TW201625777A - Liquid crystal composition and liquid crystal display element - Google Patents

Liquid crystal composition and liquid crystal display element Download PDF

Info

Publication number
TW201625777A
TW201625777A TW104122685A TW104122685A TW201625777A TW 201625777 A TW201625777 A TW 201625777A TW 104122685 A TW104122685 A TW 104122685A TW 104122685 A TW104122685 A TW 104122685A TW 201625777 A TW201625777 A TW 201625777A
Authority
TW
Taiwan
Prior art keywords
group
liquid crystal
carbon atoms
substituted
compound
Prior art date
Application number
TW104122685A
Other languages
Chinese (zh)
Other versions
TWI633177B (en
Inventor
Yoshimasa Furusato
Masayuki Saito
Original Assignee
Jnc Corp
Jnc Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc Corp, Jnc Petrochemical Corp filed Critical Jnc Corp
Publication of TW201625777A publication Critical patent/TW201625777A/en
Application granted granted Critical
Publication of TWI633177B publication Critical patent/TWI633177B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Abstract

Provided is a liquid crystal composition either fulfilling at least one property or having an appropriate balance of at least two properties, from among such properties as a high upper limit temperature of the nematic phase, a low lower limit temperature of the nematic phase, a low viscosity, an appropriate optical anisotropy, a large negative dielectric anisotropy, a high specific resistance, a high stability against ultraviolet rays, and a high stability against heat. Also provided is an AM element having properties such as a short response time, a high voltage retention rate, a low threshold voltage, a high contrast ratio, and a long service life. The present invention is a liquid crystal composition which contains as a first additive a compound for contributing to high stability against heat or ultraviolet rays, which has negative dielectric anisotropy, and which has a nematic phase. The composition may contain a specific compound having a large negative dielectric anisotropy as a first component, a specific compound having a high upper limit temperature or low viscosity as a second component, and a specific compound having a polymerizable group as a second additive.

Description

液晶組成物及液晶顯示元件Liquid crystal composition and liquid crystal display element

本發明是有關於一種液晶組成物、含有該組成物的液晶顯示元件等。尤其有關於介電各向異性為負的液晶組成物,以及含有該組成物且具有共面切換(in-plane switching,IPS)、垂直配向(vertical alignment,VA)、邊緣場切換(fringe field switching,FFS)、電場感應光反應配向(field-induced photo-reactive alignment,FPA)等模式的液晶顯示元件。本發明亦有關於一種聚合物穩定配向型的液晶顯示元件。The present invention relates to a liquid crystal composition, a liquid crystal display element containing the composition, and the like. In particular, there is a liquid crystal composition having a negative dielectric anisotropy, and including the composition and having in-plane switching (IPS), vertical alignment (VA), and fringe field switching. , FFS), liquid crystal display elements in a mode such as field-induced photo-reactive alignment (FPA). The present invention also relates to a polymer stable alignment type liquid crystal display element.

液晶顯示元件中,基於液晶分子的操作模式(operating mode)的分類為:相變(phase change,PC)、扭轉向列(twisted nematic,TN)、超扭轉向列(super twisted nematic,STN)、電控雙折射(electrically controlled birefringence,ECB)、光學補償彎曲(optically compensated bend,OCB)、共面切換(in-plane switching,IPS)、垂直配向(vertical alignment,VA)、邊緣場切換(fringe field switching,FFS)、電場感應光反應配向(field-induced photo-reactive alignment,FPA)等模式。基於元件的驅動方式的分類為被動矩陣(passive matrix,PM)與主動矩陣(active matrix,AM)。PM被分類為靜態式(static)與多工式(multiplex)等,AM被分類為薄膜電晶體(thin film transistor,TFT)、金屬-絕緣體-金屬(metal insulator metal,MIM)等。TFT的分類為非晶矽(amorphous silicon)以及多晶矽(polycrystal silicon)。後者根據製造步驟而進一步分類為高溫型與低溫型。基於光源的分類為利用自然光的反射型、利用背光的透過型以及利用自然光與背光兩者的半透過型。In the liquid crystal display device, the classification of the operating mode based on the liquid crystal molecules is: phase change (PC), twisted nematic (TN), super twisted nematic (STN), Electrically controlled birefringence (ECB), optically compensated bend (OCB), in-plane switching (IPS), vertical alignment (VA), fringe field switching (fringe field) Switching, FFS), field-induced photo-reactive alignment (FPA) and other modes. The component-based driving methods are classified into a passive matrix (PM) and an active matrix (AM). The PM is classified into a static type and a multiplex type, and the AM is classified into a thin film transistor (TFT), a metal insulator metal (MIM), or the like. The classification of TFTs is amorphous silicon and polycrystalline silicon. The latter is further classified into a high temperature type and a low temperature type according to the manufacturing steps. The classification based on the light source is a reflection type using natural light, a transmission type using a backlight, and a semi-transmissive type using both natural light and a backlight.

液晶顯示元件含有具有向列相的液晶組成物。該組成物具有適當的特性。藉由提高該組成物的特性,可獲得具有良好特性的AM元件。將兩者的特性中的關聯歸納於下述表1中。基於市售的AM元件來對組成物的特性進一步進行說明。向列相的溫度範圍與元件可使用的溫度範圍相關聯。向列相的較佳的上限溫度為約70℃以上,而且向列相的較佳的下限溫度為約-10℃以下。組成物的黏度與元件的響應時間相關聯。為了以元件顯示動態影像,較佳為響應時間短。理想為短於1毫秒的響應時間。因此,較佳為組成物的黏度小。更佳為低溫下的黏度小。The liquid crystal display element contains a liquid crystal composition having a nematic phase. This composition has suitable characteristics. By improving the characteristics of the composition, an AM device having good characteristics can be obtained. The correlation among the characteristics of the two is summarized in Table 1 below. The characteristics of the composition will be further described based on commercially available AM elements. The temperature range of the nematic phase is related to the temperature range over which the component can be used. A preferred upper limit temperature of the nematic phase is about 70 ° C or higher, and a preferred lower limit temperature of the nematic phase is about -10 ° C or lower. The viscosity of the composition is related to the response time of the component. In order to display a moving image as a component, it is preferable that the response time is short. Ideally a response time shorter than 1 millisecond. Therefore, it is preferred that the viscosity of the composition is small. More preferably, the viscosity at low temperatures is small.

表1. 組成物與AM元件的特性 Table 1. Characteristics of composition and AM components

組成物的光學各向異性與元件的對比度比相關聯。根據元件的模式而需要大的光學各向異性或小的光學各向異性,即光學各向異性適當。組成物的光學各向異性(Δn)與元件的單元間隙(d)的積(Δn×d)被設計成使對比度比為最大。適當的積的值依存於操作模式的種類。於VA模式的元件中,該值為約0.30 μm至約0.40 μm的範圍,於IPS模式或FFS模式的元件中,該值為約0.20 μm至約0.30 μm的範圍。於該些情況下,對單元間隙小的元件而言較佳為光學各向異性大的組成物。組成物中的大的介電各向異性有助於元件中的低臨限電壓、小的消耗電力及大的對比度比。因此,較佳為介電各向異性大。組成物中的大的比電阻有助於元件的大的電壓保持率及大的對比度比。因此,較佳為在初始階段中不僅在室溫下,而且在高溫下比電阻亦大的組成物。較佳為在長時間使用後,不僅在室溫下,而且在高溫下比電阻亦大的組成物。組成物對紫外線及熱的穩定性與元件的壽命相關聯。該穩定性高時,元件的壽命長。如上所述的特性對液晶投影機、液晶電視等中使用的AM元件而言較佳。The optical anisotropy of the composition is related to the contrast ratio of the component. A large optical anisotropy or a small optical anisotropy is required depending on the mode of the element, that is, the optical anisotropy is appropriate. The product (Δn × d) of the optical anisotropy (Δn) of the composition and the cell gap (d) of the element is designed to maximize the contrast ratio. The value of the appropriate product depends on the type of operation mode. In the VA mode element, the value is in the range of about 0.30 μm to about 0.40 μm, and in the IPS mode or FFS mode element, the value is in the range of about 0.20 μm to about 0.30 μm. In such cases, a component having a small cell gap is preferably a composition having a large optical anisotropy. The large dielectric anisotropy in the composition contributes to low threshold voltages, low power consumption, and large contrast ratios in the components. Therefore, it is preferred that the dielectric anisotropy is large. The large specific resistance in the composition contributes to the large voltage holding ratio of the element and a large contrast ratio. Therefore, a composition having a larger specific resistance not only at room temperature but also at a high temperature in the initial stage is preferable. It is preferably a composition having a large specific resistance not only at room temperature but also at a high temperature after long-term use. The stability of the composition to ultraviolet light and heat is related to the life of the component. When the stability is high, the life of the component is long. The characteristics as described above are preferable for an AM device used in a liquid crystal projector, a liquid crystal television or the like.

聚合物穩定配向(PSA;polymer sustained alignment)型的液晶顯示元件中,使用含有聚合物的液晶組成物。首先,將添加有少量聚合性化合物的組成物注入至元件中。繼而,一邊對該元件的基板之間施加電壓,一邊對組成物照射紫外線。聚合性化合物進行聚合而於組成物中生成聚合物的網眼結構。該組成物中,可利用聚合物來控制液晶分子的配向,因此元件的響應時間縮短,影像的殘像得以改善。具有TN、ECB、OCB、IPS、VA、FFS、FPA之類的模式的元件可期待聚合物的所述效果。In a liquid crystal display device of a polymer sustained alignment (PSA) type, a liquid crystal composition containing a polymer is used. First, a composition to which a small amount of a polymerizable compound is added is injected into the element. Then, the composition is irradiated with ultraviolet rays while applying a voltage between the substrates of the element. The polymerizable compound is polymerized to form a network structure of the polymer in the composition. In the composition, the alignment of the liquid crystal molecules can be controlled by the polymer, so that the response time of the element is shortened, and the afterimage of the image is improved. The effect of the polymer can be expected from an element having a mode such as TN, ECB, OCB, IPS, VA, FFS, or FPA.

具有TN模式的AM元件中使用具有正的介電各向異性的組成物。具有VA模式的AM元件中使用具有負的介電各向異性的組成物。具有IPS模式或FFS模式的AM元件中使用具有正或負的介電各向異性的組成物。聚合物穩定配向(PSA;polymer sustained alignment)型的AM元件中使用具有正或負的介電各向異性的組成物。具有負的介電各向異性的化合物揭示於以下的專利文獻1。 現有技術文獻 專利文獻A composition having positive dielectric anisotropy is used in an AM device having a TN mode. A composition having a negative dielectric anisotropy is used in an AM device having a VA mode. A composition having positive or negative dielectric anisotropy is used in an AM device having an IPS mode or an FFS mode. A composition having positive or negative dielectric anisotropy is used in an AM element of a polymer sustained alignment (PSA) type. A compound having a negative dielectric anisotropy is disclosed in Patent Document 1 below. Prior art literature

專利文獻1:國際公開2012-053323號Patent Document 1: International Publication No. 2012-053323

[發明所欲解決之課題][Problems to be solved by the invention]

本發明的其中一個目的為一種液晶組成物,其於向列相的上限溫度高、向列相的下限溫度低、黏度小、光學各向異性適當、負介電各向異性大、比電阻大、對紫外線的穩定性高、對熱的穩定性高等特性中,滿足至少一個特性。另一目的為一種於至少兩個特性之間具有適當平衡的液晶組成物。又一目的為一種含有此種組成物的液晶顯示元件。又一目的為一種具有響應時間短、電壓保持率大、臨限電壓低、對比度比大、壽命長等特性的AM元件。 [解決課題之手段]One of the objects of the present invention is a liquid crystal composition having a high upper limit temperature in a nematic phase, a low minimum temperature of a nematic phase, a small viscosity, an appropriate optical anisotropy, a large negative dielectric anisotropy, and a large specific resistance. At least one of the characteristics of high stability to ultraviolet light and high stability to heat is satisfied. Another object is a liquid crystal composition having an appropriate balance between at least two characteristics. Still another object is a liquid crystal display element containing such a composition. Still another object is an AM device having characteristics of short response time, large voltage holding ratio, low threshold voltage, large contrast ratio, and long life. [Means for solving the problem]

本發明為一種液晶組成物以及含有該組成物的液晶顯示元件,所述液晶組成物含有選自式(1)所表示的化合物的組群中的至少一個化合物作為第一添加物,具有負的介電各向異性,而且具有向列相,式(1)中,R1 、R2 、R3 、R4 、R5 、R6 、R7 及R8 獨立地為氫或碳數1至4的烷基;環A及環B獨立地為伸環己基、伸環己烯基、十氫萘二基、二氫吡喃二基、四氫吡喃二基、二噁烷二基、伸苯基、萘二基、嘧啶二基或吡啶二基,且該些環中,至少一個氫可經氟、氯、碳數1至5的烷基、碳數1至5的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至5的烷基取代;Z1 、Z2 及Z3 獨立地為單鍵或碳數1至10的伸烷基,且該伸烷基中,至少一個-CH2 -可經-O-、-S-、-CO-、-COO-、-OCO-或-SiH2 -取代,至少一個-CH2 -CH2 -可經-CH=CH-或-C≡C-取代,該些基中,至少一個氫可經氟或氯取代;a及b獨立地為1或2;c為0、1或2,且c為0時,環A為伸環己烯基、十氫萘二基、二氫吡喃二基、四氫吡喃二基、二噁烷二基、萘二基、嘧啶二基或吡啶二基,且該些環中,至少一個氫可經氟、氯、碳數1至5的烷基、碳數1至5的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至5的烷基取代。 [發明的效果]The present invention is a liquid crystal composition containing at least one compound selected from the group consisting of compounds represented by formula (1) as a first additive, and having a negative liquid crystal display element, and a liquid crystal display element containing the composition Dielectric anisotropy, and has a nematic phase, In the formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently hydrogen or an alkyl group having 1 to 4 carbon atoms; and ring A and ring B are independently Is a cyclohexyl group, a cyclohexene group, a decahydronaphthalenyl group, a dihydropyranyl group, a tetrahydropyranyl group, a dioxanediyl group, a phenylene group, a naphthyldiyl group, a pyrimidinediyl group or a pyridine. a diradical, and wherein at least one hydrogen in the rings may be substituted by fluorine, chlorine, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or a carbon number substituted with at least one hydrogen via fluorine or chlorine 1 to 5 alkyl substituted; Z 1 , Z 2 and Z 3 are independently a single bond or a C 1 to 10 alkyl group, and in the alkyl group, at least one -CH 2 - may be -O- , -S-, -CO-, -COO-, -OCO- or -SiH 2 -, at least one -CH 2 -CH 2 - may be substituted by -CH=CH- or -C≡C-, these groups Wherein at least one hydrogen may be substituted by fluorine or chlorine; a and b are independently 1 or 2; c is 0, 1 or 2, and when c is 0, ring A is cyclohexene, decalinyl , dihydropyranyldiyl, tetrahydropyranodiyl, dioxanediyl, naphthalenediyl, pyrimidinediyl or pyridinyl, and wherein at least one of the hydrogens may be fluorine, chlorine or carbon The alkyl group of 1 to 5, the alkoxy group having 1 to 5 carbon atoms, or the alkyl group having 1 to 5 carbon atoms in which at least one hydrogen is substituted by fluorine or chlorine is substituted. [Effects of the Invention]

本發明的優點為一種液晶組成物,其於向列相的上限溫度高、向列相的下限溫度低、黏度小、光學各向異性適當、負介電各向異性大、比電阻大、對紫外線的穩定性高、對熱的穩定性高等特性中,滿足至少一個特性。另一優點為於至少兩個特性之間具有適當平衡的液晶組成物。又一優點為含有此種組成物的液晶顯示元件。又一優點為具有響應時間短、電壓保持率大、臨限電壓低、對比度比大、壽命長等特性的AM元件。An advantage of the present invention is a liquid crystal composition having a high upper limit temperature in a nematic phase, a low lower limit temperature of a nematic phase, a small viscosity, an appropriate optical anisotropy, a large negative dielectric anisotropy, and a large specific resistance. At least one characteristic is satisfied among characteristics such as high stability of ultraviolet rays and high stability against heat. Another advantage is a liquid crystal composition having an appropriate balance between at least two characteristics. Yet another advantage is a liquid crystal display element containing such a composition. Still another advantage is an AM device having characteristics of short response time, large voltage holding ratio, low threshold voltage, large contrast ratio, and long life.

該說明書中的用語的使用方法如下所述。有時將「液晶組成物」以及「液晶顯示元件」的用語分別簡稱為「組成物」以及「元件」。「液晶顯示元件」為液晶顯示面板以及液晶顯示模組的總稱。「液晶性化合物」是具有向列相、層列相(smectic phase)等液晶相的化合物,以及雖不具有液晶相,但出於調節向列相的溫度範圍、黏度、介電各向異性之類的特性的目的而混合於組成物中的化合物的總稱。該化合物具有例如1,4-伸環己基或1,4-伸苯基之類的六員環,其分子結構為棒狀(rod like)。「聚合性化合物」是出於使組成物中生成聚合物的目的而添加的化合物。The usage of the terms in this specification is as follows. The terms "liquid crystal composition" and "liquid crystal display element" are simply referred to as "composition" and "component", respectively. The "liquid crystal display element" is a general term for a liquid crystal display panel and a liquid crystal display module. The "liquid crystal compound" is a compound having a liquid crystal phase such as a nematic phase or a smectic phase, and does not have a liquid crystal phase, but adjusts the temperature range, viscosity, and dielectric anisotropy of the nematic phase. The general term for the compounds mixed in the composition for the purpose of the properties of the class. The compound has a six-membered ring such as 1,4-cyclohexylene or 1,4-phenylene, and its molecular structure is rod like. The "polymerizable compound" is a compound added for the purpose of forming a polymer in the composition.

液晶組成物是藉由將多個液晶性化合物進行混合來製備。液晶性化合物的比例(含量)是由基於該液晶組成物的重量的重量百分率(重量%)所表示。於該組成物中視需要添加光學活性化合物、抗氧化劑、紫外線吸收劑、色素、消泡劑、聚合性化合物、聚合起始劑、聚合抑制劑之類的添加物。添加物的比例(添加量)是與液晶性化合物的比例同樣,由基於液晶組成物的重量的重量百分率(重量%)所表示。有時亦使用重量百萬分率(ppm)。聚合起始劑以及聚合抑制劑的比例是例外地基於聚合性化合物的重量來表示。The liquid crystal composition is prepared by mixing a plurality of liquid crystal compounds. The ratio (content) of the liquid crystalline compound is represented by weight percentage (% by weight) based on the weight of the liquid crystal composition. An additive such as an optically active compound, an antioxidant, an ultraviolet absorber, a dye, an antifoaming agent, a polymerizable compound, a polymerization initiator, or a polymerization inhibitor is added to the composition as needed. The ratio (addition amount) of the additive is represented by the weight percentage (% by weight) based on the weight of the liquid crystal composition, similarly to the ratio of the liquid crystal compound. Millions of parts per million (ppm) are also sometimes used. The ratio of the polymerization initiator and the polymerization inhibitor is exceptionally expressed based on the weight of the polymerizable compound.

有時將「向列相的上限溫度」簡稱為「上限溫度」。有時將「向列相的下限溫度」簡稱為「下限溫度」。「比電阻大」是指組成物在初始階段中不僅在室溫下,而且在接近於向列相的上限溫度的溫度下亦具有大的比電阻,並且在長時間使用後不僅在室溫下,而且在接近於向列相的上限溫度的溫度下亦具有大的比電阻。「電壓保持率大」是指元件在初始階段中不僅在室溫下,而且在接近於向列相的上限溫度的溫度下亦具有大的電壓保持率,並且在長時間使用後不僅在室溫下,而且在接近於向列相的上限溫度的溫度下亦具有大的電壓保持率。「提高介電各向異性」的表述於介電各向異性為正的組成物時,是指其值正向地增加,於介電各向異性為負的組成物時,是指其值負向地增加。The "upper limit temperature of the nematic phase" is sometimes simply referred to as "upper limit temperature". The "lower limit temperature of the nematic phase" is sometimes simply referred to as "lower limit temperature". "Greater specific resistance" means that the composition has a large specific resistance not only at room temperature but also at a temperature close to the upper limit temperature of the nematic phase in the initial stage, and is not only at room temperature after long-term use. And also has a large specific resistance at a temperature close to the upper limit temperature of the nematic phase. "High voltage holding ratio" means that the element has a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature of the nematic phase in the initial stage, and is not only at room temperature after long-term use. Lower, and also has a large voltage holding ratio at a temperature close to the upper limit temperature of the nematic phase. The expression "increasing the dielectric anisotropy" means that the value of the positive dielectric anisotropy increases positively, and when the dielectric anisotropy is negative, the value is negative. Increase to the ground.

將式(2)所表示的化合物簡稱為「化合物(2)」。將選自式(3)所表示的化合物的組群中的至少一個化合物簡稱為「化合物(3)」。「化合物(3)」是指式(3)所表示的一個化合物、兩個化合物的混合物或三個以上化合物的混合物。對於其他式所表示的化合物而言亦相同。「至少一個‘A’」的表述是指‘A’的數量為任意。「至少一個‘A’可經‘B’取代」的表述是指,當‘A’的數量為一個時,‘A’的位置為任意,當‘A’的數量為兩個以上時,該些的位置亦可無限制地選擇。該規則亦適用於「至少一個‘A’經‘B’所取代」的表述。The compound represented by the formula (2) is simply referred to as "compound (2)". At least one compound selected from the group consisting of the compounds represented by the formula (3) is simply referred to as "compound (3)". The "compound (3)" means a compound represented by the formula (3), a mixture of two compounds or a mixture of three or more compounds. The same is true for the compounds represented by the other formulas. The expression "at least one 'A'" means that the number of 'A' is arbitrary. The expression "at least one 'A' can be replaced by 'B'" means that when the number of 'A' is one, the position of 'A' is arbitrary, and when the number of 'A' is two or more, these The location can also be selected without restrictions. The rule also applies to the expression "at least one 'A' replaced by 'B'".

成分化合物的化學式中,將末端基R9 的記號用於多個化合物。該些化合物中,任意兩個R9 所表示的兩個基可相同,或亦可不同。例如,有化合物(2-1)的R9 為乙基,且化合物(2-2)的R9 為乙基的情況。亦有化合物(2-1)的R9 為乙基,而化合物(2-2)的R9 為丙基的情況。該規則亦應用於其他末端基等的記號。式(2)中,當d為2時,存在兩個環C。該化合物中,兩個環C所表示的兩個環可相同,或亦可不同。該規則亦適用於當d大於2時的任意兩個環C。該規則亦適用於Z6 、環F等記號。該規則亦適用於如化合物(4-27)中的兩個-Sp2 -P5 般的情況。In the chemical formula of the component compound, the symbol of the terminal group R 9 is used for a plurality of compounds. Among these compounds, the two groups represented by any two of R 9 may be the same or different. For example, there is a case where R 9 of the compound (2-1) is an ethyl group, and R 9 of the compound (2-2) is an ethyl group. Also the compound (2-1) R 9 is ethyl, and R of the compound (2-2) is propyl. 9. This rule is also applied to marks of other end groups and the like. In the formula (2), when d is 2, two rings C exist. In the compound, the two rings represented by the two rings C may be the same or different. This rule also applies to any two rings C when d is greater than 2. This rule also applies to symbols such as Z 6 and ring F. This rule also applies to the case of two -Sp 2 -P 5 as in the compound (4-27).

由六邊形包圍的A、B、C等記號分別與環A、環B、環C等六員環或稠環相對應。化合物(1)或化合物(4)中,橫切六邊形的斜線表示環上的任意氫可經-Sp1 -P1 等基取代。h等下標表示經取代的基的數量。下標為0時,此種取代不存在。h為2以上時,環I上存在多個-Sp1 -P1 。-Sp1 -P1 所表示的多個基可相同,或亦可不同。The symbols A, B, and C surrounded by a hexagon correspond to a six-membered ring or a fused ring such as ring A, ring B, and ring C, respectively. In the compound (1) or the compound (4), the oblique line of the cross-cut hexagon means that any hydrogen on the ring may be substituted with a group such as -Sp 1 -P 1 . The subscripts such as h indicate the number of substituted groups. When the subscript is 0, this substitution does not exist. When h is 2 or more, a plurality of -Sp 1 -P 1 are present on the ring I. The plurality of groups represented by -Sp 1 -P 1 may be the same or may be different.

烷基為直鏈狀或分支狀,不包含環狀烷基。直鏈狀烷基優於分支狀烷基。該些情況對於烷氧基、烯基等末端基而言亦相同。關於與1,4-伸環己基相關的立體構型,為了提高上限溫度,反式優於順式。2-氟-1,4-伸苯基是指下述的兩個二價基。化學式中,氟可為朝左(L),亦可為朝右(R)。該規則亦適用於如四氫吡喃-2,5-二基般的藉由自環去除兩個氫而生成的非對稱的二價基。該規則亦適用於如羰基氧基(-COO-及-OCO-)般的鍵結基。 The alkyl group is linear or branched and does not contain a cyclic alkyl group. Linear alkyl groups are preferred over branched alkyl groups. These cases are also the same for terminal groups such as alkoxy groups and alkenyl groups. Regarding the stereo configuration associated with 1,4-cyclohexylene, in order to increase the upper limit temperature, trans is superior to cis. The 2-fluoro-1,4-phenylene group means the two divalent groups described below. In the chemical formula, fluorine may be leftward (L) or rightward (R). This rule also applies to asymmetric divalent radicals formed by the removal of two hydrogens from the ring, such as tetrahydropyran-2,5-diyl. This rule also applies to a bonding group such as a carbonyloxy group (-COO- and -OCO-).

本發明為下述項等。The present invention is as follows.

項1. 一種液晶組成物,其含有選自式(1)所表示的化合物的組群中的至少一個化合物作為第一添加物,具有負的介電各向異性,而且具有向列相,式(1)中,R1 、R2 、R3 、R4 、R5 、R6 、R7 及R8 獨立地為氫或碳數1至4的烷基;環A及環B獨立地為伸環己基、伸環己烯基、十氫萘二基、二氫吡喃二基、四氫吡喃二基、二噁烷二基、伸苯基、萘二基、嘧啶二基或吡啶二基,且該些環中,至少一個氫可經氟、氯、碳數1至5的烷基、碳數1至5的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至5的烷基取代;Z1 、Z2 及Z3 獨立地為單鍵或碳數1至10的伸烷基,且該伸烷基中,至少一個-CH2 -可經-O-、-S-、-CO-、-COO-、-OCO-或-SiH2 -取代,至少一個-CH2 -CH2 -可經-CH=CH-或-C≡C-取代,該些基中,至少一個氫可經氟或氯取代;a及b獨立地為1或2;c為0、1或2,且c為0時,環A為伸環己烯基、十氫萘二基、二氫吡喃二基、四氫吡喃二基、二噁烷二基、萘二基、嘧啶二基或吡啶二基,且該些環中,至少一個氫可經氟、氯、碳數1至5的烷基、碳數1至5的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至5的烷基取代。Item 1. A liquid crystal composition containing at least one compound selected from the group consisting of compounds represented by formula (1) as a first additive, having a negative dielectric anisotropy, and having a nematic phase, In the formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently hydrogen or an alkyl group having 1 to 4 carbon atoms; and ring A and ring B are independently Is a cyclohexyl group, a cyclohexene group, a decahydronaphthalenyl group, a dihydropyranyl group, a tetrahydropyranyl group, a dioxanediyl group, a phenylene group, a naphthyldiyl group, a pyrimidinediyl group or a pyridine. a diradical, and wherein at least one hydrogen in the rings may be substituted by fluorine, chlorine, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or a carbon number substituted with at least one hydrogen via fluorine or chlorine 1 to 5 alkyl substituted; Z 1 , Z 2 and Z 3 are independently a single bond or a C 1 to 10 alkyl group, and in the alkyl group, at least one -CH 2 - may be -O- , -S-, -CO-, -COO-, -OCO- or -SiH 2 -, at least one -CH 2 -CH 2 - may be substituted by -CH=CH- or -C≡C-, these groups Wherein at least one hydrogen may be substituted by fluorine or chlorine; a and b are independently 1 or 2; c is 0, 1 or 2, and when c is 0, ring A is cyclohexene, decalinyl , dihydropyranyldiyl, tetrahydropyranodiyl, dioxanediyl, naphthalenediyl, pyrimidinediyl or pyridinyl, and wherein at least one of the hydrogens may be fluorine, chlorine or carbon The alkyl group of 1 to 5, the alkoxy group having 1 to 5 carbon atoms, or the alkyl group having 1 to 5 carbon atoms in which at least one hydrogen is substituted by fluorine or chlorine is substituted.

項2. 如項1所述的液晶組成物,其含有選自式(1-1)至式(1-5)所表示的化合物的組群中的至少一個化合物作為第一添加物,式(1-1)至式(1-5)中,R1 、R2 、R3 、R4 、R5 、R6 、R7 及R8 獨立地為氫或碳數1至4的烷基。The liquid crystal composition according to item 1, which contains at least one compound selected from the group consisting of compounds represented by formula (1-1) to formula (1-5) as a first additive, In the formulae (1-1) to (1-5), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently hydrogen or an alkane having 1 to 4 carbon atoms. base.

項3. 如項1或項2所述的液晶組成物,其中基於液晶組成物的重量,第一添加物的比例為0.005重量%至1重量%的範圍。The liquid crystal composition according to Item 1 or Item 2, wherein the ratio of the first additive is in the range of 0.005 wt% to 1 wt% based on the weight of the liquid crystal composition.

項4. 如項1至項3中任一項所述的液晶組成物,其含有選自式(2)所表示的化合物的組群中的至少一個化合物作為第一成分,式(2)中,R9 及R10 獨立地為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、碳數2至12的烯氧基、或者至少一個氫經氟或氯所取代的碳數1至12的烷基;環C及環E獨立地為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、至少一個氫經氟或氯所取代的1,4-伸苯基或者四氫吡喃-2,5-二基;環D為2,3-二氟-1,4-伸苯基、2-氯-3-氟-1,4-伸苯基、2,3-二氟-5-甲基-1,4-伸苯基、3,4,5-三氟萘-2,6-二基或7,8-二氟色原烷-2,6-二基(7,8-difluorochromane-2,6-diyl);Z4 及Z5 獨立地為單鍵、伸乙基、亞甲氧基或羰基氧基;d為1、2或3,e為0或1;而且d與e之和為3以下。The liquid crystal composition according to any one of items 1 to 3, which contains at least one compound selected from the group consisting of compounds represented by formula (2) as a first component, In the formula (2), R 9 and R 10 are independently an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and an oxyalkylene having 2 to 12 carbon atoms. a C 1 to 12 alkyl group substituted with at least one hydrogen substituted with fluorine or chlorine; ring C and ring E are independently 1,4-cyclohexylene, 1,4-cyclohexenyl, 1, 4-phenylene, at least one hydrogen 1,4-phenyl or tetrahydropyran-2,5-diyl substituted by fluorine or chlorine; ring D is 2,3-difluoro-1,4- Phenyl, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,5-trifluoronaphthalene- 2,6-diyl or 7,8-difluorochromane-2,6-diyl; Z 4 and Z 5 are independently a single bond, a group, a methyleneoxy group or a carbonyloxy group; d is 1, 2 or 3, and e is 0 or 1; and the sum of d and e is 3 or less.

項5. 如項1至項4中任一項所述的液晶組成物,其含有選自式(2-1)至式(2-21)所表示的化合物的組群中的至少一個化合物作為第一成分, 式(2-1)至式(2-21)中,R9 及R10 獨立地為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、碳數2至12的烯氧基、或者至少一個氫經氟或氯所取代的碳數1至12的烷基。The liquid crystal composition according to any one of the items 1 to 4, wherein at least one compound selected from the group consisting of compounds represented by formula (2-1) to formula (2-21) is used as First ingredient, In the formulae (2-1) to (2-21), R 9 and R 10 are independently an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and an alkenyl group having 2 to 12 carbon atoms. An alkenyloxy group having 2 to 12 carbon atoms or an alkyl group having 1 to 12 carbon atoms substituted with at least one hydrogen via fluorine or chlorine.

項6. 如項4或項5所述的液晶組成物,其中基於液晶組成物的重量,第一成分的比例為10重量%至90重量%的範圍。The liquid crystal composition according to Item 4 or 5, wherein the ratio of the first component is in the range of 10% by weight to 90% by weight based on the weight of the liquid crystal composition.

項7. 如項1至項6中任一項所述的液晶組成物,其含有選自式(3)所表示的化合物的組群中的至少一個化合物作為第二成分,式(3)中,R11 及R12 獨立地為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、至少一個氫經氟或氯所取代的碳數1至12的烷基、或者至少一個氫經氟所取代的碳數2至12的烯基;環F及環G獨立地為1,4-伸環己基、1,4-伸苯基、2-氟-1,4-伸苯基或2,5-二氟-1,4-伸苯基;Z6 為單鍵、伸乙基或羰基氧基;f為1、2或3。The liquid crystal composition according to any one of items 1 to 6, which contains at least one compound selected from the group consisting of compounds represented by formula (3) as a second component, In the formula (3), R 11 and R 12 are independently an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and at least one hydrogen via fluorine or chlorine. a substituted alkyl group having 1 to 12 carbon atoms, or an alkenyl group having 2 to 12 carbon atoms substituted with at least one hydrogen; the ring F and the ring G are independently 1,4-cyclohexylene, 1,4-stretch Phenyl, 2-fluoro-1,4-phenylene or 2,5-difluoro-1,4-phenylene; Z 6 is a single bond, ethyl or carbonyloxy; f is 1, 2 or 3.

項8. 如項1至項7中任一項所述的液晶組成物,其含有選自式(3-1)至式(3-13)所表示的化合物的組群中的至少一個化合物作為第二成分,式(3-1)至式(3-13)中,R11 及R12 獨立地為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、至少一個氫經氟或氯所取代的碳數1至12的烷基、或者至少一個氫經氟所取代的碳數2至12的烯基。The liquid crystal composition according to any one of the items 1 to 7 wherein at least one compound selected from the group consisting of compounds represented by formula (3-1) to formula (3-13) is used as The second component, In the formulae (3-1) to (3-13), R 11 and R 12 are independently an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and an alkenyl group having 2 to 12 carbon atoms. At least one alkyl group having 1 to 12 carbon atoms substituted by fluorine or chlorine, or an alkenyl group having 2 to 12 carbon atoms substituted with at least one hydrogen via fluorine.

項9. 如項7或項8所述的液晶組成物,其中基於液晶組成物的重量,第二成分的比例為10重量%至90重量%的範圍。The liquid crystal composition according to Item 7 or 8, wherein the ratio of the second component is in the range of 10% by weight to 90% by weight based on the weight of the liquid crystal composition.

項10. 如項1至項9中任一項所述的液晶組成物,其含有選自式(4)所表示的化合物的組群中的至少一個聚合性化合物作為第二添加物,式(4)中,環I及環K獨立地為環己基、環己烯基、苯基、1-萘基、2-萘基、四氫吡喃-2-基、1,3-二噁烷-2-基、嘧啶-2-基或吡啶-2-基,且該些環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至12的烷基取代;環J為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-1,2-二基、萘-1,3-二基、萘-1,4-二基、萘-1,5-二基、萘-1,6-二基、萘-1,7-二基、萘-1,8-二基、萘-2,3-二基、萘-2,6-二基、萘-2,7-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,且該些環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至12的烷基取代;Z7 及Z8 獨立地為單鍵或碳數1至10的伸烷基,且該伸烷基中,至少一個-CH2 -可經-O-、-CO-、-COO-或-OCO-取代,至少一個-CH2 -CH2 -可經-CH=CH-、-C(CH3 )=CH-、-CH=C(CH3 )-或-C(CH3 )=C(CH3 )-取代,該些基中,至少一個氫可經氟或氯取代;P1 、P2 及P3 獨立地為聚合性基;Sp1 、Sp2 及Sp3 獨立地為單鍵或碳數1至10的伸烷基,且該伸烷基中,至少一個-CH2 -可經-O-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 -CH2 -可經-CH=CH-或-C≡C-取代,該些基中,至少一個氫可經氟或氯取代;g為0、1或2;h、i及j獨立地為0、1、2、3或4;而且h、i及j的和為1以上。The liquid crystal composition according to any one of the items 1 to 9, comprising at least one polymerizable compound selected from the group consisting of compounds represented by formula (4) as a second additive, In the formula (4), Ring I and Ring K are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxin An alk-2-yl, pyrimidin-2-yl or pyridin-2-yl group, and at least one hydrogen of the rings may be fluorine, chlorine, an alkyl group having 1 to 12 carbons, an alkoxy group having 1 to 12 carbon atoms Substituting, or at least one hydrogen substituted with a C 1 to 12 alkyl group substituted by fluorine or chlorine; ring J is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene Base, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1 , 7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5 a di-, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl or pyridine-2,5-diyl group, and wherein at least one hydrogen in the rings may be via fluorine, Chlorine, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or an alkyl group having 1 to 12 carbon atoms substituted with at least one hydrogen substituted by fluorine or chlorine; Z 7 and Z 8 are independently a single bond or a C 1-10 alkylene group, and the alkylene, at least one -CH 2 - may be -O -, - - COO- or -OCO-, at least one, - CO -CH 2 -CH 2 - may be -CH = CH -, - C ( CH 3) = CH -, - CH = C (CH 3) - or -C (CH 3) = C ( CH 3) - substituted, In the group, at least one hydrogen may be substituted by fluorine or chlorine; P 1 , P 2 and P 3 are independently a polymerizable group; and Sp 1 , Sp 2 and Sp 3 are independently a single bond or a carbon number of 1 to 10. An alkyl group, wherein at least one -CH 2 - may be substituted by -O-, -COO-, -OCO- or -OCOO-, at least one -CH 2 -CH 2 - may be -CH= CH- or -C≡C-substituted, wherein at least one hydrogen may be substituted by fluorine or chlorine; g is 0, 1 or 2; h, i and j are independently 0, 1, 2, 3 or 4 And the sum of h, i and j is 1 or more.

項11. 如項10所述的液晶組成物,其中,式(4)中,P1 、P2 及P3 獨立地為選自式(P-1)至式(P-5)所表示的基的組群中的聚合性基,式(P-1)至式(P-5)中,M1 、M2 及M3 獨立地為氫、氟、碳數1至5的烷基、或者至少一個氫經氟或氯所取代的碳數1至5的烷基。The liquid crystal composition according to Item 10, wherein, in the formula (4), P 1 , P 2 and P 3 are independently selected from the group consisting of the formula (P-1) to the formula (P-5). Polymeric groups in the group of groups, In the formulae (P-1) to (P-5), M 1 , M 2 and M 3 are independently hydrogen, fluorine, an alkyl group having 1 to 5 carbon atoms, or at least one hydrogen substituted by fluorine or chlorine. An alkyl group having 1 to 5 carbon atoms.

項12. 如項1至項11中任一項所述的液晶組成物,其含有選自式(4-1)至式(4-27)所表示的化合物的組群中的至少一個聚合性化合物作為第二添加物, 式(4-1)至式(4-27)中,P4 、P5 及P6 獨立地為選自式(P-1)至式(P-3)所表示的基的組群中的聚合性基;式(P-1)至式(P-3)中,M1 、M2 及M3 獨立地為氫、氟、碳數1至5的烷基、或者至少一個氫經氟或氯所取代的碳數1至5的烷基;式(4-1)至式(4-27)中,Sp1 、Sp2 及Sp3 獨立地為單鍵或碳數1至10的伸烷基,且該伸烷基中,至少一個-CH2 -可經-O-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 -CH2 -可經-CH=CH-或-C≡C-取代,該些基中,至少一個氫可經氟或氯取代。The liquid crystal composition according to any one of items 1 to 11, which contains at least one polymerizable group selected from the group consisting of compounds represented by formula (4-1) to formula (4-27). a compound as a second additive, In the formulae (4-1) to (4-27), P 4 , P 5 and P 6 are independently selected from the group consisting of the groups represented by the formulae (P-1) to (P-3). Polymeric group; In the formulae (P-1) to (P-3), M 1 , M 2 and M 3 are independently hydrogen, fluorine, an alkyl group having 1 to 5 carbon atoms, or at least one hydrogen substituted by fluorine or chlorine. An alkyl group having 1 to 5 carbon atoms; in the formulae (4-1) to (4-27), Sp 1 , Sp 2 and Sp 3 are independently a single bond or an alkylene group having 1 to 10 carbon atoms, and In the alkylene group, at least one -CH 2 - may be substituted by -O-, -COO-, -OCO- or -OCOO-, and at least one -CH 2 -CH 2 - may be via -CH=CH- or -C≡ C-substituent, in which at least one hydrogen may be substituted by fluorine or chlorine.

項13. 如項10至項12中任一項所述的液晶組成物,其中基於液晶組成物的重量,第二添加物的比例為0.03重量%至10重量%的範圍。The liquid crystal composition according to any one of items 10 to 12, wherein the ratio of the second additive is in the range of 0.03 wt% to 10 wt% based on the weight of the liquid crystal composition.

項14. 一種液晶顯示元件,其含有如項1至項13中任一項所述的液晶組成物。Item 14. A liquid crystal display element comprising the liquid crystal composition according to any one of items 1 to 13.

項15. 如項14所述的液晶顯示元件,其中液晶顯示元件的操作模式為IPS模式、VA模式、FFS模式或FPA模式,液晶顯示元件的驅動方式為主動矩陣方式。The liquid crystal display device of item 14, wherein the operation mode of the liquid crystal display element is an IPS mode, a VA mode, an FFS mode, or an FPA mode, and the driving mode of the liquid crystal display element is an active matrix mode.

項16. 一種聚合物穩定配向型的液晶顯示元件,其含有項10至項13中任一項所述的液晶組成物,該液晶組成物中的聚合性化合物進行聚合。A liquid crystal display element according to any one of items 10 to 13, wherein the polymerizable compound in the liquid crystal composition is polymerized.

項17. 一種液晶組成物的用途,所述液晶組成物為如項1至項13中任一項所述的液晶組成物,其用於液晶顯示元件。Item 17. The use of a liquid crystal composition, which is a liquid crystal composition according to any one of items 1 to 13, which is used for a liquid crystal display element.

項18. 一種液晶組成物的用途,所述液晶組成物為如項10至項13中任一項所述的液晶組成物,其用於聚合物穩定配向型的液晶顯示元件。Item 18. The use of a liquid crystal composition according to any one of items 10 to 13, which is used for a polymer-stabilized alignment type liquid crystal display element.

本發明亦包括以下項。(a)所述組成物,其含有選自如光學活性化合物、抗氧化劑、紫外線吸收劑、色素、消泡劑、聚合性化合物、聚合起始劑、聚合抑制劑般的添加物的組群中的一個化合物、兩個化合物或三個以上的化合物。(b)一種AM元件,其含有所述組成物。(c)一種聚合物穩定配向(PSA)型的AM元件,其包含更含有聚合性化合物的所述組成物。(d)一種聚合物穩定配向(PSA)型的AM元件,其含有所述組成物,且該組成物中的聚合性化合物進行聚合。(e)一種元件,其含有所述組成物,而且具有PC、TN、STN、ECB、OCB、IPS、VA、FFS或FPA的模式。(f)一種透過型元件,其含有所述組成物。(g)將所述組成物作為具有向列相的組成物的用途。(h)藉由在所述組成物中添加光學活性化合物而作為光學活性組成物的用途。The invention also includes the following items. (a) the composition containing a group selected from the group consisting of an optically active compound, an antioxidant, an ultraviolet absorber, a dye, an antifoaming agent, a polymerizable compound, a polymerization initiator, and a polymerization inhibitor. One compound, two compounds or more than three compounds. (b) An AM device comprising the composition. (c) A polymer stable alignment (PSA) type AM device comprising the composition further containing a polymerizable compound. (d) A polymer stabilized alignment (PSA) type AM device containing the composition, and a polymerizable compound in the composition is polymerized. (e) An element containing the composition and having a mode of PC, TN, STN, ECB, OCB, IPS, VA, FFS or FPA. (f) A transmissive element containing the composition. (g) Use of the composition as a composition having a nematic phase. (h) Use as an optically active composition by adding an optically active compound to the composition.

以如下順序對本發明的組成物進行說明。第一,對組成物的構成進行說明。第二,對成分化合物的主要特性以及該化合物給組成物帶來的主要效果進行說明。第三,對組成物中的成分的組合、成分的較佳比例以及其根據進行說明。第四,對成分化合物的較佳形態進行說明。第五,示出較佳的成分化合物。第六,對可添加於組成物中的添加物進行說明。第七,對成分化合物的合成方法進行說明。最後,對組成物的用途進行說明。The composition of the present invention will be described in the following order. First, the composition of the composition will be described. Second, the main characteristics of the component compound and the main effects of the compound on the composition will be described. Third, the combination of the components in the composition, the preferred ratio of the components, and the basis thereof will be described. Fourth, a preferred embodiment of the component compound will be described. Fifth, a preferred component compound is shown. Sixth, an additive which can be added to the composition will be described. Seventh, a method of synthesizing a component compound will be described. Finally, the use of the composition will be described.

第一,對組成物中的成分化合物的構成進行說明。本發明的組成物被分類為組成物A及組成物B。組成物A除了含有選自化合物(2)及化合物(3)中的液晶性化合物以外,亦可更含有其他的液晶性化合物、添加物等。「其他的液晶性化合物」是與化合物(2)及化合物(3)不同的液晶性化合物。此種化合物是出於進一步調整特性的目的而混合於組成物中。添加物為光學活性化合物、抗氧化劑、紫外線吸收劑、色素、消泡劑、聚合性化合物、聚合起始劑、聚合抑制劑等。First, the constitution of the component compounds in the composition will be described. The composition of the present invention is classified into composition A and composition B. In addition to the liquid crystalline compound selected from the compound (2) and the compound (3), the composition A may further contain other liquid crystal compounds, additives, and the like. The "other liquid crystal compound" is a liquid crystal compound different from the compound (2) and the compound (3). Such compounds are mixed in the composition for the purpose of further adjusting the properties. The additive is an optically active compound, an antioxidant, an ultraviolet absorber, a dye, an antifoaming agent, a polymerizable compound, a polymerization initiator, a polymerization inhibitor, and the like.

組成物B實質上僅包含選自化合物(2)及化合物(3)中的液晶性化合物。「實質上」是指組成物雖可含有添加物,但不含其他的液晶性化合物。組成物B的例子為含有化合物(1)、化合物(2)及化合物(3)作為必需成分的組成物。與組成物A相比較,組成物B的成分的數量少。就降低成本的觀點而言,組成物B優於組成物A。就可藉由混合其他的液晶性化合物來進一步調整特性的觀點而言,組成物A優於組成物B。The composition B contains substantially only the liquid crystalline compound selected from the compound (2) and the compound (3). "Substantially" means that the composition may contain additives, but does not contain other liquid crystal compounds. An example of the composition B is a composition containing the compound (1), the compound (2), and the compound (3) as essential components. The amount of the component of the composition B was small as compared with the composition A. Composition B is superior to composition A from the viewpoint of cost reduction. The composition A is superior to the composition B from the viewpoint of further adjusting the characteristics by mixing other liquid crystal compounds.

第二,對成分化合物的主要特性以及該化合物給組成物的特性帶來的主要效果進行說明。基於本發明的效果,將成分化合物的主要特性歸納於表2中。表2的記號中,L是指大或高,M是指中等程度的,S是指小或低。記號L、M、S是基於成分化合物之間的定性比較的分類,0(零)是指值為零,或接近於零。Second, the main characteristics of the component compound and the main effects of the compound on the properties of the composition will be described. Based on the effects of the present invention, the main characteristics of the component compounds are summarized in Table 2. In the symbols of Table 2, L means large or high, M means medium, and S means small or low. The notation L, M, S is a classification based on a qualitative comparison between the constituent compounds, and 0 (zero) means that the value is zero, or close to zero.

表2. 化合物的特性 1)介電各向異性為負的化合物Table 2. Characteristics of the compound 1) Compounds with negative dielectric anisotropy

當將成分化合物混合於組成物中時,成分化合物給組成物的特性帶來的主要效果如下所述。作為第一添加物的化合物(1)有助於對熱或紫外線的高穩定性。由於第一添加物的添加量為極少量,故不影響如上限溫度、光學各向異性及介電各向異性般的特性。作為第一成分的化合物(2)提高介電各向異性,而且降低下限溫度。作為第二成分的化合物(3)降低黏度,或提高上限溫度。作為第二添加物的聚合性化合物(4)藉由聚合而提供聚合體,該聚合體縮短元件的響應時間,而且改善圖像的殘像。When the component compound is mixed in the composition, the main effects of the component compound on the properties of the composition are as follows. The compound (1) as the first additive contributes to high stability against heat or ultraviolet rays. Since the amount of the first additive added is extremely small, the properties such as the upper limit temperature, optical anisotropy, and dielectric anisotropy are not affected. The compound (2) as the first component increases the dielectric anisotropy and lowers the minimum temperature. The compound (3) as the second component lowers the viscosity or raises the upper limit temperature. The polymerizable compound (4) as the second additive provides a polymer by polymerization, which shortens the response time of the element and improves the afterimage of the image.

第三,對組成物中的成分的組合、成分化合物的較佳比例及其根據進行說明。組成物中的成分的較佳組合為:第一添加物+第一成分、第一添加物+第一成分+第二成分、第一添加物+第一成分+第二添加物、或第一添加物+第一成分+第二成分+第二添加物。尤佳的組合為第一添加物+第一成分+第二成分、或第一添加物+第一成分+第二成分+第二添加物。Third, the combination of the components in the composition, the preferred ratio of the component compounds, and the basis thereof will be described. A preferred combination of ingredients in the composition is: first additive + first component, first additive + first component + second component, first additive + first component + second additive, or first Additive + first component + second component + second additive. A particularly preferred combination is the first additive + first component + second component, or first additive + first component + second component + second additive.

為了提高對紫外線或熱的穩定性,第一添加物的較佳比例為約0.005重量%以上,為了降低下限溫度,第一添加物的較佳比例為約1重量%以下。尤佳的比例為約0.01重量%至約0.5重量%的範圍。特佳的比例為約0.03重量%至約0.3重量%的範圍。In order to improve the stability against ultraviolet rays or heat, a preferred ratio of the first additive is about 0.005% by weight or more, and in order to lower the minimum temperature, a preferred ratio of the first additive is about 1% by weight or less. A more desirable ratio is in the range of from about 0.01% by weight to about 0.5% by weight. A particularly preferred ratio is in the range of from about 0.03 wt% to about 0.3 wt%.

為了提高介電各向異性,第一成分的較佳比例為約10重量%以上,為了降低下限溫度,第一成分的較佳比例為約90重量%以下。尤佳的比例為約20重量%至約80重量%的範圍。特佳的比例為約30重量%至約70重量%的範圍。In order to increase the dielectric anisotropy, a preferred ratio of the first component is about 10% by weight or more, and a preferred ratio of the first component is about 90% by weight or less in order to lower the minimum temperature. A more preferred ratio is in the range of from about 20% by weight to about 80% by weight. A particularly preferred ratio is in the range of from about 30% by weight to about 70% by weight.

為了提高上限溫度,或為了降低黏度,第二成分的較佳比例為約10重量%以上,為了提高介電各向異性,第二成分的較佳比例為約90重量%以下。尤佳的比例為約20重量%至約80重量%的範圍。特佳的比例為約30重量%至約70重量%的範圍。A preferred ratio of the second component is about 10% by weight or more for increasing the maximum temperature or for lowering the viscosity, and a preferred ratio of the second component is about 90% by weight or less for increasing the dielectric anisotropy. A more preferred ratio is in the range of from about 20% by weight to about 80% by weight. A particularly preferred ratio is in the range of from about 30% by weight to about 70% by weight.

以適合於聚合物穩定配向型的元件的目的,而將第二添加物(聚合性化合物)添加於組成物中。為了使液晶分子配向,該添加物的較佳比例為約0.03重量%以上,為了防止元件的顯示不良,該添加物的較佳比例為約10重量%以下。尤佳的比例為約0.1重量%至約2重量%的範圍。特佳的比例為約0.2重量%至約1.0重量%的範圍。The second additive (polymerizable compound) is added to the composition for the purpose of being suitable for the element of the polymer stable alignment type. In order to align the liquid crystal molecules, a preferred ratio of the additive is about 0.03% by weight or more, and a ratio of the additive is preferably about 10% by weight or less in order to prevent display defects of the element. A more desirable ratio is in the range of from about 0.1% by weight to about 2% by weight. A particularly preferred ratio is in the range of from about 0.2% by weight to about 1.0% by weight.

第四,對成分化合物的較佳形態進行說明。式(1)中,R1 、R2 、R3 、R4 、R5 、R6 、R7 及R8 獨立地為氫或碳數1至4的烷基。較佳的R1 、R2 、R3 、R4 、R5 、R6 、R7 或R8 為氫或甲基。尤佳的R1 、R2 、R3 、R4 、R5 、R6 、R7 或R8 為甲基。Fourth, a preferred embodiment of the component compound will be described. In the formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently hydrogen or an alkyl group having 1 to 4 carbon atoms. Desirable R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 or R 8 are hydrogen or methyl. More preferably, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 or R 8 are a methyl group.

環A及環B獨立地為伸環己基、伸環己烯基、十氫萘二基、二氫吡喃二基、四氫吡喃二基、二噁烷二基、伸苯基、萘二基、嘧啶二基或吡啶二基,且該些環中,至少一個氫可經氟、氯、碳數1至5的烷基、碳數1至5的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至5的烷基取代。較佳的環A或環B為1,4-伸環己基、1,4-伸環己烯基、十氫萘-2,6-二基、3,4-二氫-2H-吡喃-3,6-二基、3,4-二氫-2H-吡喃-2,5-二基、3,6-二氫-2H-吡喃-2,5-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、1,2-伸苯基、1,3-伸苯基、1,4-伸苯基、萘-1,3-二基、萘-1,4-二基、萘-1,5-二基、萘-1,6-二基、萘-1,7-二基、萘-1,8-二基、萘-2,3-二基、萘-2,6-二基、萘-2,7-二基、嘧啶-2,5-二基或吡啶-2,5-二基,且該些環中,至少一個氫可經氟、氯、碳數1至5的烷基、碳數1至5的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至5的烷基取代。尤佳的環A或環B為1,4-伸苯基、2-氟-1,4-伸苯基、萘-1,4-二基或萘-2,6-二基。Ring A and Ring B are independently cyclohexyl, cyclohexenyl, decahydronaphthalenyl, dihydropyranyl, tetrahydropyranyl, dioxanediyl, phenyl, naphthalene a pyrimidinediyl or pyridyldiyl group, and at least one of the hydrogens may be fluorine, chlorine, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or at least one hydrogen via fluorine Or an alkyl group substituted with 1 to 5 carbon atoms substituted by chlorine. Preferred ring A or ring B is 1,4-cyclohexylene, 1,4-cyclohexenyl, decahydronaphthalene-2,6-diyl, 3,4-dihydro-2H-pyran- 3,6-diyl, 3,4-dihydro-2H-pyran-2,5-diyl, 3,6-dihydro-2H-pyran-2,5-diyl, tetrahydropyran- 2,5-diyl, 1,3-dioxane-2,5-diyl, 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, naphthalene-1, 3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, Naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, pyrimidine-2,5-diyl or pyridine-2,5-diyl, and in these rings At least one hydrogen may be substituted with fluorine, chlorine, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms in which at least one hydrogen is replaced by fluorine or chlorine. Particularly preferred ring A or ring B is 1,4-phenylene, 2-fluoro-1,4-phenylene, naphthalene-1,4-diyl or naphthalene-2,6-diyl.

a及b獨立地為1或2。較佳的a或b為1。c為0、1或2,且c為0時,環A為伸環己烯基、十氫萘二基、二氫吡喃二基、四氫吡喃二基、二噁烷二基、萘二基、嘧啶二基或吡啶二基,且該些環中,至少一個氫可經氟、氯、碳數1至5的烷基、碳數1至5的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至5的烷基取代。較佳的c為0或1。a and b are independently 1 or 2. Preferably a or b is one. When c is 0, 1 or 2, and c is 0, ring A is cyclohexene, decalin, dihydropyranyl, tetrahydropyranyl, dioxanediyl, naphthalene a diyl, pyrimidinediyl or pyridyldiyl group, and wherein at least one hydrogen in the rings may be via fluorine, chlorine, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or at least one hydrogen The alkyl group having 1 to 5 carbon atoms substituted by fluorine or chlorine is substituted. Preferably c is 0 or 1.

Z1 、Z2 及Z3 獨立地為單鍵或碳數1至10的伸烷基,且該伸烷基中,至少一個-CH2 -可經-O-、-S-、-CO-、-COO-、-OCO-或-SiH2 -取代,至少一個-CH2 -CH2 -可經-CH=CH-或-C≡C-取代,該些基中,至少一個氫可經氟或氯取代。較佳的Z1 、Z2 或Z3 為單鍵或碳數1至10的伸烷基,且該伸烷基中,至少一個-CH2 -可經-O-取代,而且至少一個氫可經氟取代。尤佳例為單鍵。Z 1 , Z 2 and Z 3 are independently a single bond or an alkylene group having 1 to 10 carbon atoms, and at least one of -CH 2 - may be via -O-, -S-, -CO- in the alkylene group. Substituting -COO-, -OCO- or -SiH 2 -, at least one -CH 2 -CH 2 - may be substituted by -CH=CH- or -C≡C-, wherein at least one hydrogen may be fluorine-containing Or chlorine substituted. Preferably, Z 1 , Z 2 or Z 3 is a single bond or an alkylene group having 1 to 10 carbon atoms, and in the alkylene group, at least one -CH 2 - may be substituted by -O-, and at least one hydrogen may be Replaced by fluorine. A particularly good example is a single bond.

式(2)及式(3)中,R9 及R10 獨立地為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、碳數2至12的烯氧基、或者至少一個氫經氟或氯所取代的碳數1至12的烷基。為了提高穩定性,較佳的R9 或R10 為碳數1至12的烷基,為了提高介電各向異性,較佳的R9 或R10 為碳數1至12的烷氧基。R11 及R12 獨立地為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、至少一個氫經氟或氯所取代的碳數1至12的烷基、或者至少一個氫經氟所取代的碳數2至12的烯基。為了降低黏度,較佳的R11 或R12 為碳數2至12的烯基,為了提高穩定性,較佳的R11 或R12 為碳數1至12的烷基。In the formulae (2) and (3), R 9 and R 10 are independently an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and 2 carbon atoms. An alkenyl group of up to 12, or an alkyl group having 1 to 12 carbons substituted with at least one hydrogen via fluorine or chlorine. To enhance the stability, the preferred R 9 or R 10 is alkyl having 1 to 12, for increasing the dielectric anisotropy, preferred R 9 or R 10 is alkoxy having 1 to 12. R 11 and R 12 are independently an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and a carbon number of 1 at least one hydrogen substituted by fluorine or chlorine. An alkyl group of 12, or an alkenyl group having 2 to 12 carbons substituted with at least one hydrogen via fluorine. To reduce the viscosity, preferred R 11 or R 12 is alkenyl having 2 to 12, to improve stability, preferred R 11 or R 12 is an alkyl group having 1 to 12 carbons.

較佳的烷基為:甲基、乙基、丙基、丁基、戊基、己基、庚基或辛基。為了降低黏度,尤佳的烷基為乙基、丙基、丁基、戊基或庚基。Preferred alkyl groups are: methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or octyl. In order to lower the viscosity, a preferred alkyl group is an ethyl group, a propyl group, a butyl group, a pentyl group or a heptyl group.

至少一個氫經氟或氯所取代的烷基的較佳例為:氟甲基、2-氟乙基、3-氟丙基、4-氟丁基、5-氟戊基、6-氟己基、7-氟庚基或8-氟辛基。為了提高介電各向異性,尤佳例為2-氟乙基、3-氟丙基、4-氟丁基或5-氟戊基。Preferred examples of the alkyl group in which at least one hydrogen is substituted by fluorine or chlorine are: fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl. , 7-fluoroheptyl or 8-fluorooctyl. In order to increase the dielectric anisotropy, a 2-chloroethyl group, a 3-fluoropropyl group, a 4-fluorobutyl group or a 5-fluoropentyl group is particularly preferable.

較佳的烷氧基為:甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基或庚氧基。為了降低黏度,尤佳的烷氧基為甲氧基或乙氧基。Preferred alkoxy groups are: methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy or heptyloxy. In order to lower the viscosity, a more preferred alkoxy group is a methoxy group or an ethoxy group.

較佳的烯基為:乙烯基、1-丙烯基、2-丙烯基、1-丁烯基、2-丁烯基、3-丁烯基、1-戊烯基、2-戊烯基、3-戊烯基、4-戊烯基、1-己烯基、2-己烯基、3-己烯基、4-己烯基或5-己烯基。為了降低黏度,尤佳的烯基為乙烯基、1-丙烯基、3-丁烯基或3-戊烯基。該些烯基中的-CH=CH-的較佳立體構型依存於雙鍵的位置。出於為了降低黏度等原因,於1-丙烯基、1-丁烯基、1-戊烯基、1-己烯基、3-戊烯基、3-己烯基之類的烯基中較佳為反式構型。於2-丁烯基、2-戊烯基、2-己烯基之類的烯基中較佳為順式構型。該些烯基中,直鏈的烯基優於分支的烯基。Preferred alkenyl groups are: ethenyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl or 5-hexenyl. In order to lower the viscosity, a preferred alkenyl group is a vinyl group, a 1-propenyl group, a 3-butenyl group or a 3-pentenyl group. The preferred stereo configuration of -CH=CH- in the alkenyl groups depends on the position of the double bond. In order to reduce the viscosity and the like, in the alkenyl group such as 1-propenyl, 1-butenyl, 1-pentenyl, 1-hexenyl, 3-pentenyl or 3-hexenyl Jia is a trans configuration. The alkenyl group such as 2-butenyl, 2-pentenyl or 2-hexenyl is preferably a cis configuration. Among the alkenyl groups, a linear alkenyl group is preferred to a branched alkenyl group.

較佳的烯氧基為:乙烯氧基、烯丙氧基、3-丁烯氧基、3-戊烯氧基或4-戊烯氧基。為了降低黏度,尤佳的烯氧基為烯丙氧基或3-丁烯氧基。Preferred alkenyloxy groups are: ethyleneoxy, allyloxy, 3-butenyloxy, 3-pentenyloxy or 4-pentenyloxy. In order to lower the viscosity, a more preferred alkenyloxy group is an allyloxy group or a 3-butenyloxy group.

至少一個氫經氟所取代的烯基的較佳例為:2,2-二氟乙烯基、3,3-二氟-2-丙烯基、4,4-二氟-3-丁烯基、5,5-二氟-4-戊烯基或6,6-二氟-5-己烯基。為了降低黏度,尤佳例為2,2-二氟乙烯基或4,4-二氟-3-丁烯基。Preferred examples of the alkenyl group in which at least one hydrogen is substituted by fluorine are: 2,2-difluorovinyl, 3,3-difluoro-2-propenyl, 4,4-difluoro-3-butenyl, 5,5-Difluoro-4-pentenyl or 6,6-difluoro-5-hexenyl. In order to lower the viscosity, a 2,2-difluorovinyl group or a 4,4-difluoro-3-butenyl group is particularly preferred.

環C及環E獨立地為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、至少一個氫經氟或氯所取代的1,4-伸苯基或者四氫吡喃-2,5-二基。「至少一個氫經氟或氯所取代的1,4-伸苯基」的較佳例為:2-氟-1,4-伸苯基、2,3-二氟-1,4-伸苯基或2-氯-3-氟-1,4-伸苯基。為了降低黏度,較佳的環C或環E為1,4-伸環己基,為了提高介電各向異性,較佳的環C或環E為四氫吡喃-2,5-二基,為了提高光學各向異性,較佳的環C或環E為1,4-伸苯基。為了提高上限溫度,與1,4-伸環己基有關的立體構型為反式構型優於順式構型。四氫吡喃-2,5-二基為,較佳為Ring C and Ring E are independently 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, at least one hydrogen substituted by fluorine or chlorine. Or tetrahydropyran-2,5-diyl. Preferred examples of "at least one 1,4-phenylene group in which hydrogen is replaced by fluorine or chlorine" are: 2-fluoro-1,4-phenylene, 2,3-difluoro-1,4-benzobenzene Or 2-chloro-3-fluoro-1,4-phenylene. In order to lower the viscosity, preferred ring C or ring E is 1,4-cyclohexylene, and in order to improve dielectric anisotropy, preferred ring C or ring E is tetrahydropyran-2,5-diyl. In order to enhance optical anisotropy, a preferred ring C or ring E is a 1,4-phenylene group. In order to increase the upper limit temperature, the stereo configuration associated with 1,4-cyclohexylene is a trans configuration superior to the cis configuration. Tetrahydropyran-2,5-diyl is or , preferably .

環D為2,3-二氟-1,4-伸苯基、2-氯-3-氟-1,4-伸苯基、2,3-二氟-5-甲基-1,4-伸苯基、3,4,5-三氟萘-2,6-二基或7,8-二氟色原烷-2,6-二基。為了降低黏度,較佳的環D為2,3-二氟-1,4-伸苯基,為了降低光學各向異性,較佳的環D為2-氯-3-氟-1,4-伸苯基,為了提高介電各向異性,較佳的環D為7,8-二氟色原烷-2,6-二基。Ring D is 2,3-difluoro-1,4-phenylene, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4- Phenyl, 3,4,5-trifluoronaphthalene-2,6-diyl or 7,8-difluorochroman-2,6-diyl. In order to lower the viscosity, the preferred ring D is 2,3-difluoro-1,4-phenylene. In order to reduce optical anisotropy, the preferred ring D is 2-chloro-3-fluoro-1,4- In order to increase the dielectric anisotropy, a preferred ring D is 7,8-difluorochroman-2,6-diyl.

環F及環G獨立地為1,4-伸環己基、1,4-伸苯基、2-氟-1,4-伸苯基或2,5-二氟-1,4-伸苯基。為了降低黏度,或為了提高上限溫度,較佳的環F或環G為1,4-伸環己基,為了降低下限溫度,較佳的環F或環G為1,4-伸苯基。Ring F and Ring G are independently 1,4-cyclohexylene, 1,4-phenylene, 2-fluoro-1,4-phenylene or 2,5-difluoro-1,4-phenylene . Desirable ring F or ring G is a 1,4-cyclohexylene group for decreasing the viscosity or for increasing the upper limit temperature. In order to lower the minimum temperature, a preferred ring F or ring G is a 1,4-phenylene group.

Z4 及Z5 獨立地為單鍵、伸乙基、亞甲氧基或羰基氧基。為了降低黏度,較佳的Z4 或Z5 為單鍵,為了降低下限溫度,較佳的Z4 或Z5 為伸乙基,為了提高介電各向異性,較佳的Z4 或Z5 為亞甲氧基。Z6 為單鍵、伸乙基或羰基氧基。為了降低黏度,較佳的Z6 為單鍵。Z 4 and Z 5 are independently a single bond, an ethyl group, a methylene group or a carbonyloxy group. In order to lower the viscosity, it is preferred that Z 4 or Z 5 is a single bond. In order to lower the lower limit temperature, it is preferred that Z 4 or Z 5 is an exoethyl group, and in order to improve dielectric anisotropy, Z 4 or Z 5 is preferred. It is a methyleneoxy group. Z 6 is a single bond, an ethyl group or a carbonyloxy group. In order to lower the viscosity, Z 6 is preferably a single bond.

d為1、2或3。為了降低黏度,較佳的d為1,為了提高上限溫度,較佳的d為2或3。b為0或1。為了降低黏度,較佳的e為0,為了降低下限溫度,較佳的e為1。f為1、2或3。為了降低黏度,較佳的f為1,為了提高上限溫度,較佳的f為2或3。d is 1, 2 or 3. In order to lower the viscosity, d is preferably 1, and in order to increase the upper limit temperature, d is preferably 2 or 3. b is 0 or 1. Desirable e is 0 in order to lower the viscosity, and e is preferably 1 in order to lower the lower limit temperature. f is 1, 2 or 3. In order to lower the viscosity, it is preferable that f is 1, and in order to increase the upper limit temperature, it is preferable that f is 2 or 3.

式(4)中,P1 、P2 及P3 獨立地為聚合性基。較佳的P1 、P2 或P3 為選自式(P-1)至式(P-5)所表示的基的組群中的聚合性基。尤佳的P1 、P2 或P3 為基(P-1)或基(P-2)。特佳的基(P-1)為-OCO-CH=CH2 或-OCO-C(CH3 )=CH2 。基(P-1)至基(P-5)的波線表示鍵結的部位。 In the formula (4), P 1 , P 2 and P 3 are independently a polymerizable group. Desirable P 1 , P 2 or P 3 is a polymerizable group selected from the group consisting of the groups represented by the formulae (P-1) to (P-5). More preferably, P 1 , P 2 or P 3 is a group (P-1) or a group (P-2). A particularly preferred group (P-1) is -OCO-CH=CH 2 or -OCO-C(CH 3 )=CH 2 . The wave line of the base (P-1) to the base (P-5) represents the portion of the bond.

基(P-1)至基(P-5)中,M1 、M2 及M3 獨立地為氫、氟、碳數1至5的烷基、或者至少一個氫經氟或氯所取代的碳數1至5的烷基。為了提高反應性,較佳的M1 、M2 或M3 為氫或甲基。尤佳的M1 為甲基,且尤佳的M2 或M3 為氫。In the group (P-1) to the group (P-5), M 1 , M 2 and M 3 are independently hydrogen, fluorine, an alkyl group having 1 to 5 carbon atoms, or at least one hydrogen substituted by fluorine or chlorine. An alkyl group having 1 to 5 carbon atoms. Desirable M 1 , M 2 or M 3 is hydrogen or methyl in order to increase the reactivity. More preferably, M 1 is a methyl group, and more preferably M 2 or M 3 is hydrogen.

式(4-1)至式(4-27)中,P4 、P5 及P6 獨立地為式(P-1)至式(P-3)所表示的基。較佳的P4 、P5 或P6 為基(P-1)或基(P-2)。尤佳的基(P-1)為-OCO-CH=CH2 或-OCO-C(CH3 )=CH2 。基(P-1)至基(P-3)的波線表示鍵結的部位。 In the formulae (4-1) to (4-27), P 4 , P 5 and P 6 are independently a group represented by the formula (P-1) to the formula (P-3). Desirable P 4 , P 5 or P 6 is a group (P-1) or a group (P-2). A more preferred group (P-1) is -OCO-CH=CH 2 or -OCO-C(CH 3 )=CH 2 . The wave line of the base (P-1) to the base (P-3) represents the portion of the bond.

式(4)中,Sp1 、Sp2 及Sp3 獨立地為單鍵或碳數1至10的伸烷基,且該伸烷基中,至少一個-CH2 -可經-O-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 -CH2 -可經-CH=CH-或-C≡C-取代,該些基中,至少一個氫可經氟或氯取代。較佳的Sp1 、Sp2 或Sp3 為單鍵、-CH2 CH2 -、-CH2 O-、-OCH2 -、-COO-、-OCO-、-CO-CH=CH-或-CH=CH-CO-。尤佳的Sp1 、Sp2 或Sp3 為單鍵。In the formula (4), Sp 1 , Sp 2 and Sp 3 are independently a single bond or an alkylene group having 1 to 10 carbon atoms, and at least one of -CH 2 - may be subjected to -O-, - COO-, -OCO- or -OCOO-substituted, at least one -CH 2 -CH 2 - may be substituted by -CH=CH- or -C≡C-, wherein at least one hydrogen may be substituted by fluorine or chlorine . Desirable Sp 1 , Sp 2 or Sp 3 is a single bond, -CH 2 CH 2 -, -CH 2 O-, -OCH 2 -, -COO-, -OCO-, -CO-CH=CH- or - CH=CH-CO-. Particularly preferred Sp 1 , Sp 2 or Sp 3 is a single bond.

環I及環K獨立地為環己基、環己烯基、苯基、1-萘基、2-萘基、四氫吡喃-2-基、1,3-二噁烷-2-基、嘧啶-2-基或吡啶-2-基,且該些環中,至少一個氫可經氟或氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至12的烷基取代。較佳的環I或環K為苯基。環J為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-1,2-二基、萘-1,3-二基、萘-1,4-二基、萘-1,5-二基、萘-1,6-二基、萘-1,7-二基、萘-1,8-二基、萘-2,3-二基、萘-2,6-二基、萘-2,7-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,且該些環中,至少一個氫可經氟或氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至12的烷基取代。較佳的環J為1,4-伸苯基或2-氟-1,4-伸苯基。Ring I and Ring K are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxan-2-yl, Pyrimidin-2-yl or pyridin-2-yl, and at least one of the hydrogens may be via fluorine or chlorine, an alkyl group having from 1 to 12 carbons, an alkoxy group having from 1 to 12 carbon atoms, or at least one hydrogen Substituted by a fluorine or chlorine substituted alkyl group having 1 to 12 carbon atoms. Preferred ring I or ring K is phenyl. Ring J is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1 ,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1,7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl , naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5-diyl, 1,3-dioxane-2,5-diyl, pyrimidine-2, 5-diyl or pyridinyl-2,5-diyl, and wherein at least one hydrogen in the rings may be through fluorine or chlorine, an alkyl group having 1 to 12 carbons, an alkoxy group having 1 to 12 carbons, or at least One hydrogen is substituted with a C 1 to 12 alkyl group substituted by fluorine or chlorine. Preferred ring J is 1,4-phenylene or 2-fluoro-1,4-phenylene.

Z7 及Z8 獨立地為單鍵或碳數1至10的伸烷基,且該伸烷基中,至少一個-CH2 -可經-O-、-CO-、-COO-或-OCO-取代,至少一個-CH2 -CH2 -可經-CH=CH-、-C(CH3 )=CH-、-CH=C(CH3 )-或-C(CH3 )=C(CH3 )-取代,該些基中,至少一個氫可經氟或氯取代。較佳的Z7 或Z8 為單鍵、-CH2 CH2 -、-CH2 O-、-OCH2 -、-COO-或-OCO-。尤佳的Z7 或Z8 為單鍵。Z 7 and Z 8 are independently a single bond or an alkylene group having 1 to 10 carbon atoms, and at least one of -CH 2 - may be via -O-, -CO-, -COO- or -OCO. Substituted, at least one -CH 2 -CH 2 - may be via -CH=CH-, -C(CH 3 )=CH-, -CH=C(CH 3 )- or -C(CH 3 )=C(CH 3 )-Substituent, in which at least one hydrogen may be substituted by fluorine or chlorine. Desirable Z 7 or Z 8 is a single bond, -CH 2 CH 2 -, -CH 2 O-, -OCH 2 -, -COO- or -OCO-. A particularly good Z 7 or Z 8 is a single bond.

g為0、1或2。較佳的g為0或1。h、i及j獨立地為0、1、2、3或4,而且h、i及j的和為1以上。較佳的h、i或j為1或2。g is 0, 1, or 2. Preferably g is 0 or 1. h, i, and j are independently 0, 1, 2, 3, or 4, and the sum of h, i, and j is 1 or more. Preferably h, i or j is 1 or 2.

第五,示出較佳的成分化合物。較佳的化合物(1)為項2記載的化合物(1-1)至化合物(1-5)。該些化合物中,較佳為第一添加物的至少一個為化合物(1-1)、化合物(1-3)或化合物(1-4)。較佳為第一添加物的至少兩個為化合物(1-1)及化合物(1-3)、或化合物(1-3)及化合物(1-4)的組合。Fifth, a preferred component compound is shown. A preferred compound (1) is the compound (1-1) to the compound (1-5) according to item 2. Among these compounds, at least one of the first additives is preferably the compound (1-1), the compound (1-3) or the compound (1-4). It is preferred that at least two of the first additives are a combination of the compound (1-1) and the compound (1-3), or the compound (1-3) and the compound (1-4).

較佳的化合物(2)為項5記載的化合物(2-1)至化合物(2-21)。該些化合物中,較佳為第一成分的至少一個為化合物(2-1)、化合物(2-4)、化合物(2-5)、化合物(2-7)、化合物(2-10)或化合物(2-15)。較佳為第一成分的至少兩個為化合物(2-1)及化合物(2-7)、化合物(2-1)及化合物(2-15)、化合物(2-4)及化合物(2-7)、化合物(2-4)及化合物(2-15)、或化合物(2-5)及化合物(2-10)的組合。A preferred compound (2) is the compound (2-1) to the compound (2-21) according to item 5. Among these compounds, at least one of the first components is preferably compound (2-1), compound (2-4), compound (2-5), compound (2-7), compound (2-10) or Compound (2-15). Preferably, at least two of the first components are the compound (2-1) and the compound (2-7), the compound (2-1), the compound (2-15), the compound (2-4), and the compound (2- 7), a combination of the compound (2-4) and the compound (2-15), or the compound (2-5) and the compound (2-10).

較佳的化合物(3)為項8記載的化合物(3-1)至化合物(3-13)。該些化合物中,較佳為第二成分的至少一個為化合物(3-1)、化合物(3-3)、化合物(3-5)、化合物(3-6)、化合物(3-7)或化合物(3-8)。較佳為第二成分的至少兩個為化合物(3-1)及化合物(3-3)、化合物(3-1)及化合物(3-5)、或化合物(3-1)及化合物(3-6)的組合。Desirable compound (3) is the compound (3-1) to the compound (3-13) according to item 8. Among these compounds, at least one of the second components is preferably compound (3-1), compound (3-3), compound (3-5), compound (3-6), compound (3-7) or Compound (3-8). Preferably, at least two of the second components are the compound (3-1) and the compound (3-3), the compound (3-1) and the compound (3-5), or the compound (3-1) and the compound (3). -6) combination.

較佳的化合物(4)為項12記載的化合物(4-1)至化合物(4-27)。該些化合物中,較佳為第二添加物的至少一個為化合物(4-1)、化合物(4-2)、化合物(4-24)、化合物(4-25)、化合物(4-26)或化合物(4-27)。較佳為第二添加物的至少兩個為化合物(4-1)及化合物(4-2)、化合物(4-1)及化合物(4-18)、化合物(4-2)及化合物(4-24)、化合物(4-2)及化合物(4-25)、化合物(4-2)及化合物(4-26)、化合物(4-25)及化合物(4-26)、或化合物(4-18)及化合物(4-24)的組合。基(P-1)至基(P-3)中,較佳的M1 、M2 或M3 為氫或甲基。較佳的Sp1 、Sp2 或Sp3 為單鍵、-CH2 CH2 -、-CH2 O-、-OCH2 -、-COO-、-OCO-、-CO-CH=CH-或-CH=CH-CO-。A preferred compound (4) is the compound (4-1) to the compound (4-27) according to item 12. Among these compounds, at least one of the second additives is preferably a compound (4-1), a compound (4-2), a compound (4-24), a compound (4-25), and a compound (4-26). Or compound (4-27). Preferably, at least two of the second additives are the compound (4-1) and the compound (4-2), the compound (4-1), and the compound (4-18), the compound (4-2), and the compound (4). -24), compound (4-2) and compound (4-25), compound (4-2) and compound (4-26), compound (4-25) and compound (4-26), or compound (4) -18) and a combination of compounds (4-24). Preferred from the group (P-1) to the group (P-3), M 1 , M 2 or M 3 is hydrogen or methyl. Desirable Sp 1 , Sp 2 or Sp 3 is a single bond, -CH 2 CH 2 -, -CH 2 O-, -OCH 2 -, -COO-, -OCO-, -CO-CH=CH- or - CH=CH-CO-.

第六,對可添加於組成物中的添加物進行說明。此種添加物為光學活性化合物、抗氧化劑、紫外線吸收劑、色素、消泡劑、聚合性化合物、聚合起始劑、聚合抑制劑等。出於引起液晶的螺旋結構來賦予扭轉角(torsion angle)的目的,而將光學活性化合物添加於組成物中。此種化合物的例子為化合物(5-1)至化合物(5-5)。光學活性化合物的較佳比例為約5重量%以下。尤佳的比例為約0.01重量%至約2重量%的範圍。Sixth, an additive which can be added to the composition will be described. Such additives are optically active compounds, antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerizable compounds, polymerization initiators, polymerization inhibitors, and the like. The optically active compound is added to the composition for the purpose of imparting a torsion angle to the helical structure of the liquid crystal. Examples of such a compound are the compound (5-1) to the compound (5-5). A preferred ratio of the optically active compound is about 5% by weight or less. A more desirable ratio is in the range of from about 0.01% by weight to about 2% by weight.

為了防止由大氣中的加熱所引起的比電阻下降,或為了在長時間使用元件後,不僅在室溫下,而且在接近於上限溫度的溫度下亦維持大的電壓保持率,而將抗氧化劑添加於組成物中。抗氧化劑的較佳例是n為1至9的整數的化合物(6)等。 In order to prevent a decrease in the specific resistance caused by heating in the atmosphere, or to maintain a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature, the antioxidant is maintained. Add to the composition. A preferred example of the antioxidant is a compound (6) wherein n is an integer of from 1 to 9.

化合物(6)中,較佳的n為1、3、5、7或9。尤佳的n為7。n為7的化合物(6)由於揮發性小,故而對於在長時間使用元件後,不僅在室溫下,而且在接近於上限溫度的溫度下亦維持大的電壓保持率而言有效。為了獲得所述效果,抗氧化劑的較佳比例為約50 ppm以上,為了不降低上限溫度,或為了不提高下限溫度,抗氧化劑的較佳比例為約600 ppm以下。尤佳的比例為約100 ppm至約300 ppm的範圍。In the compound (6), preferred n is 1, 3, 5, 7 or 9. The better n is 7. Since the compound (6) having n of 7 has a small volatility, it is effective for maintaining a large voltage holding ratio not only at room temperature but also at a temperature close to the upper limit temperature after using the element for a long period of time. In order to obtain the above effect, a preferred ratio of the antioxidant is about 50 ppm or more, and a preferred ratio of the antioxidant is about 600 ppm or less in order not to lower the upper limit temperature or to increase the lower limit temperature. A particularly preferred ratio is in the range of from about 100 ppm to about 300 ppm.

紫外線吸收劑的較佳例為:二苯甲酮衍生物、苯甲酸酯衍生物、三唑衍生物等。另外,具有立體阻礙的胺之類的光穩定劑亦較佳。為了獲得所述效果,該些吸收劑或穩定劑的較佳比例為約50 ppm以上,為了不降低上限溫度,或為了不提高下限溫度,該些吸收劑或穩定劑的較佳比例為約10000 ppm以下。尤佳的比例為約100 ppm至約10000 ppm的範圍。Preferred examples of the ultraviolet absorber are a benzophenone derivative, a benzoate derivative, a triazole derivative, and the like. Further, a light stabilizer such as an amine having steric hindrance is also preferred. In order to obtain the effect, a preferred ratio of the absorbent or stabilizer is about 50 ppm or more, and a preferred ratio of the absorbent or stabilizer is about 10,000 in order not to lower the upper limit temperature or to increase the minimum temperature. Below ppm. A particularly preferred ratio is in the range of from about 100 ppm to about 10,000 ppm.

為了適合於賓主(guest host,GH)模式的元件,而將偶氮系色素、蒽醌系色素等之類的二色性色素(dichroic dye)添加於組成物中。色素的較佳比例為約0.01重量%至約10重量%的範圍。為了防止起泡,而將二甲基矽酮油、甲基苯基矽酮油等消泡劑添加於組成物中。為了獲得所述效果,消泡劑的較佳比例為約1 ppm以上,為了防止顯示不良,消泡劑的較佳比例為約1000 ppm以下。尤佳的比例為約1 ppm至約500 ppm的範圍。A dichroic dye such as an azo dye or an anthraquinone dye is added to the composition in order to be suitable for a guest host (GH) mode element. A preferred ratio of pigments is in the range of from about 0.01% by weight to about 10% by weight. In order to prevent foaming, an antifoaming agent such as dimethyl fluorenone oil or methyl phenyl fluorenone oil is added to the composition. In order to obtain the above effect, a preferred ratio of the antifoaming agent is about 1 ppm or more, and a preferable ratio of the antifoaming agent is about 1000 ppm or less in order to prevent display defects. A particularly preferred ratio is in the range of from about 1 ppm to about 500 ppm.

為了適合於聚合物穩定配向(PSA)型的元件,而使用聚合性化合物。化合物(4)適於該目的。亦可將化合物(4)和與化合物(4)不同的聚合性化合物一起添加於組成物中。此種聚合性化合物的較佳例為丙烯酸酯、甲基丙烯酸酯、乙烯基化合物、乙烯氧基化合物、丙烯基醚、環氧化合物(氧雜環丙烷(oxirane)、氧雜環丁烷(oxetane))、乙烯基酮等化合物。尤佳例為丙烯酸酯或甲基丙烯酸酯的衍生物。基於聚合性化合物的總重量,化合物(4)的較佳比例為約10重量%以上。化合物(4)的尤佳的比例為約50重量%以上。化合物(4)的特佳的比例為80重量%以上。化合物(4)的最佳的比例為100重量%。In order to be suitable for a polymer stable alignment (PSA) type element, a polymerizable compound is used. Compound (4) is suitable for this purpose. Compound (4) and a polymerizable compound different from compound (4) may be added to the composition together. Preferred examples of such a polymerizable compound are acrylate, methacrylate, vinyl compound, vinyloxy compound, propenyl ether, epoxy compound (oxirane, oxetane (oxetane) )), a compound such as vinyl ketone. A preferred example is a derivative of acrylate or methacrylate. A preferred ratio of the compound (4) is about 10% by weight or more based on the total weight of the polymerizable compound. A more preferable ratio of the compound (4) is about 50% by weight or more. A particularly preferable ratio of the compound (4) is 80% by weight or more. The optimum ratio of the compound (4) is 100% by weight.

如化合物(4)般的聚合性化合物藉由紫外線照射而聚合。亦可於光聚合起始劑等適當起始劑存在下進行聚合。用以聚合的適當條件、起始劑的適當類型以及適當的量已為本領域技術人員所知,並記載於文獻中。例如作為光起始劑的豔佳固(Irgacure)651(註冊商標;巴斯夫(BASF))、豔佳固(Irgacure)184(註冊商標;巴斯夫)或德牢固(Darocur)1173(註冊商標;巴斯夫)適合於自由基聚合。基於聚合性化合物的總重量,光聚合起始劑的較佳比例為約0.1重量%至約5重量%的範圍。尤佳的比例為約1重量%至約3重量%的範圍。The polymerizable compound like the compound (4) is polymerized by ultraviolet irradiation. The polymerization can also be carried out in the presence of a suitable initiator such as a photopolymerization initiator. Suitable conditions for the polymerization, suitable types of initiators, and suitable amounts are known to those skilled in the art and are described in the literature. For example, Irgacure 651 (registered trademark; BASF), Irgacure 184 (registered trademark; BASF) or Darocur 1173 (registered trademark; BASF) as a photoinitiator Suitable for free radical polymerization. A preferred ratio of the photopolymerization initiator is in the range of from about 0.1% by weight to about 5% by weight based on the total mass of the polymerizable compound. A more desirable ratio is in the range of from about 1% by weight to about 3% by weight.

保管如化合物(4)般的聚合性化合物時,為了防止聚合,亦可添加聚合抑制劑。聚合性化合物通常是以未去除聚合抑制劑的狀態添加於組成物中。聚合抑制劑的例子為對苯二酚(hydroquinone)、甲基對苯二酚(methylhydroquinone)之類的對苯二酚衍生物、4-第三丁基鄰苯二酚(4-tert-butylcatechol)、4-甲氧基苯酚(4-methoxyphenol)、酚噻嗪(phenothiazine)等。When a polymerizable compound such as the compound (4) is stored, a polymerization inhibitor may be added in order to prevent polymerization. The polymerizable compound is usually added to the composition in a state where the polymerization inhibitor is not removed. Examples of polymerization inhibitors are hydroquinone, hydroquinone derivatives such as methylhydroquinone, and 4-tert-butylcatechol. , 4-methoxyphenol, phenothiazine, and the like.

第七,對成分化合物的合成方法進行說明。該些化合物可利用已知的方法來合成。例示合成方法。化合物(2-1)是利用日本專利特開2000-053602號公報中記載的方法來合成。化合物(3-1)是利用日本專利特開昭59-176221號公報中記載的方法來合成。化合物(3-13)是利用日本專利特開平2-237949號公報中記載的方法來合成。化合物(4-18)是利用日本專利特開平7-101900號公報中記載的方法來合成。式(6)的n為1的化合物可自西格瑪奧德里奇(Sigma-Aldrich Corporation)獲取。n為7的化合物(6)等是利用美國專利3660505號說明書中記載的方法來合成。化合物(1-3)是利用下述記載的方法來合成。 Seventh, a method of synthesizing a component compound will be described. These compounds can be synthesized by a known method. An exemplified synthesis method. The compound (2-1) is synthesized by the method described in JP-A-2000-053602. The compound (3-1) is synthesized by the method described in JP-A-59-176221. The compound (3-13) is synthesized by the method described in JP-A-2-237949. The compound (4-18) is synthesized by the method described in JP-A-7-101900. A compound of formula (6) wherein n is 1 is available from Sigma-Aldrich Corporation. The compound (6) wherein n is 7 or the like is synthesized by the method described in the specification of U.S. Patent No. 3,660,505. Compound (1-3) was synthesized by the method described below.

第一步驟: 在四氫呋喃(tetrahydrofuran,THF)中將2,2,6,6-四甲基-4-哌啶醇(15.00 g、95.39 mmol)及NaH(60%、3.80 g、95.01 mmol)的混合物加熱回流2小時。將反應混合物冷卻至-10℃以下,一面保持該溫度,一面緩緩地滴加1,1'-聯苯-4,4'-二羰基二氯化物(12.00 g、43.00 mmol)的THF溶液。在室溫下攪拌反應混合物1小時後,利用水進行驟冷,利用甲基第三丁基醚(methyl tert-butyl ether,MTBE)進行萃取。將二氧化矽凝膠添加於複合有機層,進行過濾,並將溶媒蒸餾去除,而獲得雙(2,2,6,6-四甲基哌啶-4-基)-1,1'-聯苯-4,4'-二羧酸酯(6 g、產率26.7%)。First step: 2,2,6,6-tetramethyl-4-piperidinol (15.00 g, 95.39 mmol) and NaH (60%, 3.80 g, 95.01 mmol) in tetrahydrofuran (THF) The mixture was heated to reflux for 2 hours. The reaction mixture was cooled to -10 ° C or lower, while maintaining the temperature, a solution of 1,1'-biphenyl-4,4'-dicarbonyldichloride (12.00 g, 43.00 mmol) in THF was gradually added dropwise. After the reaction mixture was stirred at room temperature for 1 hour, it was quenched with water and extracted with methyl tert-butyl ether (MTBE). The cerium oxide gel is added to the composite organic layer, filtered, and the solvent is distilled off to obtain bis(2,2,6,6-tetramethylpiperidin-4-yl)-1,1'-linked. Benzene-4,4'-dicarboxylate (6 g, yield 26.7%).

1 H-NMR(CDCl3 ;δppm):8.12(dd,4H)、7.69(dd,4H)、5.48(tt,2H)、2.08(dd,4H)、1.57(br,2H)、1.36-1.31(m,16H)、1.21(s,12H). 1 H-NMR (CDCl 3 ; δ ppm): 8.12 (dd, 4H), 7.69 (dd, 4H), 5.48 (tt, 2H), 2.08 (dd, 4H), 1.57 (br, 2H), 1.36-1.31 ( m, 16H), 1.21 (s, 12H).

未記載合成方法的化合物可利用以下書籍中記載的方法來合成:「有機合成」(Organic Syntheses,約翰威立父子出版公司(John Wiley & Sons, Inc.))、「有機反應」(Organic Reactions,約翰威立父子出版公司(John Wiley & Sons, Inc.))、「綜合有機合成」(Comprehensive Organic Synthesis,培格曼出版公司(Pergamon Press))、新實驗化學講座(丸善)等。組成物是利用公知的方法,由以所述方式獲得的化合物來製備。例如,將成分化合物進行混合,然後藉由加熱而使其相互溶解。Compounds not described in the synthesis method can be synthesized by the methods described in the following books: "Organic Syntheses" (John Wiley & Sons, Inc.), "Organic Reactions" (Organic Reactions, John Wiley & Sons, Inc., "Comprehensive Organic Synthesis" (Pergamon Press), New Experimental Chemistry Lecture (Maruzen). The composition is prepared from the compound obtained in the manner described by a known method. For example, the component compounds are mixed and then dissolved by heating.

最後,對組成物的用途進行說明。該組成物主要具有約-10℃以下的下限溫度、約70℃以上的上限溫度以及約0.07至約0.20的範圍的光學各向異性。含有該組成物的元件具有大的電壓保持率。該組成物適合於AM元件。該組成物特別適合於透過型的AM元件。亦可藉由控制成分化合物的比例,或藉由混合其他的液晶性化合物,來製備具有約0.08至約0.25的範圍的光學各向異性的組成物、進而具有約0.10至約0.30的範圍的光學各向異性的組成物。該組成物可用作具有向列相的組成物,其可藉由添加光學活性化合物而用作光學活性組成物。Finally, the use of the composition will be described. The composition mainly has a lower limit temperature of about -10 ° C or less, an upper limit temperature of about 70 ° C or more, and an optical anisotropy of a range of about 0.07 to about 0.20. The element containing the composition has a large voltage holding ratio. This composition is suitable for an AM device. This composition is particularly suitable for a transmissive AM device. The composition having an optical anisotropy in the range of about 0.08 to about 0.25, and further having an optical range of about 0.10 to about 0.30, can also be prepared by controlling the ratio of the component compounds or by mixing other liquid crystal compounds. Anisotropic composition. The composition can be used as a composition having a nematic phase which can be used as an optically active composition by adding an optically active compound.

該組成物可用於AM元件。進而亦可用於PM元件。該組成物可用於具有PC、TN、STN、ECB、OCB、IPS、FFS、VA、FPA等模式的AM元件以及PM元件。特佳為用於具有TN、OCB、IPS模式或FFS模式的AM元件。於具有IPS模式或FFS模式的AM元件中,當未施加電壓時,相對於玻璃基板,液晶分子的排列可為平行,或亦可為垂直。該些元件可為反射型、透過型或半透過型。較佳為用於透過型的元件。亦可用於非晶矽-TFT元件或多晶矽-TFT元件。亦可用於將該組成物進行微膠囊化而製作的向列曲線排列相(nematic curvilinear aligned phase,NCAP)型元件或使組成物中形成有三維網狀高分子的聚合物分散(polymer dispersed,PD)型元件。 [實施例]This composition can be used for an AM device. Further, it can also be used for a PM element. The composition can be used for an AM device having a mode of PC, TN, STN, ECB, OCB, IPS, FFS, VA, FPA, and the like. It is particularly preferable for an AM device having a TN, OCB, IPS mode or FFS mode. In an AM device having an IPS mode or an FFS mode, when no voltage is applied, the alignment of the liquid crystal molecules may be parallel or perpendicular to the glass substrate. The elements can be reflective, transmissive or semi-transmissive. It is preferably used for a transmissive element. It can also be used for amorphous germanium-TFT elements or polysilicon-TFT elements. It can also be used for a nematic curvilinear aligned phase (NCAP) type element produced by microencapsulating the composition or a polymer dispersed (PD) in which a three-dimensional network polymer is formed in the composition. ) type of component. [Examples]

藉由實施例來對本發明進一步進行詳細說明。本發明不受該些實施例的限制。本發明包含實施例1的組成物與實施例2的組成物的混合物。本發明亦包含將實施例的組成物的至少兩個混合而成的混合物。所合成的化合物是藉由核磁共振(nuclear magnetic resonance,NMR)分析等方法來鑑定。化合物以及組成物的特性是利用下述記載的方法來測定。The invention will be further described in detail by way of examples. The invention is not limited by the embodiments. The present invention comprises a mixture of the composition of Example 1 and the composition of Example 2. The invention also encompasses mixtures in which at least two of the compositions of the examples are mixed. The synthesized compound is identified by a method such as nuclear magnetic resonance (NMR) analysis. The properties of the compound and the composition were measured by the methods described below.

NMR分析:測定時使用布魯克拜厄斯賓(Bruker BioSpin)公司製造的DRX-500。1 H-NMR的測定中,使試樣溶解於CDCl3 等氘化溶劑中,於室溫下以500 MHz、累計次數為16次的條件進行測定。使用四甲基矽烷作為內部標準。19 F-NMR的測定中,使用CFCl3 作為內部標準,以累計次數24次來進行。核磁共振光譜的說明中,s是指單峰(singlet),d是指雙重峰(doublet),t是指三重峰(triplet),q是指四重峰(quartet),quin是指五重峰(quintet),sex是指六重峰(sextet),m是指多重峰(multiplet),br是指寬峰(broad)。NMR analysis: DRX-500 manufactured by Bruker BioSpin Co., Ltd. was used for the measurement. In the measurement of 1 H-NMR, the sample was dissolved in a deuterated solvent such as CDCl 3 , and the measurement was carried out at room temperature at 500 MHz and the cumulative number of times was 16 times. Tetramethyl decane was used as an internal standard. In the measurement of 19 F-NMR, CFCl 3 was used as an internal standard, and the cumulative number of times was 24 times. In the description of nuclear magnetic resonance spectroscopy, s refers to a single peak, d refers to a doublet, t refers to a triplet, q refers to a quartet, and quin refers to a quintuple. (quintet), sex refers to the six-point (sextet), m refers to the multiplet (multiplet), and br refers to the broad peak (broad).

氣相層析分析:測定是使用島津製作所製造的GC-14B型氣相層析儀。載體氣體為氦氣(2 mL/min)。將試樣氣化室設定為280℃,將檢測器(火焰離子化檢測器(flame ionization detector,FID))設定為300℃。進行成分化合物的分離時使用安捷倫科技有限公司(Agilent Technologies Inc.)製造的毛細管柱DB-1(長度30 m、內徑0.32 mm、膜厚0.25 μm;固定液相為二甲基聚矽氧烷;無極性)。該管柱於200℃下保持2分鐘後,以5℃/min的比例升溫至280℃。將試樣製備成丙酮溶液(0.1重量%)後,將其1 μL注入至試樣氣化室中。記錄計為島津製作所製造的C-R5A型層析儀組件(Chromatopac)或其同等品。所得的氣相層析圖表示與成分化合物相對應的峰值的保持時間以及峰值的面積。Gas chromatography analysis: The measurement was performed using a GC-14B gas chromatograph manufactured by Shimadzu Corporation. The carrier gas was helium (2 mL/min). The sample vaporization chamber was set to 280 ° C, and the detector (flame ionization detector (FID)) was set to 300 ° C. For the separation of the component compounds, a capillary column DB-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm) manufactured by Agilent Technologies Inc. was used; the fixed liquid phase was dimethyl polyoxyalkylene. ; no polarity). The column was held at 200 ° C for 2 minutes and then heated to 280 ° C at a rate of 5 ° C / min. After the sample was prepared into an acetone solution (0.1% by weight), 1 μL of the sample was injected into the sample gasification chamber. The record is a C-R5A type chromatograph module (Chromatopac) manufactured by Shimadzu Corporation or its equivalent. The obtained gas chromatogram shows the retention time of the peak corresponding to the component compound and the area of the peak.

用以稀釋試樣的溶劑可使用氯仿、己烷等。為了將成分化合物分離,可使用如下的毛細管柱。安捷倫科技有限公司製造的HP-1(長度30 m、內徑0.32 mm、膜厚0.25 μm)、瑞斯泰克公司(Restek Corporation)製造的Rtx-1(長度30 m、內徑0.32 mm、膜厚0.25 μm)、澳大利亞SGE國際公司(SGE International Pty. Ltd)製造的BP-1(長度30 m、內徑0.32 mm、膜厚0.25 μm)。出於防止化合物峰值的重疊的目的,可使用島津製作所製造的毛細管柱CBP1-M50-025(長度50 m、內徑0.25 mm、膜厚0.25 μm)。As the solvent for diluting the sample, chloroform, hexane or the like can be used. In order to separate the component compounds, the following capillary column can be used. HP-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm) manufactured by Agilent Technologies, Inc., Rtx-1 (length 30 m, inner diameter 0.32 mm, film thickness) manufactured by Restek Corporation 0.25 μm) BP-1 (length 30 m, inner diameter 0.32 mm, film thickness 0.25 μm) manufactured by SGE International Pty. Ltd., Australia. For the purpose of preventing the overlap of the peaks of the compound, a capillary column CBP1-M50-025 (length 50 m, inner diameter 0.25 mm, film thickness 0.25 μm) manufactured by Shimadzu Corporation can be used.

組成物中所含有的液晶性化合物的比例可利用如下所述的方法來算出。利用氣相層析儀(FID)來對液晶性化合物的混合物進行檢測。氣相層析圖中的峰值的面積比相當於液晶性化合物的比例(重量比)。使用上文記載的毛細管柱時,可將各種液晶性化合物的修正係數視為1。因此,液晶性化合物的比例(重量%)可根據峰值的面積比來算出。The ratio of the liquid crystalline compound contained in the composition can be calculated by the method described below. A mixture of liquid crystal compounds was detected by a gas chromatograph (FID). The area ratio of the peaks in the gas chromatogram corresponds to the ratio (weight ratio) of the liquid crystal compound. When the capillary column described above is used, the correction coefficient of various liquid crystal compounds can be regarded as 1. Therefore, the ratio (% by weight) of the liquid crystalline compound can be calculated from the area ratio of the peak.

測定試樣:測定組成物或元件的特性時,將組成物直接用作試樣。測定化合物的特性時,藉由將該化合物(15重量%)混合於母液晶(85重量%)中來製備測定用試樣。根據藉由測定而獲得的值,利用外推法來算出化合物的特性值。(外推值)={(試樣的測定值)-0.85×(母液晶的測定值)}/0.15。當於該比例下,層列相(或結晶)於25℃下析出時,將化合物與母液晶的比例以10重量%:90重量%、5重量%:95重量%、1重量%:99重量%的順序變更。利用該外推法來求出與化合物相關的上限溫度、光學各向異性、黏度以及介電各向異性的值。Measurement sample: When the characteristics of the composition or element are measured, the composition is directly used as a sample. When the properties of the compound were measured, a sample for measurement was prepared by mixing the compound (15% by weight) in a mother liquid crystal (85% by weight). The characteristic value of the compound was calculated by extrapolation based on the value obtained by the measurement. (Extrapolation value) = {(measured value of sample) - 0.85 × (measured value of mother liquid crystal)} / 0.15. When the smectic phase (or crystal) is precipitated at 25 ° C at this ratio, the ratio of the compound to the mother liquid crystal is 10% by weight: 90% by weight, 5% by weight: 95% by weight, 1% by weight: 99% by weight The order of % changes. The extrapolation method was used to determine the values of the upper limit temperature, optical anisotropy, viscosity, and dielectric anisotropy associated with the compound.

使用下述母液晶。成分化合物的比例是以重量%表示。 The following mother liquid crystal was used. The proportion of the constituent compounds is expressed in % by weight.

測定方法:利用下述方法來進行特性的測定。該些方法大多是社團法人電子資訊技術產業協會(Japan Electronics and Information Technology Industries Association;以下稱為JEITA)所審議製定的JEITA標準(JEITA·ED-2521B)中記載的方法或將其加以修飾而成的方法。用於測定的TN元件上未安裝薄膜電晶體(thin film transistor,TFT)。Measurement method: The measurement of the characteristics was carried out by the following method. Most of these methods are or described in the JEITA standard (JEITA ED-2521B) which was developed by the Japan Electronics and Information Technology Industries Association (hereinafter referred to as JEITA). Methods. A thin film transistor (TFT) was not mounted on the TN device used for the measurement.

(1)向列相的上限溫度(NI;℃):於具備偏光顯微鏡的熔點測定裝置的加熱板上放置試樣,以1℃/min的速度進行加熱。測定試樣的一部分自向列相變化為各向同性液體時的溫度。有時將向列相的上限溫度簡稱為「上限溫度」。(1) Maximum temperature of nematic phase (NI; °C): A sample was placed on a hot plate of a melting point measuring apparatus equipped with a polarizing microscope, and heated at a rate of 1 ° C/min. The temperature at which a part of the sample changes from the nematic phase to the isotropic liquid is measured. The upper limit temperature of the nematic phase is sometimes simply referred to as "upper limit temperature".

(2)向列相的下限溫度(TC ;℃):將具有向列相的試樣放入玻璃瓶中,於0℃、-10℃、-20℃、-30℃及-40℃的冷凍器中保管10天後,觀察液晶相。例如,當試樣於-20℃下為向列相的狀態,而於-30℃下變化為結晶或層列相時,將TC 記載為<-20℃。有時將向列相的下限溫度簡稱為「下限溫度」。(2) Lower limit temperature of nematic phase (T C ; ° C): A sample having a nematic phase is placed in a glass bottle at 0 ° C, -10 ° C, -20 ° C, -30 ° C, and -40 ° C. After storage in a freezer for 10 days, the liquid crystal phase was observed. For example, when the sample is in the nematic phase at -20 ° C and changes to crystal or smectic phase at -30 ° C, T C is described as < -20 ° C. The lower limit temperature of the nematic phase is sometimes simply referred to as "lower limit temperature".

(3)黏度(體積黏度;η;於20℃下測定;mPa·s):測定時使用東京計器股份有限公司製造的E型旋轉黏度計。(3) Viscosity (volumetric viscosity; η; measured at 20 ° C; mPa·s): An E-type rotational viscometer manufactured by Tokyo Keiki Co., Ltd. was used for the measurement.

(4)黏度(旋轉黏度;γ1;於25℃下測定;mPa·s):依據M.今井(M.Imai)等人的「分子晶體與液晶(Molecular Crystals and Liquid Crystals)」第259期第37頁(1995)中記載的方法來進行測定。於2塊玻璃基板的間隔(單元間隙)為20 μm的VA元件中放入試樣。對該元件於39伏特至50伏特的範圍內,以1伏特為單位階段性地施加電壓。不施加電壓0.2秒後,以僅施加1個矩形波(矩形脈衝;0.2秒)與不施加電壓(2秒)的條件反覆施加。測定藉由該施加而產生的暫態電流(transient current)的峰值電流(peak current)及峰值時間(peak time)。由該些測定值與M.今井等人的論文第40頁的計算式(8)來獲得旋轉黏度的值。該計算所需要的介電各向異性是根據下述的測定(6)進行測定。(4) Viscosity (rotational viscosity; γ1; measured at 25 ° C; mPa·s): According to M. Imai et al., "Molecular Crystals and Liquid Crystals" No. 259 The method described in 37 (1995) was carried out. A sample was placed in a VA device in which the interval (cell gap) of two glass substrates was 20 μm. The voltage is applied stepwise in units of 1 volt in the range of 39 volts to 50 volts for the device. After applying no voltage for 0.2 seconds, it was applied repeatedly by applying only one rectangular wave (rectangular pulse; 0.2 second) and no voltage application (2 seconds). The peak current and the peak time of the transient current generated by the application were measured. The values of the rotational viscosity were obtained from the measured values and the calculation formula (8) on page 40 of M. Imai et al.'s paper. The dielectric anisotropy required for this calculation was measured in accordance with the measurement (6) described below.

(5)光學各向異性(折射率各向異性;Δn;於25℃下測定):使用波長為589 nm的光,利用在接目鏡上安裝有偏光板的阿貝折射計來進行測定。將主稜鏡的表面向一個方向摩擦後,將試樣滴加於主稜鏡上。折射率n∥是在偏光的方向與摩擦的方向平行時進行測定。折射率n⊥是在偏光的方向與摩擦的方向垂直時進行測定。光學各向異性的值是根據Δn=n∥-n⊥的式子來計算。(5) Optical anisotropy (refractive index anisotropy; Δn; measured at 25 ° C): Measurement was carried out using an Abbe refractometer having a polarizing plate attached to an eyepiece using light having a wavelength of 589 nm. After rubbing the surface of the main crucible in one direction, the sample was dropped onto the main crucible. The refractive index n∥ is measured when the direction of the polarized light is parallel to the direction of rubbing. The refractive index n⊥ is measured when the direction of the polarized light is perpendicular to the direction of rubbing. The value of optical anisotropy is calculated from the equation of Δn=n∥-n⊥.

(6)介電各向異性(Δε;於25℃下測定):根據Δε=ε∥-ε⊥的式子來計算出介電各向異性的值。以如下方式來測定介電常數(ε∥及ε⊥)。 1)介電常數(ε∥)的測定:於經充分洗滌的玻璃基板上塗佈十八烷基三乙氧基矽烷(0.16 mL)的乙醇(20 mL)溶液。利用旋轉器使玻璃基板旋轉後,於150℃下加熱1小時。於2塊玻璃基板的間隔(單元間隙)為4 μm的VA元件中放入試樣,利用以紫外線進行硬化的黏接劑將該元件密封。對該元件施加正弦波(0.5 V、1 kHz),2秒後測定液晶分子的長軸方向的介電常數(ε∥)。 2)介電常數(ε⊥)的測定:於經充分洗滌的玻璃基板上塗佈聚醯亞胺溶液。將該玻璃基板煅燒後,對所得的配向膜進行摩擦處理。於2塊玻璃基板的間隔(單元間隙)為9 μm且扭轉角為80度的TN元件中放入試樣。對該元件施加正弦波(0.5 V、1 kHz),2秒後測定液晶分子的短軸方向的介電常數(ε⊥)。(6) Dielectric Anisotropy (Δε; measured at 25 ° C): The value of dielectric anisotropy was calculated from the equation of Δ ε = ε ∥ - ε 。 . The dielectric constants (ε∥ and ε⊥) were measured in the following manner. 1) Measurement of dielectric constant (ε∥): A solution of octadecyltriethoxydecane (0.16 mL) in ethanol (20 mL) was applied to a well-washed glass substrate. After the glass substrate was rotated by a spinner, it was heated at 150 ° C for 1 hour. A sample was placed in a VA element having a distance (cell gap) of 2 glass substrates of 4 μm, and the element was sealed by an adhesive which was cured by ultraviolet rays. A sine wave (0.5 V, 1 kHz) was applied to the device, and after 2 seconds, the dielectric constant (ε∥) of the liquid crystal molecule in the long axis direction was measured. 2) Measurement of dielectric constant (ε⊥): A polyimide solution was coated on a sufficiently washed glass substrate. After the glass substrate was fired, the obtained alignment film was subjected to a rubbing treatment. A sample was placed in a TN device in which the distance (cell gap) of two glass substrates was 9 μm and the twist angle was 80 degrees. A sine wave (0.5 V, 1 kHz) was applied to the device, and after 2 seconds, the dielectric constant (ε⊥) of the liquid crystal molecule in the short-axis direction was measured.

(7)臨限電壓(Vth;於25℃下測定;V):測定時使用大塚電子股份有限公司製造的LCD5100型亮度計。光源為鹵素燈。於2塊玻璃基板的間隔(單元間隙)為4 μm且摩擦方向為反平行的正常顯黑模式(normally black mode)的VA元件中放入試樣,使用以紫外線進行硬化的黏接劑將該元件密封。對該元件施加的電壓(60 Hz、矩形波)是以0.02 V為單位,自0 V階段性地增加至20 V。此時,自垂直方向對元件照射光,測定透過元件的光量。製成當該光量達到最大時透過率為100%,且當該光量為最小時透過率為0%的電壓-透過率曲線。臨限電壓是由透過率達到10%時的電壓來表示。(7) Threshold voltage (Vth; measured at 25 ° C; V): An LCD 5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for the measurement. The light source is a halogen lamp. A sample is placed in a normally black mode VA device in which the interval (cell gap) of two glass substrates is 4 μm and the rubbing direction is anti-parallel, and the adhesive is cured by ultraviolet rays. The component is sealed. The voltage applied to the device (60 Hz, rectangular wave) is stepwise increased from 0 V to 20 V in units of 0.02 V. At this time, the element was irradiated with light from the vertical direction, and the amount of light transmitted through the element was measured. A voltage-transmittance curve having a transmittance of 100% when the amount of light reaches a maximum and a transmittance of 0% when the amount of light is minimum is prepared. The threshold voltage is expressed by the voltage at which the transmittance reaches 10%.

(8)電壓保持率(VHR-9;於25℃下測定;%):用於測定的TN元件具有聚醯亞胺配向膜,而且2塊玻璃基板的間隔(單元間隙)為5 μm。加入試樣後,利用以紫外線進行硬化的黏接劑將該元件密封。對該TN元件施加脈衝電壓(1 V、60微秒)來充電。利用高速電壓計在166.7毫秒之間測定所衰減的電壓,求出單位週期中的電壓曲線與橫軸之間的面積A。面積B為未衰減時的面積。電壓保持率是由面積A相對於面積B的百分率來表示。(8) Voltage holding ratio (VHR-9; measured at 25 ° C; %): The TN device used for the measurement had a polyimide film, and the interval (cell gap) between the two glass substrates was 5 μm. After the sample was added, the element was sealed with an adhesive which was cured by ultraviolet rays. A pulse voltage (1 V, 60 microseconds) was applied to the TN device to charge. The attenuated voltage was measured between 166.7 msec by a high-speed voltmeter, and the area A between the voltage curve in the unit period and the horizontal axis was obtained. Area B is the area when it is not attenuated. The voltage holding ratio is expressed by the percentage of the area A with respect to the area B.

(9)電壓保持率(VHR-10;於60℃下測定;%):除了代替25℃而於60℃下進行測定以外,以與所述相同的程序來測定電壓保持率。將所得的值以VHR-10來表示。(9) Voltage holding ratio (VHR-10; measured at 60 ° C; %): The voltage holding ratio was measured in the same procedure as described above except that the measurement was carried out at 60 ° C instead of 25 ° C. The obtained value is represented by VHR-10.

(10)電壓保持率(VHR-11;於60℃下測定;%):照射紫外線後,測定電壓保持率,來評價對紫外線的穩定性。用於測定的TN元件具有聚醯亞胺配向膜,而且單元間隙為5 μm。於該元件中注入試樣,照射5 mW/cm2 的紫外線167分鐘。光源為艾古非(Eyegraphics)股份有限公司製造的黑光(black light)、F40T10/BL(峰值波長369 nm),元件與光源的間隔為5 mm。VHR-11的測定中,於166.7毫秒之間測定所衰減的電壓。具有大的VHR-11的組成物對紫外線具有大的穩定性。(10) Voltage holding ratio (VHR-11; measured at 60 ° C; %): After irradiating ultraviolet rays, the voltage holding ratio was measured to evaluate the stability against ultraviolet rays. The TN element used for the measurement had a polyimide film with a cell gap of 5 μm. A sample was injected into the device, and ultraviolet rays of 5 mW/cm 2 were irradiated for 167 minutes. The light source is black light manufactured by Eyegraphics Co., Ltd., F40T10/BL (peak wavelength 369 nm), and the distance between the components and the light source is 5 mm. In the measurement of VHR-11, the attenuated voltage was measured between 166.7 msec. The composition having a large VHR-11 has great stability to ultraviolet rays.

(11)電壓保持率(VHR-12;於60℃下測定;%):將注入有試樣的TN元件於120℃的恆溫槽內加熱20小時後,測定電壓保持率,來評價對熱的穩定性。VHR-12的測定中,於166.7毫秒之間測定所衰減的電壓。具有大的VHR-12的組成物對熱具有大的穩定性。(11) Voltage holding ratio (VHR-12; measured at 60 ° C; %): The TN element in which the sample was injected was heated in a thermostat at 120 ° C for 20 hours, and then the voltage holding ratio was measured to evaluate the heat. stability. In the measurement of VHR-12, the attenuated voltage was measured between 166.7 msec. The composition having a large VHR-12 has great stability to heat.

(12)響應時間(τ;於25℃下測定;ms):測定時使用大塚電子股份有限公司製造的LCD5100型亮度計。光源為鹵素燈。低通濾波器(Low-pass filter)設定為5 kHz。於2塊玻璃基板的間隔(單元間隙)為4 μm且摩擦方向為反平行的正常顯黑模式(normally black mode)的VA元件中放入試樣。使用以紫外線進行硬化的黏接劑將該元件密封。對該元件施加矩形波(60 Hz、10 V、0.5秒)。此時,自垂直方向對元件照射光,測定透過元件的光量。該光量達到最大時視為透過率100%,該光量為最小時視為透過率0%。響應時間是由透過率自90%變化至10%所需要的時間(下降時間;fall time;毫秒)來表示。(12) Response time (τ; measured at 25 ° C; ms): An LCD 5100 luminance meter manufactured by Otsuka Electronics Co., Ltd. was used for the measurement. The light source is a halogen lamp. The low-pass filter is set to 5 kHz. A sample was placed in a normally black mode VA device in which the interval (cell gap) of two glass substrates was 4 μm and the rubbing direction was anti-parallel. The element is sealed using an adhesive that hardens with ultraviolet light. A rectangular wave (60 Hz, 10 V, 0.5 second) was applied to the element. At this time, the element was irradiated with light from the vertical direction, and the amount of light transmitted through the element was measured. When the amount of light reaches the maximum, the transmittance is regarded as 100%, and when the amount of light is the smallest, the transmittance is regarded as 0%. The response time is represented by the time (fall time; fall time; milliseconds) required for the transmittance to change from 90% to 10%.

(13)比電阻(ρ;於25℃下測定;Ωcm):於具備電極的容器中注入試樣1.0 mL。對該容器施加直流電壓(10 V),測定10秒後的直流電流。由下式來算出比電阻。(比電阻)={(電壓)×(容器的電容)}/{(直流電流)×(真空的介電常數)}。(13) Specific resistance (ρ; measured at 25 ° C; Ω cm): 1.0 mL of a sample was injected into a container equipped with an electrode. A DC voltage (10 V) was applied to the container, and a DC current after 10 seconds was measured. The specific resistance was calculated from the following formula. (specific resistance) = {(voltage) × (capacitance of the container)} / {(direct current) × (dielectric constant of vacuum)}.

實施例中的化合物是基於下述表3的定義,利用記號來表示。表3中,與1,4-伸環己基有關的立體構型為反式構型。位於記號後的括弧內的編號與化合物的編號相對應。(-)的記號是指其他的液晶性化合物。液晶性化合物的比例(百分率)是基於液晶組成物的重量的重量百分率(重量%)。最後,歸納組成物的特性值。The compounds in the examples are represented by symbols based on the definitions of Table 3 below. In Table 3, the stereo configuration associated with 1,4-cyclohexylene is in the trans configuration. The number in parentheses after the mark corresponds to the number of the compound. The symbol of (-) means another liquid crystal compound. The ratio (percentage) of the liquid crystalline compound is a weight percentage (% by weight) based on the weight of the liquid crystal composition. Finally, the characteristic values of the composition are summarized.

[實施例1] 2-H1OB(2F,3F)-O2                      (2-4)                    3% 3-H1OB(2F,3F)-O2                      (2-4)                    10% 1V2-BB(2F,3F)-O2                       (2-5)                    10% V-HHB(2F,3F)-O1                        (2-7)                    12% V-HHB(2F,3F)-O2                        (2-7)                    12% 3-HH1OB(2F,3F)-O2                    (2-10)                  6% 2-BB(2F,3F)B-3                           (2-11)                   6% 3-HH-V                                       (3-1)                    25% 3-HH-V1                                     (3-1)                    6% 4-HH-V1                                     (3-1)                    3% V-HHB-1                                     (3-5)                    3% V2-HHB-1                                   (3-5)                    4% 製備介電各向異性為負的所述組成物,測定特性。NI=80.1℃;Tc<-20℃;Δn=0.103;Δε=-3.9;Vth=2.09 V;η=20.7 mPa·s;VHR-11=36.3%. 於該組成物中,以0.05重量%的比例添加化合物(1-1),測定VHR-11。VHR-11=67.1%. [Example 1] 2-H1OB(2F,3F)-O2 (2-4) 3% 3-H1OB(2F,3F)-O2 (2-4) 10% 1V2-BB(2F,3F)-O2 ( 2-5) 10% V-HHB(2F,3F)-O1 (2-7) 12% V-HHB(2F,3F)-O2 (2-7) 12% 3-HH1OB(2F,3F)-O2 (2-10) 6% 2-BB(2F,3F)B-3 (2-11) 6% 3-HH-V (3-1) 25% 3-HH-V1 (3-1) 6% 4 -HH-V1 (3-1) 3% V-HHB-1 (3-5) 3% V2-HHB-1 (3-5) 4% Preparation of the composition having negative dielectric anisotropy, measurement characteristic. NI=80.1°C; Tc<-20°C;Δn=0.103;Δε=-3.9; Vth=2.09 V; η=20.7 mPa·s; VHR-11=36.3%. In the composition, 0.05% by weight Compound (1-1) was added in a ratio, and VHR-11 was measured. VHR-11=67.1%.

[實施例2] 3-H1OB(2F,3F)-O2                      (2-4)                    8% V2-BB(2F,3F)-O1                        (2-5)                    4% V2-BB(2F,3F)-O2                        (2-5)                    9% 1V2-BB(2F,3F)-O4                       (2-5)                    6% V-HHB(2F,3F)-O2                        (2-7)                    10% V-HHB(2F,3F)-O4                        (2-7)                    3% 1V2-HHB(2F,3F)-O2                    (2-7)                    4% 3-HH1OB(2F,3F)-O2                    (2-10)                  12% 3-HH-V                                       (3-1)                    26% 1-HH-2V1                                   (3-1)                    3% 3-HH-2V1                                   (3-1)                    3% 5-HB-O2                                           (3-2)                    3% 3-HHB-O1                                   (3-5)                    5% V-HHB-1                                     (3-5)                    4% 製備介電各向異性為負的所述組成物,測定特性。NI=77.0℃;Tc<-20℃;Δn=0.099;Δε=-3.4;Vth=2.22 V;η=18.6 mPa·s;VHR-11=34.7%. 於該組成物中,以0.1重量%的比例添加化合物(1-3),測定VHR-11。VHR-11=64.5%. [Example 2] 3-H1OB(2F,3F)-O2 (2-4) 8% V2-BB(2F,3F)-O1 (2-5) 4% V2-BB(2F,3F)-O2 ( 2-5) 9% 1V2-BB(2F,3F)-O4 (2-5) 6% V-HHB(2F,3F)-O2 (2-7) 10% V-HHB(2F,3F)-O4 (2-7) 3% 1V2-HHB(2F,3F)-O2 (2-7) 4% 3-HH1OB(2F,3F)-O2 (2-10) 12% 3-HH-V (3-1 26% 1-HH-2V1 (3-1) 3% 3-HH-2V1 (3-1) 3% 5-HB-O2 (3-2) 3% 3-HHB-O1 (3-5) 5 % V-HHB-1 (3-5) 4% The composition having a negative dielectric anisotropy was prepared, and the properties were measured. NI=77.0°C; Tc<-20°C;Δn=0.099;Δε=-3.4; Vth=2.22 V; η=18.6 mPa·s; VHR-11=34.7%. In the composition, 0.1% by weight Compound (1-3) was added in a ratio, and VHR-11 was measured. VHR-11=64.5%.

[實施例3] 3-H1OB(2F,3F)-O2                      (2-4)                    8% 3-BB(2F,3F)-O2                           (2-5)                    8% 2O-BB(2F,3F)-O2                        (2-5)                    5% 2-HH1OB(2F,3F)-O2                    (2-10)                  8% 3-HH1OB(2F,3F)-O2                    (2-10)                  7% 2-BB(2F,3F)B-3                           (2-11)                   8% 3-HDhB(2F,3F)-O2                      (2-13)                  10% 3-HH-V                                       (3-1)                    24% 3-HH-V1                                     (3-1)                    10% V2-HHB-1                                   (3-5)                    9% 1O1-HBBH-4                               (-)                        3% 製備介電各向異性為負的所述組成物,測定特性。NI=83.7℃;Tc<-20℃;Δn=0.107;Δε=-3.7;Vth=2.21 V;η=22.9 mPa·s;VHR-11=37.9%. 於該組成物中,以0.05重量%的比例添加化合物(1-2),測定VHR-11。VHR-11=69.5%. [Example 3] 3-H1OB(2F,3F)-O2 (2-4) 8% 3-BB(2F,3F)-O2 (2-5) 8% 2O-BB(2F,3F)-O2 ( 2-5) 5% 2-HH1OB(2F,3F)-O2 (2-10) 8% 3-HH1OB(2F,3F)-O2 (2-10) 7% 2-BB(2F,3F)B- 3 (2-11) 8% 3-HDhB(2F,3F)-O2 (2-13) 10% 3-HH-V (3-1) 24% 3-HH-V1 (3-1) 10% V2 -HHB-1 (3-5) 9% 1O1-HBBH-4 (-) 3% The composition having a negative dielectric anisotropy was prepared, and the properties were measured. NI=83.7°C; Tc<-20°C;Δn=0.107;Δε=-3.7; Vth=2.21 V; η=22.9 mPa·s; VHR-11=37.9%. In the composition, 0.05% by weight Compound (1-2) was added in proportion to measure VHR-11. VHR-11=69.5%.

[實施例4] 3-H2B(2F,3F)-O2                         (2-3)                    15% 5-H2B(2F,3F)-O2                         (2-3)                    12% 3-HHB(2F,3F)-O2                        (2-7)                    8% 5-HHB(2F,3F)-O2                        (2-7)                    6% 2-HHB(2F,3F)-1                           (2-7)                    5% 3-HBB(2F,3F)-O2                        (2-15)                  10% 4-HBB(2F,3F)-O2                        (2-15)                  6% 1V2-HBB(2F,3F)-O2                    (2-15)                  4% 2-HH-3                                        (3-1)                    20% 3-HH-4                                        (3-1)                    10% V2-BB(F)B-1                               (3-8)                    4% 製備介電各向異性為負的所述組成物,測定特性。NI=80.0℃;Tc<-20℃;Δn=0.096;Δε=-3.4;Vth=2.19 V;η=19.0 mPa·s. 於該組成物中,以0.1重量%的比例添加化合物(1-3),測定VHR-11。VHR-11=90.4%. [Example 4] 3-H2B(2F,3F)-O2 (2-3) 15% 5-H2B(2F,3F)-O2 (2-3) 12% 3-HHB(2F,3F)-O2 ( 2-7) 8% 5-HHB(2F,3F)-O2 (2-7) 6% 2-HHB(2F,3F)-1 (2-7) 5% 3-HBB(2F,3F)-O2 (2-15) 10% 4-HBB(2F,3F)-O2 (2-15) 6% 1V2-HBB(2F,3F)-O2 (2-15) 4% 2-HH-3 (3-1 20% 3-HH-4 (3-1) 10% V2-BB(F)B-1 (3-8) 4% The composition having a negative dielectric anisotropy was prepared, and the properties were measured. NI=80.0°C; Tc<-20°C;Δn=0.096;Δε=-3.4; Vth=2.19 V; η=19.0 mPa·s. In the composition, the compound (1-3) was added in a ratio of 0.1% by weight. ), measure VHR-11. VHR-11=90.4%.

[實施例5] V2-BB(2F,3F)-O2                        (2-5)                    12% 1V2-BB(2F,3F)-O2                       (2-5)                    5% 1V2-BB(2F,3F)-O4                       (2-5)                    3% V-HHB(2F,3F)-O1                        (2-7)                    5% V-HHB(2F,3F)-O2                        (2-7)                    12% V-HHB(2F,3F)-O4                        (2-7)                    5% 3-HDhB(2F,3F)-O2                      (2-13)                  5% 3-dhBB(2F,3F)-O2                       (2-16)                  4% 3-HH-V                                       (3-1)                    32% 1-BB-3                                        (3-3)                    5% 3-HHEH-3                                   (3-4)                    3% V-HHB-1                                     (3-5)                    3% 1-BB(F)B-2V                               (3-8)                    3% 3-HHEBH-4                                 (3-9)                    3% 製備介電各向異性為負的所述組成物,測定特性。NI=78.6℃;Tc<-20℃;Δn=0.107;Δε=-2.7;Vth=2.36 V;η=18.8 mPa·s. 於該組成物中,以0.05重量%的比例添加化合物(1-4),測定VHR-11。VHR-11=89.6%. [Example 5] V2-BB(2F,3F)-O2 (2-5) 12% 1V2-BB(2F,3F)-O2 (2-5) 5% 1V2-BB(2F,3F)-O4 ( 2-5) 3% V-HHB(2F,3F)-O1 (2-7) 5% V-HHB(2F,3F)-O2 (2-7) 12% V-HHB(2F,3F)-O4 (2-7) 5% 3-HDhB(2F,3F)-O2 (2-13) 5% 3-dhBB(2F,3F)-O2 (2-16) 4% 3-HH-V (3-1 32% 1-BB-3 (3-3) 5% 3-HHEH-3 (3-4) 3% V-HHB-1 (3-5) 3% 1-BB(F)B-2V (3 -8) 3% 3-HHEBH-4 (3-9) The composition having a negative dielectric anisotropy was prepared at 3%, and the properties were measured. NI=78.6°C; Tc<-20°C;Δn=0.107;Δε=-2.7; Vth=2.36 V; η=18.8 mPa·s. In the composition, the compound was added in a ratio of 0.05% by weight. ), measure VHR-11. VHR-11=89.6%.

[實施例6] V2-BB(2F,3F)-O2                        (2-5)                    12% 1V2-BB(2F,3F)-O2                       (2-5)                    6% 1V2-BB(2F,3F)-O4                       (2-5)                    3% V-HHB(2F,3F)-O1                        (2-7)                    6% V-HHB(2F,3F)-O2                        (2-7)                    7% V-HHB(2F,3F)-O4                        (2-7)                    5% 1V2-HHB(2F,3F)-O4                    (2-7)                    5% 3-DhH1OB(2F,3F)-O2                  (2-14)                  5% 3-dhBB(2F,3F)-O2                       (2-16)                  5% 3-HH-V                                       (3-1)                    26% 3-HH-VFF                                   (3-1)                    3% V2-HB-1                                           (3-2)                    6% V-HHB-1                                     (3-5)                    5% 2-BB(F)B-5                                 (3-8)                    3% 5-HBB(F)B-3                               (3-13)                  3% 製備介電各向異性為負的所述組成物,測定特性。NI=79.0℃;Tc<-20℃;Δn=0.112;Δε=-2.9;Vth=2.35 V;η=19.8 mPa·s. 於該組成物中,以0.05重量%的比例添加化合物(1-5),測定VHR-11。VHR-11=79.7%. [Example 6] V2-BB(2F,3F)-O2 (2-5) 12% 1V2-BB(2F,3F)-O2 (2-5) 6% 1V2-BB(2F,3F)-O4 ( 2-5) 3% V-HHB(2F,3F)-O1 (2-7) 6% V-HHB(2F,3F)-O2 (2-7) 7% V-HHB(2F,3F)-O4 (2-7) 5% 1V2-HHB(2F,3F)-O4 (2-7) 5% 3-DhH1OB(2F,3F)-O2 (2-14) 5% 3-dhBB(2F,3F)- O2 (2-16) 5% 3-HH-V (3-1) 26% 3-HH-VFF (3-1) 3% V2-HB-1 (3-2) 6% V-HHB-1 ( 3-5) 5% 2-BB(F)B-5 (3-8) 3% 5-HBB(F)B-3 (3-13) 3% The composition having a negative dielectric anisotropy was prepared, and the properties were measured. NI=79.0°C; Tc<-20°C;Δn=0.112;Δε=-2.9; Vth=2.35 V; η=19.8 mPa·s. In the composition, the compound (1-5) was added in a ratio of 0.05% by weight. ), measure VHR-11. VHR-11=79.7%.

[實施例7] 3-H1OB(2F,3F)-O2                      (2-4)                    10% 1V2-BB(2F,3F)-O2                       (2-5)                    10% V-HHB(2F,3F)-O1                        (2-7)                    11% V-HHB(2F,3F)-O2                        (2-7)                    12% 3-HH1OB(2F,3F)-O2                    (2-10)                  9% 2-BB(2F,3F)B-3                           (2-11)                   7% 3-HH-V                                       (3-1)                    26% 3-HH-V1                                     (3-1)                    6% 1-HH-2V1                                   (3-1)                    3% 3-HHB-3                                           (3-5)                    3% V-HHB-1                                     (3-5)                    3% 製備介電各向異性為負的所述組成物,測定特性。NI=81.6℃;Tc<-20℃;Δn=0.103;Δε=-3.7;Vth=2.15 V;η=20.9 mPa·s. 於該組成物中,以0.06重量%的比例添加化合物(1-4),測定VHR-11。VHR-11=66.8%. [Example 7] 3-H1OB(2F,3F)-O2 (2-4) 10% 1V2-BB(2F,3F)-O2 (2-5) 10% V-HHB(2F,3F)-O1 ( 2-7) 11% V-HHB(2F,3F)-O2 (2-7) 12% 3-HH1OB(2F,3F)-O2 (2-10) 9% 2-BB(2F,3F)B- 3 (2-11) 7% 3-HH-V (3-1) 26% 3-HH-V1 (3-1) 6% 1-HH-2V1 (3-1) 3% 3-HHB-3 ( 3-5) 3% V-HHB-1 (3-5) 3% The composition having a negative dielectric anisotropy was prepared, and the properties were measured. NI=81.6°C; Tc<-20°C;Δn=0.103;Δε=-3.7; Vth=2.15 V; η=20.9 mPa·s. In the composition, the compound (1-4) was added in a ratio of 0.06% by weight. ), measure VHR-11. VHR-11=66.8%.

[實施例8] 3-HB(2F,3F)-O2                           (2-1)                    8% 3-H1OB(2F,3F)-O2                      (2-4)                    8% 3-BB(2F,3F)-O2                           (2-5)                    5% 2-HH1OB(2F,3F)-O2                    (2-10)                  8% 3-HH1OB(2F,3F)-O2                    (2-10)                  7% 3-HDhB(2F,3F)-O2                      (2-13)                  10% 3-HH-V                                       (3-1)                    25% 3-HH-V1                                     (3-1)                    10% V2-HHB-1                                   (3-5)                    11% 2-BB(F)B-3                                 (3-8)                    8% 製備介電各向異性為負的所述組成物,測定特性。NI=79.4℃;Tc<-20℃;Δn=0.100;Δε=-3.5;Vth=2.20 V;η=19.5 mPa·s. 於該組成物中,以0.1重量%的比例添加化合物(1-3),測定VHR-11。VHR-11=68.9%. [Example 8] 3-HB(2F,3F)-O2 (2-1) 8% 3-H1OB(2F,3F)-O2 (2-4) 8% 3-BB(2F,3F)-O2 ( 2-5) 5% 2-HH1OB(2F,3F)-O2 (2-10) 8% 3-HH1OB(2F,3F)-O2 (2-10) 7% 3-HDhB(2F,3F)-O2 (2-13) 10% 3-HH-V (3-1) 25% 3-HH-V1 (3-1) 10% V2-HHB-1 (3-5) 11% 2-BB(F)B -3 (3-8) 8% The composition having a negative dielectric anisotropy was prepared, and the properties were measured. NI=79.4°C; Tc<-20°C;Δn=0.100;Δε=-3.5; Vth=2.20 V; η=19.5 mPa·s. In the composition, the compound was added in a ratio of 0.1% by weight. ), measure VHR-11. VHR-11=68.9%.

[實施例9] V2-HB(2F,3F)-O2                        (2-1)                    5% 3-H2B(2F,3F)-O2                         (2-3)                    9% 3-HHB(2F,3F)-O2                        (2-7)                    12% 2-HH1OB(2F,3F)-O2                    (2-10)                  7% 3-HH1OB(2F,3F)-O2                    (2-10)                  12% 3-HDhB(2F,3F)-O2                      (2-13)                  3% 2-HH-3                                        (3-1)                    27% 1-BB-3                                        (3-3)                    13% 3-HHB-1                                           (3-5)                    3% 3-B(F)BB-2                                 (3-7)                    3% 3-HB(F)HH-5                               (3-10)                  3% 3-HB(F)BH-3                               (3-12)                  3% 製備介電各向異性為負的所述組成物,測定特性。NI=78.9℃;Tc<-20℃;Δn=0.098;Δε=-2.9;Vth=2.34 V;η=18.2 mPa·s. 於該組成物中,以0.05重量%的比例添加化合物(1-1),測定VHR-11。VHR-11=81.3%. [Example 9] V2-HB(2F,3F)-O2 (2-1) 5% 3-H2B(2F,3F)-O2 (2-3) 9% 3-HHB(2F,3F)-O2 ( 2-7) 12% 2-HH1OB(2F,3F)-O2 (2-10) 7% 3-HH1OB(2F,3F)-O2 (2-10) 12% 3-HDhB(2F,3F)-O2 (2-13) 3% 2-HH-3 (3-1) 27% 1-BB-3 (3-3) 13% 3-HHB-1 (3-5) 3% 3-B(F)BB -2 (3-7) 3% 3-HB(F)HH-5 (3-10) 3% 3-HB(F)BH-3 (3-12) 3% Preparation of dielectric anisotropy is negative The composition was measured for characteristics. NI=78.9°C; Tc<-20°C;Δn=0.098;Δε=-2.9; Vth=2.34 V; η=18.2 mPa·s. In the composition, the compound (1-1) was added in a ratio of 0.05% by weight. ), measure VHR-11. VHR-11=81.3%.

[實施例10] 5-H2B(2F,3F)-O2                         (2-3)                    9% 5-BB(2F,3F)-O4                           (2-5)                    5% 5-HHB(2F,3F)-O2                        (2-7)                     3% V-HHB(2F,3F)-O2                        (2-7)                    6% 3-HH2B(2F,3F)-O2                      (2-9)                    3% 3-HH1OB(2F,3F)-O2                    (2-10)                  13% 2-BB(2F,3F)B-3                           (2-11)                   3% 2-HHB(2F,3CL)-O2                      (2-18)                  3% 4-HHB(2F,3CL)-O2                      (2-18)                  3% 2-HH-3                                        (3-1)                    22% 3-HH-V                                       (3-1)                    5% V2-BB-1                                      (3-3)                    3% 1-BB-3                                        (3-3)                    13% 3-HB(F)HH-5                               (3-10)                  3% 5-HBBH-3                                   (3-11)                   3% 3-HB(F)BH-3                               (3-12)                  3% 製備介電各向異性為負的所述組成物,測定特性。NI=78.9℃;Tc<-20℃;Δn=0.103;Δε=-2.6;Vth=2.49 V;η=17.6 mPa·s. 於該組成物中,以0.1重量%的比例添加化合物(1-3),測定VHR-11。VHR-11=80.0%. [Example 10] 5-H2B(2F,3F)-O2 (2-3) 9% 5-BB(2F,3F)-O4 (2-5) 5% 5-HHB(2F,3F)-O2 ( 2-7) 3% V-HHB(2F,3F)-O2 (2-7) 6% 3-HH2B(2F,3F)-O2 (2-9) 3% 3-HH1OB(2F,3F)-O2 (2-10) 13% 2-BB(2F,3F)B-3 (2-11) 3% 2-HHB(2F,3CL)-O2 (2-18) 3% 4-HHB(2F,3CL) -O2 (2-18) 3% 2-HH-3 (3-1) 22% 3-HH-V (3-1) 5% V2-BB-1 (3-3) 3% 1-BB-3 (3-3) 13% 3-HB(F)HH-5 (3-10) 3% 5-HBBH-3 (3-11) 3% 3-HB (F) BH-3 (3-12) 3% The composition having a negative dielectric anisotropy was prepared, and the properties were measured. NI=78.9°C; Tc<-20°C;Δn=0.103;Δε=-2.6; Vth=2.49 V; η=17.6 mPa·s. In the composition, the compound (1-3) was added in a ratio of 0.1% by weight. ), measure VHR-11. VHR-11=80.0%.

[實施例11] 3-H2B(2F,3F)-O2                         (2-3)                    20% 5-H2B(2F,3F)-O2                         (2-3)                    12% 3-HHB(2F,3F)-O2                        (2-7)                    8% 5-HHB(2F,3F)-O2                        (2-7)                    6% 3-HDhB(2F,3F)-O2                      (2-13)                  5% 3-HBB(2F,3F)-O2                        (2-15)                  10% 4-HBB(2F,3F)-O2                        (2-15)                  6% 2-HH-3                                        (3-1)                    16% 3-HH-4                                        (3-1)                    13% 1V-HBB-2                                   (3-6)                    4% 製備介電各向異性為負的所述組成物,測定特性。NI=76.2℃;Tc<-20℃;Δn=0.089;Δε=-3.6;Vth=2.12 V;η=19.8 mPa·s. 於該組成物中,以0.05重量%的比例添加化合物(1-3),測定VHR-11。VHR-11=87.1%. [Example 11] 3-H2B(2F,3F)-O2 (2-3) 20% 5-H2B(2F,3F)-O2 (2-3) 12% 3-HHB(2F,3F)-O2 ( 2-7) 8% 5-HHB(2F,3F)-O2 (2-7) 6% 3-HDhB(2F,3F)-O2 (2-13) 5% 3-HBB(2F,3F)-O2 (2-15) 10% 4-HBB(2F,3F)-O2 (2-15) 6% 2-HH-3 (3-1) 16% 3-HH-4 (3-1) 13% 1V- HBB-2 (3-6) 4% The composition having a negative dielectric anisotropy was prepared, and the properties were measured. NI=76.2°C; Tc<-20°C;Δn=0.089;Δε=-3.6; Vth=2.12 V; η=19.8 mPa·s. In the composition, the compound (1-3) was added in a ratio of 0.05% by weight. ), measure VHR-11. VHR-11=87.1%.

[實施例12] 3-HB(2F,3F)-O2                           (2-1)                    5% V-HB(2F,3F)-O4                          (2-1)                    4% 5-BB(2F,3F)-O2                           (2-5)                    6% 3-B(2F,3F)B(2F,3F)-O2                (2-6)                    3% V-HHB(2F,3F)-O2                        (2-7)                    10% 3-HH1OB(2F,3F)-O2                    (2-10)                  10% 2-BB(2F,3F)B-3                           (2-11)                   5% 4-HBB(2F,3F)-O2                        (2-15)                  5% V-HBB(2F,3F)-O2                        (2-15)                  7% 3-HBB(2F,3CL)-O2                      (2-19)                  3% 3-HH-O1                                     (3-1)                    3% 3-HH-V                                       (3-1)                    26% 3-HB-O2                                           (3-2)                    3% V-HHB-1                                     (3-5)                    7% 3-BB(F)B-5                                 (3-8)                    3% 製備介電各向異性為負的所述組成物,測定特性。NI=80.6℃;Tc<-20℃;Δn=0.114;Δε=-3.2;Vth=2.27 V;η=24.0 mPa·s. 於該組成物中,以0.06重量%的比例添加化合物(1-4),測定VHR-11。VHR-11=82.9%. [Example 12] 3-HB(2F,3F)-O2 (2-1) 5% V-HB(2F,3F)-O4 (2-1) 4% 5-BB(2F,3F)-O2 ( 2-5) 6% 3-B(2F,3F)B(2F,3F)-O2 (2-6) 3% V-HHB(2F,3F)-O2 (2-7) 10% 3-HH1OB( 2F,3F)-O2 (2-10) 10% 2-BB(2F,3F)B-3 (2-11) 5% 4-HBB(2F,3F)-O2 (2-15) 5% V- HBB(2F,3F)-O2 (2-15) 7% 3-HBB(2F,3CL)-O2 (2-19) 3% 3-HH-O1 (3-1) 3% 3-HH-V ( 3-1) 26% 3-HB-O2 (3-2) 3% V-HHB-1 (3-5) 7% 3-BB(F)B-5 (3-8) 3% The composition having a negative dielectric anisotropy was prepared, and the properties were measured. NI=80.6°C; Tc<-20°C;Δn=0.114;Δε=-3.2; Vth=2.27 V; η=24.0 mPa·s. In the composition, the compound (1-4) was added in a ratio of 0.06% by weight. ), measure VHR-11. VHR-11=82.9%.

[實施例13] 3-chB(2F,3F)-O2                          (2-2)                    6% 3-BB(2F,3F)-O4                           (2-5)                    6% V2-BB(2F,3F)-O2                        (2-5)                    6% 3-HHB(2F,3F)-O2                        (2-7)                    5% V-HHB(2F,3F)-O1                        (2-7)                    6% V-HHB(2F,3F)-O2                        (2-7)                    9% 2-HchB(2F,3F)-O2                       (2-8)                    3% 3-DhHB(2F,3F)-O2                      (2-12)                  5% 3-HEB(2F,3F)B(2F,3F)-O2            (2-17)                  3% 3-H1OCro(7F,8F)-5                      (2-20)                  3% 3-HH1OCro(7F,8F)-5                   (2-21)                  3% 3-HH-V                                       (3-1)                    23% 4-HH-V                                       (3-1)                    3% 5-HH-V                                       (3-1)                    6% 7-HB-1                                        (3-2)                    3% V-HHB-1                                     (3-5)                    4% V-HBB-2                                     (3-6)                    3% 2-BB(F)B-3                                 (3-8)                    3% 製備介電各向異性為負的所述組成物,測定特性。NI=70.9℃;Tc<-20℃;Δn=0.092;Δε=-3.2;Vth=2.16 V;η=22.9 mPa·s. 於該組成物中,以0.05重量%的比例添加化合物(1-5),測定VHR-11。VHR-11=84.3%. [Example 13] 3-chB(2F,3F)-O2 (2-2) 6% 3-BB(2F,3F)-O4 (2-5) 6% V2-BB(2F,3F)-O2 ( 2-5) 6% 3-HHB(2F,3F)-O2 (2-7) 5% V-HHB(2F,3F)-O1 (2-7) 6% V-HHB(2F,3F)-O2 (2-7) 9% 2-HchB(2F,3F)-O2 (2-8) 3% 3-DhHB(2F,3F)-O2 (2-12) 5% 3-HEB(2F,3F)B (2F,3F)-O2 (2-17) 3% 3-H1OCro(7F,8F)-5 (2-20) 3% 3-HH1OCro(7F,8F)-5 (2-21) 3% 3- HH-V (3-1) 23% 4-HH-V (3-1) 3% 5-HH-V (3-1) 6% 7-HB-1 (3-2) 3% V-HHB-1 (3-5) 4% V-HBB-2 (3-6) 3% 2-BB(F)B-3 (3-8) 3% Preparation of Dielectric The composition having an anisotropy was negative, and the characteristics were measured. NI=70.9°C; Tc<-20°C;Δn=0.092;Δε=-3.2; Vth=2.16 V; η=22.9 mPa·s. In the composition, the compound (1-5) was added in a ratio of 0.05% by weight. ), measure VHR-11. VHR-11=84.3%.

[實施例14] 5-H2B(2F,3F)-O2                         (2-3)                    9% 5-BB(2F,3F)-O4                           (2-5)                    5% 5-HHB(2F,3F)-O2                        (2-7)                    3% V-HHB(2F,3F)-O2                        (2-7)                    6% 3-HH2B(2F,3F)-O2                      (2-9)                    3% 3-HH1OB(2F,3F)-O2                    (2-10)                  13% 2-BB(2F,3F)B-3                           (2-11)                   3% 2-HHB(2F,3CL)-O2                      (2-18)                  3% 4-HHB(2F,3CL)-O2                      (2-18)                  3% 2-HH-3                                        (3-1)                    22% 3-HH-V                                       (3-1)                    5% V2-BB-1                                      (3-3)                    3% 1-BB-5                                        (3-3)                    13% 3-HBB-2                                      (3-6)                    3% 3-HB(F)HH-5                               (3-10)                  3% 3-HB(F)BH-3                               (3-12)                  3% 製備介電各向異性為負的所述組成物,測定特性。NI=76.1℃;Tc<-20℃;Δn=0.103;Δε=-2.6;Vth=2.47 V;η=16.8 mPa·s. 於該組成物中,以0.05重量%的比例添加化合物(1-1),測定VHR-11。VHR-11=82.3%. [Example 14] 5-H2B(2F,3F)-O2 (2-3) 9% 5-BB(2F,3F)-O4 (2-5) 5% 5-HHB(2F,3F)-O2 ( 2-7) 3% V-HHB(2F,3F)-O2 (2-7) 6% 3-HH2B(2F,3F)-O2 (2-9) 3% 3-HH1OB(2F,3F)-O2 (2-10) 13% 2-BB(2F,3F)B-3 (2-11) 3% 2-HHB(2F,3CL)-O2 (2-18) 3% 4-HHB(2F,3CL) -O2 (2-18) 3% 2-HH-3 (3-1) 22% 3-HH-V (3-1) 5% V2-BB-1 (3-3) 3% 1-BB-5 (3-3) 13% 3-HBB-2 (3-6) 3% 3-HB(F)HH-5 (3-10) 3% 3-HB(F)BH-3 (3-12) 3% Preparation of the composition having negative dielectric anisotropy, measurement characteristics . NI=76.1°C; Tc<-20°C;Δn=0.103;Δε=-2.6; Vth=2.47 V; η=16.8 mPa·s. In the composition, the compound (1-1) was added in a ratio of 0.05% by weight. ), measure VHR-11. VHR-11=82.3%.

[實施例15] 3-BB(2F,3F)-O4                           (2-5)                    6% V2-BB(2F,3F)-O2                        (2-5)                    12% 3-HHB(2F,3F)-O2                        (2-7)                    5% V-HHB(2F,3F)-O1                        (2-7)                    6% V2-HHB(2F,3F)-O2                      (2-7)                    12% 3-DhHB(2F,3F)-O2                      (2-12)                  5% 3-HEB(2F,3F)B(2F,3F)-O2            (2-17)                  3% 3-H1OCro(7F,8F)-5                      (2-20)                  3% 3-HH1OCro(7F,8F)-5                   (2-21)                  3% 3-HH-V                                       (3-1)                    23% 4-HH-V                                       (3-1)                    3% 5-HH-V                                       (3-1)                    6% 7-HB-1                                        (3-2)                    3% V-HHB-1                                     (3-5)                    4% V-HBB-2                                     (3-6)                    3% 2-BB(F)B-3                                 (3-8)                    3% 製備介電各向異性為負的所述組成物,測定特性。NI=76.1℃;Tc<-20℃;Δn=0.099;Δε=-3.0;Vth=2.25 V;η=22.7 mPa·s. 於該組成物中,以0.03重量%的比例添加化合物(1-4),測定VHR-11。VHR-11=81.4%. [Example 15] 3-BB(2F,3F)-O4 (2-5) 6% V2-BB(2F,3F)-O2 (2-5) 12% 3-HHB(2F,3F)-O2 ( 2-7) 5% V-HHB(2F,3F)-O1 (2-7) 6% V2-HHB(2F,3F)-O2 (2-7) 12% 3-DhHB(2F,3F)-O2 (2-12) 5% 3-HEB(2F,3F)B(2F,3F)-O2 (2-17) 3% 3-H1OCro(7F,8F)-5 (2-20) 3% 3-HH1OCro (7F,8F)-5 (2-21) 3% 3-HH-V (3-1) 23% 4-HH-V (3-1) 3% 5-HH-V (3-1) 6% 7-HB-1 (3-2) 3% V-HHB-1 (3-5) 4% V-HBB-2 (3-6) 3% 2-BB (F) B-3 (3-8) 3% The composition having a negative dielectric anisotropy was prepared, and the properties were measured. NI=76.1°C; Tc<-20°C;Δn=0.099;Δε=-3.0; Vth=2.25 V; η=22.7 mPa·s. In the composition, the compound (1-4) was added in a ratio of 0.03 wt%. ), measure VHR-11. VHR-11=81.4%.

[實施例16] 3-H2B(2F,3F)-O2                         (2-3)                    20% 5-H2B(2F,3F)-O2                         (2-3)                    12% 3-HHB(2F,3F)-O2                        (2-7)                    8% 5-HHB(2F,3F)-O2                        (2-7)                    6% 3-HDhB(2F,3F)-O2                      (2-13)                  5% 3-HBB(2F,3F)-O2                        (2-15)                  10% 4-HBB(2F,3F)-O2                        (2-15)                  6% 2-HH-3                                        (3-1)                    16% 3-HH-4                                        (3-1)                    13% 1V-HBB-2                                   (3-6)                    4% 製備介電各向異性為負的所述組成物,測定特性。NI=76.2℃;Tc<-20℃;Δn=0.089;Δε=-3.6;Vth=2.12 V;η=19.8 mPa·s. 於該組成物中,以0.03重量%的比例添加化合物(1-2),測定VHR-11。VHR-11=86.2%. [Example 16] 3-H2B(2F,3F)-O2 (2-3) 20% 5-H2B(2F,3F)-O2 (2-3) 12% 3-HHB(2F,3F)-O2 ( 2-7) 8% 5-HHB(2F,3F)-O2 (2-7) 6% 3-HDhB(2F,3F)-O2 (2-13) 5% 3-HBB(2F,3F)-O2 (2-15) 10% 4-HBB(2F,3F)-O2 (2-15) 6% 2-HH-3 (3-1) 16% 3-HH-4 (3-1) 13% 1V- HBB-2 (3-6) 4% The composition having a negative dielectric anisotropy was prepared, and the properties were measured. NI=76.2°C; Tc<-20°C;Δn=0.089;Δε=-3.6; Vth=2.12 V; η=19.8 mPa·s. In the composition, the compound (1-2) was added in a ratio of 0.03% by weight. ), measure VHR-11. VHR-11=86.2%.

[實施例17] 3-BB(2F,3F)-O4                           (2-5)                    6% V2-BB(2F,3F)-O2                        (2-5)                    12% 3-HHB(2F,3F)-O2                        (2-7)                    8% V-HHB(2F,3F)-O1                        (2-7)                    6% V2-HHB(2F,3F)-O2                      (2-7)                    12% 3-DhHB(2F,3F)-O2                      (2-12)                  5% 3-HEB(2F,3F)B(2F,3F)-O2            (2-17)                  3% 3-H1OCro(7F,8F)-5                      (2-20)                  3% 3-HH-V                                       (3-1)                    23% 4-HH-V                                       (3-1)                    3% 5-HH-V                                       (3-1)                    6% 7-HB-1                                        (3-2)                    3% V-HHB-1                                     (3-5)                    4% V-HBB-2                                     (3-6)                    3% 2-BB(F)B-3                                 (3-8)                    3% 製備介電各向異性為負的所述組成物,測定特性。NI=77.1℃;Tc<-20℃;Δn=0.100;Δε=-2.9;Vth=2.30 V;η=21.2 mPa·s. 於該組成物中,以0.03重量%的比例添加化合物(1-5),測定VHR-11。VHR-11=82.5%. [Example 17] 3-BB(2F,3F)-O4 (2-5) 6% V2-BB(2F,3F)-O2 (2-5) 12% 3-HHB(2F,3F)-O2 ( 2-7) 8% V-HHB(2F,3F)-O1 (2-7) 6% V2-HHB(2F,3F)-O2 (2-7) 12% 3-DhHB(2F,3F)-O2 (2-12) 5% 3-HEB(2F,3F)B(2F,3F)-O2 (2-17) 3% 3-H1OCro(7F,8F)-5 (2-20) 3% 3-HH -V (3-1) 23% 4-HH-V (3-1) 3% 5-HH-V (3-1) 6% 7-HB-1 (3-2) 3% V-HHB-1 (3-5) 4% V-HBB-2 (3-6) 3% 2-BB(F)B-3 (3-8) 3% The composition having a negative dielectric anisotropy was prepared, and the properties were measured. NI=77.1°C; Tc<-20°C;Δn=0.100;Δε=-2.9; Vth=2.30 V; η=21.2 mPa·s. In the composition, the compound (1-5) was added in a ratio of 0.03 wt%. ), measure VHR-11. VHR-11=82.5%.

[實施例18] 3-HB(2F,3F)-O2                           (2-1)                    6% 3-BB(2F,3F)-O4                           (2-5)                    6% V2-BB(2F,3F)-O2                        (2-5)                    12% 3-HHB(2F,3F)-O2                        (2-7)                    8% V-HHB(2F,3F)-O1                        (2-7)                    6% V2-HHB(2F,3F)-O2                      (2-7)                    12% 3-HDhB(2F,3F)-O2                      (2-13)                  5% 3-HH-V                                       (3-1)                    23% 4-HH-V                                       (3-1)                    3% 5-HH-V                                       (3-1)                    6% 7-HB-1                                        (3-2)                    3% V-HHB-1                                     (3-5)                    4% V-HBB-2                                     (3-6)                    3% 2-BB(F)B-3                                 (3-8)                    3% 製備介電各向異性為負的所述組成物,測定特性。NI=72.3℃;Tc<-20℃;Δn=0.098;Δε=-2.8;Vth=2.28 V;η=17.8 mPa·s. 於該組成物中,以0.1重量%的比例添加化合物(1-3),測定VHR-11。VHR-11=85.8%. [Example 18] 3-HB(2F,3F)-O2 (2-1) 6% 3-BB(2F,3F)-O4 (2-5) 6% V2-BB(2F,3F)-O2 ( 2-5) 12% 3-HHB(2F,3F)-O2 (2-7) 8% V-HHB(2F,3F)-O1 (2-7) 6% V2-HHB(2F,3F)-O2 (2-7) 12% 3-HDhB(2F,3F)-O2 (2-13) 5% 3-HH-V (3-1) 23% 4-HH-V (3-1) 3% 5- HH-V (3-1) 6% 7-HB-1 (3-2) 3% V-HHB-1 (3-5) 4% V-HBB-2 (3-6) 3% 2-BB ( F) B-3 (3-8) The composition having a negative dielectric anisotropy was prepared at 3%, and the properties were measured. NI=72.3°C; Tc<-20°C;Δn=0.098;Δε=-2.8; Vth=2.28 V; η=17.8 mPa·s. In the composition, the compound (1-3) was added in a ratio of 0.1% by weight. ), measure VHR-11. VHR-11=85.8%.

比較實施例1至實施例3中的添加第一添加物的效果。電壓保持率是根據所述測定方法(10)中記載的方法來測定。首先,將未添加第一添加物的組成物注入至TN元件。在對該元件照射5 mW/cm2 的紫外線167分鐘後,測定電壓保持率。繼而,將添加了第一添加物的組成物注入至TN元件,同樣地照射紫外線後,測定電壓保持率。藉由比較該些測定值來評價第一添加物的效果。將結果匯總於表4。實施例1至實施例3中的未添加第一添加物的組成物的電壓保持率(VHR-11)為約36%。可藉由於組成物中添加第一添加物來將VHR-11控制為約67%。實施例4至實施例18 中的VHR-11為66.8%至90.4%的範圍,可維持高的電壓保持率。因此,可獲得本發明的液晶組成物具有優異的特性的結論。The effects of adding the first additive in Examples 1 to 3 were compared. The voltage holding ratio was measured according to the method described in the measuring method (10). First, a composition to which the first additive is not added is injected into the TN element. After the element was irradiated with ultraviolet rays of 5 mW/cm 2 for 167 minutes, the voltage holding ratio was measured. Then, the composition to which the first additive was added was injected into the TN device, and after the ultraviolet ray was irradiated in the same manner, the voltage holding ratio was measured. The effect of the first additive was evaluated by comparing the measured values. The results are summarized in Table 4. The voltage holding ratio (VHR-11) of the composition in which the first additive was not added in Examples 1 to 3 was about 36%. VHR-11 can be controlled to be about 67% by adding a first additive to the composition. The VHR-11 in Examples 4 to 18 was in the range of 66.8% to 90.4%, and a high voltage holding ratio was maintained. Therefore, the conclusion that the liquid crystal composition of the present invention has excellent characteristics can be obtained.

表4. 添加第一添加物的效果 [產業上之可利用性]Table 4. Effect of adding the first additive [Industrial availability]

本發明的液晶組成物於上限溫度高、下限溫度低、黏度小、光學各向異性適當、負介電各向異性大、比電阻大、對紫外線的穩定性高、對熱的穩定性高等特性中,滿足至少一個特性或關於至少兩個特性而具有適當的平衡。含有該組成物的液晶顯示元件由於具有響應時間短、電壓保持率大、臨限電壓低、對比度比大、壽命長等特性,故而可用於液晶投影機、液晶電視等。The liquid crystal composition of the present invention has high upper limit temperature, low lower limit temperature, low viscosity, appropriate optical anisotropy, large negative dielectric anisotropy, large specific resistance, high stability against ultraviolet rays, and high stability against heat. The at least one characteristic is satisfied or has an appropriate balance with respect to at least two characteristics. The liquid crystal display device including the composition can be used for a liquid crystal projector, a liquid crystal television, or the like because of its short response time, large voltage holding ratio, low threshold voltage, large contrast ratio, and long life.

no

no

no

Claims (18)

一種液晶組成物,其含有選自式(1)所表示的化合物的組群中的至少一個化合物作為第一添加物,且具有負的介電各向異性,而且具有向列相,式(1)中,R1 、R2 、R3 、R4 、R5 、R6 、R7 及R8 獨立地為氫或碳數1至4的烷基;環A及環B獨立地為伸環己基、伸環己烯基、十氫萘二基、二氫吡喃二基、四氫吡喃二基、二噁烷二基、伸苯基、萘二基、嘧啶二基或吡啶二基,且所述環中,至少一個氫可經氟、氯、碳數1至5的烷基、碳數1至5的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至5的烷基取代;Z1 、Z2 及Z3 獨立地為單鍵或碳數1至10的伸烷基,且所述伸烷基中,至少一個-CH2 -可經-O-、-S-、-CO-、-COO-、-OCO-或-SiH2 -取代,至少一個-CH2 -CH2 -可經-CH=CH-或-C≡C-取代,所述基中,至少一個氫可經氟或氯取代;a及b獨立地為1或2;c為0、1或2,且c為0時,環A為伸環己烯基、十氫萘二基、二氫吡喃二基、四氫吡喃二基、二噁烷二基、萘二基、嘧啶二基或吡啶二基,且所述環中,至少一個氫可經氟、氯、碳數1至5的烷基、碳數1至5的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至5的烷基取代。A liquid crystal composition containing at least one compound selected from the group consisting of compounds represented by formula (1) as a first additive, having a negative dielectric anisotropy, and having a nematic phase, In the formula (1), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently hydrogen or an alkyl group having 1 to 4 carbon atoms; and ring A and ring B are independently Is a cyclohexyl group, a cyclohexene group, a decahydronaphthalenyl group, a dihydropyranyl group, a tetrahydropyranyl group, a dioxanediyl group, a phenylene group, a naphthyldiyl group, a pyrimidinediyl group or a pyridine. a diradical, and wherein at least one hydrogen in the ring may be substituted by fluorine, chlorine, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, or a carbon number substituted with at least one hydrogen by fluorine or chlorine a substituted alkyl group of 1 to 5; Z 1, Z 2 and Z 3 are independently a single bond or a C 1-10 alkylene group, and the alkylene, at least one -CH 2 - may be -O -, -S-, -CO-, -COO-, -OCO- or -SiH 2 -, at least one -CH 2 -CH 2 - may be substituted by -CH=CH- or -C≡C-, In the group, at least one hydrogen may be substituted by fluorine or chlorine; a and b are independently 1 or 2; c is 0, 1 or 2, and when c is 0, ring A is cyclohexene, decalin a base, a dihydropyranodiyl group, a tetrahydropyranodiyl group, a dioxanediyl group, a naphthalenediyl group, a pyrimidinediyl group or a pyridyldiyl group, and wherein at least one hydrogen in the ring may be via fluorine, chlorine, carbon The alkyl group having 1 to 5 carbon atoms, the alkoxy group having 1 to 5 carbon atoms, or the alkyl group having 1 to 5 carbon atoms in which at least one hydrogen is substituted by fluorine or chlorine is substituted. 如申請專利範圍第1項所述的液晶組成物,其含有選自式(1-1)至式(1-5)所表示的化合物的組群中的至少一個化合物作為第一添加物,式(1-1)至式(1-5)中,R1 、R2 、R3 、R4 、R5 、R6 、R7 及R8 獨立地為氫或碳數1至4的烷基。The liquid crystal composition according to claim 1, which contains at least one compound selected from the group consisting of compounds represented by formula (1-1) to formula (1-5) as a first additive, In the formulae (1-1) to (1-5), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently hydrogen or an alkane having 1 to 4 carbon atoms. base. 如申請專利範圍第1項或第2項所述的液晶組成物,其中基於液晶組成物的重量,第一添加物的比例為0.005重量%至1重量%的範圍。The liquid crystal composition according to claim 1 or 2, wherein the ratio of the first additive is in the range of 0.005 wt% to 1 wt% based on the weight of the liquid crystal composition. 如申請專利範圍第1項至第3項中任一項所述的液晶組成物,其含有選自式(2)所表示的化合物的組群中的至少一個化合物作為第一成分,式(2)中,R9 及R10 獨立地為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、碳數2至12的烯氧基、或者至少一個氫經氟或氯所取代的碳數1至12的烷基;環C及環E獨立地為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、至少一個氫經氟或氯所取代的1,4-伸苯基或四氫吡喃-2,5-二基;環D為2,3-二氟-1,4-伸苯基、2-氯-3-氟-1,4-伸苯基、2,3-二氟-5-甲基-1,4-伸苯基、3,4,5-三氟萘-2,6-二基或7,8-二氟色原烷-2,6-二基;Z4 及Z5 獨立地為單鍵、伸乙基、亞甲氧基或羰基氧基;d為1、2或3,e為0或1;而且d與e之和為3以下。The liquid crystal composition according to any one of the items 1 to 3, which contains at least one compound selected from the group consisting of compounds represented by formula (2) as a first component, In the formula (2), R 9 and R 10 are independently an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and an oxyalkylene having 2 to 12 carbon atoms. a C 1 to 12 alkyl group substituted with at least one hydrogen substituted with fluorine or chlorine; ring C and ring E are independently 1,4-cyclohexylene, 1,4-cyclohexenyl, 1, 4-phenylene, at least one hydrogen substituted by fluorine or chlorine, 1,4-phenylene or tetrahydropyran-2,5-diyl; ring D is 2,3-difluoro-1,4- Phenyl, 2-chloro-3-fluoro-1,4-phenylene, 2,3-difluoro-5-methyl-1,4-phenylene, 3,4,5-trifluoronaphthalene- 2,6-diyl or 7,8-difluorochroman-2,6-diyl; Z 4 and Z 5 are independently a single bond, an extended ethyl group, a methyleneoxy group or a carbonyloxy group; 1, 2 or 3, e is 0 or 1; and the sum of d and e is 3 or less. 如申請專利範圍第1項至第4項中任一項所述的液晶組成物,其含有選自式(2-1)至式(2-21)所表示的化合物的組群中的至少一個化合物作為第一成分, 式(2-1)至式(2-21)中,R9 及R10 獨立地為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、碳數2至12的烯氧基、或者至少一個氫經氟或氯所取代的碳數1至12的烷基。The liquid crystal composition according to any one of the items 1 to 4, which contains at least one selected from the group consisting of compounds represented by formula (2-1) to formula (2-21). Compound as the first component, In the formulae (2-1) to (2-21), R 9 and R 10 are independently an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and an alkenyl group having 2 to 12 carbon atoms. An alkenyloxy group having 2 to 12 carbon atoms or an alkyl group having 1 to 12 carbon atoms substituted with at least one hydrogen via fluorine or chlorine. 如申請專利範圍第4項或第5項所述的液晶組成物,其中基於液晶組成物的重量,第一成分的比例為10重量%至90重量%的範圍。The liquid crystal composition according to Item 4 or 5, wherein the ratio of the first component is in the range of 10% by weight to 90% by weight based on the weight of the liquid crystal composition. 如申請專利範圍第1項至第6項中任一項所述的液晶組成物,其含有選自式(3)所表示的化合物的組群中的至少一個化合物作為第二成分,式(3)中,R11 及R12 獨立地為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、至少一個氫經氟或氯所取代的碳數1至12的烷基、或者至少一個氫經氟所取代的碳數2至12的烯基;環F及環G獨立地為1,4-伸環己基、1,4-伸苯基、2-氟-1,4-伸苯基或2,5-二氟-1,4-伸苯基;Z6 為單鍵、伸乙基或羰基氧基;f為1、2或3。The liquid crystal composition according to any one of claims 1 to 6, which contains at least one compound selected from the group consisting of compounds represented by formula (3) as a second component, In the formula (3), R 11 and R 12 are independently an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, and at least one hydrogen via fluorine or chlorine. a substituted alkyl group having 1 to 12 carbon atoms, or an alkenyl group having 2 to 12 carbon atoms substituted with at least one hydrogen; the ring F and the ring G are independently 1,4-cyclohexylene, 1,4-stretch Phenyl, 2-fluoro-1,4-phenylene or 2,5-difluoro-1,4-phenylene; Z 6 is a single bond, ethyl or carbonyloxy; f is 1, 2 or 3. 如申請專利範圍第1項至第7項中任一項所述的液晶組成物,其含有選自式(3-1)至式(3-13)所表示的化合物的組群中的至少一個化合物作為第二成分,式(3-1)至式(3-13)中,R11 及R12 獨立地為碳數1至12的烷基、碳數1至12的烷氧基、碳數2至12的烯基、至少一個氫經氟或氯所取代的碳數1至12的烷基、或者至少一個氫經氟所取代的碳數2至12的烯基。The liquid crystal composition according to any one of claims 1 to 7, which contains at least one selected from the group consisting of compounds represented by formula (3-1) to formula (3-13). a compound as a second component, In the formulae (3-1) to (3-13), R 11 and R 12 are independently an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and an alkenyl group having 2 to 12 carbon atoms. At least one alkyl group having 1 to 12 carbon atoms substituted by fluorine or chlorine, or an alkenyl group having 2 to 12 carbon atoms substituted with at least one hydrogen via fluorine. 如申請專利範圍第7項或第8項所述的液晶組成物,其中基於液晶組成物的重量,第二成分的比例為10重量%至90重量%的範圍。The liquid crystal composition according to Item 7 or Item 8, wherein the ratio of the second component is in the range of 10% by weight to 90% by weight based on the weight of the liquid crystal composition. 如申請專利範圍第1項至第9項中任一項所述的液晶組成物,其含有選自式(4)所表示的化合物的組群中的至少一個聚合性化合物作為第二添加物,式(4)中,環I及環K獨立地為環己基、環己烯基、苯基、1-萘基、2-萘基、四氫吡喃-2-基、1,3-二噁烷-2-基、嘧啶-2-基或吡啶-2-基,且所述環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至12的烷基取代;環J為1,4-伸環己基、1,4-伸環己烯基、1,4-伸苯基、萘-1,2-二基、萘-1,3-二基、萘-1,4-二基、萘-1,5-二基、萘-1,6-二基、萘-1,7-二基、萘-1,8-二基、萘-2,3-二基、萘-2,6-二基、萘-2,7-二基、四氫吡喃-2,5-二基、1,3-二噁烷-2,5-二基、嘧啶-2,5-二基或吡啶-2,5-二基,且所述環中,至少一個氫可經氟、氯、碳數1至12的烷基、碳數1至12的烷氧基、或者至少一個氫經氟或氯所取代的碳數1至12的烷基取代;Z7 及Z8 獨立地為單鍵或碳數1至10的伸烷基,且所述伸烷基中,至少一個-CH2 -可經-O-、-CO-、-COO-或-OCO-取代,至少一個-CH2 -CH2 -可經-CH=CH-、-C(CH3 )=CH-、-CH=C(CH3 )-或-C(CH3 )=C(CH3 )-取代,所述基中,至少一個氫可經氟或氯取代;P1 、P2 及P3 獨立地為聚合性基;Sp1 、Sp2 及Sp3 獨立地為單鍵或碳數1至10的伸烷基,且所述伸烷基中,至少一個-CH2 -可經-O-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 -CH2 -可經-CH=CH-或-C≡C-取代,所述基中,至少一個氫可經氟或氯取代;g為0、1或2;h、i及j獨立地為0、1、2、3或4;而且h、i及j的和為1以上。The liquid crystal composition according to any one of claims 1 to 9, which contains at least one polymerizable compound selected from the group consisting of compounds represented by formula (4) as a second additive, In the formula (4), Ring I and Ring K are independently cyclohexyl, cyclohexenyl, phenyl, 1-naphthyl, 2-naphthyl, tetrahydropyran-2-yl, 1,3-dioxin Alkan-2-yl, pyrimidin-2-yl or pyridin-2-yl, and wherein at least one hydrogen in the ring may be through fluorine, chlorine, an alkyl group having 1 to 12 carbons, or an alkoxy group having 1 to 12 carbon atoms Substituting, or at least one hydrogen substituted with a C 1 to 12 alkyl group substituted by fluorine or chlorine; ring J is 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene Base, naphthalene-1,2-diyl, naphthalene-1,3-diyl, naphthalene-1,4-diyl, naphthalene-1,5-diyl, naphthalene-1,6-diyl, naphthalene-1 , 7-diyl, naphthalene-1,8-diyl, naphthalene-2,3-diyl, naphthalene-2,6-diyl, naphthalene-2,7-diyl, tetrahydropyran-2,5 a di-, 1,3-dioxane-2,5-diyl, pyrimidine-2,5-diyl or pyridine-2,5-diyl group, and at least one hydrogen in the ring may be via fluorine, Chlorine, an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or an alkyl group having 1 to 12 carbon atoms substituted with at least one hydrogen substituted by fluorine or chlorine; Z 7 and Z 8 are independently a single bond or a C 1-10 alkylene group, and the alkylene, at least one -CH 2 - may be -O -, - - COO- or -OCO-, at least, - CO A -CH 2 -CH 2 - may be -CH = CH -, - C ( CH 3) = CH -, - CH = C (CH 3) - or -C (CH 3) = C ( CH 3) - substituted , the group at least one hydrogen may be substituted by fluorine or chlorine; P 1, P 2 and P 3 are independently a polymerizable group; Sp 1, Sp 2 and Sp 3 independently a single bond or a C 1-10 And an alkylene group, wherein at least one -CH 2 - may be substituted by -O-, -COO-, -OCO- or -OCOO-, at least one -CH 2 -CH 2 - may be - CH=CH- or -C≡C-substitution, wherein at least one hydrogen may be substituted by fluorine or chlorine; g is 0, 1 or 2; h, i and j are independently 0, 1, 2, 3 Or 4; and the sum of h, i and j is 1 or more. 如申請專利範圍第10項所述的液晶組成物,其中,式(4)中,P1 、P2 及P3 獨立地為選自式(P-1)至式(P-5)所表示的基的組群中的聚合性基,式(P-1)至式(P-5)中,M1 、M2 及M3 獨立地為氫、氟、碳數1至5的烷基或至少一個氫經氟或氯所取代的碳數1至5的烷基。The liquid crystal composition according to claim 10, wherein, in the formula (4), P 1 , P 2 and P 3 are independently selected from the group consisting of the formula (P-1) to the formula (P-5). Polymeric groups in the group of groups, In the formulae (P-1) to (P-5), M 1 , M 2 and M 3 are independently hydrogen, fluorine, an alkyl group having 1 to 5 carbon atoms or a carbon substituted with at least one hydrogen via fluorine or chlorine. A number of 1 to 5 alkyl groups. 如申請專利範圍第1項至第11項中任一項所述的液晶組成物,其含有選自式(4-1)至式(4-27)所表示的化合物的組群中的至少一個聚合性化合物作為第二添加物, 式(4-1)至式(4-27)中,P4 、P5 及P6 獨立地為選自式(P-1)至式(P-3)所表示的基的組群中的聚合性基;式(P-1)至式(P-3)中,M1 、M2 及M3 獨立地為氫、氟、碳數1至5的烷基、或者至少一個氫經氟或氯所取代的碳數1至5的烷基;式(4-1)至式(4-27)中,Sp1 、Sp2 及Sp3 獨立地為單鍵或碳數1至10的伸烷基,且所述伸烷基中,至少一個-CH2 -可經-O-、-COO-、-OCO-或-OCOO-取代,至少一個-CH2 -CH2 -可經-CH=CH-或-C≡C-取代,所述基中,至少一個氫可經氟或氯取代。The liquid crystal composition according to any one of claims 1 to 11, which contains at least one selected from the group consisting of compounds represented by formula (4-1) to formula (4-27). a polymerizable compound as a second additive, In the formulae (4-1) to (4-27), P 4 , P 5 and P 6 are independently selected from the group consisting of the groups represented by the formulae (P-1) to (P-3). Polymeric group; In the formulae (P-1) to (P-3), M 1 , M 2 and M 3 are independently hydrogen, fluorine, an alkyl group having 1 to 5 carbon atoms, or at least one hydrogen substituted by fluorine or chlorine. An alkyl group having 1 to 5 carbon atoms; in the formulae (4-1) to (4-27), Sp 1 , Sp 2 and Sp 3 are independently a single bond or an alkylene group having 1 to 10 carbon atoms, and In the alkyl group, at least one -CH 2 - may be substituted by -O-, -COO-, -OCO- or -OCOO-, and at least one -CH 2 -CH 2 - may be via -CH=CH- or -C ≡C-substituted, wherein at least one hydrogen in the group may be substituted with fluorine or chlorine. 如申請專利範圍第10項至第12項中任一項所述的液晶組成物,其中基於液晶組成物的重量,第二添加物的比例為0.03重量%至10重量%的範圍。The liquid crystal composition according to any one of claims 10 to 12, wherein the ratio of the second additive is in the range of 0.03 wt% to 10 wt% based on the weight of the liquid crystal composition. 一種液晶顯示元件,其含有如申請專利範圍第1項至第13項中任一項所述的液晶組成物。A liquid crystal display element comprising the liquid crystal composition according to any one of claims 1 to 13. 如申請專利範圍第14項所述的液晶顯示元件,其中液晶顯示元件的操作模式為共面切換模式、垂直配向模式、邊緣場切換模式或電場感應光反應配向模式,液晶顯示元件的驅動方式為主動矩陣方式。The liquid crystal display device of claim 14, wherein the operation mode of the liquid crystal display device is a coplanar switching mode, a vertical alignment mode, a fringe field switching mode, or an electric field induced photoreaction alignment mode, and the driving mode of the liquid crystal display element is Active matrix approach. 一種聚合物穩定配向型的液晶顯示元件,其含有如申請專利範圍第10項至第13項中任一項所述的液晶組成物,所述液晶組成物中的聚合性化合物進行聚合。A polymer-stabilized alignment type liquid crystal display device comprising the liquid crystal composition according to any one of claims 10 to 13, wherein the polymerizable compound in the liquid crystal composition is polymerized. 一種液晶組成物的用途,所述液晶組成物為如申請專利範圍第1項至第13項中任一項所述的液晶組成物,其用於液晶顯示元件。A liquid crystal composition which is used for a liquid crystal display element, which is a liquid crystal composition according to any one of claims 1 to 13. 一種液晶組成物的用途,所述液晶組成物為如申請專利範圍第10項至第13項中任一項所述的液晶組成物,其用於聚合物穩定配向型的液晶顯示元件。A liquid crystal composition which is used for a polymer-stabilized alignment type liquid crystal display element, which is a liquid crystal composition according to any one of claims 10 to 13.
TW104122685A 2015-01-08 2015-07-14 Liquid crystal composition and use thereof, liquid crystal display element, and polymerization Stable alignment type liquid crystal display element TWI633177B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-002098 2015-01-08
JP2015002098A JP5850187B1 (en) 2015-01-08 2015-01-08 Liquid crystal composition and liquid crystal display element

Publications (2)

Publication Number Publication Date
TW201625777A true TW201625777A (en) 2016-07-16
TWI633177B TWI633177B (en) 2018-08-21

Family

ID=55237937

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104122685A TWI633177B (en) 2015-01-08 2015-07-14 Liquid crystal composition and use thereof, liquid crystal display element, and polymerization Stable alignment type liquid crystal display element

Country Status (4)

Country Link
JP (1) JP5850187B1 (en)
KR (1) KR101943931B1 (en)
TW (1) TWI633177B (en)
WO (1) WO2016111027A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3275972B1 (en) * 2015-03-24 2019-06-19 JNC Corporation Liquid crystal composition and liquid crystal display element
DE102017006567A1 (en) * 2016-08-05 2018-02-08 Merck Patent Gmbh Piperidin derivatives and liquid crystals

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2745058A1 (en) * 1976-10-18 1978-04-20 Ciba Geigy Ag BIS-POLYALKYLPIPERIDINE
EP1184442A1 (en) * 2000-08-30 2002-03-06 Clariant International Ltd. Liquid crystal mixture
US6824707B2 (en) * 2001-10-23 2004-11-30 Clariant International Ltd. Active matrix liquid crystal device and smectic liquid crystal mixture
JP4935055B2 (en) * 2005-11-15 2012-05-23 Jnc株式会社 Liquid crystal composition and liquid crystal display element
KR101754817B1 (en) 2010-11-17 2017-07-07 에스케이플래닛 주식회사 System and Method for connecting and perceiving of terminal in Converged Personal Network Service
KR20220043248A (en) * 2010-12-07 2022-04-05 메르크 파텐트 게엠베하 Liquid crystal medium and electrooptic display
JP5692480B1 (en) * 2013-06-26 2015-04-01 Jnc株式会社 Liquid crystal composition and liquid crystal display element

Also Published As

Publication number Publication date
TWI633177B (en) 2018-08-21
JP2016125033A (en) 2016-07-11
WO2016111027A1 (en) 2016-07-14
KR101943931B1 (en) 2019-01-30
KR20170103738A (en) 2017-09-13
JP5850187B1 (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP6375887B2 (en) Liquid crystal composition and liquid crystal display element
JP6398992B2 (en) Liquid crystal composition and liquid crystal display element
JP6337335B2 (en) Liquid crystal composition and liquid crystal display element
TW201708521A (en) Liquid crystal composition and liquid crystal display element
TW201723156A (en) Liquid crystal composition, liquid crystal display device and use of liquid crystal composition
JP6816751B2 (en) Liquid crystal composition and liquid crystal display element
TW201734182A (en) Liquid crystal composition and liquid crystal display element
JP6642445B2 (en) Liquid crystal composition and liquid crystal display device
TW201739901A (en) Liquid crystal composition and liquid crystal display device
JP2015199900A (en) Liquid crystal composition and liquid crystal display element
TW201631125A (en) Liquid crystal composition, liquid crystal display device, and application of liquid crystal composition
JP2017036382A (en) Liquid crystal composition and liquid crystal display element
JP6488623B2 (en) Liquid crystal composition and liquid crystal display element
JPWO2015155910A1 (en) Liquid crystal composition and liquid crystal display element
TW201806942A (en) Piperidine derivatives, liquid-crystal composition, and liquid-crystal display element
TW202039800A (en) Liquid crystal display element and use of liquid crystal composition
TW201638315A (en) Liquid crystal composition and use thereof, liquid crystal display device and polymer stable alignment type liquid crystal display device
WO2015025604A1 (en) Liquid crystal composition and liquid crystal display element
JP6690114B2 (en) Liquid crystal composition and liquid crystal display device
TW201708520A (en) Liquid crystal composition and use thereof, liquid crystal display device and polymer stable alignment type liquid crystal display device
JP2016011408A (en) Liquid crystal composition and liquid crystal display element
TW201809235A (en) Liquid crystal composition and use thereof, liquid crystal display device, polymer sustained alignment type liquid crystal display device and liquid crystal display device without alignment film
JP5850187B1 (en) Liquid crystal composition and liquid crystal display element
TW201945525A (en) Liquid crystal composition and liquid crystal display device capable of achieving vertical alignment of liquid crystal molecules through the effect of a polymer
TW201930563A (en) Liquid crystal composition and liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees