TW201629111A - Functionalized elastomeric polymer compositions, their preparation methods and crosslinked rubber compositions thereof - Google Patents

Functionalized elastomeric polymer compositions, their preparation methods and crosslinked rubber compositions thereof Download PDF

Info

Publication number
TW201629111A
TW201629111A TW105100284A TW105100284A TW201629111A TW 201629111 A TW201629111 A TW 201629111A TW 105100284 A TW105100284 A TW 105100284A TW 105100284 A TW105100284 A TW 105100284A TW 201629111 A TW201629111 A TW 201629111A
Authority
TW
Taiwan
Prior art keywords
formula
polymer
independently selected
alkyl
compound
Prior art date
Application number
TW105100284A
Other languages
Chinese (zh)
Inventor
Christian Doring
Sven Thiele
Daniel Heidenreich
Michael Rossle
Original Assignee
Trinseo Europe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinseo Europe Gmbh filed Critical Trinseo Europe Gmbh
Publication of TW201629111A publication Critical patent/TW201629111A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0025Compositions of the sidewalls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • C08K5/31Guanidine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/06Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials Engineering (AREA)
  • Tires In General (AREA)
  • Polymerization Catalysts (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The invention relates to an elastomeric polymer composition and its preparation. The polymer composition comprises in combination a single terminally modified conjugated diene (co)polymer and a dual terminally modified conjugated diene (co)polymer. The polymer composition is useful in the preparation of a vulcanized and, thus, crosslinked elastomeric composition having relatively low hysteresis loss, good grip and low heat build-up properties.

Description

官能化彈性體聚合物組成物、其製備方法以及其交聯橡膠組成物 Functionalized elastomeric polymer composition, preparation method thereof and crosslinked rubber composition thereof

本發明係關於彈性體聚合物組成物及其製備。該聚合物組成物包含呈組合形式之單一末端修飾的共軛二烯(共)聚合物及雙重末端修飾的共軛二烯(共)聚合物。該聚合物組成物適用於製備具有相對低滯後損失、良好抓著力以及低的熱積聚特性之硫化且因此交聯之彈性體組成物。該等組成物適用於多種物件,包括具有低的熱積聚及燃料消耗以及其他所需物理及化學特性(例如良好濕地抓著力、冰地抓著力、磨損抗性、拉伸強度以及卓越可加工性)之良好平衡的輪胎胎面。 This invention relates to elastomeric polymer compositions and their preparation. The polymer composition comprises a single terminal modified conjugated diene (co)polymer and a dual terminal modified conjugated diene (co)polymer in a combined form. The polymer composition is suitable for use in the preparation of vulcanized and thus crosslinked elastomeric compositions having relatively low hysteresis loss, good grip and low heat build-up characteristics. These compositions are suitable for a wide variety of applications, including low heat buildup and fuel consumption, as well as other desirable physical and chemical properties (eg good wet grip, ice grip, abrasion resistance, tensile strength, and excellent processability). Sexually balanced tire tread.

硫化橡膠之滯後能量損失通常與自由聚合物鏈末端的數目有關。例如,具有高分子量之聚合物展現降低之端基重量含量且具有減少之滯後損失,而且導致橡膠化合物之降低的可加工性。用適合與填料相互作用之極性基團使鏈端官能化會產生減少之量的自由鏈端並且通常會減少滯後。然而,大量鏈端-填料相互作用會導致該化合物之顯著降低的可加工性。 The hysteresis energy loss of vulcanized rubber is generally related to the number of free polymer chain ends. For example, polymers having a high molecular weight exhibit reduced end group weight content and have reduced hysteresis loss, and result in reduced processability of the rubber compound. Functionalizing the chain ends with polar groups suitable for interaction with the filler produces a reduced amount of free chain ends and generally reduces hysteresis. However, a large number of chain end-filler interactions result in significantly reduced processability of the compound.

藉由陰離子聚合方法獲得之彈性體聚合物主要含有線性聚合物鏈。高度線性彈性體聚合物鏈顯示高溶液黏度及冷流特性。為了克服此等缺陷,已應用偶合方法來產生該等聚合物鏈之至少部分分支。常用偶合劑為二乙烯基苯、錫或矽之鹵化物或醇鹽化合物。然而,由該等偶合反應產生之分支鏈或星形聚合物通常展現增加之滯後損失或降低之磨損抗性。 The elastomeric polymer obtained by the anionic polymerization process mainly contains a linear polymer chain. Highly linear elastomeric polymer chains exhibit high solution viscosity and cold flow characteristics. To overcome these drawbacks, coupling methods have been applied to produce at least partial branching of the polymer chains. A commonly used coupling agent is a halide or alkoxide compound of divinylbenzene, tin or bismuth. However, branched or star polymers produced by such coupling reactions typically exhibit increased hysteresis loss or reduced abrasion resistance.

WO 2007/047943描述使用矽烷硫化物ω鏈端修飾劑來產生 鏈端經修飾之彈性體聚合物,該聚合物用作硫化彈性體聚合物組成物或輪胎胎面中之組分。 WO 2007/047943 describes the use of decane sulfide ω chain end modifiers to produce A chain end modified elastomeric polymer that is used as a component in a vulcanized elastomeric polymer composition or tire tread.

根據WO 2007/047943,矽烷硫化物化合物與陰離子起始之活性聚合物反應產生「鏈端經修飾之」聚合物,該等聚合物隨後與填料、硫化劑、促進劑或油填充劑摻合以產生具有低滯後損失之硫化彈性體聚合物組成物。 According to WO 2007/047943, a decane sulfide compound is reacted with an anion-initiating living polymer to produce a "chain-end modified" polymer which is subsequently blended with a filler, a vulcanizing agent, a promoter or an oil filler. A vulcanized elastomeric polymer composition with low hysteresis loss is produced.

該等硫化彈性體聚合物組成物描述為在60℃下展現較低tan δ值,尤其如與基於相應非修飾聚合物之化合物相比,而不會不利地影響0℃下之tan δ值及加工特性,諸如化合物穆尼值。在60℃下之較低tan δ值對應於較低滾動阻力,而在0℃下之較高tan δ對應於輪胎之改良的濕地抓著力。例示性固化聚合物調配物已顯示導致降低之在60℃下之tan δ及熱積聚值但在0℃下相等之tan δ值。其被描述為適用於製備具有較低滾動阻力但維持良好濕地抓著力特性之輪胎胎面。儘管固化橡膠滯後特性可藉由應用WO 2007/047943中所描述之技術顯著改良,但該技術之影響歸因於僅一個聚合物鏈端可藉由使用所描述之修飾劑化合物而官能化的事實而受限。因此,需要有效修飾第二聚合物鏈端。 The vulcanized elastomeric polymer compositions are described as exhibiting lower tan delta values at 60 ° C, especially as compared to compounds based on corresponding unmodified polymers, without adversely affecting the tan delta value at 0 ° C and Processing characteristics, such as compound Mooney values. The lower tan δ value at 60 ° C corresponds to lower rolling resistance, while the higher tan δ at 0 ° C corresponds to the improved wet grip of the tire. Exemplary cured polymer formulations have been shown to result in a decrease in tan δ at 60 ° C and a heat buildup value but equal tan δ values at 0 °C. It is described as being suitable for use in the preparation of tire treads having lower rolling resistance but maintaining good wet grip characteristics. Although the cured rubber hysteresis characteristics can be significantly improved by applying the technique described in WO 2007/047943, the effect of this technique is attributed to the fact that only one polymer chain end can be functionalized by using the described modifier compound. Limited. Therefore, it is necessary to effectively modify the second polymer chain end.

EP2518104揭示了包含基於二烯單體之聚合物及二氧化矽之用於輪胎應用的橡膠組成物。該二烯聚合物由起始劑製備以產生具有兩個活性聚合物末端之活性聚合物鏈。 EP 2 518 104 discloses rubber compositions for tire applications comprising a polymer based on a diene monomer and cerium oxide. The diene polymer is prepared from an initiator to produce an active polymer chain having two living polymer ends.

需要修飾方法及所產生之聚合物,包括經修飾聚合物,從而對含有二氧化矽之交聯橡膠化合物賦予動態特性之良好平衡,諸如低滯後損失及高磨損抗性,這對應於輪胎中之高濕地抓著力、低滾動阻力及高磨損抗性,並且維持可接受或改良之可加工性。同樣,可需要提供展現良好可加工性之聚合物:(a)在該聚合物自身之製造過程期間,例如歸因於溶劑及水分移除過程期間的低黏性,及(b)在進一步加工步驟(諸如二氧化矽填充之橡膠調配物的製備及加工)過程中。此等需要已藉由以下發明得到滿足。 There is a need for a modification process and the resulting polymer, including modified polymers, to impart a good balance of dynamic properties to the crosslinked rubber compound containing cerium oxide, such as low hysteresis loss and high abrasion resistance, which corresponds to the tire High wet grip, low rolling resistance and high wear resistance, and maintain acceptable or improved processability. Also, it may be desirable to provide a polymer that exhibits good processability: (a) during the manufacturing process of the polymer itself, such as due to low viscosity during solvent and moisture removal processes, and (b) further processing The procedure (such as the preparation and processing of a rubber formulation filled with cerium oxide). These needs have been met by the following inventions.

在第一態樣中,本發明提供一種聚合物組成物,該聚合物組成物在其一般實施例(本文中亦稱作「第一聚合物組成物」)中包含根據以下 式1及式2之經修飾聚合物:A1-P1-A2 式1 In a first aspect, the present invention provides a polymer composition comprising, in its general embodiment (also referred to herein as "first polymer composition"), according to Formulas 1 and 2 below. Modified polymer: A 1 -P 1 -A 2 Formula 1

A3-P2 式2 A 3 -P 2 type 2

其中P1及P2各自獨立地為可藉由一或多種選自共軛二烯及芳族乙烯基化合物之可聚合單體的陰離子聚合獲得之聚合物鏈,其中各聚合物鏈P1及P2含有至少40重量%藉由該等共軛二烯之聚合獲得的重複單元,且其中至少聚合物鏈P1之陰離子聚合在以下式9a化合物存在下進行: Wherein P 1 and P 2 are each independently a polymer chain obtainable by anionic polymerization of one or more polymerizable monomers selected from the group consisting of conjugated dienes and aromatic vinyl compounds, wherein each polymer chain P 1 and P 2 contains at least 40% by weight of the repeating unit obtained by the polymerization of the conjugated dienes, and wherein at least the anionic polymerization of the polymer chain P 1 is carried out in the presence of a compound of the following formula 9a:

其中各R31獨立地選自氫、(C1-C10)烷基、(C6-C12)芳基及(C7-C18)芳烷基;各R32、R33及R34獨立地選自氫、(C1-C18)烷基及(C1-C18)烷氧基;各R41獨立地選自(C1-C100)烷基及(C2-C100)烯基,其中各R41視情況經一個至三個(C6-C12)芳基取代且視情況經由由至多25個選自共軛二烯及芳族乙烯基化合物的單體單元構成之寡聚物鏈鍵結至式9a之骨架,該等共軛二烯尤其為1,3-丁二烯及異戊二烯,該等芳族乙烯基化合物尤其為苯乙烯及二乙烯基苯;各M2獨立地選自鋰、鈉及鉀;且k、l及q為獨立地選自0、1、2及3之整數;A1、A2及A3獨立地選自以下式3至式8: Wherein each R 31 is independently selected from the group consisting of hydrogen, (C 1 -C 10 )alkyl, (C 6 -C 12 )aryl, and (C 7 -C 18 )aralkyl; each R 32 , R 33 and R 34 Independently selected from the group consisting of hydrogen, (C 1 -C 18 )alkyl and (C 1 -C 18 )alkoxy; each R 41 is independently selected from (C 1 -C 100 )alkyl and (C 2 -C 100 Alkenyl, wherein each R 41 is optionally substituted with one to three (C 6 -C 12 ) aryl groups and optionally via up to 25 monomer units selected from the group consisting of conjugated dienes and aromatic vinyl compounds The oligomer chain is bonded to the skeleton of the formula 9a, such as 1,3-butadiene and isoprene, and the aromatic vinyl compounds are especially styrene and divinylbenzene. Each M 2 is independently selected from the group consisting of lithium, sodium, and potassium; and k, l, and q are independently selected from the integers of 0, 1 , 2, and 3 ; and A 1 , A 2 , and A 3 are independently selected from the following formula 3 To Equation 8:

其中各R1獨立地選自(C1-C16)烷基;各R2獨立地選自(C1-C16)烷基、(C6-C18)芳基及(C7-C18)芳烷基;a及b為獨立地選自0、1及2之整數,其中a+b=2;R3獨立地選自二價(C1-C16)烷基、二價(C6-C18)芳基、二價(C7-C18)芳烷基及-R4-O-R5-,其中R4及R5獨立地選自二價(C1-C6)烷基;及 Z獨立地選自(C1-C16)烷基、(C6-C18)芳基、(C7-C18)芳烷基、(C=S)-S-R6,其中R6選自(C1-C16)烷基、(C6-C18)芳基及(C7-C18)芳烷基;及-M1(R7)c(R8)d,其中M1為矽或錫,各R7獨立地選自(C1-C16)烷基、(C6-C18)芳基及(C7-C18)芳烷基;各R8獨立地選自-S-R3-Si(OR1)r(R2)s,其中R1、R2及R3如上文關於式3所定義,r為獨立地選自1、2及3之整數且s為獨立地選自0、1及2之整數,其中r+s=3;c為獨立地選自2及3之整數;d為獨立地選自0及1之整數;且c+d=3; Wherein each R 1 is independently selected from (C 1 -C 16 )alkyl; each R 2 is independently selected from (C 1 -C 16 )alkyl, (C 6 -C 18 )aryl and (C 7 -C) 18 )Aralkyl; a and b are independently selected from the integers of 0, 1 and 2, wherein a+b=2; R 3 is independently selected from divalent (C 1 -C 16 )alkyl, divalent ( C 6 -C 18 ) aryl, divalent (C 7 -C 18 ) aralkyl and -R 4 -OR 5 -, wherein R 4 and R 5 are independently selected from divalent (C 1 -C 6 ) alkane And Z are independently selected from (C 1 -C 16 )alkyl, (C 6 -C 18 )aryl, (C 7 -C 18 )aralkyl, (C=S)-SR 6 , wherein R 6 is selected from the group consisting of (C 1 -C 16 )alkyl, (C 6 -C 18 )aryl and (C 7 -C 18 )Aralkyl; and -M 1 (R 7 ) c (R 8 ) d , wherein M 1 is ruthenium or tin, and each R 7 is independently selected from (C 1 -C 16 )alkyl, (C 6 -C 18 )aryl and (C 7 -C 18 )aralkyl; each R 8 independently Selected from -SR 3 -Si(OR 1 ) r (R 2 ) s , wherein R 1 , R 2 and R 3 are as defined above for formula 3, r is independently selected from integers of 1, 2 and 3 and s Is an integer independently selected from 0, 1 and 2, wherein r + s = 3; c is an integer independently selected from 2 and 3; d is an integer independently selected from 0 and 1; and c + d = 3 ;

其中R9、R10、R11及R12獨立地選自氫、(C1-C16)烷基、(C6-C16)芳基及(C7-C16)芳烷基; Wherein R 9 , R 10 , R 11 and R 12 are independently selected from the group consisting of hydrogen, (C 1 -C 16 )alkyl, (C 6 -C 16 )aryl and (C 7 -C 16 )aralkyl;

其中各R13、R14、R18及R19獨立地選自(C1-C16)烷基;R15及R20獨立地選自二價(C1-C16)烷基、二價(C6-C18)芳基、二價(C7-C18)芳烷基及-R24-O-R25-,其中R24及R25獨立地選自二價(C1-C6)烷基;R16及R17獨立地選自(C1-C16)烷基及-SiR26R27R28,其中R26、R27及R28 獨立地選自(C1-C16)烷基、(C6-C18)芳基及(C7-C18)芳烷基;各R21及R22獨立地選自(C1-C16)烷基、(C6-C18)芳基及(C7-C18)芳烷基;各R23獨立地選自氫及(C1-C6)烷基;f、g、h及i為獨立地選自0、1及2之整數;f+g=2;且h+i=2; Wherein each of R 13 , R 14 , R 18 and R 19 is independently selected from (C 1 -C 16 )alkyl; R 15 and R 20 are independently selected from divalent (C 1 -C 16 )alkyl, divalent (C 6 -C 18 )aryl, divalent (C 7 -C 18 )Aralkyl and -R 24 -OR 25 -, wherein R 24 and R 25 are independently selected from divalent (C 1 -C 6 ) Alkyl; R 16 and R 17 are independently selected from (C 1 -C 16 )alkyl and -SiR 26 R 27 R 28 , wherein R 26 , R 27 and R 28 are independently selected from (C 1 -C 16 ) An alkyl group, a (C 6 -C 18 ) aryl group and a (C 7 -C 18 ) aralkyl group; each of R 21 and R 22 is independently selected from (C 1 -C 16 )alkyl, (C 6 -C 18 And aryl and (C 7 -C 18 ) aralkyl; each R 23 is independently selected from hydrogen and (C 1 -C 6 )alkyl; and f, g, h and i are independently selected from 0, 1 and An integer of 2; f+g=2; and h+i=2;

其中各R29及R30獨立地選自(C1-C16)烷基、(C6-C18)芳基、(C7-C18)芳烷基及乙烯基;及j為選自1至200之整數;且其中式1聚合物之量以式1聚合物及式2聚合物之總量計為15莫耳%至85莫耳%。 Wherein each of R 29 and R 30 is independently selected from the group consisting of (C 1 -C 16 )alkyl, (C 6 -C 18 )aryl, (C 7 -C 18 )aralkyl, and vinyl; and j is selected from An integer from 1 to 200; and wherein the amount of the polymer of Formula 1 is from 15 mol% to 85 mol% based on the total of the polymer of Formula 1 and the polymer of Formula 2.

本發明之聚合物組成物可包含一或多種其他組分,該等組分選自(i)添加至用於製備式1及2聚合物之聚合過程中或由於該聚合過程而形成之組分,及(ii)在自聚合過程移除溶劑之後保留之組分。本發明之第一態樣之此實施例在本文中亦稱作「第二聚合物組成物」。添加至聚合過程中之組分尤其包括軟化劑(填充油(extender oil))、穩定劑及並非式1或式2聚合物之聚合物。由於聚合過程而形成且在自聚合過程移除溶劑之後保留之組分尤其包括並非式1或式2聚合物之聚合物。 The polymer composition of the present invention may comprise one or more other components selected from the group consisting of (i) components added to the polymerization process for preparing the polymers of Formulas 1 and 2 or formed by the polymerization process. And (ii) components that remain after removal of the solvent from the polymerization process. This embodiment of the first aspect of the invention is also referred to herein as "second polymer composition." The components added to the polymerization process include, inter alia, softeners (extender oils), stabilizers and polymers which are not polymers of formula 1 or formula 2. The components which are formed as a result of the polymerization process and which remain after removal of the solvent from the polymerization process include, in particular, polymers which are not polymers of formula 1 or formula 2.

本發明之聚合物組成物(第一及第二聚合物組成物)亦可包含一或多種在聚合過程之後添加之其他組分,包括一或多種填料、一或多種並非式1或式2聚合物之其他聚合物及一或多種交聯劑(硫化劑)。本發明之第一態樣之此實施例在本文中亦稱作「第三聚合物組成物」。在聚合之後添加之組分通常在自聚合過程移除溶劑之後添加至聚合物組成物中,且通常在機械混合下添加。 The polymer composition of the present invention (first and second polymer compositions) may also comprise one or more other components added after the polymerization process, including one or more fillers, one or more polymerizations other than Formula 1 or Formula 2 Other polymers and one or more crosslinkers (vulcanizing agents). This embodiment of the first aspect of the invention is also referred to herein as "the third polymer composition." The components added after the polymerization are usually added to the polymer composition after the solvent is removed from the polymerization process, and are usually added under mechanical mixing.

在第二態樣中,本發明提供一種製備第一態樣之聚合物組成物之方法,該方法包括以下步驟:i)使聚合起始劑混合物與一或多種選自共軛二烯及芳族乙烯基化合物之可聚合單體反應以獲得活性聚合物鏈,該聚合起始劑混合物可藉由使以 下式9化合物: In a second aspect, the invention provides a method of preparing a first aspect of a polymer composition, the method comprising the steps of: i) reacting a polymerization initiator mixture with one or more selected from the group consisting of conjugated dienes and aromatics The polymerizable monomer of the group vinyl compound is reacted to obtain a living polymer chain, and the polymerization initiator mixture can be obtained by formulating the following compound of formula 9:

其中各R31獨立地選自氫、(C1-C10)烷基、(C6-C12)芳基及(C7-C18)芳烷基;各R32、R33及R34獨立地選自氫、(C1-C18)烷基及(C1-C18)烷氧基;k、l及q為獨立地選自0、1、2及3之整數,與以下式10化合物反應而獲得M2-R41 式10 Wherein each R 31 is independently selected from the group consisting of hydrogen, (C 1 -C 10 )alkyl, (C 6 -C 12 )aryl, and (C 7 -C 18 )aralkyl; each R 32 , R 33 and R 34 Independently selected from the group consisting of hydrogen, (C 1 -C 18 )alkyl and (C 1 -C 18 )alkoxy; k, l and q are independently selected from the integers of 0, 1, 2 and 3, and 10 compound reaction to obtain M 2 -R 41 formula 10

其中M2選自鋰、鈉及鉀且R41選自(C1-C100)烷基及(C2-C100)烯基,其中各R41視情況經一個至三個(C6-C12)芳基取代且視情況經由由至多25個選自共軛二烯及芳族乙烯基化合物之單體單元構成的寡聚物鏈鍵結至M2,該等共軛二烯尤其為1,3-丁二烯及異戊二烯,該等芳族乙烯基化合物尤其為苯乙烯及二乙烯基苯;其中該等活性聚合物鏈含有至少40重量%藉由該等共軛二烯之聚合獲得的重複單元,且其中式10化合物與式9化合物之莫耳比率在1:1至8:1範圍內,及ii)使步驟i)之活性聚合物鏈與一或多種選自以下式11至式15化合物之鏈端修飾劑反應: Wherein M 2 is selected from lithium, sodium, and potassium, and R 41 is selected from (C 1 -C 100) alkyl and (C 2 -C 100) alkenyl group, wherein each R 41 is optionally substituted with one to three (C 6 - C 12 ) aryl substituted and optionally bonded to M 2 via an oligomer chain composed of up to 25 monomer units selected from the group consisting of conjugated dienes and aromatic vinyl compounds, especially such conjugated dienes 1,3-butadiene and isoprene, the aromatic vinyl compounds being especially styrene and divinylbenzene; wherein the living polymer chains contain at least 40% by weight of the conjugated diene a repeating unit obtained by polymerization, wherein the molar ratio of the compound of the formula 10 to the compound of the formula 9 is in the range of 1:1 to 8:1, and ii) the living polymer chain of the step i) is one or more selected from the group consisting of Chain end modifier reaction of compounds of formula 11 to formula 15:

其中R1、R2、R3、Z、r及s如上文關於式3所定義; Wherein R 1 , R 2 , R 3 , Z, r and s are as defined above for formula 3;

其中R9、R10、R11及R12如上文關於式4所定義; Wherein R 9, R 10, R 11 and R 12 are as defined above with respect to Formula 4;

其中R13、R14、R15、R16及R17如上文關於式6所定義;t為選自1、2及3之整數;u為選自0、1及2之整數;且t+u=3; Wherein R 13 , R 14 , R 15 , R 16 and R 17 are as defined above for formula 6; t is an integer selected from 1, 2 and 3; u is an integer selected from 0, 1 and 2; u=3;

其中R18、R19、R20、R21、R22及R23如上文關於式7所定義;v為選自1、2及3之整數;w為選自0、1及2之整數;且v+w=3; Wherein R 18 , R 19 , R 20 , R 21 , R 22 and R 23 are as defined above for formula 7; v is an integer selected from 1, 2 and 3; w is an integer selected from 0, 1 and 2; And v+w=3;

其中各R29及R30如上文關於式8所定義;且x為選自1至6之整數;且其中式11至式15之鏈端修飾劑按以下總量使用:(i)當式10化合物與式9化合物之莫耳比率在1:1至2.1:1範圍內時,每莫耳式10化合物0.15至0.85莫耳,及(ii)當式10化合物與式9化合物之莫耳比率在大於2.1:1至8:1範圍內時,每莫耳式10化合物0.5至3莫耳。 Wherein each of R 29 and R 30 is as defined above for Formula 8; and x is an integer selected from 1 to 6; and wherein the chain end modifiers of Formula 11 to Formula 15 are used in the following amounts: (i) Formula 10 The molar ratio of the compound to the compound of formula 9 in the range of from 1:1 to 2.1:1, from 0.15 to 0.85 moles per mole of the compound of formula 10, and (ii) when the molar ratio of the compound of formula 10 to the compound of formula 9 is When it is greater than the range of 2.1:1 to 8:1, 0.5 to 3 moles per mole of the compound of the formula 10.

在第三態樣中,本發明提供一種交聯聚合物組成物,其藉由使包含一或多種交聯(硫化)劑之本發明聚合物組成物交聯而獲得。 In a third aspect, the present invention provides a crosslinked polymer composition obtained by crosslinking a polymer composition of the present invention comprising one or more crosslinking (vulcanizing) agents.

在第四態樣中,本發明提供一種製備第三態樣之交聯聚合物組成物之方法,該方法包括使包含一或多種交聯劑之聚合物組成物交聯的步驟。 In a fourth aspect, the invention provides a method of preparing a third aspect of a crosslinked polymer composition, the method comprising the step of crosslinking a polymer composition comprising one or more crosslinkers.

在第五態樣中,本發明提供一種包含至少一種由本發明之交聯聚合物組成物形成的組分之物件。該物件可為例如輪胎、輪胎胎面、輪胎側壁、汽車零件、鞋類組件、高爾夫球、皮帶、墊圈、密封件或軟管。 In a fifth aspect, the invention provides an article comprising at least one component formed from the crosslinked polymer composition of the invention. The article can be, for example, a tire, a tire tread, a tire sidewall, an automotive part, a footwear component, a golf ball, a belt, a gasket, a seal, or a hose.

圖1:聚合物實例之滑動摩擦係數。 Figure 1: Sliding friction coefficient of a polymer example.

聚合起始劑混合物及製備方法 Polymerization initiator mixture and preparation method

用於製備本發明之第一態樣之聚合物組成物的聚合起始劑為式9化合物與式10化合物之反應產物。該反應產物為如上文所定義之雙陰離子式9a化合物,其具有至少兩個各自連接至金屬原子M2之陰碳離子。該產物之典型結構及製備方法描述於例如EP 0 316857、US 4,172,190、US 5,521,255、US 5,561,210及EP 0 413294中。 The polymerization initiator used to prepare the polymer composition of the first aspect of the present invention is the reaction product of the compound of the formula 9 with the compound of the formula 10. The reaction product is a compound 9a dianion of formula as defined above, having at least two are each connected to the metal atom M 2 of the female carbon ions. Typical structures and methods of preparation of such products are described in, for example, EP 0 316 857, US 4,172, 190, US 5, 521, 255, US 5, 561, 210, and EP 0 413 294.

在式9a化合物及在式9化合物與式10化合物之間之潛在反應的一個實施例中,M2為鋰;R41選自(C1-C10)烷基;各R31獨立地選自氫及(C1-C10)烷基,較佳為氫;R32及R34為相同的且選自氫及(C1-C18)烷基;各R33獨立地選自氫及(C1-C18)烷基;所有其他取代基或基團均如一般關於式9及式10所定義。 In one embodiment of the potential reaction between a compound of Formula 9a and a compound of Formula 9 and a compound of Formula 10, M 2 is lithium; R 41 is selected from (C 1 -C 10 )alkyl; each R 31 is independently selected from And hydrogen (C 1 -C 10 )alkyl, preferably hydrogen; R 32 and R 34 are the same and are selected from hydrogen and (C 1 -C 18 )alkyl; each R 33 is independently selected from hydrogen and ( C 1 -C 18 )alkyl; all other substituents or groups are as defined generally with respect to formula 9 and formula 10.

式9化合物之特定較佳種類包括以下化合物: Specific preferred classes of compounds of formula 9 include the following compounds:

式10化合物之特定較佳種類包括以下化合物:甲基鋰、乙基鋰、丙基鋰、正丁基鋰、第二丁基鋰、第三丁基鋰、苯基鋰、己基鋰,較佳為正丁基鋰及第二丁基鋰。 Specific preferred classes of the compound of formula 10 include the following compounds: methyl lithium, ethyl lithium, propyl lithium, n-butyl lithium, second butyl lithium, t-butyl lithium, phenyl lithium, hexyl lithium, preferably It is n-butyl lithium and second butyl lithium.

式9a化合物之特定較佳種類包括可藉由使式9化合物之一或多種上述特定較佳種類與式10化合物之一或多種上述特定較佳種類反應而獲得的彼等種類。 Specific preferred classes of compounds of formula 9a include those which can be obtained by reacting one or more of the above specific preferred classes of the compound of formula 9 with one or more of the above specific preferred classes of the compound of formula 10.

式10化合物與式9化合物之間的反應中之莫耳比率在1:1至8:1、較佳地1.5:1至8:1且更佳地2:1至6:1範圍內。在低於1:1之比率下,在與式10化合物反應之後保留的式9化合物之量可在聚合過程期間引起顯著膠凝。在大於8:1之比率下,在與式9化合物反應之後保留的式10化合物之量將產生少於15%之式1聚合物(以式1聚合物及式2聚合物之總量計)。 The molar ratio in the reaction between the compound of formula 10 and the compound of formula 9 is in the range of from 1:1 to 8:1, preferably from 1.5:1 to 8:1 and more preferably from 2:1 to 6:1. At ratios below 1:1, the amount of the compound of formula 9 remaining after reaction with the compound of formula 10 can cause significant gelation during the polymerization process. At a ratio greater than 8:1, the amount of the compound of formula 10 remaining after reaction with the compound of formula 9 will result in less than 15% of the polymer of formula 1 (based on the total amount of the polymer of formula 1 and the polymer of formula 2) .

在一個實施例中,1至2.1當量之式10化合物與1當量之式9化合物反應。在此情形下(說明實驗誤差),全部量之式10化合物與式9化合物反應。在本發明之聚合物組成物的後續製備中,接著有必要使用相對於式9化合物之莫耳量較小的莫耳(較小的當量)量之式11至式15之鏈端修飾劑以便獲得包含式1及式2聚合物之組成物。 In one embodiment, from 1 to 2.1 equivalents of a compound of formula 10 is reacted with one equivalent of a compound of formula 9. In this case (explaining experimental error), the entire amount of the compound of formula 10 is reacted with the compound of formula 9. In the subsequent preparation of the polymer composition of the present invention, it is then necessary to use a chain end modifier of the formula 11 to formula 15 in an amount of a molar amount (molar equivalent) relative to the molar amount of the compound of the formula 9 so as to A composition comprising the polymer of Formula 1 and Formula 2 is obtained.

在一替代實施例中,超過2.1且至多8當量之式10化合物 與1當量之式9化合物反應,因此獲得(式9a)雙陰離子起始劑及單陰離子起始劑(剩餘量之式10化合物)之混合物(組成物)。在該情形中,欲用於本發明之聚合物組成物之製備中的式11至式15之鏈端修飾劑之莫耳量可小於、等於或大於式9化合物之莫耳量(對應於式9a化合物之莫耳量)。在此實施例中式10化合物與式9化合物之較佳莫耳比率在大於2.1:1至7:1、更佳地大於2.1:1至6:1、甚至更佳地2.5:1至3.5:1範圍內或大致為3:1。 In an alternate embodiment, more than 2.1 and up to 8 equivalents of a compound of formula 10 It is reacted with 1 equivalent of the compound of the formula 9 to thereby obtain a mixture (composition) of the dianion initiator (formula 9a) and the monoanion initiator (the remaining compound of the formula 10). In this case, the molar amount of the chain end modifier of the formula 11 to the formula 15 to be used in the preparation of the polymer composition of the present invention may be less than, equal to or greater than the molar amount of the compound of the formula 9 (corresponding to the formula The molar amount of the 9a compound). The preferred molar ratio of the compound of formula 10 to the compound of formula 9 in this embodiment is greater than 2.1:1 to 7:1, more preferably greater than 2.1:1 to 6:1, even more preferably 2.5:1 to 3.5:1. Within the range or roughly 3:1.

用於製備該聚合起始劑混合物之方法包括視情況在路易士鹼存在下使式9之起始劑前驅化合物與至少一種式10化合物反應之步驟。該反應較佳地在非極性溶劑,包括烴溶劑,包括脂族及芳族溶劑,較佳地脂族溶劑,諸如己烷、庚烷、戊烷、合成異構烷油、環己烷及甲基環己烷中執行,且通常在介於-60℃至130℃、較佳地0℃至100℃且甚至更佳地20℃至70℃範圍內之溫度下進行2秒至10天、較佳地5秒至5天、甚至更佳地10秒至2天之時期。 The process for preparing the polymerization initiator mixture comprises the step of reacting a starter precursor compound of formula 9 with at least one compound of formula 10, optionally in the presence of a Lewis base. The reaction is preferably carried out in a non-polar solvent, including a hydrocarbon solvent, including aliphatic and aromatic solvents, preferably aliphatic solvents such as hexane, heptane, pentane, synthetic isoparaffin, cyclohexane and Executed in the cyclohexane, and usually carried out at a temperature ranging from -60 ° C to 130 ° C, preferably from 0 ° C to 100 ° C and even more preferably from 20 ° C to 70 ° C for 2 seconds to 10 days. Preferably, the period is from 5 seconds to 5 days, and even more preferably from 10 seconds to 2 days.

在一個實施例中,式10化合物可在與式9化合物反應之前與至多25個選自共軛二烯及芳族乙烯基化合物之單體分子反應,該等共軛二烯尤其為1,3-丁二烯及異戊二烯,該等芳族乙烯基化合物尤其為苯乙烯。在式10範疇內之所得「寡聚物」隨後與如本文所述之式9之起始劑前驅化合物反應。 In one embodiment, the compound of formula 10 can be reacted with up to 25 monomeric molecules selected from the group consisting of conjugated dienes and aromatic vinyl compounds prior to reaction with the compound of formula 9, especially conjugated dienes. Butadiene and isoprene, these aromatic vinyl compounds are especially styrene. The resulting "oligomer" in the scope of Formula 10 is then reacted with an initiator precursor compound of Formula 9 as described herein.

視情況選用之路易士鹼可在添加式10化合物及與式10化合物反應之前添加至式9之前驅化合物中,以在開始時存在於反應中。或者,其可在反應期間或在反應完成之後添加。任何此等替代添加均將導致由反應產物,亦即由式9a化合物形成路易士鹼加合物。當路易士鹼存在時,其通常以就0.01至20、較佳地0.05至5.0且甚至更佳地0.1至3.0之莫耳當量而言之式9之起始劑前驅化合物與路易士鹼之比率使用。 Optionally, the Lewis base can be added to the pre-formula precursor compound prior to the addition of the compound of formula 10 and reacting with the compound of formula 10 to be present in the reaction at the outset. Alternatively, it can be added during the reaction or after the reaction is completed. Any such alternative addition will result in the formation of a Lewis base adduct from the reaction product, i.e., from the compound of formula 9a. When a Lewis base is present, it is usually in a ratio of from 0.01 to 20, preferably from 0.05 to 5.0 and even more preferably from 0.1 to 3.0, based on the molar equivalent of the starting agent precursor compound of the formula 9 to the Lewis base. use.

關於增加聚合起始劑混合物之儲存穩定性(保存期),有可能使含有該聚合起始劑混合物且包括鹼金屬M2之所得反應混合物與一或多種選自共軛二烯單體及芳族乙烯基化合物之可聚合單體接觸,該等共軛二烯單體尤其選自丁二烯及異戊二烯,該等芳族乙烯基化合物尤其為苯乙烯。為此,合適地使用每鹼金屬當量至多1000當量、較佳地至多200當量、 最佳地至多75當量之量的可聚合單體。 With regard to increasing the storage stability (shelf life) of the polymerization initiator mixture, it is possible to obtain the resulting reaction mixture containing the polymerization initiator mixture and including the alkali metal M 2 and one or more selected from the group consisting of conjugated diene monomers and aromatic The polymerizable monomers of the group vinyl compound are contacted, and the conjugated diene monomers are especially selected from the group consisting of butadiene and isoprene, and the aromatic vinyl compounds are especially styrene. For this purpose, it is suitable to use a polymerizable monomer in an amount of up to 1000 equivalents, preferably up to 200 equivalents, and most preferably up to 75 equivalents per alkali metal equivalent.

聚合物組成物 Polymer composition

本發明之第一態樣之聚合物組成物包含根據如本文所定義之式1及式2之經修飾彈性體聚合物。一般而言,式1聚合物之量以式1聚合物及式2聚合物之總量計為15-85莫耳%。若式1聚合物之量大於85莫耳%,則在另外含有一或多種填料時,該聚合物組成物之可加工性可受到不利影響。若式1聚合物之量小於15莫耳%,則本發明之交聯聚合物組成物的效能可受到不利影響,尤其就滾動阻力而言。 The first aspect of the polymer composition of the present invention comprises a modified elastomeric polymer according to Formulas 1 and 2 as defined herein. In general, the amount of the polymer of Formula 1 is from 15 to 85 mole % based on the total of the polymer of Formula 1 and the polymer of Formula 2. If the amount of the polymer of Formula 1 is greater than 85 mol%, the processability of the polymer composition can be adversely affected when additionally containing one or more fillers. If the amount of the polymer of Formula 1 is less than 15 mol%, the effectiveness of the crosslinked polymer composition of the present invention can be adversely affected, especially in terms of rolling resistance.

式1聚合物之特定較佳實施例包括(但不限於)以下結構(其中P1如本文所定義):[Me3Si-S-(CH2)3-Si(OMe)(Me)]2P1、[Me3Si-S-(CH2)3-Si(OEt)(Me)]2P1、[Me3Si-S-(CH2)3-Si(OMe)2]2P1、[Me3Si-S-(CH2)3-Si(OEt)2]2P1、[Me3Si-S-(CH2)3-Si(OPr)(Me)]2P1、[Me3Si-S-(CH2)3-Si(OBu)(Me)]2P1、[Me3Si-S-(CH2)3-Si(OPr)2]2P1、[Me3Si-S-(CH2)3-Si(OBu)2]2P1、[Et3Si-S-(CH2)3-Si(OMe)(Me)]2P1、[Et3Si-S-(CH2)3-Si(OEt)(Me)]2P1、[Et3Si-S-(CH2)3-Si(OMe)2]2P1、[Et3Si-S-(CH2)3-Si(OEt)2]2P1、[Et3Si-S-(CH2)3-Si(OPr)(Me)]2P1、[Et3Si-S-(CH2)3-Si(OBu)(Me)]2P1、[Et3Si-S-(CH2)3-Si(OPr)2]2P1、[Et3Si-S-(CH2)3-Si(OBu)2]2P1、[(Bu)Me2Si-S-(CH2)3-Si(OMe)(Me)]2P1、[(Bu)Me2Si-S-(CH2)3-Si(OEt)(Me)]2P1、[(Bu)Me2Si-S-(CH2)3-Si(OMe)2]2P1、[(Bu)Me2Si-S-(CH2)3-Si(OEt)2]2P1、[(Bu)Me2Si-S-(CH2)3-Si(OPr)(Me)]2P1、[(Bu)Me2Si-S-(CH2)3-Si(OBu)(Me)]2P1、[(Bu)Me2Si-S-(CH2)3-Si(OPr)2]2P1、[(Bu)Me2Si-S-(CH2)3-Si(OBu)2]2P1、[Me3Si-S-(CH2)-Si(OMe)2]2P1、[Me3Si-S-(CH2)-Si(OEt)2]2P1、[Me3Si-S-(CH2)2-Si(OMe)2]2P1、[Me3Si-S-(CH2)2-Si(OEt)2]2P1、[Me3Si-S-(CH2)-Si(OMe)(Me)]2P1、[Me3Si-S-(CH2)-Si(OEt)(Me)]2P1、[Me3Si-S-(CH2)2-Si(OMe)(Me)]2P1、[Me3Si-S-(CH2)2-Si(OEt)(Me)]2P1、[Me3Si-S-(CH2)-C(H)Me-(CH2)-Si(OMe)2]2P1、[Me3Si-S-(CH2)-C(H)Me-(CH2)-Si(OEt)2]2P1、[Me3Si-S-(CH2)-C(H)Me-(CH2)-Si(OMe)(Me)]2P1、[Me3Si-S-(CH2)-C(H)Me-(CH2)-Si(OEt)(Me)]2P1、[(Bu)Me2Si-S-(CH2)-Si(OMe)2]2P1、[(Bu)Me2Si-S-(CH2)-Si(OEt)2]2P1、[(Bu)Me2Si-S-(CH2)2-Si(OMe)2]2P1、[(Bu)Me2Si-S-(CH2)2-Si(OEt)2]2P1、[(Bu)Me2Si-S-(CH2)-Si(OMe)(Me)]2P 1、[(Bu)Me2Si-S-(CH2)-Si(OEt)(Me)]2P1、[(Bu)Me2Si-S-(CH2)2-Si(OMe)(Me)]2P1、[(Bu)Me2Si-S-(CH2)2-Si(OEt)(Me)]2P1、[(Bu)Me2Si-S-(CH2)-C(H)Me-(CH2)-Si(OMe)2]2P1、[(Bu)Me2Si-S-(CH2)-C(H)Me-(CH2)-Si(OEt)2]2P1、[(Bu)Me2Si-S-(CH2)-C(H)Me-(CH2)-Si(OMe)(Me)]2P1、[(Bu)Me2Si-S-(CH2)-C(H)Me-(CH2)-Si(OEt)(Me)]2P1、[Me3Si-S-C(H)Me-(CH2)2-Si(OMe)2]2P1、[Me3Si-S-C(H)Me-(CH2)2-Si(OEt)2]2P1、[Me3Si-S-C(H)Me-(CH2)2-Si(OMe)(Me)]2P1、[Me3Si-S-C(H)Me-(CH2)2-Si(OEt)(Me)]2P1、[(Bu)Me2Si-S-C(H)Me-(CH2)2-Si(OMe)2]2P1、[(Bu)Me2Si-S-C(H)Me-(CH2)2-Si(OEt)2]2P1、[(Bu)Me2Si-S-C(H)Me-(CH2)2-Si(OMe)(Me)]2P1、[(Bu)Me2Si-S-C(H)Me-(CH2)2-Si(OEt)(Me)]2P1、[Me3Si-S-(CH2)11-Si(OMe)2]2P1、[Me3Si-S-(CH2)11-Si(OEt)2]2P1、[Me3Si-S-(CH2)11-Si(OMe)(Me)]2P1、[Me3Si-S-(CH2)11-Si(OEt)(Me)]2P1、[(Bu)Me2Si-S-(CH2)11-Si(OMe)2]2P1、[(Bu)Me2Si-S-(CH2)11-Si(OEt)2]2P1、[(Bu)Me2Si-S-(CH2)11-Si(OMe)(Me)]2P1、[(Bu)Me2Si-S-(CH2)11-Si(OEt)(Me)]2P1、[(MeO)3Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(OMe)2]2P1、[(MeO)3Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(OMe)2]2P1、[(MeO)3Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OMe)2]2P1、[(EtO)3Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(OEt)2]2P1、[(EtO)3Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(OEt)2]2P1、[(EtO)3Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OEt)2]2P1、[(PrO)3Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(OPr)2]2P1、[(PrO)3Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(OPr)2]2P1、[(PrO)3Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OPr)2]2P1、[(BuO)3Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(OBu)2]2P1、[(BuO)3Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(OBu)2]2P1、[(BuO)3Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OBu)2]2P1、[(Me)(MeO)2Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(Me)(OMe)]2P1、[(Me)(MeO)2Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(Me)(OMe)]2P1、[(Me)(MeO)2Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OMe)(Me)]2P1、[(Me)(EtO)2Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(Me)(OEt)]2P1、[(Me)(EtO)2Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(Me)(OEt)]2P1、[(Me)(EtO)2Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OEt)(Me)]2P1、[(MeO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Me)2-S-CH2-C(H)Me-CH2-Si(OMe)(Me)]2P1、[(MeO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Et)2-S-CH2-C(H)Me-CH2-Si(OMe)(Me)]2P1、[(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Me)2-S-CH2-C(H)Me-CH2-Si(OEt)(Me)]2P1、[(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-Si (Et)2-S-CH2-C(H)Me-CH2-Si(OEt)(Me)]2P1、[(MeO)3Si-(CH2)-S-Si(Me)2-S-(CH2)-Si(OMe)2]2P1、[(MeO)2Si-(CH2)-S-Si(Et)2-S-(CH2)-Si(OMe)2]2P1、[(EtO)3Si-(CH2)-S-Si(Me)2-S-(CH2)-Si(OEt)2]2P1、[(EtO)3Si-(CH2)-S-Si(Et)2-S-(CH2)-Si(OEt)2]2P1、[(Me)(MeO)2Si-(CH2)-S-Si(Me)2-S-(CH2)-Si(Me)(OMe)]2P1、[(Me)(MeO)2Si-(CH2)-S-Si(Et)2-S-(CH2)-Si(Me)(OMe)]2P1、[(Me)(EtO)2Si-(CH2)-S-Si(Me)2-S-(CH2)-Si(Me)(OEt)]2P1、[(Me)(EtO)2Si-(CH2)-S-Si(Et)2-S-(CH2)-Si(Me)(OEt)]2P1、[(MeO)3Si-(CH2)2-S-Si(Me)2-S-(CH2)2-Si(OMe)2]2P1、[(MeO)3Si-(CH2)2-S-Si(Et)2-S-(CH2)2-Si(OMe)2]2P1、[(EtO)3Si-(CH2)2-S-Si(Me)2-S-(CH2)2-Si(OEt)2]2P1、[(EtO)3Si-(CH2)2-S-Si(Et)2-S-(CH2)2-Si(OEt)2]2P1、[(Me)(MeO)2Si-(CH2)2-S-Si(Me)2-S-(CH2)2-Si(Me)(OMe)]2P1、[(Me)(MeO)2Si-(CH2)2-S-Si(Et)2-S-(CH2)2-Si(Me)(OMe)]2P1、[(Me)(EtO)2Si-(CH2)2-S-Si(Me)2-S-(CH2)2-Si(Me)(OEt)]2P1、[(Me)(EtO)2Si-(CH2)2-S-Si(Et)2-S-(CH2)2-Si(Me)(OEt)]2P1、[(MeO)3Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(OMe)2]2P1、[(MeO)2Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(OMe)2]2P1、[(MeO)3Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OMe)2]2P1、[(EtO)3Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(OEt)2]2P1、[(EtO)3Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(OEt)2]2P1、[(EtO)3Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OEt)2]2P1、[(PrO)3Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(OPr)2]2P1、[(PrO)3Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(OPr)2]2P1、[(PrO)3Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OPr)2]2P1、[(BuO)3Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(OBu)2]2P1、[(BuO)3Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(OBu)2]2P1、[(BuO)3Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OBu)2]2P1、[(Me)(MeO)2Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(Me)(OMe)]2P1、[(Me)(MeO)2Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(Me)(OMe)]2P1、[(Me)(MeO)2Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OMe)(Me)]2P1、[(Me)(EtO)2Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(Me)(OEt)]2P1、[(Me)(EtO)2Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(Me)(OEt)]2P1、[(Me)(EtO)2Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OEt)(Me)]2P1、[(MeO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Me)2-S-CH2-C(H)Me-CH2-Si(OMe)(Me)]2P1、[(MeO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Et)2-S-CH2-C(H)Me-CH2-Si(OMe)(Me)]2P1、[(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Me)2-S-CH2-C(H)Me-CH2-Si(OEt)(Me)]2P1、[(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Et)2-S-CH2-C(H)Me-CH2-Si(OEt) (Me)]2P1、[(MeO)3Si-(CH2)-S-Sn(Me)2-S-(CH2)-Si(OMe)2]2P1、[(MeO)3Si-(CH2)-S-Sn(Et)2-S-(CH2)-Si(OMe)2]2P1、[(EtO)3Si-(CH2)-S-Sn(Me)2-S-(CH2)-Si(OEt)2]2P1、[(EtO)3Si-(CH2)-S-Sn(Et)2-S-(CH2)-Si(OEt)2]2P1、[(Me)(MeO)2Si-(CH2)-S-Sn(Me)2-S-(CH2)-Si(Me)(OMe)]2P1、[(Me)(MeO)2Si-(CH2)-S-Sn(Et)2-S-(CH2)-Si(Me)(OMe)]2P1、[(Me)(EtO)2Si-(CH2)-S-Sn(Me)2-S-(CH2)-Si(Me)(OEt)]2P1、[(Me)(EtO)2Si-(CH2)-S-Sn(Et)2-S-(CH2)-Si(Me)(OEt)]2P1、[(MeO)3Si-(CH2)2-S-Sn(Me)2-S-(CH2)2-Si(OMe)2]2P1、[(MeO)3Si-(CH2)2-S-Sn(Et)2-S-(CH2)2-Si(OMe)2]2P1、[(EtO)3Si-(CH2)2-S-Sn(Me)2-S-(CH2)2-Si(OEt)2]2P1、[(EtO)3Si-(CH2)2-S-Sn(Et)2-S-(CH2)2-Si(OEt)2]2P1、[(Me)(MeO)2Si-(CH2)2-S-Sn(Me)2-S-(CH2)2-Si(Me)(OMe)]2P1、[(Me)(MeO)2Si-(CH2)2-S-Sn(Et)2-S-(CH2)2-Si(Me)(OMe)]2P1、[(Me)(EtO)2Si-(CH2)2-S-Sn(Me)2-S-(CH2)2-Si(Me)(OEt)]2P1、[(Me)(EtO)2Si-(CH2)2-S-Sn(Et)2-S-(CH2)2-Si(Me)(OEt)]2P1 Specific preferred embodiments of the polymer of Formula 1 include, but are not limited to, the following structure (wherein P 1 is as defined herein): [Me 3 Si-S-(CH 2 ) 3 -Si(OMe)(Me)] 2 P 1 , [Me 3 Si-S-(CH 2 ) 3 -Si(OEt)(Me)] 2 P 1 , [Me 3 Si-S-(CH 2 ) 3 -Si(OMe) 2 ] 2 P 1 , [Me 3 Si-S-(CH 2 ) 3 -Si(OEt) 2 ] 2 P 1 , [Me 3 Si-S-(CH 2 ) 3 -Si(OPr)(Me)] 2 P 1 , [ Me 3 Si-S-(CH 2 ) 3 -Si(OBu)(Me)] 2 P 1 , [Me 3 Si-S-(CH 2 ) 3 -Si(OPr) 2 ] 2 P 1 , [Me 3 Si-S-(CH 2 ) 3 -Si(OBu) 2 ] 2 P 1 , [Et 3 Si-S-(CH 2 ) 3 -Si(OMe)(Me)] 2 P 1 , [Et 3 Si- S-(CH 2 ) 3 -Si(OEt)(Me)] 2 P 1 , [Et 3 Si-S-(CH 2 ) 3 -Si(OMe) 2 ] 2 P 1 , [Et 3 Si-S- (CH 2 ) 3 -Si(OEt) 2 ] 2 P 1 , [Et 3 Si-S-(CH 2 ) 3 -Si(OPr)(Me)] 2 P 1 , [Et 3 Si-S-(CH 2 ) 3 -Si(OBu)(Me)] 2 P 1 , [Et 3 Si-S-(CH 2 ) 3 -Si(OPr) 2 ] 2 P 1 , [Et 3 Si-S-(CH 2 ) 3 -Si(OBu) 2 ] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 ) 3 -Si(OMe)(Me)] 2 P 1 , [(Bu)Me 2 Si-S- (CH 2 ) 3 -Si(OEt)(Me)] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 ) 3 -Si(OMe) 2 ] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 ) 3 -Si(OEt) 2 ] 2 P 1 , [(Bu)Me 2 Si- S-(CH 2 ) 3 -Si(OPr)(Me)] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 ) 3 -Si(OBu)(Me)] 2 P 1 , [( Bu)Me 2 Si-S-(CH 2 ) 3 -Si(OPr) 2 ] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 ) 3 -Si(OBu) 2 ] 2 P 1 , [Me 3 Si-S-(CH 2 )-Si(OMe) 2 ] 2 P 1 , [Me 3 Si-S-(CH 2 )-Si(OEt) 2 ] 2 P 1 , [Me 3 Si-S -(CH 2 ) 2 -Si(OMe) 2 ] 2 P 1 , [Me 3 Si-S-(CH 2 ) 2 -Si(OEt) 2 ] 2 P 1 , [Me 3 Si-S-(CH 2 )-Si(OMe)(Me)] 2 P 1 , [Me 3 Si-S-(CH 2 )-Si(OEt)(Me)] 2 P 1 , [Me 3 Si-S-(CH 2 ) 2 -Si(OMe)(Me)] 2 P 1 , [Me 3 Si-S-(CH 2 ) 2 -Si(OEt)(Me)] 2 P 1 , [Me 3 Si-S-(CH 2 )- C(H)Me-(CH 2 )-Si(OMe) 2 ] 2 P 1 , [Me 3 Si-S-(CH 2 )-C(H)Me-(CH 2 )-Si(OEt) 2 ] 2 P 1 , [Me 3 Si-S-(CH 2 )-C(H)Me-(CH 2 )-Si(OMe)(Me)] 2 P 1 , [Me 3 Si-S-(CH 2 ) -C(H)Me-(CH 2 )-Si(OEt)(Me)] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 )-Si(OMe) 2 ] 2 P 1 , [ (Bu)Me 2 Si-S-(CH 2 )-Si(OEt) 2 ] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 ) 2 -Si(OMe) 2 ] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 ) 2 -Si(OEt) 2 ] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 )-Si(OMe)(Me)] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 )-Si(OEt)(Me)] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 ) 2 -Si(OMe)(Me)] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 ) 2 -Si(OEt )(Me)] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 )-C(H)Me-(CH 2 )-Si(OMe) 2 ] 2 P 1 ,[(Bu)Me 2 Si-S-(CH 2 )-C(H)Me-(CH 2 )-Si(OEt) 2 ] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 )-C(H) Me-(CH 2 )-Si(OMe)(Me)] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 )-C(H)Me-(CH 2 )-Si(OEt)( Me)] 2 P 1 , [Me 3 Si-SC(H)Me-(CH 2 ) 2 -Si(OMe) 2 ] 2 P 1 , [Me 3 Si-SC(H)Me-(CH 2 ) 2 -Si(OEt) 2 ] 2 P 1 , [Me 3 Si-SC(H)Me-(CH 2 ) 2 -Si(OMe)(Me)] 2 P 1 , [Me 3 Si-SC(H)Me -(CH 2 ) 2 -Si(OEt)(Me)] 2 P 1 , [(Bu)Me 2 Si-SC(H)Me-(CH 2 ) 2 -Si(OMe) 2 ] 2 P 1 , [ (Bu)Me 2 Si-SC(H)Me-(CH 2 ) 2 -Si(OEt) 2 ] 2 P 1 ,[(Bu)Me 2 Si-SC(H)Me-(CH 2 ) 2 -Si (OMe)(Me)] 2 P 1 , [(Bu)Me 2 Si-SC(H)Me-(CH 2 ) 2 -Si(OEt)(Me)] 2 P 1 , [Me 3 Si-S- (CH 2 ) 11 -Si(OMe) 2 ] 2 P 1 , [Me 3 Si-S-(CH 2 ) 11 -Si(OEt) 2 ] 2 P 1 , [Me 3 Si-S-(CH 2 ) 11 -Si(OMe)(Me)] 2 P 1 , [Me 3 Si-S-(CH 2 ) 11 -Si(OEt)(Me)] 2 P 1 , [(Bu)Me 2 Si-S-( CH 2 ) 11 -Si(OMe) 2 ] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 11 -Si(OEt) 2 ] 2 P 1 , [(Bu)Me 2 Si-S-(CH 2 ) 11 -Si(OMe)(Me)] 2 P 1 , [(Bu)Me 2 Si-S -(CH 2 ) 11 -Si(OEt)(Me)] 2 P 1 , [(MeO) 3 Si-(CH 2 ) 3 -S-Si(Me) 2 -S-(CH 2 ) 3 -Si( OMe) 2 ] 2 P 1 , [(MeO) 3 Si-(CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(OMe) 2 ] 2 P 1 , [(MeO 3 Si-(CH 2 ) 3 -S-Si(Bu) 2 -S-(CH 2 ) 3 -Si(OMe) 2 ] 2 P 1 , [(EtO) 3 Si-(CH 2 ) 3 -S -Si(Me) 2 -S-(CH 2 ) 3 -Si(OEt) 2 ] 2 P 1 , [(EtO) 3 Si-(CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(OEt) 2 ] 2 P 1 , [(EtO) 3 Si-(CH 2 ) 3 -S-Si(Bu) 2 -S-(CH 2 ) 3 -Si(OEt) 2 ] 2 P 1 , [(PrO) 3 Si-(CH 2 ) 3 -S-Si(Me) 2 -S-(CH 2 ) 3 -Si(OPr) 2 ] 2 P 1 , [(PrO) 3 Si-( CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(OPr) 2 ] 2 P 1 , [(PrO) 3 Si-(CH 2 ) 3 -S-Si(Bu) 2 -S-(CH 2 ) 3 -Si(OPr) 2 ] 2 P 1 , [(BuO) 3 Si-(CH 2 ) 3 -S-Si(Me) 2 -S-(CH 2 ) 3 -Si (OBu) 2 ] 2 P 1 , [(BuO) 3 Si-(CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(OBu) 2 ] 2 P 1 , [( BuO) 3 Si-(CH 2 ) 3 -S-Si(Bu) 2 -S-(CH 2 ) 3 -Si(OBu) 2 ] 2 P 1 , [(Me)(MeO) 2 Si-(CH 2 ) 3 -S-Si(Me) 2 -S-(CH 2 ) 3 -Si(Me)(OMe)] 2 P 1 ,[(Me)(MeO) 2 Si-(CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(Me (OMe)] 2 P 1 , [(Me)(MeO) 2 Si-(CH 2 ) 3 -S-Si(Bu) 2 -S-(CH 2 ) 3 -Si(OMe)(Me)] 2 P 1 , [(Me)(EtO) 2 Si-(CH 2 ) 3 -S-Si(Me) 2 -S-(CH 2 ) 3 -Si(Me)(OEt)] 2 P 1 , [(Me (EtO) 2 Si-(CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(Me)(OEt)] 2 P 1 , [(Me)(EtO) 2 Si -(CH 2 ) 3 -S-Si(Bu) 2 -S-(CH 2 ) 3 -Si(OEt)(Me)] 2 P 1 , [(MeO) 2 (Me)Si-CH 2 -C( H) Me-CH 2 -S-Si(Me) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OMe)(Me)] 2 P 1 , [(MeO) 2 (Me)Si -CH 2 -C(H)Me-CH 2 -S-Si(Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OMe)(Me)] 2 P 1 ,[(EtO 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Si(Me) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt)(Me)] 2 P 1 , [(EtO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Si (Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt )(Me)] 2 P 1 , [(MeO) 3 Si-(CH 2 )-S-Si(Me) 2 -S-(CH 2 )-Si(OMe) 2 ] 2 P 1 , [(MeO) 2 Si-(CH 2 )-S-Si(Et) 2 -S-(CH 2 )-Si(OMe) 2 ] 2 P 1 , [(EtO) 3 Si-(CH 2 )-S-Si(Me 2 -S-(CH 2 )-Si(OEt) 2 ] 2 P 1 , [(EtO) 3 Si-(CH 2 )-S-Si(Et) 2 -S-(CH 2 )-Si(OEt ) 2 ] 2 P 1 , [(Me)(MeO) 2 Si-(CH 2 )-S-Si(Me) 2 -S-(CH 2 )-Si(Me)(OMe)] 2 P 1 , [(Me) (MeO) 2 Si-(CH 2 )-S-Si(Et) 2 -S-(CH 2 )-Si(Me)(OMe)] 2 P 1 , [(Me)(EtO) 2 Si-(CH 2 )-S-Si(Me) 2 -S-(CH 2 )-Si(Me)(OEt)] 2 P 1 , [(Me)(EtO) 2 Si-(CH 2 )-S-Si(Et 2 -S-(CH 2 )-Si(Me)(OEt)] 2 P 1 , [(MeO) 3 Si-(CH 2 ) 2 -S-Si(Me) 2 -S-(CH 2 ) 2 -Si(OMe) 2 ] 2 P 1 , [(MeO) 3 Si-(CH 2 ) 2 -S-Si(Et) 2 -S-(CH 2 ) 2 -Si(OMe) 2 ] 2 P 1 , [(EtO) 3 Si-(CH 2 ) 2 -S-Si(Me) 2 -S-(CH 2 ) 2 -Si(OEt) 2 ] 2 P 1 , [(EtO) 3 Si-(CH 2 ) 2 -S-Si(Et) 2 -S-(CH 2 ) 2 -Si(OEt) 2 ] 2 P 1 , [(Me)(MeO) 2 Si-(CH 2 ) 2 -S-Si(Me) 2 -S-(CH 2 ) 2 -Si(Me)(OMe)] 2 P 1 , [(Me)(MeO) 2 Si-(CH 2 ) 2 -S-Si(Et) 2 -S-(CH 2 ) 2 -Si(Me)(OMe)] 2 P 1 , [(Me)(EtO) 2 Si-(CH 2 ) 2 -S-Si(Me) 2 -S-(CH 2 ) 2 -Si( Me)(OEt)] 2 P 1 , [(Me)(EtO) 2 Si-(CH 2 ) 2 -S-Si(Et) 2 -S-(CH 2 ) 2 -Si(Me)(OEt)] 2 P 1 , [(MeO) 3 Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(OMe) 2 ] 2 P 1 , [(MeO) 2 Si- (CH 2 ) 3 -S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(OMe) 2 ] 2 P 1 , [(MeO) 3 Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S-(CH 2 ) 3 -Si(OMe) 2 ] 2 P 1 , [(EtO) 3 Si-(CH 2 ) 3 -S-Sn (Me) 2 -S-(CH 2 ) 3 -Si(OEt) 2 ] 2 P 1 , [(EtO) 3 Si-(CH 2 ) 3 -S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(OEt) 2 ] 2 P 1 , [(EtO) 3 Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S-(CH 2 ) 3 -Si(OEt) 2 ] 2 P 1 , [(PrO) 3 Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(OPr) 2 ] 2 P 1 , [(PrO) 3 Si-(CH 2 3 -S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(OPr) 2 ] 2 P 1 , [(PrO) 3 Si-(CH 2 ) 3 -S-Sn(Bu) 2 - S-(CH 2 ) 3 -Si(OPr) 2 ] 2 P 1 , [(BuO) 3 Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(OBu 2 ] 2 P 1 , [(BuO) 3 Si-(CH 2 ) 3 -S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(OBu) 2 ] 2 P 1 , [(BuO) 3 Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S-(CH 2 ) 3 -Si(OBu) 2 ] 2 P 1 , [(Me)(MeO) 2 Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(Me)(OMe)] 2 P 1 ,[(Me)(MeO) 2 Si-(CH 2 ) 3 -S-Sn(Et 2 -S-(CH 2 ) 3 -Si(Me)(OMe)] 2 P 1 , [(Me)(MeO) 2 Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S-( CH 2 ) 3 -Si(OMe)(Me)] 2 P 1 , [(Me)(EtO) 2 Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si (Me)(OEt)] 2 P 1 , [(Me)(EtO) 2 Si-(CH 2 3 -S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(Me)(OEt)] 2 P 1 , [(Me)(EtO) 2 Si-(CH 2 ) 3 -S-Sn (Bu) 2 -S-(CH 2 ) 3 -Si(OEt)(Me)] 2 P 1 ,[(MeO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Sn (Me) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OMe)(Me)] 2 P 1 , [(MeO) 2 (Me)Si-CH 2 -C(H)Me- CH 2 -S-Sn(Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OMe)(Me)] 2 P 1 , [(EtO) 2 (Me)Si-CH 2 - C(H)Me-CH 2 -S-Sn(Me) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt)(Me)] 2 P 1 ,[(EtO) 2 (Me Si-CH 2 -C(H)Me-CH 2 -S-Sn(Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt) (Me)] 2 P 1 , (MeO) 3 Si-(CH 2 )-S-Sn(Me) 2 -S-(CH 2 )-Si(OMe) 2 ] 2 P 1 , [(MeO) 3 Si-(CH 2 )-S- Sn(Et) 2 -S-(CH 2 )-Si(OMe) 2 ] 2 P 1 , [(EtO) 3 Si-(CH 2 )-S-Sn(Me) 2 -S-(CH 2 )- Si(OEt) 2 ] 2 P 1 , [(EtO) 3 Si-(CH 2 )-S-Sn(Et) 2 -S-(CH 2 )-Si(OEt) 2 ] 2 P 1 , [(Me (MeO) 2 Si-(CH 2 )-S-Sn(Me) 2 -S-(CH 2 )-Si(Me)(OMe)] 2 P 1 , [(Me)(MeO) 2 Si-( CH 2 )-S-Sn(Et) 2 -S-(CH 2 )-Si(Me)(OMe)] 2 P 1 , [(Me)(EtO) 2 Si-(CH 2 )-S-Sn( Me) 2 -S-(CH 2 )-Si(Me)(OEt)] 2 P 1 , [(Me)(EtO) 2 Si-(CH 2 )-S-Sn(Et) 2 -S-(CH 2 )-Si(Me)(OEt) ] 2 P 1 , [(MeO) 3 Si-(CH 2 ) 2 -S-Sn(Me) 2 -S-(CH 2 ) 2 -Si(OMe) 2 ] 2 P 1 , [(MeO) 3 Si -(CH 2 ) 2 -S-Sn(Et) 2 -S-(CH 2 ) 2 -Si(OMe) 2 ] 2 P 1 , [(EtO) 3 Si-(CH 2 ) 2 -S-Sn( Me) 2 -S-(CH 2 ) 2 -Si(OEt) 2 ] 2 P 1 , [(EtO) 3 Si-(CH 2 ) 2 -S-Sn(Et) 2 -S-(CH 2 ) 2 -Si(OEt) 2 ] 2 P 1 , [(Me)(MeO) 2 Si-(CH 2 ) 2 -S-Sn(Me) 2 -S-(CH 2 ) 2 -Si(Me)(OMe) ] 2 P 1 , [(Me)(MeO) 2 Si-(CH 2 ) 2 -S-Sn(Et) 2 -S-(CH 2 ) 2 -Si(Me)(OMe)] 2 P 1 , [ (Me)(EtO) 2 Si-(CH 2 ) 2 -S-Sn(Me) 2 -S-(CH 2 ) 2 -Si(Me)(OEt)] 2 P 1 , [(Me)(EtO) 2 Si-(CH 2 ) 2 -S-Sn(Et) 2 -S-(CH 2 ) 2 -Si(Me)(OEt)] 2 P 1 ,

式2聚合物之特定較佳實施例包括(但不限於)以下結構(其中P2如本文所定義):Me3Si-S-(CH2)3-Si(OMe)(Me)P2、Me3Si-S-(CH2)3-Si(OEt)(Me)P2、Me3Si-S-(CH2)3-Si(OMe)2P2、Me3Si-S-(CH2)3-Si(OEt)2P2、Me3Si-S-(CH2)3-Si(OPr)(Me)P2、Me3Si-S-(CH2)3-Si(OBu)(Me)P2、Me3Si-S-(CH2)3-Si(OPr)2P2、Me3Si-S-(CH2)3-Si(OBu)2P2、Et3Si-S-(CH2)3-Si(OMe)(Me)P2、Et3Si-S-(CH2)3-Si(OEt)(Me)P2、Et3Si-S-(CH2)3-Si(OMe)2P2、Et3Si-S-(CH2)3-Si(OEt)2P2、Et3Si-S-(CH2)3-Si(OPr)(Me)P2、Et3Si-S-(CH2)3-Si(OBu)(Me)P2、Et3Si-S-(CH2)3-Si(OPr)2P2、Et3Si-S-(CH2)3-Si(OBu)2P2、(Bu)Me2Si-S-(CH2)3-Si(OMe)(Me)P2、(Bu)Me2Si-S-(CH2)3-Si(OEt)(Me)P2、(Bu)Me2Si-S-(CH2)3-Si(OMe)2P2、(Bu)Me2Si-S-(CH2)3-Si(OEt)2P2、(Bu)Me2Si-S-(CH2)3-Si(OPr)(Me)P2、(Bu)Me2Si-S-(CH2)3-Si(OBu)(Me)P2、(Bu)Me2Si-S-(CH2)3-Si(OPr)2P2、(Bu)Me2Si-S-(CH2)3-Si(OBu)2P2、Me3Si-S-(CH2)-Si(OMe)2P2、Me3Si-S-(CH2)-Si(OEt)2P2、Me3Si-S-(CH2)2-Si(OMe)2P2、Me3Si-S-(CH2)2-Si(OEt)2P2、Me3Si-S-(CH2)-Si(OMe)(Me)P2、M e3Si-S-(CH2)-Si(OEt)(Me)P2、Me3Si-S-(CH2)2-Si(OMe)(Me)P2、Me3Si-S-(CH2)2-Si(OEt)(Me)P2、Me3Si-S-(CH2)-C(H)Me-(CH2)-Si(OMe)2P2、Me3Si-S-(CH2)-C(H)Me-(CH2)-Si(OEt)2P2、Me3Si-S-(CH2)-C(H)Me-(CH2)-Si(OMe)(Me)P2、Me3Si-S-(CH2)-C(H)Me-(CH2)-Si(OEt)(Me)P2、(Bu)Me2Si-S-(CH2)-Si(OMe)2P2、(Bu)Me2Si-S-(CH2)-Si(OEt)2P2、(Bu)Me2Si-S-(CH2)2-Si(OMe)2P2、(Bu)Me2Si-S-(CH2)2-Si(OEt)2P2、(Bu)Me2Si-S-(CH2)-Si(OMe)(Me)P2、(Bu)Me2Si-S-(CH2)-Si(OEt)(Me)P2、(Bu)Me2Si-S-(CH2)2-Si(OMe)(Me)P2、(Bu)Me2Si-S-(CH2)2-Si(OEt)(Me)P2、(Bu)Me2Si-S-(CH2)-C(H)Me-(CH2)-Si(OMe)2P2、(Bu)Me2Si-S-(CH2)-C(H)Me-(CH2)-Si(OEt)2P2、(Bu)Me2Si-S-(CH2)-C(H)Me-(CH2)-Si(OMe)(Me)P2、(Bu)Me2Si-S-(CH2)-C(H)Me-(CH2)-Si(OEt)(Me)P2、Me3Si-S-C(H)Me-(CH2)2-Si(OMe)2P2、Me3Si-S-C(H)Me-(CH2)2-Si(OEt)2P2、Me3Si-S-C(H)Me-(CH2)2-Si(OMe)(Me)P2、Me3Si-S-C(H)Me-(CH2)2-Si(OEt)(Me)P2、(Bu)Me2Si-S-C(H)Me-(CH2)2-Si(OMe)2P2、(Bu)Me2Si-S-C(H)Me-(CH2)2-Si(OEt)2P2、(Bu)Me2Si-S-C(H)Me-(CH2)2-Si(OMe)(Me)P2、(Bu)Me2Si-S-C(H)Me-(CH2)2-Si(OEt)(Me)P2、Me3Si-S-(CH2)11-Si(OMe)2P2、Me3Si-S-(CH2)11-Si(OEt)2P2、Me3Si-S-(CH2)11-Si(OMe)(Me)P2、Me3Si-S-(CH2)11-Si(OEt)(Me)P2、(Bu)Me2Si-S-(CH2)11-Si(OMe)2P2、(Bu)Me2Si-S-(CH2)11-Si(OEt)2P2、(Bu)Me2Si-S-(CH2)11-Si(OMe)(Me)P2、(Bu)Me2Si-S-(CH2)11-Si(OEt)(Me)P2、(MeO)3Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(OMe)2P2、(MeO)3Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(OMe)2P2、(MeO)3Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OMe)2P2、(EtO)3Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(OEt)2P2、(EtO)3Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(OEt)2P2、(EtO)3Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OEt)2P2、(PrO)3Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(OPr)2P2、(PrO)3Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(OPr)2P2、(PrO)3Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OPr)2P2、(BuO)3Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(OBu)2P2、(BuO)3Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(OBu)2P2、(BuO)3Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OBu)2P2、(Me)(MeO)2Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(Me)(OMe)P2、(Me)(MeO)2Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(Me)(OMe)P2、(Me)(MeO)2Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OMe)(Me)P2、(Me)(EtO)2Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(Me)(OEt)P2、(Me)(EtO)2Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(Me) (OEt)P2、(Me)(EtO)2Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OEt)(Me)P2、(MeO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Me)2-S-CH2-C(H)Me-CH2-Si(OMe)(Me)P2、(MeO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Et)2-S-CH2-C(H)Me-CH2-Si(OMe)(Me)P2、(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Me)2-S-CH2-C(H)Me-CH2-Si(OEt)(Me)P2、(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Et)2-S-CH2-C(H)Me-CH2-Si(OEt)(Me)P2、(MeO)3Si-(CH2)-S-Si(Me)2-S-(CH2)-Si(OMe)2P2、(MeO)3Si-(CH2)-S-Si(Et)2-S-(CH2)-Si(OMe)2P2、(EtO)3Si-(CH2)-S-Si(Me)2-S-(CH2)-Si(OEt)2P2、(EtO)3Si-(CH2)-S-Si(Et)2-S-(CH2)-Si(OEt)2P2、(Me)(MeO)2Si-(CH2)-S-Si(Me)2-S-(CH2)-Si(Me)(OMe)P2、(Me)(MeO)2Si-(CH2)-S-Si(Et)2-S-(CH2)-Si(Me)(OMe)P2、(Me)(EtO)2Si-(CH2)-S-Si(Me)2-S-(CH2)-Si(Me)(OEt)P2、(Me)(EtO)2Si-(CH2)-S-Si(Et)2-S-(CH2)-Si(Me)(OEt)P2、(MeO)3Si-(CH2)2-S-Si(Me)2-S-(CH2)2-Si(OMe)2P2、(MeO)3Si-(CH2)2-S-Si(Et)2-S-(CH2)2-Si(OMe)2P2、(EtO)3Si-(CH2)2-S-Si(Me)2-S-(CH2)2-Si(OEt)2P2、(EtO)3Si-(CH2)2-S-Si(Et)2-S-(CH2)2-Si(OEt)2P2、(Me)(MeO)2Si-(CH2)2-S-Si(Me)2-S-(CH2)2-Si(Me)(OMe)P2、(Me)(MeO)2Si-(CH2)2-S-Si(Et)2-S-(CH2)2-Si(Me)(OMe)P2、(Me)(EtO)2Si-(CH2)2-S-Si(Me)2-S-(CH2)2-Si(Me)(OEt)P2、(Me)(EtO)2Si-(CH2)2-S-Si(Et)2-S-(CH2)2-Si(Me)(OEt)P2、(MeO)3Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(OMe)2P2、(MeO)3Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(OMe)2P2、(MeO)3Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OMe)2P2、(EtO)3Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(OEt)2P2、(EtO)3Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(OEt)2P2、(EtO)3Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OEt)2P2、(PrO)3Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(OPr)2P2、(PrO)3Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(OPr)2P2、(PrO)3Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OPr)2P2、(BuO)3Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(OBu)2P2、(BuO)3Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(OBu)2P2、(BuO)3Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OBu)2P2、(Me)(MeO)2Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(Me)(OMe)P2、(Me)(MeO)2Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(Me)(OMe)P2、(Me)(MeO)2Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OMe)(Me)P2、(Me)(EtO)2Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(Me)(OEt)P2、(Me)(EtO)2Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(Me)(OEt)P2、(Me)(EtO)2Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OEt)(Me)P2、(MeO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Me)2-S-CH2-C(H)Me-CH2- Si(OMe)(Me)P2、(MeO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Et)2-S-CH2-C(H)Me-CH2-Si(OMe)(Me)P2、(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Me)2-S-CH2-C(H)Me-CH2-Si(OEt)(Me)P2、(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Et)2-S-CH2-C(H)Me-CH2-Si(OEt)(Me)P2、(MeO)3Si-(CH2)-S-Sn(Me)2-S-(CH2)-Si(OMe)2P2、(MeO)3Si-(CH2)-S-Sn(Et)2-S-(CH2)-Si(OMe)2P2、(EtO)3Si-(CH2)-S-Sn(Me)2-S-(CH2)-Si(OEt)2P2、(EtO)3Si-(CH2)-S-Sn(Et)2-S-(CH2)-Si(OEt)2P2、(Me)(MeO)2Si-(CH2)-S-Sn(Me)2-S-(CH2)-Si(Me)(OMe)P2、(Me)(MeO)2Si-(CH2)-S-Sn(Et)2-S-(CH2)-Si(Me)(OMe)P2、(Me)(EtO)2Si-(CH2)-S-Sn(Me)2-S-(CH2)-Si(Me)(OEt)P2、(Me)(EtO)2Si-(CH2)-S-Sn(Et)2-S-(CH2)-Si(Me)(OEt)P2、(MeO)3Si-(CH2)2-S-Sn(Me)2-S-(CH2)2-Si(OMe)2P2、(MeO)3Si-(CH2)2-S-Sn(Et)2-S-(CH2)2-Si(OMe)2P2、(EtO)3Si-(CH2)2-S-Sn(Me)2-S-(CH2)2-Si(OEt)2P2、(EtO)3Si-(CH2)2-S-Sn(Et)2-S-(CH2)2-Si(OEt)2P2、(Me)(MeO)2Si-(CH2)2-S-Sn(Me)2-S-(CH2)2-Si(Me)(OMe)P2、(Me)(MeO)2Si-(CH2)2-S-Sn(Et)2-S-(CH2)2-Si(Me)(OMe)P2、(Me)(EtO)2Si-(CH2)2-S-Sn(Me)2-S-(CH2)2-Si(Me)(OEt)P2、(Me)(EtO)2Si-(CH2)2-S-Sn(Et)2-S-(CH2)2-Si(Me)(OEt)P2 Specific preferred embodiments of the polymer of Formula 2 include, but are not limited to, the following structure (wherein P 2 is as defined herein): Me 3 Si-S-(CH 2 ) 3 -Si(OMe)(Me)P 2 , Me 3 Si-S-(CH 2 ) 3 -Si(OEt)(Me)P 2 , Me 3 Si-S-(CH 2 ) 3 -Si(OMe) 2 P 2 , Me 3 Si-S-(CH 2 ) 3 -Si(OEt) 2 P 2 , Me 3 Si-S-(CH 2 ) 3 -Si(OPr)(Me)P 2 , Me 3 Si-S-(CH 2 ) 3 -Si(OBu) (Me)P 2 , Me 3 Si-S-(CH 2 ) 3 -Si(OPr) 2 P 2 , Me 3 Si-S-(CH 2 ) 3 -Si(OBu) 2 P 2 , Et 3 Si- S-(CH 2 ) 3 -Si(OMe)(Me)P 2 , Et 3 Si-S-(CH 2 ) 3 -Si(OEt)(Me)P 2 , Et 3 Si-S-(CH 2 ) 3 -Si(OMe) 2 P 2 , Et 3 Si-S-(CH 2 ) 3 -Si(OEt) 2 P 2 , Et 3 Si-S-(CH 2 ) 3 -Si(OPr)(Me)P 2 , Et 3 Si-S-(CH 2 ) 3 -Si(OBu)(Me)P 2 , Et 3 Si-S-(CH 2 ) 3 -Si(OPr) 2 P 2 , Et 3 Si-S- (CH 2 ) 3 -Si(OBu) 2 P 2 , (Bu)Me 2 Si-S-(CH 2 ) 3 -Si(OMe)(Me)P 2 , (Bu)Me 2 Si-S-(CH 2 ) 3 -Si(OEt)(Me)P 2 , (Bu)Me 2 Si-S-(CH 2 ) 3 -Si(OMe) 2 P 2 , (Bu)Me 2 Si-S-(CH 2 ) 3 -Si(OEt) 2 P 2 , (Bu)Me 2 Si-S-(CH 2 ) 3 -Si(OPr)(Me)P 2 , (Bu)Me 2 Si-S-(CH 2 ) 3 - Si(OBu)(Me)P 2 , (Bu)Me 2 Si-S-(CH 2 ) 3 -Si (OPr) 2 P 2 , (Bu)Me 2 Si-S-(CH 2 ) 3 -Si(OBu) 2 P 2 , Me 3 Si-S-(CH 2 )-Si(OMe) 2 P 2 , Me 3 Si-S-(CH 2 )-Si(OEt) 2 P 2 , Me 3 Si-S-(CH 2 ) 2 -Si(OMe) 2 P 2 , Me 3 Si-S-(CH 2 ) 2 - Si(OEt) 2 P 2 , Me 3 Si-S-(CH 2 )-Si(OMe)(Me)P 2 , Me 3 Si-S-(CH 2 )-Si(OEt)(Me)P 2 , Me 3 Si-S-(CH 2 ) 2 -Si(OMe)(Me)P 2 , Me 3 Si-S-(CH 2 ) 2 -Si(OEt)(Me)P 2 ,Me 3 Si-S -(CH 2 )-C(H)Me-(CH 2 )-Si(OMe) 2 P 2 ,Me 3 Si-S-(CH 2 )-C(H)Me-(CH 2 )-Si(OEt 2 P 2 , Me 3 Si-S-(CH 2 )-C(H)Me-(CH 2 )-Si(OMe)(Me)P 2 , Me 3 Si-S-(CH 2 )-C( H) Me-(CH 2 )-Si(OEt)(Me)P 2 , (Bu)Me 2 Si-S-(CH 2 )-Si(OMe) 2 P 2 , (Bu)Me 2 Si-S- (CH 2 )-Si(OEt) 2 P 2 , (Bu)Me 2 Si-S-(CH 2 ) 2 -Si(OMe) 2 P 2 , (Bu)Me 2 Si-S-(CH 2 ) 2 -Si(OEt) 2 P 2 , (Bu)Me 2 Si-S-(CH 2 )-Si(OMe)(Me)P 2 , (Bu)Me 2 Si-S-(CH 2 )-Si(OEt (Me)P 2 , (Bu)Me 2 Si-S-(CH 2 ) 2 -Si(OMe)(Me)P 2 , (Bu)Me 2 Si-S-(CH 2 ) 2 -Si(OEt (Me)P 2 , (Bu)Me 2 Si-S-(CH 2 )-C(H)Me-(CH 2 )-Si(OMe) 2 P 2 , (Bu)Me 2 Si-S-( CH 2 )-C(H)Me-(CH 2 )-Si(OEt) 2 P 2 , (Bu)Me 2 Si-S-(CH 2 )-C(H)Me-(CH 2 )-Si(OMe)(Me)P 2 ,(Bu)Me 2 Si-S-(CH 2 )-C(H)Me- (CH 2 )-Si(OEt)(Me)P 2 , Me 3 Si-SC(H)Me-(CH 2 ) 2 -Si(OMe) 2 P 2 , Me 3 Si-SC(H)Me-( CH 2 ) 2 -Si(OEt) 2 P 2 , Me 3 Si-SC(H)Me-(CH 2 ) 2 -Si(OMe)(Me)P 2 , Me 3 Si-SC(H)Me-( CH 2 ) 2 -Si(OEt)(Me)P 2 , (Bu)Me 2 Si-SC(H)Me-(CH 2 ) 2 -Si(OMe) 2 P 2 ,(Bu)Me 2 Si-SC (H)Me-(CH 2 ) 2 -Si(OEt) 2 P 2 , (Bu)Me 2 Si-SC(H)Me-(CH 2 ) 2 -Si(OMe)(Me)P 2 ,(Bu Me 2 Si-SC(H)Me-(CH 2 ) 2 -Si(OEt)(Me)P 2 , Me 3 Si-S-(CH 2 ) 11 -Si(OMe) 2 P 2 ,Me 3 Si -S-(CH 2 ) 11 -Si(OEt) 2 P 2 , Me 3 Si-S-(CH 2 ) 11 -Si(OMe)(Me)P 2 ,Me 3 Si-S-(CH 2 ) 11 -Si(OEt)(Me)P 2 , (Bu)Me 2 Si-S-(CH 2 ) 11 -Si(OMe) 2 P 2 , (Bu)Me 2 Si-S-(CH 2 ) 11 -Si (OEt) 2 P 2 , (Bu)Me 2 Si-S-(CH 2 ) 11 -Si(OMe)(Me)P 2 , (Bu)Me 2 Si-S-(CH 2 ) 11 -Si(OEt (Me)P 2 , (MeO) 3 Si-(CH 2 ) 3 -S-Si(Me) 2 -S-(CH 2 ) 3 -Si(OMe) 2 P 2 , (MeO) 3 Si-( CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(OMe) 2 P 2 , (MeO) 3 Si-(CH 2 ) 3 -S-Si(Bu) 2 -S -(CH 2 ) 3 -Si(OMe) 2 P 2 , (E tO) 3 Si-(CH 2 ) 3 -S-Si(Me) 2 -S-(CH 2 ) 3 -Si(OEt) 2 P 2 , (EtO) 3 Si-(CH 2 ) 3 -S-Si (Et) 2 -S-(CH 2 ) 3 -Si(OEt) 2 P 2 , (EtO) 3 Si-(CH 2 ) 3 -S-Si(Bu) 2 -S-(CH 2 ) 3 -Si (OEt) 2 P 2 , (PrO) 3 Si-(CH 2 ) 3 -S-Si(Me) 2 -S-(CH 2 ) 3 -Si(OPr) 2 P 2 , (PrO) 3 Si-( CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(OPr) 2 P 2 ,(PrO) 3 Si-(CH 2 ) 3 -S-Si(Bu) 2 -S -(CH 2 ) 3 -Si(OPr) 2 P 2 , (BuO) 3 Si-(CH 2 ) 3 -S-Si(Me) 2 -S-(CH 2 ) 3 -Si(OBu) 2 P 2 , (BuO) 3 Si-(CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(OBu) 2 P 2 , (BuO) 3 Si-(CH 2 ) 3 -S -Si(Bu) 2 -S-(CH 2 ) 3 -Si(OBu) 2 P 2 , (Me)(MeO) 2 Si-(CH 2 ) 3 -S-Si(Me) 2 -S-(CH 2 ) 3 -Si(Me)(OMe)P 2 ,(Me)(MeO) 2 Si-(CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(Me)( OMe)P 2 , (Me)(MeO) 2 Si-(CH 2 ) 3 -S-Si(Bu) 2 -S-(CH 2 ) 3 -Si(OMe)(Me)P 2 , (Me)( EtO) 2 Si-(CH 2 ) 3 -S-Si(Me) 2 -S-(CH 2 ) 3 -Si(Me)(OEt)P 2 , (Me)(EtO) 2 Si-(CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(Me) (OEt)P 2 , (Me)(EtO) 2 Si-(CH 2 ) 3 -S-Si(Bu) 2 -S-(CH 2 ) 3 -Si(OEt)(Me)P 2 ,(MeO) 2 (Me Si-CH 2 -C(H)Me-CH 2 -S-Si(Me) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OMe)(Me)P 2 ,(MeO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Si(Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OMe)(Me)P 2 , (EtO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Si(Me) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt)(Me) P 2 , (EtO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Si(Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt) (Me)P 2 , (MeO) 3 Si-(CH 2 )-S-Si(Me) 2 -S-(CH 2 )-Si(OMe) 2 P 2 , (MeO) 3 Si-(CH 2 ) -S-Si(Et) 2 -S-(CH 2 )-Si(OMe) 2 P 2 , (EtO) 3 Si-(CH 2 )-S-Si(Me) 2 -S-(CH 2 )- Si(OEt) 2 P 2 , (EtO) 3 Si-(CH 2 )-S-Si(Et) 2 -S-(CH 2 )-Si(OEt) 2 P 2 , (Me)(MeO) 2 Si -(CH 2 )-S-Si(Me) 2 -S-(CH 2 )-Si(Me)(OMe)P 2 ,(Me)(MeO) 2 Si-(CH 2 )-S-Si(Et 2 -S-(CH 2 )-Si(Me)(OMe)P 2 ,(Me)(EtO) 2 Si-(CH 2 )-S-Si(Me) 2 -S-(CH 2 )-Si (Me)(OEt)P 2 , (Me)(EtO) 2 Si-(CH 2 )-S-Si(Et) 2 -S-(CH 2 )-Si(Me)(OEt)P 2 ,(MeO 3 Si-(CH 2 ) 2 -S-Si(Me) 2 -S-(CH 2 ) 2 -Si(OMe) 2 P 2 , (MeO) 3 Si-(CH 2 ) 2 -S-Si( Et) 2 -S-(CH 2 ) 2 -Si(OMe) 2 P 2 , (EtO) 3 Si-(CH 2 ) 2 -S-Si(Me) 2 -S-(CH 2 ) 2 -Si( OEt) 2 P 2 , (EtO) 3 Si-(CH 2 ) 2 -S-Si(Et) 2 -S-(CH 2 ) 2 -Si(OEt) 2 P 2 , (Me)(MeO) 2 Si-(CH 2 2 -S-Si(Me) 2 -S-(CH 2 ) 2 -Si(Me)(OMe)P 2 ,(Me)(MeO) 2 Si-(CH 2 ) 2 -S-Si(Et) 2 -S-(CH 2 ) 2 -Si(Me)(OMe)P 2 , (Me)(EtO) 2 Si-(CH 2 ) 2 -S-Si(Me) 2 -S-(CH 2 ) 2 -Si(Me)(OEt)P 2 ,(Me)(EtO) 2 Si-(CH 2 ) 2 -S-Si(Et) 2 -S-(CH 2 ) 2 -Si(Me)(OEt)P 2 , (MeO) 3 Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(OMe) 2 P 2 , (MeO) 3 Si-(CH 2 ) 3 - S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(OMe) 2 P 2 , (MeO) 3 Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S-(CH 2 ) 3 -Si(OMe) 2 P 2 , (EtO) 3 Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(OEt) 2 P 2 , (EtO) 3 Si-(CH 2 ) 3 -S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(OEt) 2 P 2 , (EtO) 3 Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S-(CH 2 ) 3 -Si(OEt) 2 P 2 ,(PrO) 3 Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(OPr) 2 P 2 , (PrO) 3 Si-(CH 2 ) 3 -S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(OPr) 2 P 2 , (PrO) 3 Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S-(CH 2 ) 3 -Si(OPr) 2 P 2 , (BuO) 3 Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(OBu) 2 P 2 , (BuO) 3 Si-(CH 2 ) 3 -S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(OBu) 2 P 2 , (BuO) 3 Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S- (CH 2 ) 3 -Si(OBu) 2 P 2 , (Me)(MeO) 2 Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(Me)( OMe)P 2 , (Me)(MeO) 2 Si-(CH 2 ) 3 -S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(Me)(OMe)P 2 ,(Me)( MeO) 2 Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S-(CH 2 ) 3 -Si(OMe)(Me)P 2 , (Me)(EtO) 2 Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(Me)(OEt)P 2 ,(Me)(EtO) 2 Si-(CH 2 ) 3 -S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(Me)(OEt)P 2 , (Me)(EtO) 2 Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S-(CH 2 ) 3 - Si(OEt)(Me)P 2 , (MeO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Sn(Me) 2 -S-CH 2 -C(H)Me- CH 2 - Si(OMe)(Me)P 2 , (MeO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Sn(Et) 2 -S-CH 2 -C(H Me-CH 2 -Si(OMe)(Me)P 2 ,(EtO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Sn(Me) 2 -S-CH 2 - C(H)Me-CH 2 -Si(OEt)(Me)P 2 ,(EtO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Sn(Et) 2 -S- CH 2 -C(H)Me-CH 2 -Si(OEt)(Me)P 2 ,(MeO) 3 Si-(CH 2 )-S-Sn(Me) 2 -S-(CH 2 )-Si( OMe) 2 P 2 , (MeO) 3 Si-(CH 2 )-S-Sn(Et) 2 -S-(CH 2 )-Si(OMe) 2 P 2 , (EtO) 3 Si-(CH 2 )-S-Sn(Me) 2 -S-(CH 2 )-Si(OEt) 2 P 2 , (EtO) 3 Si-(CH 2 )-S-Sn(Et) 2 -S-(CH 2 ) -Si(OEt) 2 P 2 , (Me)(MeO) 2 Si-(CH 2 )-S-Sn(Me) 2 -S-(CH 2 )-Si(Me)(OMe)P 2 , (Me (MeO) 2 Si-(CH 2 )-S-Sn(Et) 2 -S-(CH 2 )-Si(Me)(OMe)P 2 , (Me)(EtO) 2 Si-(CH 2 ) -S-Sn(Me) 2 -S-(CH 2 )-Si(Me)(OEt)P 2 , (Me)(EtO) 2 Si-(CH 2 )-S-Sn(Et) 2 -S- (CH 2 )-Si(Me)(OEt)P 2 ,(MeO) 3 Si-(CH 2 ) 2 -S-Sn(Me) 2 -S-(CH 2 ) 2 -Si(OMe) 2 P 2 , (MeO) 3 Si-(CH 2 ) 2 -S-Sn(Et) 2 -S-(CH 2 ) 2 -Si(OMe) 2 P 2 , (EtO) 3 Si-(CH 2 ) 2 -S -Sn(Me) 2 -S-(CH 2 ) 2 -Si(OEt) 2 P 2 , (EtO) 3 Si-(CH 2 ) 2 -S-Sn(Et) 2 -S-(CH 2 ) 2 -Si(OEt) 2 P 2 , (Me)(MeO) 2 Si-(CH 2 ) 2 -S-Sn(Me) 2 -S-(CH 2 ) 2 -Si(Me)(OMe)P 2 , (Me)(MeO) 2 Si-(CH 2 ) 2 -S-Sn(Et) 2 -S-(CH 2 ) 2 -Si(Me)(OMe)P 2 ,(Me)(EtO) 2 Si- (CH 2 ) 2 -S-Sn(Me) 2 -S-(CH 2 ) 2 -Si(Me)(OEt)P 2 , (Me)(EtO) 2 Si-(CH 2 ) 2 -S-Sn (Et) 2 -S-(CH 2 ) 2 -Si(Me)(OEt)P 2 ,

咸信由使用鏈端修飾劑之鏈端修飾方法產生且具有末端三烴基矽烷基(包括三烷基矽烷基、二烷基芳基矽烷基及三芳基矽烷基)之部分充當防止聚合物鏈之無意後續反應的保護基。該等保護基可藉由暴露於含有反應性羥基(-OH)之化合物,諸如水、醇及有機或無機酸(例如鹽酸、硫酸或羧酸)來移除。該等暴露條件典型地在硫化期間存在。在其中鏈端修飾劑之末端基團連接硫化物之彼等情形中,暴露於反應性羥基及脫除保護基將導致形成未保護硫醇基(SH)作為聚合物鏈之末端基團。視經修飾聚合物之處理條件(例如汽提)而定,未保護之經修飾聚合物及經保護之經修飾聚合物均可存在。 A portion derived from a chain end modification method using a chain end modifier and having a terminal trihydrocarbyl decyl group (including a trialkyl decyl group, a dialkyl aryl decyl group, and a triaryl decyl group) serves as a polymer chain preventing group. A protecting group that is not intended for subsequent reaction. The protecting groups can be removed by exposure to a compound containing a reactive hydroxyl group (-OH) such as water, an alcohol, and an organic or inorganic acid such as hydrochloric acid, sulfuric acid or a carboxylic acid. These exposure conditions are typically present during vulcanization. In the case where the terminal group of the chain-end modifier is attached to the sulfide, exposure to the reactive hydroxyl group and removal of the protecting group will result in the formation of an unprotected thiol group (SH) as an end group of the polymer chain. Depending on the processing conditions of the modified polymer (e.g., stripping), both the unprotected modified polymer and the protected modified polymer may be present.

咸信該聚合物之特定末端基團(諸如未保護硫醇基)對諸如二氧化矽及/或碳黑之填料具反應性,這可導致該填料在聚合物組成物內之更均勻分佈。 It is believed that a particular end group of the polymer, such as an unprotected thiol group, is reactive with a filler such as cerium oxide and/or carbon black, which can result in a more uniform distribution of the filler within the polymer composition.

含有未保護末端硫醇基之聚合物之特定較佳實例包括以下聚合物,包括其路易士鹼加合物(其中P1及P2如本文所定義):[HS-(CH2)3-Si(OH)(Me)]2P1、[HS-(CH2)3-Si(OH)2]2P1、[HS-(CH2)3-Si(OH)(Et)]2P1、[HS-(CH2)-C(H)Me-(CH2)-Si(OH)2]2P1、[HS-(CH2)-C(H)Me-(CH2)-Si(OH)(Me)]2P1、[HS-(CH2)-C(H)Me-(CH2)-Si(OH)(Et)]2P1、[HS-(CH2)-Si(OH)2]2P1、[HS-(CH2)-Si(OH)(Me)]2P1、[HS-(CH2)-Si(OH)(Et)]2P1、[HS-(CH2)2-Si(OH)2]2P1、[HS-(CH2)2-Si(OH)(Me)]2P1、[HS-(CH2)2-Si(OH)(Et)]2P1、[HS-(CH2)-C(Me)2-(CH2)-Si(OH)2]2P1、[HS-(CH2)-C(Me)2-(CH2)-Si(OH)(Me)]2P1、[HS-(CH2)-C(Me)2-(CH2)-Si(OH)(Et)]2P1、[HS-C(H)Me-(CH2)2-Si(OH)2]2P1、[HS-C(H)Me-(CH2)2-Si(Me)(OH)]2P1、[HS-C(H)Me-(CH2)2-Si(Et)(OH)]2P1、HS-(CH2)3-Si(OH)(Me)P2、HS-(CH2)3-Si(OH)2P2、HS-(CH2)3-Si(OH)(Et)P2、HS-(CH2)-C(H)Me-(CH2)-Si(OH)2P2、HS-(CH2)-C(H)Me-(CH2)-Si(OH)(Me)P2、HS-(CH2)-C(H)Me-(CH2)-Si(OH)(Et)P2、HS-(CH2)-Si(OH)2P2、HS-(CH2)-Si(OH)(Me)P2、HS-(CH2)-Si(OH)(Et)P2、HS-(CH2)2-Si(OH)2P2、HS-(CH2)2-Si(OH)(Me)P2、HS-(CH2)2-Si(OH)(Et)P2、HS-(CH2)-C(Me)2-(CH2)-Si(OH)2P2、HS-(CH2)-C(Me)2-(CH2)-Si(OH)(Me)P2、HS-(CH2)-C(Me)2-(CH2)-Si(OH)(Et)P2、HS-C(H)Me-(CH2)2-Si(OH)2P2、HS-C(H)Me-(CH2)2-Si(Me)(OH)P2、HS-C(H)Me-(CH2)2-Si(Et)(OH)P2Specific preferred examples of polymers containing unprotected terminal thiol groups include the following polymers, including their Lewis base adducts (wherein P 1 and P 2 are as defined herein): [HS-(CH 2 ) 3 - Si(OH)(Me)] 2 P 1 , [HS-(CH 2 ) 3 -Si(OH) 2 ] 2 P 1 , [HS-(CH 2 ) 3 -Si(OH)(Et)] 2 P 1 , [HS-(CH 2 )-C(H)Me-(CH 2 )-Si(OH) 2 ] 2 P 1 , [HS-(CH 2 )-C(H)Me-(CH 2 )- Si(OH)(Me)] 2 P 1 , [HS-(CH 2 )-C(H)Me-(CH 2 )-Si(OH)(Et)] 2 P 1 , [HS-(CH 2 ) -Si(OH) 2 ] 2 P 1 , [HS-(CH 2 )-Si(OH)(Me)] 2 P 1 , [HS-(CH 2 )-Si(OH)(Et)] 2 P 1 , [HS-(CH 2 ) 2 -Si(OH) 2 ] 2 P 1 , [HS-(CH 2 ) 2 -Si(OH)(Me)] 2 P 1 , [HS-(CH 2 ) 2 - Si(OH)(Et)] 2 P 1 , [HS-(CH 2 )-C(Me) 2 -(CH 2 )-Si(OH) 2 ] 2 P 1 , [HS-(CH 2 )-C (Me) 2 -(CH 2 )-Si(OH)(Me)] 2 P 1 , [HS-(CH 2 )-C(Me) 2 -(CH 2 )-Si(OH)(Et)] 2 P 1 , [HS-C(H)Me-(CH 2 ) 2 -Si(OH) 2 ] 2 P 1 , [HS-C(H)Me-(CH 2 ) 2 -Si(Me)(OH) ] 2 P 1 , [HS-C(H)Me-(CH 2 ) 2 -Si(Et)(OH)] 2 P 1 , HS-(CH 2 ) 3 -Si(OH)(Me)P 2 , HS-(CH 2 ) 3 -Si(OH) 2 P 2 , HS-(CH 2 ) 3 -Si(OH)(Et)P 2 , HS-(CH 2 )-C(H)Me-(CH 2 )-Si(OH) 2 P 2 , HS-(CH 2 )-C(H)Me-(CH 2 )-Si(OH)(Me)P 2 , HS-(CH 2 )-C(H) Me-(CH 2 )-Si(OH)(Et)P 2 , HS-(CH 2 )-Si(OH) 2 P 2 , HS-(CH 2 )-Si(OH)(Me)P 2 , HS -(CH 2 )-Si(OH)(Et)P 2 , HS-(CH 2 ) 2 -Si(OH) 2 P 2 , HS-(CH 2 ) 2 -Si(OH)(Me)P 2 , HS-(CH 2 ) 2 -Si(OH)(Et)P 2 , HS-(CH 2 )-C(Me) 2 -(CH 2 )-Si(OH) 2 P 2 , HS-(CH 2 ) -C(Me) 2 -(CH 2 )-Si(OH)(Me)P 2 , HS-(CH 2 )-C(Me) 2 -(CH 2 )-Si(OH)(Et)P 2 , HS-C(H)Me-(CH 2 ) 2 -Si(OH) 2 P 2 , HS-C(H)Me-(CH 2 ) 2 -Si(Me)(OH)P 2 , HS-C( H) Me-(CH 2 ) 2 -Si(Et)(OH)P 2 .

作為鏈端經修飾聚合物之反應產物典型地含有矽烷醇基團及烷氧基矽烷基,其總量為0.01至3000mmol/kg聚合物,較佳為0.05至1500mmol/kg,更佳為0.1至500mmol/kg且甚至更佳為0.2至200mmol/kg。 The reaction product of the chain-end modified polymer typically contains a stanol group and an alkoxyalkyl group, and the total amount thereof is from 0.01 to 3,000 mmol/kg of the polymer, preferably from 0.05 to 1,500 mmol/kg, more preferably from 0.1 to 500 mmol/kg and even more preferably 0.2 to 200 mmol/kg.

作為鏈端經修飾聚合物之反應產物較佳地含有硫化物基團(呈硫醇基及/或硫化物連接之保護基形式),其總量為0.01至1000mmol/kg聚合物,較佳為0.05至500mmol/kg,更佳為0.1至300mmol/kg且甚至更佳為0.2至200mmol/kg聚合物。 The reaction product of the chain-end modified polymer preferably contains a sulfide group (in the form of a protecting group attached to a thiol group and/or a sulfide group) in a total amount of 0.01 to 1000 mmol/kg of a polymer, preferably From 0.05 to 500 mmol/kg, more preferably from 0.1 to 300 mmol/kg and even more preferably from 0.2 to 200 mmol/kg of polymer.

關於大多數應用,聚合物P1及P2較佳地為源於共軛二烯烴之均聚物、源於共軛二烯烴單體及芳族乙烯基單體之共聚物及/或一種或兩種類型之共軛二烯烴與一種或兩種類型之芳族乙烯基化合物之三元共聚物。尤其適用之聚合物之實例包括丁二烯或異戊二烯之均聚物以及丁二 烯、異戊二烯及苯乙烯之無規或嵌段共聚物及三元共聚物,尤其丁二烯與異戊二烯之無規共聚物及丁二烯與苯乙烯之無規或嵌段共聚物。 For most applications, the polymers P 1 and P 2 are preferably homopolymers derived from conjugated dienes, copolymers derived from conjugated diene monomers and aromatic vinyl monomers, and/or one or A terpolymer of two types of conjugated dienes with one or two types of aromatic vinyl compounds. Examples of particularly suitable polymers include homopolymers of butadiene or isoprene and random or block copolymers and terpolymers of butadiene, isoprene and styrene, especially butadiene. Random copolymer with isoprene and random or block copolymer of butadiene and styrene.

在聚合物P1及P2中,以該聚合物之總重量計,芳族乙烯基單體構成至多60重量%,較佳地2重量%至55重量%且更佳地5重量%至50重量%。小於2重量%之量可導致滾動阻力、濕滑及磨損抗性之劣化平衡且導致降低之拉伸強度,而大於60重量%之量可導致增加之滯後損失。 該聚合物可為芳族乙烯基單體之嵌段或無規共聚物,且單獨地連接較佳40重量%或超過40重量%之芳族乙烯基單體單元,且10重量%或少於10重量%為相繼連接之八個或超過八個芳族乙烯基單體之聚合物「嵌段」(相繼連接之芳族乙烯基單元的長度可藉由Tanaka等人(Polymer,第22卷,第1721-1723頁(1981)所開發之臭氧分解-凝膠滲透層析方法量測)。在此範圍外之共聚物傾向於展現增加之滯後損失。 In the polymers P 1 and P 2 , the aromatic vinyl monomer constitutes up to 60% by weight, preferably 2% by weight to 55% by weight and more preferably 5% by weight to 50% by weight based on the total weight of the polymer weight%. An amount of less than 2% by weight may result in a balance of deterioration in rolling resistance, slip and abrasion resistance and result in reduced tensile strength, while an amount greater than 60% by weight may result in increased hysteresis loss. The polymer may be a block or random copolymer of an aromatic vinyl monomer, and is preferably bonded to 40% by weight or more by weight to 40% by weight of the aromatic vinyl monomer unit, and 10% by weight or less. 10% by weight is the polymer "block" of eight or more than eight aromatic vinyl monomers connected in succession (the length of the successively attached aromatic vinyl units can be obtained by Tanaka et al. (Polymer, Vol. 22, The ozonolysis-gel permeation chromatography method developed by pp. 1721-1723 (1981). Copolymers outside this range tend to exhibit increased hysteresis loss.

儘管關於聚合物P1及P2之共軛二烯烴部分之1,2-鍵及/或3,4-鍵的含量(下文稱為「乙烯基鍵含量」)並無特定限制,但關於大多數應用,該乙烯基鍵含量較佳地為2重量%至90重量%,尤其較佳為4重量%至80重量%(以二烯烴部分之總重量計)。若該聚合物中之乙烯基鍵含量小於2重量%,若所得產物可具有濕滑抗性、滾動阻力及磨損抗性之低劣平衡。若該聚合物中之乙烯基含量超過90重量%,則所得產物可展現劣化拉伸強度及磨損抗性以及相對大滯後損失。 Although there is no particular limitation on the content of the 1,2-bond and/or 3,4-bond of the conjugated diene moiety of the polymers P 1 and P 2 (hereinafter referred to as "vinyl bond content"), For most applications, the vinyl bond content is preferably from 2% to 90% by weight, particularly preferably from 4% to 80% by weight, based on the total weight of the diene portion. If the vinyl bond content in the polymer is less than 2% by weight, the resulting product may have a poor balance of wet skid resistance, rolling resistance and abrasion resistance. If the vinyl content in the polymer exceeds 90% by weight, the resulting product may exhibit deteriorated tensile strength and wear resistance as well as relatively large hysteresis loss.

單體 monomer

用於製備本發明聚合物之單體選自共軛烯烴且視情況選自芳族乙烯基化合物。 The monomers used to prepare the polymers of the present invention are selected from the group consisting of conjugated olefins and, optionally, from aromatic vinyl compounds.

合適之共軛烯烴包括共軛二烯,諸如1,3-丁二烯、2-烷基-1,3-丁二烯、異戊二烯(2-甲基-1,3-丁二烯)、2,3-二甲基-1,3-丁二烯、1,3-戊二烯、2,4-己二烯、1,3-己二烯、1,3-庚二烯、1,3-辛二烯、2-甲基-2,4-戊二烯、環戊二烯、2,4-己二烯及1,3-環辛二烯及其兩者或超過兩者之組合。1,3-丁二烯及異戊二烯為較佳共軛烯烴,且1,3-丁二烯為尤其較佳之共軛烯烴。 Suitable conjugated olefins include conjugated dienes such as 1,3-butadiene, 2-alkyl-1,3-butadiene, isoprene (2-methyl-1,3-butadiene) ), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2,4-hexadiene, 1,3-hexadiene, 1,3-heptadiene, 1,3-octadiene, 2-methyl-2,4-pentadiene, cyclopentadiene, 2,4-hexadiene, and 1,3-cyclooctadiene, and both or more The combination. 1,3-butadiene and isoprene are preferred conjugated olefins, and 1,3-butadiene is a particularly preferred conjugated olefin.

合適之芳族乙烯基化合物包括苯乙烯、C1-4烷基取代苯乙烯,諸如2-甲基苯乙烯、3-甲基苯乙烯、4-甲基苯乙烯、2,4-二甲基苯乙烯、 2,4,6-三甲基苯乙烯、α-甲基苯乙烯及二苯乙烯、2,4-二異丙基苯乙烯、4-第三丁基苯乙烯、乙烯基苯甲基二甲基胺、(4-乙烯基苯甲基)二甲基胺基乙醚、N,N-二甲基胺基乙基苯乙烯、第三丁氧基苯乙烯及乙烯基吡啶及其兩者或超過兩者之組合。苯乙烯為尤其較佳之芳族乙烯基化合物。 Suitable aromatic vinyl compounds include styrene, C 1-4 alkyl substituted styrenes such as 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2,4-dimethyl Styrene, 2,4,6-trimethylstyrene, α-methylstyrene and stilbene, 2,4-diisopropylstyrene, 4-tert-butylstyrene, vinyl benzate Dimethylamine, (4-vinylbenzyl)dimethylaminoethyl ether, N,N-dimethylaminoethylstyrene, tert-butoxystyrene and vinylpyridine and two thereof Or more than a combination of the two. Styrene is a particularly preferred aromatic vinyl compound.

除上文所提及之共軛烯烴及芳族乙烯基化合物以外,亦有可能使用一或多種單體,該等單體選自烯烴及非共軛二烯烴,諸如C2-C20 α-烯烴及非共軛C4-C20二烯烴,尤其降冰片二烯、亞乙基降冰片烯、1,4-己二烯、1,5-己二烯、1,7-辛二烯、4-乙烯基環己烯及二乙烯基苯(包括1,2-二乙烯基苯、1,3-二乙烯基苯及1,4-二乙烯基苯)及其混合物。 In addition to the conjugated olefins and aromatic vinyl compounds mentioned above, it is also possible to use one or more monomers selected from the group consisting of olefins and non-conjugated dienes, such as C 2 - C 20 α- Olefins and non-conjugated C 4- C 20 diolefins, especially norbornadiene, ethylidene norbornene, 1,4-hexadiene, 1,5-hexadiene, 1,7-octadiene, 4-vinylcyclohexene and divinylbenzene (including 1,2-divinylbenzene, 1,3-divinylbenzene, and 1,4-divinylbenzene) and mixtures thereof.

在一個實施例中,二乙烯基苯(包括1,2-二乙烯基苯、1,3-二乙烯基苯及1,4-二乙烯基苯)之量為1莫耳%或少於1莫耳%(以用於製備該聚合物之單體的總莫耳量計)。 In one embodiment, the amount of divinylbenzene (including 1,2-divinylbenzene, 1,3-divinylbenzene, and 1,4-divinylbenzene) is 1 mol% or less. Molar % (based on the total molar amount of the monomer used to prepare the polymer).

鏈端修飾劑 Chain end modifier

根據本發明之第二態樣,一或多種鏈端修飾劑(或簡言之「修飾劑」)用於與獲自第二發明之方法之聚合物鏈的末端反應。一般而言,諸如WO 2007/047943、WO 2009/148932、US 6,229,036及US 2013/0131263中所揭示之矽烷-硫化物ω鏈端修飾劑可用於此目的,各專利均以全文引用之方式併入本文。 According to a second aspect of the invention, one or more chain end modifiers (or in short "modifiers") are used to react with the ends of the polymer chains obtained from the process of the second invention. In general, decane-sulfide ω chain end modifiers such as disclosed in WO 2007/047943, WO 2009/148932, US 6,229, 036, and US 2013/0131263 may be used for this purpose, each of which is incorporated by reference in its entirety. This article.

在一較佳實施例中,該鏈端修飾劑選自由式11至式15表示之鏈端修飾劑中的一或多者。在一尤其較佳實施例中,該鏈端修飾劑選自由式11表示之一或多種化合物。式11之鏈端修飾劑之特定較佳種類包括以下化合物:(MeO)3Si-(CH2)3-S-SiMe3、(EtO)3Si-(CH2)3-S-SiMe3、(PrO)3Si-(CH2)3-S-SiMe3、(BuO)3Si-(CH2)3-S-SiMe3、(MeO)3Si-(CH2)2-S-SiMe3、(EtO)3Si-(CH2)2-S-SiMe3、(PrO)3Si-(CH2)2-S-SiMe3、(BuO)3Si-(CH2)2-S-SiMe3、(MeO)3Si-CH2-S-SiMe3、(EtO)3Si-CH2-S-SiMe3、(PrO)3Si-CH2-S-SiMe3、(BuO)3Si-CH2-S-SiMe3、(MeO)3Si-CH2-CMe2-CH2-S-SiMe3、(EtO)3Si-CH2-CMe2-CH2-S-SiMe3、(PrO)3Si-CH2-CMe2-CH2-S-SiMe3、(BuO)3Si-CH2-CMe2-CH2-S-SiMe3、((MeO)3Si-CH2-C(H)Me-CH2-S-SiMe3、(EtO)3Si-CH2-C(H)Me-CH2- S-SiMe3、(PrO)3Si-CH2-C(H)Me-CH2-S-SiMe3、(BuO)3Si-CH2-C(H)Me-CH2-S-SiMe3、(MeO)2(Me)Si-(CH2)3-S-SiMe3、(EtO)2(Me)Si-(CH2)3-S-SiMe3、(PrO)2(Me)Si-(CH2)3-S-SiMe3、(BuO)2(Me)Si-(CH2)3-S-SiMe3、(MeO)2(Me)Si-(CH2)2-S-SiMe3、(EtO)2(Me)Si-(CH2)2-S-SiMe3、(PrO)2(Me)Si-(CH2)2-S-SiMe3、(BuO)2(Me)Si-(CH2)2-S-SiMe3、(MeO)2(Me)Si-CH2-S-SiMe3、(EtO)2(Me)Si-CH2-S-SiMe3、(PrO)2(Me)Si-CH2-S-SiMe3、(BuO)2(Me)Si-CH2-S-SiMe3、(MeO)2(Me)Si-CH2-CMe2-CH2-S-SiMe3、(EtO)2(Me)Si-CH2-CMe2-CH2-S-SiMe3、(PrO)2(Me)Si-CH2-CMe2-CH2-S-SiMe3、(BuO)2(Me)Si-CH2-CMe2-CH2-S-SiMe3、((MeO)2(Me)Si-CH2-C(H)Me-CH2-S-SiMe3、(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-SiMe3、(PrO)2(Me)Si-CH2-C(H)Me-CH2-S-SiMe3、(BuO)2(Me)Si-CH2-C(H)Me-CH2-S-SiMe3、(MeO)(Me)2Si-(CH2)3-S-SiMe3、(EtO)(Me)2Si-(CH2)3-S-SiMe3、(PrO)Me)2Si-(CH2)3-S-SiMe3、(BuO)(Me)2Si-(CH2)3-S-SiMe3、(MeO)(Me)2Si-(CH2)2-S-SiMe3、(EtO)(Me)2Si-(CH2)2-S-SiMe3、(PrO)(Me)2Si-(CH2)2-S-SiMe3、(BuO)(Me)2Si-(CH2)2-S-SiMe3、(MeO)(Me)2Si-CH2-S-SiMe3、(EtO)(Me)2Si-CH2-S-SiMe3、(PrO)(Me)2Si-CH2-S-SiMe3、(BuO)(Me)2Si-CH2-S-SiMe3、(MeO)(Me)2Si-CH2-CMe2-CH2-S-SiMe3、(EtO)(Me)2Si-CH2-CMe2-CH2-S-SiMe3、(PrO)(Me)2Si-CH2-CMe2-CH2-S-SiMe3、(BuO)(Me)2Si-CH2-CMe2-CH2-S-SiMe3、((MeO)(Me)2Si-CH2-C(H)Me-CH2-S-SiMe3、(EtO)(Me)2Si-CH2-C(H)Me-CH2-S-SiMe3、(PrO)(Me)2Si-CH2-C(H)Me-CH2-S-SiMe3、(BuO)(Me)2Si-CH2-C(H)Me-CH2-S-SiMe3、(MeO)3Si-(CH2)3-S-SiEt3、(EtO)3Si-(CH2)3-S-SiEt3、(PrO)3Si-(CH2)3-S-SiEt3、(BuO)3Si-(CH2)3-S-SiEt3、(MeO)3Si-(CH2)2-S-SiEt3、(EtO)3Si-(CH2)2-S-SiEt3、(PrO)3Si-(CH2)2-S-SiEt3、(BuO)3Si-(CH2)2-S-SiEt3、(MeO)3Si-CH2-S-SiEt3、(EtO)3Si-CH2-S-SiEt3、(PrO)3Si-CH2-S-SiEt3、(BuO)3Si-CH2-S-SiEt3、(MeO)3Si-CH2-CMe2-CH2-S-SiEt3、(EtO)3Si-CH2-CMe2-CH2-S-SiEt3、(PrO)3Si-CH2-CMe2-CH2-S-SiEt3、(BuO)3Si-CH2-CMe2-CH2-S-SiEt3、((MeO)3Si-CH2-C(H)Me-CH2-S-SiEt3、(EtO)3Si-CH2-C(H)Me-CH2-S-SiEt3、(PrO)3Si-CH2-C(H)Me-CH2-S-SiEt3、(BuO)3Si-CH2-C(H)Me-CH2-S-SiEt3、(MeO)2(Me)Si-(CH2)3-S-SiEt3、(EtO)2(Me)Si-(CH2)3-S-SiEt3、(PrO)2(Me)Si-(CH2)3-S-SiEt3、(BuO)2(Me)Si-(C H2)3-S-SiEt3、(MeO)2(Me)Si-(CH2)2-S-SiEt3、(EtO)2(Me)Si-(CH2)2-S-SiEt3、(PrO)2(Me)Si-(CH2)2-S-SiEt3、(BuO)2(Me)Si-(CH2)2-S-SiEt3、(MeO)2(Me)Si-CH2-S-SiEt3、(EtO)2(Me)Si-CH2-S-SiEt3、(PrO)2(Me)Si-CH2-S-SiEt3、(BuO)2(Me)Si-CH2-S-SiEt3、(MeO)2(Me)Si-CH2-CMe2-CH2-S-SiEt3、(EtO)2(Me)Si-CH2-CMe2-CH2-S-SiEt3、(PrO)2(Me)Si-CH2-CMe2-CH2-S-SiEt3、(BuO)2(Me)Si-CH2-CMe2-CH2-S-SiEt3、((MeO)2(Me)Si-CH2-C(H)Me-CH2-S-SiEt3、(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-SiEt3、(PrO)2(Me)Si-CH2-C(H)Me-CH2-S-SiEt3、(BuO)2(Me)Si-CH2-C(H)Me-CH2-S-SiEt3、(MeO)(Me)2Si-(CH2)3-S-SiEt3、(EtO)(Me)2Si-(CH2)3-S-SiEt3、(PrO)Me)2Si-(CH2)3-S-SiEt3、(BuO)(Me)2Si-(CH2)3-S-SiEt3、(MeO)(Me)2Si-(CH2)2-S-SiEt3、(EtO)(Me)2Si-(CH2)2-S-SiEt3、(PrO)(Me)2Si-(CH2)2-S-SiEt3、(BuO)(Me)2Si-(CH2)2-S-SiEt3、(MeO)(Me)2Si-CH2-S-SiEt3、(EtO)(Me)2Si-CH2-S-SiEt3、(PrO)(Me)2Si-CH2-S-SiEt3、(BuO)(Me)2Si-CH2-S-SiEt3、(MeO)(Me)2Si-CH2-CMe2-CH2-S-SiEt3、(EtO)(Me)2Si-CH2-CMe2-CH2-S-SiEt3、(PrO)(Me)2Si-CH2-CMe2-CH2-S-SiEt3、(BuO)(Me)2Si-CH2-CMe2-CH2-S-SiEt3、((MeO)(Me)2Si-CH2-C(H)Me-CH2-S-SiEt3、(EtO)(Me)2Si-CH2-C(H)Me-CH2-S-SiEt3、(PrO)(Me)2Si-CH2-C(H)Me-CH2-S-SiEt3 and(BuO)(Me)2Si-CH2-C(H)Me-CH2-S-SiEt3、(MeO)3Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(OMe)3、(MeO)3Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(OMe)3、(MeO)3Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OMe)3、(EtO)3Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(OEt)3、(EtO)3Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(OEt)3、(EtO)3Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OEt)3、(PrO)3Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(OPr)、(PrO)3Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(OPr)3、(PrO)3Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OPr)3、(MeO)3Si-(CH2)2-S-Si(Me)2-S-(CH2)2-Si(OMe)3、(MeO)3Si-(CH2)2-S-Si(Et)2-S-(CH2)2-Si(OMe)3、(MeO)3Si-(CH2)2-S-Si(Bu)2-S-(CH2)2-Si(OMe)3、(EtO)3Si-(CH2)2-S-Si(Me)2-S-(CH2)2-Si(OEt)3、(EtO)3Si-(CH2)2-S-Si(Et)2-S-(CH2)2-Si(OEt)3、(EtO)3Si-(CH2)2-S-Si(Bu)2-S-(CH2)2-Si(OEt)3、(PrO)3Si-(CH2)2-S-Si(Me)2-S-(CH2)2-Si(OPr)3、(PrO)3Si-(CH2)2-S-Si(Et)2-S-(CH2)2-Si(OPr)3、(PrO)3Si-(CH2)2-S-Si(Bu)2-S-(CH2)2-Si(OPr)3、(MeO)3Si-CH2-S-Si(Me)2-S-CH2-Si(OMe)3、(MeO)3Si-CH2-S-Si(Et)2-S-CH2-Si(OMe)3、(MeO)3Si-CH2-S-Si(B u)2-S-CH2-Si(OMe)3、(EtO)3Si-CH2-S-Si(Me)2-S-CH2-Si(OEt)3、(EtO)3Si-CH2-S-Si(Et)2-S-CH2-Si(OEt)3、(EtO)3Si-CH2-S-Si(Bu)2-S-CH2-Si(OEt)3、(PrO)3Si-CH2-S-Si(Me)2-S-CH2-Si(OPr)3、(PrO)3Si-CH2-S-Si(Et)2-S-CH2-Si(OPr)3、(PrO)3Si-CH2-S-Si(Bu)2-S-CH2-Si(OPr)3、(MeO)3Si-CH2-CMe2-CH2-S-Si(Me)2-S-CH2-CMe2-CH2-Si(OMe)3、(MeO)3Si-CH2-CMe2-CH2-S-Si(Et)2-S-CH2-CMe2-CH2-Si(OMe)3、(MeO)3Si-CH2-CMe2-CH2-S-Si(Bu)2-S-CH2-CMe2-CH2-Si(OMe)3、(EtO)3Si-CH2-CMe2-CH2-S-Si(Me)2-S-CH2-CMe2-CH2-Si(OEt)3、(EtO)3Si-CH2-CMe2-CH2-S-Si(Et)2-S-CH2-CMe2-CH2-Si(OEt)3、(EtO)3Si-CH2-CMe2-CH2-S-Si(Bu)2-S-CH2-CMe2-CH2-Si(OEt)3、(PrO)3Si-CH2-CMe2-CH2-S-Si(Me)2-S-CH2-CMe2-CH2-Si(OPr)3、(PrO)3Si-CH2-CMe2-CH2-S-Si(Et)2-S-CH2-CMe2-CH2-Si(OPr)3、(PrO)3Si-CH2-CMe2-CH2-S-Si(Bu)2-S-CH2-CMe2-CH2-Si(OPr)3、(MeO)3Si-CH2-C(H)Me-CH2-S-Si(Me)2-S-CH2-C(H)Me-CH2-Si(OMe)3、(MeO)3Si-CH2-C(H)Me-CH2-S-Si(Et)2-S-CH2-C(H)Me-CH2-Si(OMe)3、(MeO)3Si-CH2-C(H)Me-CH2-S-Si(Bu)2-S-CH2-C(H)Me-CH2-Si(OMe)3、(EtO)3Si-CH2-C(H)Me-CH2-S-Si(Me)2-S-CH2-C(H)Me-CH2-Si(OEt)3、(EtO)3Si-CH2-C(H)Me-CH2-S-Si(Et)2-S-CH2-C(H)Me-CH2-Si(OEt)3、(EtO)3Si-CH2-C(H)Me-CH2-S-Si(Bu)2-S-CH2-C(H)Me-CH2-Si(OEt)3、(PrO)3Si-CH2-C(H)Me-CH2-S-Si(Me)2-S-CH2-C(H)Me-CH2-Si(OPr)3、(PrO)3Si-CH2-C(H)Me-CH2-S-Si(Et)2-S-CH2-C(H)Me-CH2-Si(OPr)3、(PrO)3Si-CH2-C(H)Me-CH2-S-Si(Bu)2-S-CH2-C(H)Me-CH2-Si(OPr)3、(MeO)2(Me)Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(OMe)2(Me)、(MeO)2(Me)Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(OMe)2(Me)、(MeO)2(Me)Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OMe)2(Me)、(EtO)2(Me)Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(OEt)2(Me)、(EtO)2(Me)Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(OEt)2(Me)、(EtO)2(Me)Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OEt)2(Me)、(PrO)2(Me)Si-(CH2)3-S-Si(Me)2-S-(CH2)3-Si(OPr)2(Me)、(PrO)2(Me)Si-(CH2)3-S-Si(Et)2-S-(CH2)3-Si(OPr)2(Me)、(PrO)2(Me)Si-(CH2)3-S-Si(Bu)2-S-(CH2)3-Si(OPr)2(Me)、(MeO)2(Me)Si-(CH2)2-S-Si(Me)2-S-(CH2)2-Si(OMe)2(Me)、(MeO)2(Me)Si-(CH2)2-S-Si(Et)2-S-(CH2)2-Si(OMe)2(Me)、(MeO)2(Me)Si-(CH2)2-S-Si(Bu)2-S-(CH2)2-Si(OMe)2(Me)、(EtO)2(Me)Si-(CH2)2-S-Si(Me)2-S-(CH2)2-Si(OEt)2 (Me)、(EtO)2(Me)Si-(CH2)2-S-Si(Et)2-S-(CH2)2-Si(OEt)2(Me)、(EtO)2(Me)Si-(CH2)2-S-Si(Bu)2-S-(CH2)2-Si(OEt)2(Me)、(PrO)2(Me)Si-(CH2)2-S-Si(Me)2-S-(CH2)2-Si(OPr)2(Me)、(PrO)2(Me)Si-(CH2)2-S-Si(Et)2-S-(CH2)2-Si(OPr)2(Me)、(PrO)2(Me)Si-(CH2)2-S-Si(Bu)2-S-(CH2)2-Si(OPr)2(Me)、(MeO)2(Me)Si-CH2-S-Si(Me)2-S-CH2-Si(OMe)2(Me)、(MeO)2(Me)Si-CH2-S-Si(Et)2-S-CH2-Si(OMe)2(Me)、(MeO)2(Me)Si-CH2-S-Si(Bu)2-S-CH2-Si(OMe)2(Me)、(EtO)2(Me)Si-CH2-S-Si(Me)2-S-CH2-Si(OEt)2(Me)、(EtO)2(Me)Si-CH2-S-Si(Et)2-S-CH2-Si(OEt)2(Me)、(EtO)2(Me)Si-CH2-S-Si(Bu)2-S-CH2-Si(OEt)2(Me)、(PrO)2(Me)Si-CH2-S-Si(Me)2-S-CH2-Si(OPr)2(Me)、(PrO)2(Me)Si-CH2-S-Si(Et)2-S-CH2-Si(OPr)2(Me)、(PrO)2(Me)Si-CH2-S-Si(Bu)2-S-CH2-Si(OPr)2(Me)、(MeO)2(Me)Si-CH2-CMe2-CH2-S-Si(Me)2-S-CH2-CMe2-CH2-Si(OMe)2(Me)、(MeO)2(Me)Si-CH2-CMe2-CH2-S-Si(Et)2-S-CH2-CMe2-CH2-Si(OMe)2(Me)、(MeO)2(Me)Si-CH2-CMe2-CH2-S-Si(Bu)2-S-CH2-CMe2-CH2-Si(OMe)2(Me)、(EtO)2(Me)Si-CH2-CMe2-CH2-S-Si(Me)2-S-CH2-CMe2-CH2-Si(OEt)2(Me)、(EtO)2(Me)Si-CH2-CMe2-CH2-S-Si(Et)2-S-CH2-CMe2-CH2-Si(OEt)2(Me)、(EtO)2(Me)Si-CH2-CMe2-CH2-S-Si(Bu)2-S-CH2-CMe2-CH2-Si(OEt)2(Me)、(PrO)2(Me)Si-CH2-CMe2-CH2-S-Si(Me)2-S-CH2-CMe2-CH2-Si(OPr)2(Me)、(PrO)2(Me)Si-CH2-CMe2-CH2-S-Si(Et)2-S-CH2-CMe2-CH2-Si(OPr)2(Me)、(PrO)2(Me)Si-CH2-CMe2-CH2-S-Si(Bu)2-S-CH2-CMe2-CH2-Si(OPr)2(Me)、(MeO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Me)2-S-CH2-C(H)Me-CH2-Si(OMe)2(Me)、(MeO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Et)2-S-CH2-C(H)Me-CH2-Si(OMe)2(Me)、(MeO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Bu)2-S-CH2-C(H)Me-CH2-Si(OMe)2(Me)、(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Me)2-S-CH2-C(H)Me-CH2-Si(OEt)2(Me)、(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Et)2-S-CH2-C(H)Me-CH2-Si(OEt)2(Me)、(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Bu)2-S-CH2-C(H)Me-CH2-Si(OEt)2(Me)、(PrO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Me)2-S-CH2-C(H)Me-CH2-Si(OPr)2(Me)、(PrO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Et)2-S-CH2-C(H)Me-CH2-Si(OPr)2(Me)、(PrO)2(Me)Si-CH2-C(H)Me-CH2-S-Si(Bu)2-S-CH2-C(H)Me-CH2-Si(OPr)2(Me)、(MeO)3Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(OMe)3、(MeO)3Si-(CH2)3-S-Sn(Et)2-S-(C H2)3-Si(OMe)3、(MeO)3Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OMe)3、(EtO)3Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(OEt)3、(EtO)3Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(OEt)3、(EtO)3Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OEt)3、(PrO)3Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(OPr)、(PrO)3Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(OPr)3、(PrO)3Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OPr)3、(MeO)3Si-(CH2)2-S-Sn(Me)2-S-(CH2)2-Si(OMe)3、(MeO)3Si-(CH2)2-S-Sn(Et)2-S-(CH2)2-Si(OMe)3、(MeO)3Si-(CH2)2-S-Sn(Bu)2-S-(CH2)2-Si(OMe)3、(EtO)3Si-(CH2)2-S-Sn(Me)2-S-(CH2)2-Si(OEt)3、(EtO)3Si-(CH2)2-S-Sn(Et)2-S-(CH2)2-Si(OEt)3、(EtO)3Si-(CH2)2-S-Sn(Bu)2-S-(CH2)2-Si(OEt)3、(PrO)3Si-(CH2)2-S-Sn(Me)2-S-(CH2)2-Si(OPr)3、(PrO)3Si-(CH2)2-S-Sn(Et)2-S-(CH2)2-Si(OPr)3、(PrO)3Si-(CH2)2-S-Sn(Bu)2-S-(CH2)2-Si(OPr)3、(MeO)3Si-CH2-S-Sn(Me)2-S-CH2-Si(OMe)3、(MeO)3Si-CH2-S-Sn(Et)2-S-CH2-Si(OMe)3、(MeO)3Si-CH2-S-Sn(Bu)2-S-CH2-Si(OMe)3、(EtO)3Si-CH2-S-Sn(Me)2-S-CH2-Si(OEt)3、(EtO)3Si-CH2-S-Sn(Et)2-S-CH2-Si(OEt)3、(EtO)3Si-CH2-S-Sn(Bu)2-S-CH2-Si(OEt)3、(PrO)3Si-CH2-S-Sn(Me)2-S-CH2-Si(OPr)3、(PrO)3Si-CH2-S-Sn(Et)2-S-CH2-Si(OPr)3、(PrO)3Si-CH2-S-Sn(Bu)2-S-CH2-Si(OPr)3、(MeO)3Si-CH2-CMe2-CH2-S-Sn(Me)2-S-CH2-CMe2-CH2-Si(OMe)3、(MeO)3Si-CH2-CMe2-CH2-S-Sn(Et)2-S-CH2-CMe2-CH2-Si(OMe)3、(MeO)3Si-CH2-CMe2-CH2-S-Sn(Bu)2-S-CH2-CMe2-CH2-Si(OMe)3、(EtO)3Si-CH2-CMe2-CH2-S-Sn(Me)2-S-CH2-CMe2-CH2-Si(OEt)3、(EtO)3Si-CH2-CMe2-CH2-S-Sn(Et)2-S-CH2-CMe2-CH2-Si(OEt)3、(EtO)3Si-CH2-CMe2-CH2-S-Sn(Bu)2-S-CH2-CMe2-CH2-Si(OEt)3、(PrO)3Si-CH2-CMe2-CH2-S-Sn(Me)2-S-CH2-CMe2-CH2-Si(OPr)3、(PrO)3Si-CH2-CMe2-CH2-S-Sn(Et)2-S-CH2-CMe2-CH2-Si(OPr)3、(PrO)3Si-CH2-CMe2-CH2-S-Sn(Bu)2-S-CH2-CMe2-CH2-Si(OPr)3、(MeO)3Si-CH2-C(H)Me-CH2-S-Sn(Me)2-S-CH2-C(H)Me-CH2-Si(OMe)3、(MeO)3Si-CH2-C(H)Me-CH2-S-Sn(Et)2-S-CH2-C(H)Me-CH2-Si(OMe)3、(MeO)3Si-CH2-C(H)Me-CH2-S-Sn(Bu)2-S-CH2-C(H)Me-CH2-Si(OMe)3、(EtO)3Si-CH2-C(H)Me-CH2-S-Sn(Me)2-S-CH2-C(H)Me-CH2-Si(OEt)3、(EtO)3Si-CH2-C(H)Me-CH2-S-Sn(Et)2-S-CH2-C(H)Me-CH2-Si(OEt)3、(EtO)3Si-CH2-C(H)Me-CH2-S-Sn(Bu)2-S-CH2-C(H)Me-CH2-Si(OEt)3、(PrO)3Si-CH2-C(H)Me-CH2-S-Sn(Me)2-S-C H2-C(H)Me-CH2-Si(OPr)3、(PrO)3Si-CH2-C(H)Me-CH2-S-Sn(Et)2-S-CH2-C(H)Me-CH2-Si(OPr)3、(PrO)3Si-CH2-C(H)Me-CH2-S-Sn(Bu)2-S-CH2-C(H)Me-CH2-Si(OPr)3、(MeO)2(Me)Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(OMe)2(Me)、(MeO)2(Me)Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(OMe)2(Me)、(MeO)2(Me)Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OMe)2(Me)、(EtO)2(Me)Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(OEt)2(Me)、(EtO)2(Me)Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(OEt)2(Me)、(EtO)2(Me)Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OEt)2(Me)、(PrO)2(Me)Si-(CH2)3-S-Sn(Me)2-S-(CH2)3-Si(OPr)2(Me)、(PrO)2(Me)Si-(CH2)3-S-Sn(Et)2-S-(CH2)3-Si(OPr)2(Me)、(PrO)2(Me)Si-(CH2)3-S-Sn(Bu)2-S-(CH2)3-Si(OPr)2(Me)、(MeO)2(Me)Si-(CH2)2-S-Sn(Me)2-S-(CH2)2-Si(OMe)2(Me)、(MeO)2(Me)Si-(CH2)2-S-Sn(Et)2-S-(CH2)2-Si(OMe)2(Me)、(MeO)2(Me)Si-(CH2)2-S-Sn(Bu)2-S-(CH2)2-Si(OMe)2(Me)、(EtO)2(Me)Si-(CH2)2-S-Sn(Me)2-S-(CH2)2-Si(OEt)2(Me)、(EtO)2(Me)Si-(CH2)2-S-Sn(Et)2-S-(CH2)2-Si(OEt)2(Me)、(EtO)2(Me)Si-(CH2)2-S-Sn(Bu)2-S-(CH2)2-Si(OEt)2(Me)、(PrO)2(Me)Si-(CH2)2-S-Sn(Me)2-S-(CH2)2-Si(OPr)2(Me)、(PrO)2(Me)Si-(CH2)2-S-Sn(Et)2-S-(CH2)2-Si(OPr)2(Me)、(PrO)2(Me)Si-(CH2)2-S-Sn(Bu)2-S-(CH2)2-Si(OPr)2(Me)、(MeO)2(Me)Si-CH2-S-Sn(Me)2-S-CH2-Si(OMe)2(Me)、(MeO)2(Me)Si-CH2-S-Sn(Et)2-S-CH2-Si(OMe)2(Me)、(MeO)2(Me)Si-CH2-S-Sn(Bu)2-S-CH2-Si(OMe)2(Me)、(EtO)2(Me)Si-CH2-S-Sn(Me)2-S-CH2-Si(OEt)2(Me)、(EtO)2(Me)Si-CH2-S-Sn(Et)2-S-CH2-Si(OEt)2(Me)、(EtO)2(Me)Si-CH2-S-Sn(Bu)2-S-CH2-Si(OEt)2(Me)、(PrO)2(Me)Si-CH2-S-Sn(Me)2-S-CH2-Si(OPr)2(Me)、(PrO)2(Me)Si-CH2-S-Sn(Et)2-S-CH2-Si(OPr)2(Me)、(PrO)2(Me)Si-CH2-S-Sn(Bu)2-S-CH2-Si(OPr)2(Me)、(MeO)2(Me)Si-CH2-CMe2-CH2-S-Sn(Me)2-S-CH2-CMe2-CH2-Si(OMe)2(Me)、(MeO)2(Me)Si-CH2-CMe2-CH2-S-Sn(Et)2-S-CH2-CMe2-CH2-Si(OMe)2(Me)、(MeO)2(Me)Si-CH2-CMe2-CH2-S-Sn(Bu)2-S-CH2-CMe2-CH2-Si(OMe)2(Me)、(EtO)2(Me)Si-CH2-CMe2-CH2-S-Sn(Me)2-S-CH2-CMe2-CH2-Si(OEt)2(Me)、(EtO)2(Me)Si-CH2-CMe2-CH2-S-Sn(Et)2-S-CH2-CMe2-CH2-Si(OEt)2(Me)、(EtO)2(Me)Si-CH2-CMe2-CH2-S-Sn(Bu)2-S-CH2-CMe2-CH2-Si(OEt)2(Me)、(PrO)2(Me)Si-CH2-CMe2-CH2-S-Sn(Me)2-S-CH2-CMe2-CH2-Si(OPr)2(Me)、(PrO)2(Me)Si-CH2-CM e2-CH2-S-Sn(Et)2-S-CH2-CMe2-CH2-Si(OPr)2(Me)、(PrO)2(Me)Si-CH2-CMe2-CH2-S-Sn(Bu)2-S-CH2-CMe2-CH2-Si(OPr)2(Me)、(MeO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Me)2-S-CH2-C(H)Me-CH2-Si(OMe)2(Me)、(MeO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Et)2-S-CH2-C(H)Me-CH2-Si(OMe)2(Me)、(MeO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Bu)2-S-CH2-C(H)Me-CH2-Si(OMe)2(Me)、(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Me)2-S-CH2-C(H)Me-CH2-Si(OEt)2(Me)、(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Et)2-S-CH2-C(H)Me-CH2-Si(OEt)2(Me)、(EtO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Bu)2-S-CH2-C(H)Me-CH2-Si(OEt)2(Me)、(PrO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Me)2-S-CH2-C(H)Me-CH2-Si(OPr)2(Me)、(PrO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Et)2-S-CH2-C(H)Me-CH2-Si(OPr)2(Me)、(PrO)2(Me)Si-CH2-C(H)Me-CH2-S-Sn(Bu)2-S-CH2-C(H)Me-CH2-Si(OPr)2(Me)。 In a preferred embodiment, the chain end modifying agent is selected from one or more of the chain end modifying agents represented by Formulas 11 to 15. In a particularly preferred embodiment, the chain end modifier is selected from one or more compounds represented by Formula 11. A particularly preferred class of chain end modifiers of formula 11 includes the following compounds: (MeO) 3 Si-(CH 2 ) 3 -S-SiMe 3 , (EtO) 3 Si-(CH 2 ) 3 -S-SiMe 3 , (PrO) 3 Si-(CH 2 ) 3 -S-SiMe 3 , (BuO) 3 Si-(CH 2 ) 3 -S-SiMe 3 , (MeO) 3 Si-(CH 2 ) 2 -S-SiMe 3 , (EtO) 3 Si-(CH 2 ) 2 -S-SiMe 3 , (PrO) 3 Si-(CH 2 ) 2 -S-SiMe 3 , (BuO) 3 Si-(CH 2 ) 2 -S-SiMe 3 , (MeO) 3 Si-CH 2 -S-SiMe 3 , (EtO) 3 Si-CH 2 -S-SiMe 3 , (PrO) 3 Si-CH 2 -S-SiMe 3 , (BuO) 3 Si- CH 2 -S-SiMe 3 , (MeO) 3 Si-CH 2 -CMe 2 -CH 2 -S-SiMe 3 , (EtO) 3 Si-CH 2 -CMe 2 -CH 2 -S-SiMe 3 , (PrO 3 Si-CH 2 -CMe 2 -CH 2 -S-SiMe 3 , (BuO) 3 Si-CH 2 -CMe 2 -CH 2 -S-SiMe 3 , ((MeO) 3 Si-CH 2 -C( H) Me-CH 2 -S-SiMe 3 , (EtO) 3 Si-CH 2 -C(H)Me-CH 2 - S-SiMe 3 , (PrO) 3 Si-CH 2 -C(H)Me- CH 2 -S-SiMe 3 , (BuO) 3 Si-CH 2 -C(H)Me-CH 2 -S-SiMe 3 , (MeO) 2 (Me)Si-(CH 2 ) 3 -S-SiMe 3 (EtO) 2 (Me)Si-(CH 2 ) 3 -S-SiMe 3 , (PrO) 2 (Me)Si-(CH 2 ) 3 -S-SiMe 3 , (BuO) 2 (Me)Si- (CH 2 ) 3 -S-SiMe 3 , (MeO) 2 (Me)Si-(CH 2 ) 2 -S-SiMe 3 , (EtO) 2 (Me)Si-( CH 2 ) 2 -S-SiMe 3 , (PrO) 2 (Me)Si-(CH 2 ) 2 -S-SiMe 3 , (BuO) 2 (Me)Si-(CH 2 ) 2 -S-SiMe 3 , (MeO) 2 (Me)Si-CH 2 -S-SiMe 3 , (EtO) 2 (Me)Si-CH 2 -S-SiMe 3 , (PrO) 2 (Me)Si-CH 2 -S-SiMe 3 (BuO) 2 (Me)Si-CH 2 -S-SiMe 3 , (MeO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-SiMe 3 , (EtO) 2 (Me)Si- CH 2 -CMe 2 -CH 2 -S-SiMe 3 , (PrO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-SiMe 3 , (BuO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-SiMe 3 , ((MeO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-SiMe 3 , (EtO) 2 (Me)Si-CH 2 -C (H)Me-CH 2 -S-SiMe 3 , (PrO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-SiMe 3 , (BuO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-SiMe 3 , (MeO)(Me) 2 Si-(CH 2 ) 3 -S-SiMe 3 , (EtO)(Me) 2 Si-(CH 2 ) 3 - S-SiMe 3 , (PrO)Me) 2 Si-(CH 2 ) 3 -S-SiMe 3 , (BuO)(Me) 2 Si-(CH 2 ) 3 -S-SiMe 3 , (MeO)(Me) 2 Si-(CH 2 ) 2 -S-SiMe 3 , (EtO)(Me) 2 Si-(CH 2 ) 2 -S-SiMe 3 , (PrO)(Me) 2 Si-(CH 2 ) 2 -S -SiMe 3 , (BuO)(Me) 2 Si-(CH 2 ) 2 -S-SiMe 3 , (MeO)(Me) 2 Si-CH 2 -S-SiMe 3 , (EtO)(Me) 2 Si- CH 2 -S-SiMe 3, ( PrO) (Me) 2 Si-CH 2 -S-SiMe 3 (BuO) (Me) 2 Si -CH 2 -S-SiMe 3, (MeO) (Me) 2 Si-CH 2 -CMe 2 -CH 2 -S-SiMe 3, (EtO) (Me) 2 Si-CH 2 -CMe 2 -CH 2 -S-SiMe 3 , (PrO)(Me) 2 Si-CH 2 -CMe 2 -CH 2 -S-SiMe 3 , (BuO)(Me) 2 Si-CH 2 -CMe 2 -CH 2 -S-SiMe 3 , ((MeO)(Me) 2 Si-CH 2 -C(H)Me-CH 2 -S-SiMe 3 , (EtO)(Me) 2 Si-CH 2 -C( H) Me-CH 2 -S-SiMe 3 , (PrO)(Me) 2 Si-CH 2 -C(H)Me-CH 2 -S-SiMe 3 , (BuO)(Me) 2 Si-CH 2 - C(H)Me-CH 2 -S-SiMe 3 , (MeO) 3 Si-(CH 2 ) 3 -S-SiEt 3 , (EtO) 3 Si-(CH 2 ) 3 -S-SiEt 3 , (PrO 3 Si-(CH 2 ) 3 -S-SiEt 3 , (BuO) 3 Si-(CH 2 ) 3 -S-SiEt 3 , (MeO) 3 Si-(CH 2 ) 2 -S-SiEt 3 , ( EtO) 3 Si-(CH 2 ) 2 -S-SiEt 3 , (PrO) 3 Si-(CH 2 ) 2 -S-SiEt 3 , (BuO) 3 Si-(CH 2 ) 2 -S-SiEt 3 , (MeO) 3 Si-CH 2 -S-SiEt 3 , (EtO) 3 Si-CH 2 -S-SiEt 3 , (PrO) 3 Si-CH 2 -S-SiEt 3 , (BuO) 3 Si-CH 2 -S-SiEt 3 , (MeO) 3 Si-CH 2 -CMe 2 -CH 2 -S-SiEt 3 , (EtO) 3 Si-CH 2 -CMe 2 -CH 2 -S-SiEt 3 , (PrO) 3 Si-CH 2 -CMe 2 -CH 2 -S-SiEt 3 , (BuO) 3 Si-CH 2 -CMe 2 -CH 2 -S-SiEt 3 , ((MeO) 3 Si-CH 2 -C(H) Me-CH 2 -S-SiEt 3 (EtO) 3 Si-CH 2 -C (H) Me-CH 2 -S-SiEt 3, (PrO) 3 Si-CH 2 -C (H) Me-CH 2 -S-SiEt 3, (BuO) 3 Si-CH 2 -C(H)Me-CH 2 -S-SiEt 3 , (MeO) 2 (Me)Si-(CH 2 ) 3 -S-SiEt 3 , (EtO) 2 (Me)Si-(CH 2 ) 3 -S-SiEt 3 , (PrO) 2 (Me)Si-(CH 2 ) 3 -S-SiEt 3 , (BuO) 2 (Me)Si-(C H 2 ) 3 -S-SiEt 3 , ( MeO) 2 (Me)Si-(CH 2 ) 2 -S-SiEt 3 , (EtO) 2 (Me)Si-(CH 2 ) 2 -S-SiEt 3 , (PrO) 2 (Me)Si-(CH 2 ) 2 -S-SiEt 3 , (BuO) 2 (Me)Si-(CH 2 ) 2 -S-SiEt 3 , (MeO) 2 (Me)Si-CH 2 -S-SiEt 3 , (EtO) 2 (Me)Si-CH 2 -S-SiEt 3 , (PrO) 2 (Me)Si-CH 2 -S-SiEt 3 , (BuO) 2 (Me)Si-CH 2 -S-SiEt 3 , (MeO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-SiEt 3 , (EtO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-SiEt 3 , (PrO) 2 (Me) Si-CH 2 -CMe 2 -CH 2 -S-SiEt 3 , (BuO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-SiEt 3 , ((MeO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-SiEt 3 , (EtO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-SiEt 3 , (PrO) 2 (Me)Si -CH 2 -C(H)Me-CH 2 -S-SiEt 3 , (BuO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-SiEt 3 , (MeO)(Me) 2 Si-(CH 2 ) 3 -S-SiEt 3 , (EtO)(Me) 2 Si-(CH 2 ) 3 -S- SiEt 3 , (PrO)Me) 2 Si-(CH 2 ) 3 -S-SiEt 3 , (BuO)(Me) 2 Si-(CH 2 ) 3 -S-SiEt 3 , (MeO)(Me) 2 Si -(CH 2 ) 2 -S-SiEt 3 , (EtO)(Me) 2 Si-(CH 2 ) 2 -S-SiEt 3 , (PrO)(Me) 2 Si-(CH 2 ) 2 -S-SiEt 3 , (BuO)(Me) 2 Si-(CH 2 ) 2 -S-SiEt 3 , (MeO)(Me) 2 Si-CH 2 -S-SiEt 3 , (EtO)(Me) 2 Si-CH 2 -S-SiEt 3 , (PrO)(Me) 2 Si-CH 2 -S-SiEt 3 , (BuO)(Me) 2 Si-CH 2 -S-SiEt 3 , (MeO)(Me) 2 Si-CH 2 -CMe 2 -CH 2 -S-SiEt 3 , (EtO)(Me) 2 Si-CH 2 -CMe 2 -CH 2 -S-SiEt 3 , (PrO)(Me) 2 Si-CH 2 -CMe 2 -CH 2 -S-SiEt 3 , (BuO)(Me) 2 Si-CH 2 -CMe 2 -CH 2 -S-SiEt 3 , ((MeO)(Me) 2 Si-CH 2 -C(H)Me -CH 2 -S-SiEt 3 , (EtO)(Me) 2 Si-CH 2 -C(H)Me-CH 2 -S-SiEt 3 , (PrO)(Me) 2 Si-CH 2 -C(H Me-CH 2 -S-SiEt 3 and (BuO)(Me) 2 Si-CH 2 -C(H)Me-CH 2 -S-SiEt 3 , (MeO) 3 Si-(CH 2 ) 3 -S -Si(Me) 2 -S-(CH 2 ) 3 -Si(OMe) 3 , (MeO) 3 Si-(CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si (OMe) 3 , (MeO) 3 Si-(CH 2 ) 3 -S-Si(Bu) 2 -S-(CH 2 ) 3 -Si(OMe) 3 , (EtO) 3 Si-(CH 2 ) 3 -S-Si(Me) 2 -S-(CH 2 ) 3 -Si(OEt) 3 , (EtO) 3 Si-(CH 2 ) 3 - S-Si(Et) 2 -S-(CH 2 ) 3 -Si(OEt) 3 , (EtO) 3 Si-(CH 2 ) 3 -S-Si(Bu) 2 -S-(CH 2 ) 3 - Si(OEt) 3 , (PrO) 3 Si-(CH 2 ) 3 -S-Si(Me) 2 -S-(CH 2 ) 3 -Si(OPr), (PrO) 3 Si-(CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(OPr) 3 , (PrO) 3 Si-(CH 2 ) 3 -S-Si(Bu) 2 -S-(CH 2 ) 3 -Si(OPr) 3 , (MeO) 3 Si-(CH 2 ) 2 -S-Si(Me) 2 -S-(CH 2 ) 2 -Si(OMe) 3 , (MeO) 3 Si-(CH 2 2 -S-Si(Et) 2 -S-(CH 2 ) 2 -Si(OMe) 3 , (MeO) 3 Si-(CH 2 ) 2 -S-Si(Bu) 2 -S-(CH 2 2 -Si(OMe) 3 , (EtO) 3 Si-(CH 2 ) 2 -S-Si(Me) 2 -S-(CH 2 ) 2 -Si(OEt) 3 , (EtO) 3 Si-( CH 2 ) 2 -S-Si(Et) 2 -S-(CH 2 ) 2 -Si(OEt) 3 , (EtO) 3 Si-(CH 2 ) 2 -S-Si(Bu) 2 -S-( CH 2 ) 2 -Si(OEt) 3 , (PrO) 3 Si-(CH 2 ) 2 -S-Si(Me) 2 -S-(CH 2 ) 2 -Si(OPr) 3 , (PrO) 3 Si -(CH 2 ) 2 -S-Si(Et) 2 -S-(CH 2 ) 2 -Si(OPr) 3 ,(PrO) 3 Si-(CH 2 ) 2 -S-Si(Bu) 2 -S -(CH 2 ) 2 -Si(OPr) 3 , (MeO) 3 Si-CH 2 -S-Si(Me) 2 -S-CH 2 -Si(OMe) 3 , (MeO) 3 Si-CH 2 - S-Si(Et) 2 -S-CH 2 -Si(OMe) 3 , (MeO) 3 Si-CH 2 -S-Si(B u) 2 -S-CH 2 -Si(OMe) 3 , (EtO ) 3 Si-CH 2 -S-Si(Me) 2 -S-CH 2 -Si(OEt) 3 , (EtO) 3 Si-CH 2 -S-Si(Et) 2 -S-CH 2 -Si(OEt) 3 , (EtO) 3 Si-CH 2 -S-Si(Bu 2 -S-CH 2 -Si(OEt) 3 , (PrO) 3 Si-CH 2 -S-Si(Me) 2 -S-CH 2 -Si(OPr) 3 , (PrO) 3 Si-CH 2 -S-Si(Et) 2 -S-CH 2 -Si(OPr) 3 , (PrO) 3 Si-CH 2 -S-Si(Bu) 2 -S-CH 2 -Si(OPr) 3 , (MeO 3 Si-CH 2 -CMe 2 -CH 2 -S-Si(Me) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OMe) 3 , (MeO) 3 Si-CH 2 -CMe 2 - CH 2 -S-Si(Et) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OMe) 3 , (MeO) 3 Si-CH 2 -CMe 2 -CH 2 -S-Si(Bu) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OMe) 3 ,(EtO) 3 Si-CH 2 -CMe 2 -CH 2 -S-Si(Me) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OEt) 3 , (EtO) 3 Si-CH 2 -CMe 2 -CH 2 -S-Si(Et) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OEt) 3 , (EtO 3 Si-CH 2 -CMe 2 -CH 2 -S-Si(Bu) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OEt) 3 , (PrO) 3 Si-CH 2 -CMe 2 - CH 2 -S-Si(Me) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OPr) 3 , (PrO) 3 Si-CH 2 -CMe 2 -CH 2 -S-Si(Et) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OPr) 3 ,(PrO) 3 Si-CH 2 -CMe 2 -CH 2 -S-Si(Bu) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OPr) 3 , (MeO) 3 Si-CH 2 -C(H)Me-CH 2 -S-Si(Me) 2 -S-CH 2 - C(H)Me-CH 2 -Si(OMe) 3 , (MeO) 3 Si-CH 2 -C(H)Me-CH 2 -S-Si(Et) 2 -S-CH 2 -C(H) Me-CH 2 -Si(OMe) 3 , (MeO) 3 Si-CH 2 -C(H)Me-CH 2 -S-Si(Bu) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OMe) 3 , (EtO) 3 Si-CH 2 -C(H)Me-CH 2 -S-Si(Me) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt 3 , (EtO) 3 Si-CH 2 -C(H)Me-CH 2 -S-Si(Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt) 3 ,( EtO) 3 Si-CH 2 -C(H)Me-CH 2 -S-Si(Bu) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt) 3 ,(PrO) 3 Si -CH 2 -C(H)Me-CH 2 -S-Si(Me) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OPr) 3 ,(PrO) 3 Si-CH 2 - C(H)Me-CH 2 -S-Si(Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OPr) 3 ,(PrO) 3 Si-CH 2 -C(H) Me-CH 2 -S-Si(Bu) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OPr) 3 , (MeO) 2 (Me)Si-(CH 2 ) 3 -S- Si(Me) 2 -S-(CH 2 ) 3 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-(CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-(CH 2 ) 3 -S-Si(Bu) 2 -S-(CH 2 ) 3 -Si(OMe) 2 ( Me), (EtO) 2 (Me)Si-(CH 2 ) 3 -S-Si(Me) 2 -S-(CH 2 ) 3 -Si(OEt) 2 (Me), (EtO) 2 (Me) Si-(CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(OEt) 2 (Me), (EtO) 2 (Me)Si-(CH 2 ) 3 - S-Si(Bu) 2 -S-(CH 2 ) 3 -Si(OEt) 2 (Me), (PrO) 2 (Me)Si-(CH 2 ) 3 -S-Si(Me) 2 -S- (CH 2 ) 3 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-(CH 2 ) 3 -S-Si(Et) 2 -S-(CH 2 ) 3 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-(CH 2 ) 3 -S-Si(Bu) 2 -S-(CH 2 ) 3 -Si(OPr) 2 (Me), (MeO) 2 ( Me)Si-(CH 2 ) 2 -S-Si(Me) 2 -S-(CH 2 ) 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-(CH 2 ) 2 - S-Si(Et) 2 -S-(CH 2 ) 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-(CH 2 ) 2 -S-Si(Bu) 2 -S- (CH 2 ) 2 -Si(OMe) 2 (Me), (EtO) 2 (Me)Si-(CH 2 ) 2 -S-Si(Me) 2 -S-(CH 2 ) 2 -Si(OEt) 2 (Me), (EtO) 2 (Me)Si-(CH 2 ) 2 -S-Si(Et) 2 -S-(CH 2 ) 2 -Si(OEt) 2 (Me), (EtO) 2 ( Me)Si-(CH 2 ) 2 -S-Si(Bu) 2 -S-(CH 2 ) 2 -Si(OEt) 2 (Me), (PrO) 2 (Me)Si-(CH 2 ) 2 - S-Si(Me) 2 -S-(CH 2 ) 2 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-(CH 2 ) 2 -S-Si(Et) 2 -S- (CH 2 ) 2 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-(CH 2 ) 2 -S-Si(Bu) 2 -S-(CH 2 ) 2 -Si(OPr) 2 (Me), (MeO) 2 (Me)Si-CH 2 -S-Si(Me) 2 -S-CH 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-CH 2 -S-Si(Et) 2 -S-CH 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-CH 2 -S-Si( Bu) 2 -S-CH 2 -Si(OMe) 2 (Me), (EtO) 2 (Me)Si-CH 2 -S-Si(Me) 2 -S-CH 2 -Si(OEt) 2 (Me ), (EtO) 2 (Me)Si-CH 2 -S-Si(Et) 2 -S-CH 2 -Si(OEt) 2 (Me), (EtO) 2 (Me)Si-CH 2 -S- Si(Bu) 2 -S-CH 2 -Si(OEt) 2 (Me), (PrO) 2 (Me)Si-CH 2 -S-Si(Me) 2 -S-CH 2 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-CH 2 -S-Si(Et) 2 -S-CH 2 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-CH 2 - S-Si(Bu) 2 -S-CH 2 -Si(OPr) 2 (Me), (MeO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Si(Me) 2 -S- CH 2 -CMe 2 -CH 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Si(Et) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Si(Bu) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OMe) 2 (Me), (EtO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Si(Me) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OEt 2 (Me), (EtO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Si(Et) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OEt) 2 (Me ), (EtO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Si(Bu) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OEt) 2 (Me), (PrO 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Si(Me) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OPr) 2 (Me), (PrO) 2 (Me )Si-CH 2 -CMe 2 -CH 2 -S-Si(Et) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Si (Bu) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OPr) 2 (Me), (MeO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Si( Me) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S- Si(Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 - S-Si(Bu) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OMe) 2 (Me), (EtO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Si(Me) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt) 2 (Me), (EtO) 2 (Me)Si-CH 2 -C(H)Me -CH 2 -S-Si(Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt) 2 (Me), (EtO) 2 (Me)Si-CH 2 -C(H Me-CH 2 -S-Si(Bu) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt) 2 (Me), (PrO) 2 (Me)Si-CH 2 -C (H)Me-CH 2 -S-Si(Me) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Si(Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si- CH 2 -C(H)Me-CH 2 -S-Si(Bu) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OPr) 2 (Me), (MeO) 3 Si-( CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(OMe) 3 , (MeO) 3 Si-(CH 2 ) 3 -S-Sn(Et) 2 -S-( CH 2 ) 3 - Si(OMe) 3 , (MeO) 3 Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S-(CH 2 ) 3 -Si(OMe) 3 , (EtO) 3 Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(OEt) 3 , (EtO) 3 Si-(CH 2 ) 3 -S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(OEt) 3 , (EtO) 3 Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S-(CH 2 ) 3 -Si(OEt) 3 , (PrO) 3 Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(OPr), (PrO) 3 Si-(CH 2 ) 3 -S-Sn(Et) 2 -S-(CH 2 3 -Si(OPr) 3 , (PrO) 3 Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S-(CH 2 ) 3 -Si(OPr) 3 , (MeO) 3 Si-( CH 2 ) 2 -S-Sn(Me) 2 -S-(CH 2 ) 2 -Si(OMe) 3 , (MeO) 3 Si-(CH 2 ) 2 -S-Sn(Et) 2 -S-( CH 2 ) 2 -Si(OMe) 3 , (MeO) 3 Si-(CH 2 ) 2 -S-Sn(Bu) 2 -S-(CH 2 ) 2 -Si(OMe) 3 , (EtO) 3 Si -(CH 2 ) 2 -S-Sn(Me) 2 -S-(CH 2 ) 2 -Si(OEt) 3 , (EtO) 3 Si-(CH 2 ) 2 -S-Sn(Et) 2 -S -(CH 2 ) 2 -Si(OEt) 3 , (EtO) 3 Si-(CH 2 ) 2 -S-Sn(Bu) 2 -S-(CH 2 ) 2 -Si(OEt) 3 , (PrO) 3 Si-(CH 2 ) 2 -S-Sn(Me) 2 -S-(CH 2 ) 2 -Si(OPr) 3 , (PrO) 3 Si-(CH 2 ) 2 -S-Sn(Et) 2 -S-(CH 2 ) 2 -Si(OPr) 3 , (PrO) 3 Si-(CH 2 ) 2 -S-Sn(Bu) 2 -S-(CH 2 ) 2 -Si(OPr) 3 , ( MeO) 3 Si-CH 2 -S-Sn(Me) 2 -S -CH 2 -Si(OMe) 3 , (MeO) 3 Si-CH 2 -S-Sn(Et) 2 -S-CH 2 -Si(OMe) 3 , (MeO) 3 Si-CH 2 -S-Sn (Bu) 2 -S-CH 2 -Si(OMe) 3 , (EtO) 3 Si-CH 2 -S-Sn(Me) 2 -S-CH 2 -Si(OEt) 3 , (EtO) 3 Si- CH 2 -S-Sn(Et) 2 -S-CH 2 -Si(OEt) 3 , (EtO) 3 Si-CH 2 -S-Sn(Bu) 2 -S-CH 2 -Si(OEt) 3 , (PrO) 3 Si-CH 2 -S-Sn(Me) 2 -S-CH 2 -Si(OPr) 3 , (PrO) 3 Si-CH 2 -S-Sn(Et) 2 -S-CH 2 - Si(OPr) 3 , (PrO) 3 Si-CH 2 -S-Sn(Bu) 2 -S-CH 2 -Si(OPr) 3 , (MeO) 3 Si-CH 2 -CMe 2 -CH 2 -S -Sn(Me) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OMe) 3 ,(MeO) 3 Si-CH 2 -CMe 2 -CH 2 -S-Sn(Et) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OMe) 3 , (MeO) 3 Si-CH 2 -CMe 2 -CH 2 -S-Sn(Bu) 2 -S-CH 2 -CMe 2 -CH 2 -Si( OMe) 3 , (EtO) 3 Si-CH 2 -CMe 2 -CH 2 -S-Sn(Me) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OEt) 3 , (EtO) 3 Si- CH 2 -CMe 2 -CH 2 -S-Sn(Et) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OEt) 3 ,(EtO) 3 Si-CH 2 -CMe 2 -CH 2 -S -Sn(Bu) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OEt) 3 ,(PrO) 3 Si-CH 2 -CMe 2 -CH 2 -S-Sn(Me) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OPr) 3 ,(PrO) 3 Si-CH 2 -CMe 2 -CH 2 -S-Sn(Et) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OPr) 3 , (PrO) 3 Si-CH 2 -CMe 2 -CH 2 -S-Sn(Bu) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OPr 3 , (MeO) 3 Si-CH 2 -C(H)Me-CH 2 -S-Sn(Me) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OMe) 3 ,( MeO) 3 Si-CH 2 -C(H)Me-CH 2 -S-Sn(Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OMe) 3 ,(MeO) 3 Si -CH 2 -C(H)Me-CH 2 -S-Sn(Bu) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OMe) 3 ,(EtO) 3 Si-CH 2 - C(H)Me-CH 2 -S-Sn(Me) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt) 3 ,(EtO) 3 Si-CH 2 -C(H) Me-CH 2 -S-Sn(Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt) 3 ,(EtO) 3 Si-CH 2 -C(H)Me-CH 2 -S-Sn(Bu) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt) 3 ,(PrO) 3 Si-CH 2 -C(H)Me-CH 2 -S-Sn (Me) 2 -SC H 2 -C(H)Me-CH 2 -Si(OPr) 3 ,(PrO) 3 Si-CH 2 -C(H)Me-CH 2 -S-Sn(Et) 2 - S-CH 2 -C(H)Me-CH 2 -Si(OPr) 3 ,(PrO) 3 Si-CH 2 -C(H)Me-CH 2 -S-Sn(Bu) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OPr) 3 , (MeO) 2 (Me)Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(OMe 2 (Me), (MeO) 2 (Me)Si-(CH 2 ) 3 -S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S-(CH 2 ) 3 -Si(OMe) 2 (Me), (EtO) 2 (Me)Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(OEt) 2 (Me), (EtO) 2 (Me)Si-(CH 2 ) 3 -S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(OEt) 2 (Me), (EtO) 2 (Me)Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S -(CH 2 ) 3 -Si(OEt) 2 (Me), (PrO) 2 (Me)Si-(CH 2 ) 3 -S-Sn(Me) 2 -S-(CH 2 ) 3 -Si(OPr 2 (Me), (PrO) 2 (Me)Si-(CH 2 ) 3 -S-Sn(Et) 2 -S-(CH 2 ) 3 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-(CH 2 ) 3 -S-Sn(Bu) 2 -S-(CH 2 ) 3 -Si(OPr) 2 (Me), (MeO) 2 (Me)Si-(CH 2 ) 2 -S-Sn(Me) 2 -S-(CH 2 ) 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-(CH 2 ) 2 -S-Sn(Et) 2 -S -(CH 2 ) 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-(CH 2 ) 2 -S-Sn(Bu) 2 -S-(CH 2 ) 2 -Si(OMe 2 (Me), (EtO) 2 (Me)Si-(CH 2 ) 2 -S-Sn(Me) 2 -S-(CH 2 ) 2 -Si(OEt) 2 (Me), (EtO) 2 (Me)Si-(CH 2 ) 2 -S-Sn(Et) 2 -S-(CH 2 ) 2 -Si(OEt) 2 (Me), (EtO) 2 (Me)Si-(CH 2 ) 2 -S-Sn(Bu) 2 -S-(CH 2 ) 2 -Si(OEt) 2 (Me), (PrO) 2 (Me)Si-(CH 2 ) 2 -S-Sn(Me) 2 -S -(CH 2 ) 2 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-(CH 2 ) 2 -S-Sn(Et) 2 -S-(CH 2 ) 2 -Si(OPr 2 (Me), (PrO) 2 (Me)Si-(CH 2 ) 2 -S-Sn(Bu) 2 -S-(CH 2 ) 2 -Si(OP r) 2 (Me), (MeO) 2 (Me)Si-CH 2 -S-Sn(Me) 2 -S-CH 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si- CH 2 -S-Sn(Et) 2 -S-CH 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-CH 2 -S-Sn(Bu) 2 -S-CH 2 - Si(OMe) 2 (Me), (EtO) 2 (Me)Si-CH 2 -S-Sn(Me) 2 -S-CH 2 -Si(OEt) 2 (Me), (EtO) 2 (Me) Si-CH 2 -S-Sn(Et) 2 -S-CH 2 -Si(OEt) 2 (Me), (EtO) 2 (Me)Si-CH 2 -S-Sn(Bu) 2 -S-CH 2 -Si(OEt) 2 (Me), (PrO) 2 (Me)Si-CH 2 -S-Sn(Me) 2 -S-CH 2 -Si(OPr) 2 (Me), (PrO) 2 ( Me)Si-CH 2 -S-Sn(Et) 2 -S-CH 2 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-CH 2 -S-Sn(Bu) 2 -S -CH 2 -Si(OPr) 2 (Me), (MeO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Sn(Me) 2 -S-CH 2 -CMe 2 -CH 2 - Si(OMe) 2 (Me), (MeO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Sn(Et) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Sn(Bu) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OMe) 2 (Me) (EtO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Sn(Me) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OEt) 2 (Me), (EtO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Sn(Et) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OEt) 2 (Me), (EtO) 2 (Me) Si-CH 2 -CMe 2 -CH 2 -S-Sn(Bu) 2 - S-CH 2 -CMe 2 -CH 2 -Si(OEt) 2 (Me), (PrO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Sn(Me) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-CH 2 -CM e 2 -CH 2 -S-Sn(Et) 2 -S-CH 2 -CMe 2 -CH 2 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-CH 2 -CMe 2 -CH 2 -S-Sn(Bu) 2 -S-CH 2 -CMe 2 -CH 2 - Si(OPr) 2 (Me), (MeO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Sn(Me) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Sn(Et) 2 -S-CH 2 -C(H)Me -CH 2 -Si(OMe) 2 (Me), (MeO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Sn(Bu) 2 -S-CH 2 -C(H Me-CH 2 -Si(OMe) 2 (Me), (EtO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Sn(Me) 2 -S-CH 2 -C (H)Me-CH 2 -Si(OEt) 2 (Me), (EtO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Sn(Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OEt) 2 (Me), (EtO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Sn(Bu) 2 -S- CH 2 -C(H)Me-CH 2 -Si(OEt) 2 (Me), (PrO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Sn(Me) 2 - S-CH 2 -C(H)Me-CH 2 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-Sn(Et) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OPr) 2 (Me), (PrO) 2 (Me)Si-CH 2 -C(H)Me-CH 2 -S-S n(Bu) 2 -S-CH 2 -C(H)Me-CH 2 -Si(OPr) 2 (Me).

若超過一種鏈端修飾劑用於鏈端修飾之目的,則該等鏈端修飾劑可接連地添加至活性陰離子聚合物之溶液中,或其可混合在一起,接著將所得混合物添加至活性陰離子聚合物之溶液中。 If more than one chain end modifier is used for the purpose of chain end modification, the chain end modifiers may be added successively to the solution of the living anionic polymer, or they may be mixed together, and then the resulting mixture is added to the living anion. In the solution of the polymer.

該等鏈端修飾劑可間歇地(或以規律或無規律時間間隔)或持續地在聚合期間添加,但較佳地以超過80%之聚合轉化率且更佳地以超過90%之轉化率添加。較佳地,大量聚合物鏈端在與鏈端修飾劑反應之前未封端;亦即,活性聚合物鏈端存在並且能夠與該修飾劑反應。該鏈端修飾反應可在任何偶合劑之添加之前、之後或期間發生。較佳地,該鏈端修飾反應在任何偶合劑之添加之後完成。參見例如以引用之方式併入本文之WO 2009/148932。 The chain end modifiers may be added intermittently (or at regular or irregular time intervals) or continuously during the polymerization, but preferably at a polymerization conversion of more than 80% and more preferably at a conversion of more than 90%. Add to. Preferably, a plurality of polymer chain ends are not blocked prior to reaction with the chain end modifier; that is, the living polymer chain ends are present and are capable of reacting with the modifying agent. This chain end modification reaction can occur before, after or during the addition of any coupling agent. Preferably, the chain end modification reaction is completed after the addition of any coupling agent. See, for example, WO 2009/148932, which is incorporated herein by reference.

鏈端修飾之方法 Chain end modification method

根據本發明之第一態樣之聚合物組成物為包含α-及ω,ω’-陰碳離子聚合物鏈端之活性聚合物鏈與至少一種鏈端修飾劑之反應產物。包含α-及ω,ω’-陰碳離子聚合物鏈端之活性聚合物鏈為包含至少一種單陰離子聚合起始劑及至少一種雙陰離子聚合起始劑之起始劑混合物與單體之反應產物。單陰離子起始劑在與單體反應之後形成活性單陰離子聚合物鏈端(α-陰碳離子鏈端),且雙陰離子起始劑在與單體反應之後形成活性雙陰離子聚 合物鏈端(ω,ω’-陰碳離子聚合物鏈端)。各陰碳離子聚合物鏈端可與1當量之鏈端修飾劑反應,產生α或ω,ω’修飾之聚合物鏈端。根據本發明,單陰離子聚合物鏈端與修飾劑之反應產生式2之α修飾之聚合物鏈,而兩個雙陰離子聚合物鏈端與修飾劑之反應產生a)式1之ω,ω’修飾之聚合物鏈(當該修飾劑相對於陰離子聚合物鏈端以化學計量使用時),或b)式2之α修飾之聚合物鏈及式1之ω,ω’修飾之聚合物鏈的混合物(當該修飾劑相對於陰離子聚合物鏈端以亞化學計量使用時)。 The polymer composition according to the first aspect of the present invention is a reaction product of a living polymer chain comprising an α- and ω, ω'-anion-polymer chain end and at least one chain-end modifier. The living polymer chain comprising the α- and ω,ω′-anion polymer chain ends is a reaction of a starter mixture comprising at least one monoanionic polymerization initiator and at least one dianionic polymerization initiator and a monomer product. The monoanionic starter forms a reactive monoanionic polymer chain end (α-anionid chain end) after reacting with the monomer, and the dianion initiator forms an active dianion after reacting with the monomer Chain end (ω, ω'-anion ion polymer chain end). Each anion carbon polymer chain end can be reacted with one equivalent of a chain end modifier to produce an alpha or omega, omega' modified polymer chain end. According to the present invention, the reaction of the monoanionic polymer chain end with the modifying agent produces the alpha modified polymer chain of Formula 2, and the reaction of the two dianionic polymer chain ends with the modifying agent produces a) ω, ω' of Formula 1 a modified polymer chain (when the modifier is used stoichiometrically relative to the anionic polymer chain end), or b) an alpha modified polymer chain of formula 2 and a ω,ω' modified polymer chain of formula 1 Mixture (when the modifier is used in substoichiometric relative to the anionic polymer chain ends).

鏈端修飾劑可未稀釋直接添加至聚合物溶液中;然而,添加諸如惰性溶劑(例如環己烷)中的溶解形式之修飾劑可為有益的。欲添加至聚合中之鏈端修飾劑的量可視單體種類、偶合劑、鏈端修飾劑、反應條件及所需聚合物特性而變化。在本發明中,鏈端修飾劑之量基於如本文所定義之式9及10化合物之莫耳比率特定地加以調節。該聚合物鏈端修飾反應可在介於0℃至150℃、較佳地15℃至120℃且甚至更佳地30℃至100℃範圍內之溫度下進行。關於該鏈端修飾反應之持續時間無限制。然而,關於經濟的聚合方法,例如在分批聚合方法之情形中,該鏈端修飾反應通常在添加該修飾劑之後約5至60分鐘時停止。 The chain end modifying agent can be added directly to the polymer solution without dilution; however, it may be beneficial to add a modifying agent such as a dissolved form in an inert solvent such as cyclohexane. The amount of the chain end modifier to be added to the polymerization may vary depending on the monomer type, the coupling agent, the chain end modifier, the reaction conditions, and the desired polymer characteristics. In the present invention, the amount of chain end modifying agent is specifically adjusted based on the molar ratio of the compounds of formulas 9 and 10 as defined herein. The polymer chain end modification reaction can be carried out at a temperature ranging from 0 ° C to 150 ° C, preferably from 15 ° C to 120 ° C and even more preferably from 30 ° C to 100 ° C. There is no limit to the duration of the chain end modification reaction. However, with regard to economical polymerization methods, such as in the case of batch polymerization processes, the chain end modification reaction typically stops about 5 to 60 minutes after the addition of the modifier.

一種用於製備本發明之經修飾聚合物之方法至少包含以下步驟A至C: A method for preparing a modified polymer of the present invention comprises at least the following steps A to C:

步驟A:使式9化合物與式10化合物反應以獲得單陰離子及雙陰離子起始劑之起始劑混合物。 Step A: A compound of formula 9 is reacted with a compound of formula 10 to obtain a starter mixture of monoanionic and dianionic initiators.

步驟B:使該起始劑混合物與一或多種可聚合單體在聚合溶劑中且視情況在能夠與超過一條生長聚合物鏈反應之單體(諸如二乙烯基苯)存在下反應,該等可聚合單體選自共軛烯烴,較佳地選自丁二烯及異戊二烯,且視情況選自芳族乙烯基化合物,較佳地選自苯乙烯及α-甲基苯乙烯。合適之聚合溶劑包括非極性脂族及非極性芳族溶劑,較佳地己烷、庚烷、丁烷、戊烷、合成異構烷油、環己烷、甲苯及苯。 Step B: reacting the starter mixture with one or more polymerizable monomers in a polymerization solvent and optionally in the presence of a monomer capable of reacting with more than one growing polymer chain, such as divinylbenzene, such The polymerizable monomer is selected from the group consisting of conjugated olefins, preferably selected from the group consisting of butadiene and isoprene, and optionally selected from the group consisting of aromatic vinyl compounds, preferably selected from the group consisting of styrene and alpha-methyl styrene. Suitable polymerization solvents include non-polar aliphatic and non-polar aromatic solvents, preferably hexane, heptane, butane, pentane, synthetic isoparaffin oil, cyclohexane, toluene and benzene.

步驟C:使步驟A之反應產物與至少一種選自式11至式15(如本文所述)、較佳地選自式11之鏈端修飾劑反應,以形成鏈端經修飾之聚合物。 Step C: The reaction product of Step A is reacted with at least one chain end modifier selected from Formula 11 to Formula 15 (as described herein), preferably selected from Formula 11, to form a chain end modified polymer.

無規化劑 Randomizer

極性配位化合物亦稱為無規化劑,可視情況添加至聚合中以調節共軛二烯部分之微結構(包括聚丁二烯部分之乙烯基鍵的含量),或調節芳族乙烯基化合物之組成分佈,因此充當無規化組分。兩種或超過兩種無規化劑可組合使用。例示性無規化劑為路易士鹼且包括(但不限於)醚化合物,諸如二乙醚、二正丁基醚、乙二醇二乙醚、乙二醇二丁醚、二乙二醇二甲醚、丙二醇二甲醚、丙二醇二乙醚、丙二醇二丁醚、烷基四氫呋喃基醚(諸如甲基四氫呋喃基醚、乙基四氫呋喃基醚、丙基四氫呋喃基醚、丁基四氫呋喃基醚、己基四氫呋喃基醚、辛基四氫呋喃基醚)、四氫呋喃、2,2-(雙四氫呋喃甲基)丙烷、雙四氫呋喃甲基縮甲醛、四氫呋喃甲醇之甲醚、四氫呋喃甲醇之乙醚、四氫呋喃甲醇之丁醚、α-甲氧基四氫呋喃、二甲氧基苯及二甲氧基乙烷;及三級胺化合物,諸如三乙胺、吡啶、N,N,N',N'-四甲基乙二胺、二哌啶基乙烷、N,N-二乙基乙醇胺之甲醚、N,N-二乙基乙醇胺之乙醚及N,N-二乙基乙醇胺。較佳無規化劑化合物之實例在以全文引用之方式併入本文中之WO 2009/148932中鑒定。無規化劑將典型地以0.012:1至10:1、較佳地0.1:1至8:1且更佳地0.25:1至約6:1之無規化劑化合物與起始劑化合物之莫耳比率添加。 The polar coordination compound, also known as a randomizer, may optionally be added to the polymerization to adjust the microstructure of the conjugated diene moiety (including the content of the vinyl bond of the polybutadiene moiety), or to adjust the aromatic vinyl compound. The composition of the distribution, thus acting as a random component. Two or more than two kinds of randomizers may be used in combination. Exemplary randomizers are Lewis bases and include, but are not limited to, ether compounds such as diethyl ether, di-n-butyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether , propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol dibutyl ether, alkyl tetrahydrofuranyl ether (such as methyltetrahydrofuranyl ether, ethyl tetrahydrofuranyl ether, propyltetrahydrofuranyl ether, butyl tetrahydrofuranyl ether, hexyl tetrahydrofuranyl ether , octyltetrahydrofuranyl ether), tetrahydrofuran, 2,2-(bistetrahydrofuranmethyl)propane, bistetrahydrofuran methyl formal, methyl ether of tetrahydrofuran methanol, diethyl ether of tetrahydrofuran methanol, butyl ether of tetrahydrofuran methanol, α-methoxy Tetrahydrofuran, dimethoxybenzene and dimethoxyethane; and tertiary amine compounds such as triethylamine, pyridine, N,N,N',N'-tetramethylethylenediamine, dipiperidinyl Methyl ether of ethane, N,N-diethylethanolamine, diethyl ether of N,N-diethylethanolamine, and N,N-diethylethanolamine. Examples of preferred randomizer compounds are identified in WO 2009/148932, which is incorporated herein by reference in its entirety. The randomizer will typically be from 0.012:1 to 10:1, preferably from 0.1:1 to 8:1 and more preferably from 0.25:1 to about 6:1 of the randomizer compound and the starter compound. The molar ratio is added.

偶合劑 Coupler

本發明之聚合組成物可視情況與一或多種偶合劑反應以形成分支鏈聚合物。 The polymeric composition of the present invention can optionally be reacted with one or more coupling agents to form a branched chain polymer.

偶合劑包括四氯化錫、四溴化錫、四氟化錫、四碘化錫、四氯化矽、四溴化矽、四氟化矽、四碘化矽、烷基錫及烷基矽三鹵化物或二烷基錫及二烷基矽二鹵化物。與錫或矽四鹵化物偶合之聚合物具有最多四條臂,與烷基錫及烷基矽三鹵化物偶合之聚合物具有最多三條臂,且與二烷基錫及二烷基矽二鹵化物偶合之聚合物具有最多兩條臂。六鹵基二矽烷或六鹵基二矽氧烷亦可用作偶合劑,產生具有最多六條臂之聚合物。適用之錫及矽鹵化物偶合劑包括:SnCl4、(R1)3SnCl、(R1)2SnCl2、R1SnCl3、SiCl4、R1SiCl3、(R1)2SiCl2、(R1)3SiCl、Cl3Si-SiCl3、Cl3Si-O-SiCl3、Cl3Sn-SnCl3及Cl3Sn-O-SnCl3,其中R1為烴基,較佳為烷基。錫及矽醇鹽偶合劑之實例進一步包括:Sn(OMe)4、Si(OMe)4、Sn(OEt)4及Si(OEt)4。最佳偶合劑為:SnCl4、 SiCl4、Sn(OMe)4及Si(OMe)4The coupling agent includes tin tetrachloride, tin tetrabromide, tin tetrafluoride, tin tetraiodide, antimony tetrachloride, antimony tetrabromide, antimony tetrafluoride, antimony tetraiodide, alkyl tin and alkyl anthracene. Trihalide or dialkyl tin and dialkyl sulfonium dihalide. A polymer coupled with a tin or bismuth tetrahalide has up to four arms, and a polymer coupled with an alkyl tin and an alkyl sulfonium trihalide has up to three arms, and a dialkyl tin and a dialkyl sulfonium dihalide. The coupled polymer has up to two arms. Hexahalodidioxane or hexafluorodioxane can also be used as a coupling agent to produce a polymer having up to six arms. Suitable tin and antimony halide coupling agents include: SnCl 4 , (R 1 ) 3 SnCl, (R 1 ) 2 SnCl 2 , R 1 SnCl 3 , SiCl 4 , R 1 SiCl 3 , (R 1 ) 2 SiCl 2 , (R 1 ) 3 SiCl, Cl 3 Si—SiCl 3 , Cl 3 Si—O—SiCl 3 , Cl 3 Sn—SnCl 3 and Cl 3 Sn—O—SnCl 3 , wherein R 1 is a hydrocarbon group, preferably an alkyl group. . Examples of the tin and cerium alkoxide coupling agent further include: Sn(OMe) 4 , Si(OMe) 4 , Sn(OEt) 4 , and Si(OEt) 4 . The optimum coupling agents are: SnCl 4 , SiCl 4 , Sn(OMe) 4 and Si(OMe) 4 .

該等偶合劑可間歇地(或以規律或無規律時間間隔)或持續地在聚合期間添加,但較佳地以超過80%之聚合轉化率且更佳地以超過90%之轉化率添加。該偶合劑將典型地僅在已經實現高轉化程度之後添加。 The coupling agents may be added intermittently (either at regular or irregular time intervals) or continuously during the polymerization, but are preferably added at a conversion of more than 80% and more preferably at a conversion of more than 90%. The coupling agent will typically be added only after a high degree of conversion has been achieved.

例如,在其中需要非對稱偶合之情形中,偶合劑可在聚合期間持續地添加。該持續添加通常在與其中發生整體聚合之區分開的反應區中進行。該偶合劑可在烴溶液(例如環己烷中)添加至針對分佈及反應進行適當混合之聚合混合物中。典型地,關於每4.0莫耳之活性陰離子聚合物鏈端使用0.01至2.0mol、較佳地0.02至1.5mol且更佳地0.04至0.6mol之該偶合劑。 For example, in the case where an asymmetric coupling is required, the coupling agent can be continuously added during the polymerization. This continuous addition is usually carried out in a reaction zone which is distinguished from the one in which the overall polymerization takes place. The coupling agent can be added to a polymerization mixture which is suitably mixed for distribution and reaction in a hydrocarbon solution such as cyclohexane. Typically, 0.01 to 2.0 mol, preferably 0.02 to 1.5 mol, and more preferably 0.04 to 0.6 mol of the coupling agent is used per 4.0 mol of the living anionic polymer chain end.

較佳地,大量聚合物鏈端在與該偶合劑反應之前未封端;亦即,活性聚合物鏈端存在並且能夠在聚合物鏈偶合反應中與該偶合劑反應。該偶合反應在任何鏈端修飾劑之添加之前、之後或期間發生。該偶合反應較佳地在該鏈端修飾劑之添加之前完成。在一些實施例中,如藉由GPC所測定在5%與20%之間之活性聚合物鏈端已在鏈端修飾劑之添加之前與偶合劑反應。在其他實施例中,在20%與35%之間之活性聚合物鏈端已在鏈端修飾劑之添加之前與偶合劑反應。在另一實施例中,在35%與50%之間之活性聚合物鏈端已在鏈端修飾劑之添加之前與偶合劑反應。 Preferably, a plurality of polymer chain ends are uncapped prior to reaction with the coupling agent; that is, the living polymer chain ends are present and are capable of reacting with the coupling agent in a polymer chain coupling reaction. This coupling reaction occurs before, after or during the addition of any chain end modifier. This coupling reaction is preferably completed prior to the addition of the chain end modifier. In some embodiments, between 5% and 20% of the active polymer chain ends as determined by GPC have been reacted with the coupling agent prior to the addition of the chain end modifier. In other embodiments, between 20% and 35% of the living polymer chain ends have been reacted with the coupling agent prior to the addition of the chain end modifier. In another embodiment, between 35% and 50% of the active polymer chain ends have been reacted with the coupling agent prior to the addition of the chain end modifier.

不同偶合劑之組合亦可用於偶合聚合物鏈,諸如Bu2SnCl2及SnCl4;Me2SiCl2及Si(OMe)4;Me2SiCl2及SiCl4;SnCl4及Si(OMe)4;SnCl4及SiCl4。尤其需要在含有二氧化矽及碳黑之輪胎胎面化合物中使用錫及矽偶合劑之組合。在該情形中,錫與矽化合物之莫耳比率通常將在20:80至95:5;更典型地40:60至90:10且較佳地60:40至85:15範圍內。最典型地,每100公克聚合物使用約0.001至4.5mmol之量的偶合劑。通常較佳每100公克聚合物使用約0.05至約0.5mmol之偶合劑以獲得所需穆尼黏度且使得能夠實現剩餘活性聚合物部分之後續鏈端官能化。較大量傾向於產生含有末端反應性基團之聚合物或不充足偶合且僅使得能夠實現不充足鏈端修飾。 Combinations of different coupling agents can also be used to couple polymer chains, such as Bu 2 SnCl 2 and SnCl 4 ; Me 2 SiCl 2 and Si(OMe) 4 ; Me 2 SiCl 2 and SiCl 4 ; SnCl 4 and Si(OMe) 4 ; SnCl 4 and SiCl 4 . In particular, it is desirable to use a combination of tin and a bismuth coupler in a tire tread compound containing cerium oxide and carbon black. In this case, the molar ratio of tin to antimony compound will generally range from 20:80 to 95:5; more typically from 40:60 to 90:10 and preferably from 60:40 to 85:15. Most typically, a coupling agent is used in an amount of from about 0.001 to 4.5 mmol per 100 grams of polymer. It is generally preferred to use from about 0.05 to about 0.5 mmol of coupling agent per 100 grams of polymer to achieve the desired Mooney viscosity and to enable subsequent chain end functionalization of the remaining living polymer portion. Larger amounts tend to produce polymers containing terminal reactive groups or are insufficiently coupled and only enable insufficient chain end modification.

該聚合物偶合反應可在0℃至150℃、較佳地15℃至120℃ 且甚至更佳地40℃至100℃之溫度範圍內進行。關於該偶合反應之持續時間無限制。然而,關於經濟的聚合方法,例如在分批聚合方法之情形中,該偶合反應通常在添加該偶合劑之後約5至60分鐘時停止。 The polymer coupling reaction can be from 0 ° C to 150 ° C, preferably from 15 ° C to 120 ° C. And even more preferably in the temperature range of 40 ° C to 100 ° C. There is no limit to the duration of the coupling reaction. However, with regard to economical polymerization processes, such as in the case of batch polymerization processes, the coupling reaction typically stops about 5 to 60 minutes after the addition of the coupling agent.

在本發明之一較佳實施例中,二乙烯基苯用作偶合劑。二乙烯基苯將典型地在藉由添加起始劑來開始聚合之前與單體一起添加。 In a preferred embodiment of the invention, divinylbenzene is used as a coupling agent. Divinylbenzene will typically be added with the monomer prior to initiating polymerization by the addition of an initiator.

製備聚合物組成物之方法 Method of preparing a polymer composition

根據本發明之第二態樣之製備該聚合物組成物之方法包括以下步驟:i)使可藉由使如本文所定義之式9化合物與式10化合物反應而獲得的聚合起始劑混合物與一或多種選自共軛二烯及芳族乙烯基化合物之可聚合單體反應以獲得活性聚合物鏈,其中該等活性聚合物鏈含有至少40重量%藉由該等共軛二烯之聚合獲得的重複單元,且其中式10化合物與式9化合物之莫耳比率在1:1至8:1範圍內,及ii)使步驟i)之活性聚合物鏈與如本文所定義之式11至式15之一或多種鏈端修飾劑,較佳地式11之一或多種鏈端稀釋劑,且在如本文所定義之條件下反應。 The process for preparing the polymer composition according to the second aspect of the invention comprises the steps of: i) polymerizing a starter mixture obtainable by reacting a compound of formula 9 as defined herein with a compound of formula 10; One or more polymerizable monomers selected from the group consisting of conjugated dienes and aromatic vinyl compounds are reacted to obtain living polymer chains, wherein the living polymer chains contain at least 40% by weight of polymerization by the conjugated dienes a repeating unit obtained, wherein the molar ratio of the compound of formula 10 to the compound of formula 9 is in the range of 1:1 to 8:1, and ii) the living polymer chain of step i) is reacted with formula 11 as defined herein One or more chain end modifying agents of formula 15 are preferably one or more chain end diluents of formula 11 and are reacted under conditions as defined herein.

在一個實施例中,該製備該聚合物組成物之方法包括以下步驟:首先使式9化合物與超過2.1且至多8mol當量之式10化合物反應以形成單陰離子及雙陰離子物質之混合物且進一步使該混合物與選自共軛烯烴及芳族乙烯基化合物之至少一種類型的可聚合單體反應,因此形成α-單陰離子活性聚合物鏈及ω,ω'-雙陰離子活性聚合物鏈之混合物,及進一步添加式11至式15、較佳地式11之至少一種鏈端修飾劑且使其反應,因此形成聚合物組成物,該聚合物組成物包含a)在一個鏈端經修飾(α修飾)之式2聚合物及b)在線性聚合物鏈端的兩個末端均經修飾(ω,ω'修飾)之式1聚合物。 In one embodiment, the method of preparing the polymer composition comprises the steps of first reacting a compound of formula 9 with more than 2.1 and up to 8 mol equivalents of a compound of formula 10 to form a mixture of monoanionic and dianionic materials and further The mixture is reacted with at least one type of polymerizable monomer selected from the group consisting of a conjugated olefin and an aromatic vinyl compound, thereby forming a mixture of an α-monoanionic living polymer chain and an ω,ω′-dianionic active polymer chain, and Further adding at least one chain-end modifier of Formula 11 to Formula 15, preferably Formula 11, and reacting thereby forming a polymer composition comprising a) modified at one chain end (α-modified) The polymer of formula 2 and b) are polymers of formula 1 modified at both ends of the linear polymer chain end (ω, ω 'modified).

在另一實施例中,該製備該經修飾聚合物之方法包括以下步驟:首先使式9化合物與1至2.1mol當量之式10化合物反應以形成雙陰 離子物質且進一步使該雙陰離子物質與選自共軛烯烴及芳族乙烯基化合物之至少一種類型的可聚合單體反應,因此形成ω,ω'-雙陰離子活性聚合物鏈,及進一步添加式11至式15、較佳地式11之至少一種鏈端修飾劑且使其反應,其中鏈端修飾劑之總和與式10化合物之比率為0.15至0.85,因此形成聚合物組成物,該聚合物組成物包含a)在一個鏈端經修飾(α修飾)之式2聚合物及b)在線性聚合物鏈端的兩個末端均經修飾(ω,ω'修飾)之聚合物及視情況存在之c)未經修飾之聚合物。 In another embodiment, the method of preparing the modified polymer comprises the steps of first reacting a compound of formula 9 with from 1 to 2.1 mol equivalents of a compound of formula 10 to form a double yin An ionic substance and further reacting the dianionic substance with at least one type of polymerizable monomer selected from the group consisting of a conjugated olefin and an aromatic vinyl compound, thereby forming an ω, ω'-dianion active polymer chain, and further adding And reacting at least one chain end modifier of formula 11 to formula 15, preferably of formula 11, wherein the ratio of the sum of the chain end modifiers to the compound of formula 10 is from 0.15 to 0.85, thereby forming a polymer composition, the polymer The composition comprises a) a polymer of formula 2 modified at one chain end (alpha modification) and b) a polymer modified at both ends of the linear polymer chain end (ω, ω 'modified) and optionally c) Unmodified polymer.

該製備該聚合物組成物之方法習知在聚合溶劑中以溶液聚合形式進行,其中所形成之聚合物實質上可溶於反應混合物中,或以懸浮液/漿液聚合形式進行,其中所形成之聚合物實質上不可溶於反應介質中。合適之聚合溶劑包括非極性脂族及非極性芳族溶劑,較佳地己烷、庚烷、丁烷、戊烷、合成異構烷油、環己烷、甲苯及苯。溶液聚合通常在較低壓力下,較佳地低於10MPa,較佳地在0至120℃之溫度範圍內進行。該聚合一般在分批、持續或半持續聚合條件下進行。 The method for preparing the polymer composition is conventionally carried out in a solution polymerization form in a polymerization solvent, wherein the polymer formed is substantially soluble in the reaction mixture or in a suspension/slurry polymerization form, wherein the formed The polymer is substantially insoluble in the reaction medium. Suitable polymerization solvents include non-polar aliphatic and non-polar aromatic solvents, preferably hexane, heptane, butane, pentane, synthetic isoparaffin oil, cyclohexane, toluene and benzene. The solution polymerization is usually carried out at a lower pressure, preferably below 10 MPa, preferably at a temperature ranging from 0 to 120 °C. The polymerization is generally carried out under batch, continuous or semi-continuous polymerization conditions.

一般而言,關於聚合技術之適用資訊,包括極性配位化合物及促進劑,各自增加起始劑之反應性,無規地安排芳族乙烯基化合物,無規地安排聚合物中所引入之1,2-聚丁二烯或1,2-聚異戊二烯或3,4-聚異戊二烯單元;各化合物之量;單體;及合適之方法條件描述於WO 2009/148932中,該文獻以引用之方式完全併入本文。 In general, information on the application of polymerization techniques, including polar coordination compounds and promoters, each increases the reactivity of the initiator, randomly arranges the aromatic vinyl compound, and randomly arranges the introduction of the polymer. , 2-polybutadiene or 1,2-polyisoprene or 3,4-polyisoprene units; amount of each compound; monomer; and suitable method conditions are described in WO 2009/148932 This document is fully incorporated herein by reference.

聚合物組成物-其他組分 Polymer composition - other components

根據本發明之第一態樣之聚合物組成物可另外包含一或多種其他組分,該等組分選自(i)添加至用於製備該聚合物之聚合過程中或由於該聚合過程而形成之組分,及(ii)在自聚合過程移除溶劑之後保留之組分。一般而言,此「第二聚合物組成物」為該製備該聚合物組成物之方法的無溶劑結果且可包含選自油(軟化劑或填充油)、穩定劑及其他(非本發明)聚合物之組分。合適之油如本文所定義。其他聚合物亦可在溶液中例如於不同聚合反應器中分開製備且可在用於該聚合物之聚合物製造方法完成之前添加至該反應器中。 The polymer composition according to the first aspect of the present invention may additionally comprise one or more other components selected from (i) added to the polymerization process used to prepare the polymer or due to the polymerization process a component formed, and (ii) a component that remains after the solvent is removed from the polymerization process. In general, the "second polymer composition" is a solvent-free result of the method for preparing the polymer composition and may comprise an oil (softener or extender), a stabilizer, and others (not according to the invention). The component of the polymer. Suitable oils are as defined herein. Other polymers may also be prepared separately in solution, for example in different polymerization reactors, and may be added to the reactor prior to completion of the polymer manufacturing process for the polymer.

如在自聚合過程移除溶劑及加工水之後所獲得之第二聚合物組成物較佳地具有至多150、較佳地20至120且更佳地30至100之穆尼黏度(ML 1+4,100℃,如根據ASTM D 1646(2004)使用Monsanto MV2000儀器所量測)。若該聚合物組成物之穆尼黏度超過150,則如密閉混合器中之填料併入及熱積聚、滾軋機上之捆紮、擠壓速率、擠出物模膨脹、光滑度等所反映之可加工性有可能受到不利影響,因為由輪胎製造商所使用之混配機械未設計成處理該等高穆尼橡膠等級,且加工成本增加。在一些情形中,低於20之穆尼黏度可歸因於未交聯聚合物之增加的黏性及冷流而不為較佳的,導致難以處理、不良生坯強度及儲存期間之不良尺寸穩定性。在其他情形中,當該聚合物組成物用作聚合物調配物中之軟化劑、增容劑或加工助劑時,低於20之穆尼黏度可為較佳的。 The second polymer composition obtained after removing the solvent and the process water from the polymerization process preferably has a Mooney viscosity of at most 150, preferably 20 to 120 and more preferably 30 to 100 (ML 1+4). , 100 ° C, as measured according to ASTM D 1646 (2004) using a Monsanto MV2000 instrument). If the Mooney viscosity of the polymer composition exceeds 150, it may be reflected by the filler incorporation and heat accumulation in the closed mixer, the bundling on the rolling mill, the extrusion rate, the expansion of the extrudate mold, and the smoothness. Machinability may be adversely affected because the compounding machine used by the tire manufacturer is not designed to handle the high Mooney rubber grade and the processing cost is increased. In some cases, Mooney viscosity below 20 can be attributed to increased viscosity and cold flow of the uncrosslinked polymer, which is less preferred, resulting in difficult handling, poor green strength, and poor size during storage. stability. In other cases, a Mooney viscosity of less than 20 may be preferred when the polymer composition is used as a softener, compatibilizer or processing aid in a polymer formulation.

如在自聚合過程移除溶劑之後所獲得的聚合物組成物之由重量平均分子量與數目平均分子量之比率(Mw/Mn)所反映的較佳分子量分佈介於1.0至10.0、較佳地1.1至8.0且更佳地1.2至4.5範圍內。 The preferred molecular weight distribution as reflected by the ratio of the weight average molecular weight to the number average molecular weight (Mw/Mn) of the polymer composition obtained after removing the solvent from the polymerization process is from 1.0 to 10.0, preferably from 1.1 to 8.0 and more preferably in the range of 1.2 to 4.5.

在本發明之第一態樣之聚合物組成物中,式1及2聚合物構成所存在之聚合物的至少15重量%,更佳地至少30重量%且甚至更佳地至少45重量%。剩餘量之聚合物由上文提及之其他聚合物構成。合適之其他聚合物之實例在WO 2009/148932中鑒定且較佳地包括苯乙烯-丁二烯共聚物、天然橡膠、聚異戊二烯及聚丁二烯。可需要該等其他聚合物具有在20至150、較佳地30至100範圍內之穆尼黏度(ML 1+4,100℃,如根據ASTM D 1646(2004)所量測)。 In the polymer composition of the first aspect of the invention, the polymers of Formulas 1 and 2 constitute at least 15% by weight, more preferably at least 30% by weight and even more preferably at least 45% by weight of the polymer present. The remaining amount of polymer consists of the other polymers mentioned above. Examples of suitable other polymers are identified in WO 2009/148932 and preferably include styrene-butadiene copolymers, natural rubber, polyisoprene and polybutadiene. These other polymers may be required to have a Mooney viscosity in the range of 20 to 150, preferably 30 to 100 (ML 1+4, 100 ° C, as measured according to ASTM D 1646 (2004)).

本發明之聚合物組成物亦可包含一或多種在聚合過程之後添加之其他組分,包括一或多種填料、一或多種並非式1或式2聚合物之其他聚合物及一或多種交聯劑(硫化劑)(「第三聚合物組成物」)。含有填料之聚合物組成物典型地為涉及本發明之第一或第二聚合物組成物、一或多種填料及其他視情況選用之組分的機械混合方法之結果。 The polymer composition of the present invention may also comprise one or more other components added after the polymerization process, including one or more fillers, one or more other polymers other than the polymer of Formula 1 or Formula 2, and one or more crosslinks. Agent (vulcanizing agent) ("third polymer composition"). The polymer composition containing the filler is typically the result of a mechanical mixing process involving the first or second polymer composition of the invention, one or more fillers, and other optional components.

本發明之聚合物組成物可進一步包含一或多種如下文進一步定義之交聯劑。含有交聯劑之聚合物組成物可藉由在140至180℃下在捏合機中捏合本發明之聚合物組成物及一或多種交聯劑來製備,該聚合物組 成物視情況包含一或多種選自油、穩定劑、填料及其他聚合物之組分。或者,該聚合物組成物可藉由在140至180℃下在捏合機中捏合本發明之聚合物組成物以形成「第一階段」組成物來製備。該「第一階段」組成物之形成可涉及一或多個混合步驟,較佳地2至7個混合步驟。在冷卻之後,諸如硫之交聯(硫化)劑、交聯(硫化)促進劑、視情況選用之氧化鋅及其類似物添加至該「第一階段」組成物中,且所得「第二階段」組成物使用Brabender混合器、Banbury混合器或開放式滾軋機摻合以形成所需形狀。 The polymer composition of the present invention may further comprise one or more crosslinkers as further defined below. The polymer composition containing a crosslinking agent can be prepared by kneading the polymer composition of the present invention and one or more crosslinking agents in a kneader at 140 to 180 ° C. The composition optionally comprises one or more components selected from the group consisting of oils, stabilizers, fillers, and other polymers. Alternatively, the polymer composition can be prepared by kneading the polymer composition of the present invention in a kneader at 140 to 180 ° C to form a "first stage" composition. The formation of the "first stage" composition may involve one or more mixing steps, preferably 2 to 7 mixing steps. After cooling, a cross-linking (sulfurizing) agent such as sulfur, a crosslinking (vulcanization) accelerator, optionally zinc oxide and the like are added to the "first stage" composition, and the resulting "second stage" The composition was blended using a Brabender mixer, a Banbury mixer or an open roll mill to form the desired shape.

oil

一或多種油可與視情況含有組分(i)及/或(ii)、填料及/或交聯劑之未交聯聚合物組成物組合使用,以降低黏度或穆尼值或改良該聚合物組成物之可加工性及一旦交聯後該等聚合物組成物之各種效能特性。 One or more oils may be used in combination with an uncrosslinked polymer composition comprising components (i) and/or (ii), fillers and/or crosslinkers as appropriate to reduce viscosity or Mooney value or to improve the polymerization. The processability of the composition and the various performance characteristics of the polymer composition once crosslinked.

油可在聚合物製備方法結束之前及作為獨立組分在該製備方法之後添加至聚合物組成物中。關於油之代表性實例及分類,參見WO 2009/148932及US 2005/0159513,其各自以全文引用之方式併入本文。 The oil can be added to the polymer composition after the end of the polymer preparation process and as a separate component after the preparation process. For a representative example and classification of oils, see WO 2009/148932 and US 2005/0159513, each of which is incorporated herein by reference in its entirety.

代表性油包括適度萃取溶劑合物(MES/Mild Extraction Solvate)、殘餘芳族萃取物(RAE/Residual Aromatic Extract,包括經處理之殘餘芳族萃取物(T-RAE/Treated Residual Aromatic Extract)及S-RAE)、餾出物芳族萃取物(DAE/Distillate Aromatic Extract,包括經處理之餾出物芳族萃取物(TDAE/Treated Distillated Aromatic Extract))及NAP(輕及重環烷油,包括Nytex 4700、Nytex 8450、Nytex 5450、Nytex 832、Tufflo 2000及Tufflo 1200)。此外,包括植物油在內之天然油可用作填充油。代表性油亦包括此等油之官能化變化形式,尤其環氧化或羥基化油。該等油可含有變化濃度之多環芳族化合物、石蠟族物、環烷基物及芳族物且可具有不同玻璃轉化溫度。 Representative oils include MES/Mild Extraction Solvate, RAE/Residual Aromatic Extract, including T-RAE/Treated Residual Aromatic Extract and S -RAE), DAE/Distillate Aromatic Extract (TDAE/Treated Distillated Aromatic Extract) and NAP (light and heavy naphthenic oils, including Nytex) 4700, Nytex 8450, Nytex 5450, Nytex 832, Tufflo 2000 and Tufflo 1200). In addition, natural oils including vegetable oils can be used as the extender oil. Representative oils also include functionalized variations of such oils, especially epoxidized or hydroxylated oils. The oils may contain varying concentrations of polycyclic aromatic compounds, paraffin groups, cycloalkyls and aromatics and may have different glass transition temperatures.

加工助劑 Processing aids

加工助劑可視情況添加至該聚合物組成物中。其通常添加用於降低黏度。結果,混合時期縮短及/或混合步驟之數目降低且因而,消耗較少能量及/或實現橡膠化合物擠壓方法之過程中的較高通過量。代表性加工助劑描述於Rubber Handbook,SGF,The Swedish Institution of Rubber Technology 2000及Werner Kleemann,Kurt Weber,Elastverarbeitung-Kenn werte und Berechnungsmethoden,Deutscher Verlag für Grundstoffindustrie(Leipzig,1990)中,其各自以全文引用之方式併入本文。代表性加工助劑之實例尤其包括:(A)脂肪酸,包括油酸、priolene、pristerene及硬脂酸;(B)脂肪酸鹽,包括Aktiplast GT、PP、ST、T、T-60、8、F;Deoflow S;Kettlitz Dispergator FL、FL Plus;Dispergum 18、C、E、K、L、N、T、R;Polyplastol 6、15、19、21、23;Struktol A50P、A60、EF44、EF66、EM16、EM50、WA48、WB16、WB42、WS180、WS280及ZEHDL;(C)分散劑,包括Aflux 12、16、42、54、25;Deoflow A、D;Deogum 80;Deosol H;Kettlitz Dispergator DS、KB、OX;Kettlitz-Mediaplast 40、50、Pertac/GR;Kettlitz-Dispergator SI;Struktol FL及WB 212;及(D)用於高度活性白色填料之分散劑或加工助劑,包括Struktol W33、WB42、HT207、HT254、HT276;Ultra-Flow 440及700S(Performance Additives)。 Processing aids may optionally be added to the polymer composition. It is usually added to reduce the viscosity. As a result, the mixing period is shortened and/or the number of mixing steps is reduced and, therefore, less energy is consumed and/or a higher throughput during the rubber compound extrusion process is achieved. Representative processing aids are described in Rubber Handbook, SGF, The Swedish Institution of Rubber Technology 2000 and Werner Kleemann, Kurt Weber, Elastverarbeitung-Kenn Werte und Berechnungsmethoden, Deutscher Verlag für Grundstoffindustrie (Leipzig, 1990), each of which is incorporated herein by reference in its entirety. Examples of representative processing aids include, inter alia: (A) fatty acids including oleic acid, priolene, pristerene and stearic acid; (B) fatty acid salts including Aktiplast GT, PP, ST, T, T-60, 8, F Deoflow S; Kettlitz Dispergator FL, FL Plus; Dispergum 18, C, E, K, L, N, T, R; Polyplastol 6, 15, 19, 21, 23; Struktol A50P, A60, EF44, EF66, EM16, EM50, WA48, WB16, WB42, WS180, WS280 and ZEHDL; (C) dispersant, including Aflux 12, 16, 42, 54, 25; Deoflow A, D; Deogum 80; Deosol H; Kettlitz Dispergator DS, KB, OX Kettlitz-Mediaplast 40, 50, Pertac/GR; Kettlitz-Dispergator SI; Struktol FL and WB 212; and (D) dispersants or processing aids for highly reactive white fillers, including Struktol W33, WB42, HT207, HT254 , HT276; Ultra-Flow 440 and 700S (Performance Additives).

填料 filler

在一個實施例中,本發明之聚合物組成物包含一或多種填料,充當強化劑。合適填料之實例包括碳黑(包括導電性碳黑)、碳奈米管(CNT)(包括離散CNT、中空碳纖維(HCF)及攜帶諸如羥基、羧基及羰基之一或多種官能基的經修飾CNT)、石墨、石墨烯(包括離散石墨烯薄片)、二氧化矽、碳-二氧化矽雙相填料、黏土(層狀矽酸鹽,包括剝落之奈米黏土及有機黏土)、碳酸鈣、碳酸鎂、木質素、非晶填料(諸如基於玻璃粒子之填料、基於澱粉之填料)及其組合。合適填料之其他實例描述於以引用之方式充分併入本文中之WO 2009/148932中。 In one embodiment, the polymer composition of the present invention comprises one or more fillers that act as a strengthening agent. Examples of suitable fillers include carbon black (including conductive carbon black), carbon nanotubes (CNT) (including discrete CNTs, hollow carbon fibers (HCF), and modified CNTs carrying one or more functional groups such as hydroxyl, carboxyl, and carbonyl groups. ), graphite, graphene (including discrete graphene flakes), ceria, carbon-ceria double-phase filler, clay (layered niobate, including exfoliated nano-clay and organic clay), calcium carbonate, carbonic acid Magnesium, lignin, amorphous fillers (such as glass particle based fillers, starch based fillers), and combinations thereof. Further examples of suitable fillers are described in WO 2009/148932, which is incorporated herein by reference in its entirety.

合適碳黑之實例包括習知藉由熔爐方法製造之碳黑,例如具有50-200m2/g之氮吸附比表面積及80-200ml/100公克之DBP油吸收,諸如FEF、HAF、ISAF或SAF類別之碳黑,及導電性碳黑。在一些實施例中,使用高聚結類型碳黑。碳黑典型地以每100重量份之總聚合物2至100重量份或5至100重量份或10至100重量份或10至95重量份之量使用。 Examples of suitable carbon blacks include carbon blacks which are conventionally produced by a furnace process, for example having a nitrogen adsorption specific surface area of 50 to 200 m 2 /g and a DBP oil absorption of 80 to 200 ml / 100 g, such as FEF, HAF, ISAF or SAF Category of carbon black, and conductive carbon black. In some embodiments, a high coalescence type carbon black is used. The carbon black is typically used in an amount of 2 to 100 parts by weight or 5 to 100 parts by weight or 10 to 100 parts by weight or 10 to 95 parts by weight per 100 parts by weight of the total polymer.

合適二氧化矽填料之實例包括濕法二氧化矽、乾法二氧化矽 及合成矽酸鹽類型二氧化矽。具有小粒子直徑及高表面積之二氧化矽展現高強化效應。小直徑、高聚結類型二氧化矽(亦即具有大表面積及高油吸收性)在該聚合物組成物中展現卓越可分散性,從而形成優良可加工性。就初級粒子直徑而言,二氧化矽之平均粒子直徑可為5至60nm,或10至35nm。二氧化矽粒子之比表面積(藉由BET方法量測)可為35至300m2/g。二氧化矽典型地以每100重量份之總聚合物10至150重量份或30至130重量份或50至130重量份之量使用。 Examples of suitable cerium oxide fillers include wet cerium oxide, dry cerium oxide, and synthetic cerium oxide type cerium oxide. Cerium oxide having a small particle diameter and a high surface area exhibits a high strengthening effect. The small diameter, high coalescing type of cerium oxide (i.e., having a large surface area and high oil absorption) exhibits excellent dispersibility in the polymer composition, thereby forming excellent workability. In terms of primary particle diameter, the average particle diameter of cerium oxide may be 5 to 60 nm, or 10 to 35 nm. The specific surface area of the cerium oxide particles (measured by the BET method) may be 35 to 300 m 2 /g. The cerium oxide is typically used in an amount of 10 to 150 parts by weight or 30 to 130 parts by weight or 50 to 130 parts by weight per 100 parts by weight of the total polymer.

二氧化矽填料可與其他填料組合使用,該等其他填料包括碳黑、碳奈米管、碳-二氧化矽雙相填料、石墨烯、石墨、黏土、碳酸鈣、碳酸鎂及其組合。 The ceria filler can be used in combination with other fillers including carbon black, carbon nanotubes, carbon-niobium dioxide dual phase fillers, graphene, graphite, clay, calcium carbonate, magnesium carbonate, and combinations thereof.

碳黑及二氧化矽可一起添加,在該情形中,碳黑及二氧化矽之總量為每100重量份之總聚合物30至150重量份或50至150重量份。 Carbon black and cerium oxide may be added together, in which case the total amount of carbon black and cerium oxide is 30 to 150 parts by weight or 50 to 150 parts by weight per 100 parts by weight of the total polymer.

碳-二氧化矽雙相填料為藉由將二氧化矽塗佈於碳黑表面上所製備之所謂的二氧化矽塗佈之碳黑且以商標CRX2000、CRX2002或CRX2006(Cabot Co.之產品)市售。碳-二氧化矽雙相填料以如上文關於二氧化矽所述之相同量添加。 The carbon-cerium dioxide dual phase filler is a so-called ceria coated carbon black prepared by coating ceria on a carbon black surface and is marketed under the trademark CRX2000, CRX2002 or CRX2006 (product of Cabot Co.). Commercially available. The carbon-niobium dioxide dual phase filler is added in the same amount as described above for cerium oxide.

矽烷偶合劑 Decane coupling agent

在一些實施例中,當另外含有二氧化矽、層狀矽酸鹽(諸如麥羥矽鈉石)及碳-二氧化矽雙相填料中之一或多者時,矽烷偶合劑(用於聚合物及填料之相容化)可添加至本發明之聚合物組成物中。所添加之矽烷偶合劑之典型量關於100重量份之二氧化矽及/或碳-二氧化矽雙相填料之總量為約1至約20重量份且在一些實施例中為約5至約15重量份。 In some embodiments, a decane coupling agent (for polymerization) when additionally containing one or more of cerium oxide, a layered cerium salt (such as strontium sulphate) and a carbon-cerium dioxide dual phase filler The compatibilization of the materials and fillers can be added to the polymer composition of the present invention. Typical amounts of decane coupling agent added are from about 1 to about 20 parts by weight, and in some embodiments from about 5 to about 100 parts by weight, based on 100 parts by weight of the total amount of cerium oxide and/or carbon-cerium dioxide dual phase filler. 15 parts by weight.

矽烷偶合劑可根據Fritz Röthemeyer,Franz Sommer:Kautschuk Technologie,(Carl Hanser Verlag 2006)分類:(A)雙官能化矽烷,包括Si230((EtO)3Si(CH2)3Cl)、Si225((EtO)3SiCH=CH2)、Si263((EtO)3Si(CH2)3SH)、[(EtO)3Si(CH2)3Sx(CH2)3Si(OEt)3](其中x=3.75(Si69)、2.35(Si75)或2.15(Si266))、Si264((EtO)3Si-(CH2)3SCN)及Si363((EtO)Si((CH2-CH2-O)5(CH2)12CH3)2(CH2)3SH))(Evonic Industries AG);NXT(3-辛醯基硫基-1-丙基三乙氧基矽烷)、NXT-Z45、NXT-Z100(M omentive Performance Materials Inc.);Xiameter® ofs-6030矽烷(甲基丙烯醯氧基丙基三甲氧基矽烷)、Xiameter® ofs-6300矽烷((MeO)3SiCH=CH2),及(B)單官能矽烷,包括Si203((EtO)3-Si-C3H7)及Si208((EtO)3-Si-C8H17)。 The decane coupling agent can be classified according to Fritz Röthemeyer, Franz Sommer: Kautschuk Technologie, (Carl Hanser Verlag 2006): (A) difunctionalized decane, including Si230 ((EtO) 3 Si(CH 2 ) 3 Cl), Si225 ((EtO) 3 SiCH=CH 2 ), Si263((EtO) 3 Si(CH 2 ) 3 SH), [(EtO) 3 Si(CH 2 ) 3 S x (CH 2 ) 3 Si(OEt) 3 ] (where x = 3.75 (Si69), 2.35 (Si75) or 2.15 (Si266)), Si264 ((EtO) 3 Si-(CH 2 ) 3 SCN) and Si363 ((EtO)Si((CH 2 -CH 2 -O) 5 (CH 2 ) 12 CH 3 ) 2 (CH 2 ) 3 SH)) (Evonic Industries AG); NXT (3-octylthio-1-propyltriethoxydecane), NXT-Z45, NXT-Z100 ( M omentive Performance Materials Inc.); Xiameter® ofs-6030 decane (methacryloxypropyltrimethoxydecane), Xiameter® ofs-6300 decane ((MeO) 3 SiCH=CH 2 ), and (B) Monofunctional decanes include Si203 ((EtO) 3 -Si-C 3 H 7 ) and Si208 ((EtO) 3 -Si-C 8 H 17 ).

矽烷偶合劑之其他合適實例在WO 2009/148932中給出且包括雙-(3-羥基-二甲基矽烷基-丙基)四硫化物、雙-(3-羥基-二甲基矽烷基-丙基)二硫化物、雙-(2-羥基-二甲基矽烷基-乙基)四硫化物、雙-(2-經基-二甲基矽烷基-乙基)二硫化物、3-羥基-二甲基矽烷基-丙基-N,N-二甲基硫基胺甲醯基四硫化物及3-羥基-二甲基矽烷基-丙基苯並噻唑四硫化物。 Further suitable examples of decane coupling agents are given in WO 2009/148932 and include bis-(3-hydroxy-dimethyldecyl-propyl) tetrasulfide, bis-(3-hydroxy-dimethyldecyl- Propyl) disulfide, bis-(2-hydroxy-dimethylalkyl-ethyl) tetrasulfide, bis-(2-trans-dimethyl-alkyl-ethyl) disulfide, 3- Hydroxy-dimethyl-alkyl-propyl-N,N-dimethylthioaminemethanyl tetrasulfide and 3-hydroxy-dimethyldecyl-propylbenzothiazole tetrasulfide.

交聯劑(硫化劑) Crosslinker (vulcanizing agent)

習知用於製造橡膠產品之任何交聯劑均可用於本發明,且可使用兩種或超過兩種交聯劑之組合。 Any cross-linking agent conventionally used in the manufacture of rubber products can be used in the present invention, and a combination of two or more than two cross-linking agents can be used.

硫、充當硫供體之含硫化合物、硫促進劑系統及過氧化物為最常見交聯劑。充當硫供體之含硫化合物之實例包括二硫代二嗎啉(DTDM)、四甲基秋蘭姆二硫化物(TMTD)、四乙基秋蘭姆二硫化物(TETD)及雙五亞甲基秋蘭姆四硫化物(DPTT)。硫促進劑之實例包括胺衍生物、胍衍生物、醛胺縮合產物、噻唑、秋蘭姆硫化物、二硫代胺基甲酸鹽及硫代磷酸鹽。過氧化物之實例包括二-第三丁基-過氧化物、二-(第三丁基-過氧基-三甲基-環己烷)、二-(第三丁基-過氧基-異丙基-)苯、二氯-苯甲醯基過氧化物、二異丙苯基過氧化物、第三丁基-異丙苯基-過氧化物、二甲基-二(第三丁基-過氧基)己烷、二甲基-二(第三丁基-過氧基)己炔及二(第三丁基-過氧基)戊酸丁酯(Rubber Handbook,SGF,The Swedish Institution of Rubber Technology 2000)。 Sulfur, sulfur compounds that act as sulfur donors, sulfur promoter systems, and peroxides are the most common crosslinking agents. Examples of the sulfur-containing compound serving as a sulfur donor include dithiodimorpholine (DTDM), tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide (TETD), and double-five Methyl thiuram tetrasulfide (DPTT). Examples of the sulfur promoter include an amine derivative, an anthracene derivative, an aldehyde amine condensation product, a thiazole, a thiuram sulfide, a dithiocarbamate, and a thiophosphate. Examples of the peroxide include di-tert-butyl-peroxide, di-(t-butyl-peroxy-trimethyl-cyclohexane), and di-(t-butyl-peroxy-- Isopropyl-)benzene, dichloro-benzylidene peroxide, dicumyl peroxide, tert-butyl-isopropylphenyl-peroxide, dimethyl-di(third) Benzyl-peroxy)hexane, dimethyl-bis(t-butyl-peroxy)hexyne and butyl bis(t-butyl-peroxy)pentanoate (Rubber Handbook, SGF, The Swedish Institution of Rubber Technology 2000).

關於交聯劑之其他實例及額外資訊可發現於Kirk-Othmer,Encyclopedia of Chemical technology第3版,(Wiley Interscience,N.Y.1982),第20卷,第365-468頁,(特定言之「Vulcanizing Agents and Auxiliary Materials」第390-402頁)中。 Additional examples of crosslinkers and additional information can be found in Kirk-Othmer, Encyclopedia of Chemical Technology 3rd Edition, (Wiley Interscience, NY 1982), Vol. 20, pp. 365-468, (specifically, "Vulcanizing Agents" And Auxiliary Materials, pp. 390-402).

二氧化硫醛醯胺類型、胍類型或秋蘭姆類型之交聯促進劑可連同所需之交聯劑一起使用。可視情況添加諸如鋅白、交聯助劑、防老化 劑、加工佐劑及其類似物之其他添加劑。交聯劑典型地以每100重量份總聚合物0.5至10重量份或在一些實施例中1至6重量份之量添加至該聚合物組成物中。交聯促進劑之實例及關於總聚合物所添加之其量在WO 2009/148932中給出。 A cross-linking accelerator of the thiourethane type, hydrazine type or thiuram type can be used together with the desired crosslinking agent. Adding such as zinc white, cross-linking aid, anti-aging, depending on the situation Other additives for agents, processing adjuvants and the like. The crosslinking agent is typically added to the polymer composition in an amount of from 0.5 to 10 parts by weight per 100 parts by weight of the total polymer or from 1 to 6 parts by weight in some embodiments. Examples of crosslinking accelerators and amounts added to the total polymers are given in WO 2009/148932.

硫促進劑系統可含或可不含氧化鋅。氧化鋅較佳地用作硫促進劑系統之組分。 The sulfur accelerator system may or may not contain zinc oxide. Zinc oxide is preferably used as a component of the sulfur promoter system.

交聯聚合物組成物 Crosslinked polymer composition

根據本發明之第三態樣的交聯聚合物組成物藉由使包含至少一種交聯劑之本發明之聚合物組成物交聯而獲得。由於本發明之交聯彈性體聚合物組成物展現低滾動阻力、低動態熱積聚及優良濕滑效能,其充分適合用於製造輪胎、輪胎胎面、側壁及輪胎胎體以及其他工業產品,諸如皮帶、軟管、振動阻尼器及鞋類組件。 The crosslinked polymer composition according to the third aspect of the present invention is obtained by crosslinking a polymer composition of the present invention containing at least one crosslinking agent. Since the crosslinked elastomeric polymer composition of the present invention exhibits low rolling resistance, low dynamic heat buildup, and excellent wet slip performance, it is well suited for use in the manufacture of tires, tire treads, sidewalls, and tire carcasses as well as other industrial products, such as Belts, hoses, vibration dampers and footwear components.

該交聯聚合物組成物為對含有一或多種交聯劑之本發明之聚合物組成物執行的反應性聚合物-聚合物交聯形成方法之結果。該反應性加工將基本上未交聯之聚合物組成物轉化成交聯(或硫化)聚合物組成物。 The crosslinked polymer composition is the result of a reactive polymer-polymer crosslink formation process performed on the polymer composition of the present invention containing one or more crosslinkers. The reactive processing converts the substantially uncrosslinked polymer composition into a crosslinked (or vulcanized) polymer composition.

本發明亦提供一種包含至少一種由本發明之交聯聚合物組成物形成的組分之物件。該物件可為輪胎、輪胎胎面、輪胎側壁、汽車零件、鞋類組件、高爾夫球、皮帶、墊圈、密封件或軟管。 The invention also provides an article comprising at least one component formed from the crosslinked polymer composition of the invention. The article can be a tire, a tire tread, a tire sidewall, an automotive part, a footwear component, a golf ball, a belt, a gasket, a seal, or a hose.

關於製造汽車輪胎,以下其他聚合物尤其受到關注以與本發明聚合物組合使用:天然橡膠;包含少於20重量%之1,2-聚丁二烯的低順式聚丁二烯(LCBR)、具有高於-50℃之玻璃轉化溫度的乳液SBR(ESBR)及溶液SBR(SSBR)橡膠;具有高順-1,4-單元含量(>90%)之聚丁二烯橡膠,諸如藉由使用基於鎳、鈷、鈦、釩、釓或釹之催化劑所獲得;及具有0至75%之乙烯基含量的聚丁二烯橡膠;及其組合;具有高反-1,4-單元含量(>75%)之聚丁二烯橡膠或含有例如5重量%與45重量%之間的苯乙烯且在共聚物之聚丁二烯部分中具有高反-1,4-聚丁二烯含量(>75%)之SBR(各類型之聚合物SBR或BR可由一或多種包含鹼土金屬化合物之起始劑化合物獲得,諸如描述於美國專利第6,693,160號;第6,627,715號;第6,489,415號;第6,103,842號;第5,753,579號;第5,086,136號;及第3,629,213號中,其各 自藉此以全文引用之方式併入本文;或藉由使用基於鈷之催化劑獲得,諸如描述於美國專利第6310152號;第5,834,573號;第5,753,761號;第5,448,002號及第5,089,574號及美國專利申請公開案第2003/0065114號中,其各自藉此以全文引用之方式併入本文;或藉由使用基於釩之催化劑獲得,諸如描述於EP 1 367 069;JP 11301794及U.S.3,951,936中,其各自藉此以全文引用之方式併入本文;或藉由使用基於釹之催化劑獲得,諸如描述於EP 0 964 008、EP 0 924 214及美國專利第6,184,168號;第6,018,007號;第4931376號;第5,134,199號及第4,689,368號中,其各自藉此以全文引用之方式併入本文)。 With regard to the manufacture of automotive tires, the following other polymers are of particular interest for use in combination with the polymers of the invention: natural rubber; low cis polybutadiene (LCBR) comprising less than 20% by weight of 1,2-polybutadiene Emulsion SBR (ESBR) and solution SBR (SSBR) rubber having a glass transition temperature above -50 ° C; polybutadiene rubber having a high cis - 1,4-unit content (> 90%), such as by Obtained using a catalyst based on nickel, cobalt, titanium, vanadium, niobium or tantalum; and a polybutadiene rubber having a vinyl content of 0 to 75%; and combinations thereof; having a high trans-1,4-unit content ( >75%) of polybutadiene rubber or containing, for example, between 5% and 45% by weight of styrene and having a high trans-1,4-polybutadiene content in the polybutadiene portion of the copolymer ( >75%) of the SBR (each type of polymer SBR or BR may be obtained from one or more starter compounds comprising an alkaline earth metal compound, such as described in US Patent No. 6,693,160; No. 6,627,715; No. 6,489,415; No. 6,103,842 ; 5,753,579; 5,086,136; and 3,629,213, each of which This is incorporated herein by reference in its entirety; or by the use of a cobalt-based catalyst, such as that described in U.S. Patent No. 6,310,152; 5,834,573; 5,753,761; 5,448,002 and 5,089,574, and U.S. Patent Application The disclosures of each of which is incorporated herein by reference in its entirety, or by the use of a vanadium-based catalyst, such as that described in EP 1 367 069; JP 11301794 and US 3,951,936, each of which is incorporated by reference. This is incorporated herein by reference in its entirety; or by the use of a ruthenium-based catalyst, such as that described in EP 0 964 008, EP 0 924 214, and U.S. Patent No. 6,184,168; No. 6,018,007; No. 4,931,376; No. 5,134,199 And 4,689,368 each of which is incorporated herein by reference in its entirety.

本發明之組成物亦可用於製造高衝擊聚苯乙烯(HIPS)及丁二烯修飾之丙烯腈-丁二烯-苯乙烯共聚物(ABS)(參見例如WO 2009/148932,以引用之方式併入本文)。 The compositions of the present invention can also be used in the manufacture of high impact polystyrene (HIPS) and butadiene modified acrylonitrile-butadiene-styrene copolymers (ABS) (see, for example, WO 2009/148932, incorporated herein by reference. Into this article).

定義 definition

如本文所定義之烷基(無論原樣或與諸如烷芳基或烷氧基之其他基團締合)包括直鏈烷基,諸如甲基(Me)、乙基(Et)、正丙基(Pr)、正丁基(Bu)、正戊基、正己基等;分支鏈烷基,諸如異丙基、第三丁基等;及環狀烷基,諸如環己基。 Alkyl as defined herein (either as such or associated with other groups such as alkaryl or alkoxy) includes straight chain alkyl groups such as methyl (Me), ethyl (Et), n-propyl ( Pr), n-butyl (Bu), n-pentyl, n-hexyl, etc.; branched alkyl groups such as isopropyl, tert-butyl, etc.; and cyclic alkyl groups such as cyclohexyl.

如本文所定義之烷氧基包括甲氧基(MeO)、乙氧基(EtO)、丙氧基(PrO)、丁氧基(BuO)、異丙氧基、異丁氧基、戊氧基等。 Alkoxy as defined herein includes methoxy (MeO), ethoxy (EtO), propoxy (PrO), butoxy (BuO), isopropoxy, isobutoxy, pentyloxy. Wait.

如本文所定義之芳基包括苯基、聯苯基及其他類苯化合物。芳基較佳地僅含有一個芳環且最佳地含有C6芳環。 Aryl groups as defined herein include phenyl, biphenyl and other benzene-like compounds. The aryl group preferably contains only one aromatic ring and most preferably contains a C 6 aromatic ring.

如本文所定義之芳烷基係指結合於一或多個烷基之一或多個芳基的組合,例如呈烷基-芳基、芳基-烷基、烷基-芳基-烷基及芳基-烷基-芳基形式。芳烷基較佳地僅含有一個芳環且最佳地含有C6芳環。 An aralkyl group as defined herein refers to a combination of one or more aryl groups bonded to one or more alkyl groups, for example, an alkyl-aryl group, an aryl-alkyl group, an alkyl-aryl-alkyl group. And aryl-alkyl-aryl forms. The aralkyl group preferably contains only one aromatic ring and most preferably contains a C 6 aromatic ring.

實例 Instance

提供下列實例以便進一步說明本發明且不應解釋為本發明之限制。該等實例包括經修飾彈性體聚合物之製備及測試;及未交聯聚合物組成物之製備及測試,以及交聯或固化聚合物組成物(亦稱為硫化聚合物組成物)之製備及測試。除非另外說明,否則所有份數及百分比均基於重量 表述。「室溫」係指20℃之溫度。所有聚合均在氮氣氛圍中在排除水分及氧氣下執行。 The following examples are provided to further illustrate the invention and are not to be construed as limiting the invention. Examples include the preparation and testing of modified elastomeric polymers; and the preparation and testing of uncrosslinked polymer compositions, and the preparation of crosslinked or cured polymer compositions (also known as vulcanized polymer compositions) and test. All parts and percentages are based on weight unless otherwise stated Expression. "Room temperature" means a temperature of 20 °C. All polymerizations were carried out under a nitrogen atmosphere with the exclusion of moisture and oxygen.

聚丁二烯部分中之乙烯基含量藉由基於用如上文所述之1H-NMR方法進行的校準測定在Nicolet AVATAR 360 FT-IR或Nicolet iS 10 FT-IR上進行FT-IR量測來測定。使用壓力機製備IR樣品。 The vinyl content in the polybutadiene portion was measured by FT-IR on a Nicolet AVATAR 360 FT-IR or Nicolet iS 10 FT-IR based on a calibration assay using the 1 H-NMR method as described above. Determination. An IR sample was prepared using a press.

鍵結之苯乙烯含量:藉由FT-IT(Nicolet AVATAR 360 FT-IR或Nicolet iS 10 FT-IR)製備校準曲線。使用壓力機製備IR樣品。關於苯乙烯-丁二烯共聚物中鍵結之苯乙烯的IR測定,檢查四個譜帶:a)在966cm-1下針對反-1,4-聚丁二烯單元之譜帶,b)在730cm-1下針對順-1,4-聚丁二烯單元之譜帶,c)在910cm-1下針對1,2-聚丁二烯單元之譜帶,及d)在700cm-1下針對鍵結之苯乙烯(苯乙烯芳族鍵)的譜帶。譜帶高度根據適當消光係數校正且概述為總計100%。該校正經由1H-及13C-NMR(Bruker Analytik GmbH之Avance 400,1H=400MHz;13C=100MHz)進行。 Bonded styrene content: A calibration curve was prepared by FT-IT (Nicolet AVATAR 360 FT-IR or Nicolet iS 10 FT-IR). An IR sample was prepared using a press. For the IR determination of the bonded styrene in the styrene-butadiene copolymer, four bands were examined: a) for the trans-1,4-polybutadiene unit band at 966 cm -1 , b) for the band of cis-1,4-polybutadiene units, c) for the band of the 1,2-polybutadiene units, and d) at 730cm -1 in the 700cm 910cm -1 -1 Band for bonded styrene (styrene aromatic bond). The band height is corrected according to the appropriate extinction coefficient and is summarized as a total of 100%. The calibration was carried out via 1 H- and 13 C-NMR (Avance 400 from Bruker Analytik GmbH, 1 H = 400 MHz; 13 C = 100 MHz).

在BRUKER Avance 400 NMR光譜儀(BRUKER Corp.)上使用「5mm雙重偵測探針」收集1D NMR光譜。藉由將氘鎖信號增至最大來最佳化場均勻性。藉由最佳化氘鎖信號使樣品勻場。樣品在室溫(298K)下操作。使用以下氘化溶劑:C6D6(針對1H為7.16ppm;針對13C-NMR為128.06ppm)、CDCl3(針對1H為7.26ppm;針對13C-NMR為77.16ppm),氘化溶劑之剩餘質子的信號各自用作內部參考。 1D NMR spectra were collected on a BRUKER Avance 400 NMR spectrometer (BRUKER Corp.) using a "5 mm dual detection probe". Field uniformity is optimized by maximizing the shackle signal. The sample is shimmed by optimizing the shackle signal. The sample was operated at room temperature (298 K). Deuterated solvents using the following: C 6 D 6 (1 H respect to 7.16ppm; for the 13 C-NMR is 128.06ppm), CDCl 3 (7.26 ppm for 1 H is; for the 13 C-NMR of 77.16ppm), deuterated The signals of the remaining protons of the solvent are each used as an internal reference.

關於光譜處理,使用BRUKER TopSpin軟體。所得光譜之定相、基線校正及光譜積分以手動模式進行。關於採集參數,參見表1。 For spectral processing, use the BRUKER TopSpin software. The phasing, baseline correction, and spectral integration of the resulting spectra were performed in a manual mode. See Table 1 for acquisition parameters.

GPC-方法:用窄分佈聚苯乙烯標準校準之SEC。 GPC-method: SEC calibrated with narrowly distributed polystyrene standards.

樣品製備: Sample Preparation:

a)使用10mL大小之棕色小瓶將約9-11mg乾燥聚合物樣品(水分含量<0.6%)溶解於10mL四氫呋喃中。藉由在200u/min下震蕩小瓶持續20min使該聚合物溶解。 a) Approximately 9-11 mg of dry polymer sample (moisture content < 0.6%) was dissolved in 10 mL of tetrahydrofuran using a 10 mL brown vial. The polymer was dissolved by shaking the vial at 200 u/min for 20 min.

b)使用0.45μm丟棄式過濾器將聚合物溶液轉移至2ml小瓶中。 b) The polymer solution was transferred to a 2 ml vial using a 0.45 μm discard filter.

c)該2ml小瓶置於取樣器上以用於GPC-分析。 c) The 2 ml vial was placed on a sampler for GPC-analysis.

溶離速率:1.00mL/min Dissolution rate: 1.00mL/min

注射體積:100.00μL Injection volume: 100.00 μL

多分散度(Mw/Mn)用作分子量分佈之寬度的量度。Mw及Mn(重量平均分子量(Mw)及數目平均分子量(Mn))之值藉由凝膠滲透層析在具有折射率偵測(通用校準)之SEC上量測。該量測在THF中在40℃下執行。儀器:Agilent Serie 1100/1200;模組設置:除氣器、Iso泵、自動取樣器、恆溫器、UV-偵測器、RI-偵測器。 The polydispersity (Mw/Mn) is used as a measure of the breadth of the molecular weight distribution. The values of Mw and Mn (weight average molecular weight (Mw) and number average molecular weight (Mn)) were measured by gel permeation chromatography on SEC with refractive index detection (universal calibration). This measurement was carried out in THF at 40 °C. Instrument: Agilent Serie 1100/1200; module settings: degasser, Iso pump, autosampler, thermostat, UV-detector, RI-detector.

在各GPC-器件中,4個管柱以連接模式使用:1×Agilent Plgel 10μm Guard 50×7.5mm(零件號碼PL1110-1120)加上3×Agilent PLgel 10μm Mixed-B 300×7.5mm(零件號碼PL1110-6100)。 In each GPC-device, 4 columns are used in connected mode: 1 × Agilent Plgel 10 μm Guard 50 × 7.5 mm (part number PL1110-1120) plus 3 × Agilent PLgel 10 μm Mixed-B 300 × 7.5 mm (part number PL1110-6100).

GPC標準物:EasiCal PS-1聚苯乙烯標準物,刮勺A+B(Agilent Technologies,零件號碼PL2010-0505)。 GPC standard: EasiCal PS-1 polystyrene standard, spatula A+B (Agilent Technologies, part number PL2010-0505).

Mp1、Mp2及Mp3對應於分別在GPC曲線之第三個、第二個及第一個峰處量測之(最大峰)分子量(峰Mp1(最低分子量)位於該曲線之右手側,且峰Mp3(最高分子量)位於該曲線之左手側)。最大峰分子量意謂在最大峰強度之位置處該峰之分子量。Mp2及Mp3為偶合於一個巨分子之兩條或三條聚合物鏈。Mp1為一條聚合物鏈(基礎分子量-兩條或超過兩條聚合物鏈未偶合於一個巨分子)。 Mp1, Mp2 and Mp3 correspond to the (maximum peak) molecular weight measured at the third, second and first peaks of the GPC curve, respectively (peak Mp1 (lowest molecular weight) is located on the right hand side of the curve, and the peak Mp3 (the highest molecular weight) is located on the left hand side of the curve). The maximum peak molecular weight means the molecular weight of the peak at the position of the maximum peak intensity. Mp2 and Mp3 are two or three polymer chains coupled to one macromolecule. Mp1 is a polymer chain (basic molecular weight - two or more than two polymer chains are not coupled to one macromolecule).

第三聚合物組成物藉由根據兩階段混合方法將下文列於表 4、表5或表6中之組分組合於380ml Banbury混合器(來自Brabender GmbH & Co KG之Labstation 350S)中來製備。階段1-除了硫化封裝之組分外,將所有組分混合在一起,以形成階段1調配物。階段2-將硫化封裝之組分混入階段1調配物中以形成階段2調配物。 The third polymer composition is listed below by a two-stage mixing method. 4. The components in Table 5 or Table 6 were prepared by combining in a 380 ml Banbury mixer (Labstation 350S from Brabender GmbH & Co KG). Stage 1 - In addition to the components of the vulcanization package, all of the components are mixed together to form a Stage 1 formulation. Stage 2 - Mixing the components of the vulcanization package into the Stage 1 formulation to form a Stage 2 formulation.

穆尼黏度根據ASTM D 1646(2004)以1分鐘預熱時間及4分鐘轉子操作時間在100℃溫度[ML1+4(100℃)]下於來自Alpha Technologies UK之MV 2000E上量測。對乾燥(無溶劑)原始聚合物(未交聯橡膠)執行橡膠穆尼黏度量測。原始聚合物之穆尼值列於表2中。 Mooney viscosity was measured on a MV 2000E from Alpha Technologies UK according to ASTM D 1646 (2004) with a 1 minute warm-up time and a 4 minute rotor operating time at a temperature of 100 °C [ML1+4 (100 °C)]. A rubber Mooney viscosity measurement was performed on the dry (solvent free) original polymer (uncrosslinked rubber). The Mooney values of the original polymers are listed in Table 2.

未交聯流變學特性之量測根據ASTM D 5289-95(2001年再批准),使用無轉子剪切流變儀(來自Alpha Technologies UK之MDR 2000 E)量測固化時間(TC)來執行。在160℃之恆定溫度下對根據表4、表5或表6之非交聯第二階段聚合物調配物執行流變儀量測。聚合物樣品之量為約4.5g。樣品形狀及形狀製備藉由該量測器件(來自Alpha Technologies UK之MDR 2000 E)來標準化及界定。TC 50、TC 90及TC 95值為實現該交聯反應之50%、90%及95%轉化所需的相應時間。量測隨反應時間而變之扭矩。交聯轉化由所產生之扭矩對時間曲線自動地計算。TS 1及TS 2值為在交聯期間使扭矩增加至相應扭矩最小值(ML)以上1 dNm及2 dNm所需之相應時間。 Measurement of uncrosslinked rheological properties was performed according to ASTM D 5289-95 (reapproved in 2001) using a rotorless shear rheometer (MDR 2000 E from Alpha Technologies UK) to measure cure time (TC) . Rheometer measurements were performed on non-crosslinked second stage polymer formulations according to Table 4, Table 5 or Table 6 at a constant temperature of 160 °C. The amount of polymer sample was about 4.5 g. Sample shape and shape preparation was standardized and defined by the measurement device (MDR 2000 E from Alpha Technologies UK). The TC 50, TC 90 and TC 95 values correspond to the respective times required to achieve 50%, 90% and 95% conversion of the crosslinking reaction. The torque is measured as a function of reaction time. The cross-linking conversion is automatically calculated from the generated torque versus time curve. The TS 1 and TS 2 values are the corresponding times required to increase the torque during cross-linking to 1 dNm and 2 dNm above the corresponding torque minimum (ML).

拉伸強度、斷裂伸長率及在300%伸長率下之模數(模數300)根據ASTM D 412-98A(2002年再批准),使用啞鈴模C試件在Zwick Z010上量測。使用2mm厚度之標準化啞鈴模C試件。在室溫下對根據表4、表5或表6製備之固化第二階段聚合物樣品執行拉伸強度量測。階段2調配物在16-25分鐘內在160℃下交聯至TC 95(95%交聯轉化)(參見表7中之固化數據)。 Tensile strength, elongation at break, and modulus at 300% elongation (modulus 300) were measured on a Zwick Z010 using a Dumbbell C test piece according to ASTM D 412-98A (reapproved in 2002). A standardized dumbbell mold C test piece of 2 mm thickness was used. Tensile strength measurements were performed on cured second stage polymer samples prepared according to Table 4, Table 5 or Table 6 at room temperature. The Stage 2 formulation was crosslinked to TC 95 (95% cross-linking conversion) at 160 ° C in 16-25 minutes (see cure data in Table 7).

熱積聚根據ASTM D 623方法A在Doli『Goodrich』-撓度儀上量測。對根據表4、表5或表6之交聯第二階段聚合物樣品執行熱積聚量測。階段2調配物在160℃下交聯至TC 95(95%交聯轉化)(參見表7中之固化數據)。 Heat build-up was measured on a Doli "Goodrich"-flexometer according to ASTM D 623 Method A. Thermal accumulation measurements were performed on crosslinked second stage polymer samples according to Table 4, Table 5 or Table 6. The Stage 2 formulation was crosslinked to TC 95 (95% cross-linking conversion) at 160 ° C (see cure data in Table 7).

回彈性根據DIN 53512在0℃及60℃下在Zwick 5109上量 測。對根據表4、表5或表6製備之固化第二階段聚合物樣品執行該量測。階段2調配物在160℃下交聯至TC 95(95%交聯轉化)加上5分鐘額外時間(參見表7中之固化數據)。在0℃下該指數愈小,濕滑抗性愈佳(愈低=愈佳)。在60℃下該指數愈大,滯後損失愈低且滾動阻力愈低(愈高=愈佳)。 Resilience is measured on Zwick 5109 at 0 ° C and 60 ° C according to DIN 53512 Measurement. This measurement was performed on the cured second stage polymer sample prepared according to Table 4, Table 5 or Table 6. The Stage 2 formulation was crosslinked to TC 95 (95% cross-linking conversion) at 160 ° C plus 5 minutes extra time (see cure data in Table 7). The smaller the index at 0 ° C, the better the slip resistance (lower = better). The higher the index at 60 ° C, the lower the hysteresis loss and the lower the rolling resistance (the higher the better = the better).

DIN磨損根據DIN 53516(1987-06-01)量測。該指數愈大,抗磨性愈低(愈低=愈佳)。對根據表4、表5或表6之交聯第二階段聚合物調配物執行磨損量測。 DIN wear is measured according to DIN 53516 (1987-06-01). The larger the index, the lower the abrasion resistance (lower = better). Wear measurements were performed on the crosslinked second stage polymer formulation according to Table 4, Table 5 or Table 6.

使用由Gabo Qualimeter Testanlagen GmbH(Germany)製造之動態機械熱光譜儀「Eplexor 150N」藉由在相應溫度下在2Hz頻率下施加2%動態應變來對具有2mm厚度及10mm寬度之矩形樣本執行60℃下tan δ及0℃下tan δ以及-10℃下tan δ量測。該樣本之開始長度等於該器件之夾持距離,為10mm。在60℃溫度下該指數愈小,滾動阻力愈低(愈低=愈佳)。分別在0℃及-10℃下使用相同器件及負載條件量測0℃下Tan δ及-10℃下tan δ。在0℃下該指數愈大,濕滑抗性愈佳且在-10℃下該指數愈大,冰地抓著力特性愈佳(愈高=愈佳)。測定60℃下tan δ及0℃下tan δ以及-10℃下tan δ(參見表8)。階段2調配物在160℃下交聯至TC 95(95%交聯轉化)(參見表7中之固化數據)。該方法導致形成具有2mm厚度之視覺上「無氣泡」的均勻固化橡膠板。藉由使用具有10mm相應寬度之樣本切割鐵切出樣本。 Using a dynamic mechanical thermal spectrometer "Eplexor 150N" manufactured by Gabo Qualimeter Testanlagen GmbH (Germany), a rectangular sample having a thickness of 2 mm and a width of 10 mm was subjected to tan at 60 ° C by applying 2% dynamic strain at a frequency of 2 Hz at the corresponding temperature. δ and tan δ at 0 °C and tan δ at -10 °C. The starting length of the sample is equal to the clamping distance of the device and is 10 mm. The smaller the index at 60 ° C, the lower the rolling resistance (lower = better). Tan δ at 0 °C and tan δ at -10 °C were measured at 0 °C and -10 °C using the same device and load conditions, respectively. The greater the index at 0 ° C, the better the wet slip resistance and the greater the index at -10 ° C, the better the grip characteristics of the ice (the higher = the better). Tan δ at 60 ° C and tan δ at 0 ° C and tan δ at -10 ° C were measured (see Table 8). The Stage 2 formulation was crosslinked to TC 95 (95% cross-linking conversion) at 160 ° C (see cure data in Table 7). This method resulted in the formation of a visually "no bubble" uniform cured rubber sheet having a thickness of 2 mm. The sample was cut by cutting the iron using a sample having a corresponding width of 10 mm.

一般而言,斷裂伸長率、拉伸強度、模數300及0℃下tan δ、60℃下回彈性之值愈高,樣品效能愈佳;而60℃下tan δ、熱積聚、DIN磨損及0℃下回彈性愈低,樣品效能愈佳。 In general, the elongation at break, the tensile strength, the modulus 300 and the tan δ at 0 °C, the higher the value of resilience at 60 °C, the better the sample efficiency; the tan δ at 60 ° C, heat accumulation, DIN wear and The lower the resilience at 0 °C, the better the sample performance.

藉由根據EN ISO 13287之方法測定滑動摩擦係數。該量測用防滑性測試機(PFI Germany:GSP 3034)進行,其中量測精確度優於2%。橡膠樣品在金屬表面上用設定至30N±2%的垂直於水準表面之確定正交力擠壓。該樣品以與水準線成7°之角度安裝以減少橡膠與金屬之間的接觸表面且施加該力,固定0.2秒。該樣品在金屬表面上以0.3±0.03m/s之確定速度受力,同時量測摩擦力,該摩擦力為平行於該表面且與該樣品之移動方向相對的所需力。摩擦係數定義為摩擦力與正交力之間的比率。沿所量測 的路線取約60個量測點,計算此等量測結果之中位值。底板由符合EN10088-2:2005之第1.4371號鋼製造。樣品藉由在100℃下以200巴擠壓呈15×80×115mm大小之形式的橡膠樣品持續7分鐘來製備。光澤處理之鍍鉻薄片用於擠壓,在橡膠樣品與鋼薄片之間具有一層聚酯膜箔,以針對該等樣品產生極光滑且均勻的表面。關於每種材料,製備且量測四個樣品。 The coefficient of sliding friction is determined by the method according to EN ISO 13287. The measurement was performed with an anti-slip tester (PFI Germany: GSP 3034) with a measurement accuracy better than 2%. The rubber sample was extruded on the metal surface with a defined orthogonal force set to 30 N ± 2% perpendicular to the level surface. The sample was mounted at an angle of 7° to the leveling line to reduce the contact surface between the rubber and the metal and apply the force for 0.2 seconds. The sample was subjected to a force at a determined speed of 0.3 ± 0.03 m/s on the metal surface while measuring the friction force which is the force required to be parallel to the surface and opposite to the direction of movement of the sample. The coefficient of friction is defined as the ratio between the frictional force and the orthogonal force. Along the measurement The route takes about 60 measurement points and calculates the median value of these measurements. The base plate is made of steel No. 1.4371 in accordance with EN 10088-2:2005. The sample was prepared by extruding a rubber sample in the form of 15 x 80 x 115 mm at 200 ° C for 7 minutes at 100 °C. Gloss-treated chrome-plated flakes are used for extrusion with a layer of polyester film foil between the rubber sample and the steel sheet to create a very smooth and uniform surface for the samples. For each material, four samples were prepared and measured.

化合物P1P2根據U.S.4,982,029中所述之方法合成並且顯示且表徵如下: Compounds P1 and P2 were synthesized and displayed according to the method described in US 4,982,029 and characterized as follows:

1H-NMR(300MHz,23℃,CDCl3):δ=7.42(s,1H,Ar-H),7.30(s,7H,Ar-H),6.73(d,4H,Ar-H),5.40(s,2H,=CH 2),5.28(s,2H,=CH 2),2.98(s,12H,NCH 3)ppm;13C-NMR(75MHz,23℃,CDCl3)δ=149.94,149.70,141.70,128.97,128.46,127.78,127.64,112.20,111.49,40.65ppm。 1 H-NMR (300 MHz, 23 ° C, CDCl 3 ): δ = 7.42 (s, 1H, Ar- H ), 7.30 (s, 7H, Ar- H ), 6.73 (d, 4H, Ar- H ), 5.40 (s, 2H, = C H 2 ), 5.28 (s, 2H, = C H 2 ), 2.98 (s, 12H, NC H 3 ) ppm; 13 C-NMR (75 MHz, 23 ° C, CDCl 3 ) δ = 149.94, 149.70, 141.70, 128.97, 128.46, 127.78, 127.64, 112.20, 111.49, 40.65 ppm.

1H NMR(400MHz,23℃,CDCl3):δ=7.39-7.40(m,1H,Ar-H),7.35-7.26(m,11H,Ar-H),5.47(d,J=1.2Hz,2 H,HCH=C),5.40(d,J=1.2Hz,2 H,HCH=C),1.33(s,18H,C(CH 3)3)ppm;13C NMR(100MHz,23℃,CDCl3)δ=150.74,149.60,141.53,138.18,128.20,127.85,127.75,125.04,113.85,34.54,31.32ppm。 1 H NMR (400 MHz, 23 ° C, CDCl 3 ): δ=7.39-7.40 (m, 1H, ar- H ), 7.35-7.26 (m, 11H, Ar- H ), 5.47 (d, J = 1.2 Hz, 2 H,HC H =C), 5.40 (d, J = 1.2 Hz, 2 H, H CH=C), 1.33 (s, 18H, C(C H 3 ) 3 ) ppm; 13 C NMR (100 MHz, 23 °C, CDCl 3 ) δ = 150.74, 149.60, 141.53, 138.18, 128.20, 127.85, 127.75, 125.04, 113.85, 34.54, 31.32 ppm.

製備起始劑混合物I1Preparation of initiator mixture I1

化合物P1(34.9g,94.9mmol)及TMEDA(38.7g,333mmol)溶解於環己烷(286g)中且隨後添加正丁基鋰(60.3g,190mmol,環己烷中之20重量%溶液)。該溶液之顏色立即變為暗紅色,指示形成雙陰離子DI1。用甲醇水解之I1樣品的GC分析披露P1完全轉化為相應雙陰離子DI1Compound P1 (34.9 g, 94.9 mmol) and TMEDA (38.7 g, 333 mmol) were dissolved in cyclohexane (286 g) and then n-butyllithium (60.3 g, 190 mmol, 20% by weight solution in cyclohexane) was added. The color of the solution immediately turned dark red, indicating the formation of the dianion DI1 . GC analysis of the I1 sample hydrolyzed with methanol revealed complete conversion of P1 to the corresponding dianion DI1 .

歸因於DI1之極高空氣及水分敏感性,該化合物以其水解產物DI1a形式表徵。因此,該起始劑混合物之樣品用過量甲醇水解且藉由 NMR及GC-MS表徵。 Due to the extremely high air and moisture sensitivity of DI1 , the compound is characterized by its hydrolysate DI1a form. Thus, a sample of the starter mixture was hydrolyzed with excess methanol and characterized by NMR and GC-MS.

1H-NMR(400MHz,23℃,C6D6):δ=6.94-6.86(m,8H,Ar-H),6.33-6.31(m,4H,Ar-H),3.63-3.58(m,2H,2x Ar-CH-Ar),2.22(s,12H,NCH 3),1.82-1.76(m,2H,Ar2CH-CH 2),1.07-0.88(m,12H,(CH 2)3CH3),0.54(t,6H,(CH2)3CH 3)ppm;13C-NMR(101MHz,23℃,C6D6)δ=149.43,146.72,134.07,128.86,128.65,128.16,128.15,127.91,113.35,50.99,40.50,36.63,32.34,28.28,22.99ppm。 1 H-NMR (400 MHz, 23 ° C, C 6 D 6 ): δ = 6.94 - 6.86 (m, 8H, Ar- H ), 6.33 - 6.31 (m, 4H, Ar- H ), 3.63-3.58 (m, 2H, 2x Ar-C H -Ar), 2.22 (s, 12H, NC H 3 ), 1.82-1.76 (m, 2H, Ar 2 CH-C H 2 ), 1.07-0.88 (m, 12H, (CH ) 2 ) 3 CH 3 ), 0.54 (t, 6H, (CH 2 ) 3 C H 3 ) ppm; 13 C-NMR (101 MHz, 23 ° C, C 6 D 6 ) δ = 149.43, 146.72, 134.07, 128.86, 128.65 , 128.16, 128.15, 127.91, 113.35, 50.99, 40.50, 36.63, 32.34, 28.28, 22.99 ppm.

GC-MS(EI,70eV):m/z(%)=485(M+,22),413(M+-CH3-C4H9,100),327(4),207(4),171(51),134(4)。 GC-MS (EI, 70 eV): m/z (%) = 485 (M + , 22), 413 (M + -CH 3 - C 4 H 9 , 100), 327 (4), 207 (4), 171 (51), 134 (4).

製備起始劑混合物I2Preparation of initiator mixture I2

化合物P2(22.1g,56.1mmol)及TMEDA(22.9g,196mmol)溶解於環己烷(500g)中且隨後添加正丁基鋰(36.0g,112mmol,環己烷中之20重量%溶液)。該溶液之顏色立即變為暗紅色,指示形成雙陰離子DI2。用甲醇水解之I2的GC分析披露P2完全轉化為相應雙陰離子DI2Compound P2 (22.1 g, 56.1 mmol) and TMEDA (22.9 g, 196 mmol) were dissolved in cyclohexane (500 g) and then n-butyl lithium (36.0 g, 112 mmol, 20% by weight solution in cyclohexane) was added. The color of the solution immediately turned dark red, indicating the formation of the dianion DI2 . GC analysis of I2 hydrolyzed with methanol revealed complete conversion of P2 to the corresponding dianion DI2 .

歸因於DI2之極高空氣及水分敏感性,該化合物以其水解產物DI2a形式表徵。因此,該起始劑混合物之樣品用過量甲醇水解且藉由NMR及GC-MS表徵。 Due to the extremely high air and moisture sensitivity of DI2 , the compound is characterized by its hydrolyzate DI2a form. Thus, a sample of the starter mixture was hydrolyzed with excess methanol and characterized by NMR and GC-MS.

1H-NMR(400MHz,23℃,CDCl3):δ=7.28-7.27(m,2H,Ar-H),7.26-7.24(m,2H,Ar-H),7.16-7.11(m,6H,Ar-H),7.02-6.99(m,2H,Ar-H),3.81(t,2H, 2x Ar-CH-Ar),2.01-1.95(m,4H,Ar2CH-CH 2),1.28(s,18H,2x C(CH 3)3),1.27-1.17(m,12H,2x(CH 2)3CH3),0.83(t,6H,2x(CH2)3CH 3)ppm;13C-NMR(101MHz,23℃,CDCl3)δ=148.59,145.29,142.67,128.40,127.81,127.46,125.69,125.24,51.00,36.02,34.41,32.00,31.49,27.86,22.66,14.20ppm GC-MS(EI,70eV):m/z(%)=511(M+,5),439(M+-CH3-C4H9,100),240(12),212(13),147(5),57(11)。 1 H-NMR (400 MHz, 23 ° C, CDCl 3 ): δ = 7.28-7.27 (m, 2H, Ar- H ), 7.26-7.24 (m, 2H, Ar- H ), 7.16-7.11 (m, 6H, Ar- H ), 7.02-6.99 (m, 2H, Ar- H ), 3.81 (t, 2H, 2x Ar-C H -Ar), 2.01-1.95 (m, 4H, Ar 2 CH-C H 2 ), 1.28 (s, 18H, 2x C(C H 3 ) 3 ), 1.27-1.17 (m, 12H, 2x(C H 2 ) 3 CH 3 ), 0.83 (t, 6H, 2x(CH 2 ) 3 C H 3 ) ppm; 13 C-NMR (101 MHz, 23 ° C, CDCl 3 ) δ = 148.59, 145.29, 142.67, 128.40, 127.81, 127.46, 125.69, 125.24, 51.00, 36.02, 34.41, 32.00, 31.49, 27.86, 22.66, 14.20 ppm GC-MS (EI, 70 eV): m/z (%) = 511 (M + , 5), 439 (M + -CH 3 - C 4 H 9 , 100), 240 (12), 212 (13), 147(5), 57(11).

製備起始劑混合物I3Preparation of initiator mixture I3

化合物P2(31.5g,79.8mmol)及TMEDA(7.43g,63.9mmol)溶解於環己烷(254g)中且隨後添加正丁基鋰(68.2g,214mmol,環己烷中之20重量%溶液)。該溶液之顏色立即變為暗紅色,指示形成雙陰離子DI2。用甲醇水解之I3的GC分析披露P2完全轉化為相應雙陰離子DI2Compound P2 (31.5 g, 79.8 mmol) and TMEDA (7.43 g, 63.9 mmol) were dissolved in cyclohexane (254 g) and then n-butyllithium (68.2 g, 214 mmol, 20% by weight solution in cyclohexane) was added. . The color of the solution immediately turned dark red, indicating the formation of the dianion DI2 . GC analysis of I3 hydrolyzed with methanol revealed complete conversion of P2 to the corresponding dianion DI2 .

製備起始劑混合物I4Preparation of initiator mixture I4

化合物P2(86.7g,109mmol,環己烷中之50重量%溶液)及TMEDA(10.0g,87.2mmol)溶解於環己烷(91.7g)中且隨後添加正丁基鋰(95.5g,301mmol,環己烷中之20重量%溶液)。該溶液之顏色立即變為暗紅色,指示形成雙陰離子DI2。用甲醇水解之I4的GC分析披露P2完全轉化為相應雙陰離子DI2Compound P2 (86.7 g, 109 mmol, 50% by weight solution in cyclohexane) and TMEDA (10.0 g, 87.2 mmol) were dissolved in cyclohexane (91.7 g) and then n-butyllithium (95.5 g, 301 mmol, 20% by weight solution in cyclohexane). The color of the solution immediately turned dark red, indicating the formation of the dianion DI2 . GC analysis of I4 hydrolyzed with methanol revealed complete conversion of P2 to the corresponding dianion DI2 .

製備起始劑混合物I5Preparation of initiator mixture I5

化合物P2(34.2g,86.7mmol)、TMEDA(10.4g,89.2mmol)、環己烷(75.0g)及正丁基鋰(60.5g,186mmol,環己烷中之20重量%溶液)在40℃下以此順序添加於雙壁0.5公升鋼反應器中。在投用正丁基鋰之後,該混合物立即達到70℃。該混合物攪拌100min,從而使溫度冷卻至40℃。用甲醇水解之混合物的GC分析披露P2完全轉化為相應雙陰離子DI2。在10min內再添加1,3-丁二烯(45.7g,0.84mol)。所得混合物用於聚合物樣品28之聚合。 Compound P2 (34.2 g, 86.7 mmol), TMEDA (10.4 g, 89.2 mmol), cyclohexane (75.0 g) and n-butyllithium (60.5 g, 186 mmol, 20% by weight solution in cyclohexane) at 40 ° C This was added in this order to a double wall 0.5 liter steel reactor. Immediately after the application of n-butyllithium, the mixture reached 70 °C. The mixture was stirred for 100 min to cool the temperature to 40 °C. GC analysis of a mixture hydrolyzed with methanol revealed complete conversion of P2 to the corresponding dianion DI2 . Additional 1,3-butadiene (45.7 g, 0.84 mol) was added over 10 min. The resulting mixture was used for the polymerization of polymer sample 28.

製備起始劑混合物I6Preparation of initiator mixture I6

化合物P2(6.80g,8.60mmol)及TMEDA(0.80g,6.90mmol)溶解於環己烷(30g)中且隨後添加正丁基鋰(7.34g,16.7mmol,環己烷中之15重量%溶液)。該溶液之顏色立即變為暗紅色,指示形成雙陰離子DI2。 用甲醇水解之I6的GC分析披露P2完全轉化為相應雙陰離子DI2Compound P2 (6.80 g, 8.60 mmol) and TMEDA (0.80 g, 6.90 mmol) were dissolved in cyclohexane (30 g) and then n-butyllithium (7.34 g, 16.7 mmol, 15% by weight solution in cyclohexane) ). The color of the solution immediately turned dark red, indicating the formation of the dianion DI2 . GC analysis of I6 hydrolyzed with methanol revealed complete conversion of P2 to the corresponding dianion DI2 .

製備起始劑混合物I7Preparation of initiator mixture I7

化合物P2(10.0g,25.3mmol)及TMEDA(9.81g,88.7mmol)溶解於環己烷(150g)中且隨後添加正丁基鋰(16.0g,50.7mmol,環己烷中之20重量%溶液)。該溶液之顏色立即變為暗紅色,指示形成雙陰離子DI2。用甲醇水解之I7的GC分析披露P2完全轉化為相應雙陰離子DI2Compound P2 (10.0 g, 25.3 mmol) and TMEDA (9.81 g, 88.7 mmol) were dissolved in cyclohexane (150 g) and then n-butyllithium (16.0 g, 50.7 mmol, 20% by weight solution in cyclohexane) ). The color of the solution immediately turned dark red, indicating the formation of the dianion DI2 . GC analysis of I7 hydrolyzed with methanol revealed complete conversion of P2 to the corresponding dianion DI2 .

製備起始劑混合物I8Preparation of initiator mixture I8

化合物P2(4.0g,10.1mmol)及TMEDA(4.16g,35.0mmol)溶解於環己烷(80g)中且隨後添加正丁基鋰(6.39g,20.3mmol,環己烷中之20重量%溶液)。該溶液之顏色立即變為暗紅色,指示形成雙陰離子DI2。用甲醇水解之I8的GC分析披露P2完全轉化為相應雙陰離子DI2Compound P2 (4.0 g, 10.1 mmol) and TMEDA (4.16 g, 35.0 mmol) were dissolved in cyclohexane (80 g) and then n-butyllithium (6.39 g, 20.3 mmol, 20% by weight solution in cyclohexane) ). The color of the solution immediately turned dark red, indicating the formation of the dianion DI2 . GC analysis of I8 hydrolyzed with methanol revealed complete conversion of P2 to the corresponding dianion DI2 .

製備起始劑混合物I9Preparation of initiator mixture I9

化合物P2(16.7g,42.3mmol)及TMEDA(17.2g,148mmol)溶解於環己烷(520g)中且隨後添加正丁基鋰(27.0g,84.7mmol,環己烷中之20重量%溶液)。該溶液之顏色立即變為暗紅色,指示形成雙陰離子DI2。用甲醇水解之I9的GC分析披露P2完全轉化為相應雙陰離子DI2Compound P2 (16.7 g, 42.3 mmol) and TMEDA (17.2 g, 148 mmol) were dissolved in cyclohexane (520 g) and then n-butyllithium (27.0 g, 84.7 mmol, 20% by weight solution in cyclohexane) was added. . The color of the solution immediately turned dark red, indicating the formation of the dianion DI2 . GC analysis of I9 hydrolyzed with methanol revealed complete conversion of P2 to the corresponding dianion DI2 .

製備起始劑混合物I10Preparation of initiator mixture I10

化合物P2(16.7g,42.3mmol)及TMEDA(17.2g,148mmol)溶解於環己烷(520g)中且隨後添加正丁基鋰(27.0g,84.7mmol,環己烷中之20重量%溶液)。該溶液之顏色立即變為暗紅色,指示形成雙陰離子DI2。用甲醇水解之I10的GC分析披露P2完全轉化為相應雙陰離子DI2Compound P2 (16.7 g, 42.3 mmol) and TMEDA (17.2 g, 148 mmol) were dissolved in cyclohexane (520 g) and then n-butyllithium (27.0 g, 84.7 mmol, 20% by weight solution in cyclohexane) was added. . The color of the solution immediately turned dark red, indicating the formation of the dianion DI2 . GC analysis of I10 hydrolyzed with methanol revealed complete conversion of P2 to the corresponding dianion DI2 .

二乙烯基苯(DVB)購自Bowden Chemicals ltd.且用作環己烷中之0.16M溶液。異構體1,3-DVB/1,4-DVB之比率為70/30。 Divinylbenzene (DVB) was purchased from Bowden Chemicals ltd. and used as a 0.16 M solution in cyclohexane. The ratio of the isomers 1,3-DVB/1,4-DVB was 70/30.

鏈端修飾劑Chain end modifier

鏈端修飾劑E1由以下式E1表示,且根據WO 2009/148932中所述之程序合成。 The chain end modifier E1 is represented by the following formula E1 and synthesized according to the procedure described in WO 2009/148932.

鏈端修飾劑E2以1-甲基-2-吡咯啶酮形式購自Merck Millipore。 The chain end modifier E2 was purchased from Merck Millipore as 1-methyl-2-pyrrolidone.

鏈端修飾劑E3由以下式E3表示,且如下合成:化合物E1(114g,388mmol)溶解於400mL第三丁基甲醚(MTBE)中且經由滴液漏斗添加甲基氯化鎂(140mL,420mmol,四氫呋喃中之3M溶液)。在完全添加格林納試劑之後,該混合物攪拌隔夜。添加甲醇(2mL)以水解略微過量之格林納試劑,隨後過濾以移除沈澱之鎂鹽。所有揮發物均在減壓下移除且殘餘物部分地蒸餾以產生170g(79%)無色液體。 The chain end modifier E3 is represented by the following formula E3 and is synthesized as follows: Compound E1 (114 g, 388 mmol) was dissolved in 400 mL of tert-butyl methyl ether (MTBE) and methyl magnesium chloride (140 mL, 420 mmol, tetrahydrofuran) was added via a dropping funnel. 3M solution). After the Grenner reagent was completely added, the mixture was stirred overnight. Methanol (2 mL) was added to hydrolyze a slight excess of the Grignard reagent, followed by filtration to remove the precipitated magnesium salt. All volatiles were removed under reduced pressure and the residue was partially distilled to yield 170 g (79%) of colourless liquid.

1H-NMR(400MHz,23℃,C6D6):δ=3.25(s,3H,OCH 3),2.50(t,2H,S-CH 2),1.75-1.68(m,2H,CH2-CH 2-CH2),1.00(s,9H,C(CH 3)3),0.69-0.65(m,2H,Si-CH 2),0.23(s,6H,Si(t-Bu)(CH 3)2),0.04(s,6H,Si(OMe)(CH 3)2)ppm;13C-NMR(101MHz,23℃,C6D6)δ=50.02,30.27,27.61,26.55,19.14,15.84,-2.54,-3.39ppm。 1 H-NMR (400 MHz, 23 ° C, C 6 D 6 ): δ = 3.25 (s, 3H, OC H 3 ), 2.50 (t, 2H, SC H 2 ), 1.75-1.68 (m, 2H, CH 2 -C H 2 -CH 2 ), 1.00 (s, 9H, C(C H 3 ) 3 ), 0.69-0.65 (m, 2H, Si-C H 2 ), 0.23 (s, 6H, Si (t-Bu) (C H 3 ) 2 ), 0.04 (s, 6H, Si(OMe)(C H 3 ) 2 ) ppm; 13 C-NMR (101 MHz, 23 ° C, C 6 D 6 ) δ = 50.02, 30.27, 27.61 , 26.55, 19.14, 15.84, -2.54, -3.39 ppm.

鏈端修飾劑E4由以下式E4表示,且根據WO 2009/148932中所述之程序合成。 The chain end modifier E4 is represented by the following formula E4 and synthesized according to the procedure described in WO 2009/148932.

1,3-丁二烯與苯乙烯之共聚合Copolymerization of 1,3-butadiene with styrene

製造實例1-11、14-18、20-21、24、28-34及36-39 Manufacturing Examples 1-111, 14-18, 20-21, 24, 28-34, and 36-39

在雙壁10公升鋼反應器中執行共聚合,該反應器首先用氮氣淨化,接著添加有機溶劑、單體、極性配位化合物、起始劑化合物或其 他組分。以下組分接著以下列順序添加:環己烷溶劑(4600公克);丁二烯單體、苯乙烯單體、四甲基乙二胺(TMEDA)及視情況選用之二乙烯基苯(DVB),且該混合物加熱至40℃,隨後用正丁基鋰滴定以移除痕量之水分或其他雜質。所需聚合起始劑化合物添加至該聚合反應器中以起始聚合反應。若使用起始劑化合物之混合物(例如表2中之實例16中的I3及正丁基鋰),則在未另外說明之情況下,該等化合物同時添加。執行聚合持續至少80分鐘,不允許聚合溫度超過60℃,直至單體轉化為至少97%。之後,除非另外說明,否則添加總的丁二烯單體量之2.3%,隨後添加鏈端修飾劑。20分鐘之後,藉由添加甲醇(基於起始劑之量為2當量)來終止聚合。向聚合物溶液中添加2.20g IRGANOX 1520作為穩定劑。此混合物攪拌10分鐘。所得聚合物溶液視情況與27.3重量% TDAE油(VivaTec 500,Hansen & Rosenthal KG)混合,接著用蒸汽汽提持續1小時以移除溶劑及其他揮發物,且在烘箱中在70℃下乾燥30分鐘且接著另外在室溫下乾燥1天至3天。 Copolymerization is carried out in a double-walled 10 liter steel reactor, which is first purged with nitrogen, followed by the addition of an organic solvent, a monomer, a polar coordination compound, a starter compound or His components. The following components were then added in the following order: cyclohexane solvent (4600 grams); butadiene monomer, styrene monomer, tetramethylethylenediamine (TMEDA) and optionally divinylbenzene (DVB) And the mixture was heated to 40 ° C and then titrated with n-butyl lithium to remove traces of moisture or other impurities. The desired polymerization initiator compound is added to the polymerization reactor to initiate the polymerization. If a mixture of starter compounds (e.g., I3 and n-butyllithium in Example 16 in Table 2) is used, the compounds are added simultaneously, unless otherwise stated. The polymerization was carried out for at least 80 minutes, and the polymerization temperature was not allowed to exceed 60 ° C until the monomer was converted to at least 97%. Thereafter, unless otherwise stated, 2.3% of the total amount of butadiene monomer was added, followed by the addition of a chain end modifier. After 20 minutes, the polymerization was terminated by the addition of methanol (2 equivalents based on the amount of the starter). To the polymer solution, 2.20 g of IRGANOX 1520 was added as a stabilizer. This mixture was stirred for 10 minutes. The resulting polymer solution was optionally mixed with 27.3% by weight of TDAE oil (VivaTec 500, Hansen & Rosenthal KG), followed by steam stripping for 1 hour to remove solvent and other volatiles, and dried in an oven at 70 ° C. It is then dried for 1 minute to 3 days at room temperature.

試劑之量、所得聚合物組成物及若干其特性概述於表2及表3中。 The amounts of reagents, the resulting polymer composition, and a number of their properties are summarized in Tables 2 and 3.

製造實例12、13、19及22 Manufacturing Examples 12, 13, 19 and 22

在雙壁40公升鋼反應器中執行共聚合,該反應器首先用氮氣淨化,接著添加有機溶劑、單體、極性配位化合物、起始劑化合物或其他組分。以下組分接著以下列順序添加:環己烷溶劑(20200公克);丁二烯單體、苯乙烯單體、四甲基乙二胺(TMEDA)及二乙烯基苯(DVB),且該混合物加熱至40℃,隨後用正丁基鋰滴定以移除痕量之水分或其他雜質。所需聚合起始劑化合物添加至該聚合反應器中以起始聚合反應。若使用起始劑化合物之混合物(例如表2中之實例13中的I3及正丁基鋰),則在未另外說明之情況下,該等化合物同時添加。執行聚合持續至少80分鐘,不允許聚合溫度超過60℃,直至單體轉化為至少97%。之後,除非另外說明,否則添加總的丁二烯單體量之2.3%,隨後添加鏈端修飾劑。20分鐘之後,藉由添加甲醇(基於起始劑之量為2當量)來終止聚合。向聚合物溶液中添加2.20g IRGANOX 1520作為穩定劑。此混合物攪拌10分鐘。所得聚合物溶液與27.3重量% TDAE油(VivaTec 500,Hansen & Rosenthal KG)混合,接著 用蒸汽汽提持續1小時以移除溶劑及其他揮發物,且在烘箱中在70℃下乾燥30分鐘且接著另外在室溫下乾燥1天至3天。 Copolymerization was carried out in a double wall 40 liter steel reactor which was first purged with nitrogen followed by the addition of an organic solvent, monomer, polar coordination compound, starter compound or other components. The following components were then added in the following order: cyclohexane solvent (20200 g); butadiene monomer, styrene monomer, tetramethylethylenediamine (TMEDA) and divinylbenzene (DVB), and the mixture Heat to 40 ° C and then titrate with n-butyl lithium to remove traces of moisture or other impurities. The desired polymerization initiator compound is added to the polymerization reactor to initiate the polymerization. If a mixture of starter compounds (e.g., I3 and n-butyllithium in Example 13 in Table 2) is used, the compounds are added simultaneously, unless otherwise stated. The polymerization was carried out for at least 80 minutes, and the polymerization temperature was not allowed to exceed 60 ° C until the monomer was converted to at least 97%. Thereafter, unless otherwise stated, 2.3% of the total amount of butadiene monomer was added, followed by the addition of a chain end modifier. After 20 minutes, the polymerization was terminated by the addition of methanol (2 equivalents based on the amount of the starter). To the polymer solution, 2.20 g of IRGANOX 1520 was added as a stabilizer. This mixture was stirred for 10 minutes. The resulting polymer solution was mixed with 27.3% by weight of TDAE oil (VivaTec 500, Hansen & Rosenthal KG), followed by The solvent and other volatiles were removed by steam stripping for 1 hour and dried in an oven at 70 ° C for 30 minutes and then additionally at room temperature for 1 day to 3 days.

試劑之量、所得聚合物組成物及若干其特性概述於表2及表3中。 The amounts of reagents, the resulting polymer composition, and a number of their properties are summarized in Tables 2 and 3.

製造實例23 Manufacturing example 23

在雙壁10公升鋼反應器中執行共聚合,該反應器首先用氮氣淨化,接著添加有機溶劑、單體、極性配位化合物、起始劑化合物或其他組分。以下組分接著以下列順序添加:環己烷溶劑(4600公克);丁二烯單體、苯乙烯單體、四甲基乙二胺(TMEDA),且該混合物加熱至40℃,隨後用正丁基鋰滴定以移除痕量之水分或其他雜質。聚合起始劑I1添加至該聚合反應器中以起始聚合反應。執行聚合持續75分鐘,不使聚合溫度超過60℃。之後,添加總的丁二烯單體量之0.5%,隨後添加氯化錫(IV)作為偶合劑。10min之後,添加總的丁二烯單體量之1.8%,隨後添加鏈端修飾劑。20分鐘之後,藉由添加甲醇(基於起始劑之量為2當量)來終止聚合。在自反應器移除聚合物溶液之後,大量膠凝殘餘物保留在攪拌器周圍。試劑之量、所得聚合物組成物及若干其特性概述於表2及表3中。 Copolymerization was carried out in a double wall 10 liter steel reactor which was first purged with nitrogen followed by the addition of an organic solvent, monomer, polar coordination compound, starter compound or other components. The following components were then added in the following order: cyclohexane solvent (4600 g); butadiene monomer, styrene monomer, tetramethylethylenediamine (TMEDA), and the mixture was heated to 40 ° C, followed by positive Butyl lithium is titrated to remove traces of moisture or other impurities. A polymerization initiator I1 is added to the polymerization reactor to start the polymerization reaction. The polymerization was carried out for 75 minutes without the polymerization temperature exceeding 60 °C. Thereafter, 0.5% of the total amount of butadiene monomer was added, followed by the addition of tin (IV) chloride as a coupling agent. After 10 min, 1.8% of the total butadiene monomer amount was added followed by the addition of a chain end modifier. After 20 minutes, the polymerization was terminated by the addition of methanol (2 equivalents based on the amount of the starter). After the polymer solution is removed from the reactor, a large amount of gelled residue remains around the agitator. The amounts of reagents, the resulting polymer composition, and a number of their properties are summarized in Tables 2 and 3.

製造實例26 Manufacturing Example 26

在雙壁5公升鋼反應器中執行共聚合,該反應器首先用氮氣淨化,接著添加有機溶劑、單體、極性配位化合物、起始劑化合物或其他組分。以下組分接著以下列順序添加:環己烷溶劑(2260公克);丁二烯單體、苯乙烯單體、四甲基乙二胺(TMEDA)及二乙烯基苯(DVB),且該混合物加熱至40℃,隨後用正丁基鋰滴定以移除痕量之水分或其他雜質。聚合起始劑I2添加至該聚合反應器中以起始聚合反應。執行聚合持續80分鐘,不使聚合溫度超過60℃。之後,除非另外說明,否則添加總的丁二烯單體量之2.3%,隨後添加鏈端修飾劑。20分鐘之後,藉由添加甲醇(基於起始劑之量為2當量)來終止聚合。向聚合物溶液中添加2.20g IRGANOX 1520作為穩定劑。此混合物攪拌10分鐘。所得聚合物溶液接著用蒸汽汽提持續1小時以移除溶劑及其他揮發物,且在烘箱中在70℃下乾燥30分鐘且接著另外在室溫下乾燥1天至3天。 Copolymerization is carried out in a double-walled 5 liter steel reactor which is first purged with nitrogen followed by the addition of an organic solvent, monomer, polar coordination compound, starter compound or other components. The following components were then added in the following order: cyclohexane solvent (2260 g); butadiene monomer, styrene monomer, tetramethylethylenediamine (TMEDA), and divinylbenzene (DVB), and the mixture Heat to 40 ° C and then titrate with n-butyl lithium to remove traces of moisture or other impurities. A polymerization initiator I2 is added to the polymerization reactor to start the polymerization reaction. The polymerization was carried out for 80 minutes without the polymerization temperature exceeding 60 °C. Thereafter, unless otherwise stated, 2.3% of the total amount of butadiene monomer was added, followed by the addition of a chain end modifier. After 20 minutes, the polymerization was terminated by the addition of methanol (2 equivalents based on the amount of the starter). To the polymer solution, 2.20 g of IRGANOX 1520 was added as a stabilizer. This mixture was stirred for 10 minutes. The resulting polymer solution was then stripped with steam for 1 hour to remove solvent and other volatiles, and dried in an oven at 70 ° C for 30 minutes and then additionally at room temperature for 1 day to 3 days.

試劑之量、所得聚合物組成物及若干其特性概述於表2及表3中。 The amounts of reagents, the resulting polymer composition, and a number of their properties are summarized in Tables 2 and 3.

製造實例25及35 Manufacturing Examples 25 and 35

在雙壁10公升鋼反應器中執行共聚合,該反應器首先用氮氣淨化,接著添加有機溶劑、單體、極性配位化合物、起始劑化合物或其他組分。以下組分接著以下列順序添加:環己烷溶劑(4600公克);丁二烯單體、苯乙烯單體及四甲基乙二胺(TMEDA),且該混合物加熱至40℃,隨後用正丁基鋰滴定以移除痕量之水分或其他雜質。聚合起始劑正丁基鋰添加至該聚合反應器中以起始聚合反應。執行聚合持續至少80分鐘,不允許聚合溫度超過60℃,直至單體轉化為至少97%。之後,添加總的丁二烯單體量之0.5%,隨後添加偶合劑。該混合物攪拌20分鐘。隨後,除非另外說明,否則添加總的丁二烯單體量之1.8%,隨後添加鏈端修飾劑。20分鐘之後,藉由添加甲醇(基於起始劑之量為2當量)來終止聚合。向聚合物溶液中添加2.20g IRGANOX 1520作為穩定劑。此混合物攪拌10分鐘。所得聚合物溶液視情況與27.3重量% TDAE油(VivaTec 500,Hansen & Rosenthal KG)混合,接著用蒸汽汽提持續1小時以移除溶劑及其他揮發物,且在烘箱中在70℃下乾燥30分鐘且接著另外在室溫下乾燥1天至3天。 Copolymerization was carried out in a double wall 10 liter steel reactor which was first purged with nitrogen followed by the addition of an organic solvent, monomer, polar coordination compound, starter compound or other components. The following components were then added in the following order: cyclohexane solvent (4600 g); butadiene monomer, styrene monomer and tetramethylethylenediamine (TMEDA), and the mixture was heated to 40 ° C, followed by positive Butyl lithium is titrated to remove traces of moisture or other impurities. A polymerization initiator n-butyllithium was added to the polymerization reactor to initiate polymerization. The polymerization was carried out for at least 80 minutes, and the polymerization temperature was not allowed to exceed 60 ° C until the monomer was converted to at least 97%. Thereafter, 0.5% of the total amount of butadiene monomer was added, followed by the addition of a coupling agent. The mixture was stirred for 20 minutes. Subsequently, unless otherwise stated, 1.8% of the total amount of butadiene monomer was added, followed by the addition of a chain end modifier. After 20 minutes, the polymerization was terminated by the addition of methanol (2 equivalents based on the amount of the starter). To the polymer solution, 2.20 g of IRGANOX 1520 was added as a stabilizer. This mixture was stirred for 10 minutes. The resulting polymer solution was optionally mixed with 27.3% by weight of TDAE oil (VivaTec 500, Hansen & Rosenthal KG), followed by steam stripping for 1 hour to remove solvent and other volatiles, and dried in an oven at 70 ° C. It is then dried for 1 minute to 3 days at room temperature.

試劑之量、所得聚合物組成物及若干其特性概述於表2及表3中。 The amounts of reagents, the resulting polymer composition, and a number of their properties are summarized in Tables 2 and 3.

製造實例39 Manufacturing Example 39

在雙壁10公升鋼反應器中執行共聚合,該反應器首先用氮氣淨化,接著添加有機溶劑、單體、極性配位化合物、起始劑化合物或其他組分。以下組分接著以下列順序添加:環己烷溶劑(4600公克);丁二烯單體(總的丁二烯量之83%)、苯乙烯單體、四甲基乙二胺(TMEDA)及二乙烯基苯(DVB),且該混合物加熱至40℃,隨後用正丁基鋰滴定以移除痕量之水分或其他雜質。聚合起始劑I3及正丁基鋰同時添加至該聚合反應器中以起始聚合反應。執行聚合持續100分鐘,不使聚合溫度超過60℃。之後,添加總的丁二烯單體量之17%且該混合物進一步聚合持續50min,隨後添加鏈端修飾劑。20分鐘之後,藉由添加甲醇(基於起始劑之量為2當量)來 終止聚合。向聚合物溶液中添加2.20g IRGANOX 1520作為穩定劑。此混合物攪拌10分鐘。所得聚合物溶液與27.3重量% TDAE油(VivaTec 500,Hansen & Rosenthal KG)混合,接著用蒸汽汽提持續1小時以移除溶劑及其他揮發物,且在烘箱中在70℃下乾燥30分鐘且接著另外在室溫下乾燥1天至3天。 Copolymerization was carried out in a double wall 10 liter steel reactor which was first purged with nitrogen followed by the addition of an organic solvent, monomer, polar coordination compound, starter compound or other components. The following components were then added in the following order: cyclohexane solvent (4600 g); butadiene monomer (83% of total butadiene), styrene monomer, tetramethylethylenediamine (TMEDA) and Divinylbenzene (DVB), and the mixture was heated to 40 ° C, followed by titration with n-butyl lithium to remove traces of moisture or other impurities. A polymerization initiator I3 and n-butyllithium were simultaneously added to the polymerization reactor to start the polymerization reaction. The polymerization was carried out for 100 minutes without the polymerization temperature exceeding 60 °C. Thereafter, 17% of the total amount of butadiene monomer was added and the mixture was further polymerized for 50 min, followed by the addition of a chain end modifier. After 20 minutes, the polymerization was terminated by the addition of methanol (2 equivalents based on the amount of the starter). To the polymer solution, 2.20 g of IRGANOX 1520 was added as a stabilizer. This mixture was stirred for 10 minutes. The resulting polymer solution was mixed with 27.3% by weight of TDAE oil (VivaTec 500, Hansen & Rosenthal KG), followed by steam stripping for 1 hour to remove solvent and other volatiles, and dried in an oven at 70 ° C for 30 minutes and It is then additionally dried at room temperature for 1 day to 3 days.

試劑之量、所得聚合物組成物及若干其特性概述於表2及表3中。 The amounts of reagents, the resulting polymer composition, and a number of their properties are summarized in Tables 2 and 3.

製造實例40 Manufacturing example 40

在雙壁10公升鋼反應器中執行共聚合,該反應器首先用氮氣淨化,接著添加有機溶劑、單體、極性配位化合物、起始劑化合物或其他組分。以下組分接著以下列順序添加:環己烷溶劑(4600公克);丁二烯單體(總的丁二烯量之83%)、苯乙烯單體(總的苯乙烯量之83%)、四甲基乙二胺(TMEDA)及二乙烯基苯(DVB),且該混合物加熱至40℃,隨後用正丁基鋰滴定以移除痕量之水分或其他雜質。聚合起始劑I3及正丁基鋰同時添加至該聚合反應器中以起始聚合反應。執行聚合持續120分鐘,不使聚合溫度超過60℃。之後,添加總的丁二烯單體量之14.7%及總的苯乙烯單體量之17%且該混合物進一步聚合持續60min,隨後添加總的丁二烯單體量之2.3%且其後5min添加鏈端修飾劑。20分鐘之後,藉由添加甲醇(基於起始劑之量為2當量)來終止聚合。向聚合物溶液中添加2.20g IRGANOX 1520作為穩定劑。此混合物攪拌10分鐘。所得聚合物溶液與27.3重量% TDAE油(VivaTec 500,Hansen & Rosenthal KG)混合,接著用蒸汽汽提持續1小時以移除溶劑及其他揮發物,且在烘箱中在70℃下乾燥30分鐘且接著另外在室溫下乾燥1天至3天。 Copolymerization was carried out in a double wall 10 liter steel reactor which was first purged with nitrogen followed by the addition of an organic solvent, monomer, polar coordination compound, starter compound or other components. The following components were then added in the following order: cyclohexane solvent (4600 g); butadiene monomer (83% of total butadiene), styrene monomer (83% of total styrene), Tetramethylethylenediamine (TMEDA) and divinylbenzene (DVB), and the mixture was heated to 40 ° C, followed by titration with n-butyllithium to remove traces of moisture or other impurities. A polymerization initiator I3 and n-butyllithium were simultaneously added to the polymerization reactor to start the polymerization reaction. The polymerization was carried out for 120 minutes without the polymerization temperature exceeding 60 °C. Thereafter, 14.7% of the total butadiene monomer amount and 17% of the total styrene monomer amount were added and the mixture was further polymerized for 60 minutes, followed by addition of 2.3% of the total butadiene monomer amount and 5 minutes thereafter. Add a chain end modifier. After 20 minutes, the polymerization was terminated by the addition of methanol (2 equivalents based on the amount of the starter). To the polymer solution, 2.20 g of IRGANOX 1520 was added as a stabilizer. This mixture was stirred for 10 minutes. The resulting polymer solution was mixed with 27.3% by weight of TDAE oil (VivaTec 500, Hansen & Rosenthal KG), followed by steam stripping for 1 hour to remove solvent and other volatiles, and dried in an oven at 70 ° C for 30 minutes and It is then additionally dried at room temperature for 1 day to 3 days.

試劑之量、所得聚合物組成物及若干其特性概述於表2及表3中。 The amounts of reagents, the resulting polymer composition, and a number of their properties are summarized in Tables 2 and 3.

以下表格中短劃「-」之使用指示未添加組分。「n.m.」指示未取得量測結果,或相應數據不可得。若未另外說明,則正丁基鋰(BuLi)以環己烷中之20重量%溶液形式使用。 The use of the short "-" in the table below indicates that no components have been added. "n.m." indicates that the measurement result has not been obtained, or the corresponding data is not available. If not stated otherwise, n-butyllithium (BuLi) was used as a 20% by weight solution in cyclohexane.

表2:用於製備第一聚合物組成物實例之試劑之量 Table 2: Amount of reagent used to prepare an example of the first polymer composition

a BuLi首先添加至該聚合反應器中且5min之後,I3添加至該反應器中,正丁基鋰溶液之濃度為0.159mol/kg a BuLi was first added to the polymerization reactor and after 5 min, I3 was added to the reactor, and the concentration of the n-butyllithium solution was 0.159 mol/kg.

b BuLi首先添加至該聚合反應器中且10min之後,I3添加至該反應器中,正丁基鋰溶液之濃度為0.159mol/kg b BuLi was first added to the polymerization reactor and after 10 min, I3 was added to the reactor, and the concentration of n-butyllithium solution was 0.159 mol/kg.

c 正丁基鋰溶液之濃度為0.179mol/kg c The concentration of n-butyl lithium solution is 0.179mol/kg

d 正丁基鋰溶液之濃度為0.384mol/kg d The concentration of n-butyl lithium solution is 0.384mol/kg

a 藉由SEC測定 a by SEC

b 乙烯基含量為最終共聚物之1,2-聚丁二烯單元含量的乙烯基含量,且藉由IR光譜法測定 b vinyl content is the vinyl content of the 1,2-polybutadiene unit content of the final copolymer and is determined by IR spectroscopy

c 最終共聚物之苯乙烯含量,且藉由IR光譜法測定 c styrene content of the final copolymer, and determined by IR spectroscopy

d 最終共聚物之苯乙烯及1,2-聚丁二烯單元含量的乙烯基含量藉由NMR光譜法測定 d The vinyl content of the styrene and 1,2-polybutadiene units in the final copolymer was determined by NMR spectroscopy

e 自未膠凝之聚合物溶液量測的數據 e measured from ungelatinized polymer solution

聚合物組成物Polymer composition

第三聚合物組成物藉由在370ml Banbury混合器中組合且混配下文列於表4中之組分來製備且在加壓硫化機中以200巴且在160℃下交聯。各組成物實例之交聯製程數據及物理特性提供於表7及表8中。 The third polymer composition was prepared by combining and compounding the components listed below in Table 4 in a 370 ml Banbury mixer and crosslinking at 200 bar and at 160 ° C in a press vulcanizer. The cross-linking process data and physical properties of each of the composition examples are provided in Tables 7 and 8.

在同一天在相同條件下藉由同一操作者製備之交聯聚合物 組成物(如表4、表5及表6中所列)用例如A、B等大寫字母鑒定。交聯聚合物組成物中所含之第一聚合物組成物由第一聚合物組成物編號(例如1、2等)反映。因此,存在交聯聚合物組成物系列,諸如可直接地彼此加以比較之6A、8A及11A。 Crosslinked polymer prepared by the same operator under the same conditions on the same day The compositions (as listed in Tables 4, 5, and 6) are identified by capital letters such as A, B, and the like. The first polymer composition contained in the crosslinked polymer composition is reflected by the first polymer composition number (for example, 1, 2, etc.). Thus, there are a series of crosslinked polymer compositions such as 6A, 8A and 11A which can be directly compared to each other.

a phr=以苯乙烯丁二烯共聚物及高順1,4-聚丁二烯之總重量計,每100份橡膠對應之份數 a phr = the number of parts per 100 parts of rubber based on the total weight of the styrene butadiene copolymer and the high cis 1,4-polybutadiene

b Styron Deutschland GmbH b Styron Deutschland GmbH

c Evonic Industries AG c Evonic Industries AG

d 雙(三乙氧基矽烷基丙基)二硫烷,每個分子之硫當量:2.35 d bis(triethoxydecylpropyl)disulfane, sulfur equivalent per molecule: 2.35

e Cognis GmbH e Cognis GmbH

f 光及臭氧防護性蠟,Rhein Chemie Rheinau GmbH F- light and ozone-protective wax, Rhein Chemie Rheinau GmbH

g N-(1,3-二甲基丁基)-N’-苯基-1,4-苯二胺,Duslo,a.s. g N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine, Duslo,as

h Grillo-Zinkoxid GmbH h Grillo-Zinkoxid GmbH

i VivaTec 500,Hansen & Rosenthal KG i VivaTec 500, Hansen & Rosenthal KG

j Solvay AG j Solvay AG

k N-第三丁基-2-苯並噻唑基-亞磺醯胺;Rhein Chemie Rheinau GmbH k N-t-butyl-2-benzothiazolyl-sulfinamide; Rhein Chemie Rheinau GmbH

l 二苯基胍,Vulkacit D,Lanxess AG l Diphenyl hydrazine, Vulkacit D, Lanxess AG

a phr=以苯乙烯丁二烯共聚物(無油含量)及高順1,4-聚丁二烯之總重量計,每100份橡膠對應之份數 a phr = the number of parts per 100 parts of rubber based on the total weight of styrene butadiene copolymer (oil-free content) and high cis 1,4-polybutadiene

b Styron Deutschland GmbH b Styron Deutschland GmbH

c Evonic Industries AG c Evonic Industries AG

d 雙(三乙氧基矽烷基丙基)二硫烷,每個分子之硫當量:2.35 d bis(triethoxydecylpropyl)disulfane, sulfur equivalent per molecule: 2.35

e Cognis GmbH e Cognis GmbH

f 光及臭氧防護性蠟,Rhein Chemie Rheinau GmbH F- light and ozone-protective wax, Rhein Chemie Rheinau GmbH

g N-(1,3-二甲基丁基)-N’-苯基-1,4-苯二胺,Duslo,a.s. g N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine, Duslo,as

h Grillo-Zinkoxid GmbH h Grillo-Zinkoxid GmbH

i Solvay AG i Solvay AG

j N-第三丁基-2-苯並噻唑基-亞磺醯胺;Rhein Chemie Rheinau GmbH j N-t-butyl-2-benzothiazolyl-sulfinamide; Rhein Chemie Rheinau GmbH

k 二苯基胍,Vulkacit D,Lanxess AG k diphenyl fluorene, Vulkacit D, Lanxess AG

a phr=以苯乙烯丁二烯共聚物之總重量計,每100份橡膠對應之份數 a phr = the number of parts per 100 parts of rubber based on the total weight of the styrene butadiene copolymer

b IRB 8,國際參考碳黑,Sid Richardson b IRB 8, International Reference Carbon Black, Sid Richardson

c Cognis GmbH c Cognis GmbH

d Grillo-Zinkoxid GmbH d Grillo-Zinkoxid GmbH

e Solvay AG e Solvay AG

f N-第三丁基-2-苯並噻唑基-亞磺醯胺;Rhein Chemie Rheinau GmbH f N-t-butyl-2-benzothiazolyl-sulfinamide; Rhein Chemie Rheinau GmbH

a 所含SSBR聚合物組成物之修飾,其中0=無末端修飾之聚合物巨分子,1=在一個聚合物鏈端之鏈端修飾(根據式2),2=在兩個聚合物鏈端之鏈端修飾(根據式1);本發明之聚合物組成物由1/2或0/1/2表示。 a modification of the composition of the SSBR polymer, wherein 0 = polymer macromolecule without end modification, 1 = chain end modification at one polymer chain end (according to formula 2), 2 = at the end of two polymer chains The chain end modification (according to Formula 1); the polymer composition of the present invention is represented by 1/2 or 0/1/2.

a 所含SSBR聚合物組成物之修飾,其中0=無末端修飾之聚合物巨分子,1=在一個聚合物鏈端之鏈端修飾(根據式2),2=在兩個聚合物鏈端之鏈端修飾(根據式1);本發明之聚合物組成物由1/2表示。 a modification of the composition of the SSBR polymer, wherein 0 = polymer macromolecule without end modification, 1 = chain end modification at one polymer chain end (according to formula 2), 2 = at the end of two polymer chains The chain end modification (according to Formula 1); the polymer composition of the present invention is represented by 1/2.

已發現,與由未根據本發明製備之未修飾聚合物組成物製備的交聯橡膠組成物(參見例如表7及表8中之11A)相比,本發明聚合物組成物在用於製備交聯(強化二氧化矽或碳黑)聚合物組成物(參見例如表7及表8中之6A)時具有相對降低的60℃下之tan δ、相對降低的熱積聚及相對增加之60℃下之回彈性。意外地,進一步發現與未根據本發明製備之經修飾聚合物組成物相比,本發明聚合物組成物在與填料及其他成分機械混合期間展現改良之加工平衡。此外,與未根據本發明之經修飾聚合物相比,交聯之本發明聚合物組成物之以0℃下之tan δ、拉伸強度及斷裂伸長率量測的效能特徵、尤其濕地抓著力亦改良,而交聯之本發明聚合物組成物之以60℃下之tan δ量測的滾動阻力、熱積聚及DIN磨損抗性處於相當的等級。 It has been found that the polymer composition of the present invention is used in the preparation of crosslinked rubber compositions prepared from unmodified polymer compositions not prepared according to the present invention (see, for example, 11A in Tables 7 and 8). The (intensified cerium oxide or carbon black) polymer composition (see, for example, 6A in Tables 7 and 8) has a relatively reduced tan δ at 60 ° C, a relatively reduced heat buildup, and a relative increase at 60 ° C. Resilience. Surprisingly, it has further been found that the polymer compositions of the present invention exhibit an improved process balance during mechanical mixing with fillers and other ingredients as compared to modified polymer compositions not prepared in accordance with the present invention. Furthermore, the polymer characteristics of the crosslinked polymer composition of the invention measured by tan δ at 0 ° C, tensile strength and elongation at break, especially wet grips, compared to modified polymers not according to the invention The improvement was also made, and the cross-linked polymer composition of the present invention exhibited a rolling resistance, heat accumulation and DIN abrasion resistance at a level of tan δ at 60 °C.

本發明之聚合物組成物可藉由根據表4至表6進行第一階段混合(其中二氧化矽或碳黑填料及其他成分添加至聚合物中的混合步驟)及 第二階段混合(其中交聯劑添加至聚合物組成物中的混合步驟),隨後如本文所述在160℃下根據表4至表6進行交聯持續20min而轉化為交聯聚合物組成物。在同一天在相同條件下藉由同一操作者製備之聚合物組成物及交聯聚合物組成物(如表4至表6中所列)用例如A、B等大寫字母鑒定。交聯聚合物組成物中所含之聚合物由聚合物編號(例如6、8等)鑒定。因此,存在交聯聚合物組成物系列,諸如可直接地彼此加以比較之6A、8A、11A。 The polymer composition of the present invention can be subjected to the first stage mixing according to Tables 4 to 6 (in which the cerium oxide or carbon black filler and other components are added to the polymer in a mixing step) The second stage of mixing (the mixing step in which the crosslinking agent is added to the polymer composition) is subsequently converted to a crosslinked polymer composition by crosslinking at 160 ° C according to Tables 4 to 6 for 20 min as described herein. . The polymer composition and crosslinked polymer composition (as listed in Tables 4 to 6) prepared by the same operator under the same conditions on the same day were identified by capital letters such as A, B, and the like. The polymer contained in the crosslinked polymer composition is identified by a polymer number (e.g., 6, 8, etc.). Thus, there are a series of crosslinked polymer compositions, such as 6A, 8A, 11A that can be directly compared to one another.

與未根據本發明之聚合物組成物,諸如在兩個聚合物鏈端均經修飾之基本上僅包含巨分子的聚合物組成物相比,本發明之聚合物組成物具有改良之可加工性及在滯後損失、濕地抓著力、熱積聚及磨損抗性特性方面充分平衡之效能,其中「基本上」意謂所有聚合物鏈之超過85%在兩個鏈端均經修飾(ω,ω’修飾,根據式1),這與本發明不對應。 The polymer composition of the present invention has improved processability compared to a polymer composition not according to the present invention, such as a polymer composition comprising substantially only macromolecules modified at both polymer chain ends And a balance between hysteresis loss, wet grip, heat build-up and wear resistance characteristics, where "substantially" means that more than 85% of all polymer chains are modified at both chain ends (ω, ω 'Modification, according to Formula 1), which does not correspond to the present invention.

如表7及表8中所示,與在兩個聚合物鏈端均經修飾之基本上包含彈性體巨分子的非交聯聚合物組成物相比,本發明之非交聯、含填料之聚合物組成物的化合物穆尼值降低。與未根據本發明製備之交聯聚合物組成物相比,包含本發明之第一聚合物組成物的交聯聚合物組成物之「拉伸強度」、「斷裂伸長率」及「0℃下之Tan δ」值增加。該等非交聯、含填料之聚合物組成物之降低的穆尼值指示降低之黏度,導致在聚合物組成物與填料及其他視情況選用之成分的機械混合期間更經濟之加工行為。增加之「拉伸強度」及「斷裂伸長率」值導致交聯聚合物組成物之改良的撕裂強度。「0℃下之Tan δ」值與濕地表面上之抓著力特性相關,其中較高值對應於較高濕地抓著力。與其中聚合物巨分子基本上均在兩個鏈端經修飾之交聯聚合物組成物相比,根據本發明之交聯橡膠組成物的熱積聚、「60℃下之回彈性」及「60℃下之Tan δ」值並未或並未顯著劣化。咸信聚合物「熱積聚」降低會改良所得交聯聚合物組成物之耐久性且對應於降低之交聯聚合物組成物滯後能量損失。此外,「熱積聚」降低通常與降低之滾動阻力、與增加之總體彈性組合。 As shown in Tables 7 and 8, the non-crosslinked, filler-containing material of the present invention is compared to a non-crosslinked polymer composition comprising substantially modified elastomeric macromolecules modified at both polymer chain ends. The Mooney value of the compound of the polymer composition is lowered. The "tensile strength", "elongation at break" and "0°C" of the crosslinked polymer composition comprising the first polymer composition of the present invention compared to the crosslinked polymer composition not prepared according to the present invention The Tan δ" value increases. The reduced Mooney value of the non-crosslinked, filler-containing polymer composition indicates a reduced viscosity resulting in a more economical processing behavior during mechanical mixing of the polymer composition with the filler and other optional components. The increased "tensile strength" and "elongation at break" values result in improved tear strength of the crosslinked polymer composition. The "Tan δ at 0 °C" value is related to the gripping force characteristics on the wetland surface, with higher values corresponding to higher wet grip. Heat accumulation of the crosslinked rubber composition according to the present invention, "rebound at 60 ° C" and "60" compared to a crosslinked polymer composition in which polymer macromolecules are substantially modified at both chain ends The value of Tan δ at °C has not or has not deteriorated significantly. The "heat accumulation" reduction of the salty polymer will improve the durability of the resulting crosslinked polymer composition and correspond to the reduced hysteresis energy loss of the crosslinked polymer composition. In addition, the "heat accumulation" reduction is usually combined with reduced rolling resistance and increased overall elasticity.

為了更詳細地證明本發明之益處,給出一些其他實例。 In order to demonstrate the benefits of the invention in more detail, some other examples are given.

實例6之聚合物組成物(表2及表3)藉由以下步驟製備:使化合物P2與2當量正丁基反應以形成雙陰離子起始劑DI2,該雙陰離子起 始劑DI2隨後用於1,3-丁二烯及苯乙烯之聚合以獲得雙陰離子活性苯乙烯-丁二烯聚合物鏈,該等聚合物鏈隨後藉由以1:2之修飾劑與鋰的比率與修飾劑E1反應以生成ω及ω,ω’修飾之聚合物鏈的1:1混合物來修飾。此聚合物用於製備本發明之含填料之聚合物組成物6A(表7)。與根據相同程序但不施加鏈端修飾劑E1製備之包含非本發明之非修飾聚合物的非本發明聚合物組成物11A相比,實例6A具有顯著較低之熱積聚、60℃下之tanδ及增加的60℃下之回彈性、拉伸強度及斷裂伸長率(表7)。此外,含填料聚合物組成物含有藉由以下步驟製備之聚合物:a)使用包含雙陰離子DI2及正丁基鋰之混合起始劑系統使1,3-丁二烯及苯乙烯共聚合,及b)用修飾劑E1修飾所得ω,ω’-雙陰離子及ω-單陰離子共聚物鏈以獲得ω-(根據式2)及ω,ω’-(根據式1)修飾之巨分子的混合物(表2及表3中之實例37)。根據實例37C,與非本發明之未交聯聚合物組成物實例12C(根據表5)之145.2相比,該未交聯之含填料之聚合物組成物(根據表5)具有顯著較低之化合物穆尼黏度126.6。該非本發明聚合物組成物12C係基於藉由用雙起始劑DI2使1,3-丁二烯及苯乙烯聚合且用修飾劑E1修飾所得雙陰離子聚合物巨分子所製備之非本發明聚合物實例12。因此,該非本發明聚合物12基本上包含ω,ω’修飾之聚合物鏈(根據式1)。考慮到略微劣化之60℃下之tanδ及略微改良之0℃下之tan δ值(實例37C之0.536對實例12C之0.466),實例37C之濕地抓著力/滾動阻力平衡與參考物12C相比仍處於類似等級。此外,實例37C之較高拉伸強度值及斷裂伸長率值指示本發明實例之相對改良的機械特性。 Example 6 The polymer composition (Tables 2 and 3) prepared by the steps of: Compound P2 is reacted with 2 equivalents of n-butyl to form a dianionic initiator DI2, dianionic initiator which is then used for 1 DI2 Polymerization of 3-butadiene and styrene to obtain a dianion-active styrene-butadiene polymer chain, which is then reacted with a modifier E1 by a ratio of 1:2 modifier to lithium It is modified by a 1:1 mixture of polymer chains modified to produce ω and ω, ω'. This polymer was used to prepare the filler-containing polymer composition 6A of the present invention (Table 7). Example 6A has significantly lower heat buildup, tan δ at 60 °C compared to non-inventive polymer composition 11A comprising a non-modified polymer of the present invention prepared according to the same procedure but without the application of chain end modifier E1 . And increased resilience, tensile strength and elongation at break at 60 ° C (Table 7). Further, the filler-containing polymer composition contains a polymer prepared by the following steps: a) copolymerizing 1,3-butadiene and styrene using a mixed initiator system comprising dianion DI2 and n-butyllithium, And b) modifying the obtained ω,ω'-dianion and ω-monoanionic copolymer chains with a modifier E1 to obtain a mixture of macromolecules modified by ω-(according to formula 2) and ω,ω'- (according to formula 1) (Examples 37 in Table 2 and Table 3). According to Example 37C, the uncrosslinked filler-containing polymer composition (according to Table 5) has a significantly lower ratio than 145.2 of the non-crosslinked polymer composition of Example 12C (according to Table 5). The compound Mooney viscosity was 126.6. The non-inventive polymer composition 12C is based on a non-inventive polymerization prepared by polymerizing 1,3-butadiene and styrene with a dual initiator DI2 and modifying the obtained dianion polymer macromolecule with a modifier E1. Example 12. Thus, the non-inventive polymer 12 essentially comprises a ω,ω' modified polymer chain (according to Formula 1). Considering the slightly degraded tan δ at 60 ° C and the slightly modified tan δ value at 0 ° C (0.536 for Example 37C versus 0.466 for Example 12C), the wet grip/rolling resistance balance of Example 37C was compared to Reference 12C. Still at a similar level. Moreover, the higher tensile strength values and elongation at break values of Example 37C indicate relatively improved mechanical properties of the examples of the present invention.

公認線性聚合物鏈歸因於較高冷流及增加之黏性而具有劣化之儲存穩定性。按照慣例,線性聚合物鏈至少部分地與金屬鹵化物或醇鹽(例如SnCl4、Si(OMe)4、SiCl4)偶合以生成星形聚合物。聚合物組成物實例23證明使用SnCl4作為偶合劑導致經由與具有兩個反應性鏈端(ω,ω’-陰離子聚合物鏈端)之聚合物鏈反應而產生顯著膠凝。意外地,進一步發現根據本發明之聚合物組成物具有降低之黏性,其對應於相對降低之滑動摩擦係數。非本發明及本發明聚合物組成物之滑動摩擦係數之實例在表9及圖1中給出。非本發明聚合物組成物38具有相對高滑動摩擦係數1.93,而本發 明聚合物組成物15具有相對低值1.76。與聚合物組成物15及38相比,關於本發明聚合物組成物19發現進一步降低之滑動摩擦係數1.60,該組成物進一步包含偶合之聚合物鏈。 It is recognized that linear polymer chains have degraded storage stability due to higher cold flow and increased viscosity. Conventionally, the linear polymer chains is at least partially with a metal halide or alkoxide (e.g. SnCl 4, Si (OMe) 4 , SiCl 4) coupled to generate star polymer. Examples of the polymer composition 23 that the use of SnCl 4 as a coupling agent resulting in the polymer chain via a reaction with the reactive chain end having two (ω, ω'- anionic polymer chain ends) of generating significant gelation. Surprisingly, it has further been found that the polymer composition according to the invention has a reduced viscosity which corresponds to a relatively reduced sliding friction coefficient. Examples of the sliding friction coefficient of the non-inventive and inventive polymer compositions are given in Table 9 and Figure 1. The non-inventive polymer composition 38 has a relatively high coefficient of sliding friction of 1.93, while the polymer composition 15 of the invention has a relatively low value of 1.76. A further reduced sliding friction coefficient of 1.60 was found with respect to the polymer composition 19 of the present invention as compared to the polymer compositions 15 and 38, the composition further comprising a coupled polymer chain.

Claims (21)

一種聚合物組成物,其包含根據以下式1及式2之經修飾聚合物:A1-P1-A2 式1 A3-P2 式2其中P1及P2各自獨立地為可藉由一或多種選自共軛二烯及芳族乙烯基化合物之可聚合單體的陰離子聚合獲得之聚合物鏈,其中各聚合物鏈P1及P2含有至少40重量%藉由該等共軛二烯之聚合獲得的重複單元,且其中至少聚合物鏈P1之陰離子聚合在以下式9a化合物存在下進行: 其中各R31獨立地選自氫、(C1-C10)烷基、(C6-C12)芳基及(C7-C18)芳烷基;各R32、R33及R34獨立地選自氫、(C1-C18)烷基及(C1-C18)烷氧基;各R41獨立地選自(C1-C100)烷基及(C2-C100)烯基,其中各R41視情況經一個至三個(C6-C12)芳基取代且視情況經由由至多25個選自共軛二烯及芳族乙烯基化合物的單體單元構成之寡聚物鏈鍵結至式9a之骨架,該等共軛二烯尤其為1,3-丁二烯及異戊二烯,該等芳族乙烯基化合物尤其為苯乙烯及二乙烯基苯;各M2獨立地選自鋰、鈉及鉀;且k、l及q為獨立地選自0、1、2及3之整數;A1、A2及A3獨立地選自以下式3至式8: 其中各R1獨立地選自(C1-C16)烷基;各R2獨立地選自(C1-C16)烷基、(C6-C18)芳基及(C7-C18)芳烷基;a及b為獨立地選自0、1及2之整數,其中a+b=2; R3獨立地選自二價(C1-C16)烷基、二價(C6-C18)芳基、二價(C7-C18)芳烷基及-R4-O-R5-,其中R4及R5獨立地選自二價(C1-C6)烷基;及Z獨立地選自(C1-C16)烷基、(C6-C18)芳基、(C7-C18)芳烷基、(C=S)-S-R6,其中R6選自(C1-C16)烷基、(C6-C18)芳基及(C7-C18)芳烷基;及-M1(R7)c(R8)d,其中M1為矽或錫,各R7獨立地選自(C1-C16)烷基、(C6-C18)芳基及(C7-C18)芳烷基;各R8獨立地選自-S-R3-Si(OR1)r(R2)s,其中R1、R2及R3如上文關於式3所定義,r為獨立地選自1、2及3之整數且s為獨立地選自0、1及2之整數,其中r+s=3;c為獨立地選自2及3之整數;d為獨立地選自0及1之整數;且c+d=3; 其中R9、R10、R11及R12獨立地選自氫、(C1-C16)烷基、(C6-C16)芳基及(C7-C16)芳烷基; 其中各R13、R14、R18及R19獨立地選自(C1-C16)烷基;R15及R20獨立地選自二價(C1-C16)烷基、二價(C6-C18)芳基、二價(C7-C18) 芳烷基及-R24-O-R25-,其中R24及R25獨立地選自二價(C1-C6)烷基;R16及R17獨立地選自(C1-C16)烷基及-SiR26R27R28,其中R26、R27及R28獨立地選自(C1-C16)烷基、(C6-C18)芳基及(C7-C18)芳烷基;各R21及R22獨立地選自(C1-C16)烷基、(C6-C18)芳基及(C7-C18)芳烷基;各R23獨立地選自氫及(C1-C6)烷基;f、g、h及i為獨立地選自0、1及2之整數;f+g=2;且h+i=2; 其中各R29及R30獨立地選自(C1-C16)烷基、(C6-C18)芳基、(C7-C18)芳烷基及乙烯基;及j為選自1至200之整數;且其中該式1聚合物之量以式1聚合物及式2聚合物之總量計為15莫耳%至85莫耳%。 A polymer composition comprising a modified polymer according to the following formula 1 and formula 2: A 1 -P 1 -A 2 Formula 1 A 3 -P 2 Formula 2 wherein P 1 and P 2 are each independently a polymer chain obtained by anionic polymerization of one or more polymerizable monomers selected from the group consisting of conjugated dienes and aromatic vinyl compounds, wherein each polymer chain P 1 and P 2 contains at least 40% by weight by the total A repeating unit obtained by polymerization of a conjugated diene, and wherein at least anionic polymerization of the polymer chain P 1 is carried out in the presence of a compound of the following formula 9a: Wherein each R 31 is independently selected from the group consisting of hydrogen, (C 1 -C 10 )alkyl, (C 6 -C 12 )aryl, and (C 7 -C 18 )aralkyl; each R 32 , R 33 and R 34 Independently selected from the group consisting of hydrogen, (C 1 -C 18 )alkyl and (C 1 -C 18 )alkoxy; each R 41 is independently selected from (C 1 -C 100 )alkyl and (C 2 -C 100 Alkenyl, wherein each R 41 is optionally substituted with one to three (C 6 -C 12 ) aryl groups and optionally via up to 25 monomer units selected from the group consisting of conjugated dienes and aromatic vinyl compounds The oligomer chain is bonded to the skeleton of the formula 9a, such as 1,3-butadiene and isoprene, and the aromatic vinyl compounds are especially styrene and divinylbenzene. Each M 2 is independently selected from the group consisting of lithium, sodium, and potassium; and k, l, and q are independently selected from the integers of 0, 1 , 2, and 3 ; and A 1 , A 2 , and A 3 are independently selected from the following formula 3 To Equation 8: Wherein each R 1 is independently selected from (C 1 -C 16 )alkyl; each R 2 is independently selected from (C 1 -C 16 )alkyl, (C 6 -C 18 )aryl and (C 7 -C) 18 ) aralkyl; a and b are independently selected from the integers of 0, 1 and 2, wherein a+b=2; R 3 is independently selected from divalent (C 1 -C 16 )alkyl, divalent ( C 6 -C 18 ) aryl, divalent (C 7 -C 18 ) aralkyl and -R 4 -OR 5 -, wherein R 4 and R 5 are independently selected from divalent (C 1 -C 6 ) alkane And Z are independently selected from (C 1 -C 16 )alkyl, (C 6 -C 18 )aryl, (C 7 -C 18 )aralkyl, (C=S)-SR 6 , wherein R 6 is selected from the group consisting of (C 1 -C 16 )alkyl, (C 6 -C 18 )aryl and (C 7 -C 18 )Aralkyl; and -M 1 (R 7 ) c (R 8 ) d , wherein M 1 is ruthenium or tin, and each R 7 is independently selected from (C 1 -C 16 )alkyl, (C 6 -C 18 )aryl and (C 7 -C 18 )aralkyl; each R 8 independently Selected from -SR 3 -Si(OR 1 ) r (R 2 ) s , wherein R 1 , R 2 and R 3 are as defined above for formula 3, r is independently selected from integers of 1, 2 and 3 and s Is an integer independently selected from 0, 1 and 2, wherein r + s = 3; c is an integer independently selected from 2 and 3; d is an integer independently selected from 0 and 1; and c + d = 3 ; Wherein R 9 , R 10 , R 11 and R 12 are independently selected from the group consisting of hydrogen, (C 1 -C 16 )alkyl, (C 6 -C 16 )aryl and (C 7 -C 16 )aralkyl; Wherein each of R 13 , R 14 , R 18 and R 19 is independently selected from (C 1 -C 16 )alkyl; R 15 and R 20 are independently selected from divalent (C 1 -C 16 )alkyl, divalent (C 6 -C 18 )aryl, divalent (C 7 -C 18 ) aralkyl and -R 24 -OR 25 -, wherein R 24 and R 25 are independently selected from divalent (C 1 -C 6 ) Alkyl; R 16 and R 17 are independently selected from (C 1 -C 16 )alkyl and -SiR 26 R 27 R 28 , wherein R 26 , R 27 and R 28 are independently selected from (C 1 -C 16 ) An alkyl group, a (C 6 -C 18 ) aryl group and a (C 7 -C 18 ) aralkyl group; each of R 21 and R 22 is independently selected from (C 1 -C 16 )alkyl, (C 6 -C 18 And aryl and (C 7 -C 18 ) aralkyl; each R 23 is independently selected from hydrogen and (C 1 -C 6 )alkyl; and f, g, h and i are independently selected from 0, 1 and An integer of 2; f+g=2; and h+i=2; Wherein each of R 29 and R 30 is independently selected from the group consisting of (C 1 -C 16 )alkyl, (C 6 -C 18 )aryl, (C 7 -C 18 )aralkyl, and vinyl; and j is selected from An integer from 1 to 200; and wherein the amount of the polymer of Formula 1 is from 15 mol% to 85 mol% based on the total of the polymer of Formula 1 and the polymer of Formula 2. 如申請專利範圍第1項之聚合物組成物,其包含一或多種其他組分,該等組分選自(i)添加至用於製備該等式1及2聚合物之聚合過程中或由於該聚合過程而形成之組分,及(ii)在自該聚合過程移除溶劑之後保留之組分。 A polymer composition according to claim 1 which comprises one or more other components selected from the group consisting of (i) added to the polymerization process for preparing the polymers of the formulae 1 and 2 or due to The component formed by the polymerization process, and (ii) the component remaining after the solvent is removed from the polymerization process. 如申請專利範圍第2項之聚合物組成物,其中該一或多種其他組分選自填充油、穩定劑及並非式1或式2聚合物之其他聚合物。 The polymer composition of claim 2, wherein the one or more other components are selected from the group consisting of a extender oil, a stabilizer, and other polymers other than the polymer of Formula 1 or Formula 2. 如申請專利範圍第1項至第3項中任一項之聚合物組成物,其包含一或多種在該聚合過程之後添加之組分,該等組分選自一或多種填料、一或多種並非式1或式2聚合物之其他聚合物及一或多種交聯劑。 The polymer composition of any one of clauses 1 to 3, which comprises one or more components added after the polymerization process, the components being selected from one or more fillers, one or more It is not another polymer of the polymer of Formula 1 or Formula 2 and one or more crosslinking agents. 如申請專利範圍第4項之聚合物組成物,其包含一或多種交聯劑。 A polymer composition according to claim 4, which comprises one or more crosslinking agents. 如申請專利範圍第1項至第5項中任一項之聚合物組成物,其中該等式1及式2聚合物構成所存在之聚合物的至少15重量%。 The polymer composition of any one of clauses 1 to 5, wherein the polymer of the formula 1 and formula 2 constitutes at least 15% by weight of the polymer present. 如申請專利範圍第6項之聚合物組成物,其中該等式1及式2聚合物構成所存在之聚合物的至少30重量%,更佳地至少45重量%。 The polymer composition of claim 6, wherein the polymer of the formula 1 and formula 2 constitutes at least 30% by weight, more preferably at least 45% by weight of the polymer present. 如申請專利範圍第1項至第7項中任一項之聚合物組成物,其中A1、 A2及A3獨立地選自如申請專利範圍第1項中所定義之式3。 The polymer composition according to any one of claims 1 to 7, wherein A 1 , A 2 and A 3 are independently selected from the formula 3 as defined in the first item of the patent application. 如申請專利範圍第1項至第8項中任一項之聚合物組成物,其中在該式9a化合物中,M2為鋰;R41選自(C1-C10)烷基;各R31獨立地選自氫及(C1-C10)烷基,較佳為氫;R32及R34為相同的且選自氫及(C1-C18)烷基;各R33獨立地選自氫及(C1-C18)烷基。 The polymer composition according to any one of claims 1 to 8, wherein in the compound of the formula 9a, M 2 is lithium; R 41 is selected from (C 1 -C 10 )alkyl; each R 31 independently selected from hydrogen and (C 1 -C 10 )alkyl, preferably hydrogen; R 32 and R 34 are the same and selected from hydrogen and (C 1 -C 18 )alkyl; each R 33 independently It is selected from the group consisting of hydrogen and (C 1 -C 18 )alkyl. 如申請專利範圍第1項至第9項中任一項之聚合物組成物,其中P1及P2各自獨立地選自丁二烯及異戊二烯之均聚物、丁二烯及異戊二烯、丁二烯及苯乙烯以及異戊二烯及苯乙烯之無規或嵌段共聚物、以及丁二烯、異戊二烯及苯乙烯之無規或嵌段三元共聚物。 The polymer composition of any one of clauses 1 to 9, wherein each of P 1 and P 2 is independently selected from the group consisting of homopolymers of butadiene and isoprene, butadiene and Heterodiene or block copolymers of pentadiene, butadiene and styrene and isoprene and styrene, and random or block terpolymers of butadiene, isoprene and styrene. 如申請專利範圍第1項至第10項中任一項之聚合物組成物,其中芳族乙烯基單體構成該等聚合物P1及P2之2重量%至55重量%。 The application of a polymer composition patentable scope of the items 1 to item 10, wherein the aromatic vinyl monomer constituting these polymers P 1 and P 2 of 2 wt% to 55 wt%. 一種製備如申請專利範圍第1項至第11項中任一項所定義之聚合物組成物之方法,該方法包括以下步驟:i)使聚合起始劑混合物與一或多種選自共軛二烯及芳族乙烯基化合物之可聚合單體反應以獲得活性聚合物鏈,該聚合起始劑混合物可藉由使以下式9化合物: 其中各R31獨立地選自氫、(C1-C10)烷基、(C6-C12)芳基及(C7-C18)芳烷基;各R32、R33及R34獨立地選自氫、(C1-C18)烷基及(C1-C18)烷氧基;k、l及q為獨立地選自0、1、2及3之整數,與以下式10化合物反應而獲得:M2-R41 式10其中M2選自鋰、鈉及鉀且R41選自(C1-C100)烷基及(C2-C100)烯基,其中 各R41視情況經一個至三個(C6-C12)芳基取代且視情況經由由至多25個選自共軛二烯及芳族乙烯基化合物之單體單元構成的寡聚物鏈鍵結至M2,該等共軛二烯尤其為1,3-丁二烯及異戊二烯,該等芳族乙烯基化合物尤其為苯乙烯及二乙烯基苯;其中該等活性聚合物鏈含有至少40重量%藉由該等共軛二烯之聚合獲得的重複單元,且其中式10化合物與式9化合物之莫耳比率在1:1至8:1範圍內,及ii)使步驟i)之該等活性聚合物鏈與一或多種選自以下式11至式15化合物之鏈端修飾劑反應: 其中R1、R2、R3、Z、r及s如申請專利範圍第1項中關於式3所定義; 其中R9、R10、R11及R12如申請專利範圍第1項中關於式4所定義; 其中R13、R14、R15、R16及R17如申請專利範圍第1項中關於式6所定義;t為選自1、2及3之整數;u為選自0、1及2之整數;且t+u=3; 其中R18、R19、R20、R21、R22及R23如申請專利範圍第1項中關於式7所定義;v為選自1、2及3之整數;w為選自0、1及2之整數;且v+w=3; 其中各R29及R30如申請專利範圍第1項中關於式8所定義;且x為選自1至6之整數;且其中式11至式15之鏈端修飾劑按以下總量使用:(i)當式10化合物與式9化合物之莫耳比率在1:1至2.1:1範圍內時,每莫耳式10化合物0.15至0.85莫耳,及(ii)當式10化合物與式9化合物之莫耳比率在大於2.1:1至8:1範圍內時,每莫耳式10化合物0.5至3莫耳。 A method of preparing a polymer composition as defined in any one of claims 1 to 11, which comprises the steps of: i) bringing the polymerization initiator mixture to one or more selected from the group consisting of two The polymerizable monomer of the alkene and the aromatic vinyl compound is reacted to obtain a living polymer chain, and the polymerization initiator mixture can be obtained by the following compound of the formula 9: Wherein each R 31 is independently selected from the group consisting of hydrogen, (C 1 -C 10 )alkyl, (C 6 -C 12 )aryl, and (C 7 -C 18 )aralkyl; each R 32 , R 33 and R 34 Independently selected from the group consisting of hydrogen, (C 1 -C 18 )alkyl and (C 1 -C 18 )alkoxy; k, l and q are independently selected from the integers of 0, 1, 2 and 3, and 10 compound obtained by reaction: M 2 -R 41 Formula 10 wherein M 2 is selected from lithium, sodium and potassium and R 41 is selected from (C 1 -C 100 )alkyl and (C 2 -C 100 )alkenyl, each of which R 41 optionally substituted with one to three (C 6 -C 12 ) aryl groups and optionally via oligomeric chain bonds consisting of up to 25 monomer units selected from the group consisting of conjugated dienes and aromatic vinyl compounds To the M 2 , the conjugated dienes are especially 1,3-butadiene and isoprene, and the aromatic vinyl compounds are especially styrene and divinyl benzene; wherein the active polymer chains a repeating unit obtained by polymerization of at least 40% by weight of the conjugated diene, wherein the molar ratio of the compound of the formula 10 to the compound of the formula 9 is in the range of 1:1 to 8:1, and ii) the step i And the chain end modification of the one or more compounds selected from the group consisting of the following formulas 11 to 15 Agent reaction: Wherein R 1 , R 2 , R 3 , Z, r and s are as defined in the first aspect of the patent application; Wherein R 9 , R 10 , R 11 and R 12 are as defined in the first aspect of the patent application; Wherein R 13 , R 14 , R 15 , R 16 and R 17 are as defined in formula 1 in relation to formula 6; t is an integer selected from 1, 2 and 3; u is selected from 0, 1 and 2 An integer; and t+u=3; Wherein R 18, R 19, R 20 , R 21, R 22 and R 23 as patent application on the scope of formula 1 in which seven defined; V is selected from an integer of 1, 2 and 3; W is selected from 0, An integer of 1 and 2; and v+w=3; Wherein each of R 29 and R 30 is as defined in Formula 1 in Claim 1; and x is an integer selected from 1 to 6; and wherein the chain end modifiers of Formula 11 to Formula 15 are used in the following amounts: (i) when the molar ratio of the compound of the formula 10 to the compound of the formula 9 is in the range of 1:1 to 2.1:1, 0.15 to 0.85 moles per mole of the compound of the formula 10, and (ii) when the compound of the formula 10 and the formula 9 The molar ratio of the compound is from 0.5 to 3 moles per mole of the compound of the formula 10 when it is in the range of from greater than 2.1:1 to 8:1. 如申請專利範圍第12項之方法,其中在該式9化合物中,各R31獨立地選自氫及(C1-C10)烷基,較佳為氫;R32及R34為相同的且選自氫及(C1-C18)烷基;各R33獨立地選自氫及(C1-C18)烷基;且在該式10化合物中,M2為鋰;且R41選自(C1-C10)烷基。 The method of claim 12, wherein in the compound of formula 9, each R 31 is independently selected from the group consisting of hydrogen and (C 1 -C 10 )alkyl, preferably hydrogen; and R 32 and R 34 are the same. And selected from hydrogen and (C 1 -C 18 )alkyl; each R 33 is independently selected from hydrogen and (C 1 -C 18 )alkyl; and in the compound of formula 10, M 2 is lithium; and R 41 It is selected from (C 1 -C 10 )alkyl. 如申請專利範圍第12項或第13項之方法,其中該式10化合物與該式9化合物之間之莫耳比率在1.5:1至8:1、較佳地2:1至6:1範圍內。 The method of claim 12 or 13, wherein the molar ratio between the compound of the formula 10 and the compound of the formula 9 is in the range of 1.5:1 to 8:1, preferably 2:1 to 6:1. Inside. 如申請專利範圍第12項至第14項中任一項之方法,其中該式10化合物與該式9化合物之莫耳比率在大於2.1:1至7:1、較佳地2.1:1至6:1、更佳地2.5:1至3.5:1範圍內,甚至更佳為大致3:1。 The method of any one of clauses 12 to 14, wherein the molar ratio of the compound of formula 10 to the compound of formula 9 is greater than 2.1:1 to 7:1, preferably 2.1:1 to 6 :1, more preferably in the range of 2.5:1 to 3.5:1, even more preferably approximately 3:1. 如申請專利範圍第12項至第15項中任一項之方法,其中該一或多種鏈端修飾劑選自如申請專利範圍第11項中所定義之式11化合物。 The method of any one of clauses 12 to 15, wherein the one or more chain end modifiers are selected from the group consisting of the compound of formula 11 as defined in claim 11 of the patent application. 如申請專利範圍第12項至第16項中任一項之方法,其中添加選自無規化劑及偶合劑之一或多者。 The method of any one of claims 12 to 16, wherein one or more selected from the group consisting of a randomizer and a coupling agent are added. 如申請專利範圍第17項之方法,其中該偶合劑為二乙烯基苯。 The method of claim 17, wherein the coupling agent is divinylbenzene. 一種交聯聚合物組成物,其藉由使如申請專利範圍第5項中所定義之 聚合物組成物交聯而獲得。 A crosslinked polymer composition by as defined in item 5 of the scope of the patent application The polymer composition is obtained by crosslinking. 一種物件,其包含至少一種由如申請專利範圍第19項中所定義之交聯聚合物組成物形成之組分。 An article comprising at least one component formed from a crosslinked polymer composition as defined in claim 19 of the scope of the patent application. 如申請專利範圍第20項之物件,其為輪胎、輪胎胎面、輪胎側壁、汽車零件、鞋類組件、高爾夫球、皮帶、墊圈、密封件或軟管。 Articles of claim 20, which are tires, tire treads, tire sidewalls, automotive parts, footwear components, golf balls, belts, gaskets, seals or hoses.
TW105100284A 2015-01-14 2016-01-06 Functionalized elastomeric polymer compositions, their preparation methods and crosslinked rubber compositions thereof TW201629111A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15151112.8A EP3045495B1 (en) 2015-01-14 2015-01-14 Functionalized elastomeric polymer compositions, their preparation methods and crosslinked rubber compositions thereof

Publications (1)

Publication Number Publication Date
TW201629111A true TW201629111A (en) 2016-08-16

Family

ID=52354784

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105100284A TW201629111A (en) 2015-01-14 2016-01-06 Functionalized elastomeric polymer compositions, their preparation methods and crosslinked rubber compositions thereof

Country Status (13)

Country Link
US (1) US10294314B2 (en)
EP (1) EP3045495B1 (en)
JP (1) JP6724018B2 (en)
KR (1) KR102465575B1 (en)
CN (1) CN107207633B (en)
BR (1) BR112017012989A2 (en)
ES (1) ES2636745T3 (en)
MX (1) MX2017009287A (en)
PL (1) PL3045495T3 (en)
RU (1) RU2701830C2 (en)
SG (1) SG11201705107VA (en)
TW (1) TW201629111A (en)
WO (1) WO2016113115A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7055808B2 (en) * 2017-08-02 2022-04-18 Eneos株式会社 Rubber compositions, crosslinked rubber compositions, tires and industrial rubber parts
CN107674544B (en) * 2017-10-24 2020-03-24 沈阳顺风新材料有限公司 Preparation method of elastic coating material for outer wall
TW202116900A (en) * 2019-09-10 2021-05-01 日商Jsr股份有限公司 Polymer composition, crosslinked polymer and tire

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1271265A (en) 1968-06-08 1972-04-19 Bridgestone Tire Co Ltd Method of preparing conjugated diene polymers using catalysts based on organolithium compounds
US3951936A (en) 1974-09-03 1976-04-20 The Goodyear Tire & Rubber Company Polymerization process
US4172100A (en) * 1977-10-11 1979-10-23 The Dow Chemical Company 1,3-Bis[1-(4-methylphenyl)ethenyl]benzene
US4172190A (en) 1977-10-11 1979-10-23 The Dow Chemical Company Soluble multifunctional lithium containing initiator
CA1212932A (en) 1982-04-01 1986-10-21 Derek K. Jenkins Polymerisation of conjugated dienes
FR2567135B1 (en) 1984-07-03 1989-01-13 Asahi Chemical Ind POLYMER OR COPOLYMER OF BUTADIENE AND PROCESS FOR PREPARATION
CA1326479C (en) 1987-11-16 1994-01-25 Grace Y. Lo Amine containing initiator system for anionic polymerization
US5134199A (en) 1987-11-27 1992-07-28 Asahi Kasei Kogyo Kabushiki Kaisha Diene block polymer and polymer composition
US4982029A (en) 1988-12-16 1991-01-01 The Dow Chemical Company Method for the direct preparation of olefins from ketones and Grignard reagents
JP2730163B2 (en) 1989-04-07 1998-03-25 日本合成ゴム株式会社 Method for producing high trans low vinyl conjugated diene polymer
EP0413294A3 (en) 1989-08-18 1991-11-21 The Dow Chemical Company Narrow molecular weight distribution block polymers and process therefor
US5089574A (en) 1990-10-22 1992-02-18 The Goodyear Tire & Rubber Company Trans-1,4-polybutadiene synthesis
US5448002A (en) 1994-08-12 1995-09-05 The Goodyear Tire & Rubber Company Synthesis of trans-1,4-polybutadiene having controlled molecular weight
US5561210A (en) 1995-05-30 1996-10-01 Dow Corning Corporation Synthesis of siloxane-functional telechelic hydrocarbon polymers
US5521255A (en) 1995-05-30 1996-05-28 Dow Corning Corporation Synthesis of silyl-functional telechelic hydrocarbon polymers
US5753579A (en) 1995-12-26 1998-05-19 The Goodyear Tire & Rubber Company Trans microstructure directing initiator system
JPH0920839A (en) * 1996-07-22 1997-01-21 Asahi Chem Ind Co Ltd Rubber for improved tire tread
US5753761A (en) 1996-12-27 1998-05-19 The Goodyear Tire & Rubber Company Method of preparing trans polybutadiene blend for use in tires
EP0877034A1 (en) 1997-05-05 1998-11-11 The Goodyear Tire & Rubber Company Random trans SBR with low vinyl microstructure
US5834573A (en) 1997-05-21 1998-11-10 The Goodyear Tire & Rubber Company Synthesis of trans-1,4-polybutadiene
US6018007A (en) 1997-09-22 2000-01-25 Bridgestone Corporation Synthesis of 1,4-trans-polybutadiene using a lanthanide organic acid salt catalyst
US6197713B1 (en) 1997-12-19 2001-03-06 Bridgestone Corporation Use of Lewis acids for the breakdown of gelatinous rare earth compounds in hydrocarbon solutions
JP3889509B2 (en) 1998-04-25 2007-03-07 株式会社フジキン Piping structure for fluid distribution
US6177603B1 (en) 1998-06-12 2001-01-23 Bridgestone Corporation Organo zinc and rare earth catalyst system in the polymerization of conjugated dienes
DE19844607A1 (en) 1998-09-29 2000-03-30 Degussa Sulfanylsilanes
US6489415B2 (en) 1999-12-31 2002-12-03 The Goodyear Tire & Rubber Company Process for synthesizing trans-1,4-polybutadiene
US6310152B1 (en) 2000-10-24 2001-10-30 The Goodyear Tire & Rubber Company Synthesis of elastomeric high trans-1,4-polybutadiene
US6627715B2 (en) 2001-08-16 2003-09-30 The Goodyear Tire & Rubber Company Group IIa metal containing catalyst system
US6617406B2 (en) 2001-08-30 2003-09-09 The Goodyear Tire & Rubber Company Synthesis of elastomeric high trans-1,4-polybutadiene
EP1367069A1 (en) 2002-05-28 2003-12-03 Dow Global Technologies Inc. Process for homo-or copolymerization of conjugated diens
US6693160B1 (en) 2002-08-16 2004-02-17 The Goodyear Tire & Rubber Company Functionalized monomers for synthesis of rubbery polymers
US6984687B2 (en) 2004-01-19 2006-01-10 The Goodyear Tire & Rubber Company Oil extended rubber and composition containing low PCA oil
US20080287601A1 (en) 2005-10-19 2008-11-20 Dow Global Technologies Inc. Silane-Sulfide Chain End Modified Elastomeric Polymers
JP5493306B2 (en) * 2008-03-27 2014-05-14 Jsr株式会社 Method for producing amino group-containing polydiene, method for producing block copolymer, amino group-containing polydiene, and block copolymer
CN102066426B (en) * 2008-06-06 2012-10-17 思迪隆欧洲有限公司 Modified elastomeric polymers
JP5346352B2 (en) 2011-04-27 2013-11-20 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire
US8865829B2 (en) 2011-11-22 2014-10-21 The Goodyear Tire & Rubber Company Functionalized polymer, rubber composition and pneumatic tire
JP2015529735A (en) * 2012-09-14 2015-10-08 トリンゼオ ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング Silane sulfide modified elastomeric polymer

Also Published As

Publication number Publication date
US20170369606A1 (en) 2017-12-28
BR112017012989A2 (en) 2018-03-06
SG11201705107VA (en) 2017-07-28
US10294314B2 (en) 2019-05-21
RU2701830C2 (en) 2019-10-01
JP6724018B2 (en) 2020-07-15
RU2017128596A (en) 2019-02-14
CN107207633A (en) 2017-09-26
KR20170104995A (en) 2017-09-18
PL3045495T3 (en) 2017-10-31
KR102465575B1 (en) 2022-11-10
MX2017009287A (en) 2017-10-11
EP3045495A1 (en) 2016-07-20
WO2016113115A1 (en) 2016-07-21
CN107207633B (en) 2019-12-03
RU2017128596A3 (en) 2019-04-26
ES2636745T3 (en) 2017-10-09
EP3045495B1 (en) 2017-07-26
JP2018507282A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
TWI606054B (en) Polymerisation initiators
US8729167B2 (en) Modified elastomeric polymers
CN105008377B (en) Silane vulcanized object modified elastomer polymer
TWI610944B (en) Amino silane-modified polymers
JP6291060B2 (en) Silane modified elastomeric polymer
EP3049447B1 (en) Low vinyl bond modified elastomeric copolymers
MX2014011295A (en) Modified polymer compositions.
TW201714896A (en) Elastomeric polymer
JP6724018B2 (en) Functionalized elastic polymer composition, method for producing the same and crosslinked rubber composition thereof
JP6480490B2 (en) Silane sulfide modified elastomeric polymer