TW201628140A - Composite interface material with tunable CTE - Google Patents
Composite interface material with tunable CTE Download PDFInfo
- Publication number
- TW201628140A TW201628140A TW104134241A TW104134241A TW201628140A TW 201628140 A TW201628140 A TW 201628140A TW 104134241 A TW104134241 A TW 104134241A TW 104134241 A TW104134241 A TW 104134241A TW 201628140 A TW201628140 A TW 201628140A
- Authority
- TW
- Taiwan
- Prior art keywords
- particles
- cte
- layer
- interface material
- composite interface
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 228
- 239000002131 composite material Substances 0.000 title claims description 60
- 239000002245 particle Substances 0.000 claims abstract description 204
- 239000000945 filler Substances 0.000 claims abstract description 82
- 238000000034 method Methods 0.000 claims abstract description 56
- 238000004377 microelectronic Methods 0.000 claims description 57
- 239000000758 substrate Substances 0.000 claims description 16
- 235000012431 wafers Nutrition 0.000 claims description 13
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 238000005538 encapsulation Methods 0.000 claims description 5
- 239000002105 nanoparticle Substances 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 96
- 229920000642 polymer Polymers 0.000 description 7
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 5
- 239000004926 polymethyl methacrylate Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000008187 granular material Substances 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- CFBGXYDUODCMNS-UHFFFAOYSA-N cyclobutene Chemical compound C1CC=C1 CFBGXYDUODCMNS-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- -1 etc.) Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
- H01L23/295—Organic, e.g. plastic containing a filler
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3135—Double encapsulation or coating and encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/563—Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49827—Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Abstract
Description
本專利申請案於35 U.S.C.§119(e)(1)的規範下主張2014年10月19日提申的美國臨時專利申請案第62/065,747號的優先權,本文以引用的方式將其完整併入。 This patent application claims priority to U.S. Provisional Patent Application Serial No. 62/065,747, filed on Jan. Incorporate.
本發明係有關於具有可調整熱膨脹係數的複合介面材料。 The present invention is directed to a composite interface material having an adjustable coefficient of thermal expansion.
隨著積體電路(Integrated Circuit,IC)晶片技術的成熟,因為更小且更密集的IC的關係而可以達成更小的封裝。於許多案例中,多個小型IC晶片可以一起被封裝在一共同的封裝之中。於其中一範例中,該多個IC晶片可以包括多個器件或系統,該些多個器件或系統一起充當一較大型器件或系統的一部分。舉例來說,該些IC晶片可以被鑲嵌至一共同載板(舉例來說,基板、晶圓、…等)或是基礎層,並且有時候可以連同同樣被鑲嵌至該共同載板的多個離散器件或是類似物一起被封裝。該些器件、IC晶片、…諸如此類可能藉由和該共同載板相關聯的一或更多條繞線或是一或更多個互連層來互連。 As the integrated circuit (IC) wafer technology matures, smaller packages can be achieved due to the smaller and denser IC relationships. In many cases, multiple small IC chips can be packaged together in a common package. In one example, the plurality of IC chips can include a plurality of devices or systems that together function as part of a larger device or system. For example, the IC chips can be mounted to a common carrier (eg, substrate, wafer, etc.) or a base layer, and sometimes can be mounted in conjunction with multiple of the common carrier. Discrete devices or the like are packaged together. The devices, IC chips, ... and the like may be interconnected by one or more windings or one or more interconnect layers associated with the common carrier.
於許多案例中,含有該多個IC晶片(以及其它器件,如果存 在的話)的封裝會被填充劑、囊封層、介面材料、或是類似物填充。於某些案例中,該填充劑或囊封層可能完全包住該些IC晶片或者可能包括該封裝本身。該填充劑提供一圍繞該些晶片的密封層,並且具有保護的功能,用以防止受到環境破壞。於某些案例中,該填充劑可以在操作期間阻止來自該封裝裡面的該些IC晶片或器件的熱傳輸。隨著該封裝裡面的IC晶片或器件的數量增加,此熱傳輸的情況可能會惡化。 In many cases, the multiple IC chips (and other devices, if The package in the case may be filled with a filler, an encapsulation layer, an interface material, or the like. In some cases, the filler or encapsulant layer may completely encase the IC wafers or may include the package itself. The filler provides a sealing layer surrounding the wafers and has a protective function to prevent environmental damage. In some cases, the filler can block heat transfer from the IC wafers or devices within the package during operation. As the number of IC chips or devices in the package increases, this heat transfer situation may deteriorate.
來自該封裝裡面的IC晶片和其它器件之操作的熱會導致該封裝裡面的該些裝置的部分的實體尺寸或長度(或是高度、面積、…等)增加,其係以構成該些部分的每一種材料的熱膨脹係數(Coefficient of Thermal Expansion,CTE)為基礎。這會包含該些IC晶片、器件、濾波器、共同載板、以及封裝圍體(enclosure)的材料。當相鄰耦合部分的CTE不相同時,該些相鄰耦合部分會以不同的速率膨脹或是膨脹至不同的程度。該些相鄰耦合部分的充分膨脹差異會對該些IC晶片、器件、共同載板、圍體或是類似物之中的一或更多者造成破壞。 The heat from the operation of the IC chips and other devices within the package can result in an increase in the physical size or length (or height, area, etc.) of portions of the devices within the package, which are used to form the portions. The coefficient of thermal expansion (CTE) of each material is based. This would include the IC wafers, devices, filters, common carrier boards, and materials for encapsulating enclosures. When the CTEs of adjacent coupling portions are different, the adjacent coupling portions may expand or expand to different degrees at different rates. The difference in sufficient expansion of the adjacent coupling portions can cause damage to one or more of the IC chips, devices, common carrier boards, enclosures, or the like.
本發明的一態樣揭示一種用於囊封微電子元件之可調整的複合介面材料,其包括:一填充劑材料,其具有第一熱膨脹係數(coefficient of thermal expansion,CTE);以及某個數量的顆粒,其包括具有第二CTE的材料,其會以預設的空間排列結合該填充劑材料,該複合介面材料的CTE以該些顆粒的數量以及該預設的空間排列為基礎。 One aspect of the invention discloses an adjustable composite interface material for encapsulating a microelectronic component, comprising: a filler material having a first coefficient of thermal expansion (CTE); and a quantity A particle comprising a material having a second CTE that will bond the filler material in a predetermined spatial arrangement, the CTE of the composite interface material being based on the number of particles and the predetermined spatial arrangement.
本發明的另一態樣揭示一種微電子組件,其包括:一共同載板基礎層;一或更多個微電子元件,其被耦合至該共同載板;以及一可調 整的複合介面材料,用以囊封該些微電子元件,其包括:一填充劑材料,其具有第一熱膨脹係數(CTE);以及某個數量的顆粒,其包括具有第二CTE的材料,其會以預設的空間排列結合該填充劑材料,該複合介面材料的CTE以該些顆粒的數量以及該預設的空間排列為基礎。 Another aspect of the invention discloses a microelectronic assembly comprising: a common carrier substrate layer; one or more microelectronic components coupled to the common carrier; and an adjustable a composite interface material for encapsulating the microelectronic components, comprising: a filler material having a first coefficient of thermal expansion (CTE); and a quantity of particles comprising a material having a second CTE, The filler material is combined in a predetermined spatial arrangement, the CTE of the composite interface material being based on the number of the particles and the predetermined spatial arrangement.
本發明的又另一態樣揭示一種方法,其包括:提供一填充劑材料,用以囊封微電子元件,該填充劑材料具有第一熱膨脹係數(CTE);以預設的空間排列結合預設數量的顆粒和該填充劑材料,用以形成可調整的複合介面材料,該預設數量的顆粒包括具有第二CTE的材料;以及以該些顆粒的數量以及該空間排列為基礎來決定該複合介面材料的CTE。 Yet another aspect of the present invention discloses a method comprising: providing a filler material for encapsulating a microelectronic component, the filler material having a first coefficient of thermal expansion (CTE); Having a quantity of particles and the filler material to form an adjustable composite interface material, the predetermined number of particles comprising a material having a second CTE; and determining the number based on the number of particles and the spatial arrangement The CTE of the composite interface material.
100‧‧‧微電子器件封裝 100‧‧‧Microelectronics package
102‧‧‧載板 102‧‧‧ Carrier Board
104‧‧‧通道 104‧‧‧ channel
106‧‧‧微電子元件(元件) 106‧‧‧Microelectronic components (components)
108‧‧‧填充劑材料 108‧‧‧Filling materials
110‧‧‧上方載板 110‧‧‧Upper carrier board
112‧‧‧接點 112‧‧‧Contacts
200‧‧‧熱膨脹係數(CTE)可調整的介面材料 200‧‧‧Current expansion coefficient (CTE) adjustable interface material
202‧‧‧顆粒 202‧‧‧ granules
400‧‧‧微電子器件封裝 400‧‧‧Microelectronics package
502‧‧‧凝膠層 502‧‧‧ gel layer
504‧‧‧聚合物層 504‧‧‧ polymer layer
506‧‧‧凝膠層 506‧‧‧ gel layer
508‧‧‧聚合物層 508‧‧‧ polymer layer
602‧‧‧介面材料層 602‧‧‧Interfacial material layer
604‧‧‧介面材料層 604‧‧‧Interfacial material layer
606‧‧‧介面材料層 606‧‧‧Interfacial material layer
608‧‧‧下方填充劑或鈍化層 608‧‧‧Under filler or passivation layer
902‧‧‧較大尺寸的顆粒 902‧‧‧ Larger size granules
904‧‧‧較小尺寸的顆粒 904‧‧‧Small sized particles
1002‧‧‧黏接區域 1002‧‧‧bonding area
1102‧‧‧顆粒 1102‧‧‧Particles
本發明參考隨附的圖式提出詳細說明。在該些圖式中,一元件符號的最左邊數字表示該元件符號第一次出現的圖式。在不同的圖式中使用相同的元件符號來表示雷同或相同的項目。 The invention is described in detail with reference to the accompanying drawings. In these figures, the leftmost digit of a component symbol indicates the first occurrence of the component symbol. The same component symbols are used in different drawings to indicate similar or identical items.
為達此討論的目的,圖式中所示的裝置與系統會被顯示為有多個器件。但是,如本文中所述,各種裝置及/或系統的施行方式亦可以包含較少的器件並且仍然落在本揭示內容的範疇內。或者,其它裝置及/或系統的施行方式亦可以包含額外的器件或是該些已述器件的各種組合,並且仍然落在本揭示內容的範疇內。 For the purposes of this discussion, the devices and systems shown in the figures will be shown as having multiple devices. However, as described herein, the manner in which the various devices and/or systems are implemented may also include fewer devices and still fall within the scope of the present disclosure. Alternatively, the manner in which other devices and/or systems are implemented may also include additional devices or various combinations of such described devices, and still fall within the scope of the present disclosure.
圖1所示的係一種晶片至晶圓製程流程範例。 Figure 1 shows an example of a wafer-to-wafer process flow.
圖2所示的係根據一實施例之具有可調整熱膨脹係數的有顆粒浸漬的填充劑材料範例。 2 is an example of a particulate impregnated filler material having an adjustable coefficient of thermal expansion in accordance with an embodiment.
圖3所示的係根據一實施例之具有可調整熱膨脹係數的有顆粒浸漬的 填充劑材料的另一種範例。 Figure 3 shows a particle impregnated with an adjustable coefficient of thermal expansion according to an embodiment. Another example of a filler material.
圖4所示的係根據一實施例之用以形成一微電子器件封裝的範例製程,該封裝包含具有可調整熱膨脹係數的介面材料。 4 illustrates an exemplary process for forming a microelectronic device package in accordance with an embodiment, the package including an interface material having an adjustable thermal expansion coefficient.
圖5所示的係根據另一實施例之具有可調整熱膨脹係數的介面材料的另一種範例。 Figure 5 shows another example of an interface material having an adjustable coefficient of thermal expansion in accordance with another embodiment.
圖6所示的係根據一實施例之用以形成一微電子器件封裝的範例製程,該封裝包含具有可調整熱膨脹係數的層狀介面材料。 6 illustrates an exemplary process for forming a microelectronic device package in accordance with an embodiment, the package including a layered interface material having an adjustable coefficient of thermal expansion.
圖7所示的係根據另一實施例之用以形成一微電子器件封裝的另一範例製程,該封裝包含具有可調整熱膨脹係數的層狀介面材料。 Figure 7 illustrates another exemplary process for forming a microelectronic device package in accordance with another embodiment, the package comprising a layered interface material having an adjustable coefficient of thermal expansion.
圖8所示的係根據另一實施例之具有可調整熱膨脹係數的有顆粒浸漬的填充劑材料的另一種範例。 Figure 8 illustrates another example of a particulate impregnated filler material having an adjustable coefficient of thermal expansion in accordance with another embodiment.
圖9所示的係根據一實施例之可調整的複合介面材料的範例。 Figure 9 shows an example of an adjustable composite interface material in accordance with an embodiment.
圖10所示的係根據一實施例之可調整的複合介面材料的另一範例。 Another example of an adjustable composite interface material in accordance with an embodiment is shown in FIG.
圖11所示的係根據一實施例之可調整的複合介面材料的進一步範例。 Figure 11 shows a further example of an adjustable composite interface material in accordance with an embodiment.
圖12所示的係根據一施行方式之用以形成一微電子器件封裝的範例製程流程圖,該封裝包含具有可調整熱膨脹係數的介面材料。 Figure 12 illustrates an exemplary process flow diagram for forming a microelectronic device package in accordance with an implementation, the package including an interface material having an adjustable thermal expansion coefficient.
概要summary
本發明的代表性裝置與技術的施行方式提供一種具有可調整熱膨脹係數(CTE)的介面材料,用於囊封積體電路(Integrated Circuit,IC)晶粒、離散器件、以及類似物,舉例來說,該些積體電路(IC)晶粒、離散器件、以及類似物可被鑲嵌至一共同載板基礎層。預設數量的顆粒會以預設 的空間排列來結合一填充劑,用以形成該可調整的介面材料。舉例來說,該介面材料的CTE可以該些顆粒的數量以及該些顆粒的空間排列為基礎來調整,用以匹配被囊封的裝置及/或該共同載板的CTE。 Representative devices and techniques of the present invention provide an interface material having an adjustable coefficient of thermal expansion (CTE) for use in encapsulated integrated circuit (IC) dies, discrete devices, and the like, for example These integrated circuit (IC) dies, discrete devices, and the like can be mounted to a common carrier substrate. The preset number of particles will be preset The spatial arrangement is combined with a filler to form the adjustable interface material. For example, the CTE of the interface material can be adjusted based on the number of particles and the spatial arrangement of the particles to match the CTE of the encapsulated device and/or the common carrier.
於一施行方式中,該填充劑具有以該填充劑之該(些)材料為基礎的第一CTE,並且該些顆粒具有以該些顆粒之該(些)材料為基礎的第二CTE。於各種實施例中,該填充劑以及該些顆粒能夠各自由具有不同CTE的一或更多種材料所構成。該填充劑的最終CTE因而可以包括該填充劑的該些材料的組合為基礎。該些顆粒的最終CTE可以包括該些顆粒的材料的組合為基礎,或者,以包含由不同材料(舉例來說,具有不同的CTE)製成的顆粒為基礎,或者,前述的各種組合。 In one mode of operation, the filler has a first CTE based on the material(s) of the filler, and the particles have a second CTE based on the material(s) of the particles. In various embodiments, the filler and the particles can each be composed of one or more materials having different CTEs. The final CTE of the filler may thus be based on a combination of the materials of the filler. The final CTE of the particles may be based on a combination of materials comprising the particles, or based on particles comprising different materials (e.g., having different CTEs), or various combinations of the foregoing.
結合該些顆粒以及該填充劑會創造該CTE可調整的介面材料。藉由組合預設數量的顆粒與該填充劑,並且藉由將該些顆粒排列在預設的空間排列之中,所生成的介面材料便能夠具有所希望的CTE。舉例來說,其可能會希望該介面材料的CTE雷同於一封裝裡面的各種器件的CTE,雷同於該些器件所耦合的共同載板的CTE,雷同於該封裝或圍體本身的CTE,或者,雷同於上面的組合。 Combining the particles and the filler creates the CTE adjustable interface material. By combining a predetermined number of particles with the filler, and by arranging the particles in a predetermined spatial arrangement, the resulting interface material can have a desired CTE. For example, it may be desirable to have the CTE of the interface material similar to the CTE of the various devices in a package, the CTE of the common carrier plate to which the devices are coupled, the CTE of the package or the enclosure itself, or , similar to the above combination.
如上面提及,於其中一施行方式中,除了該些第一顆粒之外,該可調整的介面材料還包含一或更多種數量的其它顆粒,其包括具有一或更多個其它CTE的一或更多種其它材料。當以一或更多種其它預設的空間排列來與該填充劑材料結合時,該複合介面材料的CTE可以該些第一顆粒的數量、該一或更多種數量的其它顆粒、該些第一顆粒的預設空間排列以及該些其它顆粒的該一或更多種其它預設空間排列為基礎來調整。 As mentioned above, in one embodiment, the adjustable interface material comprises one or more other particles in addition to the first particles, including one or more other CTEs. One or more other materials. When combined with the filler material in one or more other predetermined spatial arrangements, the CTE of the composite interface material may be the number of the first particles, the one or more other particles, the The predetermined spatial arrangement of the first particles and the one or more other predetermined spatial arrangements of the other particles are adjusted based on the arrangement.
舉例來說,於某些施行方式中,該填充劑可以結合可能由不同材料構成的多種類型及/或形狀的顆粒。以預設的空間排列來結合此些顆粒與該填充劑可以達成可無限客製之介面材料的目的。 For example, in certain modes of operation, the filler may incorporate multiple types and/or shapes of particles that may be composed of different materials. Combining such particles with the filler in a predetermined spatial arrangement can achieve the purpose of an infinitely customizable interface material.
於另一施行方式中,該CTE可調整的介面材料可以由多層所構成。舉例來說,於其中一實施例中,該些顆粒在該填充劑材料裡面被排列在多層之中。於其中一範例中,該些顆粒藉由該些顆粒的平均尺寸(也就是,直徑、橫截面、切面、…等)被排列在多層之中,每一層中的顆粒皆具有事先選定的平均尺寸。於另一範例中,該些顆粒藉由顆粒的類型(舉例來說,顆粒的形狀、顆粒的材料、…等)被排列在多層之中,每一層中的顆粒皆具有事先選定類型的顆粒。 In another mode of operation, the CTE adjustable interface material can be constructed of multiple layers. For example, in one embodiment, the particles are arranged in a plurality of layers within the filler material. In one example, the particles are arranged in a plurality of layers by the average size (ie, diameter, cross section, section, etc.) of the particles, and the particles in each layer have a preselected average size. . In another example, the particles are arranged in a plurality of layers by the type of particles (for example, the shape of the particles, the material of the particles, etc.), and the particles in each layer have particles of a previously selected type.
於另一實施例中,該CTE可調整的介面材料係由多層的顆粒/填充劑組合所構成。舉例來說,該介面材料整體可能包含數層經客製調整或可客製化調整的介面材料。於此一實施例中,該些個別層可以各自由一填充劑材料結合一或更多種類型及一或更多種數量的顆粒所構成,以預設的排列方式被排列在該填充劑材料裡面。堆疊或是結合該些個別經客製調整的層能夠為整個堆疊產生所希望的CTE。 In another embodiment, the CTE tunable interface material is comprised of a plurality of layers of particulate/filler combinations. For example, the interface material as a whole may contain several layers of interface material that is custom adjusted or customizable. In this embodiment, the individual layers may each be composed of a filler material in combination with one or more types and one or more numbers of particles, arranged in a predetermined arrangement on the filler material. inside. Stacking or combining the individual custom-tuned layers can produce the desired CTE for the entire stack.
於各種範例中,層疊該介面材料(於單層填充劑裡面有多層顆粒,或者,有多層填充劑/顆粒複合物)會產生該整個介面材料的梯度CTE。舉例來說,該介面材料的CTE在該介面材料的其中一個範圍處(舉例來說,在該介面材料的頂端層或是第一區域)可能較低,並且該CTE在該介面材料的另一個範圍處(舉例來說,在靠近該共同載板的底部層或是第二區域)可能較大;反之亦可。於該些範例中,該層疊會在該CTE可調整的介面 材料的可客製化能力中增加另一維度。 In various examples, laminating the interface material (with multiple layers of particles in a single layer of filler, or with multiple layers of filler/particle composite) produces a gradient CTE for the entire interface material. For example, the CTE of the interface material may be lower at one of the ranges of the interface material (for example, at the top layer or the first region of the interface material), and the CTE is another one of the interface materials The range (for example, near the bottom layer or the second region of the common carrier) may be larger; vice versa. In these examples, the stack will be in the CTE adjustable interface. Another dimension is added to the material's customizable capabilities.
於各種施行方式中,本文中所述的技術與器件亦可以被排列成用以減少或調整該基板或封裝翹曲,從而導致較高的組裝封裝產量。舉例來說,非常匹配於該基板或封裝之CTE的介面材料的CTE會減少該基板或封裝的翹曲。另外,該介面材料還可被客製化成具有非常不同於該基板或封裝之CTE的CTE,從而配合熱膨脹而導致該基板或封裝之所希望的翹曲。 In various modes of implementation, the techniques and devices described herein can also be arranged to reduce or adjust the substrate or package warpage, resulting in higher assembly package yields. For example, the CTE of the interface material that closely matches the CTE of the substrate or package reduces the warpage of the substrate or package. In addition, the interface material can also be customized to have a CTE that is very different from the CTE of the substrate or package to match the thermal expansion to cause the desired warpage of the substrate or package.
除此之外,該些技術與裝置非常容易縮放,以便用於較小或較大的裝置、封裝、內插件、…等。進一步言之,藉由調整CTE可以減少或消弭某些基板處理問題。 In addition, these techniques and devices are very easy to scale for use in smaller or larger devices, packages, interposers, and the like. Further, certain substrate processing issues can be reduced or eliminated by adjusting the CTE.
本文中參考電氣器件與電子器件以及各種載板來討論各種施行方式及排列。本文中雖然提及特定的器件(也就是,印刷電路板(Printed Circuit Board,PCB)、晶圓、基板、積體電路(IC)晶片晶粒、離散器件、…等);但是,這並沒有限制的用意,而係為達容易討論以及方便解釋的目的。本文中所討論的技術以及裝置可以套用於任何類型或數量的:電氣器件(舉例來說,感測器、電晶體、二極體、…等);電路(舉例來說,積體電路(IC)、混合電路、ASIC、記憶體裝置、處理器、…等);由多個器件所組成的集合;已封裝的器件;結構(舉例來說,晶圓、面板、電路板、PCB、…等);以及類似物。此些器件、電路、晶片、結構、以及類似物之中的每一者通常會被稱為「微電子元件」。 Reference is made herein to electrical and electronic devices and various carrier boards to discuss various modes of implementation and arrangement. Although specific devices are mentioned herein (ie, Printed Circuit Board (PCB), wafer, substrate, integrated circuit (IC) die, discrete devices, etc.); however, this does not The purpose of the restriction is for the purpose of easy discussion and easy explanation. The techniques and devices discussed herein can be applied to any type or number: electrical devices (eg, sensors, transistors, diodes, etc.); circuits (eg, integrated circuits (ICs) ), hybrid circuits, ASICs, memory devices, processors, etc.); a collection of multiple devices; packaged devices; structures (for example, wafers, panels, boards, PCBs, etc.) ); and similar. Each of such devices, circuits, wafers, structures, and the like is often referred to as a "microelectronic component."
下面會利用複數個範例來更詳細解釋本發明的施行方式。此處和下面雖然討論各種施行方式與範例;不過,藉由組合多個個別施行方 式與範例的特點及元件便可能產生進一步的施行方式與範例。 A number of examples will be used below to explain in more detail the manner in which the present invention is practiced. Various implementations and examples are discussed here and below; however, by combining multiple individual performers The features and components of the formula and examples may lead to further implementation and examples.
具有可調整CTE的範例介面Sample interface with adjustable CTE
圖1所示的係一種晶片至晶圓製程流程範例,其用於形成一微電子器件封裝100。該封裝100代表根據範例施行方式之針對具有可調整熱膨脹係數(CTE)之介面材料的應用的範例環境。圖2、3、5以及8至11顯示根據各種實施例的各種範例CTE可調整的介面材料200的平面圖。圖4、6、以及7顯示根據各種實施例之形成微電子器件封裝400的範例替代製程,該微電子器件封裝400包含各種範例CTE可調整的介面材料200。本文中關於該些範例CTE可調整的介面材料200以及該些微電子器件封裝400所述的技術、器件以及裝置並不受限於圖1至11中的圖例,並且可以套用至包含其它電氣器件的其它設計、類型、排列以及構造,其並沒有脫離本揭示內容的範疇。 1 is an example of a wafer-to-wafer process flow for forming a microelectronic device package 100. The package 100 represents an exemplary environment for an application of an interface material having an adjustable coefficient of thermal expansion (CTE) according to an exemplary implementation. 2, 3, 5, and 8 through 11 show plan views of various example CTE adjustable interface materials 200 in accordance with various embodiments. 4, 6, and 7 show an exemplary alternative process for forming a microelectronic device package 400 that includes various example CTE adjustable interface materials 200 in accordance with various embodiments. The techniques, devices, and devices described herein with respect to the example CTE adjustable interface materials 200 and the microelectronic device packages 400 are not limited to the illustrations of FIGS. 1 through 11, and may be applied to other electrical devices. Other designs, types, arrangements, and configurations are not departing from the scope of the present disclosure.
圖12所示的係根據一施行方式之用以形成一CTE可調整的介面材料200的範例製程流程圖。利用圖12之以文字為基礎的流程圖來圖解所述製程係一種沒有限制用意的範例。進一步言之,圖1至11以及它們的個別討論同樣以圖形為基礎的流程圖來圖解用於形成CTE可調整的介面材料200及/或微電子器件封裝400的範例製程。本發明配合圖1至12所述之製程中的每一者還說明一種包含一或更多個CTE可調整的介面材料200的對應設備、結構、系統或是類似物。 12 is an exemplary process flow diagram for forming a CTE adjustable interface material 200 in accordance with an implementation. A text-based flow chart of Figure 12 is used to illustrate an example of the process without limitation. Further, FIGS. 1 through 11 and their individual discussion also illustrate an exemplary process for forming CTE adjustable interface material 200 and/or microelectronic device package 400 in a graph-based flow diagram. Each of the processes described with respect to Figures 1 through 12 of the present invention also illustrates a corresponding apparatus, structure, system, or the like that includes one or more CTE-adjustable interface materials 200.
除非額外明確詳述,否則,亦可以利用本文中明確提及之器件的替代器件來施行本文中所述的技術。於各種施行方式中,一CTE可調 整的介面材料200可以為單機型,或者,其可以為一系統、器件、結構、或是類似物(例如,微電子器件封裝400)的一部分。舉例來說,本文中所述的技術可以套用於被形成在一晶粒、晶圓、封裝或是其它器件上的多群或多層CTE可調整的介面材料200。 The techniques described herein may also be performed using alternative devices of the devices explicitly mentioned herein, unless explicitly stated in detail. In various modes of implementation, a CTE is adjustable The entire interface material 200 can be a stand-alone type, or it can be part of a system, device, structure, or the like (eg, microelectronic device package 400). For example, the techniques described herein can be applied to multi- or multi-layer CTE adjustable interface materials 200 that are formed on a die, wafer, package, or other device.
參考圖1,圖中雖然顯示一種晶片至晶圓製程流程範例以達容易討論的目的;但是,其亦可套用於任何載板、晶粒、封裝、基板、內插件、面板或是其它微電子元件。在(A)處,一載板102被製備為具有多條通道104,例如,直通矽通道(Through Silicon Via,TSV)或是類似物。在(B)處,一或多個微電子元件(「元件」)106(例如,IC晶片晶粒或是離散電子元件)會被附接至載板102的已製備通道側。在(C)處,一填充劑材料108(例如,囊封層)會被塗敷至該些元件106以及該載板102。於一範例中,該填充劑108可在必要時被平坦化,用以製備該填充劑108的頂端表面以供額外層來使用。於其中一範例中,該填充劑108的一薄黏接層可維持在該(些)元件106上,用以附接上方載板110。 Referring to Figure 1, a wafer-to-wafer process flow example is shown for ease of discussion; however, it can be applied to any carrier, die, package, substrate, interposer, panel, or other microelectronics. element. At (A), a carrier 102 is prepared to have a plurality of channels 104, such as a Through Silicon Via (TSV) or the like. At (B), one or more microelectronic components ("elements") 106 (eg, IC wafer dies or discrete electronic components) may be attached to the prepared channel side of carrier 102. At (C), a filler material 108 (eg, an encapsulation layer) is applied to the elements 106 and the carrier 102. In one example, the filler 108 can be planarized as necessary to prepare the top surface of the filler 108 for use in additional layers. In one example, a thin adhesive layer of the filler 108 can be maintained on the component(s) 106 for attaching the upper carrier 110.
在(D)處,上方載板110會被附接至該填充劑108。於各種範例中,該上方載板110可被加入用於處理或保護封裝100。於其中一範例中,舉例來說,當一元件106包括一光學感測器時,該上方載板110會透光。在(E)處,載板102的底部表面會被移除(舉例來說,藉由研磨),用以露出該載板102之底部側的通道104。(多個)金屬層(圖中並未顯示)會被加入至該載板102之已製備的底部表面,以便經由該些通道104來電氣耦合該些元件106。接點112(例如,焊接凸塊)會被耦合至該(些)金屬層之所希望的部分。 At (D), the upper carrier 110 will be attached to the filler 108. In various examples, the upper carrier 110 can be added to process or protect the package 100. In one example, for example, when an element 106 includes an optical sensor, the upper carrier 110 will transmit light. At (E), the bottom surface of the carrier 102 will be removed (for example, by grinding) to expose the channel 104 on the bottom side of the carrier 102. A metal layer (not shown) will be added to the prepared bottom surface of the carrier 102 to electrically couple the elements 106 via the channels 104. A contact 112 (e.g., a solder bump) will be coupled to the desired portion of the metal layer(s).
如圖1中所示,圖中的結果會產生一微電子組件(「封 裝」)100。於各種實施例中,該封裝100可以包含額外的器件(舉例來說,內插件、多個堆疊元件106、…等),或者,該封裝可以含有較少的器件並且仍然落在本揭示內容的範疇內。 As shown in Figure 1, the results in the figure produce a microelectronic component ("封封 Install") 100. In various embodiments, the package 100 can include additional devices (eg, interposer, multiple stacked components 106, . . . , etc.), or the package can contain fewer devices and still fall within the present disclosure. Within the scope.
圖2與3所示的係根據各種實施例之具有可調整熱膨脹係數的有顆粒浸漬的填充劑材料(也就是,CTE可調整的介面材料200)的範例。如圖2與3中所示,該介面材料200可以和上面參考圖1所述之填充劑108相同的方式被塗敷至該載板102以及該(些)元件106。舉例來說,該載板102以及該(些)元件106可以介面材料200塗佈。該介面材料200可以在溶劑蒸發之後被一聚合物塗層(例如,環苯丁烯(BCB)、聚甲基丙烯酸甲酯(PMMA)、基於環氧樹脂的光阻(例如,SU8)、環氧樹脂、天然纖維複合物(Natural Fiber Composit,NFR)、…等)塗佈。該介面材料200可以被平坦化,用以達成一平坦的表面,以便用於製備上方載板層110。進一步言之,該介面材料200可以在施加各種封裝100器件之前或之後被固化。除此之外,一黏著層塗層亦可被塗敷至該已安裝的上方載板層110。 2 and 3 are examples of particle impregnated filler materials (i.e., CTE adjustable interface material 200) having an adjustable coefficient of thermal expansion in accordance with various embodiments. As shown in FIGS. 2 and 3, the interface material 200 can be applied to the carrier 102 and the component(s) 106 in the same manner as the filler 108 described above with respect to FIG. For example, the carrier 102 and the component(s) 106 can be coated with an interface material 200. The interface material 200 can be coated with a polymer after solvent evaporation (eg, cyclobutene (BCB), polymethyl methacrylate (PMMA), epoxy based photoresist (eg, SU8), ring Oxygen resin, natural fiber composite (NFR), etc.). The interface material 200 can be planarized to achieve a flat surface for use in preparing the upper carrier layer 110. Further, the interface material 200 can be cured before or after application of various package 100 devices. In addition, an adhesive coating can also be applied to the installed upper carrier layer 110.
於各種施行方式中,該介面材料200係由一具有第一熱膨脹係數(CTE)的填充劑材料108以及數個顆粒202所構成,該些顆粒202包括具有第二CTE的材料。該些顆粒202會以預設的空間排列結合該填充劑材料108。於該些施行方式,該複合介面材料200的CTE係以該些顆粒202的數量以及該預設的空間排列為基礎。於某些施行方式中,該複合介面材料200的CTE係以該些顆粒202的尺寸為基礎。 In various modes of operation, the interface material 200 is comprised of a filler material 108 having a first coefficient of thermal expansion (CTE) and a plurality of particles 202 comprising a material having a second CTE. The particles 202 will bond the filler material 108 in a predetermined spatial arrangement. In these modes of operation, the CTE of the composite interface material 200 is based on the number of particles 202 and the predetermined spatial arrangement. In some embodiments, the CTE of the composite interface material 200 is based on the size of the particles 202.
圖2與3的圖式為該些顆粒202的一般空間排列。於其它實施例中,如下面所示,該些顆粒可以預設的排列來排列,以便產生該介面 材料200之所希望的CTE。進一步言之,如圖2與3的圖式中所示,於一實施例中,該些顆粒202可以具有各式各樣的尺寸及/或形狀。於其它實施例中,如下面所示,該些顆粒可以具有事先選定的尺寸及形狀,以便產生該介面材料200之所希望的CTE。 The figures of Figures 2 and 3 are the general spatial arrangement of the particles 202. In other embodiments, as shown below, the particles may be arranged in a predetermined arrangement to create the interface. The desired CTE of material 200. Further, as shown in the figures of Figures 2 and 3, in one embodiment, the particles 202 can have a wide variety of sizes and/or shapes. In other embodiments, as shown below, the particles may have a previously selected size and shape to produce the desired CTE of the interface material 200.
於一施行方式中,該可調整的介面材料200包含多種類型的顆粒202,該些顆粒202包括具有各種CTE的各種材料。於該施行方式中,該多種類型的顆粒202會以各種預設的空間排列結合該填充劑材料108,以便決定該複合介面材料200之所希望的CTE。因此,該介面材料200的CTE會以該填充劑108的CTE以及該各種顆粒202的CTE、該各種顆粒202的數量以及該各種顆粒的預設空間排列為基礎。 In an embodiment, the adjustable interface material 200 comprises a plurality of types of particles 202 comprising various materials having various CTEs. In this mode of operation, the plurality of types of particles 202 will bond the filler material 108 in various predetermined spatial arrangements to determine the desired CTE of the composite interface material 200. Accordingly, the CTE of the interface material 200 will be based on the CTE of the filler 108 and the CTE of the various particles 202, the number of the various particles 202, and the predetermined spatial arrangement of the various particles.
於各種實施例中,該填充劑材料108可以包括聚合物(例如,環苯丁烯(BCB)或是聚甲基丙烯酸甲酯(PMMA))、環氧樹脂或基於環氧樹脂的光阻(例如,SU8)、天然纖維複合物(NFR)、或是類似物。於各種施行方式中,該些顆粒202可以包括無機材料(例如,玻璃、氧化鈦、碳奈米管、矽奈米管、鎢、…等)、有機材料(例如,富勒烯(fullerene)、…等)、或是類似物。進一步言之,該些顆粒可以為實心或空心,並且可以實質上為球形、卵形、稜形、不規則形、薄片狀、薄膜顆粒、或是類似形狀。 In various embodiments, the filler material 108 can comprise a polymer (eg, cyclobutene (BCB) or polymethyl methacrylate (PMMA)), an epoxy or an epoxy based photoresist ( For example, SU8), natural fiber composite (NFR), or the like. In various modes of implementation, the particles 202 may comprise inorganic materials (eg, glass, titanium oxide, carbon nanotubes, nanotubes, tungsten, etc.), organic materials (eg, fullerene, ...etc.), or the like. Further, the particles may be solid or hollow and may be substantially spherical, oval, prismatic, irregular, flake, film particles, or the like.
於某些實施例中,如圖3中所示,某些顆粒202可能大於所希望的尺寸。於該些實施例中,該些較大顆粒202可能由該介面材料200平坦化至所希望的高度。於其它實施例中,該些顆粒202不會大於(直徑、橫截面、或是切面)5微米。於其中一範例中,該些顆粒202的尺寸具有常態分佈並且具有小於5微米的平均尺寸。進一步言之,於某些實施例中, 該些顆粒202為奈米顆粒,並且不會大於數十奈米或數百奈米。於一範例中,該些顆粒202具有實質上均勻的尺寸,舉例來說,直徑或橫截面變化落在20%裡面。 In some embodiments, as shown in FIG. 3, certain particles 202 may be larger than desired. In these embodiments, the larger particles 202 may be planarized by the interface material 200 to a desired height. In other embodiments, the particles 202 are not greater than (diameter, cross-section, or cut) 5 microns. In one example, the particles 202 have a normal distribution and have an average size of less than 5 microns. Further, in some embodiments, The particles 202 are nanoparticle and will not be larger than tens of nanometers or hundreds of nanometers. In one example, the particles 202 have a substantially uniform size, for example, a diameter or cross-sectional variation that falls within 20%.
圖4所示的係根據一實施例之用以形成一微電子器件封裝400的範例製程。為達本揭示內容的目的,該封裝400為封裝100加上具有可調整熱膨脹係數的介面材料200。舉例來說,該封裝400包括被耦合至一共同載板102的一或更多個微電子元件106以及一用以囊封該些微電子元件106的可調整的複合介面材料200,該可調整的複合介面材料200包括一具有第一熱膨脹係數(CTE)的填充劑材料108以及數個顆粒202,該些顆粒202包括具有第二CTE的材料。當該些顆粒202以預設的空間排列結合該填充劑材料108時,該複合介面材料200的CTE係以該些顆粒202的數量以及該預設的空間排列為基礎。 4 illustrates an exemplary process for forming a microelectronic device package 400 in accordance with an embodiment. For the purposes of this disclosure, the package 400 is a package 100 plus an interface material 200 having an adjustable coefficient of thermal expansion. For example, the package 400 includes one or more microelectronic components 106 coupled to a common carrier 102 and an adjustable composite interface material 200 for encapsulating the microelectronic components 106, the adjustable Composite interface material 200 includes a filler material 108 having a first coefficient of thermal expansion (CTE) and a plurality of particles 202 comprising a material having a second CTE. When the particles 202 are bonded to the filler material 108 in a predetermined spatial arrangement, the CTE of the composite interface material 200 is based on the number of the particles 202 and the predetermined spatial arrangement.
在(A)處,該些元件106以及該載板102會被該介面材料200囊封。在(B)處,該介面材料200(以及,視情況,該些元件106的一部分)會如所希望般地平坦化。在(C)處,於一黏接層被塗敷至該已平坦化的表面之後,一上方載板110(例如,搬運基板)會被附接至該已平坦化的表面。 At (A), the components 106 and the carrier 102 are encapsulated by the interface material 200. At (B), the interface material 200 (and, as the case may be, a portion of the elements 106) will planarize as desired. At (C), after an adhesive layer is applied to the planarized surface, an upper carrier 110 (eg, a carrier substrate) is attached to the planarized surface.
於各種實施例中,該上方載板110可以由玻璃、矽、多晶矽、冶金矽(metallurgical silicon)、碳化矽、碳纖維-聚醯亞胺疊層、或是類似物。在(D)處,該上方載板110會於必要時被平坦化。在(E)處,該些通道104會因移除該載板102的下方側的一部分而露出,該(些)金屬層(圖中並未顯示)會被塗敷至該載板102的該已製備的下方側,該些接點112會被耦合至該(些)金屬層,並且該些封裝會被切割。如圖4中所示,其結果便係微電子組件 封裝400。 In various embodiments, the upper carrier 110 can be made of glass, tantalum, polycrystalline germanium, metallurgical silicon, tantalum carbide, carbon fiber-polyimine laminate, or the like. At (D), the upper carrier 110 will be planarized as necessary. At (E), the channels 104 are exposed by removing a portion of the underside of the carrier 102, and the metal layer(s) (not shown) will be applied to the carrier 102. On the underside that has been prepared, the contacts 112 will be coupled to the metal layer(s) and the packages will be cut. As shown in Figure 4, the result is a microelectronic component Package 400.
於一施行方式中,該複合介面材料200的CTE實質上雷同於該共同載板102的CTE、該些微電子器元件106中的一或更多個微電子器元件的CTE或者該共同載板102以及該些微電子器元件106中的一或更多個微電子器元件的CTE。為達本揭示內容的目的,實質上雷同的CTE為相差不差過10%。 In a mode of implementation, the CTE of the composite interface material 200 is substantially identical to the CTE of the common carrier 102, the CTE of one or more of the microelectronic components 106, or the common carrier 102. And the CTE of one or more of the microelectronic elements 106. For the purposes of this disclosure, essentially the same CTE is no more than 10% difference.
圖5所示的係根據另一實施例之具有可調整熱膨脹係數的介面材料的200的一種範例。於圖5中所示的實施例中,該介面材料200係由聚合物強化凝膠網絡(polymer-reinforced sol-gel network)所構成的多層(502至508)。舉例來說,該介面材料200可以包含經由交替的聚合物層(504與508)(舉例來說,厚度可以為10至20微米)強化的交替的凝膠層(502與506)(舉例來說,厚度可以為10至20微米)。該些交替層可以持續交替,直到所希望厚度的介面材料200被塗敷為止。 Figure 5 shows an example of a 200 having an interface material having an adjustable coefficient of thermal expansion in accordance with another embodiment. In the embodiment shown in FIG. 5, the interface material 200 is a multilayer (502 to 508) composed of a polymer-reinforced sol-gel network. For example, the interface material 200 can comprise alternating gel layers (502 and 506) reinforced via alternating polymer layers (504 and 508) (for example, thicknesses of 10 to 20 microns) (for example The thickness can be 10 to 20 microns). The alternating layers may continue to alternate until the desired thickness of the interface material 200 is applied.
於一施行方式中,該些各別層(502至508)被分開塗敷,並且該聚合物可被允許於固化之前擴散至該凝膠網絡之中。該層狀介面材料200可以被平坦化,並且於必要時,在固化之前附接一上方載板110。該些聚合物層可以包括BCB、SU8、環氧樹脂、PMMA、NFR、以及類似物。 In one mode of operation, the individual layers (502 to 508) are applied separately and the polymer can be allowed to diffuse into the gel network prior to curing. The layered interface material 200 can be planarized and, if necessary, attached to an upper carrier plate 110 prior to curing. The polymer layers may include BCB, SU8, epoxy, PMMA, NFR, and the like.
於另一施行方式中,該可調整的複合介面材料200包括多層,其中,每一層皆包含以預設的空間排列結合一填充劑材料108的某個數量的顆粒202。於該施行方式中,該複合介面材料200的CTE係以每一層之中的該些顆粒202的數量、每一層之中的該些顆粒202的尺寸以及每一層之中的該些顆粒202的預設空間排列為基礎。 In another embodiment, the adjustable composite interface material 200 comprises a plurality of layers, wherein each layer comprises a quantity of particles 202 that incorporate a filler material 108 in a predetermined spatial arrangement. In this mode of operation, the CTE of the composite interface material 200 is based on the number of the particles 202 in each layer, the size of the particles 202 in each layer, and the pre-forms of the particles 202 in each layer. Set the space arrangement as the basis.
圖6與7所示的係用以形成一封裝400的範例製程,該封裝具有包括多層(602至606)的可調整的介面材料200。於一施行方式中,如圖6中所示,該些元件106以及該載板102會被多層不同的介面材料200囊封。於一實施例中,該些元件106相鄰於一底部填充層或鈍化層608,必要時,該底部填充層或鈍化層608介於該些元件106以及該載板102之間。 6 and 7 illustrate an exemplary process for forming a package 400 having an adjustable interface material 200 comprising a plurality of layers (602 to 606). In an embodiment, as shown in FIG. 6, the elements 106 and the carrier 102 are encapsulated by a plurality of layers of different interface materials 200. In one embodiment, the elements 106 are adjacent to an underfill layer or passivation layer 608, and if necessary, the underfill layer or passivation layer 608 is interposed between the elements 106 and the carrier 102.
舉例來說,於其中一實施例中,該多層(602至606)介面材料200中的每一者具有不同平均尺寸的顆粒202。舉例來說,於其中一層中(舉例來說,602),該些顆粒202的平均尺寸大於其它層中(舉例來說,604與606)的顆粒202的平均尺寸。進一步言之,於另一層中(舉例來說,606),該些顆粒202的平均尺寸小於其它層中(舉例來說,602與604)的顆粒202的平均尺寸。 For example, in one embodiment, each of the plurality of layers (602 to 606) of interface material 200 has particles 202 of different average sizes. For example, in one of the layers (for example, 602), the average size of the particles 202 is greater than the average size of the particles 202 in the other layers (for example, 604 and 606). Further, in another layer (for example, 606), the average size of the particles 202 is less than the average size of the particles 202 in other layers (for example, 602 and 604).
於另一實施例中,該些層(602至606)以該層裡面的顆粒202的平均尺寸為基礎來排列。換言之,該多層(602至606)裡面的一層的相對空間位置係由該層裡面該些顆粒的平均尺寸來決定。於該實施例中,該介面材料200的CTE可以逐層改變。 In another embodiment, the layers (602 to 606) are arranged based on the average size of the particles 202 in the layer. In other words, the relative spatial position of a layer within the plurality of layers (602 to 606) is determined by the average size of the particles within the layer. In this embodiment, the CTE of the interface material 200 can be varied layer by layer.
於進一步實施例中,該多層(602至606)根據每一層裡面的顆粒202的平均尺寸(如上述所建議的)依照梯度順序來排列,從最大到最小或是從最小到最大。於該實施例中,該介面材料200的CTE同樣以每一層(602至606)的CTE為基礎依照梯度而改變。舉例來說,於一施行方式中,該多層(602至606)依照梯度排列方式來排列,俾使得具有最大顆粒202的層(602至606)會比較靠近該共同載板102並且具有最小顆粒202的層(602至606)會最遠離該共同載板102;反之亦可。 In a further embodiment, the plurality of layers (602 to 606) are arranged in a gradient order according to the average size of the particles 202 in each layer (as suggested above), from maximum to minimum or from minimum to maximum. In this embodiment, the CTE of the interface material 200 is also varied in accordance with the gradient based on the CTE of each layer (602 to 606). For example, in an implementation, the plurality of layers (602 through 606) are arranged in a gradient arrangement such that the layers (602 through 606) having the largest particles 202 are closer to the common carrier 102 and have the smallest particles 202. The layers (602 to 606) will be farthest from the common carrier 102; vice versa.
參考圖6,在(A)處,該些元件106以及該載板102會被不同介面材料200的多層(602至606)囊封。在(B)處,該些元件106以及該載板102被該多層(602至606)完全囊封。在(C)處,該多層介面材料200會於必要時被平坦化。在(D)處,一上方載板110被附接並且同樣會於必要時被平坦化。在(E)處,該組件400已準備進行任何進一步處理。 Referring to Figure 6, at (A), the elements 106 and the carrier 102 are encapsulated by multiple layers (602 to 606) of different interface materials 200. At (B), the elements 106 and the carrier 102 are completely encapsulated by the plurality of layers (602 to 606). At (C), the multilayer interface material 200 will be planarized as necessary. At (D), an upper carrier plate 110 is attached and will also be planarized as necessary. At (E), the assembly 400 is ready for any further processing.
參考圖7,該些元件106以及該載板102會被不同介面材料200的多層(602至606)囊封,該些層具有不同尺寸、不同材料、或是不同CTE的顆粒202。在(A)處,該些元件106以及該載板102會被該介面材料200的第一層602塗佈。具有該第一層602的載板102可在繼續進行該製程之前先被攪動或是振動,以便提高顆粒202密度。在(B)處,該些元件106以及該載板102會被該介面材料200的第二層604塗佈。具有該第一層與第二層(602與604)的載板102可在繼續進行該製程之前先被攪動或是振動,以便提高顆粒202密度。在(C)處,該些元件106以及該載板102會被該介面材料200的第三層606塗佈。具有該第一層、第二層以及第三層(602至606)的載板102可在繼續進行該製程之前先被攪動或是振動,以便提高顆粒202密度。在(D)處,該介面材料200的該些層(602至606)可於必要時被平坦化。該組件已準備進行任何後續的處理步驟。 Referring to Figure 7, the elements 106 and the carrier 102 are encapsulated by multiple layers (602 to 606) of different interface materials 200 having particles 202 of different sizes, different materials, or different CTEs. At (A), the elements 106 and the carrier 102 are coated by the first layer 602 of the interface material 200. The carrier 102 having the first layer 602 can be agitated or vibrated prior to continuing the process to increase the density of the particles 202. At (B), the elements 106 and the carrier 102 are coated by the second layer 604 of the interface material 200. The carrier 102 having the first and second layers (602 and 604) can be agitated or vibrated prior to continuing the process to increase the density of the particles 202. At (C), the elements 106 and the carrier 102 are coated by a third layer 606 of the interface material 200. The carrier 102 having the first, second, and third layers (602 to 606) may be agitated or vibrated prior to continuing the process to increase the density of the particles 202. At (D), the layers (602 to 606) of the interface material 200 may be planarized as necessary. This component is ready for any subsequent processing steps.
於一施行方式中,如圖8中所示,該介面材料200的該些顆粒202可以包含奈米顆粒。於其中一施行方式中,該些顆粒202包括微胞相(micellar phase)的奈米顆粒。於其它施行方式中,可以在該介面材料200之中單獨使用或是配合其它顆粒202使用具有奈米規模的其它奈米顆粒或顆粒202。 In an embodiment, as shown in FIG. 8, the particles 202 of the interface material 200 may comprise nanoparticle. In one mode of operation, the particles 202 comprise nanoparticles of the micellar phase. In other modes of operation, other nanoparticles or particles 202 having a nanometer scale may be used alone or in combination with other particles 202 in the interface material 200.
於另一施行方式中,如圖9至11中所示,該些顆粒202已預設的空間排列被排列在該介面材料200裡面,其包含位於該填充劑材料108裡面的一或更多層顆粒202或區域。舉例來說,一均勻層包含實質均勻尺寸的多個顆粒202。換言之,該些顆粒202根據該些顆粒202的平均尺寸被排列在多層之中。較大尺寸的顆粒902被併入於和較小尺寸的顆粒904分開的層之中(較小尺寸的顆粒904被排列在一分開的層之中)。為達本揭示內容的目的,實質上均勻的尺寸為偏差不大於20%的顆粒尺寸。 In another mode of operation, as shown in FIGS. 9-11, the predetermined spatial arrangement of the particles 202 is arranged within the interface material 200, which includes one or more layers within the filler material 108. Particle 202 or region. For example, a uniform layer comprises a plurality of particles 202 of substantially uniform size. In other words, the particles 202 are arranged in multiple layers depending on the average size of the particles 202. The larger sized particles 902 are incorporated into a layer separate from the smaller sized particles 904 (the smaller sized particles 904 are arranged in a separate layer). For the purposes of this disclosure, a substantially uniform size is a particle size that differs by no more than 20%.
於其它實施例中,該些顆粒202可以該填充劑108裡面的顆粒202的配置(其包含該些顆粒202的平均尺寸、顆粒202的材料、該填充劑108裡面的顆粒202的密度、該些顆粒202的形狀、該些顆粒202的CTE、該些顆粒202的空間排列、以及類似物)為基礎被排列在二或更多個區域之中。於替代的實施例中,一或更多個顆粒202以及一或更多個填充劑108的各種此些配置會被排列成導致該二或更多個區域中每一者的所希望的CTE。舉例來說,該二或更多個區域中的每一者可以具有如所希望的不同的CTE。 In other embodiments, the particles 202 may be disposed of the particles 202 within the filler 108 (which includes the average size of the particles 202, the material of the particles 202, the density of the particles 202 within the filler 108, and The shape of the particles 202, the CTE of the particles 202, the spatial arrangement of the particles 202, and the like are arranged in two or more regions. In an alternate embodiment, various such configurations of one or more particles 202 and one or more fillers 108 may be arranged to result in a desired CTE for each of the two or more regions. For example, each of the two or more regions may have a different CTE as desired.
於一實施例中,如圖9中所示,多層顆粒202會被排列在該填充劑材料裡面108,俾使得具有較大的顆粒902的層會被具有較小的顆粒904的層包圍。如圖9中所示,這會在類矩陣的排列中導致更為對稱的顆粒202尺寸輪廓。 In one embodiment, as shown in FIG. 9, multilayer particles 202 will be disposed within the filler material 108 such that a layer having larger particles 902 will be surrounded by a layer having smaller particles 904. As shown in Figure 9, this results in a more symmetrical particle 202 size profile in the arrangement of the class matrix.
於一進一步實施例中,如圖10中所示,多層會以梯度排列的方式被排列在該填充劑材料108裡面,俾使得具有最大顆粒902的層(舉例來說,其中一個區域)會比較靠近該共同載板102並且具有最小顆粒904 的層(舉例來說,另一區域)會最遠離該共同載板102。這會在類矩陣的排列中導致一梯度式的顆粒202尺寸輪廓。於某些實施例中,這同樣會至少部分以該些顆粒202的材料為基礎在該介面材料200裡面導致一梯度式的CTE輪廓。 In a further embodiment, as shown in Figure 10, the layers are arranged in a gradient arrangement within the filler material 108 such that the layer having the largest particles 902 (for example, one of the regions) is compared Close to the common carrier 102 and having a minimum particle 904 The layer (for example, another area) will be farthest from the common carrier 102. This results in a gradient of the size of the particle 202 in the arrangement of the class matrix. In some embodiments, this will also result in a gradient CTE profile within the interface material 200 based at least in part on the material of the particles 202.
舉例來說,具有最大顆粒902的其中一個區域的CTE可以被事先決定為具有實質上雷同於該共同載板102之CTE的CTE,而具有最小顆粒904的另一個區域的CTE則可以被事先決定為具有實質上雷同於該微電子元件106之CTE的CTE。於該範例中,該些區域的CTE可以該些區域裡面的實際或相對數量的顆粒(902、904)、該些區域裡面的該些顆粒(902、904)的個別空間排列或是類似物為基礎來調整(也就是,配置)。 For example, the CTE of one of the regions having the largest particle 902 can be determined in advance to have a CTE that is substantially identical to the CTE of the common carrier 102, while the CTE of another region having the smallest particle 904 can be determined in advance. It is a CTE having a CTE that is substantially identical to the microelectronic element 106. In this example, the CTEs of the regions may be an actual or relative number of particles (902, 904) in the regions, individual spatial arrangements of the particles (902, 904) in the regions, or the like. The basis to adjust (that is, configuration).
於其中一範例中,如圖10中所示,一黏接區域1002可以被形成在或保留在該介面材料200的上方表面處,用以在必要時黏接一上方載板110。舉例來說,該黏接區域1002可以在該介面材料的平坦化之後被形成或殘留,並且可以於某些案例中相對沒有顆粒202。 In one example, as shown in FIG. 10, an adhesive region 1002 can be formed or retained at the upper surface of the interface material 200 for bonding an upper carrier 110 as necessary. For example, the bonding region 1002 can be formed or left after planarization of the interface material, and can be relatively free of particles 202 in some cases.
於一施行方式中,如圖11中所示,該些顆粒202可以為混合類型(902、904、1102)。於該施行方式中,該介面材料200可以包含另一數量的不同顆粒1102,其包括另一材料並且具有另一CTE。該些其它顆粒1102可以預設的空間排列來結合該填充劑材料108,雷同於顆粒202。該些不同的顆粒可以被排列在和該數量的顆粒(此圖中顯示為902與904)分開的一或更多層之中。於該施行方式中,該複合介面材料200的CTE係以顆粒202的數量、其它顆粒1102的一或更多個其它數量、該些顆粒202的預設空間排列以及該些其它顆粒1102的該一或更多個其它預設空間排列為基 礎。 In an embodiment, as shown in FIG. 11, the particles 202 can be of a hybrid type (902, 904, 1102). In this mode of operation, the interface material 200 can comprise another number of different particles 1102 comprising another material and having another CTE. The other particles 1102 can be combined with the filler material 108 in a predetermined spatial arrangement, similar to the particles 202. The different particles may be arranged in one or more layers separate from the number of particles (shown as 902 and 904 in this figure). In this mode of operation, the CTE of the composite interface material 200 is in the number of particles 202, one or more other quantities of other particles 1102, a predetermined spatial arrangement of the particles 202, and the one of the other particles 1102. Or more other preset spaces arranged as a base foundation.
於圖11中所示的範例中,該介面材料200包含球形(902、904)以及非球形(1102)顆粒202。於一實施例中,該些較大的底部顆粒904可以由矽、碳化矽、鋁或是類似物所構成。該些最頂端的顆粒1102可以由薄片或是類薄層結構(如同在雲母、某些碳、石墨、…等之中)所構成。 In the example shown in FIG. 11, the interface material 200 comprises spherical (902, 904) and non-spherical (1102) particles 202. In one embodiment, the larger bottom particles 904 may be comprised of tantalum, tantalum carbide, aluminum, or the like. The topmost particles 1102 may be composed of a thin sheet or a thin layer-like structure (as in mica, some carbon, graphite, ..., etc.).
於各種實施例中,黏接層1002可以在平坦化(如果必要的話)之後被形成在或是保留在該介面材料200的該最頂端層處。舉例來說,該黏接層可以包括最小的顆粒(舉例來說,橫截面小於1微米並且切面小於0.05微米)。 In various embodiments, the adhesive layer 1002 can be formed or retained at the topmost layer of the interface material 200 after planarization, if necessary. For example, the adhesive layer can include a minimum of particles (for example, a cross section of less than 1 micron and a facet of less than 0.05 microns).
圖12所示的係根據各種施行方式之用以形成一CTE可調整的介面材料(例如,CTE可調整的介面材料200)的範例製程1200的流程圖。圖12的方塊會參考圖2至11處所示的CTE可調整的介面材料。 12 is a flow diagram of an exemplary process 1200 for forming a CTE adjustable interface material (eg, CTE adjustable interface material 200) in accordance with various modes of operation. The block of Figure 12 will refer to the CTE adjustable interface material shown at Figures 2-11.
在方塊1202處,該製程包含提供一填充劑材料(例如,填充劑材料108),用以囊封微電子元件,其具有第一熱膨脹係數(CTE)。 At a block 1202, the process includes providing a filler material (eg, filler material 108) for encapsulating the microelectronic component having a first coefficient of thermal expansion (CTE).
在方塊1204處,該製程包含以預設的空間排列來結合預設數量的顆粒(例如,顆粒202)(該些顆粒包括具有第二CTE的材料)以及該填充劑材料,用以形成一可調整的複合介面材料。於一施行方式中,該製程包含根據顆粒的尺寸及/或形狀而將位在該填充劑材料裡面的顆粒排列成多層顆粒。於另一施行方式中,該製程包含以隨機的排列方式將該些顆粒排列在該介面材料裡面。於一進一步施行方式中,該些顆粒可以實質上均勻地分佈在整個介面材料中。 At a block 1204, the process includes combining a predetermined number of particles (eg, particles 202) in a predetermined spatial arrangement (the particles include a material having a second CTE) and the filler material to form a Adjusted composite interface material. In one mode of operation, the process includes arranging particles positioned within the filler material into a plurality of layers based on the size and/or shape of the particles. In another mode of operation, the process includes arranging the particles in the interface material in a random arrangement. In a further embodiment, the particles may be substantially evenly distributed throughout the interface material.
在方塊1206處,該製程包含以該些顆粒的數量以及該些顆 粒的空間排列為基礎來決定該複合介面材料的CTE。於各種實施例中,該製程包含以調校該些顆粒的數量及/或該些顆粒的空間排列為基礎來調整或調校該介面材料的CTE。 At a block 1206, the process includes the number of particles and the plurality of particles The spatial arrangement of the particles is based on determining the CTE of the composite interface material. In various embodiments, the process includes adjusting or adjusting the CTE of the interface material based on adjusting the number of particles and/or the spatial arrangement of the particles.
於一施行方式中,該製程包含藉由下面方式而形成一微電子組件(例如,封裝400):耦合一或更多個微電子元件(例如,元件106)至一共同載板基礎層(例如,載板102);調整該複合介面材料的CTE至實質上雷同於該共同載板的CTE、該些微電子元件中的一或更多個微電子元件的CTE或是該共同載板以及該些微電子元件中的一或更多個微電子元件的CTE;以及利用該複合介面材料來囊封該一或更多個微電子元件。 In one implementation, the process includes forming a microelectronic component (eg, package 400) by coupling one or more microelectronic components (eg, component 106) to a common carrier substrate layer (eg, The carrier board 102) adjusts the CTE of the composite interface material to substantially the same CTE of the common carrier, the CTE of one or more of the microelectronic components, or the common carrier and the micro a CTE of one or more microelectronic elements in the electronic component; and utilizing the composite interface material to encapsulate the one or more microelectronic components.
於一施行方式中,該製程包含:以一或更多種其它預設的空間排列來結合一或更多個其它數量的其它顆粒(例如,顆粒1102)(其包括具有一或更多個其它CTE的一或更多種其它材料)與該填充劑材料,以便形成該可調整的複合介面材料;以及以該些顆粒的數量、其它顆粒的該一或更多個其它數量、該空間排列以及該一或更多種其它空間排列為基礎來決定該複合介面材料的CTE。 In one implementation, the process includes combining one or more other numbers of other particles (eg, particles 1102) in one or more other predetermined spatial arrangements (which include one or more other One or more other materials of the CTE) and the filler material to form the adjustable composite interface material; and the number of the particles, the one or more other numbers of other particles, the spatial arrangement, and The one or more other spatial arrangements are used to determine the CTE of the composite interface material.
於一施行方式中,該製程包含形成多層,每一層皆包含以預設的空間排列結合一填充劑材料的某個數量的顆粒。進一步言之,該製程包含以每一層之中的該些顆粒的數量、每一層之中的該些顆粒的尺寸、以及每一層之中該些顆粒的空間排列為基礎來決定該複合介面材料的CTE。於其中一實施例中,該製程包含以該些層裡面的該些顆粒的平均尺寸為基礎的相對空間順序來排列該多層。 In one mode of operation, the process includes forming a plurality of layers, each layer comprising a quantity of particles bonded to a filler material in a predetermined spatial arrangement. Further, the process includes determining the composite interface material based on the number of the particles in each layer, the size of the particles in each layer, and the spatial arrangement of the particles in each layer. CTE. In one embodiment, the process includes arranging the plurality of layers in a relative spatial order based on the average size of the particles in the layers.
用於CTE可調整的複合介面材料200的不同配置可以利用 不同的施行方式來達成。於替代的施行方式中,該介面材料200的各種其它組合與設計同樣落在本揭示內容的範疇內。該些變化例的元件可以少於圖1至圖11中所示之範例中所圖解的元件數量,或者,它們可以具有比該些已示元件更多的元件或是替代元件。 Different configurations of the CTE adjustable composite interface material 200 can be utilized Different ways of implementation to achieve. Various alternative combinations and designs of the interface material 200 are also within the scope of the present disclosure in alternative implementations. The elements of these variations may be fewer than the number of elements illustrated in the examples shown in Figures 1 through 11, or they may have more or alternative elements than those shown.
該些製程在本文中被說明的順序並不希望被視為限制性,並且該些已述製程方塊中任何數量的製程方塊亦能夠以任何順序來結合以施行該些製程或是替代製程。除此之外,個別的方塊亦能夠從該些製程中被刪除,其並沒有脫離本文中所述之主要內容的精神與範疇。再者,該些製程亦能夠以任何合宜的材料或是它們的組合來施行,其並沒有脫離本文中所述之主要內容的範疇。於替代的施行方式中,可以於該些製程中以各種組合併入其它技術,並且同樣仍在本揭示內容的範疇裡面。 The order in which the processes are described herein is not intended to be limiting, and any number of process blocks in the described process blocks can be combined in any order to perform the processes or alternative processes. In addition, individual blocks can also be deleted from the processes without departing from the spirit and scope of the main content described herein. Furthermore, the processes can be carried out in any suitable material or a combination thereof without departing from the scope of the main content described herein. In alternative implementations, other techniques may be incorporated in various combinations in such processes, and are still within the scope of the present disclosure.
結論in conclusion
本文雖然已經以結構性特點及/或方法動作特有的語言說明過本揭示內容的施行方式;但是,應該瞭解的係,該些施行方式未必僅受限於該些已述特點或動作。確切地說,該些特定特點以及動作在本文中被揭示為用以施行範例裝置與技術的代表性形式。 The manner in which the present disclosure has been described in the context of structural features and/or method-specific actions has been described herein; however, it should be understood that such implementations are not necessarily limited to the described features or actions. Rather, the specific features and acts are disclosed herein as representative forms of example devices and techniques.
102‧‧‧載板 102‧‧‧ Carrier Board
104‧‧‧通道 104‧‧‧ channel
106‧‧‧微電子元件(元件) 106‧‧‧Microelectronic components (components)
108‧‧‧填充劑材料 108‧‧‧Filling materials
200‧‧‧熱膨脹係數(CTE)可調整的介面材料 200‧‧‧Current expansion coefficient (CTE) adjustable interface material
202‧‧‧顆粒 202‧‧‧ granules
Claims (24)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462065747P | 2014-10-19 | 2014-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201628140A true TW201628140A (en) | 2016-08-01 |
Family
ID=54396985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104134241A TW201628140A (en) | 2014-10-19 | 2015-10-19 | Composite interface material with tunable CTE |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201628140A (en) |
WO (1) | WO2016064686A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI676243B (en) * | 2016-12-21 | 2019-11-01 | 大陸商蘇州邁瑞微電子有限公司 | Chip package structure and the method of making the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11139268B2 (en) * | 2019-08-06 | 2021-10-05 | Advanced Semiconductor Engineering, Inc. | Semiconductor package structure and method of manufacturing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7170188B2 (en) * | 2004-06-30 | 2007-01-30 | Intel Corporation | Package stress management |
US20070135550A1 (en) * | 2005-12-14 | 2007-06-14 | Nirupama Chakrapani | Negative thermal expansion material filler for low CTE composites |
US7656042B2 (en) * | 2006-03-29 | 2010-02-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Stratified underfill in an IC package |
-
2015
- 2015-10-16 WO PCT/US2015/056086 patent/WO2016064686A1/en active Application Filing
- 2015-10-19 TW TW104134241A patent/TW201628140A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI676243B (en) * | 2016-12-21 | 2019-11-01 | 大陸商蘇州邁瑞微電子有限公司 | Chip package structure and the method of making the same |
Also Published As
Publication number | Publication date |
---|---|
WO2016064686A1 (en) | 2016-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11133237B2 (en) | Package with embedded heat dissipation features | |
US11664352B2 (en) | Semiconductor package having a high reliability | |
TWI601257B (en) | Fan-out stacked system in package (sip) having dummy dies and methods of making the same | |
US9741664B2 (en) | High density substrate interconnect formed through inkjet printing | |
US12021008B2 (en) | Thermal interface materials, 3D semiconductor packages and methods of manufacture | |
JP7458969B2 (en) | Microelectronic component with molded area with through-mold vias | |
US20180277519A1 (en) | Packages with Stacked Dies and Methods of Forming the Same | |
US20160351530A1 (en) | Semiconductor devices and packages including conductive underfill material and related methods | |
US20150187679A1 (en) | Lid Design for Heat Dissipation Enhancement of Die Package | |
US9240394B1 (en) | Stacked chips attached to heat sink having bonding pads | |
US9196575B1 (en) | Integrated circuit package with cavity in substrate | |
JP2013537365A (en) | Semiconductor chip device having a polymer filler groove | |
KR20160031960A (en) | Semiconductor packaging having warpage control and methods of forming same | |
US11784163B2 (en) | Stacking structure, package structure and method of fabricating the same | |
CN107808873A (en) | Multiple cross tie parts between tube core | |
US11955401B2 (en) | Package structure | |
TW202209582A (en) | Electronic package and manufacturing method thereof | |
US20130062789A1 (en) | Manufacturing a filling of a gap region | |
TW201628140A (en) | Composite interface material with tunable CTE | |
Mitsukura et al. | Material technology for 2.5 D/3D package | |
US20240290683A1 (en) | Package lid including a multi-layer structure for heat dissipation and methods of forming the same | |
US20240014099A1 (en) | Integrated circuit device exposed die package structure with adhesive | |
US20230361086A1 (en) | Stacking structure, package structure and method of fabricating the same | |
US20230066968A1 (en) | Semiconductor package and manufacturing method thereof | |
TW202435383A (en) | Semiconductor package structure and method of forming the same |