於一些實例中用來生產一種dsRNA。
序列辨識編號:20-29顯示使用來擴增染色質重塑基因之基因區域的引子。
序列辨識編號:30顯示一種另外的示範性英雄美洲蝽染色質重塑基因DNA,在本文中一些地方稱為BSB_ino80
序列辨識編號:31顯示一種英雄美洲蝽INO80多肽之胺基酸序列,其係由一種示範性英雄美洲蝽染色質重塑基因DNA所編碼。
序列辨識編號:32顯示一種另外的示範性英雄美洲蝽染色質重塑基因DNA,在本文中一些地方稱為BSB_domino
序列辨識編號:33顯示一種英雄美洲蝽DOMINO多肽之胺基酸序列,其係由一種示範性英雄美洲蝽染色質重塑基因DNA所編碼。
序列辨識編號:34-37顯示編碼dsRNA序列之示範性DNAs,該等dsRNA序列用於靶定昆蟲(舉例而言,英雄美 洲蝽(Euschistus heros)、葉甲、穀蛀蟲(Tribolium)、以及黑腹果蠅(Drosophila melanogaster))染色質重塑基因DNA之SNF2-解旋酶(Helicase)區域。
序列辨識編號:38-41顯示編碼dsRNA序列之示範性DNAs,該等dsRNA序列用於靶定昆蟲(舉例而言,英雄美洲蝽(Euschistus heros)、葉甲、穀蛀蟲(Tribolium)、以及黑腹果蠅(Drosophila melanogaster))染色質重塑基因DNA之染色質重塑領域(克羅莫領域(Chromodomain)、布羅莫領域(Bromodomain),或是HAND-SLIDE區域)。
序列辨識編號:42顯示一種示範性DNA,其編碼一種YFP v2-髮夾形成RNA;包含意義多核苷酸、包括一內含子的莖環多核苷酸(劃底線),以及反義多核苷酸(粗體字型):
序列辨識編號:43-62顯示從核酸轉錄之示範性RNAs,該等核酸包含示範性染色質重塑基因多核苷酸及其等之片段。
序列辨識編號:63顯示一種示範性英雄美洲蝽婆羅賀摩(brahma)DNA之開放讀取框架。
序列辨識編號:64顯示一種示範性英雄美洲蝽mi-2 DNA之開放讀取框架。
序列辨識編號:65顯示一種示範性英雄美洲蝽iswi-1 DNA之開放讀取框架。
序列辨識編號:66顯示一種示範性英雄美洲蝽iswi-2 DNA之開放讀取框架。
序列辨識編號:67顯示一種示範性英雄美洲蝽chd11 DNA之開放讀取框架。
序列辨識編號:68-72顯示從核酸轉錄之示範性RNAs,該等核酸包含示範性染色質重塑基因多核苷酸及其等之片段。
序列辨識編號:73顯示一種示範性肌肉肌動蛋白基因之開放讀取框架。
序列辨識編號:74-91顯示供BSB探針水解qPCR分析使用的寡核苷酸及探針。
進行本發明之模式 I.數個具體例概述
吾人發展RNA干擾(RNAi)作為昆蟲害蟲管理的 工具,其係使用表現dsRNA之基因轉殖植物之靶定的害蟲物種;新熱帶區褐臭蟲(Neotropical Brown Stink Bug)。到現在為止,提議作為特定的昆蟲內RNAi標靶的多數基因沒有實現其等之目的,以及該等業已辨識出之有用標靶典型涉及引致若蟲階段致死性的該等。於此,吾人描述新熱帶區褐臭蟲中RNAi媒介的染色質重塑基因(例如婆羅賀摩(brahma)、mi-2iswi-1chd1iswi-2ino80,及domino)之減量(knockdown),舉例而言,此在經由餵食染色質重塑基因-靶定dsRNA來遞送iRNA分子至成年雌體時,顯示出中斷胚胎發育。從曝露於染色質重塑基因-靶定dsRNA的雌體採集的卵幾乎完全沒有孵化。於此之具體例中,藉由餵食而遞送染色質重塑基因-靶定dsRNA至成年昆蟲的能力,賦予非常有用的pRNAi效應用於昆蟲(例如半翅目)害蟲管理。再者,於若蟲及成年半翅目害蟲二者影響多重標靶序列的潛力,可以使發展出涉及RNAi技術的昆蟲害蟲管理永續性方法的機會增高。
於此揭露的為用於基因控制半翅目害蟲侵擾的方法與組成物。亦提供用於辨識對半翅目害蟲生命週期必要之一種或多種基因(等)(例如,對於正常生殖能力及/或胚胎及/或若蟲發育必要的基因)的方法,以使用做為RNAi媒介的半翅目害蟲族群控制之靶定基因。可以設計編碼一種RNA分子的DNA質體載體,以箝制對生長、存活、發育及/或生殖必要的一種或多種靶定基因(等)。在一些具體例中,該RNA分子可能可以形成dsRNA分子。在一些具體例中, 提供用於一種靶定基因的轉錄後表現的壓制或抑制方法,該者係經由互補於在一種半翅目害蟲中之靶定基因的編碼或非編碼序列之核酸分子。在這些及進一步具體例中,一種半翅目害蟲可能攝入一種或多種dsRNA、siRNA、shRNA、miRNA及/或hpRNA分子,該者係從互補於一靶定基因之編碼或非編碼序列的核酸分子之全部或部分而轉錄,從而提供植物防護的效果。
一些具體例涉及靶定基因產物表現的序列特異性抑制,其使用互補於該(等)靶定基因之編碼及/或非編碼序列的dsRNA、siRNA、shRNA、miRNA及/或hpRNA,以實現半翅目害蟲至少部分的控制。揭露的是一組經單離及純化的核酸分子,其包含一種多核苷酸,舉例而言,如在序列辨識編號:1;序列辨識編號:8;序列辨識編號:10;序列辨識編號:12;序列辨識編號:14;序列辨識編號:30;序列辨識編號:32;序列辨識編號:63;序列辨識編號:64;序列辨識編號:65;序列辨識編號:66;序列辨識編號:67;以及其等之片段中所陳述者。在一些具體例中,可以從此等多核苷酸、其等之片段、或包括這些多核苷酸中之一者的基因來表現一種穩定的dsRNA分子,用於一種靶定基因的轉錄後靜默或抑制。在某些具體例中,經單離及純化的核酸分子包含下列中任一者之全部或部分:序列辨識編號:1;序列辨識編號:3;序列辨識編號:8;序列辨識編號:10;序列辨識編號:12;序列辨識編號:14;序列辨識編號:16;序列辨識編號:17;序列辨識編 號:18;序列辨識編號:19;序列辨識編號:30;序列辨識編號:32;序列辨識編號:63;序列辨識編號:64;序列辨識編號:65;序列辨識編號:66;以及序列辨識編號:67。
一些具體例涉及一種重組宿主細胞(例如一植物細胞),該者在其基因組中具有至少一個重組DNA序列,其編碼至少一個iRNA(例如dsRNA)分子者(等)。在特定的具體例中,當由一種半翅目害蟲攝入時,可生產該(等)dsRNA分子,以轉錄後靜默或抑制一靶定基因在該害蟲或該害蟲的後代中之表現。該重組DNA可以包含,舉例而言下列中任一者:序列辨識編號:1;序列辨識編號:8;序列辨識編號:10;序列辨識編號:12;序列辨識編號:14;序列辨識編號:30;序列辨識編號:32;序列辨識編號:63;序列辨識編號:64;序列辨識編號:65;序列辨識編號:66;序列辨識編號:67;序列辨識編號:1;序列辨識編號:8;序列辨識編號:10;序列辨識編號:12;序列辨識編號:14;序列辨識編號:30;序列辨識編號:32;序列辨識編號:63;序列辨識編號:64;序列辨識編號:65;序列辨識編號:66;序列辨識編號:67中任一者之片段(例如,序列辨識編號:3;序列辨識編號:16,序列辨識編號:17,序列辨識編號:18,及序列辨識編號:19);以及一種基因的部分序列所組成的多核苷酸,該基因包含序列辨識編號:1;序列辨識編號:8;序列辨識編號:10;序列辨識編號:12;序列辨識編號:14;序列辨識編號:30;序列辨識編 號:32;序列辨識編號:63;序列辨識編號:64;序列辨識編號:65;序列辨識編號:66;序列辨識編號:67;序列辨識編號:1;序列辨識編號:8;序列辨識編號:10;序列辨識編號:12;序列辨識編號:14;序列辨識編號:30;序列辨識編號:32;序列辨識編號:63;序列辨識編號:64;序列辨識編號:65;序列辨識編號:66;序列辨識編號:67中任一者之片段;及/或其等之互補物。
一些具體例涉及一種重組宿主細胞,該者在其基因組中具有至少一個重組DNA,其編碼至少一個iRNA(例如dsRNA)分子者(等),該者包含:序列辨識編號:43之全部或部分(例如,序列辨識編號:44);序列辨識編號:45之全部或部分(例如,序列辨識編號:49);序列辨識編號:46之全部或部分(例如,序列辨識編號:50);序列辨識編號:47之全部或部分(例如,序列辨識編號:51);序列辨識編號:48之全部或部分(例如,序列辨識編號:52);序列辨識編號:53之全部或部分;以及序列辨識編號:54之全部或部分。當由半翅目害蟲攝入時,該(等)iRNA分子可靜默或抑制一種靶定染色質重塑基因(舉例而言,一種包含一種多核苷酸之全部或部分的DNA,該多核苷酸係選自於以下所構成的群組:序列辨識編號:1;序列辨識編號:8;序列辨識編號:10;序列辨識編號:12;序列辨識編號:14;序列辨識編號:30;序列辨識編號:32;序列辨識編號:63;序列辨識編號:64;序列辨識編號:65;序列辨識編號:66;及序列辨識編號:67)在該害蟲或該害蟲的後代中的表現, 並且從而引致該害蟲之生殖,及/或該害蟲的後代生長、發育及/或取食的停止。
在一些具體例中,一種重組宿主細胞可以為一種經轉形的植物細胞,該重組宿主細胞在其基因組中具有編碼至少一個RNA分子的至少一個重組DNA,該RNA分子能形成dsRNA分子。一些具體例涉及基因轉殖植物,其包含此種轉形植物細胞。除了此種基因轉殖植物,還提供任何基因轉殖植物世代的後代植株、基因轉殖種子及基因轉殖植物之產物全體,其中每一者包含重組DNA。在特定的具體例中,一種能形成dsRNA分子之RNA分子可以在一種基因轉殖植物細胞中表現。所以,在這些及其他具體例中,一種dsRNA分子可以從一基因轉殖植物細胞單離出。在特定具體例中,該基因轉殖植物為選自於玉米(玉蜀黍(Zea mays))、大豆(大豆(Glycine max))、棉花(棉屬物種(Gossypium sp.)及禾本科(Poaceae)植物所組成之群組的植物。
一些具體例涉及一種用於調變靶定基因在半翅目害蟲細胞中表現的方法。在這些及其他具體例中,可提供一種核酸分子,其中該核酸分子包含一種編碼能形成dsRNA分子之RNA分子之多核苷酸。在特定的具體例中,一種編碼能形成dsRNA分子之RNA分子之多核苷酸,可以可操縱地鏈接至一啟動子,且亦可以可操縱地鏈接至一轉錄終止序列。在特定具體例中,一種用於調變靶定基因在半翅目害蟲細胞中表現的方法可以包含:(a)以一載體轉形 一植物細胞,該載體包含一種編碼能形成dsRNA分子之RNA分子之多核苷酸;(b)在足以允許包含數個轉形植物細胞之植物細胞培養物發展的條件下,培養該經轉形植物細胞;(c)選擇已經將該載體整合至其基因組內的轉形植物細胞;以及(d)確定該選擇的轉形植物細胞包含由該載體的多核苷酸所編碼之能形成dsRNA分子之RNA分子。一植物可能從一植物細胞再生,該植物細胞在其基因組中具有整合的載體且包含由該載體的多核苷酸所編碼的該dsRNA分子。
因而,亦揭露一種基因轉殖植物,其包含整合至其基因組內之載體,該載體具有一種編碼能形成dsRNA分子之RNA分子的多核苷酸,其中該基因轉殖植物包含由該載體的多核苷酸所編碼之該dsRNA分子。在特定的具體例中,在植物中表現能形成dsRNA分子之RNA分子,係足以調變接觸該轉形植物或植物細胞(舉例而言,藉由取食該轉形的植物、該植物的一部分(例如葉片)或植物細胞)的半翅目害蟲之細胞中靶定基因的表現,或是接觸該轉形植物或植物細胞(舉例而言,藉由親代傳遞(parental transmission))的該半翅目害蟲後代細胞中靶定基因的表現,以使得該害蟲的生殖被抑制。本文所揭露的基因轉殖植物可展現對半翅目害蟲侵擾的耐受性及/或防護性。特定的基因轉殖植物可能會展現對選自於以下所組成之群組的一種或多種害蟲之防護性及/或增強的防護性:蓋德擬壁蝽(Piezodorus guildinii);褐翅蝽(Halyomorpha halys);南方綠蝽象(Nezara viridula);綠蝽(Acrosternum hilare);英雄美洲蝽(Euschistus heros);褐美洲蝽(Euschistus servus);綠色蝽(Chinavia hilare);C.marginatumDichelops melacanthusD.furcatusEdessa meditabunda;肩蝽(Thyanta perditor);植物臭蟲(Horcias nobilellus);Taedia stigmosa;秘魯棉紅蝽(Dysdercus peruvianus);Neomegalotomus parvus;喙綠蝽(Leptoglossus zonatus);Niesthrea sidae;豆莢草盲蝽(Lygus hesperus);以及美國牧草盲蝽(L.lineolaris)。
本文亦揭露的是遞送控制劑,諸如一種iRNA分子,至一種半翅目害蟲的方法。此種控制劑可能直接或間接地造成半翅目害蟲族群取食、生長、或以其它方式造成宿主損害之能力的毀損。在一些具體例中,提供一種方法,該方法包含遞送一穩定的dsRNA分子至一種半翅目害蟲,以在該害蟲或其後代中箝制至少一靶定基因,從而引致親代RNAi且降低或消除害蟲宿主的植物損害。在一些具體例中,一種抑制一靶定基因在半翅目害蟲中表現的方法可能會引致該害蟲之生殖,及/或該害蟲的後代生長、發育及/或取食的停止。在一些具體例中,該方法可以顯著地減少侵擾中的後續害蟲世代的規模(size),但不會直接導致接觸該iRNA分子之害蟲的死亡。在一些具體例中,該方法可以顯著地減少侵擾中的後續害蟲世代的規模,同時也導致接觸該iRNA分子之害蟲的死亡。
在一些具體例中,提供組成物(例如一種局部組成物),該者包含一種iRNA(例如dsRNA)分子,用於在植物、 動物及/或植物或動物的環境中使用,以實現半翅目害蟲侵擾的消除或降低。在特定的具體例中,該組成物可能為餵食該半翅目害蟲之營養組成物或資源,或食物來源。一些具體例包含製成該害蟲可用的營養組成物或食物來源。攝入包含iRNA分子之組成物可能引致該分子被該半翅目害蟲之一個或多個細胞攝取,該者轉而可能引致抑制至少一靶定基因在該害蟲或其後代的細胞(等)中的表現。透過在該害蟲之宿主中提供一個或多個包含iRNA分子的組成物,可以限制或消除該害蟲存在的任何宿主組織或環境中或附近,被半翅目害蟲侵擾的植物或植物細胞之攝入或損害。
本文揭露之組成物及方法可以與其它用於控制半翅目害蟲損害的方法與組成物一起組合使用。舉例而言,一種如於此所描述用於防護植物不受半翅目害蟲傷害的iRNA分子可能在一方法中使用,該方法包含以下的額外使用:一種或多種對半翅目害蟲有效的化學藥劑、對此一半翅目害蟲有效的生物農藥、作物輪作、重組基因技術,其展示特徵不同於RNAi-媒介的方法及RNAi組成物之特徵者(例如在植物中重組製造對半翅目害蟲有害的蛋白質(例如Bt毒素)),及/或非親代iRNA分子之重組表現(例如,致命的iRNA分子,其導致接觸該iRNA分子之該半翅目害蟲的生長、發育及/或取食的停止)。
II.縮寫
BSB 新熱帶區褐臭蟲(Neotropical Brown Stink Bug)(英雄美洲蝽(Euschistus heros))
dsRNA 雙股核糖核酸
GI 生長抑制
NCBI 國家生物技術資訊中心
gDNA 基因組去氧核糖核酸
iRNA 抑制性核糖核酸
ISWI 模仿SWI/模仿轉換(Imitation SWI/imitation switch)
ORF 開放讀取框架
RNAi 核糖核酸干擾
miRNA 微核糖核酸
siRNA 短小抑制性核糖核酸
hpRNA 髮夾核糖核酸
shRNA 短髮夾核糖核酸
pRNAi 親代RNA干擾
UTR 非轉譯區域
PCR 聚合酶連鎖反應
qPCR 定量聚合酶連鎖反應
RISC RNA誘導的靜默複合體
RH 相對濕度
SEM 平均值標準誤差
YFP 黄色螢光蛋白
III.術語
在下列之說明與圖表中,使用許多術語。為了提 供本說明書與請求項清楚且一貫的理解,包括此等術語給定的範圍,提供下面的定義:接觸(一生物體):如於此所使用,術語"接觸"一生物體(例如一種半翅目害蟲)或由一生物體"攝取",當就一核酸分子而言時,包括將該核酸分子內化(internalization)至該生物體內,舉例而言但不限於:由該生物體攝入該分子(例如藉由取食);使該生物體與包含該核酸分子之組成物接觸;及將該生物體浸泡於包含該核酸分子之溶液。
片段重疊群(Contig):當使用於本文中,術語"片段重疊群"意指一DNA序列其係重建於一組重疊的DNA區段,該重疊的DNA區段係衍生自一單一遺傳來源。
玉米植物:如於此所使用,術語"玉米植物"意指物種玉蜀黍(Zea mays)(玉蜀黍(maize))之植物。術語"玉米植物"與"玉蜀黍(maize)"於本文中係可交換使用。
棉花植物:如於此所使用,術語"棉花植物"意指物種棉屬物種(Gossypium sp.)之植物;舉例而言陸地棉(G.hirsutum)。
表現:如於此所使用,一編碼多核苷酸(舉例而言,一基因或轉基因)之"表現"意指一過程,在該過程中一核酸轉錄單元(包括,例如gDNA或cDNA)的編碼資訊係被轉換成細胞的操作、非操作、或結構部分,通常包括蛋白質的合成。外部訊號可以影響基因表現;舉例而言,將細胞、組織或生物體曝露至提高或減少基因表現之一藥劑。基因表現亦可以在從DNA至RNA至蛋白質的途徑中的任意 處調控。基因表現的調控發生於下列情況,舉例而言,透過在轉錄、轉譯、RNA運輸及加工、中間分子諸如mRNA之降解上的控制作用,或是透過特定蛋白質分子在它們被製造之後的活化、去活化、分室作用(compartmentalization)或降解,或是藉由其等之組合。基因表現可以藉由本技藝已知的任何方法,在RNA位準或蛋白質位準進行測量,包括但不限於,北方墨漬法、RT-PCR、西方墨漬法,或活體外、原位或是活體內蛋白質活性分析(等)。
遺傳物質:如於此所使用,術語"遺傳物質"包括所有的基因及核酸分子,諸如DNA與RNA。
半翅目害蟲:如於此所使用,術語"半翅目害蟲"意指(order Hemiptera)的害蟲昆蟲,含括舉例而言但不限於,蝽科(family Pentatomidae)、盲椿象科(Miridae)、星椿象科(Pyrrhocoridae)、緣蝽象科(Coreidae)、蛛緣蝽象科(Alydidae),以及姬緣蝽象科(Rhopalidae)的昆蟲,該等昆蟲取食廣大範圍的宿主植物,以及具有銳利及吸吮的口器。在特定實例中,一種半翅目害蟲係選自包含以下之名單:英雄美洲蝽(Euschistus heros)(Fabr.)(新熱帶區褐臭蟲(Neotropical Brown Stink Bug)),南方綠椿象(Nezara viridula)(L.)(南方綠臭蟲(Southern Green Stink Bug)),蓋德擬壁蝽(Piezodorus guildinii)(Westwood)(紅帶臭蟲(Red-banded Stink Bug)),褐翅蝽(Halyomorpha halys)(Stål)(褐紋臭蟲(Brown Marmorated Stink Bug)),綠色蝽(Chinavia hilare)(Say)(綠臭蟲(Green Stink Bug)),褐美洲蝽(Euschistus servus)(Say)(棕色椿象(Brown Stink Bug)),Dichelops melacanthus(Dallas),Dichelops furcatus(F.),Edessa meditabunda(F.),肩蝽(Thyanta perditor)(F.)(新熱帶區紅肩臭蟲(Neotropical Red Shouldered Stink Bug),Chinavia marginatum(Palisot de Beauvois),植物臭蟲(Horcias nobilellus)(Berg)(棉花臭蟲(Cotton Bug)),Taedia stigmosa (Berg),秘魯棉紅蝽(Dysdercus peruvianus)(Guérin-Méneville),Neomegalotomus parvus(Westwood),喙綠蝽(Leptoglossus zonatus)(Dallas),(Niesthrea sidae)(F.),豆莢草盲蝽(Lygus hesperus)(Knight)(西部牧草盲蝽(Western Tarnished Plant Bug)),以及美國牧草盲蝽(Lygus lineolaris)(Palisot de Beauvois)。
抑制:如於此所使用,當使用以描述在一編碼多核苷酸(舉例而言,一基因)上的效果時,術語"抑制"意指轉錄自該編碼多核苷酸之mRNA,及/或該編碼多核苷酸的胜肽、多肽或蛋白質產物,於細胞位準上可測量的下降。在一些實例中,一編碼多核苷酸的表現可以被抑制,藉此近似消除該表現。"特異性抑制"意指一靶定編碼多核苷酸之抑制,而不必然地影響其他編碼多核苷酸(例如基因)在該細胞中的表現,其中在該細胞中達到特異性抑制。
經單離的:一種"經單離的"的生物成分(諸如核酸或蛋白質)實質上已與生物體細胞中,該成份天然發生區域中的其他生物成分(亦即,其他染色體及染色體外的DNA及RNA,及蛋白質)分隔、分開製造或純化而離開,而同時 影響該組份的化學或功能性改變(例如,一核酸可以藉由打斷連結核酸至該染色體中剩餘DNA的化學鍵而從染色體單離開)。業已"經單離的"核酸分子與蛋白質包括藉由標準純化方法來純化的核酸分子及蛋白質。該術語亦含括藉由在一宿主細胞中重組表現而製備的核酸及蛋白質,以及化學合成的核酸分子、蛋白質及胜肽。
核酸分子:如於此所使用,術語"核酸分子"可以意指核苷酸的聚合物形式,該者可包括RNA之意義股與反義股兩者、cDNA、gDNA,以及上述的合成形式與混合聚合物。一種核苷酸或核鹼基可以意指一核糖核苷酸(ribonucleotide)、去氧核糖核苷酸、或任一類型核苷酸的修飾形式。一種"核酸分子"如於此所使用,係同義於"核酸"及"多核苷酸"。除非另有指明,一種核酸分子的長度通常為至少10個鹼基。按照慣例,一種核酸分子的核苷酸序列係從該分子的5’端讀取到3’端。一種核酸分子的"互補物"意指一種多核苷酸具有可以與該核酸分子的核鹼基形成鹼基對(意即,A-T/U,及G-C)的核鹼基。
一些具體例包括含有一模板DNA之核酸,該模板DNA轉錄成一種RNA分子,該RNA分子為一種mRNA分子的互補物。在這些具體例中,轉錄成mRNA分子的該核酸的互補物係以5’至3’的定向呈現,藉由此RNA聚合酶(該者以5’至3’方向轉錄DNA)將從該互補物轉錄一核酸,其可以雜交至該mRNA分子。除非另有明確聲明,或從該上下文係為清楚的,術語"互補物"因而意指一種具有核鹼基的多 核苷酸,從5’至3’,其可與一參考核酸之核鹼基形成鹼基對。同樣地,除非另有明確聲明(或其從上下文係為清楚的),否則一核酸之"反向互補物"意指以反向定向之互補物。前述情況係於下列圖解中演繹:ATGATGATG多核苷酸
TACTACTAC多核苷酸之“互補物”
CATCATCAT多核苷酸之“反向互補物”
本發明之一些具體例可以包括髮夾RNA形成RNAi分子。在這些RNAi分子中,由RNA干擾靶定之核酸的互補物及反向互補物兩者,皆可能在相同的分子中發現,藉此該單股RNA分子可以"折疊(fold over)"並雜交至本身包含該互補與反向互補多核苷酸的區域上。
"核酸分子"包括所有的多核苷酸,舉例而言:單股及雙股形式的DNA;單股形式的RNA;及雙股形式的RNA(dsRNA)。術語"核苷酸序列"或"核酸序列"意指一核酸之意義股與反義股兩者,以個別單股或在雙聯體中任一。術語"核糖核酸"(RNA)係包括iRNA(抑制性RNA)、dsRNA(雙股RNA)、siRNA(短小干擾RNA)、shRNA(小髮夾RNA)、mRNA(信使RNA)、miRNA(微RNA)、hpRNA(髮夾RNA)、tRNA(轉移RNA,不論裝載或未裝載相應的醯化胺基酸),以及cRNA(互補的RNA)。術語"去氧核糖核酸"(DNA)係包括cDNA、gDNA,及DNA-RNA雜交體。術語"多核苷酸"及"核酸",及其"片段",對本技藝之一般人士將理解為一術語,其包括二種gDNA;核糖體RNA;轉移RNA;信使 RNA;操縱子;以及較小的遺傳工程多核苷酸,其編碼或可能適於編碼胜肽、多肽或是蛋白質者。
寡核苷酸:一種寡核苷酸為一種短的核酸聚合物。寡核苷酸可以藉由切割較長的核酸區段而形成,或是藉由聚合個別的核苷酸前驅體而形成。自動合成器允許長度高達數百個鹼基的寡核苷酸之合成。因為寡核苷酸可以結合至一種互補的核酸,所以它們可以使用做為偵測DNA或RNA的探針。由DNA構成的寡核苷酸(寡去氧核糖核苷酸)可以使用於PCR中,PCR為用於擴增DNA之技術。在PCR方面,寡核苷酸典型地稱為一"引子",該引子允許DNA聚合酶延展該寡核苷酸並且複製互補股。
一核酸分子可以包括天然存在及由天然發生及/或非天然發生核苷酸鏈結而鏈接在一起的修飾的核苷酸任一者或兩者。核酸分子可以予以化學或生物化學修飾,或是可以含有非天然或衍生的核苷酸鹼基,如熟習該項技藝者將容易體會的。此種修飾包括,舉例而言,標示、甲基化、以一類似物取代一個或多個天然存在的核苷酸、核苷酸間修飾(例如不帶電荷的鏈結:舉例而言,膦酸甲酯、磷酸三酯、胺基磷酸酯(phosphoramidates)、胺基甲酸酯等等;帶電鏈結:舉例而言,硫代磷酸酯(phosphorothioates)、二硫代磷酸酯等等;懸垂(pendent)部分:舉例而言,胜肽;插入劑(intercalator):舉例而言,吖啶、補骨脂素(psoralen)等等;螯合劑;烷化劑(alkylators);及修飾鏈結:舉例而言,α-變旋異構體(alpha anomeric)核酸等等)。術語"核酸分子" 亦包括任何拓撲構形,包括單股、雙股、部分雙聯體(duplexed)、三聯體、髮夾形、圓形以及扣鎖式(padlocked)構形。
如於此所使用,就DNA而言,術語"編碼多核苷酸"、"結構性多核苷酸"或"結構性核酸分子"意指當置於適當的調控元素控制下時,一種多核苷酸經由轉錄最終轉譯成一種多肽,與mRNA。就RNA而言,術語"編碼多核苷酸"意指一種多核苷酸,其轉譯成一胜肽、多肽或蛋白質。一編碼多核苷酸的邊界係由5'-末端之一轉譯起始密碼子及3'-末端之一轉譯終止密碼子來確定。編碼多核苷酸包括,但不限於:gDNA;cDNA;EST;以及重組多核苷酸。
如於此所使用,術語"轉錄的非編碼多核苷酸"意指mRNA分子的區段,例如5'UTR、3'UTR及內含子區段,其未被轉譯成一胜肽、多肽或蛋白質。再者,"轉錄的非編碼多核苷酸"意指一種核酸,其轉錄成細胞內有作用的RNA,舉例而言結構性RNAs(諸如核糖體RNA(rRNA)舉例來說5S rRNA、5.8S rRNA、16S rRNA、18S rRNA、23S rRNA及28S rRNA及類似物);轉移RNA(tRNA);以及snRNAs諸如U4、U5、U6及類似物。轉錄的非編碼多核苷酸亦包括,舉例而言但不限於,小RNAs(sRNA),該術語通常用來描述小的細菌非編碼RNAs;小核仁RNAs(snoRNA);以及微RNA;短小干擾RNAs(siRNA);Piwi-交互作用RNAs(piRNA);以及長的非編碼RNA。還進一步,"轉錄的非編碼多核苷酸"意指一種多核苷酸其可能原生地存在於一核酸中做為基因內 的"鏈接子",且該者係轉錄成一種RNA分子。
致命的RNA干擾:如於此所使用,術語"致命的RNA干擾"意指RNA干擾,其會導致遞送,舉例而言dsRNA、miRNA、siRNA、shRNA、及/或hpRNA之主體個體的死亡或活力降低。
親代RNA干擾:如於此所使用,術語"親代RNA干擾"(pRNAi)意指遞送,舉例而言dsRNA、miRNA、siRNA、shRNA、及/或hpRNA之主體(例如一種半翅目害蟲)的後代,可觀察到的RNA干擾的表型。在一些具體例中,pRNAi包含遞送一種dsRNA至一種半翅目害蟲,其中該害蟲藉此較不能生產活的子代。一種起始pRNAi之核酸可能會或可能不會增加被遞送該核酸的族群之死亡發生率。在某些例子中,該起始pRNAi之核酸不會增加被遞送該核酸的族群之死亡發生率。舉例而言,一種半翅目害蟲族群可能餵食一種或多種起始pRNAi之核酸,其中該害蟲存活且交配,但是生產的卵比起相同物種但沒有取食該核酸的害蟲生產的卵,較不能孵化活的後代。於一種pRNAi機制方面,遞送至雌體的親代RNAi可以使雌體子代的胚胎之合子胚基因表現減量。Bucher等人之(2002)Curr.Biol.12(3):R85-6。
基因組:如於此所使用,術語"基因組"意指在一細胞之細胞核內發現的染色體DNA,且還意指在該細胞之次細胞組件內發現的胞器DNA。在本發明之一些具體例中,一種DNA分子可能被引入到一植物細胞內,藉由此,該DNA分子係整合至該植物細胞的基因組中。在這些及進一步具 體例中,該DNA分子可能整合至該植物細胞的細胞核DNA,或是整合至該植物細胞的葉綠體或粒線體DNA。術語"基因組",當它應用於細菌時,意指該細菌細胞之內的染色體與質體兩者。在本發明之一些具體例中,一種DNA分子可能引入至一細菌中,藉由此,該DNA分子係整合至細菌的基因組中。在這些及進一步具體例中,該DNA分子可能不是整合至染色體,就是坐落如一穩定質體或位於一穩定的質體中。
序列同一性(Sequence identity):術語兩個多核苷酸或多肽之"序列同一性"或"同一性",如於此上下文中所使用,意指當跨越一特定的比較窗口針對最大對應來排列比對時,在該兩個分子的序列中相同的殘基。
如於此所使用,術語"序列同一性百分比"可能意指藉由跨越一比較窗口上比較一分子的兩個最佳排列比對序列(例如核酸序列或多肽序列)而決定的值,其中在該比較窗口中的該部分序列針對該兩序列的最佳排列比對,可能包含添加或缺失(意即,間隙),當相較於參考序列時(參考序列不包含添加或缺失)。百分比之計算係藉由確定在該兩者序列中同一的核苷酸或胺基酸殘基發生的位置數目,以產生匹配位置的數目,將匹配位置的數目除以該比較窗口中的位置總數,並將該結果乘以100,以產生序列同一性的百分比。一序列與一參考序列在每一位置比較之下係同一的,稱為100%同一於該參考序列,反之亦然。
用於排列比對序列以比較的方法在本技藝中係 眾所周知的。各種程式及比對演算法係描述於,舉例而言:Smith及Waterman(1981)Adv.Appl.Math.2:482;Needleman及Wunsch(1970)J.Mol.Biol.48:443;Pearson及Lipman(1988)Proc.Natl.Acad.Sci.U.S.A.85:2444;Higgins及Sharp(1988)Gene 73:237-44;Higgins及Sharp(1989)CABIOS 5:151-3;Corpet等人之(1988)Nucleic Acids Res.16:10881-90;Huang等人之(1992)Comp.Appl.Biosci.8:155-65;Pearson等人之(1994)Methods Mol.Biol.24:307-31;Tatiana等人之(1999)FEMS Microbiol.Lett.174:247-50。序列比對方法及同源性計算之詳細的考慮因素可以於,例如,Altschul等人之(1990)J.Mol.Biol.215:403-10中找到。
國家生物技術資訊中心(NCBI)基本局部比對搜尋工具(BLASTTM;Altschul等人(1990))可從數個來源獲得,包括國家生物技術資訊中心(Bethesda,MD),及在網際網路上,用於與數個序列分析程式聯合使用。使用此程式如何決定序列同一性之說明可從網際網路上在BLASTTM"協助(help)"一節上獲得。對於核酸序列之比較,可以利用BLASTTM(Blastn)程式的"Blast 2序列"功能,該者使用預設的BLOSUM62模式設為預設參數。當藉由此方法評估時,對參考多核苷酸序列具更大序列同一性的核酸將顯示提高的同一性百分比。
特異性雜交/特異性互補:如於此所使用,術語"特異性雜交"以及"特異性互補"係為術語,其指出充分程度 的互補度,藉由此,在核酸分子與一靶定核酸分子之間發生穩定且特異性結合。兩個核酸分子之間的雜交涉及在該兩個核酸分子之核鹼基之間形成反平行排列比對。該兩分子然後能夠與相反股上相應的鹼基形成氫鍵,以形成一種雙聯體分子,假若其足夠穩定,則該雙聯體分子可以使用本技藝中眾所周知的方法偵測。一種多核苷酸不需要100%的互補於其特異性雜交的靶定核酸。然而,必須存在使得雜交為特異性互補度的數量為所使用的雜交條件的函數。
引致特定程度嚴格度的雜交條件將取決於所抉擇的雜交方法的本性及雜交核酸之組成與長度,而有所不同。一般而言,雖然清洗的時間亦會影響嚴格度,但雜交溫度及雜交緩衝液的離子強度(尤其是Na+及/或Mg++濃度)將決定雜交的嚴格度。考慮要求的雜交條件、用於得到特定程度嚴格度的計算,對於該技藝中之一般技藝人士係為知悉的,且係討論於,舉例而言Sambrook等人(ed.)之Molecular Cloning:A Laboratory Manual,2nd ed.,vol.1-3,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY,1989,第9及第11章;以及Hames與Higgins(eds.)Nucleic Acid Hybridization,IRL Press,Oxford,1985。關於核酸雜交進一步詳細的教學與引導可能於以下找到,舉例而言Tijssen,"Overview of principles of hybridization and the strategy of nucleic acid probe assays," in Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes,第I部,第 2章,Elsevier,NY,1993;以及Ausubel等人,Eds.,Current Protocols in Molecular Biology,第2章,Greene Publishing and Wiley-Interscience,NY,1995。
如於此所使用,"嚴格條件"含括條件,在該條件下雜交將只發生於如果該雜交分子序列與該靶定核酸分子內的同源多核苷酸之間的失配低於20%時。"嚴格條件"包括進一步特定位準的嚴格度。因此,如於此所使用,"中嚴格度"條件係為分子有超過20%的序列不會雜交的那些條件;"高嚴格度"的條件係具有超過10%的失配的序列不會雜交的那些條件;以及"非常高嚴格度"的條件係具有超過5%的失配的序列不會雜交的那些條件。
下列為代表性、非限制性雜交條件。
高嚴格度條件(偵測到共享至少90%的序列同一性之多核苷酸):5× SSC緩衝液中於65℃下雜交16小時;以2× SSC緩衝液中於室溫下清洗兩次,每次15分鐘;及在0.5×SSC緩衝液中於65℃下清洗兩次,每次20分鐘。
中嚴格度條件(偵測到共享至少80%序列同一性之多核苷酸):5x-6x SSC緩衝液中,於65-70℃雜交16-20小時;以2× SSC緩衝液中於室溫下洗滌兩次,每次5-20分鐘;以及以1x SSC緩衝液於55-70℃下洗滌兩次,每次30分鐘。
非嚴格的控制條件(共享至少50%序列同一性之多核苷酸將雜交):以6x SSC緩衝液於室溫至55℃雜交16-20小時;以2x-3x SSC緩衝液於室溫至55℃至少洗滌兩次,每次20-30分鐘。
如於此所使用,當就一核酸而言時,術語"實質上同源的"或"實質同源性"意指多核苷酸擁有的連續核鹼基,該者在嚴格條件之下雜交到參考核酸。舉例而言,實質上同源於序列辨識編號:1,序列辨識編號:3,序列辨識編號:8,序列辨識編號:10,序列辨識編號:12,序列辨識編號:14,序列辨識編號:16,序列辨識編號:17,序列辨識編號:18,序列辨識編號:19,序列辨識編號:30,序列辨識編號:32,序列辨識編號:63;序列辨識編號:64;序列辨識編號:65;序列辨識編號:66;以及序列辨識編號:67中任一者之參考核酸的核酸,係為在嚴格條件下(例如,前文陳述之中嚴格度條件)雜交至序列辨識編號:1,序列辨識編號:3,序列辨識編號:8,序列辨識編號:10,序列辨識編號:12,序列辨識編號:14,序列辨識編號:16,序列辨識編號:17,序列辨識編號:18,序列辨識編號:19,序列辨識編號:30,序列辨識編號:32,序列辨識編號:63;序列辨識編號:64;序列辨識編號:65;序列辨識編號:66;以及序列辨識編號:67之參考核酸的該等核酸者。實質上同源的多核苷酸可能具有至少80%的序列同一性。舉例而言,實質上同源的多核苷酸可能具有從大約80%至100%之序列同一性,諸如79%;80%;約81%;約82%;約83%;約84%;約85%;約86%;約87%;約88%;約89%;約90%;約91%;約92%;約93%;約94%;約95%;約96%;約97%;約98%;約98.5%;約99%;約99.5%;及約100%。實質同源性之性質係密切相關於特異性雜交。舉 例而言,當有足夠程度的互補度,一核酸分子係特異性地雜交,以避免核酸與非靶定多核苷酸在希望特異性結合的條件下,舉例而言在嚴格的雜交條件下,進行非特異性結合。
如於此所使用,術語"異種同源物(ortholog)"意指在兩種或更多物種中,一基因已經從一共同的祖先核酸演變,並可能在該兩種或更多物種中保留相同的功能。
如於此所使用,當在5'至3'方向讀取之多核苷酸的每一核苷酸係互補於另一多核苷酸在3'至5'方向中讀取的每一核苷酸時,兩個核酸分子被認為展示出"完整的互補度"。一種互補於參考多核苷酸的多核苷酸將展示出與該參考多核苷酸的反向互補物為同一的一序列。這些術語與說明在本技藝中係定義良好的,且本技藝之一般技藝人士將很容易理解。
可操縱地鏈接:當第一多核苷酸與該第二多核苷酸係在一功能關係中時,該第一多核苷酸係與該第二多核苷酸為可操縱地鏈接。當重組製造時,可操縱地鏈接的多核苷酸一般來說是連續的,且在必要時在相同的讀取框架中(例如在一轉譯融合ORF中)要連結兩個蛋白質編碼區域。然而,核酸不必要被連續地操縱鏈接。
術語"可操縱地鏈接",當參照一調控遺傳元素及一編碼多核苷酸使用時,意味著該調控元素影響該鏈接的編碼多核苷酸的表現。"調控元素"或"控制元素"意指多核苷酸,其影響該關聯的編碼多核苷酸之轉錄的時間及位準/數 量、RNA加工或穩定性、或轉譯。調控元素可以包括啟動子;轉譯前導子;內含子;增強子;莖環結構;抑制子結合多核苷酸;具終止序列之多核苷酸;具聚腺苷酸識別序列之多核苷酸......等等。特定的調控元素可能位於可操縱地鏈接於此之編碼多核苷酸的上游及/或下游。還有,可操縱地鏈接於一編碼多核苷酸的特定調控元素,可能位於雙股核酸分子之關聯互補股上。
啟動子:如於此所使用,術語"啟動子"意指一種DNA區域,該區域可能在轉錄起始的上游,並可能涉及識別及結合RNA聚合酶與其它蛋白質以引發轉錄。一啟動子可能可操縱地鏈接至一編碼多核苷酸用於在細胞中表現,或者一啟動子可能可操縱地鏈接到編碼一訊號胜肽的多核苷酸,其中該訊號胜肽可能可操縱地鏈接到一編碼多核苷酸,用於在一細胞中表現。一種"植物啟動子"可能為能夠在植物細胞中引發轉錄的啟動子。在發育控制下的啟動子之例子包括啟動子其優先在某些組織中引發轉錄者,諸如葉、根、種子、纖維、木質部導管、管胞、或是厚壁組織。此種啟動子係稱為"組織優先的"。僅在某些組織中引發轉錄的啟動子被稱為"組織特異性"。一種"細胞類型特異性"啟動子主要在一種或多種器官中的某些細胞類型中驅動表現,舉例而言,在根或葉中的維管束細胞。一種"誘導型"啟動子可能為在環境控制之下的一種啟動子。可藉由誘導型啟動子引發轉錄之環境條件的例子包括厭氧條件及光的存在。組織特異性、組織優先的、細胞類型特異性及誘導 型啟動子構成"非持續表現"型的啟動子。一種"持續表現型"啟動子為在大多數環境條件下,或在大多數組織或細胞類型中活耀的啟動子。
本發明之一些具體例中可以使用任何誘導型啟動子。參閱Ward等人之(1993)Plant Mol.Biol.22:361-366。藉由一種可誘導的啟動子,轉錄速率對一誘導劑的回應係提高的。示範性的誘導型啟動子包括,但不限於:源自於ACEI系統對銅回應的啟動子;源自於玉米、對苯磺醯胺除草劑安全劑回應的In2基因;源自於Tn10之Tet抑制子;以及源自於類固醇激素基因的可誘導啟動子,該者之轉錄活性可以藉由一種糖皮質類固醇激素(glucocorticosteroid hormone)來誘導(Schena等人之(1991)Proc.Natl.Acad.Sci.USA 88:0421)。
示範性的持續表現型啟動子包括,但不限於:來自植物病毒之啟動子,諸如來自花椰菜嵌紋病毒(Cauliflower Mosaic Virus)(CaMV)的35S啟動子;來自水稻肌動蛋白基因的啟動子;泛素啟動子;pEMU;MAS;玉蜀黍(maize)H3組織蛋白啟動子;及ALS啟動子,Xba1/NcoI片段5'至大油菜(Brassica napus)ALS3結構基因(或是類似於Xba1/NcoI片段之一種多核苷酸)(國際PCT公開案第WO96/30530號)。
此外,在本發明之一些實施例中可以利用任何組織特異性或組織優先的啟動子。以包含可操縱地鏈接至一種組織特異性啟動子之一編碼多核苷酸的核酸分子予以轉 形之植物,可在特定組織中專有地,或優先地製造該編碼多核苷酸的產物。示範性的組織特異性或組織優先性的啟動子包括,但不限於:一種子優先啟動子,諸如源自菜豆蛋白(phaseolin)基因之該者;一葉片特異性及光誘導的啟動子,諸如源自cab或核酮糖雙磷酸羧化酶(rubisco)之該者;一花藥特異性啟動子,諸如源自LAT52之該者;一花粉特異性啟動子,諸如源自Zm13之該者;及一孢子優先性啟動子,諸如源自apg之該者。
大豆植物:如於此所使用,術語"大豆植物"意指一種大豆屬物種(Glycine sp.)的植物;舉例而言大豆(G.max)。
轉形:如於此所使用,術語"轉形"或"轉導"意指一種或多種核酸分子(等)進入一細胞之轉移作用。藉由一核酸分子轉導至該細胞,無論是藉由將該核酸分子併入該細胞基因組中,或藉由游離基因體複製,而使該核酸分子變成穩定而由細胞複製時,則一細胞係"轉形"的。如於此所使用的,術語"轉形"含括可以將一核酸分子引入至此一細胞中的所有技術。例子包括但是不限於:以病毒載體轉染;以質體載體轉形;電穿孔(Fromm等人之(1986)Nature 319:791-3);脂質體轉染法(lipofection)(Felgner等人之(1987)Proc.Natl.Acad.Sci.USA 84:7413-7);顯微注射(Mueller等人之(1978)Cell 15:579-85);農桿菌(Agrobacterium)媒介的轉移(Fraley等人之(1983)Proc.Natl.Acad.Sci.USA 80:4803-7);直接DNA攝取;以及基因槍法(microprojectile bombardment)(Klein等人之(1987)Nature 327:70)。
轉基因:一種外源性核酸序列。在一些例子中,一種轉基因可以為一DNA,該者編碼能夠形成dsRNA分子之一股或兩股RNA,該者包含一多核苷酸其互補於在半翅目害蟲中找到的一核酸分子。在進一步的例子中,一轉基因可能為反義多核苷酸,其中該反義多核苷酸之表現會抑制一靶定核酸之表現,藉此產生親代RNAi的表型。在再進一步的例子中,一轉基因可能為一基因(例如一除草劑耐受性基因、一基因其編碼在工業上或藥學上有用的化合物、或一基因其編碼一所欲的農業性狀)。在這些及其他例子中,一轉基因可能含有調控元素其可操縱地鏈接該轉基因的編碼多核苷酸(例如一啟動子)。
載體:一種核酸分子,當其引入至一細胞時,舉例而言,會產生一轉形細胞。一種載體可能包括容許其在該宿主細胞中複製的遺傳元素,諸如複製起點。載體的例子包括,但不限於:一質體;黏質體;噬菌體;或病毒,其攜帶外源DNA進入一細胞中。一載體還可能包括一種或多種基因,包括產生反義分子者,及/或可選擇的標記基因以及在該技藝中所知悉的其他遺傳元素。一載體可能轉導、轉形、或感染一細胞,從而造成該細胞表現由該載體所編碼的核酸分子及/或蛋白質。一載體選擇性地包括協助實現該核酸分子進入細胞的物質(例如脂質體、蛋白質塗層......等等)。
產量:大約100%或更大的穩定產量係相對於檢 查品種(check variety)在相同生長位置,於相同時間及相同條件下生長。在特定具體例中,"改良產量"或"改善產量"意味相對於檢查品種的產量,具有105%或更大的穩定產量之一栽培種,該者係在相同生長位置含有顯著密度傷害該作物之半翅目害蟲,於相同時間且在相同條件下生長,其為本文之組成物及方法靶定的。
除非具體地指出或暗示,否則術語"一(a)"、"一(an)"及"該"表示"至少一個",如於此所使用。
除非另有具體解釋,否則於此所使用的所有技術與科學術語具有相同的含義,如同此揭露內容所屬之技藝的一般技藝人士所普遍理解者。分子生物學常用術語的定義可見於,舉例而言,如Lewin的Genes X,Jones & Bartlett Publishers,2009(ISBN 10 0763766321);Krebs等人(eds.),The Encyclopedia of Molecular Biology,Blackwell Science Ltd.,1994(ISBN 0-632-02182-9);及Meyers R.A.(ed.),Molecular Biology and Biotechnology:A Comprehensive Desk Reference,VCH Publishers,Inc.,1995(ISBN 1-56081-569-8)。所有的百分數皆以重量計,且所有溶劑混合物之比例皆以體積計,除非另有指出。所有的溫度均為攝氏度。
IV.包含翅目害蟲多核苷酸之核酸分子 A.概述
於此所描述係為對控制半翅目害蟲有用的核酸分子。所描述的核酸分子包括靶定的多核苷酸(例如,天然 基因及非編碼多核苷酸)、dsRNAs、siRNAs、shRNA、hpRNAs及miRNAs。舉例而言,dsRNAs、siRNA、miRNA、shRNA及/或hpRNA分子係描述於一些具體例中,該等者可能特異性地互補於半翅目害蟲中一種或多種核酸之全部或部分。在這些及進一步具體例中,該(等)核酸可能為一種或多種靶定基因(等),該者之產物可能為,舉例而言但不限於:涉及生殖過程或涉及若蟲發育。於此所描述之核酸分子,當引入(舉例而言,經由親代傳遞)至包含與該核酸分子特異性地互補的至少一個核酸(等)之細胞時,可能引發該細胞中的RNAi,且因此降低或是消除該(等)天然核酸的表現。在一些例子中,一種靶定基因藉由特異性地互補於其等之核酸分子而降低或消除其之表現,可能會引致該半翅目害蟲之生殖,及/或該害蟲的後代之生長、發育及/或取食的減少或是停止。此等方法可以顯著地減少侵擾中的後續害蟲世代的規模,舉例而言,但不會直接導致接觸該iRNA分子之害蟲的死亡。
在一些具體例中,可以選擇一種半翅目害蟲中的至少一種靶定基因,其中該靶定基因包含一種染色質重塑多核苷酸(例如一種基因)。在特定例子中,選擇一種半翅目害蟲中的此一種染色質重塑基因,其中該靶定基因包含一種選自於下列之中的多核苷酸:BSB_婆羅賀摩(序列辨識編號:1及序列辨識編號:63);BSB_mi-2(序列辨識編號:8及序列辨識編號:64);BSB_iswi-1(序列辨識編號:10及序列辨識編號:65);BSB_chd1(序列辨識編號:14及序列辨 識編號:67);BSB_iswi-2(序列辨識編號:12及序列辨識編號:66);BSB_ino80(序列辨識編號:30);及BSB_domino(序列辨識編號:32)。舉例而言,在某些具體例中一靶定基因包含一種選自於下列之中的染色質重塑多核苷酸:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,序列辨識編號:67;以及前述任一者之片段(例如,序列辨識編號:3;序列辨識編號:16,序列辨識編號:17,序列辨識編號:18,及序列辨識編號:19)。
在一些具體例中,一種染色質重塑多核苷酸編碼一群“ATP依賴型重塑酵素”的成員,一類ATP酶,其包含一種SNF2領域(蔗糖非發酵(sucrose non-fermenting),最初於釀酒酵母菌(Saccharomyces cerevisiae)中辨識出)。ATP依賴型重塑酵素包括,舉例而言但不限於:婆羅賀摩(BRAHMA)及其之異種同源物;MI-2及其之異種同源物;ISWI、其之同種同源物,以及其之異種同源物(例如,ISWI-1與ISWI-2);CHD1及其之異種同源物;INO80及其之異種同源物;以及DOMINO及其之異種同源物。染色質重塑物(例如,ATP依賴型重塑酵素)係藉由移動核小體而發揮持久的後生效應(epigenetic effects),且因而改變轉錄機械接近DNA的機會。
ATP依賴型重塑酵素共享相同的功能領域及序 列位準的守恆性。於Pfam(pfam.sanger.ac.uk)搜尋中,ATP依賴型重塑酵素可以藉由組合SNF2家族N-端及解旋酶守恆的C-端(SNF2-解旋酶)領域而辨識出。因而,RNAi靶定位址可以設計成位在守恆的SNF2家族N-端及解旋酶C-端領域(於此稱為SNF2-解旋酶)內,其對所有的染色質重塑體,以及染色質結合或各個家族內守恆的其他功能領域為共有的,其包括但不限於,布羅莫領域(bromodomain)、克羅莫領域(chromodomain),以及HAND-SLIDE領域。
在一些具體例中,一靶定基因可為包含一種多核苷酸之核酸分子,該多核苷酸可以電腦模擬(in silico)反向轉譯成一種多肽,該多肽含有的連續胺基酸序列係至少約85%同一於(例如至少84%、85%、約90%、約95%、約96%、約97%、約98%、約99%、約100%、或100%同一於)一種染色質重塑基因的蛋白質產物之胺基酸序列。一種靶定基因可能為半翅目害蟲中任何的核酸,該者之轉錄後抑制對於該害蟲生產活的子代之能力有不利的效果,舉例來說提供植物防護的益處來對抗害蟲。在特定的例子中,一種靶定基因為一種包含一多核苷酸之核酸分子,該多核苷酸可以電腦模擬(in silico)而反轉譯成一種包含連續胺基酸序列之多肽,該胺基酸序列係至少大約85%同一於、大約90%同一於、大約95%同一於、大約96%同一於、大約97%同一於、大約98%同一於、大約99%同一於、大約100%同一於、或是100%同一於婆羅賀摩(brahma)、mi-2iswi-1chd1iswi-2ino80,或domino基因之電腦模擬(in silico)轉譯產物之胺基 酸序列。此等轉譯產物之實例包括,舉例而言但不限於:序列辨識編號:2;序列辨識編號:9;序列辨識編號:11;序列辨識編號:13;序列辨識編號:15;序列辨識編號:31;以及序列辨識編號:33。
一些具體例中提供了DNA,該者的表現將引致一種包含一多核苷酸的RNA分子,該多核苷酸特異性地互補於一種半翅目害蟲中的一編碼多核苷酸所編碼的RNA分子之全部或部分。在一些具體例中,在一種半翅目害蟲攝入該表現的RNA分子之後,在該害蟲細胞或該害蟲的後代細胞之中可得到編碼多核苷酸的向下調控。在特定具體例中,在該半翅目害蟲細胞中編碼多核苷酸的向下調控可能引致該害蟲之生殖及/或繁殖,及/或該害蟲的後代之生長、發育及/或取食的減少或是停止。
在一些具體例中,靶定的多核苷酸包括轉錄的非編碼RNA序列,諸如5'UTRs;3'UTRs;剪接前導子;內含子;末端內含子(outron)(例如隨後在反式剪接中修飾的5'UTR RNA);供體子(donatron)(例如提供供體序列用於反式剪接所要求的非編碼RNA);及靶定半翅目害蟲基因的其他非編碼轉錄RNA。此種多核苷酸可能衍自於單順反子(mono-cistronic)與聚-順反子基因兩者。
因而,於此有關一些具體例亦描述iRNA分子(例如dsRNAs、siRNAs、miRNAs、shRNA及hpRNAs),該者包含特異性互補於在半翅目害蟲中一靶定核酸之全部或部分的至少一種多核苷酸。在一些具體例中,一種iRNA分子 可能包含多核苷酸(等),其等互補於數個靶定核酸之全部或部分;舉例而言,2、3、4、5、6、7、8、9、10個、或更多個靶定核酸。在特定具體例中,iRNA分子可能在活體外製造,或藉由一基因改造生物體在活體內製造,諸如一植物或一細菌。亦揭露的是cDNA,其可能使用於dsRNA分子、siRNA分子、miRNA分子、shRNA分子及/或hpRNA分子之製造,該等係特異性地互補於半翅目害蟲中一靶定核酸的全部或部分。進一步描述的為重組DNA建構物,供實現特定宿主標靶之穩定轉形使用。經轉形的宿主標靶可能從該重組DNA建構物表現有效位準的dsRNA、siRNA、miRNA、shRNA及/或hpRNA分子。所以,亦描述一種植物轉形載體,該者包含可操縱地鏈接至植物細胞中有作用的異源性啟動子的至少一種多核苷酸,其中該(等)多核苷酸的表現引致一種RNA分子,該RNA分子包含一列連續的核鹼基,其特異性互補於一種半翅目害蟲中一靶定核酸的全部或部分。
在特定例子中,對控制半翅目害蟲有用的核酸分子可能包括:從半翅目昆蟲(例如BSB)所單離的核酸之全部或部分,其包含一種染色質重塑基因多核苷酸(例如,序列辨識編號:1,序列辨識編號:3,序列辨識編號:8,序列辨識編號:10,序列辨識編號:12,序列辨識編號:14,序列辨識編號:16,序列辨識編號:17,序列辨識編號:18,序列辨識編號:19,序列辨識編號:30,序列辨識編號:32,序列辨識編號:63,序列辨識編號:64,序列辨識編號:65,序列辨識編號:66,以及序列辨識編號:67 中任一者);DNAs,當表現時引致一種包含一多核苷酸之RNA分子,該多核苷酸特異性互補於染色質重塑基因所編碼之RNA分子的全部或部分;iRNA分子(例如dsRNAs、siRNAs、miRNAs、shRNA及hpRNAs),其包含至少一多核苷酸,該者係特異性互補於染色質重塑基因所編碼之RNA分子的全部或部分;cDNA序列,其可以使用於生產dsRNA分子、siRNA分子、miRNA分子、shRNA分子及/或hpRNA分子,該等分子特異性互補於一染色質重塑基因所編碼之RNA分子之全部或部分;以及在實現特定宿主標靶之穩定轉形所使用的重組DNA建構物,其中一經轉形宿主標靶包含一個或多個前述的核酸分子。
B.核酸分子
本發明提供,在其他事物之外,iRNA(例如dsRNA、siRNA、miRNA、shRNA及hpRNA)分子,該者抑制靶定基因在半翅目害蟲之細胞、組織或器官中的表現;以及DNA分子,該者能夠在一細胞或微生物中表現為iRNA分子,以抑制靶定基因在半翅目害蟲之細胞、組織或器官中的表現。
本發明之一些具體例提供一種經單離的核酸分子,該者包含選自於下列所組成的群組之至少一個(例如,一個、二個、三個、或更多個)多核苷酸:序列辨識編號:1;序列辨識編號:63;序列辨識編號:1之互補物;序列辨識編號:63之互補物;序列辨識編號:1或序列辨識編號:63之至少15個連續核苷酸(例如至少19個連續核苷酸)的片 段(例如序列辨識編號:3);序列辨識編號:1或序列辨識編號:63之至少15個連續核苷酸的片段之互補物;一種半翅目昆蟲(例如BSB)之編碼多核苷酸,其包含序列辨識編號:1或序列辨識編號:63;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:1或序列辨識編號:63;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:1或序列辨識編號:63;以及一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:1或序列辨識編號:63。在特定具體例中,一種半翅目害蟲接觸或攝取該經單離的多核苷酸抑制了該害蟲的生長、發育、生殖及/或取食。
本發明之任擇的具體例提供一種經單離的核酸分子,該者包含選自於下列所組成的群組之至少一個(例如,一個、二個、三個、或更多個)多核苷酸:序列辨識編號:8;序列辨識編號:64;序列辨識編號:8之互補物;序列辨識編號:64之互補物;序列辨識編號:8或序列辨識編號:64之至少15個連續核苷酸(例如至少19個連續核苷酸)的片段(例如序列辨識編號:16);序列辨識編號:8或序列辨識編號:64之至少15個連續核苷酸的片段之互補物;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:8或序列辨識編號:64;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:8或序列辨識編號:64;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的 片段,該編碼多核苷酸包含序列辨識編號:8或序列辨識編號:64;以及一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:8或序列辨識編號:64。在特定具體例中,一種半翅目害蟲接觸或攝取該經單離的多核苷酸抑制了該害蟲的生長、發育、生殖及/或取食。
本發明之特定的具體例提供一種經單離的核酸分子,該者包含選自於下列所組成的群組之至少一個(例如,一個、二個、三個、或更多個)多核苷酸:序列辨識編號:10;序列辨識編號:65;序列辨識編號:10之互補物;序列辨識編號:65之互補物;序列辨識編號:10或序列辨識編號:65之至少15個連續核苷酸(例如至少19個連續核苷酸)的片段(例如序列辨識編號:17);序列辨識編號:10或序列辨識編號:65之至少15個連續核苷酸的片段之互補物;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:10或序列辨識編號:65;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:10或序列辨識編號:65;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:10或序列辨識編號:65;以及一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:10或序列辨識編號:65。在特定具體例中,一種半翅目害蟲接觸或攝取該經單離的多核苷酸抑制了該害蟲的生長、發育、生殖及/或取食。
本發明之一些具體例提供一種經單離的核酸分子,該者包含選自於下列所組成的群組之至少一個(例如,一個、二個、三個、或更多個)多核苷酸:序列辨識編號:12;序列辨識編號:66;序列辨識編號:12之互補物;序列辨識編號:66之互補物;序列辨識編號:12或序列辨識編號:66之至少15個連續核苷酸(例如至少19個連續核苷酸)的片段(例如序列辨識編號:18);序列辨識編號:12或序列辨識編號:66之至少15個連續核苷酸的片段之互補物;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:12或序列辨識編號:66;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:12或序列辨識編號:66;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:12或序列辨識編號:66;以及一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:12或序列辨識編號:66。在特定具體例中,一種半翅目害蟲接觸或攝取該經單離的多核苷酸抑制了該害蟲的生長、發育、生殖及/或取食。
本發明之其他的具體例提供一種經單離的核酸分子,該者包含選自於下列所組成的群組之至少一個(例如,一個、二個、三個、或更多個)多核苷酸:序列辨識編號:14;序列辨識編號:67;序列辨識編號:14之互補物;序列辨識編號:67之互補物;序列辨識編號:14或序列辨識編號:67之至少15個連續核苷酸(例如至少19個連續核苷酸) 的片段(例如序列辨識編號:19);序列辨識編號:14或序列辨識編號:67之至少15個連續核苷酸的片段之互補物;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:14或序列辨識編號:67;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:14或序列辨識編號:67;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:14或序列辨識編號:67;以及一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:14或序列辨識編號:67。在特定具體例中,一種半翅目害蟲接觸或攝取該經單離的多核苷酸抑制了該害蟲的生長、發育、生殖及/或取食。
本發明之一些具體例提供一種經單離的核酸分子,該者包含選自於下列所組成的群組之至少一個(例如,一個、二個、三個、或更多個)多核苷酸:序列辨識編號:30;序列辨識編號:30之互補物;序列辨識編號:30之至少15個連續核苷酸(例如至少19個連續核苷酸)的片段;序列辨識編號:30之至少15個連續核苷酸的片段之互補物;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:30;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:30;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:30;以及一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包 含序列辨識編號:30。在特定具體例中,一種半翅目害蟲接觸或攝取該經單離的多核苷酸抑制了該害蟲的生長、發育、生殖及/或取食。
本發明之其他的具體例提供一種經單離的核酸分子,該者包含選自於下列所組成的群組之至少一個(例如,一個、二個、三個、或更多個)多核苷酸:序列辨識編號:32;序列辨識編號:32之互補物;序列辨識編號:32之至少15個連續核苷酸(例如至少19個連續核苷酸)的片段;序列辨識編號:32之至少15個連續核苷酸的片段之互補物;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:32;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:32;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:32;以及一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:32。在特定具體例中,一種半翅目害蟲接觸或攝取該經單離的多核苷酸抑制了該害蟲的生長、發育、生殖及/或取食。
於一些具體例中,本發明之一種經單離的核酸分子可以包含選自於下列所組成的群組之至少一個(例如,一個、二個、三個、或更多個)多核苷酸:序列辨識編號:43;序列辨識編號:43之互補物;序列辨識編號:44;序列辨識編號:44之互補物;序列辨識編號:45;序列辨識編號:45之互補物;序列辨識編號:46;序列辨識編號:46之互 補物;序列辨識編號:47;序列辨識編號:47之互補物;序列辨識編號:48;序列辨識編號:48之互補物;序列辨識編號:49;序列辨識編號:49之互補物;序列辨識編號:50;序列辨識編號:50之互補物;序列辨識編號:51;序列辨識編號:51之互補物;序列辨識編號:52;序列辨識編號:52之互補物;序列辨識編號:53;序列辨識編號:53之互補物;序列辨識編號:54;序列辨識編號:54之互補物;序列辨識編號:55;序列辨識編號:55之互補物;序列辨識編號:56;序列辨識編號:56之互補物;序列辨識編號:57;序列辨識編號:57之互補物;序列辨識編號:58;序列辨識編號:58之互補物;序列辨識編號:59;序列辨識編號:59之互補物;序列辨識編號:60;序列辨識編號:60之互補物;序列辨識編號:61;序列辨識編號:61之互補物;序列辨識編號:62;序列辨識編號:62之互補物;序列辨識編號:68;序列辨識編號:68之互補物;序列辨識編號:69;序列辨識編號:69之互補物;序列辨識編號:70;序列辨識編號:70之互補物;序列辨識編號:71;序列辨識編號:71之互補物;序列辨識編號:72;序列辨識編號:72之互補物;一種於半翅目昆蟲內從一基因轉錄的多核苷酸,該多核苷酸包含:序列辨識編號:1,序列辨識編號:3,序列辨識編號:8,序列辨識編號:10,序列辨識編號:12,序列辨識編號:14,序列辨識編號:16,序列辨識編號:17,序列辨識編號:18,序列辨識編號:19,序列辨識編號:30,序列辨識編號:32,序列辨 識編號:63,序列辨識編號:64,序列辨識編號:65,序列辨識編號:66,或是序列辨識編號:67;一種於半翅目昆蟲內從一基因轉錄的多核苷酸之互補物,該多核苷酸包含:序列辨識編號:1,序列辨識編號:3,序列辨識編號:8,序列辨識編號:10,序列辨識編號:12,序列辨識編號:14,序列辨識編號:16,序列辨識編號:17,序列辨識編號:18,序列辨識編號:19,序列辨識編號:30,序列辨識編號:32,序列辨識編號:63,序列辨識編號:64,序列辨識編號:65,序列辨識編號:66,或是序列辨識編號:67;一種於半翅目昆蟲內從一基因轉錄的多核苷酸之至少15個連續核苷酸的片段,該多核苷酸包含:序列辨識編號:1,序列辨識編號:3,序列辨識編號:8,序列辨識編號:10,序列辨識編號:12,序列辨識編號:14,序列辨識編號:16,序列辨識編號:17,序列辨識編號:18,序列辨識編號:19,序列辨識編號:30,序列辨識編號:32,序列辨識編號:63,序列辨識編號:64,序列辨識編號:65,序列辨識編號:66,或是序列辨識編號:67;以及一種於半翅目昆蟲內從一基因轉錄的多核苷酸之至少15個連續核苷酸的片段之互補物,該多核苷酸包含:序列辨識編號:1,序列辨識編號:3,序列辨識編號:8,序列辨識編號:10,序列辨識編號:12,序列辨識編號:14,序列辨識編號:16,序列辨識編號:17,序列辨識編號:18,序列辨識編號:19,序列辨識編號:30,序列辨識編號:32,序列辨識編號:63,序列辨識編號:64,序列辨識編號:65,序 列辨識編號:66,或是序列辨識編號:67。在特定具體例中,一種半翅目害蟲接觸或攝取該經單離的多核苷酸抑制了該害蟲的生長、發育、生殖及/或取食。在一些具體例中,昆蟲接觸或攝取發生在經由取食包含該iRNA之植物材料或是誘餌。在一些具體例中,昆蟲接觸或攝取發生在經由用包含該iRNA之組成物來噴灑含有該昆蟲之一植物。
在一些具體例中,本發明的核酸分子可包含至少一(例如一、二、三或更多)DNA(等),該者能夠在一細胞或微生物中表現為iRNA分子,以抑制靶定基因在半翅目害蟲之細胞、組織或器官中的表現。此(等)DNA可能可操縱地鏈接到在包含該DNA分子之細胞中作用的啟動子,以引發或增強能夠形成dsRNA分子(等)之編碼的RNA之轉錄作用。在一個具體例中,該至少一(例如一、二、三、或更多)DNA(等)可衍生自下列之多核苷酸:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,以及序列辨識編號:67。序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,以及序列辨識編號:67之衍生物,包括此等多核苷酸之片段。在一些具體例中,此種片段可能包含,舉例而言下列之至少大約15個 連續核苷酸:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,或序列辨識編號:67,或其等之互補物。因此,此種片段可能包含,舉例而言:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,或序列辨識編號:67之15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,40,50,60,70,80,90,100,110,120,130,140,150,160,170,180,190,200或更多個連續的核苷酸,或是其等之互補物。在一些實例中,此種片段可能包含,舉例而言,序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,或序列辨識編號:67之至少19個連續核苷酸(例如19,20,21,22,23,24,25,26,27,28,29或30個連續核苷酸),或是其等之互補物。
一些具體例包含引入部分或完全穩定的dsRNA分子到一種半翅目害蟲中,以抑制一靶定基因在該半翅目害蟲之細胞、組織或器官中的表現。當表現為一種iRNA分 子(例如dsRNA、siRNA、miRNA、shRNA及hpRNA),並由一種半翅目害蟲攝取時,含有序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67;以及其等之互補物中任一者的一個或多個片段之多核苷酸,可能造成半翅目害蟲死亡、發育停止、生長抑制、性別比例變化、窩卵數(brood size)的縮小、停止感染及/或停止取食之一者或多者。在特定例子中,含有序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67;以及其等之互補物中任一者的一個或多個片段之多核苷酸(例如包括約15個至約300個核苷酸之多核苷酸),會造成害蟲現存一代生產後續世代害蟲的能力降低。
在某些具體例中,本發明所提供的dsRNA分子包含多核苷酸,該多核苷酸互補於來自一靶定基因之轉錄本,該靶定基因包含序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67,及/或互補於序列辨識編號: 1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67的片段之多核苷酸,該靶定基因在一種半翅目害蟲中的抑制作用引致對該害蟲或該害蟲後代之生長、發育、或其他生物功能必要的多肽或多核苷酸劑的降低或移除。一選擇的多核苷酸可以對下列展現出從約80%至約100%的序列同一性:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,或序列辨識編號:67,序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,或是序列辨識編號:67之連續片段,或前述任一者之互補物。舉例而言,一選定的多核苷酸對下列可展現出79%;80%;約81%;約82%;約83%;約84%;約85%;約86%;約87%;約88%;約89%;約90%;約91%;約92%;約93%;約94%;約95%;約96%;約97%;約98%;約98.5%;約99%;約99.5%;或約100%的序列同一性:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號: 30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,或是序列辨識編號:67,序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,或是序列辨識編號:67之連續片段,或前述任一者之互補物。
在一些具體例中,一種能夠在細胞或微生物中表現如一種iRNA分子以抑制靶定基因表現的DNA分子,可能包含一單一多核苷酸,其係特異性地互補於一種或多種靶定半翅目害蟲物種中發現之一種天然多核苷酸的全部或部分,或是該DNA分子可以從數個這種特異性地互補的多核苷酸而建構為一種嵌合體(chimera)。
在一些具體例中,一核酸分子可能包含由一種"鏈接子"分隔的第一及第二多核苷酸。一鏈接子可能為一區域,其包含當所欲時在該第一及第二多核苷酸之間促進二級結構形成的任何核苷酸序列。在一具體例中,該鏈接子係為mRNA之意義或反義編碼多核苷酸的一部分。該鏈接子可能任擇地包含能夠共價鏈接至一核酸分子的核苷酸或其等之同源的任何組合。在一些具體例中,該鏈接子可以包含一內含子(例如作為ST-LS1內含子)。
舉例而言,在一些具體例中,該DNA分子可能包含一種編碼一種或多種不同的RNA分子之多核苷酸,其中 該不同的RNA分子每一者包含一第一多核苷酸及一第二多核苷酸,其中該第一及第二多核苷酸係彼此互補的。該第一及第二多核苷酸可藉由一鏈接子而在一種RNA分子內連接。該鏈接子可能構成該第一多核苷酸或該第二多核苷酸的一部分。包含該第一及第二核苷酸多核苷酸之RNA分子的表現可能導致本發明之dsRNA分子的形成,藉由該第一及第二核苷酸多核苷酸之特異性分子內鹼基配對。該第一多核苷酸或該第二多核苷酸可能為實質上同一於一種半翅目害蟲天然的多核苷酸(例如一靶定基因,或轉錄的非編碼多核苷酸)、其等之衍生物或互補於此的多核苷酸。
dsRNA核酸分子包含雙股的聚合核糖核苷酸,且可能包括對該磷酸糖主幹或核苷任一的修飾。可以打造RNA結構中的修飾以允許特定的抑制。在一具體例中,dsRNA分子可以透過無處不在的酶促過程修飾,以便可以生成siRNA分子。此酶促過程可能利用一種核糖核酸酶III酵素,諸如真核生物中之DICER,在活體外或活體內進行。參閱Elbashir等人之(2001)Nature 411:494-8;及Hamilton與Baulcombe(1999)Science 286(5441):950-2。DICER或功能均等的核糖核酸酶III酵素切割較大的dsRNA股及/或hpRNA分子成為較小的寡核苷酸(例如siRNA),其中每一者的長度係為約19-25個核苷酸。由這些酵素所產生之siRNA分子具有2至3個核苷酸之3'突出端,及5'磷酸酯末端與3'羥基末端。藉由核糖核酸酶III酵素生成之siRNA分子在細胞中解開並分開為單股RNA。然後該siRNA分子與一靶定基 因轉錄的RNA進行特異性地雜交,而兩個RNA分子隨後係藉由一種固有的細胞RNA降解機制而降解。此過程可能引致該靶定基因編碼之RNA在該靶定生物體中的有效降解或移除。結果係該靶定基因的轉錄後靜默。在一些具體例中,從異源性核酸分子透過內源性核糖核酸酶III酵素所產生的siRNA分子可以有效地媒介半翅目害蟲中靶定基因的向下調控。
在一些具體例中,本發明之一種核酸分子可以包括至少一非天然存在的多核苷酸,該者可以轉錄成能夠透過分子間雜交而在活體內形成dsRNA分子的一單股RNA分子。此種dsRNA典型地自組裝,且可以在一種半翅目害蟲營養源中提供,以實現一靶定基因的轉錄後抑制。在這些及進一步具體例中,本發明之核酸分子可以包含兩種不同的非天然存在的多核苷酸,其中每一者係特異性地互補於在一種半翅目害蟲中不同的靶定基因。當此一核酸分子係以一種dsRNA分子提供至一半翅目害蟲時,該dsRNA分子抑制害蟲中至少兩種不同的靶定基因之表現。
C.獲得核酸分子
可以使用半翅目害蟲中的各種多核苷酸做為用於設計本發明之核酸分子的標靶,諸如iRNAs及編碼iRNA之DNA分子。然而,多核苷酸之選擇係非直截了當的過程。在半翅目害蟲中僅有很小數目的多核苷酸會是有效的標靶。舉例而言,無法確實的預測一特定的多核苷酸是否可以藉由本發明之核酸分子有效地向下調控,或者一特定多核苷 酸的向下調控是否將在半翅目害蟲之生長、活力、繁殖及/或生殖上具有不利的效果。絕大多數的害蟲多核苷酸,諸如由此分離的EST(舉例而言,於美國專利第7,612,194號中所列出之鞘翅目害蟲多核苷酸),在害蟲的生長、活力、繁殖及/或生殖上不具有不利的效果。該等多核苷酸何者可能在半翅目害蟲具有不利的效果,能夠在重組技術中使用用於在宿主植物中表現互補於此種多核苷酸的核酸分子,並且依靠取食在害蟲上提供不利的效果而不會對宿主植物造成危害,兩者皆為不可預測的。
在一些具體例中,本發明之核酸分子(例如在半翅目害蟲之宿主植物中提供的dsRNA分子)係被選擇以靶定cDNA,其編碼對半翅目害蟲生殖及/或發育必要之蛋白質或部分的蛋白質,諸如涉及代謝或分解生化途徑、細胞分裂、生殖、能量代謝、胚胎發育、若蟲發育、轉錄調控、及之類的多肽。如於此所描述,一種靶定生物體接觸含有一個或多個dsRNA的組成物,其中該一個或多個dsRNA中至少一區段係特異性地互補於該靶定害蟲生物體細胞中製造的至少實質上同一的RNA區段,可以引致交配、產卵或是生產活的後代能力的失敗或減少。一種衍生自半翅目害蟲之多核苷酸,DNA或RNA任一,可以使用以建構抗害蟲侵擾的植物細胞。該半翅目害蟲的宿主植物(例如玉蜀黍(Z.mays)或大豆(G.max)),舉例而言,可以經轉形以含有如於此所提供、衍生自半翅目害蟲的一個或多個多核苷酸。轉形到宿主的多核苷酸可以編碼一個或多個RNA,其在該轉 形宿主之內的細胞或生物液中形成一種dsRNA結構,因此假若/當該害蟲與該基因轉殖宿主形成一種營養關係時,可獲得該dsRNA。此可能引致該害蟲細胞中一個或多個基因表現的箝制,以及最終抑制生殖及/或發育。
因此,在一些具體例中,一種本質上涉及一種半翅目害蟲的生長、發育及生殖之基因係為靶定的。其他在本發明中使用的靶定基因可能包括,舉例而言,那些在半翅目害蟲之活力、運動、移動、遷移、生長、發育、感染性及取食部位建立中扮演重要角色者。一種靶定基因因而可能為一種管家基因(housekeeping gene)或一種轉錄因子。此外,在本發明中使用之半翅目害蟲多核苷酸亦可能衍自於一植物、病毒、細菌或昆蟲基因的同源物(例如異種同源物(ortholog)),該者之功能對熟習該項技藝者係為知悉的,且該者之多核苷酸與靶定半翅目害蟲之基因組中的靶定基因係特異性地雜交的。用一種已知核苷酸序列、藉由雜交來辨識基因之同源物的方法對熟習該項技藝人士係知悉的。
在一些具體例中,本發明提供用於獲得一核酸分子的方法,該核酸分子包含用於製造iRNA(例如dsRNA、siRNA、miRNA、shRNA及hpRNA)分子之多核苷酸。一個這樣的具體例包含:(a)依靠dsRNA-媒介基因箝制,分析一個或多個靶定基因(等)在半翅目害蟲中的表現、功能及表型;(b)以一探針探測cDNA或gDNA庫,其中該探針包含源自靶定半翅目害蟲之多核苷酸的全部或部分或其等之同源物, 該核苷酸序列的全部或部分或其等之同源物在dsRNA-媒介的箝制分析中展示改變(例如降低)的生殖或發育表型;(c)辨識與該探針特異性雜交之DNA選殖體;(d)單離在步驟(b)中辨識之該DNA選殖體;(e)定序包含在步驟(d)中單離之該選殖體的cDNA或gDNA片段,其中該經定序的核酸分子包含全部或大部分的RNA序列或其等的同源物;及(f)化學合成一基因或siRNA、miRNA、hpRNA、mRNA、shRNA或dsRNA的全部或大部分。
在進一步具體例中,一種用於獲得一核酸片段的方法,該核酸片段包含用於製造大部分的iRNA(例如dsRNA、siRNA、miRNA、shRNA及hpRNA)分子的多核苷酸,該方法包括:(a)合成第一及第二寡核苷酸引子,其特異性地互補於源自一種靶定半翅目害蟲的多核苷酸之一部分;以及(b)使用步驟(a)之該第一及第二寡核苷酸引子來擴增一種選殖載體中存在的cDNA或是gDNA插入子,其中該經擴增的核酸分子包含大部分的siRNA、miRNA、hpRNA、mRNA、shRNA或是dsRNA分子。
本發明之核酸可以藉由許多方法予以單離、擴增或產生。舉例而言,一種iRNA(例如dsRNA、siRNA、miRNA、shRNA及hpRNA)分子可能藉由PCR擴增一種衍生自gDNA或cDNA庫的靶定多核苷酸(例如一靶定基因或一靶定轉錄的非編碼多核苷酸),或其等之部分而獲得。DNA或RNA可能從一靶定生物體萃取,且核酸庫可能使用該技藝一般技藝人士所知悉的方法由此而製備。從一靶定生物體生成之 gDNA或cDNA庫可以使用於PCR擴增及靶定基因之定序。已確認的PCR產物可以使用做為一模板,用於以最小啟動子(minimal promoter)在活體外轉錄以生成意義及反義RNA。或者,核酸分子可能藉由許多技術的任一者予以合成(參閱,例如Ozaki等人之(1992)Nucleic Acids Research,20:5205-5214;及Agrawal等人之(1990)Nucleic Acids Research,18:5419-5423),包括使用一種自動DNA合成儀(舉例而言,P.E.Biosystems公司(加州福斯特城)之392或394型DNA/RNA合成儀),使用標準化學品,諸如亞磷醯胺(phosphoramidite)化學品。參閱,例如,Beaucage等人之(1992)Tetrahedron,48:2223-2311;美國專利第4,980,460號、第4,725,677號、第4,415,732號、第4,458,066號及第4,973,679號。亦可以採用引致非天然主幹基團之任擇的化學品,諸如硫代磷酸酯(phosphorothioate)、胺基磷酸酯(phosphoramidate)及之類。
本發明之RNA、dsRNA、siRNA、miRNA、shRNA或hpRNA分子可能由熟習該項技藝者透過手動或自動反應予以化學或酶促製造,或在活體內於包含一種核酸分子的細胞中製造,該核酸分子包含編碼該RNA、dsRNA、siRNA、miRNA、shRNA或hpRNA分子之多核苷酸。RNA亦可以藉由部分或總有機合成予以製造;任何修飾的核糖核苷酸可以藉由活體外酶促或是有機合成來引入。一種RNA分子可以藉由一細胞RNA聚合酶或一噬菌體RNA聚合酶(例如T3RNA聚合酶、T7RNA聚合酶及SP6RNA聚合酶)予以合成。 對多核苷酸之選殖及表現有用的表現建構物在本技藝中係已知的。參閱,例如國際PCT公開案第WO97/32016號;以及美國專利第5,593,874號、第5,698,425號、第5,712,135號、第5,789,214號及第5,804,693號。化學合成或藉由活體外酶促合成的RNA分子可能在引入到一細胞之前純化。舉例而言,RNA分子可以藉由以一溶劑或樹脂予以提取、沈澱、電泳法、色層分析法,或其等之一組合,而從一混合物中純化。或者,化學合成或藉由活體外酶促合成的RNA分子可能沒有純化或最小純化而使用,舉例而言,以避免因為樣品處理的損失。該RNA分子可能乾燥用於儲存,或溶解在一水溶液中。該溶液可以含有緩衝液或鹽類以促進dsRNA分子雙聯體股的黏合,及/或穩定。
在具體例中,一種dsRNA分子可能由一種單一的自我互補RNA股或從兩個互補的RNA股予以形成。dsRNA分子可能在活體內或在活體外合成。一種細胞內源性RNA聚合酶可能媒介一種或兩種RNA股在活體內的轉錄,或是可使用選殖的RNA聚合酶以媒介活體內或活體外的轉錄。在一種半翅目害蟲中靶定基因的轉錄後抑制可能為宿主靶定的,其係藉由在該宿主之一器官、組織或細胞類型中的特異性轉錄(例如藉由使用一種組織特異性啟動子);該宿主中環境條件的刺激(例如藉由使用對感染、壓力、溫度及/或化學誘導劑回應的一種誘導型啟動子);及/或於該宿主之發育階段或年齡的遺傳工程轉錄(例如藉由使用發育階段特異性啟動子)。無論在活體外或活體內轉錄,形成dsRNA 分子的RNA股可能或可能不能夠予以多腺苷酸化,且可能或可能不能藉由細胞的轉譯裝置予以轉譯成多肽。
D.重組載體及宿主細胞轉形
在一些具體例中,本發明亦提供一種DNA分子,用於引入至一細胞中(例如一細菌細胞、酵母細胞或植物細胞),其中該DNA分子包含一種多核苷酸,該多核苷酸一旦表現成RNA且由半翅目害蟲攝入,便在該害蟲之細胞、組織或器官中實現靶定基因的箝制。因此,一些具體例提供一種重組核酸分子,其包含能夠在一植物細胞中表現為一種iRNA(例如dsRNA、siRNA、miRNA、shRNA及hpRNA)分子的多核苷酸,以抑制靶定基因在半翅目害蟲中的表現。為了引發或增強表現,此種重組的核酸分子可能包含一種或多種調控元素,該調控元素可以可操縱地鏈接到能夠表現為iRNA之多核苷酸。在植物中表現一種基因箝制分子的方法係為已知的,且可能使用來表現本發明之一種多核苷酸。參閱,例如國際PCT公開案第WO06/073727號;以及美國專利公開案第2006/0200878 A1號)。
在特定具體例中,本發明之一種重組DNA分子可以包含一種多核苷酸,其編碼可能形成一種dsRNA分子的RNA。此種重組DNA分子可以編碼會形成dsRNA分子之RNA,該者一旦攝入,能夠抑制半翅目害蟲細胞中內源性靶定基因(等)之表現。在許多具體例中,轉錄的RNA可以形成一種dsRNA分子,其可以穩定形式來提供;例如以一髮夾及莖環結構。
在任擇的具體例中,一種dsRNA分子之一股可以藉由從一種多核苷酸轉錄而形成,該多核苷酸實質上係同源於選自於下列所組成的群組之多核苷酸所編碼的RNA:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67;序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67之互補物;序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67之至少15個連續核苷酸的片段;序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67之至少15個連續核苷酸的片段之互補物;一種半翅目昆蟲(例如BSB)之編碼多核苷酸,其包含序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序 列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67;以及一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67。
在特定具體例中,一種編碼能形成dsRNA分子之RNA的重組DNA分子可以包含一編碼區域,其中至少二種多核苷酸係配置成為藉此,相對於至少一啟動子,一種多核苷酸係處於意義定向(sense orientation),且另一種多核苷 酸係處於在反義定向,其中該意義多核苷酸與該反義多核苷酸係藉由例如,從約五(~5)至約一千(~1000)個核苷酸的鏈接子予以鏈接或連接。該鏈接子可以在該意義及反義多核苷酸之間形成一個環。該意義多核苷酸或該反義多核苷酸可能實質上同源於一靶定基因所編碼之RNA(例如一種染色質重塑基因,其含有序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,或序列辨識編號:67),或其等之片段。然而,在一些具體例中,一種重組DNA分子可以編碼一種能形成dsRNA分子之RNA但不具鏈接子。在具體例中,一意義編碼多核苷酸及一反義編碼多核苷酸的長度可能不同。
辨識為在半翅目害蟲上具有不利影響,或是就該半翅目害蟲而言具有植物防護效果者之多核苷酸,可以透過在本發明的重組核酸分子中創造適當的表現卡匣(expression cassette)而輕易地併入被表現的dsRNA分子內。舉例而言,此種多核苷酸可以表現為具有莖環結構之髮夾,其係藉由取得第一區段,其係相應於一靶定基因多核苷酸所編碼之RNA(例如一種染色質重塑基因,其含有序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,或是序列辨識編 號:67及其等之片段);將此多核苷酸鏈接至不同源或不互補於該第一區段的第二區段鏈接子區域;以及將此鏈接至第三區段,其中該第三區段的至少一部分係實質上互補於該第一區段。此一建構物藉由該第一區段與該三區段的分子內鹼基對而形成一種莖環結構,其中該環結構形成包含該第二區段。參閱,例如美國專利公開案第2002/0048814號及第2003/0018993號;以及國際PCT專利公開案第WO94/01550號以及第WO98/05770號。一種dsRNA分子可能生成為,舉例而言雙股結構形式,諸如莖環結構(例如髮夾),從而由於靶定基因的片段之共同表現於譬如額外的植物表現卡匣上,而使靶定天然半翅目害蟲多核苷酸的siRNA之製造提升,該者導致增強的siRNA生產,或是降低甲基化,以防止該dsRNA髮夾啟動子的轉錄基因靜默作用。
本發明之具體例包括引入本發明之一種重組核酸分子到一植物內(亦即轉形),以實現一種或多種iRNA分子表現之半翅目害蟲防護的位準。一種重組DNA分子可以為,舉例而言,一載體,諸如一線形或一環狀閉合質體。載體系統可能為一種單一載體或質體,或二個或多個一起含有要引入宿主基因組內之總DNA的載體或質體。此外,載體可能為一表現載體。本發明之核酸可以,舉例而言,適當地插入到在一種於合適啟動子控制下的載體之內,其中該啟動子係在一種或多種宿主中作用以驅動鏈接的編碼多核苷酸或其它DNA元素的表現。許多載體可用於此目的,而適當載體之選擇主要將取決於要插入到該載體的核酸大 小,及該載體要轉形的特定宿主細胞。每一載體取決其功能(例如擴增DNA或表現DNA)及其相容的特定宿主細胞,而含有各種組份。
為了傳遞半翅目害蟲防護性至一基因轉殖植物,一種重組DNA可以在重組植物的組織或流體內,舉例而言,轉錄成一種iRNA分子(例如會形成一種dsRNA分子的RNA分子)。一種iRNA分子可以包含一種多核苷酸,該多核苷酸實質上同源且特異性地雜交至可能會造成宿主植物物種損害之半翅目害蟲之內相應的轉錄多核苷酸。該半翅目害蟲可以舉例而言,藉由攝入包含該iRNA分子之基因轉殖宿主植物的細胞或流體,而接觸在該基因轉殖宿主植物細胞中轉錄的iRNA分子。因此,侵擾該基因轉殖宿主植物之半翅目害蟲內的靶定基因表現係由iRNA分子予以箝制。在一些具體例中,靶定基因在該靶定半翅目害蟲中表現的箝制作用可能引致該植物能耐受該害蟲的攻擊。
為了能夠遞送iRNA分子到與本發明重組核酸分子業已轉形之植物細胞為營養關係之一種半翅目害蟲,必須能在該植物細胞中表現(亦即,轉錄)iRNA分子。因此,一種重組核酸分子可能包含本發明的多核苷酸,其可操縱地鏈接到在宿主細胞內作用之一個或多個調控元素,諸如於宿主細胞諸如細菌細胞中作用的異源性啟動子元素,其中該核酸分子係予以擴增,及該核酸分子係被表現於一植物細胞中。
適合在本發明之核酸分子中使用的啟動子包括 那些誘導型、病毒、合成,或持續表現型,在本技藝中全部係為眾所周知的。說明此種啟動子之非限制性例子包括美國專利第6,437,217號(玉蜀黍(maize)RS81啟動子);第5,641,876號(水稻肌動蛋白啟動子);第6,426,446號(玉蜀黍(maize)RS324啟動子);第6,429,362號(玉蜀黍(maize)PR-1啟動子);第6,232,526號(玉蜀黍(maize)A3啟動子);第6,177,611號(持續表現型玉蜀黍(maize)啟動子);第5,322,938號、第5,352,605號、第5,359,142號及第5,530,196號(CaMV 35S啟動子);第6,433,252號(玉蜀黍(maize)L3油膜蛋白(oleosin)啟動子);第6,429,357號(水稻肌動蛋白2啟動子及水稻肌動蛋白2內含子);第6,294,714號(光誘導型啟動子);第6,140,078號(鹽誘導型啟動子);第6,252,138號(病原誘導型啟動子);第6,175,060號(缺磷誘導型啟動子);第6,388,170號(雙向啟動子);第6,635,806號(γ-醇溶蛋白(coixin)啟動子);及美國專利公開案第2009/757,089號(玉蜀黍(maize)葉綠體醛醇縮酶啟動子)。額外的啟動子包括胭脂鹼(nopaline)合成酶(NOS)啟動子(Ebert等人之(1987)Proc.Natl.Acad.Sci.USA 84(16):5745-9)及章魚鹼合成酶(OCS)啟動子(該等係於農桿腫瘤菌(Agrobacterium tumefaciens)之腫瘤誘導質體上實行);花椰菜嵌紋病毒(caulimovirus)啟動子,諸如花椰菜嵌紋病毒(cauliflower mosaic virus)(CaMV)19S啟動子(Lawton等人之(1987)Plant Mol.Biol.9:315-24);CaMV 35S啟動子(Odell等人之(1985)Nature 313:810-2);玄參花嵌紋病毒(figwort mosaic virus)35S-啟動子(Walker等人之(1987)Proc.Natl.Acad.Sci.USA 84(19):6624-8);蔗糖合成酶啟動子(Yang及Russell之(1990)Proc.Natl.Acad.Sci.USA 87:4144-8);R基因複合體啟動子(Chandler等人之(1989)Plant Cell 1:1175-83);葉綠素a/b結合蛋白基因啟動子;CaMV 35S(美國專利第5,322,938號、第5,352,605號、第5,359,142號及第5,530,196號);FMV 35S(美國專利第6,051,753號及第5,378,619號);PC1SV啟動子(美國專利第5,850,019號):SCP1啟動子(美國專利第6,677,503號);及AGRtu.nos啟動子(GenBank®登錄號V00087;Depicker等人之(1982)J.Mol.Appl.Genet.1:561-73;Bevan等人之(1983)Nature 304:184-7)。
在特定具體例中,本發明之核酸分子包含一種組織特異性啟動子,諸如一種葉片特異性啟動子或是花粉特異性啟動子。在一些具體例中,根據本發明用於半翅目害蟲控制之多核苷酸或片段可以選殖在兩個組織特異性啟動子之間,其中該兩啟動子相對於該多核苷酸或片段係定向在相反的轉錄方向,且該多核苷酸或片段在基因轉殖植物細胞中為可操縱的並在其中表現,以在該基因轉殖植物細胞中製造RNA分子其隨後可能形成dsRNA分子,如前文所描述。在植物組織中表現之iRNA分子可能由一半翅目害蟲攝入,藉由此,實現靶定基因表現之箝制。
可以選擇性地操縱鏈接至一種感興趣的核酸分子之額外的調控元素包括5'UTRs,其位於一啟動子元素及一編碼多核苷酸之間、作用為一種轉譯前導子元素。該轉 譯前導子元素係存在於完全加工的mRNA中,且其可能影響初級轉錄本的加工,及/或RNA的穩定性。轉譯前導子元素的例子包括玉蜀黍(maize)及矮牽牛(petunia)熱休克蛋白質前導子(美國專利第5,362,865號)、植物病毒外殼蛋白質前導子、植物核酮糖雙磷酸羧化酶前導子,以及其他。參閱,例如Turner及Foster之(1995)Molecular Biotech.3(3):225-36。5'UTRs之非限制性例子包括GmHsp(美國專利第5,659,122號);PhDnaK(美國專利第5,362,865號);AtAnt1;TEV(Carrington及Freed之(1990)J.Virol.64:1590-7);及AGRtunos(GenBankTM登錄號V00087;以及Beva等人之(1983)Nature 304:184-7)。
可能選擇性地操縱鏈接至一種感興趣的核酸分子之額外的調控序列還包括3'非轉譯元素、3'轉錄終止區域,或多腺苷酸化區域。這些係位於一種多核苷酸下游的遺傳元素,且包括多核苷酸其提供多腺苷酸化訊號,及/或其他能夠影響轉錄或mRNA加工的調控訊號。多腺苷酸化訊號在植物中作用以造成該mRNA前驅體3'端聚腺苷酸核苷酸的添加。該多腺苷酸化元素可以衍生自各種植物基因,或是衍生自T-DNA基因。3'轉錄終止區域之非限制性例子為胭脂鹼合成酶3'區域(nos 3';Fraley等人之(1983)Proc.Natl.Acad.Sci.USA 80:4803-7)。使用不同的3'非轉譯區域之一個例子係提供於Ingelbrecht等人之(1989)Plant Cell 1:671-80中。多腺苷酸化訊號的非限制性例子包括一者,其源自豌豆(Pisum sativum)RbcS2基因(Ps.RbcS2-E9;Coruzz 等人之(1984)EMBO J.3:1671-9)以及AGRtu.nos(GenBank®登錄號E01312)。
一些具體例可以包括一種植物轉形載體,其包含經單離的及純化之DNA分子,該DNA分子包含至少一個上文描述、可操縱地鏈接到本發明之一種或多種多核苷酸的調控元素。當表現時,該一種或多種多核苷酸引致一種或多種RNA分子(等),其包含特異性地互補於半翅目害蟲中的RNA分子之全部或部分的多核苷酸。因此,該(等)多核苷酸可以包含一區段,其編碼存在於一靶定半翅目害蟲RNA轉錄本中之一多核糖核苷酸(polyribonucleotide)之全部或一部分,且可以包含一靶定害蟲轉錄本之全部或一部分的反向重複。一種植物轉形載體可能含有特異性地互補於超過一種靶定多核苷酸的多核苷酸,從而允許製造超過一種的dsRNA,用於抑制靶定半翅目害蟲之一種或多種族群或物種之細胞中二種或多種基因的表現。特異性地互補於存在不同基因中之多核苷酸的多核苷酸區段,可以組合成一單一複合核酸分子,用於在一基因轉殖植物中表現。此等區段可能為連續的或是由鏈接子分隔開。
在一些具體例中,一種已經含有本發明至少一種多核苷酸(等)的本發明質體,可以藉由在相同質體中依序插入額外的多核苷酸(等)而修飾,其中該(等)額外的多核苷酸係如初始的至少一種多核苷酸(等)予以可操縱地鏈接到相同的調控元素。在一些具體例中,一核酸分子可能設計用於抑制多重靶定基因。在一些具體例中,被抑制的多重基 因可以從相同的半翅目害蟲物種獲得,該者可能增強該核酸分子的有效性。在其他的具體例中,該基因可以衍生自不同的昆蟲(例如,半翅目)害蟲,該者可能擴大該(等)藥劑係為有效的害蟲之範圍。當多重基因係靶定用於箝制或表現及箝制之組合時,可以遺傳工程製造一種多順反子DNA元素。
本發明之重組核酸分子或載體可能包含一種可選擇的標記,該者賦予轉形細胞,諸如一植物細胞,一種可選擇的表型。可選擇的標記亦可以使用以選擇包含本發明重組核酸分子的植物或植物細胞。該標記可能編碼殺生物劑抗性、抗生素抗性(例如卡那黴素(kanamycin)、Geneticin(G418)、博來黴素(bleomycin)、潮黴素(hygromycin)等等)、或除草劑耐受性(例如嘉磷塞(glyphosate)等等)。可選擇標記之例子包括,但不限於:neo基因,該者編碼卡那黴素抗性且可以使用卡那黴素、G418等等予以選擇;bar基因,該者編碼雙丙氨磷(bialaphos)抗性;一種突變的EPSP合成酶基因,該者編碼嘉磷塞(glyphosate)耐受性;一種腈合成酶(nitrilase)基因,該者賦予對溴苯腈(bromoxynil)的抗性;一種突變乙醯乳酸合成酶(ALS)基因,該者賦予咪唑啉酮(imidazolinone)或磺醯脲素抗性;及一種抗胺甲基葉酸(methotrexate)DHFR基因。多重可選擇的標記係為可用的,該者賦予對以下之抗性:胺芐青黴素(ampicillin)、博萊黴素(bleomycin)、氯黴素、建他黴素(gentamycin)、潮黴素(hygromycin)、卡那黴素(kanamycin)、林可黴素(lincomycin)、 胺甲基葉酸、草胺膦(phosphinothricin)、嘌呤黴素(puromycin)、觀黴素(spectinomycin)、利福平(rifampicin)、鏈黴素及四環黴素及之類。此種可選擇標記之例子係例示於,例如美國專利第5,550,318號;第5,633,435號;第5,780,708號;以及第6,118,047號。
本發明之重組核酸分子或載體亦可包括一種可篩選標記。可篩選標記可以使用以監控表現。示範性的可篩選標記包括β-葡萄糖醛酸苷酶或uidA基因(GUS),該者編碼各種顯色基質係為已知的酶(Jefferson等人之(1987)Plant Mol.Biol.Rep.5:387-405);R-基因座基因,該者編碼一產物其調控植物組織中花青素(anthocyanin)色素(紅色)的製造(Dellaporta等人之(1988)"Molecular cloning of the maize R-nj allele by transposon tagging with Ac." In 18 th Stadler Genetics Symposium,P.Gustafson and R.Appels,eds.(New York:Plenum),pp.263-82);β-內醯胺酶基因(Sutcliffe等人之(1978)Proc.Natl.Acad.Sci.USA 75:3737-41);一種基因,其編碼各種顯色基質係為已知的酶(例如PADAC,一種顯色頭孢菌素(cephalosporin));一種螢光素酶基因(Ow等人之(1986)Science 234:856-9);一種xylE基因,其編碼可以轉換顯色兒茶酚的兒茶酚雙加氧酶(Zukowski等人之(1983)Gene 46(2-3):247-55);一種澱粉酶基因(Ikatu等人之(1990)Bio/Technol.8:241-2);一種酪胺酸酶基因,該者編碼能夠氧化酪胺酸成為DOPA及多巴醌(dopaquinone)之酶,後者轉而縮合成黑色素(Katz等人之 (1983)J.Gen.Microbiol.129:2703-14);以及α-半乳糖苷酶。
在一些具體例中,重組核酸分子,如前文所描述,可以用於創造基因轉殖植物及在植物中表現異源性核酸的方法中使用,以製備對半翅目害蟲展示降低的感受性之基因轉殖植物。植物轉形載體可以,舉例而言,藉由將編碼iRNA分子的核酸分子插入到植物轉形載體內並將它們引入到植物內來製備。
適合用於轉形宿主細胞的方法包括DNA可以被引入到一種細胞中的任何方法,諸如藉由原生質體(protoplast)的轉形(參閱,例如美國專利第5,508,184號),藉由乾燥/抑制(desiccation/inhibition)媒介的DNA攝入(參閱,例如Potrykus等人之(1985)Mol.Gen.Genet.199:183-8),藉由電穿孔(參閱,例如美國專利第5,384,253號),藉由以碳化矽纖維攪拌(參閱,例如美國專利第5,302,523號及第5,464,765號),藉由農桿菌媒介轉形(參閱,例如美國專利第5,563,055號;第5,591,616號;第5,693,512號;第5,824,877號;第5,981,840號;及第6,384,301號)以及藉由加速的DNA包覆顆粒(參閱,例如美國專利第5,015,580號;第5,550,318號;第5,538,880號;第6,160,208號;第6,399,861號;及第6,403,865號)等等。對轉形玉米特別有用的技術係描述,舉例而言,於美國專利第7,060,876號及第5,591,616號;以及國際PCT專利公開案WO95/06722。透過諸如這些技術的應用,幾乎可以穩定地轉形任何物種的細胞。在一些具體例 中,轉形的DNA係整合至宿主細胞的基因組中。在多細胞物種的情況下,基因轉殖細胞可以再生成一基因轉殖生物。這些技術任一者可以使用來製造基因轉殖植物,舉例而言,其包含一種或多種編碼一種或多種iRNA分子的核酸序列在該基因轉殖植物之基因組中。
用於引入一表現載體至植物內最廣泛利用的方法係奠基於農桿菌的天然轉形系統。農桿腫瘤菌(A.tumefaciens)及農桿根毛菌(A.rhizogenes)係為植物病原土壤細菌,其等會使植物細胞基因轉形。農桿腫瘤菌(A.tumefaciens)及農桿根毛菌(A.rhizogenes)的Ti及Ri質體係分別攜帶負責植物基因轉形的基因。Ti(腫瘤誘導)-質體含有被稱為T-DNA的一大區段,該者係轉移到經轉形的植物中。Ti質體之另一區段,Vir區域,係負責T-DNA的轉移。該T-DNA區域係藉由末端重複接壤的。在修飾的雙元載體中,腫瘤誘導基因業已被刪除,而利用Vir區域之功能以轉移由T-DNA交界元素接壤的外來DNA。T-區域亦可能含有用於有效地回收基因轉殖細胞及植物之可選擇的標記,以及一個多重選殖位點用於插入轉移的多核苷酸,諸如編碼核酸的dsRNA。
因此,在一些具體例中,一種植物轉形載體係衍生自農桿腫瘤菌的Ti質體(參閱,例如美國專利第4,536,475號、第4,693,977號、第4,886,937號及第5,501,967號;及歐洲專利第EP 0 122 791號),或衍生自農桿根毛菌的Ri質體。額外的植物轉形載體包括,舉例而言但不限於,以下所描 述的那些:Herrera-Estrella等人之(1983)Nature 303:209-13;Bevan等人之(1983)Nature 304:184-7;Klee等人之(1985)Bio/Technol.3:637-42;及歐洲專利第EP 0 120 516號,及那些衍生自於前述任一者。其他與植物自然交互作用的細菌,諸如中華根瘤菌(Sinorhizobium)、根瘤菌(Rhizobium)及中慢生根瘤菌(Mesorhizobium),可以予以修飾以媒介許多歧異植物的基因轉移。這些植物關聯的共生細菌可以藉由取得無害的Ti質體及一種合適的雙元載體兩者而勝任基因轉移。
在提供外源DNA至接受細胞(recipient cell)之後,轉形細胞通常予以鑑定用於進一步培養及植物再生。為了改良鑑定轉形細胞的能力,可能希望採用一種可選擇或可篩選的標記基因,如先前所陳述,加上用來產生轉形體之轉形載體。在使用一種可選擇標記的情況下,轉形細胞係藉由曝露該細胞到一選擇性藥劑或藥劑等在潛在轉形細胞族群之內予以鑑定。在使用一種可篩選標記的情況下,細胞可能針對該所欲的標記基因性狀來篩選。
在暴露於選擇劑之後仍然存活的細胞,或是於篩選分析中已經評分為陽性的細胞,可以培養於支持植物的再生之培養基內。於一些具體例中,任何適合的植物組織培養基(舉例而言,MS和N6培養基)可以透過含括另外的物質而改良,例如生長調節劑。組織可以維持於帶有生長調節劑的基礎培養基上,直到可得到足夠的組織來開始植物再生工作,或是繼之重複循環的手工選擇,直到組織的形 態適合再生為止(舉例而言,至少2週),接而轉移至有助於莖(shoot)形成的培養基。週期性地轉移培養物直到足夠的莖形成已出現為止。一旦莖形成,將其等轉移至有助於根形成的培養基。一旦足夠的根形成,植物可以轉移至土壤用於進一步的生長和成熟。
為了確認再生的植物內存在一種感興趣核酸分子(舉例而言一種DNA,其編碼抑制靶定基因在半翅目害蟲中表現之一種或多種iRNA分子),可以執行各種各樣的分析。此等分析包括,舉例而言:分子生物分析,例如南方墨點和北方墨點、PCR以及核酸定序;生化分析,例如,舉例而言,透過免疫學的手段(ELISA及/或西方墨點)或是透過酵素功能來偵測蛋白質產物的存在;植物部分的分析,例如葉片或是根分析;以及全株再生植物之表型的分析。
整合品件(Integration events)可以,舉例而言,藉由PCR擴增來分析,例如使用對感興趣核酸分子特異性的寡核苷酸引子。PCR基因分型係理解為包括,但不限於,衍生自經單離的宿主植物癒傷組織的gDNA之聚合酶連鎖反應(PCR)擴增,其中該癒傷組織係預測含有整合至該基因組中之一感興趣核酸分子,繼之標準選殖及定序分析PCR擴增產物。PCR基因分型方法已清楚描述(舉例而言,Rios,G等人之(2002)Plant J.32:243-53),且可能應用到衍生自任何植物物種(例如玉蜀黍(Z.mays)或大豆(G.max))或組織類型的gDNA,包括細胞培養。
一種使用依賴農桿菌轉形方法形成的基因轉殖 植物典型地含有插入到一染色體內的單一重組DNA。該單一重組DNA之多核苷酸係稱為一種"基因轉殖品件"或是"整合品件"。此種基因轉殖植物因為插入的外源性多核苷酸係為異型接合的(heterozygous)。在一些具體例中,一種就轉基因而言為同型接合之基因轉殖植物,可能藉由有性交配(自交)含有一種單一外源性基因之獨立分離體基因轉殖植物到自身而獲得的,舉例而言一種T0植物,以產生T1種子。所產生的四分之一種T1種子就該轉基因而言將為同型接合的。發芽的T1種子引致植物,其可以用於異型合子歧異度測試者,典型地使用允許區別異型合子與同型合子之間(意即,接合子(zygosity)分析)的SNP分析或是熱放大分析。
在特定具體例中,在具有一半翅目害蟲防護效果的植物細胞中,產生至少2、3、4、5、6、7、8、9或是10個或更多個不同的iRNA分子。該iRNA分子(例如dsRNA分子)可能從不同轉形品件中引入之多重核酸來表現,或從在一單一轉形品件中引入之單一核酸來表現的。在一些具體例中,數個iRNA分子係於一單一啟動子的控制下表現。在其他具體例中,數個iRNA分子係於多重啟動子控制下表現。可以表現包含多重多核苷酸之單一iRNA分子,該多重多核苷酸每一者係同源於一種或多種半翅目害蟲之內的不同基因座(舉例而言,由序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編 號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67所界定的基因座),二者均於相同的半翅目害蟲物種中的不同族群,或是在不同物種的半翅目害蟲中。
除了以重組核酸分子直接轉形一種植物之外,基因轉殖植物可以藉由將具有至少一種基因轉殖品件的第一種植物與缺乏此種品件的第二種植物雜交而製備。舉例而言,一種包含編碼一種iRNA分子之多核苷酸的重組核酸分子,可能引入至第一植物品系,其順應於轉形以產生一種基因轉殖植物,該基因轉殖植物可能與第二植物品系雜交以使編碼該iRNA分子之多核苷酸基因滲入(introgress)到該第二植物品系內。
本發明亦包括含有本發明之一種或多種多核苷酸的商品產物。特定具體例包括商品產物其產自於含有本發明之一種或多種多核苷酸的重組植物或種子。含有本發明之一種或多種多核苷酸的一種商品產物係意欲包括,但不僅於,一植物之膳食、油、粉碎或全穀物或種子,或是任何食品產品,其包含一重組植物或種子的任何膳食、油或粉碎或全穀物,其中該重組植物或種子含有本發明之一個或多個多核苷酸。在於此所思量之一種或多種商品或商品產物中偵測本發明之一種或多種多核苷酸為一事實上的證據,該者表明該商品或商品產物係產自於一種設計來表現本發明之一種或多種多核苷酸的基因轉殖植物,為了達到使用dsRNA媒介的基因箝制方法來控制植物害蟲的目 的。
在一些態樣中,包括衍生自轉形植物細胞的基因轉殖植物所生產的種子及商品產物,其中該種子或商品產物包含可檢測數量的本發明之核酸。在一些具體例中,此種商品產物可能舉例而言,藉由獲得基因轉殖植物並從該者製備食物或飼料來製造。包含本發明之一種或多種多核苷酸之商品產物包括,舉例而言但不限於:一植物之膳食、油、粉碎或全穀物或種子,及包含一重組植物或種子的任何膳食、油或粉碎或全穀物的任何食品產物,其中該重組植物或種子含有本發明之一種或多種核酸。在一種或多種商品或商品產物中偵測本發明之一種或多種多核苷酸係為一事實上的證據,該者表明該商品或商品產物係產自於設計來表現本發明之一種或多種iRNA分子的基因轉殖植物,為了達到控制半翅目害蟲的目的。
在一些具體例中,一種包含本發明之核酸分子的基因轉殖植物或種子亦可能在其基因組中包含至少一種其他的基因轉殖品件,包括但不限於:一基因轉殖品件,該者轉錄一種iRNA分子,該iRNA分子在半翅目害蟲中靶定的基因座不是由下列所界定之基因座:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67;一基因轉殖品件,該者轉錄一種iRNA分子,該iRNA分子在非半 翅目害蟲之生物體(例如一種植物寄生線蟲)內靶定一基因;一種編碼殺蟲蛋白質之基因(例如蘇力菌(Bacillus thuringiensis)的殺蟲蛋白質);除草劑耐受性基因(例如一種提供對嘉磷塞(glyphosate)之耐受性的基因);以及一基因,其促成該基因轉殖植物所欲的表型,諸如提高的產量、改變的脂肪酸代謝、或是細胞質雄性不育的修復。在特定的具體例中,本發明編碼iRNA分子的多核苷酸可能與在一植物中的其他昆蟲控制及疾病性狀組合,以實現所欲的性狀,用於增強植物疾病及昆蟲損害之控制。採用區別的作用模式之組合的昆蟲控制性狀,可以提供受防護的基因轉殖植物優越的耐久力,超越懷有一單一的控制性狀的植物,舉例而言,因為在田間發展對抗該(等)性狀之機率將會降低。
V.半翅目害蟲中靶定基因的箝制 A.概述
在本發明之一些具體例中,可以提供至少一個對半翅目害蟲控制有用的核酸分子給一半翅目害蟲,其中該核酸分子在該害蟲中導致RNAi媒介的基因靜默。在特定的具體例中,可以提供一種iRNA分子(例如dsRNA、siRNA、miRNA、shRNA及hpRNA)給該半翅目宿主。在一些具體例中,對半翅目害蟲控制有用之一種核酸分子可藉由使該核酸分子與一害蟲接觸而提供至該害蟲。在這些及進一步具體例中,一種對半翅目害蟲控制有用之核酸分子可以提供在該害蟲的飼料基質中,舉例而言,一營養組成物。在這些及進一步具體例中,一種對半翅目害蟲控制有用之核酸 分子可能透過攝入包含該核酸分子的植物材料而提供,其中該核酸分子係由該害蟲攝入。在某些具體例中,該核酸分子係透過表現引入到該植物材料內之重組核酸而存在於該植物材料中,舉例而言,藉由以包含該重組核酸之載體予以轉形一種植物細胞,並從該轉形植物細胞再生一種植物材料或是整個植物。
B.RNAi-媒介之靶定基因箝制
在具體例中,本發明提供iRNA分子(例如dsRNA、siRNA、miRNA、shRNA及hpRNA),其可以設計以靶定在一種半翅目(例如BSB)害蟲之轉錄體學(transcriptome)中必要的多核苷酸(例如必要基因),舉例而言,其係藉由設計一種iRNA分子,該iRNA分子包含至少一股,該股包含特異性地互補於該靶定多核苷酸的多核苷酸。如此設計的iRNA分子序列與該靶定多核苷酸之序列可能是同一的,或者可能併入不會防礙該iRNA分子與其靶定多核苷酸之間特異性雜交的失配。
本發明之iRNA分子可能在一種半翅目害蟲之基因箝制之方法中使用,由此降低由該害蟲在一植物(舉例而言,包含一種iRNA分子之受防護轉形植物)上所造成之損害的位準或發病率。如於此所使用,術語“基因箝制”意指用於降低基因轉錄為mRNA及隨後該mRNA轉譯之結果所製造的蛋白質位準之任何眾所周知的方法,包括降低蛋白質從一基因或一編碼多核苷酸的表現,包括表現之轉錄後抑制及轉錄箝制。轉錄後抑制係藉由從用於箝制之靶定基 因轉錄之mRNA的全部或部分,與使用於箝制的相應iRNA分子之間特異性同源而媒介。此外,轉錄後抑制意指在該細胞中可用於核糖體結合的mRNA數量之大量且可測量的降低。
在iRNA分子為一種dsRNA分子的具體例中,該dsRNA分子可能由酵素,DICER,切割成短的siRNA分子(長度大約20個核苷酸)。藉由DICER活性而在該dsRNA分子上生成之雙股siRNA分子可能分開成兩個單股的siRNA;"過客股"與"引導股"。過客股可能被降解,而引導股可能併入到RISC中。發生轉錄後抑制係藉由該引導股與一種mRNA分子之特異性互補多核苷酸的特異性雜交,且隨後由酵素,阿革蛋白家族(Argonaute)(RISC複合體之催化組份)予以切割。
在本發明之具體例中,可以使用任何形式的iRNA分子。熟習本技藝者將理解的是,較諸單股RNA分子,dsRNA分子在製備期間及在提供該iRNA分子至一細胞之步驟期間典型係更穩定的,以及典型於細胞中係更穩定的。因此,雖然siRNA及miRNA分子,舉例而言,在一些具體例中可能同樣有效的,但是因dsRNA分子之穩定性可能會擇取dsRNA分子。
在特定的具體例中,提供一種包含一多核苷酸之核酸分子,該多核苷酸可能在活體外表現以產生一種iRNA分子,該iRNA分子係實質上同源於一種半翅目害蟲之基因組內的多核苷酸所編碼的核酸分子。在某些具體例中,活 體外轉錄的iRNA分子可能為包含一種莖環結構的穩定dsRNA分子。在一種半翅目害蟲接觸活體外轉錄之iRNA分子之後,可能發生靶定基因(舉例而言,一必要基因)在該害蟲中的轉錄後抑制。
在本發明之一些具體例中,一種來自核酸分子之iRNA的表現係使用於轉錄後抑制一種半翅目害蟲之一靶定基因的方法中,該iRNA包含一種多核苷酸之至少15個連續核苷酸(例如,至少19個連續核苷酸),其中該多核苷酸係選自於以下所組成的群組:序列辨識編號:1;序列辨識編號:1之互補物;序列辨識編號:8;序列辨識編號:8之互補物;序列辨識編號:10;序列辨識編號:10之互補物;序列辨識編號:12;序列辨識編號:12之互補物;序列辨識編號:14;序列辨識編號:14之互補物;序列辨識編號:30;序列辨識編號:30之互補物;序列辨識編號:32;序列辨識編號:32之互補物;序列辨識編號:63;序列辨識編號:63之互補物;序列辨識編號:64;序列辨識編號:64之互補物;序列辨識編號:65;序列辨識編號:65之互補物;序列辨識編號:66;序列辨識編號:66之互補物;序列辨識編號:67;序列辨識編號:67之互補物;序列辨識編號:1之至少15個連續核苷酸的片段;序列辨識編號:1之至少15個連續核苷酸的片段之互補物;序列辨識編號:8之至少15個連續核苷酸的片段;序列辨識編號:8之至少15個連續核苷酸的片段之互補物;序列辨識編號:10之至少15個連續核苷酸的片段;序列辨識編號:10之至少15個 連續核苷酸的片段之互補物;序列辨識編號:12之至少15個連續核苷酸的片段;序列辨識編號:12之至少15個連續核苷酸的片段之互補物;序列辨識編號:14之至少15個連續核苷酸的片段;序列辨識編號:14之至少15個連續核苷酸的片段之互補物;序列辨識編號:30之至少15個連續核苷酸的片段;序列辨識編號:30之至少15個連續核苷酸的片段之互補物;序列辨識編號:32之至少15個連續核苷酸的片段;序列辨識編號:32之至少15個連續核苷酸的片段之互補物;序列辨識編號:63之至少15個連續核苷酸的片段;序列辨識編號:63之至少15個連續核苷酸的片段之互補物;序列辨識編號:64之至少15個連續核苷酸的片段;序列辨識編號:64之至少15個連續核苷酸的片段之互補物;序列辨識編號:65之至少15個連續核苷酸的片段;序列辨識編號:65之至少15個連續核苷酸的片段之互補物;序列辨識編號:66之至少15個連續核苷酸的片段;序列辨識編號:66之至少15個連續核苷酸的片段之互補物;序列辨識編號:67之至少15個連續核苷酸的片段;序列辨識編號:67之至少15個連續核苷酸的片段之互補物;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:1;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:1;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:8;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:8;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:10;一種半翅目昆 蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:10;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:12;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:12;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:14;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:14;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:30;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:30;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:32;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:32;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:63;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:63;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:64;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:64;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:65;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:65;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:66;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識編號:66;一種半翅目昆蟲之編碼多核苷酸,其包含序列辨識編號:67;一種半翅目昆蟲之編碼多核苷酸之互補物,該編碼多核苷酸包含序列辨識 編號:67;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:1;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:1;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:8;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:8;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:10;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:10;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:12;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:12;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:14;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:14;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:30;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:30;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的 片段,該編碼多核苷酸包含序列辨識編號:32;及一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:32;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:63;及一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:63;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:64;及一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:64;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:65;及一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:65;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:66;及一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:66;一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段,該編碼多核苷酸包含序列辨識編號:67;以及一種半翅目昆蟲之編碼多核苷酸之至少15個連續核苷酸的片段之互補物,該編碼多核苷酸包含序列辨識編號:67。在某些具體例中,一種核酸分子之表現與前述任一者有至少約80%同一性(例如79%、約80%、約81%、 約82%、約83%、約84%、約85%、約86%、約87%、約88%、約89%、約90%、約91%、約92%、約93%、約94%、約95%、約96%、約97%、約98%、約99%、約100%及100%)者可以使用。在這些及進一步具體例中,可以表現一種核酸分子,其特異性地雜交到存在於一種半翅目害蟲的至少一細胞中之RNA分子。
本文一些具體例之一重要特徵為,該RNAi轉錄後抑制系統能夠容忍靶定基因中的序列變化,該者歸因於基因突變、品種多型性(strain polymorphism)或是演化分歧係為可預期的。所引入的核酸分子可能不需要絕對同源於一種靶定基因之初級轉錄產物或完全加工的mRNA任一者,只要該引入的核酸分子係特異性地雜交至該靶定基因之初級轉錄產物或完全加工的mRNA任一者。再者,該引入的核酸分子可能不需要為全長,相對於該靶定基因之初級轉錄產物或完全加工的mRNA任一者而言。
使用本發明之iRNA技術抑制一靶定基因係序列特異性的;亦即實質上同源於該(等)iRNA分子之多核苷酸係被靶定用於基因抑制。在一些具體例中,一種包含多核苷酸之RNA分子可以使用於抑制,該多核苷酸帶有的核苷酸序列與部分的靶定基因之核苷酸序列有同一性。在這些及進一步具體例中,可以使用一種包含一種多核苷酸之RNA分子,該多核苷酸序列相對於一靶定多核苷酸具有一個或多個插入、缺失及/或點突變。在特定具體例中,一種iRNA分子與一靶定基因之一部分可能共享,舉例而言,至 少從約80%、至少從約81%、至少從約82%、至少從約83%、至少從約84%、至少從約85%、至少從約86%、至少從約87%、至少從約88%、至少從約89%、至少從約90%、至少從約91%、至少從約92%、至少從約93%、至少從約94%、至少從約95%、至少從約96%、至少從約97%、至少從約98%、至少從約99%、至少從約100%、及100%的序列同一性。任擇地,一種dsRNA分子之雙聯體區域可能與一靶定基因轉錄本的一部分特異性地雜交。在特異性雜交的分子中,一種展示出較大同源性之比全長小的多核苷酸會補償一種較長、較不同源的序列。一種與一靶定基因轉錄本的一部分有同一性之dsRNA分子雙聯體區域的多核苷酸序列長度,可能為至少大約25、50、100、200、300、400、500、或至少大約1000個鹼基。在一些具體例中,可以使用大於20-100個核苷酸之多核苷酸;舉例而言,可以使用100-200個或300-500個核苷酸之多核苷酸。在特定具體例中,可以使用大於約200-300個核苷酸之多核苷酸。在特定具體例中,取決於該靶定基因的大小,可以使用大於約500-1000個核苷酸之多核苷酸。
在某些具體例中,一種靶定基因在半翅目害蟲中的表現可以在該害蟲的細胞內抑制達至少10%;至少33%;至少50%;或是至少80%,藉由此,發生顯著的抑制。顯著的抑制意指抑制超過一閾值,該閾值引致一種可偵測的表型(例如停止生殖、取食、發育等等),或是相應於該被抑制的靶定基因,在RNA及/或基因產物方面有可偵測的下降。雖然在本發明之某些具體例中,抑制發生在實質害蟲所有 細胞中,但是在其他具體例中,抑制只發生在表現該靶定基因之子集細胞內。
在一些具體例中,轉錄箝制係藉由在細胞中出現一種dsRNA分子而媒介,該dsRNA分子對一啟動子DNA或其等之互補物展示實質的序列同一性,以招致稱為"啟動子反向箝制(promoter trans suppression)"。基因箝制對可能攝入或接觸此種dsRNA分子之一種半翅目害蟲的靶定基因可能為有效的,舉例而言,藉由攝入或接觸含有該dsRNA分子的植物材料。在啟動子反向箝制中使用的dsRNA分子可以特異性地設計,以抑制或箝制該半翅目害蟲細胞中一種或多種同源或互補的多核苷酸之表現。藉由反義或意義定向之RNA的轉錄後基因箝制以調控植物細胞中的基因表現,係揭露於美國專利第5,107,065號;第5,759,829號;第5,283,184號;以及第5,231,020號。
C.提供給半翅目害蟲的iRNA分子之表現
表現iRNA分子用於在一種半翅目害蟲中RNAi媒介的基因抑制,可以在許多活體外或活體內形式之任一者中實行。該iRNA分子繼而可以提供給一種半翅目害蟲,舉例而言,藉由使該iRNA分子與該害蟲接觸,或是藉由使該害蟲攝入或其他方式內化該iRNA分子。本發明之一些具體例包括半翅目害蟲轉形之宿主植物、經轉形植物細胞、及轉形植物的後代。轉形植物細胞及轉形植物可以遺傳工程以舉例而言,在一異源性啟動子控制下表現一種或多種iRNA分子,以提供害蟲防護效果。因此,當一種半翅目害 蟲在取食期間消耗一基因轉殖植物或植物細胞時,該害蟲可能攝入該基因轉殖植物或細胞中表現的iRNA分子。本發明之多核苷酸亦可能引入至廣泛種類的原核及真核微生物宿主,以生產iRNA分子。術語"微生物"包括原核及真核物種,諸如細菌及真菌。
基因表現之調變可能包括此種表現的部分或完全箝制。在另一具體例中,一種用於箝制一種半翅目害蟲中基因表現的方法包含:在該害蟲宿主之組織中提供基因箝制數量的至少一種dsRNA分子,該dsRNA分子係在本文中所描述的多核苷酸轉錄之後形成者,且該多核苷酸的至少一段係互補於該半翅目害蟲細胞內的一種mRNA。依據本發明由半翅目害蟲攝入的dsRNA分子,包括其修飾形式,諸如siRNA、miRNA、shRNA、或hpRNA分子,可以為至少從大約80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%,或是約100%的同一於從一種染色質重塑基因DNA分子轉錄的RNA分子,該分子舉例而言包含選自於下列所組成的群組之多核苷酸:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67。因而提供經單離且實質純化的核酸分子,包括但不限於,非天然存在的多核苷酸及提供本發明之dsRNA分子之重組DNA建構 物,該者當引入其中時,會箝制或抑制半翅目害蟲中內源性編碼多核苷酸或靶定編碼多核苷酸的表現。
特定的具體例提供一種遞送系統,供遞送iRNA分子用於轉錄後抑制一種半翅目害蟲中之一種或多種靶定基因(等),並控制該植物害蟲的族群。在一些具體例中,該遞送系統包含攝入一宿主基因轉殖植物細胞或攝入該宿主細胞內含物,該內含物含有在該宿主細胞中轉錄之RNA分子。在這些及進一步具體例中,一基因轉殖植物細胞或一基因轉殖植物係被創造,該者含有提供本發明之穩定dsRNA分子的一重組DNA建構物。包含編碼一特定iRNA分子的核酸之基因轉殖植物細胞及基因轉殖植物,可以藉由採用重組DNA技術(該者之基本技術在該技藝中為眾所周知的)來產生,以建構包含一種多核苷酸的植物轉形載體,該多核苷酸編碼本發明之一種iRNA分子(例如一種穩定的dsRNA分子);轉形一植物細胞或植物;以及產生含有轉錄iRNA分子的基因轉殖植物細胞或基因轉殖植物。
為了傳遞半翅目害蟲防護性至一基因轉殖植物,一種重組DNA分子可能,舉例而言,轉錄成iRNA分子,諸如一種dsRNA分子、siRNA分子、miRNA分子、shRNA分子或hpRNA分子。在一些具體例中,從一種重組DNA分子轉錄的RNA分子可能在該重組植物之組織或流體內形成dsRNA分子。此一種dsRNA分子可能包含在一種多核苷酸的一部分內,該多核苷酸與一種相應的多核苷酸為同一性的,該相應的多核苷酸係從可能侵擾該宿主植物之半翅目 害蟲類型內的DNA所轉錄的。靶定基因在該半翅目害蟲內的表現係由該dsRNA分子予以箝制,且該靶定基因在半翅目害蟲中表現之箝制引致了基因轉殖植物對該害蟲的抗性。dsRNA分子的調變效果業已顯示為適用於在害蟲中表現的各種基因,包括舉例而言,負責細胞分裂、染色體重塑以及細胞代謝或細胞轉形之內源性基因,包括管家(house-keeping)基因;轉錄因子;蛻皮相關基因;及其他編碼涉及細胞代謝或正常生長及發育的多肽之基因。
為了從活體內或是一種表現建構物之轉基因進行轉錄,在一些具體例中可以使用一調控區域(例如啟動子、增強子、靜默子及多腺苷酸化訊號)以轉錄該RNA股(或股等)。所以,在一些具體例中,如前文所陳述,一種供用於生產iRNA分子的多核苷酸可能可操縱地鏈接到一個或多個在植物宿主細胞中作用的啟動子元素。該啟動子可能為一種內源性啟動子,通常駐留在宿主基因組中。本發明之多核苷酸,在操縱鏈接之啟動子元素的控制下,可能進一步側接額外的元素,其有利地影響其轉錄及/或所得到轉錄本之穩定性。此種元素可能位於該操縱鏈接啟動子的上游,該表現建構物3'端的下游,且可能發生於該啟動子上游與該表現建構物3'端下游兩者。
於具體例中,一種靶定基因(例如一種染色質重塑基因)的箝制作用造成親代RNAi的表型;於接觸該iRNA分子之主體(例如一種半翅目害蟲)的後代可觀察到的表型。在一些具體例中,pRNAi表型包含該害蟲較不能生產活的 子代。在pRNAi之特定例子中,一種起始pRNAi之核酸不會使遞送該核酸之族群的死亡發生率增加。在其他的pRNAi例子中,一種起始pRNAi之核酸亦會使遞送該核酸之族群的死亡發生率增加。
在一些具體例中,一種半翅目害蟲族群接觸一種iRNA分子,藉此導致pRNAi,其中該害蟲存活且交配,但生產的卵比起相同物種但沒有提供該核酸的害蟲生產的卵,較不能孵化活的後代。在一些實例中,比起相同物種但沒有接觸該iRNA分子的害蟲可觀察到的狀況,此等害蟲不能產卵或是產的卵較少。在一些實例中,比起相同物種但沒有接觸該iRNA分子的害蟲可觀察到的狀況,此等害蟲產的卵不能孵化或是孵化的速率顯著較低。在一些實例中,比起相同物種但沒有接觸該iRNA分子的害蟲可觀察到的狀況,從此等害蟲產的卵所孵化的若蟲不能存活或是較不能存活。
靶定昆蟲害蟲族群容易適應會生產提供對昆蟲進食防護性的物質之基因轉殖作物,此會降低昆蟲防護性物質之耐久性的益處。習慣上,延遲昆蟲害蟲適應基因轉殖作物係透過下列方式來達成:(1)種植“避難處(refuges)”(不含殺蟲(pesticidal)物質之作物,且因而使殺蟲物質感受性的昆蟲能存活);及/或(2)組合殺蟲物質及對抗靶定害蟲之多重作用模式,以便抗一種作用模式之個體會被第二種作用模式殺死。
在一些例子中,iRNA分子(例如從宿主植物中的 一轉基因表現)代表新的作用模式,其組合蘇力菌(Bacillus thuringiensis)的殺蟲蛋白質技術(例如Cry1A、Cry2A、Cry3A、Cry11A,以及Cry51A)及/或致命的RNAi技術於害蟲抗性管治基因錐體(Insect Resistance Management gene pyramids),以減輕對此等控制技術任一者有抗性的昆蟲族群之發育。
在一些具體例中,親代RNAi可以導致一類害蟲控制,其與致命的RNAi所獲得的控制不同,以及親代RNAi可以組合以致命的RNAi來引致協同性害蟲控制。因而,在特定具體例中,用於轉錄後抑制一種半翅目植物害蟲中之一種或多種靶定基因(等),可以組合以其他的iRNA分子,以提供冗餘的RNAi靶定以及協同性RNAi效應。
造成卵死亡率或卵活力之喪失之親代RNAi(pRNAi)對使用RNAi及其他昆蟲防護機制之基因轉殖作物,有潛力能帶來進一步耐久性的益處。pRNAi防礙暴露的昆蟲生產後代,且因而防礙攜帶賦予對殺蟲物質抗性的任一種對偶基因傳遞至下一代。pRNAi在組合以對相同昆蟲族群提供防護性的一種或多種額外的殺蟲物質時,在延長昆蟲防護性基因轉殖作物之耐久力方面是特別有用的。在一些具體例中,此等額外的殺蟲物質包括,舉例而言:若蟲活性的dsRNA;殺蟲蛋白質(例如衍生自蘇力菌(Bacillus thuringiensis)、鹼桿菌屬物種(Alcaligenes spp.)、假單胞菌屬物種(Pseudomonas spp.),或其他的生物之該等);以及其他的殺蟲物質。此益處是提升的,因為比起避難處作物,基因轉殖作物中存在更高族群比例之對殺蟲物質有 抗性的昆蟲。設若傳遞至下一代之抗性對偶基因對感受性對偶基因的比率,於存在pRNAi的情況下比缺少pRNAi的情況下更低,那麼將延遲抗性的演化。
舉例而言,pRNAi可能不會使表現iRNA分子、遭受損傷之植物第一代害蟲個體的數目減少。然而,此等害蟲持續侵擾後續世代的能力可能會降低。相反地,致命的RNAi可能會殺死已經侵擾植物的害蟲。當pRNAi組合以致命的RNAi時,接觸親代iRNA分子的害蟲可能與外界尚未接觸iRNA的害蟲繁殖,然而,此交配的後代可能不能存活或是較不能存活,且因而可能無法侵擾植物。同時,接觸致命的iRNA分子的害蟲可能直接受影響。此等二種效應之組合可以是協同性的;亦即組合的pRNAi及致命的RNAi效應可以比pRNAi及致命的RNAi獨立效應的總和更大。pRNAi可以組合以致命的RNAi,舉例而言,透過提供一種表現致命的及親代iRNA分子二者之植物;透過提供表現致命的iRNA分子之第一種植物與表現親代iRNA分子之第二種植物於同樣的位置;及/或透過使雌性及/或雄性害蟲與pRNAi分子接觸,以及隨後釋放接觸過的害蟲至植物環境內,以使得其等能與植物的害蟲非生產性地交配。
一些具體例提供用於降低由一種取食植物之半翅目害蟲所造成的宿主植物(例如大豆植物)損害之方法,其中該方法包含在該宿主植物中提供一種表現本發明的至少一種核酸分子之轉形植物細胞,其中該(等)核酸分子一旦由該害蟲取用,作用以抑制一靶定多核苷酸在該害蟲內的表 現,此表現抑制除了引致該害蟲的死亡率及/或降低的生長以外,還引致譬如降低的生殖,從而降低該害蟲對該宿主植物造成的損害。在一些具體例中,該(等)核酸分子包含dsRNA分子。在這些及進一步具體例中,該(等)核酸分子包含dsRNA分子,其中該dsRNA分子每一者包含超過一種多核苷酸,其特異性地雜交到半翅目害蟲細胞中表現之核酸分子。在一些具體例中,該(等)核酸分子係由一種多核苷酸組成,其中該多核苷酸係特異性地雜交至一種半翅目害蟲細胞中表現的核酸分子。
在一些具體例中,提供一種用於提高玉米作物產量之方法,其中該方法包含引入本發明之至少一種的核酸分子到玉米植物內;以及培育該玉米植物以允許一種包含該核酸的iRNA分子表現,其中包含該核酸的iRNA分子之表現抑制半翅目害蟲損害及/或生長,從而降低或消除歸因於半翅目害蟲侵擾的產量損失。在一些具體例中,該iRNA分子為一種dsRNA分子。在這些及進一步具體例中,該(等)核酸分子包含dsRNA分子,其中該dsRNA分子每一者包含超過一種多核苷酸,其特異性地雜交到半翅目害蟲細胞中表現之核酸分子。在一些具體例中,該(等)核酸分子係由一種多核苷酸組成,其中該多核苷酸係特異性地雜交至一種半翅目害蟲細胞中表現的核酸分子。
在一些具體例中,提供一種用於提高植物作物產量之方法,其中該方法包含引入本發明的至少一種核酸分子到一種雌性半翅目害蟲(例如,藉由注入、藉由攝入、藉 由噴灑,及藉由從一種DNA表現);以及釋放該雌性害蟲至該作物內,其中使含括不能或是較不能生產活的子代之雌性害蟲的一對害蟲交配,從而降低或消除歸因於半翅目害蟲侵擾的產量損失。在特定的具體例中,此一方法提供後續世代之控制。在類似的具體例中,該方法包含將本發明的核酸引入至一雄性半翅目害蟲內,以及釋放該雄性害蟲至該作物內(例如,其中pRNAi雄性害蟲比未處理的對照生產較少的精子)。在一些具體例中,該核酸分子為一種DNA分子,其被表現以產生iRNA分子。在一些具體例中,該iRNA為一種dsRNA分子。在這些及進一步具體例中,該(等)核酸分子包含dsRNA分子,其中該dsRNA分子每一者包含超過一種多核苷酸,其特異性地雜交到半翅目害蟲細胞中表現之核酸分子。在一些具體例中,該(等)核酸分子係由一種多核苷酸組成,其中該多核苷酸係特異性地雜交至一種半翅目害蟲細胞中表現的核酸分子。
在一些具體例中,提供一種用於調變一靶定基因在一種半翅目害蟲中之表現的方法,該方法包含:以包含一種多核苷酸的一載體來轉形植物細胞,其中該多核苷酸編碼本發明至少一種iRNA分子,其中該多核苷酸係可操縱地鏈接至一啟動子及一轉錄終止元素;在足以允許包含數個轉形植物細胞之植物細胞培養物發展的條件下培養該轉形的植物細胞;選擇已經將該多核苷酸整合至其等之基因組的轉形植物細胞;篩選表現該整合多核苷酸所編碼之iRNA分子的該轉形植物細胞;選擇表現該iRNA分子之基因 轉殖植物細胞;及餵食該經選擇的基因轉殖植物細胞至該半翅目害蟲。植物亦可能從表現該整合核酸分子所編碼之iRNA分子的轉形植物細胞予以再生。在一些具體例中,該iRNA為一種dsRNA分子。在這些及進一步具體例中,該(等)核酸分子包含dsRNA分子,其中該dsRNA分子每一者包含超過一種多核苷酸,其特異性地雜交到半翅目害蟲細胞中表現之核酸分子。在一些具體例中,該(等)核酸分子係由一種多核苷酸組成,其中該多核苷酸係特異性地雜交至一種半翅目害蟲細胞中表現的核酸分子。
本發明之iRNA分子可以併入於一種植物物種(例如大豆)之種子內,無論是做為源自併入植物細胞基因組中之一種重組基因表現的產物,或是併入至種植之前施加到種子的塗料或種子處理。一種包含重組基因之植物細胞係視為一種基因轉殖品件。本發明具體例中亦包括用於遞送iRNA分子到半翅目害蟲的遞送系統。舉例而言,本發明之iRNA分子可以直接引入一種害蟲的細胞內。引入的方法可以包括將iRNA直接混合至該半翅目害蟲的飲食內(例如藉由與源自害蟲宿主的植物組織混合),以及施用包含本發明iRNA分子的組成物至宿主植物組織。舉例而言,iRNA分子可以噴灑到植物表面。或者,一種iRNA分子可能由微生物表現,且該微生物可以施用到該植物表面,或藉由諸如注射之物理手段引入到根或莖中。如前文所討論,一種基因轉殖植物亦可以遺傳工程處理,以表現足以殺死已知侵擾該植物的半翅目害蟲的數量之至少一種iRNA分子。藉 由化學或酶促合成所製造的iRNA分子亦可能以一致於普遍農業做法的方式予以調配,並使用做為用於控制半翅目害蟲造成的植物損害之噴霧或誘餌產品。該調配物可能包括針對有效葉面覆蓋(foliar coverage)所需的適當佐劑(例如,展著劑(stickers)及增濕劑),以及UV防護劑以防護iRNA分子(例如,dsRNA分子)免受紫外線損害。此種添加劑在生物殺蟲劑工業係普遍的,且對熟習該項技藝者為眾所周知的。此種應用可以與其他噴霧殺蟲劑應用(基於生物學或是其他方式)組合,以增強植物防護不受對半翅目害蟲傷害。
於此引用之所有的參考文獻,包括公開案、專利以及專利申請案,皆在此併入本案以作為參考資料,其內容與本揭示之明確細節並無不一致之處,因此每一單獨與特定指出之文獻皆完整併入本案以作為參考資料。於此所討論之參考文獻僅提供本申請案申請日之前的揭示。於此揭示之內容不應該被解釋為本發明人無權憑藉先前之發明揭示本發明。
下列實施例提供某些特定特徵及/或態樣之說明。這些實施例不應解釋為將本揭示限制於所描述之特定特徵或態樣。
實施例 實施例1:候選靶定基因之鑑定
RNAi標靶的選擇。於一實例中,選定六個BSB發育階段用於製備mRNA庫。額外的樣本係使用BSB的中腸及唾液腺來製備。分別源自10隻及25隻混合性別的棕色椿 象(Brown Stink Bug)之成體中腸及唾液腺於一種解剖顯微鏡下、在冷凍的乾淨玻璃載玻片上進行解剖,以及立即冷凍於乾冰上。從冷凍在-70℃下的昆蟲萃取總RNA,以及於FastPrep®-24 Instrument(MP BIOMEDICALS)上、於10倍體積的溶解/結合緩衝液在Lysing MATRIX A 2mL管子(MP BIOMEDICALS,Santa Ana,CA)中進行均質化。使用mirVanaTM miRNA單離套組(AMBION;INVITROGEN)、根據製造商的實驗協定來萃取總mRNA。使用一種illumina® HiSeqTM系統(San Diego,CA)來進行RNA定序,提供候選靶定基因序列供用於RNAi昆蟲控制技術。HiSeqTM於六個樣品產生總共大約3億7千8百萬讀取。使用TRINITY組裝軟體(Grabherr等人之(2011)Nature Biotech.29:644-652)來分別地組裝各個樣品的該等讀取。將所組裝的轉錄本組合來產生匯集轉錄體學庫。此BSB匯集轉錄體學庫含有378,457個序列。
BSB婆羅賀摩(brahma)、mi-2iswi-1iswi-2chd1ino80,及domino異種同源物辨識。分別使用葉甲婆羅賀摩(Diabrotica BRAHMA)(brm-PA,GENBANK登錄號NP_536745及NP_536746)、MI-2(Mi-2-PA,GENBANK登錄號NP_001014591.1、NP_001163476.1、NP_001262078.1、NP_649154.2,及NP_001014591.1)、ISWI(Iswi-PA,GENBANK登錄號NP_523719、NP_725203,及NP_725204),以及CHD1(Chd1-PA,GENBANK登錄號NP_477197及NP_001245851)蛋白質作為詢問序列(queries),來執行BSB 匯集轉錄體學庫的tBLASTn搜尋。BSB婆羅賀摩(序列辨識編號:1;序列辨識編號:63)、mi-2(序列辨識編號:8;序列辨識編號:64)、iswi-1(序列辨識編號:10;序列辨識編號:65)、iswi-2(序列辨識編號:12;序列辨識編號:66)、chd1(序列辨識編號:14;序列辨識編號:67)、ino80(序列辨識編號:30),以及domino(序列辨識編號:32)轉錄本辨識為BSB候選靶定基因。
BSB同源性資訊。BSB婆羅賀摩(序列辨識編號:1)與源自玻璃海鞘(Ciona intestinalis)(GENBANK®登錄號AK116913.1)之序列片段有些相關(72%同一性)。BSB婆羅賀摩胺基酸序列(序列辨識編號:2)最接近的同源物為一種佛羅里達巨山蟻(Camponotus floridanus)蛋白質,其具有GENBANK®登錄號EFN67856.1(於同源區域為79%相似;70%同一的)。BSB mi-2(序列辨識編號:8)與源自苜蓿豌豆蚜(Acyrthosiphon pisum)(GENBANK®登錄號XM_XM_008186702.1)之序列片段有些相關(76%同一性)。BSB MI-2胺基酸序列(序列辨識編號:9)最接近的同源物為一種鳳仙花熊蜂(Bombus impatiens)蛋白質,其具有GENBANK®登錄號XP_003493868.1(於同源區域為79%相似;71%同一的)。BSB iswi-1(序列辨識編號:10)與源自鳳仙花熊蜂(Bombus impatiens)(GENBANK®登錄號XM_003486758.1)之序列片段有些相關(75%同一性)。BSB ISWI-1胺基酸序列(序列辨識編號:11)最接近的同源物為一種苜蓿切葉蜂(Megachile rotundata)與大蜜蜂(Apis dorsata)蛋白質,其分 別具有GENBANK®登錄號XP_003708682.1與XP_006615660.1(於同源區域為91%相似;84%同一的)。BSB iswi-2(序列辨識編號:12)與源自矛尾魚(Latimeria chalumnaw)(GENBANK®登錄號XM_005994941.1)之序列片段有些相關(76%同一性)。BSB ISWI-2胺基酸序列(序列辨識編號:13)最接近的同源物為一種畢氏粗角蟻(Cerapachys biroi)蛋白質,其具有GENBANK®登錄號EZA60706.1(於同源區域為93%相似;84%同一的)。The BSB chd1(序列辨識編號:14)與源自意大利蜂(Apis mellifera)(GENBANK®登錄號XM_006565933.1)之序列片段有些相關(77%同一性)。BSB CHD1胺基酸序列(序列辨識編號:15)最接近的同源物為一種點蜂緣蝽(Riptortus pedestris)蛋白質,其具有GENBANK®登錄號BAN20905.1(於同源區域為94%相似;88%同一的)。BSB ino80(序列辨識編號:30)與源自大乳頭水螅(Hydra magnipapillata)(GENBANK®登錄號XM_002164516.2)之序列片段有些相關(79%同一性)。BSB INO80胺基酸序列(序列辨識編號:31)最接近的同源物為一種內華達古白蟻(Zootermopsis nevadensis)蛋白質,其具有GENBANK®登錄號KDR11347.1(於同源區域為74%相似;64%同一的)。BSB domino(序列辨識編號:32)與源自小蜜蜂(Apis florea)(GENBANK®登錄號XR_143356.1)之序列片段有些相關(80%同一性)。BSB DOMINO胺基酸序列(序列辨識編號:33)最接近的同源物為一種麗蠅蛹集金小蜂(Nasonia vitripennis)蛋白質,其具有GENBANK®登錄號 XP_008210745.1(於同源區域為71%相似;58%同一的)。
此等基因編碼SNF2型染色質重塑體蛋白質,其相應於染色質重塑複合體之次單元,其於移動核小體方面扮演總體的角色。參閱,例如Brizuela等人(如前文);Kal等人之(2000)Genes Devel.14:1058-71;以及Tamkun等人之(1992)Cell 68:561-72。縱然其等共有SNF2-解旋酶領域,但是各物種中多數的染色質重塑體具有由其等所含的額外領域所賦予之非冗餘的功能。此等特徵將染色質重塑ATP酶呈現為多代/親代RNAi有吸引力的標靶。
ATP依賴型重塑酵素之SWI2/SNF2(交配型轉換(mating type switch)/蔗糖非發酵)家族包含一種布羅莫領域(bromodomain),其結合乙醯化組織蛋白。雖然酵母菌及脊椎動物含有數種SWI2/SNF2蛋白質,但是於葉甲(Diabrotica)中業已辨識只有一種SWI2/SNF2蛋白質,婆羅賀摩。婆羅賀摩為相當守恆的,但是與其他的昆蟲含SNF2蛋白質截然不同,且推定的異種同源物(ortholog)緊密地叢聚於種系發生樹上。圖2。人類婆羅賀摩(BRM)以及釀酒酵母菌(Saccharomyces cerevisiae)SNF2蛋白質係與昆蟲婆羅賀摩叢聚在一起。再者,果蠅(Drosophila)婆羅賀摩之異種同源物維持整體蛋白質領域的守恆,其包括SNF2 ATP酶/解旋酶、布羅莫領域(bromodomain)以及額外的領域:守恆的Gln、Leu、Gln模體領域(QLQ)、DNA結合HSA領域,以及BRK(婆羅賀摩(brahma)及奇司枚(kismet))領域。圖3A
已知婆羅賀摩會併入至BAP(婆羅賀摩相關蛋白 (Brahma Associated Proteins))及PBAP(Polybromo相關BAP(Polybromo associated BAP))染色質重塑複合體之內。果蠅婆羅賀摩之喪失會毀損RNA聚合酶II(Pol II)全面的轉錄,暗示婆羅賀摩複合體廣大的功能。於果蠅方面,婆羅賀摩之母系的貢獻對於早期的胚胎發生是必須的,而合子胚婆羅賀摩的表現對於晚期的胚胎發育是必須的。除了胚胎發生之外,果蠅婆羅賀摩還涉及配子發生。婆羅賀摩RNAi處理的雌性BSB生產的卵不能存活。表5。再者,經由RNAi而耗乏婆羅賀摩的BSB雌體完全不產卵。表34
ISWI(模仿SWI/模仿轉換)家族係定義為組織蛋白結合領域,其包括以HAND-SANT-SLIDE架構(亦註記為HAND-SLIDE)之HAND、SANT,以及SLIDE領域。於果蠅方面,ATP依賴型重塑酵素之ISWI家族只有一個成員,ISWI。果蠅ISWI能藉由整合至各種複合體內而賦予多種功能,各種複合體包括ATP依賴型染色質組裝及重塑因子(ACF)、核小體重塑因子(NURF),以及染色質可近性複合體(chromatin accessibility complex)(CHRAC)。果蠅ISWI之喪失會導致戲劇性的染色體濃縮缺陷。
BSB表現至少二種iswi異種同源物,以及額外的iswi同源物(序列辨識編號:10及序列辨識編號:12(且序列辨識編號:12為部分序列)。完整的BSB ISWI蛋白質含有SNF2 ATP酶/解旋酶、HAND-SANT-SLIDE(由Pfam辨識為HAND及SLIDE),以及DNA結合領域(DBINO)。圖3B。辨識的源自BSB之ISWI-2蛋白質僅含有HAND-SANT-SLIDE 領域。圖3B。含有iswi-2(序列辨識編號:12)之片段重疊群為1316核苷酸長;根據與已知的果蠅ISWI蛋白質排列比對,此片段重疊群不含有ISWI蛋白質序列之前半部。因而,假定現時的BSB轉錄體學(transcriptome)之總成所含的iswi-2轉錄本序列不完整是合理的。
BSB_Isqi-1及BSB_Iswi-2二者之親代RNAi應用引致產卵以及卵孵化之缺陷。表4及5
ATP依賴型重塑酵素之CHD(克羅莫領域解旋酶DNA-結合)家族蛋白質含有二個胺端克羅莫領域[染色質機構修飾劑(chromatin organization modifier)]。圖3C。果蠅CHD蛋白質包括CHD1、MI-2、CHD3,以及奇司枚(KISMET)。CHD家族進一步再分成三個子族,於此稱為子族I、II,以及III。果蠅CHD1屬於CHD子族I,其具有一個C端DNA結合領域。圖1C(DUF4208)。於果蠅方面,CHD1蛋白質顯示出與婆羅賀摩相似的分布型,可是chd1突變的蠅是能存活的。有趣地,果蠅chd1對於配子發生是必須的。接受chd1 RNAi之BSB雌體顯示出於卵生產及孵化率二方面顯著地下降。表4及5
MI-2及CHD3屬於子族II。CHD子族II之酵素沒有DNA結合領域,但是具有類鋅指領域,稱為PHD(植物同源異形域)手指。MI-2之BSB異種同源物反映果蠅領域的配置,以及包括SNF2 ATP酶/解旋酶領域,雙重的克羅莫領域(chromodomain)、PHD手指,以及CHDNT領域,其結合含PHD手指之克羅莫領域(chromodomain)解旋酶,以及其他未 知功能的守恆領域,DUF1087與DUF1086。圖3D。已知果蠅MI-2結合NuRD(核小體重塑去乙醯酶)及dMec(果蠅含MEP-1複合體)複合體。mi-2之母系表現對於配子發生是必須的。經由RNAi而耗乏mi-2之BSB雌體生的卵非常少。表4
CHD蛋白質之第三個子族係以果蠅之奇司枚(KISMET)作代表;於人類此子族包含CHD5-9。就像其他的CHD蛋白質,奇司枚(KISMET)包含一種SNF2領域與一種克羅莫領域(chromodomain)。圖3E。與其他的CHD子族不同,奇司枚(KISMET)具有CHD與SWI2/SNF2蛋白質二者之特徵,在於其具有婆羅賀摩與奇司枚(KISMET)二者共有的BRK領域。縱然BRK為果蠅奇司枚(KISMET)確立的特徵,但是一種標準的Pfam分析法於BSB內未辨識出此領域。圖3E。喪失母系或合子胚之奇司枚(kismet)功能會造成果蠅胚胎發育期間的缺陷,以及於早期幼蟲階段的昆蟲死亡,然而卵子發生不受影響。
實施例2:含染色質重塑體之簡併序列
婆羅賀摩及其之同源物以及mi-2與其他的染色質重塑體及其等之異種同源物,共享相同的功能領域及序列位準的守恆性。RNAi靶定位址係設計成位在守恆的SNF2家族N-端及解旋酶C-端領域(於此稱為SNF2-解旋酶)內,其對所有的染色質重塑體,以及染色質結合或各個家族內守恆的其他功能領域為共有的(包括布羅莫領域(bromodomain)、克羅莫領域(chromodomain),以及HAND-SLIDE領域)。設計 玉米根螢葉甲(Diabrotica virgifera virgifera)、英雄美洲蝽(Euschistus heros)、擬穀盜(Tribolium castaneum)以及黑腹果蠅(Drosophila melanogaster)共有之RNAi標靶序列。DNA核苷酸及RNAi核苷酸係根據標準的IUPAC碼列出:A=腺嘌呤
C=胞嘧啶
G=鳥糞嘌呤
T=胸腺嘌呤
R=A或是G
Y=C或是T
S=G或是C
W=A或是T
K=G或是T
M=A或是C
B=C或G或是T
D=A或G或是T
H=A或C或是T
V=A或C或是T
N=A或C或G或是T
編碼靶定SNF2-解旋酶區域(序列辨識編號:34-37)及染色質重塑領域(序列辨識編號:38-41)的序列之dsRNA係藉由排列源自四種物種,玉米根螢葉甲(Diabrotica v.virgifera)、英雄美洲蝽(E.heros)、擬穀盜(Tribolium castaneum)以及黑腹果蠅(Drosophila melanogaster)之各靶 定蛋白質之胺基酸序列,使用Vector NTI Align X(Invitrogen,Grand Island,NY)來設計。挑選對各靶定蛋白質有特異性的SNF2領域或染色質重塑領域內,含有至少8個胺基酸之胺基酸序列之高度同源區。源自各標靶之各物種相應的核苷酸序列接而亦使用Align X程式予以排列比對。四種物種均有錯誤配對之核苷酸用以上所示之核苷酸予以取代。最終,該序列對於源自意大利蜂(Apis mellifera)的核苷酸序列進行排列比對,來決定該序列是否亦靶定該物種。設若該序列亦能靶定源自意大利蜂(A.mellifera)的蛋白質,則選擇新的區域或是縮短成至少21個鹼基之序列,其不會靶定意大利蜂的蛋白質。
實施例3:RNAi分子之製備
模版製備及dsRNA合成。cDNA係使用TRIzol® Reagent(LIFE TECHNOLOGIES,Grand Island,NY)、而從單一幼小的成體昆蟲(大約90mg)萃取出的總BSB RNA來製備。使用一種沈澱物杵(FISHERBRAND,Grand Island,NY)及Pestle Motor Mixer(COLE-PARMER,Vernon Hills,IL),用200μL的TRIzol®,於室溫下在1.5mL微量離心管中將昆蟲予以均質化。均質化之後,加入800μL的TRIzol®,渦漩洗滌均質物,然後於室溫下培育5分鐘。藉由離心來移除碎屑,以及將上清液轉移到一個新的管子中。遵照製造商推薦的TRIzol®萃取實驗協定之1mL的TRIzol®之後,RNA沈澱物係於室溫下乾燥,且使用第4型沖洗緩衝液(亦即,10mM Tris-HCl,pH 8.0)、予以再懸浮於源自於GFX PCR DNA AND GEL EXTRACTION KIT(Illustra®;GE HEALTHCARE LIFE SCIENCES,Pittsburgh,PA)之200μL的Tris緩衝液內。利用一種NANODROP® 8000分光光度計(THERMO SCIENTIFIC,Wilmington,DE)來決定RNA濃度。
cDNA係使用RT-PCR之SUPERSCRIPT III FIRST-STRAND SYNTHESIS SYSTEMTM(INVITROGEN),遵照供應商推薦的實驗協定,而由5μg的BSB總RNA模板及寡dT引子予以反轉錄。用無核酸酶的水使轉錄反應的終體積成為100μL。
引子係使用於擴增DNA模板供dsRNA轉錄。表1。該DNA模板係以1μL的cDNA(如上)作為模板,藉由利用“遞減(touch-down)”PCR(黏合溫度以1℃/循環減小量從60℃降低至50℃)予以擴增。於35個PCR循環期間產生含有婆羅賀摩之499bp區段的片段(亦即,BSB_brm-1;序列辨識編號:3)、mi-2之496bp區段的片段(亦即,BSB_mi-2-1;序列辨識編號:16)、iswi-1之481bp區段的片段(亦即,BSB_iswi-1-1;序列辨識編號:17)、iswi-2之490bp區段的片段(亦即,BSB_iswi-2-1;序列辨識編號:18),以及chd1之496bp區段的片段(亦即,BSB_chd1-1;序列辨識編號:19)。利用引子YFPv2_F(序列辨識編號:6)和YFPv2_R(序列辨識編號:7)來合成dsRNA之301bp模板稱為YFPv2(序列辨識編號:5)。BSB特異性及YFPv2引子於其等之5'端含有一個T7噬菌體啟動子序列(序列辨識編號:4),且因而能夠利用前述的BSB DNA片段用於dsRNA轉錄。
dsRNA係利用2μL的PCR產物(如上)作為模板、加上一種MEGASCRIPT® RNAi套組(AMBION)或是HISCRIBE® T7活體外轉錄套組、依照製造商的說明來使用而予以合成。見圖1B。於一種NANODROP® 8000分光光度計上以及以無核酸酶的0.1X TE緩衝液(1mM Tris HCL,0.1mM EDTA,pH7.4)予以稀釋成1μg/μL,來定量dsRNA。
實施例4:第二齡英雄美洲蝽若蟲之婆羅賀摩dsRNA注入
昆蟲飼養。新熱帶區褐臭蟲(Neotropical brown stink bug)(BSB;英雄美洲蝽(Euschistus heros))係飼養於27℃孵化器內,於65%相對濕度及16:8小時之光:暗週期下。於2-3天期間收集的一公克的卵播種於底部具有濾紙盤之5L容器中;用#18篩孔覆蓋容器供通風。各個飼養容器產出大概300-400個成蟲BSB。在所有的階段,每週餵食新鮮的四季豆三次,以及一小袋含有向日葵種子、大豆和花生之種子混合物(3:1:1重量比)每週替換一次飲食。用小瓶子供應水且用棉花塞作為芯。在起始二週之後,每週一次將昆蟲轉移至新的容器。
BSB人工飲食。BSB人工飲食係製備如下且於製備後二星期內使用。將冷凍乾燥的四季豆與細粉於MAGIC BULLET®摻合器中摻合,而於不同的MAGIC BULLET®摻合器中摻合生(有機)花生。摻合的乾成分係於大型MAGIC BULLET®摻合器中組合(重量百分比:四季豆,35%;花生,35%;蔗糖,5%;複合維生素(例如,昆蟲之范氏維生素混合液(Vanderzant Vitamin Mixture),SIGMA-ALDRICH),0.9%),將該摻合器加蓋且充分震盪以混合該等成分。然後將混合的乾成分添加至攪拌缽。於不同的容器中,將水和免賴得(benomyl)抗真菌劑(50ppm;25μL的20,000ppm溶液/50mL飲食溶液)充分混合,然後添加至乾成分混合物。用手混合所有的成分直至完全摻合。將該飲食製作成所欲的形狀,用鋁箔紙鬆鬆地包起,於60℃加熱歷時4小時,繼 而冷卻並儲存於4℃。
注入dsRNA至BSB血腔(hemoceol)。將BSB飼養於四季豆及種子飲食上,如以上所述群體一般,在27℃孵化器內,於65%相對濕度及16:8小時之光:暗光照期下。用小刷子溫柔地處理二齡若蟲(各者稱重1至1.5mg)以避免受傷,以及放置於冰上的培養皿中來使昆蟲感到冷而不移動。各個昆蟲注入55.2nL的500ng/μL dsRNA溶液(亦即,27.6ng dsRNA;18.4至27.6μg/g體重的劑量)。使用一種NANOJECTTM II注射器(DRUMMOND SCIENTIFIC,Broomhall,PA)來執行注入,其裝備有從Drummond 3.5英吋(8.89cm)#3-000-203-G/X玻璃毛細管拔出的注射針。將針尖打破且用輕質礦物油回填毛細管,接而充填2至3μL的dsRNA。將dsRNA注入至若蟲的腹部(每試驗每dsRNA注入10隻昆蟲),以及於不同的三天重複試驗。將注入的昆蟲(每井5隻)轉移至32井的盤(Bio-RT-32飼養盤;BIO-SERV,Frenchtown,NJ)內,其含有人工BSB飲食之小丸,以及用Pull-N-PeelTM標籤(BIO-CV-4;BIO-SERV)來覆蓋。水分係經由1.5mL微量離心管中1.25mL的水以棉芯來供應。該盤係於26.5℃,60%濕度及16:8小時之光:暗光照期下培育。於注入後第7天量取活力計數及重量。
注入靶定婆羅賀摩mRNA之dsRNA於BSB第二齡若蟲。靶定YFP編碼區域的區段,YFPv2,之dsRNA係使用作為BSB注入實驗之陰性對照。如同表2中之摘要,將55.2nL BSB_brm-1(500ng/μL)注入到至少十隻第二齡BSB若蟲 (每隻1-1.5mg)血腔(hemoceol),以達最終濃度近似18.4-27.6μg dsRNA/g昆蟲。於dsRNA注入七天之後記錄死亡率百分比。判定的BSB_brm-1 dsRNA之死亡率與注入相同量的YFPv2 dsRNA(陰性對照)所見的死亡率,沒有顯著差異,且p=0.279(司徒頓t檢定(Student’s t-test))。注入YFPv2 dsRNA與無注入處理之間亦沒有顯著差異。
實施例5:dsRNA注入於英雄美洲蝽後之親代RNAi的效應
將dsRNA注入至BSB血腔(hemoceol)。將BSB如群體一般如上所述地飼養。於下列的範例中,採集幼小的成體(成體蛻皮後高達一週),以及在第二個容器內於冰上使其等感到冷。雌體與雄體基於生殖器之結構二形性而分開。用極輕的昆蟲學鑷子來處理雌性BSB,以及使用一種 NANOJECTTM II注射器(DRUMMOND SCIENTIFIC,Broomhall,PA)來注入dsRNA,其裝備有從Drummond 3.5英吋(8.89cm)#3-000-203-G/X玻璃毛細管拔出的注射針。將針尖打破且用輕質礦物油回填毛細管,接而充填3μL的dsRNA。每處理組將dsRNA注入十隻至二十隻雌體(各者近似90mg)。將69nL 1μg/μL dsRNA連續二次總共138nL(138ng),注入至各雌體的腹部。每批十隻雌體移動至一夸脫(~950mL)的箱子,其之蓋子具有開口且用#18篩孔供通風。將二隻雄體加入至各箱的十隻雌體內。如飼養程序中所述供應昆蟲一小瓶的水、四季豆及種子。將昆蟲維持於26.5℃,60%濕度及16:8小時之光:暗光照期下。
從注入後七至九天開始每天收集存活的雌體計數、產卵及卵孵化的數目,且持續高達16天。每天移除卵並維持於培養皿或多井平盤內於一層配於水之1%瓊脂糖上。將成年昆蟲轉移至具有新鮮的水與食物的箱子內。
注入靶定婆羅賀摩iswi-1iswi-2mi-2及/或chd1之dsRNA至BSB雌體內使產卵減少。注入靶定YFP編碼區域的301nt序列之dsRNA的雌體係使用作為陰性對照,以及與未注入及注入BSB_brm-1 dsRNA(序列辨識編號:3)之雌體作比較。如同表3中之摘要,未注入之雌體與YFPv2對照產卵的數目沒有統計上的差異。另一方面,注入BSB_brm-1 dsRNA之雌體沒有產卵。
注入138ng染色質重塑ATPase dsRNA對於成年雌體BSB之活力沒有效應或是對於活力沒有立即的效應。 圖4A。當與陰性YFPv2 dsRNA對照(序列辨識編號:5)相比,注入BSB婆羅賀摩dsRNA(BSB_brm-1(序列辨識編號:3))以及靶定BSB之BSB_mi-2-1(序列辨識編號:16)、BSB_iswi-1-1(序列辨識編號:17)、BSB_iswi-2-1(序列辨識編號:18),以及BSB_chd1-1(序列辨識編號:19)的dsRNAs大大地減少產卵或是完全消除產卵,表4圖4B。注入dsRNAs BSB_brm-1(序列辨識編號:3)、BSB_mi-2-1(序列辨識編號:16)、BSB_iswi-1-1(序列辨識編號:17)、BSB_iswi-2-1(序列辨識編號:18),以及BSB_chd1-1(序列辨識編號:19)的BSB雌體之產卵,與注入相同量的YFPv2 dsRNA(序列辨識編號:5)所見的產卵顯著地差異,且p<0.05(表4圖4B)。注入BSB_brm-1之雌體沒有產卵,以及注入BSB_mi-2-1之雌體生產的卵非常少或沒有產卵。BSB_brm-1(序列辨識編號:3)、BSB_mi-2-1(序列辨識編號:16)、BSB_iswi-1-1(序列辨識編號:17),以及BSB_chd1-1(序列辨識編號:19)的dsRNA引致BSB卵巢內的轉錄本位準顯著的減量。圖5BSB_iswi-2-1(序列辨識編號:18)的轉錄本不容易藉由探針水解PCR偵測到。
以下的實驗孵化的卵數目顯示,注入BSB婆羅賀摩mi-2iswi-1iswi-2chd1之dsRNA的雌體生產的子代數目顯著地低於對照。表5圖4C。注入dsRNAs BSB_brm-1(序列辨識編號:3)、BSB_mi-2-1(序列辨識編號:16)、BSB_iswi-1-1(序列辨識編號:17)、BSB_iswi-2-1(序列辨識編號:18),以及BSB_chd1-1(序列辨識編號:19)的BSB 雌體之卵孵化率,與注入相同量的陰性對照YFPv2 dsRNA(序列辨識編號:5)所觀察到的卵孵化率顯著地差異,且p<0.05(司徒頓t檢定(Student’s t-test))。
表4.注入染色質重塑體dsRNA的英雄美洲蝽雌體之產卵。注入陰性對照YFPv2或染色質重塑ATP酶dsRNA之每隻雌體,15天內產卵的總數及卵的平均數目。各dsRNA注入20隻雌體。於注入後第9天開始卵的計數,以及持續歷時連續15天。處理組之間收集卵的期間之天數N,因為brmmi-2處理之雌體死亡率而變化。對雌體產卵的平均數目執行平均值比較。使用YFPv2 dsRNA作為對照,用於以JMP®進行司徒頓t檢定(Student’s t-test)加上鄧奈特調整
為了判定pRNAi反應之開始,成體蛻皮後14至16天,將BSB_brm-1(序列辨識編號:3)dsRNA注入產卵的雌體。圖6顯示卵孵化於注入後第4天被抑制(圖6B),以及產卵於第7天被終止(圖6A)。
基於英雄美洲蝽雌體對婆羅賀摩dsRNA反應而完全沒有產卵,且對mi-2 dsRNA反應而嚴重地抑制產卵,吾人探討親代雌體之卵母細胞的狀態及卵巢的發育。於注入9天及14天後檢查雌體。於注入後第9天,對照雌體開始產卵。既然brm dsRNA於注入大約二週內導致致死性,選擇第14天來獲得最後存活的雌體之表型。圖4A。英雄美洲蝽卵巢的解剖係於立體顯微鏡下於1X PBS中進行,然後於4%聚甲醛/1X PBS溶液中於冰上固定歷時2小時。卵巢周圍的導管係用#5生物學鑷子予以移除。各處理三至四組卵巢的影像係用一種Leica M205 FA立體顯微鏡(WETZLAR,德國)來拍攝。注入YFP dsRNA的雌體內觀察到成熟的卵及發育中的卵母細胞。圖7CD。注入婆羅賀摩mi-2 dsRNA 的雌體顯示缺乏卵巢發育及卵巢小管伸長。圖7。此等昆蟲顯示無成熟的卵母細胞或成熟的卵(圖7E、GH),或卵母細胞處於衰退的狀態(圖7F)。
成年BSB雌體接觸編碼靶定SNF2-解旋酶區域(序列辨識編號:34-37)及染色質重塑領域(序列辨識編號:38-41)的序列之dsRNA分子,證明對於卵活力具有令人驚訝、戲劇性且可再現性的效應。曝露至dsRNA之交配的雌體生產的卵數目,比曝露至未經處理的飲食或用YFPv2 dsRNA處理的飲食之雌體生產的卵數目更少。
以上的結果清楚地證明RNAi於BSB成體的系統性本質,以及達成親代效應的潛力,其中曝露至dsRNA之雌體的卵內之胚胎發育相關的基因之減量。此等觀察確認dsRNA能被吸收易位至接觸位置(例如發育中的卵巢小管)以外的組織(例如中腸或血腔)。
涉及胚胎發育之基因表現減量而使卵不孵化的能力,提供獨特的機會以實現及改良BSB之控制。因為成體容易取食地面上的生殖組織,成體BSB可以透過dsRNA之基因轉殖表現,而曝露到iRNA控制劑,以藉由防止卵孵化來實現後續世代之植物防護。透過dsRNA之基因轉殖表現,或是透過接觸表面施用的iRNAs而遞送dsRNA於植物內,提供重要的堆疊合作夥伴(stacking partner)給其他直接靶定若蟲的基因轉殖方法,並且提升害蟲管理策略之整體耐久力。
實施例6:定量即時PCR分析
從注入dsRNA之零至三天大的雌體收集英雄美洲蝽的組織用於qRT-PCR。於七天之後,雌體卵巢的解剖係於立體顯微鏡下、於無核酸酶的1X PBS(pH 7.4)中進行,以及獨立地冷凍於收集微管(microtube)中於乾冰上。用RL溶解緩衝液及KLECKOTM組織粉碎機(GARCIA MANUFACTURING,Visalia,CA)執行組織瓦解。於組織離解之後,總RNA之單離係使用NORGEN®總RNA純化96井套組(NoRGEN BIOTEK CORP.,Ontario,加拿大)、以高輸出量格式、根據製造商的實驗協定、利用TURBOTM DNase(LIFE TECHNOLOGIES,Carlsbad,CA)於溶析液(elutant)上在37℃下歷時1小時。cDNA合成係使用高效能cDNA RT套組(LIFE TECHNOLOGIES,Carlsbad,CA)、根據製造商的實驗協定及下列的修改來執行。用無核酸酶的水將總RNA調整為50ng/μL。將RNA樣本加熱至70℃歷時10分鐘並冷卻至4℃。半反應係藉由添加5μL 2X混合物來起始。僅供應為隨機引子之引子混合物首先被攙入客製合成的T20VN oligo(INTEGRATED DNA TECHNOLOGIES,Coralville,IA)達2μM之最終濃度,俾以改良3'UTR為基的分析之敏感度。第一股合成之後,樣本係以無核酸酶的水予以1:3稀釋。
英雄美洲蝽qRT-PCR引子及水解探針係使用LIGHTCYCLER®探針設計軟體2.0(ROCHE,Basel,Switzerland)來設計參考基因,以及使用PRIMER EXPRESS®軟體版本3.0(APPLIED BIOSYSTEMS,Grand Island,NY)來設計靶定基因。表6。使用無注入的昆蟲作為 對照。使用英雄美洲蝽肌肉肌動蛋白(SEQ ID NO:73)作為參考基因。用FAM(6-羧基螢光素醯胺(6-Carboxy Fluorescein Amidite))來標示探針。最終引子濃度為0.4μM,以及最終探針濃度為0.2μM(於10μL反應體積內)。相對轉錄本位準係使用LIGHTCYCLER® 480、透過探針水解qRT-PCR來分析。所有分析均含括無模板(僅混合)的陰性對照組。對於標準曲線,在源盤上亦包括一空白試樣,以檢查樣本的交叉污染。PCR循環條件包括於95℃進行標靶活化培育10分鐘,接著於95℃進行40個循環的變性歷時10秒,於60℃進行黏合/延伸歷時40秒,以及於72℃進行FAM獲得歷時1秒。反應接著於40℃冷卻歷時10秒。於陰性對照組及dsRNA曝露的雌體二者均未確實地偵測到英雄美洲蝽iswi-2,因而最終的結果省略iswi-2的數據。數據係使用LIGHTCYCLER®軟體v1.5來分析,以及表現的相對變化係使用2-ΔΔCT方法(Livak and Schmittgen(2001)Methods 25:402-8)來計算。
實施例7:植物轉形載體之建構
輸入載體係使用化學合成片段(DNA2.0,Menlo Park,CA)及標準分子選殖方法之組合來組裝,該輸入載體 含有一種dsRNA髮夾形成之靶定基因建構物,包含各種染色質重塑基因中一者之區段:(序列辨識編號:1或序列辨識編號:63(婆羅賀摩);序列辨識編號:8或序列辨識編號:64(BSB_mi-2);序列辨識編號:10或序列辨識編號:65(BSB_iswi-1);序列辨識編號:12或序列辨識編號:66(BSB_iswi-2);序列辨識編號:14或序列辨識編號:67(BSB_chd1);序列辨識編號:30(BSB_ino80);以及序列辨識編號:32(BSB_domino))。RNA初級轉錄本之分子內髮夾形成係藉由將兩個複本的靶定基因區段配置(在一單一轉錄單元內)成彼此相反之定向而促進,該兩個區段係由鏈接子序列分隔(例如ST-LS1內含子;Vancanneyt等人之(1990)Mol.Gen.Genet.220:245-250)。因此,該初級mRNA轉錄本含有由該鏈接子序列分隔之兩個婆羅賀摩或是異種同源物基因區段序列,作為彼此大的反向重複。初級mRNA髮夾轉錄本之製造係藉由一種啟動子(例如玉蜀黍(maize)泛素1,美國專利第5,510,474號;來自花椰菜嵌紋病毒(Cauliflower Mosaic Virus)(CaMV)的35S;來自水稻肌動蛋白基因的啟動子;泛素啟動子;pEMU;MAS;玉蜀黍(maize)H3組織蛋白啟動子;ALS啟動子;菜豆蛋白(phaseolin)基因啟動子;cab;核酮糖雙磷酸羧化酶(rubisco);LAT52Zm13;及/或apg)之複本所驅動,以及包含3'非轉譯區域之一片段,舉例而言但不限於:玉蜀黍(maize)過氧化酶5基因(ZmPer5 3'UTR v2;美國專利第6,699,984號)、AtUbi10、AtEf1,或StPinII,係使用以終止髮夾-RNA-表現 基因的轉錄。
如上所述之輸入載體係用典型的雙元目標載體,使用標準的GATEWAY®重組反應,來生產髮夾RNA表現轉形載體供用於農桿菌媒介的植物胚胎轉形。
一種陰性對照雙元載體,其包含表現YFP髮夾dsRNA的基因,係用典型的雙元目標載體及輸入載體,藉由標準GATEWAY®重組反應來建構。該輸入載體包含YFP髮夾序列,該YFP髮夾序列係處於玉蜀黍(maize)泛素1啟動子及源自玉蜀黍(maize)過氧化酶5基因的3'非轉譯區域之片段的表現控制下。
一種雙元目標載體包含一種除草劑耐受性基因(芳亞基鏈烷酸酯雙加氧酶(aryloxyalknoate dioxygenase);(AAD-1 v3,美國專利第7,838,733號,及Wright等人之(2010)Proc.Natl.Acad.Sci.U.S.A.107:20240-5)),在一種植物可操縱的啟動子(例如甘蔗桿狀病毒(sugarcane bacilliform badnavirus)(ScBV)啟動子(Schenk等人之(1999)Plant Mol.Biol.39:1221-30)或是ZmUbi1(美國專利第5,510,474號))的調控下。5'UTR及源自此等啟動子之內含子,係放置於該啟動子區段的3'端和AAD-1編碼區域的起始密碼子之間。一種包含源自玉蜀黍(maize)脂酶基因的3'非轉譯區域之片段(ZmLip 3'UTR;美國專利第7,179,902號),係使用來終止AAD-1 mRNA的轉錄。
一種另外的陰性對照雙元載體,其包含表現YFP蛋白質的基因,係用典型的雙元目標載體及輸入載體,藉 由標準GATEWAY®重組反應來建構。該雙元目標載體包含一種除草劑耐受性基因(芳亞基鏈烷酸酯雙加氧酶(aryloxyalknoate dioxygenase);AAD-1 v3)(如上所述),其係在玉蜀黍(maize)泛素1啟動子及源自玉蜀黍(maize)脂酶基因的3'非轉譯區域之一片段(ZmLip 3'UTR)的表現控制下。該輸入載體包含一種YFP編碼區域,該YFP編碼區域係在玉蜀黍(maize)泛素1啟動子及源自玉蜀黍(maize)過氧化酶5基因的3'非轉譯區域之一片段的表現控制下。
實施例8:包含半翅目害蟲序列之基因轉殖玉蜀黍(Zea mays)
10至20株基因轉殖T0玉蜀黍植物係如實施例5中所描述般生成,其等懷有包含下列區段的核酸之表現載體:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,或序列辨識編號:67。獲得另外的10-20株表現RNAi建構物的髮夾dsRNA之T1玉蜀黍獨立品系,用於BSB的考驗。髮夾dsRNA可以衍生自包含下列區段:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,或序列辨識編號:67。這些係透過RT-PCR或是其他分子分析方法予以證實。源自選定的獨立 T1品系的總RNA製備物係選擇性地使用於RT-PCR,加上設計以結合在每一RNAi建構物中之髮夾表現卡匣的鏈接子的引子。此外,在RNAi建構物中每一靶定基因的特定引子係選擇性地使用來擴增,並確認對於在植物界之siRNA的生產所要求之加工前mRNA之生產。對每一靶定基因,所欲的電泳帶(band)的擴增證實了髮夾RNA在每一基因轉殖玉蜀黍植物中的表現。該等靶定基因之dsRNA髮夾加工成為siRNA係隨後選擇性地,於獨立的基因轉殖品系中使用RNA墨漬法雜交而證實。
再者,具有對靶定基因失配的序列及超過80%序列同一性之RNAi分子,與具有對靶定基因100%序列同一性之RNAi分子,影響半翅目的方式是相似的。失配的序列與天然序列的配對而於相同的RNAi建構物中形成髮夾dsRNA,遞送了經植物加工的siRNAs,其能夠影響取食的半翅目害蟲之生長、發育、生殖及活力。
在植物界遞送相應於靶定基因的dsRNA、siRNA、shRNA、hpRNA或miRNA,且隨後由半翅目害蟲透過取食攝取引致該靶定基因透過RNA媒介基因靜默而向下調控半翅目害蟲的靶定基因。當一靶定基因之功能於一個或多個發育階段為重要時,該半翅目害蟲的生長、發育及/或生殖受影響,且在英雄美洲蝽(Euschistus heros)、蓋德擬壁蝽(Piezodorus guildinii)、褐翅蝽(Halyomorpha halys)、南方綠蝽象(Nezara viridula)、綠色蝽(Chinavia hilare)、褐美洲蝽(Euschistus servus)、Dichelops melacanthusDichelops furcatusEdessa meditabunda、肩蝽(Thyanta perditor)、Chinavia marginatum、植物臭蟲(Horcias nobilellus)、Taedia stigmosa、秘魯棉紅蝽(Dysdercus peruvianus)、Neomegalotomus parvus、喙綠蝽(Leptoglossus zonatus)、Niesthrea sidae,或是美國牧草盲蝽(Lygus lineolaris)中至少一者的情況下,導致無法成功侵擾、取食、發育及/或生殖,或導致該半翅目害蟲的死亡。抉擇靶定基因並繼而成功的應用RNAi係使用來控制半翅目害蟲。
基因轉殖RNAi品系及未轉形玉蜀黍的表型比較。選定用於創造髮夾dsRNA的靶定半翅目害蟲基因或序列,對任何已知的植物基因序列不具有相似度。因此,因靶定這些半翅目害蟲基因或序列的建構物而製造或活化的(系統性)RNAi,對基因轉殖植物預期是不會發生任何不利影響。然而,基因轉殖品系的發育與形態特徵係與未轉形植物進行比較,以及與那些以沒有髮夾表現基因之"空"的載體所轉形的基因轉殖品系進行比較。比較植物的根、芽、葉羣及生殖特徵。在基因轉殖及未轉形植物之根長度與生長模式中,沒有可觀察到的差異。植物的芽特徵,諸如高度、葉片數及大小,開花時間,花的大小及外觀都是類似的。一般而言,當在活體外及在溫室土壤中培養時,在基因轉殖品系及那些沒有表現靶定iRNA分子者之間沒有觀察到形態差異。
實施例9:包含半翅目害蟲序列之基因轉殖大豆(Glycine max)
10至20株懷有包含下列區段的核酸之表現載體:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,或序列辨識編號:67,之基因轉殖T0大豆(Glycine max)植物係如本技藝中已知的方式,藉由包括舉例而言農桿菌媒介的轉形予以生成如下。成熟的大豆(大豆(Glycine max))種子係用氯氣滅菌過夜歷時十六小時。用氯氣滅菌後,將種子放置於LAMINARTM通風櫥內開放的容器中以驅散氯氣。接著,滅菌的種子係在24℃下使用黑箱子於黑暗中予以吸收滅菌H2O歷時十六小時。
種子裂開的(split-seed)大豆之製備。含有一部份胚軸之裂開的大豆種子的實驗協定,必須製備如下的大豆種子材料,該大豆種子材料為使用固定在解剖刀的#10刀片沿著種子的臍縱切,來分離並移除種皮,且將種子分裂成二個子葉段。小心的照顧以部份地移除胚軸,其中大約1/2-1/3的胚軸仍然保持附著於子葉的節端。
接種。繼而將含有一部份胚軸之裂開的大豆種子浸漬在農桿腫瘤菌(Agrobacterium tumefaciens)(例如,菌株EHA 101或EHA 105)的溶液中大約30分鐘,該農桿腫瘤菌溶液含有包含下列區段之雙元質體:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號: 32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,或序列辨識編號:67。浸漬該含有胚軸之子葉,然後將該農桿腫瘤菌溶液稀釋至λ=0.6OD650的最終濃度。
共培養。在接種之後,允許裂開的大豆種子與農桿腫瘤菌菌株於覆蓋以一張濾紙之培養皿中的共培養培養基(Agrobacterium Protocols,vol.2,2nd Ed.,Wang,K.(Ed.)Humana Press,New Jersey,2006)上共培養歷時5天。
芽誘導。5天的共培養之後,用液體芽誘導(SI)培養基來清洗裂開的大豆種子,該培養基係由以下組成:B5鹽類,B5維生素,28mg/L鐵,38mg/L Na2EDTA,30g/L蔗糖,0.6g/L MES,1.11mg/L BAP,100mg/L TIMENTIN®,200mg/L頭孢泰新(cefotaxime),以及50mg/L萬古黴素(vancomycin)(pH 5.7)。裂開的大豆種子繼而於芽誘導I(SI I)培養基上培養,該培養基係由以下組成:B5鹽類,B5維生素,7g/L諾布爾瓊脂(Noble agar),28mg/L鐵,38mg/L Na2EDTA,30g/L蔗糖,0.6g/L MES,1.11mg/L BAP,50mg/L TIMENTIN®,200mg/L頭孢泰新(cefotaxime),50mg/L萬古黴素(vancomycin)(pH 5.7),且將子葉的平坦面面向上及子葉的節端埋藏於培養基內。培養2週之後,將源自經轉形裂開的大豆種子之外植片體轉移至芽誘導II(SI II)培養基上培養,該培養基含有增補6mg/L草銨膦(glufosinate)(LIBERTY®)之SI I培養基。
芽伸長。於SI II培養基上培養2週之後,從外植 片體移除子葉,以及含有胚軸之嫩芽墊(flush shoot pad)係透過於子葉的基部切一刀而切除。將源自子葉之經單離的芽墊轉移至芽伸長(SE)培養基上。該SE培養基係由以下組成:MS鹽類,28mg/L鐵,38mg/L Na2EDTA,30g/L蔗糖及0.6g/L MES,50mg/L天冬醯胺酸,100mg/L L-焦麩胺酸,0.1mg/L IAA,0.5mg/L GA3,1mg/L玉米素核糖苷(zeatin riboside),50mg/L TIMENTIN®,200mg/L頭孢泰新(cefotaxime),50mg/L萬古黴素(vancomycin),6mg/L草銨膦(glufosinate),7g/L諾布爾瓊脂(Noble agar),(pH 5.7)。每2週將培養物轉移至新鮮的SE培養基上。培養物係用80-90μmol/m2sec的光密度、以18h光照期、在24℃之CONVIRON®生長室中生長。
發根。從子葉芽墊發育的伸長的芽係透過於子葉芽墊的基部處切割伸長的芽而單離,以及將伸長的芽浸泡於1mg/L IBA(吲哚-3-丁酸)歷時1-3分鐘以促進發根。接著,將伸長的芽轉移至植物培養皿(phyta tray)中的發根培養基(MS鹽類,B5維生素,28mg/L鐵,38mg/L Na2EDTA,20g/L蔗糖及0.59g/L MES,50mg/L天冬醯胺酸,100mg/L L-焦麩胺酸7g/L諾布爾瓊脂(Noble agar),pH 5.6)上。
培養。在24℃之CONVIRON®生長室、18h光照期培養歷時1-2週後,將已經發展根部的芽轉移至有蓋的聖代杯中的土壤混合物,以及放置於CONVIRON®生長室(型號CMP4030及CMP3244,Controlled Environments Limited,Winnipeg,Manitoba,Canada)中、於長日照條件下(16小時 光/8小時黑暗)、以120-150μmol/m2sec的光密度、於恆溫(22℃)及恆濕(40-50%)下用於植物馴化。生根的小苗於聖代杯中內馴化數週,然後將其等轉移至溫室內進一步馴化並建立強壯的基因轉殖大豆植物。
獲得另外的10-20株表現RNAi建構物的髮夾dsRNA之T1大豆(Glycine max)獨立品系,用於BSB的考驗。髮夾dsRNA可以衍生自包含下列之區段:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,或序列辨識編號:67。這些係透過RT-PCR或是如本技藝已知的其他分子分析方法予以證實。源自選定的獨立T1品系的總RNA製備物係選擇性地使用於RT-PCR,加上設計以結合在每一RNAi建構物中之髮夾表現卡匣的鏈接子的引子。此外,在RNAi建構物中每一靶定基因的特定引子係選擇性地使用來擴增,並確認生產植物界之siRNA所要求之加工前mRNA之生成。對每一靶定基因,所欲的電泳帶(band)的擴增證實了髮夾RNA在每一基因轉殖大豆(Glycine max)植物中的表現。該等靶定基因之dsRNA髮夾加工成為siRNA係隨後選擇性地,於獨立的基因轉殖品系中使用RNA墨漬法雜交而證實。
具有對靶定基因失配的序列及超過80%序列同一性之RNAi分子,與具有對靶定基因100%序列同一性之RNAi分子,影響BSB的方式是相似的。失配的序列與天然 序列的配對而於相同的RNAi建構物中形成髮夾dsRNA,遞送了經植物加工的siRNAs,其能夠影響取食的半翅目害蟲之生長、發育、生殖及活力。
在植物界遞送相應於靶定基因的dsRNA、siRNA或miRNA,且隨後由半翅目害蟲透過取食攝取引致該靶定基因透過RNA媒介基因靜默而向下調控半翅目害蟲的靶定基因。當一靶定基因之功能於一個或多個發育階段為重要時,該半翅目害蟲的生長、發育及/或生殖受影響,且在英雄美洲蝽(Euschistus heros)、蓋德擬壁蝽(Piezodorus guildinii)、褐翅蝽(Halyomorpha halys)、南方綠蝽象(Nezara viridula)、綠色蝽(Chinavia hilare)、褐美洲蝽(Euschistus servus)、Dichelops melacanthusDichelops furcatusEdessa meditabunda、肩蝽(Thyanta perditor)、Chinavia marginatum、植物臭蟲(Horcias nobilellus)、Taedia stigmosa、秘魯棉紅蝽(Dysdercus peruvianus)、Neomegalotomus parvus、喙綠蝽(Leptoglossus zonatus)、Niesthrea sidae,或是美國牧草盲蝽(Lygus lineolaris)中至少一者的情況下,導致無法成功侵擾、取食、發育及/或生殖,或是導致該半翅目害蟲的死亡。抉擇靶定基因並繼而成功的應用RNAi係使用來控制半翅目害蟲。
基因轉殖RNAi品系及未轉形大豆(Glycine max)的表型比較。選定用於創造髮夾dsRNA的靶定半翅目害蟲基因或序列,對任何已知的植物基因序列不具有相似度。因此,因靶定這些半翅目害蟲基因或序列的建構物而製造 或活化的(系統性)RNAi,對基因轉殖植物預期是不會發生任何不利影響。然而,基因轉殖品系的發育與形態特徵係與未轉形植物進行比較,以及與那些以沒有髮夾表現基因之"空"的載體所轉形的基因轉殖品系進行比較。比較植物的根、芽、葉羣及生殖特徵。在基因轉殖及未轉形植物之根長度與生長模式中,沒有可觀察到的差異。植物的芽特徵,諸如高度、葉片數及大小,開花時間,花的大小及外觀都是類似的。一般而言,當在活體外及在溫室土壤中培養時,在基因轉殖品系及那些沒有表現靶定iRNA分子者之間沒有觀察到形態差異。
實施例10:英雄美洲蝽(E.heros)於人工飲食之生物分析
於人工飲食進行之dsRNA取食分析方面,32井的盤子準備~18mg的人工飲食小丸及水,如同注入實驗一般。將濃度為200ng/μl之dsRNA添加至食物小丸及水樣品,二個井各100μl。各井內引入五隻第二齡英雄美洲蝽若蟲。使用水樣品及靶定YFP轉錄本之dsRNA作為陰性對照。於不同的三天重複實驗。於處理7天之後,將存活的昆蟲秤重且判定死亡率。
成年雌體英雄美洲蝽之取食生物分析係如以上所述於32井的盤子中執行。將年輕的(成年期小於一週)交配的雌體引入具有人工飲食之生物分析盤子內,每盤一隻。曝露至dsRNA七天之後,將高達十隻成年雌體移往有四季豆、水、種子及二隻成年雄體的容器。記錄之後二週的雌體活力以及產卵的數目與孵化的卵數目。該數據顯示所生 產及/或孵化的卵數目顯著地減少。
實施例11:包含半翅目害蟲序列之基因轉殖阿拉伯芥(Arabidopsis thaliana)
用於髮夾形成的靶定基因建構物之阿拉伯芥(Arabidopsis)轉形載體,係使用相似於實施例5之標準的分子分法來產生,該靶定基因建構物含有下列的區段:BSB_婆羅賀摩(序列辨識編號:1或序列辨識編號:63)、BSB_mi-2(序列辨識編號:8或序列辨識編號:64)、BSB_iswi-1(序列辨識編號:10或序列辨識編號:65)、BSB_iswi-2(序列辨識編號:12或序列辨識編號:66)、BSB_chd1(序列辨識編號:14或序列辨識編號:67)、BSB_ino80(序列辨識編號:30),及/或BSB_domino(序列辨識編號:32)。阿拉伯芥轉形係使用標準的農桿菌為基礎的程序來執行。用草銨膦(glufosinate)耐受性篩選標記來選擇T1種子。產生了基因轉殖T1阿拉伯芥植物,以及產生同型接合的簡單複本T2基因轉殖植物供昆蟲研究。生物分析係於成長的開花阿拉伯芥植物上完成。各植物上放置五至十隻昆蟲,且監測14天之內的存活。
阿拉伯芥轉形載體之建構。以輸入載體為基的輸入選殖體,係使用化學合成片段(DNA2.0,Menlo Park,CA)及標準分子選殖方法之組合來組裝,該輸入載體含有一種用於髮夾形成的靶定基因建構物,該靶定基因建構物含有下列的區段:BSB_婆羅賀摩(序列辨識編號:1或序列辨識編號:63)、BSB_mi-2(序列辨識編號:8或序列辨識編號: 64)、BSB_iswi-1(序列辨識編號:10或序列辨識編號:65)、BSB_iswi-2(序列辨識編號:12或序列辨識編號:66)、BSB_chd1(序列辨識編號:14或序列辨識編號:67)、BSB_ino80(序列辨識編號:30),及/或BSB_domino(序列辨識編號:32)。RNA初級轉錄本之分子內髮夾形成係藉由將靶定基因區段之兩個複本配置成(在一單一轉錄單元內)彼此相反之定向而促進,該兩個區段係由一鏈接子序列(例如ST-LS1內含子)分隔(Vancanneyt等人之(1990)Mol.Gen.Genet.220(2):245-50)。因此,該初級mRNA轉錄本含有由該鏈接子序列分隔兩個染色質重塑基因區段序列,做為彼此大的反向重複。一種啟動子(例如阿拉伯芥(Arabidopsis thaliana)泛素10啟動子(Callis等人之(1990)J.Biological Chem.265:12486-12493)之複本係使用來驅動初級mRNA髮夾轉錄本之製造,以及包含源自農桿腫瘤菌(Agrobacterium tumefaciens)的開放讀取框架23(AtuORF23 3' UTR v1;美國專利第5,428,147號)之3'非轉譯區域之片段,係使用來終止髮夾-RNA-表現基因的轉錄。
如上所述之輸入載體內的髮夾選殖體係使用於標準GATEWAY®重組反應,加上一種典型的雙元目標載體,來生產髮夾RNA表現轉形載體供用於農桿菌媒介的阿拉伯芥(Arabidopsis)轉形。
雙元目標載體包含一種除草劑耐受性基因,DSM-2v2(美國專利申請案第2011/0107455號),其係在木薯葉脈嵌紋病毒(Cassava vein mosaic virus)啟動子(CsVMV啟 動子v2,美國專利第7601885號;Verdaguer等人之(1996)Plant Mol.Biol.31:1129-39)的調控下。一種包含源自農桿腫瘤菌(Agrobacterium tumefaciens)的開放讀取框架1(AtuORF1 3' UTR v6;Huang等人之(1990)J.Bacteriol.172:1814-22)之3'非轉譯區域之片段,係使用來終止DSM2v2 mRNA的轉錄。
一種陰性對照雙元建構物,其包含表現YFP髮夾RNA的基因,係用一典型的雙元目標載體及輸入載體,藉由標準GATEWAY®重組反應來建構。一種輸入建構物包含YFP髮夾序列(hpYFP v2,序列辨識編號:42),該YFP髮夾序列係在阿拉伯芥(Arabidopsis)泛素10啟動子(如上所述)及源自農桿腫瘤菌(Agrobacterium tumefaciens)的ORF23 3'非轉譯區域之片段(如上所述)的表現控制下。
生產包含殺蟲性髮夾RNA之基因轉殖阿拉伯芥:農桿菌媒介的轉形。將包含髮夾序列的雙元質體予以電穿孔至農桿菌菌株之內。重組的農桿菌選殖體係藉由重組的農桿菌選殖體之質體製備物的限制分析(restriction analysis)來確認。利用一種Qiagen Plasmid Max Kit(Qiagen,Cat# 12162)、遵照製造商推薦的實驗協定,來從農桿菌培養物萃取質體。
阿拉伯芥的轉形及T1選定。十二至十五株阿拉伯芥植物(c.v.Columbia)生長於溫室內的4"花盆中,加上250μmol/m2的光密度、25℃及18:6小時的光:黑暗條件。於轉形之前一週修剪初生的花莖(flower stems)。藉由將10μl 重組的農桿菌甘油保存種(stock)培育於100ml LB肉湯中(Sigma L3022)+100mg/L觀黴素(Spectinomycin)+50mg/L卡那黴素(Kanamycin)於28℃且以225rpm震盪歷時72小時,來製備農桿菌接種體。收穫農桿菌細胞且懸浮於5%蔗糖+0.04% Silwet-L77(Lehle Seeds Cat # VIS-02)+10μg/L苯亞甲胺嘌呤(benzamino purine)(BA)溶液內達OD600 0.8~1.0,然後進行花的浸漬法(floral dipping)。將植物的地上部分浸漬於農桿菌溶液內歷時5-10分鐘,伴隨溫和的攪拌。接而為了正常的生長而將植物轉移至溫室內,伴隨定時的灑水及施肥直至結籽。
實施例12:基因轉殖的阿拉伯芥之生長及生物分析
髮夾RNAi建構物轉形的T1阿拉伯芥之選定。源自各個轉形、高達200mg的T1種子係於0.1%瓊脂糖溶液內予以層積。該等種子係種植於具有#5 sunshine培養基的發芽盤(10.5”x 21”x 1”;T.O.Plastics Inc.,Clearwater,MN.)內。於種植後6及9天選擇對280g/ha的Ignite®(草銨膦)具耐受性的轉形體。將選擇的品件移植至直徑4”的花盆內。於移植一週之內完成插入複本的分析,其係使用Roche LightCycler®480、經由水解定量即時PCR(qPCR)來執行。使用LightCycler®探針設計軟體2.0(Roche)來設計對抗DSM2v2篩選標記之PCR引子及水解探針。植物維持在24℃下,加上100-150mE/m2s的密度之螢光和白熱燈之16:8小時之光:暗光照期。
英雄美洲蝽若蟲植物取食生物分析。各個建構物 選擇至少四個低複本(1-2個插入)、四個中等複本(2-3個插入),以及四個高複本(4個插入)品件。植物生長至生殖階段(植物含有花和長角果(siliques))。土壤的表面覆蓋~50ml體積的白沙以容易辨識昆蟲。各植物上引入五至十隻第二齡英雄美洲蝽若蟲。該等植物覆蓋直徑3”、16”高及壁厚0.03”(項號484485,Visipack Fenton MO)的塑膠管;用尼龍篩孔覆蓋管子來單離昆蟲。植物於生長室(conviron)內維持在正常溫度、光及灑水條件下。於14天內,收集昆蟲並秤重,計算死亡率百分比以及生長抑制(1-重量處理組/重量對照組)。使用YFP髮夾表現植物作為對照。
選定pRNAi阿拉伯芥T1植物並於溫室內生長,如上所述。於各株植物釋放1隻至5隻剛出現的BSB成體,以及如上所述地覆蓋整株植物以防止成蟲逃脫。釋放一週之後,從各株植物回收雌性成體,且供養於實驗室中以採集卵。取決於親代RNAi標靶及預期的表型,記錄參數例如每隻雌體的卵數目、卵孵化的百分比及若蟲死亡率,並與對照植物比較。
T2阿拉伯芥種子之產生及T2生物分析。T2種子係從各個建構物所選擇的低複本(1-2個插入)品件來生產。植物(同型接合及/或異型接合)係如上所述經歷英雄美洲蝽若蟲及成蟲取食生物分析。從同型合子收穫T3種子並儲存供將來的分析。
實施例13:額外作物物種之轉形
棉花係以婆羅賀摩mi-2iswi-1iswi-2chd1ino80,及/或domino(具有或不具葉綠體轉運胜肽(chloroplast transit peptide))予以轉形來提供臭蟲控制,其係藉由利用熟悉此藝者已知的方法,舉例而言,先前於美國專利第7,838,733號的實施例14,或是PCT國際專利公開案第WO2007/053482號的實施例12中所述實質相同的技術。
實施例14:pRNAi媒介的昆蟲防護
造成卵死亡率或卵活力喪失之親代RNAi帶給使用RNAi及其他昆蟲防護機制之基因轉殖作物進一步耐久性的益處。利用一種基本的二嵌塊模型來證明此用途。
一個嵌塊含有一種表現殺蟲成分的基因轉殖作物,以及第二個嵌塊含有一種不表現殺蟲成分的避難處作物。卵係依據二個模型化嵌塊之相對比例而於其中產出。於此實例中,基因轉殖嵌塊代表95%的地景,以及避難處嵌塊代表5%。基因轉殖作物表現一種對抗該昆蟲為活性的殺蟲蛋白質。
害蟲對殺蟲蛋白質之抗性係建模為單基因的、具有二個可能的對偶基因;一者(S)賦予感受性,以及另一者(R)賦予抗性。殺蟲蛋白質係建模為引致於其上取食之同型接合的感受性(SS)若蟲97%的死亡率。同型接合的抗性對偶基因(RR)之若蟲假定為沒有死亡率。殺蟲蛋白質之抗性係假定為不完全性隱性,藉以功能性顯性(functional dominance)為0.3(於基因轉殖作物上取食之蛋白質抗性異型接合的(heterozygous)(RS)若蟲的死亡率為67.9%)。
基因轉殖作物亦表現親代活性的dsRNA,其透過 RNA干擾(pRNAi),引致曝露至基因轉殖作物之成年雌性昆蟲的卵不能存活。昆蟲對pRNAi的抗性亦被認為是單基因的、具有二個可能的對偶基因;一者(X)賦予成年雌體對RNAi的感受性,以及另一者(Y)賦予成年雌體對RNAi的抗性。假定高位準的曝露於dsRNAs,pRNAi係建模為引致同型接合的感受性(XX)雌體生產的卵99.9%不能存活。該模型假定pRNAi對於同型接合的抗性(YY)雌體生產的卵之存活沒有效應。dsRNA之抗性係假定為隱性的,藉以功能性顯性(functional dominance)為0.01(對於dsRNA抗性異型接合的(heterozygous)(XY)雌體生產的卵98.9%不能存活)。
於該模型中,依據其等之相對比例,有存活的成蟲跨越二個嵌塊之隨機交配及隨機產卵。活的子代之基因型頻率遵循孟德爾式遺傳之二基因座遺傳系統。
pRNAi的效應需要成年雌體於表現親代活性dsRNA的植物組織上取食。對於從避難處作物出現的成年雌體,比從基因轉殖作物出現的成年雌體,卵發育的干擾是更低的;預期成體會於其等出現繼而若蟲發育的嵌塊處更廣泛地取食。因而,從避難處嵌塊出現的雌性成體之pRNAi效應的相對值,會隨著pRNAi效應的比例而從0(對於從避難處嵌塊出現的成年雌體沒有pRNAi效應)變化至1(對於從避難處嵌塊出現的成年雌體如同對於從基因轉殖嵌塊出現的成年雌體,有相同的pRNAi效應)。
此模型可以容易地調整以展現亦可或是任擇地透過成年雌體於表現親代活性dsRNA的植物組織上取食來 達成pRNAi之效應的情況。
二個抗性對偶基因的頻率係跨世代來計算。抗性對偶基因二者(R及Y)之起始頻率係假定為0.005。結果係呈現為各個抗性對偶基因的頻率達到0.05之昆蟲世代的數目。為了要檢查pRNAi所引致的抗性延遲,對於所有其他方面都完全相同,但含括pRNAi之模擬與不含括pRNAi之模擬進行比較。圖8
該模型亦修改為含括若蟲活性干擾dsRNA組合以BSB活性殺蟲蛋白質於基因轉殖作物中。指定該處之若蟲RNAi同型接合的RNAi感受性若蟲(基因型XX)為97%若蟲死亡率之效應,以及同型接合的RNAi抗性玉米根蟲幼蟲(YY)沒有效應。RNAi抗性異型接合的(XY)若蟲有67.9%的死亡率。假定相同的抗性機制適用於若蟲活性RNAi及pRNAi二者。像之前一樣,對於從避難處嵌塊出現的成年雌體相對於從基因轉殖嵌塊出現的成年雌體,pRNAi效應係從0變化至1。像之前一樣,為了要檢查pRNAi所引致的抗性延遲,對於所有其他方面都完全相同(包括若蟲RNAi),但含括pRNAi之模擬與不含括pRNAi之模擬進行比較。圖9
與從基因轉殖嵌塊出現的成體之卵活力效應的大小相比,對於從避難處嵌塊出現的雌性成體之卵活力而言pRNAi效應值是下降的,觀察到清楚的pRNAi抗性管理效益。除了產生殺蟲蛋白質還產生親代活性dsRNA的基因轉殖作物,與只產生殺蟲蛋白質的基因轉殖作物相比,是更 為持久的。同樣地,除了產生殺蟲蛋白質與若蟲活性dsRNA二者還產生親代活性dsRNA的基因轉殖作物,與只產生殺蟲蛋白質與幼蟲活性dsRNA的基因轉殖作物相比,是更為持久的。在後者的情況中,耐久性的效益適用於殺蟲蛋白質與殺蟲干擾dsRNA二者。
<110> 陶氏農業科學公司 內布拉斯加大學董事會
<120> 以染色質重塑基因之親代RNA干擾(RNAi)抑制作用來控制半翅目害蟲之技術
<130> 2971-P12201.4US(77403-US-NP)
<150> 62/092,747
<151> 2014-12-16
<160> 91
<170> PatentIn版本3.5
<210> 1
<211> 4958
<212> DNA
<213> 英雄美洲蝽(Euschistus heros)
<400> 1
<210> 2
<211> 1523
<212> PRT
<213> 英雄美洲蝽
<400> 2
<210> 3
<211> 499
<212> DNA
<213> 英雄美洲蝽
<400> 3
<210> 4
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> T7噬菌體啟動子
<400> 4
<210> 5
<211> 301
<212> DNA
<213> 人工序列
<220>
<223> YFPv2 dsRNA意義股編碼序列
<400> 5
<210> 6
<211> 47
<212> DNA
<213> 人工序列
<220>
<223> 引子YFPv2-F
<400> 6
<210> 7
<211> 46
<212> DNA
<213> 人工序列
<220>
<223> 引子YFPv2-R
<400> 7
<210> 8
<211> 6346
<212> DNA
<213> 英雄美洲蝽
<400> 8
<210> 9
<211> 1938
<212> PRT
<213> 英雄美洲蝽
<400> 9
<210> 10
<211> 3391
<212> DNA
<213> 英雄美洲蝽
<400> 10
<210> 11
<211> 1023
<212> PRT
<213> 英雄美洲蝽
<400> 11
<210> 12
<211> 1316
<212> DNA
<213> 英雄美洲蝽
<400> 12
<210> 13
<211> 387
<212> PRT
<213> 英雄美洲蝽
<400> 13
<210> 14
<211> 1827
<212> DNA
<213> 英雄美洲蝽
<400> 14
<210> 15
<211> 1454
<212> PRT
<213> 英雄美洲蝽
<400> 15
<210> 16
<211> 496
<212> DNA
<213> 英雄美洲蝽
<400> 16
<210> 17
<211> 481
<212> DNA
<213> 英雄美洲蝽
<400> 17
<210> 18
<211> 490
<212> DNA
<213> 英雄美洲蝽
<400> 18
<210> 19
<211> 496
<212> DNA
<213> 英雄美洲蝽
<400> 19
<210> 20
<211> 38
<212> DNA
<213> 人工序列
<220>
<223> 引子Mi2.T7.F
<400> 20
<210> 21
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引子Mi2.T7.R
<400> 21
<210> 22
<211> 38
<212> DNA
<213> 人工序列
<220>
<223> 引子ISWI30.T7.F
<400> 22
<210> 23
<211> 38
<212> DNA
<213> 人工序列
<220>
<223> 引子ISWI30.T7.R
<400> 23
<210> 24
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引子ISWI2.T7.F
<400> 24
<210> 25
<211> 38
<212> DNA
<213> 人工序列
<220>
<223> 引子ISWI2.T7.R
<400> 25
<210> 26
<211> 38
<212> DNA
<213> 人工序列
<220>
<223> 引子KSMT.T7.F
<400> 26
<210> 27
<211> 38
<212> DNA
<213> 人工序列
<220>
<223> 引子KSMT.T7.R
<400> 27
<210> 28
<211> 38
<212> DNA
<213> 人工序列
<220>
<223> 引子CHD1.T7.F
<400> 28
<210> 29
<211> 39
<212> DNA
<213> 人工序列
<220>
<223> 引子CHD1.T7.R
<400> 29
<210> 30
<211> 4493
<212> DNA
<213> 英雄美洲蝽
<400> 30
<210> 31
<211> 1363
<212> PRT
<213> 英雄美洲蝽
<400> 31
<210> 32
<211> 6108
<212> DNA
<213> 英雄美洲蝽
<400> 32
<210> 33
<211> 1790
<212> PRT
<213> 英雄美洲蝽
<400> 33
<210> 34
<211> 240
<212> DNA
<213> 人工序列
<220>
<223> SNF2-解旋酶簡併dsRNA序列
<220>
<221> 其他特徵
<222> (216)..(216)
<223> n為a、c、g或t
<220>
<221> 其他特徵
<222> (222)..(222)
<223> n為a、c、g或t
<400> 34
<210> 35
<211> 27
<212> DNA
<213> 人工序列
<220>
<223> SNF2-解旋酶簡併dsRNA序列
<220>
<221> 其他特徵
<222> (21)..(21)
<223> n為a、c、g或t
<400> 35
<210> 36
<211> 60
<212> DNA
<213> 人工序列
<220>
<223> SNF2-解旋酶簡併dsRNA序列
<400> 36
<210> 37
<211> 61
<212> DNA
<213> 人工序列
<220>
<223> SNF2-解旋酶簡併dsRNA序列
<400> 37
<210> 38
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 布羅莫領域簡併dsRNA序列
<400> 38
<210> 39
<211> 65
<212> DNA
<213> 人工序列
<220>
<223> HAND-SLIDE簡併dsRNA序列
<400> 39
<210> 40
<211> 36
<212> DNA
<213> 人工序列
<220>
<223> 克羅莫領域簡併dsRNA序列
<220>
<221> 其他特徵
<222> (33)..(33)
<223> n為a、c、g或t
<400> 40
<210> 41
<211> 56
<212> DNA
<213> 人工序列
<220>
<223> 克羅莫領域簡併dsRNA序列
<220>
<221> 其他特徵
<222> (29)..(29)
<223> n為a、c、g或t
<400> 41
<210> 42
<211> 471
<212> DNA
<213> 人工序列
<220>
<223> YFPv2 hpRNA編碼序列
<400> 42
<210> 43
<211> 4958
<212> RNA
<213> 英雄美洲蝽
<400> 43
<210> 44
<211> 499
<212> RNA
<213> 英雄美洲蝽
<400> 44
<210> 45
<211> 6346
<212> RNA
<213> 英雄美洲蝽
<400> 45
<210> 46
<211> 3391
<212> RNA
<213> 英雄美洲蝽
<400> 46
<210> 47
<211> 1316
<212> RNA
<213> 英雄美洲蝽
<400> 47
<210> 48
<211> 1827
<212> RNA
<213> 英雄美洲蝽
<400> 48
<210> 49
<211> 496
<212> RNA
<213> 英雄美洲蝽
<400> 49
<210> 50
<211> 481
<212> RNA
<213> 英雄美洲蝽
<400> 50
<210> 51
<211> 490
<212> RNA
<213> 英雄美洲蝽
<400> 51
<210> 52
<211> 496
<212> RNA
<213> 英雄美洲蝽
<400> 52
<210> 53
<211> 4493
<212> RNA
<213> 英雄美洲蝽
<400> 53
<210> 54
<211> 6108
<212> RNA
<213> 英雄美洲蝽
<400> 54
<210> 55
<211> 240
<212> RNA
<213> 人工序列
<220>
<223> SNF2/解旋酶簡併dsRNA序列
<220>
<221> 其他特徵
<222> (216)..(216)
<223> n為a、c、g或u
<220>
<221> 其他特徵
<222> (222)..(222)
<223> n為a、c、g或u
<400> 55
<210> 56
<211> 27
<212> RNA
<213> 人工序列
<220>
<223> SNF2/解旋酶簡併dsRNA序列
<220>
<221> 其他特徵
<222> (21)..(21)
<223> n為a、c、g或u
<400> 56
<210> 57
<211> 60
<212> RNA
<213> 人工序列
<220>
<223> SNF2/解旋酶簡併dsRNA序列
<400> 57
<210> 58
<211> 61
<212> RNA
<213> 人工序列
<220>
<223> SNF2/解旋酶簡併dsRNA序列
<400> 58
<210> 59
<211> 23
<212> RNA
<213> 人工序列
<220>
<223> 布羅莫領域簡併dsRNA序列
<400> 59
<210> 60
<211> 65
<212> RNA
<213> 人工序列
<220>
<223> HAND-SLIDE簡併dsRNA序列
<400> 60
<210> 61
<211> 36
<212> RNA
<213> 人工序列
<220>
<223> 克羅莫領域簡併dsRNA序列
<220>
<221> 其他特徵
<222> (33)..(33)
<223> n為a、c、g或u
<400> 61
<210> 62
<211> 56
<212> RNA
<213> 人工序列
<220>
<223> 克羅莫領域簡併dsRNA序列
<220>
<221> 其他特徵
<222> (29)..(29)
<223> n為a、c、g或u
<400> 62
<210> 63
<211> 4569
<212> DNA
<213> 英雄美洲蝽
<400> 63
<210> 64
<211> 6222
<212> DNA
<213> 英雄美洲蝽
<400> 64
<210> 65
<211> 3072
<212> DNA
<213> 英雄美洲蝽
<400> 65
<210> 66
<211> 1164
<212> DNA
<213> 英雄美洲蝽
<400> 66
<210> 67
<211> 1665
<212> DNA
<213> 英雄美洲蝽
<400> 67
<210> 68
<211> 4569
<212> RNA
<213> 英雄美洲蝽
<400> 68
<210> 69
<211> 6222
<212> RNA
<213> 英雄美洲蝽
<400> 69
<210> 70
<211> 3072
<212> RNA
<213> 英雄美洲蝽
<400> 70
<210> 71
<211> 1164
<212> RNA
<213> 英雄美洲蝽
<400> 71
<210> 72
<211> 1665
<212> RNA
<213> 英雄美洲蝽
<400> 72
<210> 73
<211> 1134
<212> DNA
<213> 英雄美洲蝽
<400> 73
<210> 74
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 引子肌動蛋白42A-F
<400> 74
<210> 75
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引子肌動蛋白42A-R
<400> 75
<210> 76
<211> 12
<212> DNA
<213> 人工序列
<220>
<223> 探針肌動蛋白42A-FAM
<400> 76
<210> 77
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 探針brm-F
<400> 77
<210> 78
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 引子brm-R
<400> 78
<210> 79
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 探針brm-FAM
<400> 79
<210> 80
<211> 17
<212> DNA
<213> 人工序列
<220>
<223> 引子mi-2-F
<400> 80
<210> 81
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> 引子mi-2-R
<400> 81
<210> 82
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 探針mi-2-FAM
<400> 82
<210> 83
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 引子iswi-1-F
<400> 83
<210> 84
<211> 19
<212> DNA
<213> 人工序列
<220>
<223> 引子iswi-R
<400> 84
<210> 85
<211> 22
<212> DNA
<213> 人工序列
<220>
<223> 探針iswi-1-FAM
<400> 85
<210> 86
<211> 25
<212> DNA
<213> 人工序列
<220>
<223> 引子iswi-2-F_MGB
<400> 86
<210> 87
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 引子iswi-2-R_MGB
<400> 87
<210> 88
<211> 15
<212> DNA
<213> 人工序列
<220>
<223> 探針iswi-2-FAM_MGB
<400> 88
<210> 89
<211> 20
<212> DNA
<213> 人工序列
<220>
<223> 引子chd1-F
<400> 89
<210> 90
<211> 23
<212> DNA
<213> 人工序列
<220>
<223> 引子chd1-R
<400> 90
<210> 91
<211> 16
<212> DNA
<213> 人工序列
<220>
<223> 探針chd1-FAM
<400> 91

Claims (56)

  1. 一種經單離的核酸,其包含至少一染色質重塑基因多核苷酸,其中該多核苷酸係可操縱地鏈接至一異源性啟動子。
  2. 如請求項1之多核苷酸,其中該多核苷酸係選自於以下所組成的群組:序列辨識編號:1;序列辨識編號:63;序列辨識編號:1之互補物;序列辨識編號:63之互補物;序列辨識編號:1之至少15個連續核苷酸的片段;序列辨識編號:1之至少15個連續核苷酸的片段之互補物;序列辨識編號:63之至少15個連續核苷酸的片段;序列辨識編號:63之至少15個連續核苷酸的片段之互補物;一半翅目昆蟲之天然編碼序列,其包含序列辨識編號:1;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列包含序列辨識編號:1;一半翅目昆蟲之天然編碼序列,其包含序列辨識編號:63;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列包含序列辨識編號:63;一半翅目昆蟲之天然編碼序列,該天然編碼序列轉錄成包含序列辨識編號:68之天然RNA分子;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列轉錄成包含序列辨識編號:68之天然RNA分子;一半翅目昆蟲之天然編碼序列之至少15個連續核苷酸的片段,該天然編碼序列包含序列辨識編號:3;一半翅目昆蟲之天然 編碼序列之至少15個連續核苷酸的片段之互補物,該天然編碼序列包含序列辨識編號:3;序列辨識編號:8;序列辨識編號:64;序列辨識編號:8之互補物;序列辨識編號:64之互補物;序列辨識編號:8之至少15個連續核苷酸的片段;序列辨識編號:8之至少15個連續核苷酸的片段之互補物;序列辨識編號:64之至少15個連續核苷酸的片段;序列辨識編號:64之至少15個連續核苷酸的片段之互補物;一半翅目昆蟲之天然編碼序列,其包含序列辨識編號:8;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列包含序列辨識編號:8;一半翅目昆蟲之天然編碼序列,其包含序列辨識編號:64;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列包含序列辨識編號:64;一半翅目昆蟲之天然編碼序列,該天然編碼序列轉錄成包含序列辨識編號:69之天然RNA分子;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列轉錄成包含序列辨識編號:69之天然RNA分子;一半翅目昆蟲之天然編碼序列之至少15個連續核苷酸的片段,該天然編碼序列包含序列辨識編號:16;一半翅目昆蟲之天然編碼序列之至少15個連續核苷酸的片段之互補物,該天然編碼序列包含序列辨識編號:16;序列辨識編號:10;序列辨識編號:65;序列辨識編號:10之互補物;序列辨識編號:65之互補物;序列辨識編號:10之至少15個連續核苷酸的片段;序列辨識 編號:10之至少15個連續核苷酸的片段之互補物;序列辨識編號:65之至少15個連續核苷酸的片段;序列辨識編號:65之至少15個連續核苷酸的片段之互補物;一半翅目昆蟲之天然編碼序列,其包含序列辨識編號:10;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列包含序列辨識編號:10;一半翅目昆蟲之天然編碼序列,其包含序列辨識編號:65;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列包含序列辨識編號:65;一半翅目昆蟲之天然編碼序列,該天然編碼序列轉錄成包含序列辨識編號:70之天然RNA分子;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列轉錄成包含序列辨識編號:70之天然RNA分子;一半翅目昆蟲之天然編碼序列之至少15個連續核苷酸的片段,該天然編碼序列包含序列辨識編號:17;一半翅目昆蟲之天然編碼序列之至少15個連續核苷酸的片段之互補物,該天然編碼序列包含序列辨識編號:17;序列辨識編號:12;序列辨識編號:66;序列辨識編號:12之互補物;序列辨識編號:66之互補物;序列辨識編號:12之至少15個連續核苷酸的片段;序列辨識編號:12之至少15個連續核苷酸的片段之互補物;序列辨識編號:66之至少15個連續核苷酸的片段;序列辨識編號:66之至少15個連續核苷酸的片段之互補物;一半翅目昆蟲之天然編碼序列,其包含序列辨識編號:12;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序 列包含序列辨識編號:12;一半翅目昆蟲之天然編碼序列,其包含序列辨識編號:66;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列包含序列辨識編號:66;一半翅目昆蟲之天然編碼序列,該天然編碼序列轉錄成包含序列辨識編號:71之天然RNA分子;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列轉錄成包含序列辨識編號:71之天然RNA分子;一半翅目昆蟲之天然編碼序列之至少15個連續核苷酸的片段,該天然編碼序列包含序列辨識編號:18;一半翅目昆蟲之天然編碼序列之至少15個連續核苷酸的片段之互補物,該天然編碼序列包含序列辨識編號:18;序列辨識編號:14;序列辨識編號:67;序列辨識編號:14之互補物;序列辨識編號:67之互補物;序列辨識編號:14之至少15個連續核苷酸的片段;序列辨識編號:14之至少15個連續核苷酸的片段之互補物;序列辨識編號:67之至少15個連續核苷酸的片段;序列辨識編號:67之至少15個連續核苷酸的片段之互補物;一半翅目昆蟲之天然編碼序列,其包含序列辨識編號:14;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列包含序列辨識編號:14;一半翅目昆蟲之天然編碼序列,其包含序列辨識編號:67;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列包含序列辨識編號:67;一半翅目昆蟲之天然編碼序列,該天然編碼序列轉錄成包含序列辨識編號:72之天然RNA分子;一半翅目 昆蟲之天然編碼序列之互補物,該天然編碼序列轉錄成包含序列辨識編號:72之天然RNA分子;一半翅目昆蟲之天然編碼序列之至少15個連續核苷酸的片段,該天然編碼序列包含序列辨識編號:19;一半翅目昆蟲之天然編碼序列之至少15個連續核苷酸的片段之互補物,該天然編碼序列包含序列辨識編號:19;序列辨識編號:30;序列辨識編號:30之互補物;序列辨識編號:30之至少15個連續核苷酸的片段;序列辨識編號:30之至少15個連續核苷酸的片段之互補物;一半翅目昆蟲之天然編碼序列,其包含序列辨識編號:30;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列包含序列辨識編號:30;一半翅目昆蟲之天然編碼序列,該天然編碼序列轉錄成天然RNA分子,該天然RNA分子轉譯成包含序列辨識編號:31之多肽;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列轉錄成天然RNA分子,該天然RNA分子轉譯成包含序列辨識編號:31之多肽;一半翅目昆蟲之天然編碼序列之至少15個連續核苷酸的片段,該天然編碼序列包含序列辨識編號:30;一半翅目昆蟲之天然編碼序列之至少15個連續核苷酸的片段之互補物,該天然編碼序列包含序列辨識編號:30;序列辨識編號:32;序列辨識編號:32之互補物;序列辨識編號:32之至少15個連續核苷酸的片段;序列辨識編號:32之至少15個連續核苷酸的片段之互補物; 一半翅目昆蟲之天然編碼序列,其包含序列辨識編號:32;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列包含序列辨識編號:32;一半翅目昆蟲之天然編碼序列,該天然編碼序列轉錄成天然RNA分子,該天然RNA分子轉譯成包含序列辨識編號:33之多肽;一半翅目昆蟲之天然編碼序列之互補物,該天然編碼序列轉錄成天然RNA分子,該天然RNA分子轉譯成包含序列辨識編號:33之多肽;一半翅目昆蟲之天然編碼序列之至少15個連續核苷酸的片段,該天然編碼序列包含序列辨識編號:32;以及一半翅目昆蟲之天然編碼序列之至少15個連續核苷酸的片段之互補物,該天然編碼序列包含序列辨識編號:32。
  3. 一種植物轉形載體,其包含如請求項1之多核苷酸。
  4. 如請求項1之多核苷酸,其中該生物體係選自於以下所組成的群組:英雄美洲蝽(Euschistus heros)(Fabr.)(新熱帶區褐臭蟲(Neotropical Brown Stink Bug)),南方綠椿象(Nezara viridula)(L.)(南方綠臭蟲(Southern Green Stink Bug)),蓋德擬壁蝽(Piezodorus guildinii)(Westwood)(紅帶臭蟲(Red-banded Stink Bug)),褐翅蝽(Halyomorpha halys)(Stål)(褐紋臭蟲(Brown Marmorated Stink Bug)),綠色蝽(Chinavia hilare)(Say)(綠臭蟲(Green Stink Bug)),褐美洲蝽(Euschistus servus)(Say)(棕色椿象(Brown Stink Bug)),Dichelops melacanthus(Dallas),Dichelops furcatus(F.),Edessa meditabunda(F.),肩蝽 (Thyanta perditor)(F.)(新熱帶區紅肩臭蟲(Neotropical Red Shouldered Stink Bug),Chinavia marginatum(Palisot de Beauvois),植物臭蟲(Horcias nobilellus)(Berg)(棉花臭蟲(Cotton Bug)),Taedia stigmosa(Berg),秘魯棉紅蝽(Dysdercus peruvianus)(Guérin-Méneville),Neomegalotomus parvus(Westwood),喙綠蝽(Leptoglossus zonatus)(Dallas),Niesthrea sidae(F.),豆莢草盲蝽(Lygus hesperus)(Knight)(西部牧草盲蝽(Western Tarnished Plant Bug)),以及美國牧草盲蝽(Lygus lineolaris)(Palisot de Beauvois)。
  5. 一種核糖核酸(RNA)分子,其係從如請求項1之多核苷酸所轉錄。
  6. 一種雙股核糖核酸分子,其係產自於如請求項1之多核苷酸的表現。
  7. 如請求項6之雙股核糖核酸分子,其中使該多核苷酸序列與半翅目害蟲接觸,以抑制一內源性核苷酸序列的表現,該內源性核苷酸序列特異性地互補於該多核苷酸。
  8. 如請求項7之雙股核糖核酸分子,其中使該核糖核酸分子與半翅目害蟲接觸,以殺死或抑制該害蟲的生長、生殖及/或取食。
  9. 如請求項6之雙股RNA分子,其包含一第一、一第二及一第三RNA區段,其中該第一RNA區段包含該多核苷酸,其中該第三RNA區段係藉由該第二RNA區段而鏈接至該第一RNA區段,以及其中該第三RNA區段實質上為該 第一RNA區段的反向互補物,藉此該第一與該第三RNA區段在轉錄成一核糖核酸時雜交而形成該雙股RNA。
  10. 如請求項5之RNA,其係選自於以下所組成的群組:長度介於約15個與約30個核苷酸之間的一雙股核糖核酸分子及一單股核糖核酸分子。
  11. 一種植物轉形載體,其包含如請求項1之多核苷酸,其中該異源性啟動子於植物細胞中係有作用的。
  12. 一種細胞,其係以如請求項1之多核苷酸予以轉形。
  13. 如請求項12之細胞,其中該細胞為一原核細胞。
  14. 如請求項12之細胞,其中該細胞為一真核細胞。
  15. 如請求項14之細胞,其中該細胞為一植物細胞。
  16. 一種植物,其係以如請求項1之多核苷酸予以轉形。
  17. 一種如請求項16之植物的種子,其中該種子包含該多核苷酸。
  18. 一種商品產品,其產自於如請求項16之植物,其中該商品產品包含可偵測數量之該多核苷酸。
  19. 如請求項16之植物,其中該至少一多核苷酸係於該植物中表現為一雙股核糖核酸分子。
  20. 如請求項15之細胞,其中該細胞為玉蜀黍(Zea mays)細胞、大豆(Glycine max)細胞,或是源自棉屬物種(Gossypium sp.)之細胞。
  21. 如請求項16之植物,其中該植物為玉蜀黍(maize)、大豆,或棉花。
  22. 如請求項16之植物,其中該至少一多核苷酸係於該植物 中表現為一核糖核酸分子,以及當一半翅目害蟲攝入該植物的一部分時,該核糖核酸分子抑制一內源性多核苷酸的表現,該內源性多核苷酸特異性地互補於該至少一多核苷酸。
  23. 如請求項1之多核苷酸,其進一步包含至少一個額外的多核苷酸,其編碼一RNA分子,該RNA分子抑制一內源性害蟲基因的表現。
  24. 如請求項23之多核苷酸,其中該額外的多核苷酸編碼一抑制性核糖核酸(iRNA)分子,該iRNA分子引致一親代RNA干擾(RNAi)的表型。
  25. 如請求項24之多核苷酸,其中該額外的多核苷酸編碼一iRNA分子,該iRNA分子抑制一駝背(hunchback)或是克魯拜爾(kruppel)基因的表現。
  26. 如請求項23之多核苷酸,其中該額外的多核苷酸編碼一iRNA分子,該iRNA分子於一接觸該iRNA分子的半翅目害蟲內,引致減少的生長及/或發育及/或死亡率(致命的RNAi)。
  27. 一種植物轉形載體,其包含如請求項23之多核苷酸,其中該額外的多核苷酸係各自可操縱地鏈接至一在植物細胞中有作用的異源性啟動子。
  28. 一種用於控制一半翅目害蟲族群的方法,該方法包含提供包含一核糖核酸(RNA)分子的製劑,其一旦與該半翅目害蟲接觸,作用以抑制該半翅目害蟲內的生物功能,其中該RNA與選自於下列所組成的群組之多核苷酸特 異性地雜交:序列辨識編號:43-62及68-72中任一者;序列辨識編號:43-62及68-72中任一者的互補物;序列辨識編號:43-62及68-72中任一者之至少15個連續核苷酸的片段;序列辨識編號:43-62及68-72中任一者之至少15個連續核苷酸的片段之互補物;下列任一者之轉錄本:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67;下列任一者之轉錄本的互補物:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67;下列任一者之轉錄本之至少15個連續核苷酸的片段:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67;以及下列任一者之轉錄本之至少15個連續核苷酸的片段之互補物:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號: 63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67。
  29. 如請求項28之方法,其中該製劑為一雙股RNA分子。
  30. 一種用於控制一半翅目害蟲族群的方法,該方法包含:將一核糖核酸(RNA)分子引入至半翅目害蟲內,其一旦與該半翅目害蟲接觸,作用以抑制該半翅目害蟲內的生物功能,其中該RNA與選自於下列中任一者所組成的群組之多核苷酸特異性地雜交:序列辨識編號:43-62及68-72,序列辨識編號:43-62及68-72中任一者的互補物,序列辨識編號:43-62及68-72中任一者之至少15個連續核苷酸的片段,序列辨識編號:43-62及68-72中任一者之至少15個連續核苷酸的片段之互補物,下列任一者之轉錄本:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67,下列任一者之轉錄本的互補物:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、及序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編 號:67,下列任一者之轉錄本之至少15個連續核苷酸的片段:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、及序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67,以及下列任一者之轉錄本之至少15個連續核苷酸的片段之互補物:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、及序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67藉此產生一具有親代RNA干擾(pRNAi)表型之半翅目害蟲。
  31. 如請求項30之方法,其中該RNA係引入至一雄性半翅目害蟲內。
  32. 如請求項30之方法,其中該RNA係引入至一雌性半翅目害蟲內,該方法進一步包含釋放具有該pRNAi表型之該雌性半翅目害蟲至該害蟲族群,其中具有該pRNAi表型之該雌性半翅目害蟲與該雄性害蟲族群之間交配,比其他雌性害蟲與該雄性害蟲族群之間交配,產生更少的活的子代。
  33. 一種用於控制一半翅目害蟲族群的方法,該方法包含: 提供包含一第一及一第二多核苷酸序列的製劑,其一旦與該半翅目害蟲接觸,作用以抑制該半翅目害蟲內的生物功能,其中該第一多核苷酸序列包含一區域,該區域與下列之大約19個至大約30個連續核苷酸展現出從約90%至約100%的序列同一性:序列辨識編號:43、序列辨識編號:45、序列辨識編號:46、序列辨識編號:47、序列辨識編號:48、序列辨識編號:53、序列辨識編號:54、序列辨識編號:68、序列辨識編號:69、序列辨識編號:70、序列辨識編號:71,及序列辨識編號:72,以及其中該第一多核苷酸序列與該第二多核苷酸序列係特異性地雜交。
  34. 如請求項33之方法,其中該核糖核酸分子為一雙股核糖核酸分子。
  35. 如請求項33之方法,其中相對於侵擾相同宿主植物物種、但缺乏該經轉形植物細胞之相同的害蟲物種族群,該半翅目害蟲族群係降低的。
  36. 一種用於控制一半翅目害蟲族群的方法,該方法包含:在半翅目害蟲之宿主植物中提供一經轉形的植物細胞,該經轉形植物細胞包含如請求項1之多核苷酸,其中該多核苷酸被表現以生成一核糖核酸分子,其一旦與屬於該族群之半翅目害蟲接觸時,作用以抑制在該半翅目害蟲內一靶定序列的表現,且致使該半翅目害蟲或害蟲族群的生殖減少,相對於在相同宿主植物物種但不含該多核苷酸之植物上的相同害蟲物種的生殖。
  37. 如請求項36之方法,其中該核糖核酸分子為一雙股核糖核酸分子。
  38. 如請求項36之方法,其中相對於侵擾相同宿主植物物種、但缺乏該經轉形植物細胞之半翅目害蟲族群,該半翅目害蟲族群係降低的。
  39. 一種控制一植物中半翅目害蟲侵擾的方法,該方法包含在半翅目害蟲的飲食中提供一核糖核酸(RNA),該核糖核酸與下列所組成的群組之多核苷酸特異性地雜交:序列辨識編號:43-62及68-72,序列辨識編號:43-62及68-72中任一者之互補物,序列辨識編號:43-62及68-72中任一者之至少15個連續核苷酸的片段,序列辨識編號:43-62及68-72中任一者之至少15個連續核苷酸的片段之互補物,下列任一者之轉錄本:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67,下列任一者之轉錄本的互補物:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號: 67,下列任一者之轉錄本之至少15個連續核苷酸的片段:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67,以及下列任一者之轉錄本之至少15個連續核苷酸的片段之互補物:序列辨識編號:1、序列辨識編號:8、序列辨識編號:10、序列辨識編號:12、序列辨識編號:14、序列辨識編號:30、及序列辨識編號:32、序列辨識編號:63、序列辨識編號:64、序列辨識編號:65、序列辨識編號:66,及序列辨識編號:67。
  40. 如請求項39之方法,其中該飲食包含一植物細胞,該植物細胞係經轉形以表現該多核苷酸。
  41. 如請求項39之方法,其中該特異性地雜交的RNA被包含在一雙股RNA分子內。
  42. 一種用於改良一玉米、大豆,或棉花作物產量的方法,該方法包含:將如請求項1之核酸引入至玉米、大豆,或棉花植物內,以產生一基因轉殖的玉米、大豆,或棉花植物植物;以及培養該玉米、大豆,或棉花植物以允許該至少一多核苷酸的表現;其中該至少一多核苷酸的表現抑制半翅 目害蟲的生殖或生長,以及因半翅目害蟲感染的產量損失。
  43. 如請求項42之方法,其中該至少一多核苷酸的表現生產一RNA分子,該RNA分子在已經接觸該植物的一部份之半翅目害蟲中,箝制至少一第一靶定基因。
  44. 一種用於生產一基因轉殖植物細胞的方法,該方法包含:以一載體轉形一植物細胞,該載體包含如請求項1之核酸;在足以允許一包含數個經轉形植物細胞之植物細胞培養物發展的條件下,培養該經轉形植物細胞;選擇已經將該至少一多核苷酸整合至其等基因組內的經轉形植物細胞;篩選表現由該至少一多核苷酸所編碼之核糖核酸(RNA)分子的該經轉形植物細胞;以及選擇表現該RNA之植物細胞。
  45. 如請求項43之方法,其中該RNA分子為一雙股RNA分子。
  46. 一種用於生產一抗半翅目害蟲基因轉殖植物的方法,該方法包含:提供由如請求項44之方法所生產的基因轉殖植物細胞;以及從該基因轉殖植物細胞再生基因轉殖植物,其中由該至少一多核苷酸所編碼之核糖核酸分子之表現,係足 以調變接觸該經轉形植物的半翅目害蟲中一靶定基因的表現。
  47. 一種用於生產一基因轉殖植物細胞的方法,該方法包含:以一載體轉形一植物細胞,該載體包含用於防護植物免受半翅目害蟲傷害的構件;在足以允許一包含數個經轉形植物細胞之植物細胞培養物發展的條件下,培養該經轉形植物細胞;選擇已經將防護植物免受半翅目害蟲傷害的該構件整合至其等基因組內的經轉形植物細胞;篩選該經轉形植物細胞,其表現用於抑制半翅目害蟲中的一必要基因表現之構件;以及選擇一植物細胞,其表現用於抑制半翅目害蟲中的必要基因表現之該構件。
  48. 一種用於生產一抗半翅目害蟲基因轉殖植物的方法,該方法包含:提供由如請求項47之方法所生產的基因轉殖植物細胞;以及從該基因轉殖植物細胞再生基因轉殖植物,其中用於抑制半翅目害蟲中的一必要基因表現之該構件的表現,係足以調變接觸該經轉形植物的半翅目害蟲中之一靶定基因的表現。
  49. 如請求項1之核酸,其進一步包含編碼源自蘇力菌(Bacillus thuringiensis)、鹼桿菌屬物種(Alcaligenes spp.), 或假單胞菌屬物種(Pseudomonas spp.)的多肽之多核苷酸。
  50. 如請求項49之核酸,其中該源自蘇力菌(B.thuringiensis)的多肽係選自於包含下列的群組:Cry1A、Cry2A、Cry3A、Cry11A,以及Cry51A。
  51. 如請求項15之細胞,其中該細胞包含編碼源自蘇力菌、鹼桿菌屬物種,或假單胞菌屬物種的多肽之多核苷酸。
  52. 如請求項51之細胞,其中該源自蘇力菌的多肽係選自於包含下列的群組:Cry1A、Cry2A、Cry3A、Cry11A,以及Cry51A。
  53. 如請求項16之植物,其中該植物包含編碼源自蘇力菌、鹼桿菌屬物種,或假單胞菌屬物種的多肽之多核苷酸。
  54. 如請求項53之植物,其中該源自蘇力菌的多肽係選自於包含下列的群組:Cry1A、Cry2A、Cry3A、Cry11A,以及Cry51A。
  55. 如請求項42之方法,其中該經轉形植物細胞包含一核苷酸序列,其編碼源自蘇力菌、鹼桿菌屬物種,或假單胞菌屬物種的多肽。
  56. 如請求項55之方法,其中該源自蘇力菌的多肽係選自於包含下列的群組:Cry1A、Cry2A、Cry3A、Cry11A,以及Cry51A。
TW104142140A 2014-12-16 2015-12-15 以染色質重塑基因之親代RNA干擾(RNAi)抑制作用來控制半翅目害蟲之技術 TW201629219A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462092747P 2014-12-16 2014-12-16

Publications (1)

Publication Number Publication Date
TW201629219A true TW201629219A (zh) 2016-08-16

Family

ID=56127536

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104142140A TW201629219A (zh) 2014-12-16 2015-12-15 以染色質重塑基因之親代RNA干擾(RNAi)抑制作用來控制半翅目害蟲之技術

Country Status (18)

Country Link
US (2) US10053706B2 (zh)
EP (1) EP3234138A4 (zh)
JP (1) JP2018504102A (zh)
KR (1) KR20170106314A (zh)
CN (1) CN107109426A (zh)
AR (1) AR103038A1 (zh)
AU (1) AU2015364752A1 (zh)
BR (1) BR112017012392A2 (zh)
CA (1) CA2970342A1 (zh)
CL (1) CL2017001521A1 (zh)
CO (1) CO2017006532A2 (zh)
IL (1) IL252805A0 (zh)
MX (1) MX2017007533A (zh)
RU (1) RU2017123527A (zh)
TW (1) TW201629219A (zh)
UY (1) UY36438A (zh)
WO (1) WO2016100507A1 (zh)
ZA (1) ZA201704534B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201629224A (zh) * 2014-12-16 2016-08-16 陶氏農業科學公司 以染色質重塑基因之親代RNA干擾(RNAi)抑制作用來控制鞘翅目害蟲之技術
KR102008064B1 (ko) * 2017-11-07 2019-08-06 서울대학교산학협력단 애멸구의 핵수용체 E75 유전자에 특이적인 dsRNA를 이용한 애멸구 매개 바이러스 방제용 조성물 및 방법
CN114380899B (zh) * 2022-01-17 2023-09-29 中国农业科学院植物保护研究所 番茄潜叶蛾染色质重塑因子brm及其编码基因和应用
CN114437192B (zh) * 2022-01-17 2023-09-29 中国农业科学院植物保护研究所 一种番茄潜叶蛾染色质重塑因子iswi及其编码基因和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8088976B2 (en) * 2005-02-24 2012-01-03 Monsanto Technology Llc Methods for genetic control of plant pest infestation and compositions thereof
EP2426208B1 (en) * 2005-09-16 2016-11-09 Monsanto Technology, LLC Methods for genetic control of insect infestations in plants and compositions thereof
US8906876B2 (en) 2006-01-12 2014-12-09 Devgen Nv Methods for controlling pests using RNAi
AU2011352005B2 (en) * 2010-12-30 2017-03-16 Dow Agrosciences Llc Nucleic acid molecules that confer resistance to coleopteran pests
WO2013052908A2 (en) 2011-10-06 2013-04-11 Dow Agrosciences Llc Nucleic acid molecules that target rps6 and confer resistance to coleopteran pests
US20160230186A1 (en) 2013-03-14 2016-08-11 Monsanto Technology Llc Compositions and methods for controlling diabrotica

Also Published As

Publication number Publication date
IL252805A0 (en) 2017-08-31
US20160222408A1 (en) 2016-08-04
EP3234138A4 (en) 2018-05-02
CL2017001521A1 (es) 2018-01-26
EP3234138A1 (en) 2017-10-25
MX2017007533A (es) 2018-03-06
WO2016100507A1 (en) 2016-06-23
US20180305713A1 (en) 2018-10-25
JP2018504102A (ja) 2018-02-15
AU2015364752A1 (en) 2017-06-15
UY36438A (es) 2016-07-29
CN107109426A (zh) 2017-08-29
RU2017123527A (ru) 2019-01-17
CA2970342A1 (en) 2016-06-23
CO2017006532A2 (es) 2017-12-15
KR20170106314A (ko) 2017-09-20
ZA201704534B (en) 2018-11-28
US10053706B2 (en) 2018-08-21
BR112017012392A2 (pt) 2018-06-19
AR103038A1 (es) 2017-04-12

Similar Documents

Publication Publication Date Title
US20200224215A1 (en) Copi coatomer delta subunit nucleic acid molecules that confer resistance to coleopteran and hemipteran pests
TW201619181A (zh) 賦予對鞘翅目及半翅目害蟲之抗性的COPI外被體γ次單元核酸分子
TW201619384A (zh) 賦予對鞘翅目及半翅目害蟲之抗性的COPI外被體α次單元核酸分子
TW201625790A (zh) 賦予對鞘翅目及半翅目害蟲之抗性的COPI外被體β次單元核酸分子
US10047360B2 (en) Parental RNAI suppression of hunchback gene to control hemipteran pests
TW201629224A (zh) 以染色質重塑基因之親代RNA干擾(RNAi)抑制作用來控制鞘翅目害蟲之技術
TW201623612A (zh) 授予對鞘翅目及半翅目害蟲之抗性的sec23核酸分子
US20180305713A1 (en) Parental rnai suppression of chromatin remodeling genes to control coleopteran pests
TW201639959A (zh) 控制昆蟲害蟲的rna聚合酶ii33核酸分子
US20160264992A1 (en) Rna polymerase ii215 nucleic acid molecules to control insect pests
US20190024112A1 (en) Parental rnai suppression of kruppel gene to control hemipteran pests
US10501755B2 (en) FSH nucleic acid molecules to control insect pests
US20160348130A1 (en) Spt5 nucleic acid molecules to control insect pests
TW201720838A (zh) 賦予對鞘翅目及半翅目害蟲之抗性的wupa核酸分子
TW201702258A (zh) 賦予對半翅目害蟲之抗性的繫絲(thread)核酸分子
JP2017530709A (ja) 鞘翅目および半翅目害虫を防除するためのgho/sec24b2およびsec24b1核酸分子
US20180273966A1 (en) Syntaxin 7 nucleic acid molecules to control coleopteran and hemipteran pests
TW201730201A (zh) 賦予對鞘翅目及半翅目害蟲之抗性的核糖體蛋白質l40(rpl40)核酸分子