TW201624768A - Method for manufacturing opto-electronic device with light emitting diodes - Google Patents
Method for manufacturing opto-electronic device with light emitting diodes Download PDFInfo
- Publication number
- TW201624768A TW201624768A TW103145023A TW103145023A TW201624768A TW 201624768 A TW201624768 A TW 201624768A TW 103145023 A TW103145023 A TW 103145023A TW 103145023 A TW103145023 A TW 103145023A TW 201624768 A TW201624768 A TW 201624768A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- substrate
- emitting diode
- light emitting
- conductive
- Prior art date
Links
Landscapes
- Led Devices (AREA)
Abstract
Description
本發明一般是關於製造半導體材料基礎之光電裝置 的方法。更具體地,本發明是關於製造包括發光二極體之光電裝置的方法,其中發光二極體是由三維元件(特別是半導體微米細線或奈米細線)所形成。 The invention generally relates to a photovoltaic device based on the manufacture of a semiconductor material Methods. More specifically, the present invention relates to a method of fabricating a photovoltaic device comprising a light-emitting diode, wherein the light-emitting diode is formed of a three-dimensional element, particularly a semiconductor micron thin wire or a nanowire.
用語「具有發光二極體之光電裝置」是指可將電氣 訊號轉換為電磁輻射的裝置,且特別是指專用於發出電磁輻射(特別是光)的裝置。可形成發光二極體的三維元件的實例為包括化合物半導體材料之微米細線與奈米細線,主要是包括至少一個第III族元素與一個第V族元素(例如氮化鎵GaN)(在下文中稱為III-V族化合物),或是主要包括至少一個第II族元素與一個第VI族元素(例如氧化鋅ZnO)(在下文中稱為II-VI族化合物)。 The phrase "optoelectronic device with light-emitting diode" means electrical A device that converts a signal into electromagnetic radiation, and in particular a device that is dedicated to emitting electromagnetic radiation, in particular light. Examples of the three-dimensional element that can form the light-emitting diode are micron thin wires and nanowires including a compound semiconductor material, mainly including at least one Group III element and one Group V element (for example, gallium nitride GaN) (hereinafter referred to as It is a group III-V compound) or mainly includes at least one Group II element and one Group VI element (for example, zinc oxide ZnO) (hereinafter referred to as a Group II-VI compound).
三維元件,特別是半導體微米細線或奈米細線,一 般是形成於基板上,接著再進行鋸切以劃定個別的光電裝置。每一個光電裝置都接著配置在封裝體中,特別是為了保 護這些三維元件。封裝體接著即附接至支座,例如印刷電路板。 Three-dimensional components, especially semiconductor micron thin wires or nanowires, one Typically formed on a substrate, followed by sawing to define individual optoelectronic devices. Each optoelectronic device is then placed in the package, especially to protect Protect these three-dimensional components. The package is then attached to a support, such as a printed circuit board.
這種光電裝置製造方法的缺點是,必須要為每一個 光電裝置獨立地執行保護三維半導體元件的步驟。此外,與包括發光二極體的光電裝置的主動區域相比,封裝體的體積會比較明顯。 The disadvantage of this optoelectronic device manufacturing method is that it must be for each The photovoltaic device independently performs the step of protecting the three-dimensional semiconductor component. In addition, the volume of the package is more pronounced than the active area of the optoelectronic device including the light-emitting diode.
因此,具體實施例的目的在於至少部分克服包括發 光二極體(特別是具有微米細線或奈米細線)之上述光電裝置的缺點。 Accordingly, it is an object of the specific embodiments to at least partially overcome the A disadvantage of the above-described photovoltaic device of a photodiode (especially having micron thin wires or nanowires).
具體實施例的另一目的在於廢除包括發光二極體之 光電裝置的個別保護封裝體。 Another object of the specific embodiment is to abolish the inclusion of the light-emitting diode Individual protective packages for optoelectronic devices.
具體實施例的另一目的在於,可以工業規模及低成 本來製造包括有以半導體材料製成的發光二極體之光電裝置。 Another object of the specific embodiment is that it can be industrial scale and low Photoelectric devices comprising a light-emitting diode made of a semiconductor material are originally manufactured.
因此,具體實施例提供了一種用於製造光電裝置的方法,包括下列連續步驟:(a)提供一基板,該基板具有一第一表面;(b)於該第一表面上形成包括細線形、圓錐形或錐形半導體元件的發光二極體組件;(c)為每一個發光二極體組件形成一電極層與一傳導層,該電極層覆蓋該組件的每一個發光二極體,該傳導層覆蓋該組件的所述發光二極體周圍的該電極層;(d)覆蓋包封所述發光二極體的一層的整個第一表面; (e)減少該基板厚度,該基板在步驟(e)之後具有與該第一表面相對的一第二表面;(f)形成一傳導元件,其與該基板絕緣並從該第二表面完全越過該基板至至少該第一表面,該傳導元件與該傳導層接觸;(g)於該第二表面上形成與該基板接觸的至少一個第一傳導墊片;及(h)鋸切所得到的結構,以分隔每一個發光二極體組件。 Accordingly, a specific embodiment provides a method for fabricating an optoelectronic device comprising the following sequential steps: (a) providing a substrate having a first surface; (b) forming a thin line on the first surface, a light emitting diode assembly of a conical or tapered semiconductor component; (c) forming an electrode layer and a conductive layer for each of the light emitting diode components, the electrode layer covering each of the light emitting diodes of the component, the conducting a layer covering the electrode layer around the light emitting diode of the component; (d) covering an entire first surface of a layer encapsulating the light emitting diode; (e) reducing the thickness of the substrate, the substrate having a second surface opposite the first surface after step (e); (f) forming a conductive element that is insulated from the substrate and completely crossed from the second surface Substrate to at least the first surface, the conductive element is in contact with the conductive layer; (g) forming at least one first conductive spacer on the second surface in contact with the substrate; and (h) obtained by sawing Structure to separate each LED assembly.
根據具體實施例,該方法包括:在步驟(f),於該第二表面上形成與該傳導元件接觸的至少一個第二傳導墊片。 According to a particular embodiment, the method includes forming at least one second conductive shim in contact with the conductive element on the second surface in step (f).
根據具體實施例,該方法包括形成至少一個額外傳導元件,其與該基板絕緣並從該第二表面完全越過該基板至至少該第一表面,並且與所述發光二極體中至少其中一個的基極接觸。 According to a particular embodiment, the method includes forming at least one additional conductive element insulated from the substrate and completely over the substrate from the second surface to at least the first surface, and with at least one of the light emitting diodes Base contact.
根據具體實施例,所述形成該傳導元件連續包括:在步驟(e)之後,於該基板中從該第二表面蝕刻一開口,至少在該開口的側向壁部上形成一絕緣層,及形成覆蓋該絕緣層之一傳導層、或以一傳導材料填充該開口。 According to a specific embodiment, the forming the conductive element continuously includes: after the step (e), etching an opening from the second surface in the substrate, forming an insulating layer on at least a lateral wall portion of the opening, and Forming a conductive layer covering one of the insulating layers or filling the opening with a conductive material.
根據具體實施例,所述形成傳導元件包括:在步驟(b)之前,於該基板中從該第一表面蝕刻一開口,穿越該基板厚度的一部分,該開口是在基板薄化步驟之後開放於該第二表面。 According to a specific embodiment, the forming the conductive element comprises: etching an opening from the first surface in the substrate before the step (b), crossing a portion of the thickness of the substrate, the opening being open after the thinning step of the substrate The second surface.
根據具體實施例,該電極層與該傳導層是進一步形成於該開口中。 According to a particular embodiment, the electrode layer and the conductive layer are further formed in the opening.
根據具體實施例,該方法包括:在步驟(b)之前,至 少於該開口的側向壁部上形成一絕緣部分,並以一傳導材料填充該開口。 According to a specific embodiment, the method comprises: before step (b), to An insulating portion is formed on the lateral wall portion of the opening and filled with a conductive material.
根據具體實施例,在步驟(e),將基板完全移除。 According to a particular embodiment, in step (e), the substrate is completely removed.
根據具體實施例,該方法進一步包括:為每一個發光二極體組件,沉積與該組件的二極體的基極接觸之至少一傳導層。 According to a particular embodiment, the method further includes depositing, for each of the light emitting diode assemblies, at least one conductive layer in contact with a base of the diode of the component.
根據具體實施例,該方法包括:在步驟(e)之前,將一支座附接至包封所述發光二極體的該層之步驟。 According to a particular embodiment, the method comprises the step of attaching a pedestal to the layer encapsulating the luminescent diode prior to step (e).
根據具體實施例,包封所述發光二極體的該層包括在所述發光二極體之間的螢光體。 According to a particular embodiment, the layer encapsulating the light emitting diode comprises a phosphor between the light emitting diodes.
根據具體實施例,該方法包括形成一螢光體層之步驟,該螢光體層覆蓋包封所述發光二極體的該層或覆蓋該支座。 According to a particular embodiment, the method includes the step of forming a phosphor layer covering the layer enclosing the light emitting diode or covering the support.
根據具體實施例,該方法包括在包封所述發光二極體的該層與該螢光體層之間形成一層之步驟,該層可傳送所述發光二極體所發出的光線,並可反射所述螢光體所發出的光線。 According to a specific embodiment, the method includes the step of forming a layer between the layer encapsulating the light emitting diode and the phosphor layer, the layer transmitting light emitted by the light emitting diode and reflecting The light emitted by the phosphor.
根據具體實施例,該方法包括在該基板與包封所述發光二極體的該層之間於所述發光二極體周圍、具有比所述發光二極體的高度大50%之高度處形成反射器之步驟。 According to a specific embodiment, the method includes, between the substrate and the layer encapsulating the light emitting diode, at a height of 50% greater than a height of the light emitting diode around the light emitting diode The step of forming a reflector.
DEL‧‧‧發光二極體 DEL‧‧‧Light Emitting Diode
10‧‧‧晶圓/基板 10‧‧‧ Wafer/Substrate
12‧‧‧虛線 12‧‧‧ dotted line
14‧‧‧光電裝置 14‧‧‧Optoelectronic devices
22‧‧‧表面 22‧‧‧ Surface
24‧‧‧種晶墊片 24‧‧‧ seeding gasket
26‧‧‧細線 26‧‧‧ Thin line
28‧‧‧細線的下部 28‧‧‧The lower part of the thin line
30‧‧‧細線的上部 30‧‧‧ upper part of the thin line
32‧‧‧絕緣層 32‧‧‧Insulation
34‧‧‧殼層 34‧‧‧ shell
36‧‧‧第一電極/第一電極層 36‧‧‧First electrode/first electrode layer
38‧‧‧傳導層 38‧‧‧Transmission layer
40‧‧‧包封層 40‧‧‧Encapsulation layer
42‧‧‧柄部 42‧‧‧ handle
43‧‧‧表面 43‧‧‧ surface
44‧‧‧表面 44‧‧‧ surface
45‧‧‧絕緣層 45‧‧‧Insulation
46‧‧‧開口 46‧‧‧ openings
48‧‧‧絕緣層 48‧‧‧Insulation
50‧‧‧開口 50‧‧‧ openings
52‧‧‧第二電極 52‧‧‧second electrode
54‧‧‧傳導層 54‧‧‧Transmission layer
56‧‧‧垂直連接部 56‧‧‧Vertical connection
60‧‧‧傳導墊片 60‧‧‧ Conductive gasket
62‧‧‧絕緣層 62‧‧‧Insulation
64‧‧‧開口 64‧‧‧ openings
66‧‧‧第二電極 66‧‧‧second electrode
68‧‧‧絕緣層 68‧‧‧Insulation
70‧‧‧開口 70‧‧‧ openings
72‧‧‧凸塊 72‧‧‧Bumps
74‧‧‧種晶層 74‧‧‧ seed layer
76‧‧‧垂直連接部 76‧‧‧Vertical connection
80‧‧‧金屬層 80‧‧‧metal layer
82‧‧‧金屬部分 82‧‧‧Metal parts
84‧‧‧金屬部分 84‧‧‧Metal parts
86‧‧‧絕緣層 86‧‧‧Insulation
88‧‧‧第二電極 88‧‧‧second electrode
90‧‧‧傳導墊片 90‧‧‧ Conductive gasket
91‧‧‧TSV 91‧‧‧TSV
92‧‧‧開口 92‧‧‧ openings
94‧‧‧絕緣層 94‧‧‧Insulation
96‧‧‧開口 96‧‧‧ openings
98‧‧‧TSV 98‧‧‧TSV
100‧‧‧支座 100‧‧‧Support
102‧‧‧連接墊片 102‧‧‧Connecting gasket
104‧‧‧連接墊片 104‧‧‧Connecting gasket
106‧‧‧TSV/垂直連接部 106‧‧‧TSV/vertical connection
110‧‧‧垂直連接部 110‧‧‧Vertical connection
120‧‧‧開口 120‧‧‧ openings
122‧‧‧開口 122‧‧‧ openings
124‧‧‧部分填充材料 124‧‧‧Partial filling material
125‧‧‧開口 125‧‧‧ openings
126‧‧‧絕緣層 126‧‧‧Insulation
128‧‧‧開口 128‧‧‧ openings
130‧‧‧開口 130‧‧‧ openings
132‧‧‧傳導墊片 132‧‧‧ Conductive gasket
134‧‧‧傳導墊片 134‧‧‧ Conductive gasket
136‧‧‧絕緣層 136‧‧‧Insulation
138‧‧‧開口 138‧‧‧ openings
140‧‧‧開口 140‧‧‧ openings
142‧‧‧第二電極 142‧‧‧second electrode
144‧‧‧傳導墊片 144‧‧‧ Conductive gasket
145‧‧‧TSV 145‧‧‧TSV
150‧‧‧結構的後表面 150‧‧‧Back surface of the structure
152‧‧‧開口 152‧‧‧ openings
154‧‧‧鏡層 154‧‧‧ mirror layer
156‧‧‧傳導層 156‧‧‧Transmission layer
158‧‧‧墊片 158‧‧‧shims
160‧‧‧部分鏡層 160‧‧‧Part mirror layer
162‧‧‧部分傳導層 162‧‧‧Partial conductive layer
164‧‧‧墊片 164‧‧‧shims
166‧‧‧部分鏡層 166‧‧‧Part mirror layer
168‧‧‧部分傳導層 168‧‧‧Partial conductive layer
170‧‧‧絕緣層 170‧‧‧Insulation
172‧‧‧開口 172‧‧‧ openings
174‧‧‧開口 174‧‧‧ openings
176‧‧‧傳導層 176‧‧‧Transmission layer
178‧‧‧傳導墊片 178‧‧‧ Conductive gasket
180‧‧‧第二電極 180‧‧‧second electrode
182‧‧‧傳導部分 182‧‧‧Transmission section
190‧‧‧光電裝置 190‧‧‧Optoelectronic devices
192‧‧‧光電裝置 192‧‧‧Optoelectronic devices
194‧‧‧凹槽 194‧‧‧ Groove
196‧‧‧鋸切線 196‧‧‧ sawing line
198‧‧‧凹槽 198‧‧‧ Groove
200‧‧‧周圍部分 200‧‧‧ surrounding parts
202‧‧‧絕緣區段 202‧‧‧Insulation section
205‧‧‧光電裝置 205‧‧‧Optoelectronic devices
206‧‧‧螢光體層 206‧‧‧Fluorescent layer
208‧‧‧膠層 208‧‧‧ glue layer
210‧‧‧光電裝置 210‧‧‧Optoelectronic devices
215‧‧‧光電裝置 215‧‧‧Optoelectronic devices
216‧‧‧凹槽 216‧‧‧ Groove
220‧‧‧光電裝置 220‧‧‧Optoelectronic devices
222‧‧‧中間層 222‧‧‧Intermediate
224‧‧‧包封層的表面 224‧‧‧The surface of the encapsulation layer
226‧‧‧界面 226‧‧‧ interface
228‧‧‧螢光體層的表面 228‧‧‧ Surface of the phosphor layer
230‧‧‧光電裝置 230‧‧‧Optoelectronic devices
232‧‧‧區塊 232‧‧‧ Block
234‧‧‧金屬層 234‧‧‧metal layer
236‧‧‧側向邊緣 236‧‧‧ lateral edges
240‧‧‧光電裝置 240‧‧‧Optoelectronic devices
242‧‧‧區塊 242‧‧‧ Block
244‧‧‧側向邊緣 244‧‧‧ lateral edges
245‧‧‧光電裝置 245‧‧‧Optoelectronic devices
246‧‧‧腔部 246‧‧‧ cavity
248‧‧‧側向側部 248‧‧‧ lateral side
250‧‧‧絕緣層 250‧‧‧Insulation
252‧‧‧金屬層 252‧‧‧metal layer
255‧‧‧光電裝置 255‧‧‧Optoelectronic devices
256‧‧‧凹槽 256‧‧‧ Groove
260‧‧‧光電裝置 260‧‧‧Optoelectronic devices
262‧‧‧凹槽 262‧‧‧ Groove
264‧‧‧中央區塊 264‧‧‧Central Block
266‧‧‧周圍區塊 266‧‧‧ surrounding blocks
268‧‧‧金屬層 268‧‧‧metal layer
269‧‧‧膠層 269‧‧‧ glue layer
270‧‧‧側向側部 270‧‧‧ lateral side
275‧‧‧光電裝置 275‧‧‧Optoelectronic devices
276‧‧‧絕緣層 276‧‧‧Insulation
278‧‧‧反射層 278‧‧‧reflective layer
280‧‧‧反射層的表面 280‧‧‧ surface of the reflective layer
285‧‧‧光電裝置 285‧‧‧Optoelectronic devices
286‧‧‧反射層 286‧‧‧reflective layer
288‧‧‧反射層的表面 288‧‧‧The surface of the reflective layer
290‧‧‧光電裝置 290‧‧‧Optoelectronic devices
292‧‧‧收斂透鏡 292‧‧‧Convergence lens
295‧‧‧光電裝置 295‧‧‧Optoelectronic devices
296‧‧‧透鏡 296‧‧‧ lens
結合如附圖式,前述與其他特徵和優點將於特定具體實施例的下述非限制說明中詳細討論,其中: 第1圖為具有複數個光電裝置之半導體基板晶圓的實例的部分簡化上視圖,其中所述複數個光電裝置上形成有微米細線或奈米細線;第2A至2F圖為在用於製造包括微米細線或奈米細線之光電裝置的方法的具體實施例連續步驟中所得結構的部分簡化截面圖;第3A與3B圖為在用於製造包括微米細線或奈米細線之光電裝置的方法的另一具體實施例連續步驟中所得結構的部分簡化截面圖;第4圖與第5圖為在用於製造包括微米細線或奈米細線之光電裝置的方法的其他具體實施例連續步驟中所得結構的部分簡化截面圖;第6A至6C圖為在用於製造包括微米細線或奈米細線之光電裝置的方法的另一具體實施例連續步驟中所得結構的部分簡化截面圖;第7A與7B圖為在用於製造包括微米細線或奈米細線之光電裝置的方法的另一具體實施例連續步驟中所得結構的部分簡化截面圖;第8圖至第10圖為在用於製造包括微米細線或奈米細線之光電裝置的方法的其他具體實施例連續步驟中所得結構的部分簡化截面圖;第11A至11D圖為在用於製造包括微米細線或奈米細線之光電裝置的方法的另一具體實施例連續步驟中所得結構的部分簡化截面圖; 第12A至12E圖為在用於製造包括微米細線或奈米細線之光電裝置的方法的另一具體實施例連續步驟中所得結構的部分簡化截面圖;第13圖為在鋸切基板之前包括有形成在基板晶圓上的微米細線或奈米細線之光電裝置的具體實施例的部分簡化截面圖;第14圖為第13圖的光電裝置的部分簡化上視圖;及第15圖至第27圖為包括微米細線或奈米細線的光電裝置具體實施例之部分簡化截面圖。 The foregoing and other features and advantages will be discussed in detail in the following non-limiting description of the specific embodiments, in which: 1 is a partially simplified top plan view of an example of a semiconductor substrate wafer having a plurality of photovoltaic devices, wherein the plurality of photovoltaic devices are formed with micron thin wires or nanowires; and FIGS. 2A through 2F are included for use in manufacturing. Partially simplified cross-sectional view of a structure obtained in a continuous step of a method of optoelectronic device of micron fine lines or nanowires; Figures 3A and 3B are diagrams of another method for fabricating an optoelectronic device comprising micron thin wires or nanowires A partially simplified cross-sectional view of the structure obtained in a sequential step of a specific embodiment; FIGS. 4 and 5 are structures obtained in successive steps of another embodiment of a method for fabricating an optoelectronic device comprising micron thin wires or nanowires Partially simplified cross-sectional view; FIGS. 6A to 6C are partially simplified cross-sectional views of the structure obtained in a continuous step of another embodiment of a method for fabricating an optoelectronic device including micron thin wires or nanowires; FIGS. 7A and 7B are a partially simplified cross-sectional view of the resulting structure in a sequential step of another embodiment of a method for fabricating an optoelectronic device comprising micron thin wires or nanowires; 8 to 10 are partially simplified cross-sectional views of the structure obtained in successive steps of another specific embodiment of a method for manufacturing a photovoltaic device including micron thin wires or nanowires; and Figs. 11A to 11D are for use in manufacturing A further simplified cross-sectional view of a structure obtained in a continuous step in another embodiment of a method comprising a photovoltaic device of micron thin wires or nanowires; 12A through 12E are partially simplified cross-sectional views of the structure obtained in a continuous step of another embodiment of a method for fabricating an optoelectronic device including micron thin wires or nanowires; and Fig. 13 is included before sawing the substrate A partially simplified cross-sectional view of a specific embodiment of a photovoltaic device of micron thin wires or nanowires formed on a substrate wafer; Fig. 14 is a partially simplified top view of the photovoltaic device of Fig. 13; and Figs. 15 to 27 A partially simplified cross-sectional view of a particular embodiment of an optoelectronic device comprising micron or nanowires.
為求清晰,在各個圖式中已經以相同的元件符號來代表相同的元件,此外,如一般對於電子電路的表示,各個圖式都不是實際尺寸。此外,只有繪示出以及將說明有用於理解本發明內容的那些元件。特別是,在下文中所述的光電裝置控制裝置是在熟習發明所屬領域技術之人士的能力範圍內,因此不加以說明。 For the sake of clarity, the same elements are denoted by the same element symbols in the various figures, and in addition, as is generally the case for electronic circuits, the various figures are not actual dimensions. Moreover, only those elements that are illustrated and will be described for understanding the present invention will be described. In particular, the optoelectronic device control device described hereinafter is within the capabilities of those skilled in the art to which the invention pertains, and thus will not be described.
在下述說明中,除非另行指明,否則如「實質上」、「大概」以及「在...的等級中」等用語是指「在10%以內」。此外,「主要由材料所形成的化合物」或「材料基礎化合物」是指一種包括該材料之比例大於或等於95%的化合物,這個比例較佳可大於99%。 In the following description, terms such as "substantially", "probably" and "in the rank of" mean "within 10%" unless otherwise specified. Further, "a compound mainly formed of a material" or "a material base compound" means a compound including a ratio of the material of 95% or more, and the ratio is preferably more than 99%.
本發明是關於包括三維元件(例如微米細線、奈米細線、錐狀元件或圓錐狀元件)的光電裝置。在下述說明中, 係說明了包括微米細線或奈米細線的光電裝置之具體實施例。然而,這些具體實施例也可實施於微米細線或奈米細線以外的三維元件,例如金字塔形的三維元件。 The present invention relates to optoelectronic devices comprising three-dimensional elements such as micron thin wires, nanowires, tapered elements or conical elements. In the following description, A specific embodiment of an optoelectronic device comprising micron thin wires or nanowires is illustrated. However, these specific embodiments can also be implemented on three-dimensional elements other than micron thin wires or nanowires, such as pyramidal three-dimensional elements.
用語「微米細線」或「奈米細線」是指一種在優選 方向上具有長形形狀的三維結構,其具有至少兩個維度(稱為次要維度)是在介於5奈米至2.5微米的範圍內,較佳是在50奈米至2.5微米的範圍內;第三維度(稱為主要維度)為至少等於最長次要維度的1倍,較佳是至少5倍,且更佳是至少10倍。在某些具體實施例中,次要維度小於或大概等於1微米,較佳是介於100奈米至1微米的範圍內,更佳為介於100奈米至300奈米的範圍內。在某些具體實施例中,每一條微米細線或奈米細線的高度會大於或等於500奈米,較佳是在1微米至50微米的範圍內。 The term "micron thin line" or "nano thin line" refers to an option a three-dimensional structure having an elongated shape in a direction having at least two dimensions (referred to as a minor dimension) in the range of 5 nm to 2.5 μm, preferably in the range of 50 nm to 2.5 μm The third dimension (referred to as the primary dimension) is at least equal to 1 time, preferably at least 5 times, and more preferably at least 10 times the longest secondary dimension. In some embodiments, the minor dimension is less than or approximately equal to 1 micron, preferably in the range of from 100 nanometers to 1 micrometer, and more preferably in the range of from 100 nanometers to 300 nanometers. In some embodiments, the height of each micron or nanowire may be greater than or equal to 500 nanometers, preferably in the range of 1 micrometer to 50 micrometers.
在下列說明中,用語「細線」是用以表示「微米細 線或奈米細線」。較佳為,細線通過截面(在垂直於細線優選方向的平面中)重力中心的平均線體實質上是直線的,且在下文中被稱為是細線的「軸」。 In the following description, the term "thin line" is used to mean "micron fine" Line or nano thin line." Preferably, the average line body of the center of gravity of the thin line passing through the cross section (in a plane perpendicular to the preferred direction of the thin line) is substantially linear, and is hereinafter referred to as the "axis" of the thin line.
第1圖為半導體基板的晶圓10之部分簡化上視圖, 在晶圓10上形成有細線。作為例示,其為初始厚度在500微米至1500微米範圍內(例如,約725微米)、直徑在100毫米至300毫米的範圍內(例如,約200毫米)之單晶矽晶圓。 有利地,其為目前用於微電子電路製造方法中的矽晶圓,特別是以金屬氧化物場效電晶體或金屬氧化物半導體(MOS)電晶體為主者。作為變化例,可使用任何可與微電子製造方 法相容的其他單晶半導體,例如鍺。較佳地,半導體基板可經摻雜以使基板的電阻率降低至發光二極體的串聯電阻之可接受等級,並降至接近金屬電阻率之電阻率,較佳地是小於數毫歐姆-公分(mohm.cm)。 1 is a simplified top view of a portion of a wafer 10 of a semiconductor substrate, Thin lines are formed on the wafer 10. By way of illustration, it is a single crystal germanium wafer having an initial thickness in the range of 500 microns to 1500 microns (eg, about 725 microns) and a diameter in the range of 100 mm to 300 mm (eg, about 200 mm). Advantageously, it is a germanium wafer currently used in microelectronic circuit fabrication methods, particularly metal oxide field effect transistors or metal oxide semiconductor (MOS) transistors. As a variant, any microelectronics manufacturer can be used Other single crystal semiconductors that are compatible with the process, such as germanium. Preferably, the semiconductor substrate can be doped to reduce the resistivity of the substrate to an acceptable level of series resistance of the light emitting diode and to a resistivity close to the metal resistivity, preferably less than a few milliohms - Centimeters (mohm.cm).
包括發光二極體之複數個光電裝置14是同時形成 於晶圓10上。虛線12顯示光電裝置14之間的分隔限制的例子。發光二極體的數量可根據光電裝置14而不同。光電裝置14佔用具有不同表面積之晶圓10的部分。光電裝置14是藉由沿著線12所示之鋸切路徑鋸切晶圓10之步驟而分隔。 A plurality of optoelectronic devices 14 including light emitting diodes are simultaneously formed On the wafer 10. The dotted line 12 shows an example of the separation restriction between the photovoltaic devices 14. The number of light emitting diodes may vary depending on the optoelectronic device 14. Optoelectronic device 14 occupies portions of wafer 10 having different surface areas. Optoelectronic device 14 is separated by the step of sawing wafer 10 along a sawing path as indicated by line 12.
根據一具體實施例,包括以三維元件(特別是半導 體細線)所形成的發光二極體之光電裝置14的製造方法包括下列步驟:於晶圓10的第一表面上形成光電裝置的發光二極體;以包封層保護發光二極體組件;於與包封層相對的側部上為每一個光電裝置之發光二極體形成用於偏置接觸墊片;及鋸切晶圓10以分隔光電裝置。 According to a specific embodiment, including a three-dimensional element (especially a semi-conductive The manufacturing method of the light-emitting diode photo-electric device 14 formed by the thin body line comprises the steps of: forming a light-emitting diode of the photovoltaic device on the first surface of the wafer 10; protecting the light-emitting diode assembly with the encapsulation layer; A light-emitting diode for each of the photovoltaic devices is formed on the side opposite the encapsulation layer for biasing the contact pads; and the wafer 10 is sawed to separate the photovoltaic devices.
包封層在接觸墊片形成步驟期間保護發光二極體, 並且在光電裝置已經被分隔之後仍予以保留。包封層在基板已經被鋸切之後仍持續保護發光二極體,因而在已經分隔光電裝置之後,即不需針對每一個光電裝置提供附接於裝置的發光二極體之保護封裝體。可減少光電裝置的體積。 The encapsulation layer protects the light emitting diode during the contact pad formation step, And it remains after the optoelectronic device has been separated. The encapsulation layer continues to protect the light-emitting diodes after the substrate has been sawed, so that after the optoelectronic device has been separated, there is no need to provide a protective package for the light-emitting diodes attached to the device for each of the optoelectronic devices. The volume of the photovoltaic device can be reduced.
此外,保護光電裝置14的發光二極體之步驟是藉由 將細線包封於一包封層中而實施,此包封層是在鋸切晶圓10之步驟前先全面沉積在晶圓10上。因此可針對形成於晶圓10上的所有光電裝置14而僅實施一次這個步驟,因而可降低每 一個光電裝置的製造成本。 In addition, the step of protecting the light emitting diode of the photovoltaic device 14 is by The thin wire is encapsulated in an encapsulation layer that is deposited entirely on the wafer 10 prior to the step of sawing the wafer 10. This step can therefore be performed only once for all optoelectronic devices 14 formed on the wafer 10, thus reducing each The manufacturing cost of an optoelectronic device.
因此,包封是在微米細線或奈米細線製造步驟之後 以晶圓規模整體地執行。這種晶圓規模的集體包封可減少專用於包封的步驟數量,因而降低包封成本。此外,最終包封之光電構件的表面積會幾乎與發光的晶片主動區域面積相同,其可減少光電構件的大小。 Therefore, the encapsulation is after the micron thin wire or nanowire manufacturing step Executed on a wafer scale. This wafer-scale collective encapsulation reduces the number of steps dedicated to encapsulation, thereby reducing encapsulation costs. In addition, the surface area of the finally encapsulated optoelectronic component will be approximately the same as the area of the active area of the illuminated wafer, which can reduce the size of the optoelectronic component.
第2A圖至第2F圖為在光電裝置製造方法的具體實 施例連續步驟中所得到的與光電裝置相應的結構之部分簡化截面圖,所述光電裝置是以例如前述細線而形成,且可發出電磁輻射。第2A圖至第2F圖是與形成於基板10上的其中一個光電裝置相應。 2A to 2F are specific examples of the manufacturing method of the photovoltaic device A partially simplified cross-sectional view of a structure corresponding to an optoelectronic device obtained in a continuous step, which is formed, for example, as described above, and which emits electromagnetic radiation. Figs. 2A to 2F correspond to one of the photovoltaic devices formed on the substrate 10.
第2A圖說明了一種結構,其包括(從第2A圖下方 至上方):包括上表面22之半導體基板10;促進表面22上細線成長與排列的種晶墊片24;高度為H1之細線26(圖中顯示出兩條),每一條細線26都與其中一個種晶墊片24接觸,每一條細線26都包括與種晶墊片24接觸、高度為H2之下部28,及接續於下部28、高度為H3之上部30;延伸於基板10的表面22上和每一條細線26的下部28的側向側部上之絕緣層32;包括覆蓋每一個上部30之半導體層堆疊結構的殼層34;形成覆蓋每一殼層34及進一步延伸於絕緣層32上之第一電極層36;及覆蓋了細線26之間的電極層36但不延伸於細線26上之傳導層38。 Figure 2A illustrates a structure including (from the top to the bottom in FIG. 2A): 22 includes an upper surface of the semiconductor substrate 10; promoting seed pad 22 on the surface 24 of the thin line growth and arrangement; a height H of a thin line 26 (two are shown), each of the thin wires 26 is in contact with one of the seeding pads 24, each of the thin wires 26 including a contact with the seeding pad 24, a height H 2 lower portion 28, and a subsequent a lower portion 28 having a height H 3 upper portion 30; an insulating layer 32 extending over the surface 22 of the substrate 10 and lateral sides of the lower portion 28 of each of the thin wires 26; including a semiconductor layer stack structure covering each of the upper portions 30 A shell layer 34; a first electrode layer 36 covering each of the shell layers 34 and further extending over the insulating layer 32; and a conductive layer 38 covering the electrode layer 36 between the thin lines 26 but not extending over the thin lines 26.
每一條細線26所形成的組件、相關的種晶墊片24 及殼層34形成了發光二極體DEL。二極體DEL的基極係對 應於種晶墊片24。殼層34特別是包含主動層,主動層為發出大部分的發光二極體DEL所傳送電磁輻射的一層。 Components formed by each of the thin wires 26, associated seeding spacers 24 The shell layer 34 forms a light-emitting diode DEL. Base pair of diode DEL The spacer 24 should be seeded. The shell layer 34 in particular comprises an active layer which is a layer which emits electromagnetic radiation transmitted by most of the light-emitting diodes DEL.
基板10對應於單件式結構、或對應於覆蓋由另一材 料製成的支座之一層。舉例而言,基板10為半導體基板,較佳為可與微電子業中實施的製造方法相容之半導體基板,例如由矽、鍺、或這些化合物的合金所製成的基板。基板係經摻雜,因此基板電阻率會低於數毫歐姆公分。 The substrate 10 corresponds to a one-piece structure, or corresponds to a cover by another material One layer of the support made of material. For example, substrate 10 is a semiconductor substrate, preferably a semiconductor substrate that is compatible with the fabrication methods implemented in the microelectronics industry, such as substrates made of tantalum, niobium, or alloys of these compounds. The substrate is doped, so the substrate resistivity will be less than a few milliohms.
較佳為,基板10為半導體基板,例如矽基板。基板 10係經第一傳導類型摻雜,例如N型摻雜。基板10的表面22可為<100>表面。 Preferably, the substrate 10 is a semiconductor substrate such as a germanium substrate. Substrate The 10 series is doped with a first conductivity type, such as an N-type dopant. Surface 22 of substrate 10 can be a <100> surface.
種晶墊片24也稱為種晶島體,是由促進細線26成 長的材料製成。作為變化例,種晶墊片24可替換為覆蓋基板10的表面22之種晶層。在種晶墊片的例子中,進一步提供處理以保護種晶墊片的側向邊緣、以及未被種晶墊片覆蓋的基板部分的表面,以避免在種晶墊片的側向側部上、及在未被種晶墊片覆蓋的基板部分表面上之細線成長。所述處理包括於種晶墊片的側向側部上形成介電區,此介電區延伸於基板頂部上及/或內部,並為每一對墊片使該對墊片中的一個墊片連接至該對中的另一墊片,在介電區上則無細線成長。 The seeding spacer 24, also referred to as a seed crystal island, is formed by the promotion thin line 26 Made of long material. As a variant, the seed mask 24 can be replaced with a seed layer covering the surface 22 of the substrate 10. In the case of a seeding spacer, a treatment is further provided to protect the lateral edges of the seeding spacer and the surface of the portion of the substrate that is not covered by the seeding spacer to avoid lateral side portions of the seeding spacer And growing thin lines on the surface of the portion of the substrate that is not covered by the seed crystal spacer. The processing includes forming a dielectric region on a lateral side of the seeding pad, the dielectric region extending over and/or inside the substrate, and a pad in the pair of pads for each pair of pads The sheet is attached to another spacer in the pair and there is no thin line growth on the dielectric region.
作為例示,形成種晶墊片24的材料可為元素週期表 上第IV、V或VI行中的過渡金屬的氮化物、碳化物或硼化物,或是這些化合物的組合。作為例示,種晶墊片24可由氮化鋁(AlN)、硼(B)、氮化硼(BN)、鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)、鉿(Hf)、氮化鉿(HfN)、鈮 (Nb)、氮化鈮(NbN)、鋯(Zr)、硼化鋯(ZrB2)、氮 化鋯(ZrN)、碳化矽(SiC)、鉭碳氮化物(TaCN)、具有MgxNy形式之氮化鎂(其中x約等於3且y約等於2,例如具有Mg3N2形式之氮化鎂)、或鎵鎂氮化物(MgGaN)、鎢(W)、氮化鎢(WN)或它們的組合所製成。 By way of illustration, the material forming the seed spacer 24 may be a nitride, carbide or boride of a transition metal in rows IV, V or VI of the Periodic Table of the Elements, or a combination of these compounds. By way of illustration, the seed mask 24 may be composed of aluminum nitride (AlN), boron (B), boron nitride (BN), titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN). ), Hf, HfN, Nb, NbN, Zr, ZrB 2 , ZrN, Zr , tantalum carbonitride (TaCN), magnesium nitride having a form of Mg x N y (where x is approximately equal to 3 and y is approximately equal to 2, such as magnesium nitride in the form of Mg 3 N 2 ), or gallium magnesium nitride (MgGaN), tungsten (W), tungsten nitride (WN), or a combination thereof.
種晶墊片24摻雜有與基板10相同傳導類型或相反傳導類型。 The seed spacer 24 is doped with the same conductivity type or opposite conductivity type as the substrate 10.
絕緣層32是由介電材料製成,例如二氧化矽(SiO2)、氮化矽(SixNy,其中x約等於3且y約等於4,例如Si3N4)、氧化鋁(Al2O3)、二氧化鉿(HfO2)或鑽石。作為例示,絕緣層32的厚度為介於5奈米至800奈米之範圍內,例如等於約30奈米。 The insulating layer 32 is made of a dielectric material such as hafnium oxide (SiO 2 ), tantalum nitride (Si x N y , where x is approximately equal to 3 and y is approximately equal to 4, such as Si 3 N 4 ), and aluminum oxide ( Al 2 O 3 ), cerium oxide (HfO 2 ) or diamond. By way of illustration, the thickness of the insulating layer 32 is in the range of from 5 nanometers to 800 nanometers, for example equal to about 30 nanometers.
細線26至少部分基於至少一種半導體材料而形成。半導體材料可為矽、鍺、碳化矽、III-V族化合物、II-VI族化合物、或這些化合物的組合。 The thin lines 26 are formed based at least in part on at least one semiconductor material. The semiconductor material can be tantalum, niobium, tantalum carbide, a III-V compound, a II-VI compound, or a combination of these compounds.
細線26是至少部分由半導體材料所形成,主要包括III-V族化合物,例如III-N化合物。第III族元素的例子包括鎵(Ga)、銦(In)、或鋁(Al)。III-N化合物的例子為GaN、AlN、InN、InGaN、AlGaN、或AlInGaN。也可使用其他的第V族元素,例如磷或砷。一般而言,在III-V族化合物中的元素可以不同莫耳比例進行結合。 The thin line 26 is at least partially formed of a semiconductor material, and mainly includes a III-V compound such as a III-N compound. Examples of the Group III element include gallium (Ga), indium (In), or aluminum (Al). Examples of the III-N compound are GaN, AlN, InN, InGaN, AlGaN, or AlInGaN. Other Group V elements such as phosphorus or arsenic may also be used. In general, the elements in the III-V compound can be combined in different molar ratios.
細線26是至少部分基於半導體材料而形成,主要包括II-VI族化合物。第II族元素的例子包括IIA族元素,特別是鈹(Be)和鎂(Mg),及IIB族元素,特別是鋅(Zn)和 鎘(Cd)。第VI族元素的例子包括VIA族元素,特別是氧(O)和碲(Te)。II-VI族化合物的例子為ZnO、ZnMgO、CdZnO或CdZnMgO。一般而言,在II-VI族化合物中的元素是以不同莫耳比例結合的。 The thin lines 26 are formed based, at least in part, on the semiconductor material, and include primarily Group II-VI compounds. Examples of Group II elements include Group IIA elements, particularly beryllium (Be) and magnesium (Mg), and Group IIB elements, especially zinc (Zn) and Cadmium (Cd). Examples of Group VI elements include Group VIA elements, particularly oxygen (O) and tellurium (Te). Examples of the II-VI compound are ZnO, ZnMgO, CdZnO or CdZnMgO. In general, the elements in the II-VI compound are combined in different molar ratios.
細線26可包括摻質。作為例示,就III-V族化合物 而言,摻質是從包括第II族之P型摻質(例如鎂Mg、鋅Zn、鎘Cd、或汞Hg)、第IV族之P型摻質(例如碳C)或第IV族之N型摻質(例如矽Si、鍺Ge、硒Se、硫S、鋱Tb、或錫Sn)的群組中選出。 The thin line 26 can include a dopant. As an example, the III-V compound In general, the dopant is from a P-type dopant including Group II (for example, Mg Mg, zinc Zn, cadmium Cd, or mercury Hg), a Group D P-type dopant (for example, carbon C) or Group IV. A group of N-type dopants (for example, 矽Si, 锗Ge, selenium Se, sulfur S, 鋱Tb, or tin Sn) is selected.
細線26的截面可具有不同的形狀,例如橢圓形、圓 形或多邊形,特別是三角形、矩形、方形或六邊形。因此,應理解的是,在與細線或沉積於此細線上的一層的截面有關說明中所提及的「直徑」是指與這個截面中的標的結構的表面積相關的量值,對應於例如具有與細線截面相同表面積之碟形的直徑。各細線26的平均直徑是在介於50奈米至2.5微米的範圍內。各細線26的高度H1是介於250奈米至50微米的範圍內。 The cross section of the thin line 26 may have a different shape, such as an ellipse, a circle or a polygon, in particular a triangle, a rectangle, a square or a hexagon. Therefore, it should be understood that the "diameter" mentioned in the description relating to the thin line or the section of the layer deposited on the thin line refers to the magnitude associated with the surface area of the target structure in this section, corresponding to, for example, having The diameter of the dish with the same surface area as the thin line section. The average diameter of each of the thin wires 26 is in the range of 50 nm to 2.5 μm. The height H 1 of each of the thin wires 26 is in the range of 250 nm to 50 μm.
各細線26具有沿著實質上垂直於表面22的軸D呈長形之半導體結構。各細線26具有大致為圓柱之形狀。 Each of the thin wires 26 has a semiconductor structure that is elongated along an axis D that is substantially perpendicular to the surface 22. Each of the thin wires 26 has a substantially cylindrical shape.
兩條細線26的軸是相離0.5微米至10微米,且較佳是1.5微米至4微米。作為例示,細線26是呈規則分佈。作為例示,細線26是分佈為六邊形網絡。 The axes of the two thin lines 26 are from 0.5 micrometers to 10 micrometers apart, and preferably from 1.5 micrometers to 4 micrometers. As an illustration, the thin lines 26 are regularly distributed. By way of illustration, the thin lines 26 are distributed as a hexagonal network.
作為例示,各細線26的下部28主要是以具有第一傳導類型之摻質(例如矽)的III-N化合物(例如氮化鎵)所 形成。下部28延伸達高度H2,高度H2是介於100奈米至25微米的範圍內。 By way of illustration, the lower portion 28 of each of the thin wires 26 is formed primarily of a III-N compound (e.g., gallium nitride) having a dopant of the first conductivity type (e.g., ruthenium). A lower portion 28 extending for a height H 2, H 2 is a height in the range 100 nm to 25 microns.
作為例示,各細線26的上部30至少部分以III-N化 合物製成,例如GaN。上部30可經摻雜為第一傳導類型、或不刻意進行摻雜。上部30延伸達高度H3,高度H3是介於100奈米至25微米之範圍內。 By way of illustration, the upper portion 30 of each of the thin wires 26 is at least partially made of a III-N compound, such as GaN. The upper portion 30 can be doped to a first conductivity type or not deliberately doped. The upper portion 30 extends up to a height H 3, the height H 3 is in the range 100 nm to 25 microns.
在細線26主要是以GaN製成的例子中,細線26的 晶體結構可為纖鋅礦晶形,細線沿著軸C延伸。細線26的晶體結構也可為立方晶形。 In the example where the thin line 26 is mainly made of GaN, the thin line 26 The crystal structure may be a wurtzite crystal form, and the fine lines extend along the axis C. The crystal structure of the thin line 26 may also be cubic.
殼層34可包括覆蓋相關細線26的上部30之主動層 與在主動層和電極36間之接合層之堆疊結構。 The shell layer 34 may include an active layer covering the upper portion 30 of the associated thin line 26. A stacked structure with a bonding layer between the active layer and the electrode 36.
主動層為發出由發光二極體DEL傳送的大部分電極 輻射的一層。根據一個實例,主動層包括侷限元件,例如多重量子井,例如由厚度介於5至20奈米(例如8奈米)的GaN層與厚度介於1至10奈米(例如2.5奈米)的InGaN層交替形成。GaN層可經摻雜,例如具有N型或P型。根據另一個實例,主動層包括InGaN單層,例如具有大於10奈米之厚度。 The active layer is for emitting most of the electrodes transmitted by the light-emitting diode DEL a layer of radiation. According to one example, the active layer includes confined elements, such as multiple quantum wells, such as a GaN layer having a thickness between 5 and 20 nanometers (eg, 8 nanometers) and a thickness between 1 and 10 nanometers (eg, 2.5 nanometers). The InGaN layers are alternately formed. The GaN layer may be doped, for example, having an N-type or a P-type. According to another example, the active layer comprises a single layer of InGaN, for example having a thickness greater than 10 nanometers.
接合層是對應於半導體層或半導體層之堆疊結構, 且可與主動層及/或上部30形成P-N或P-I-N接面。它可經由電極36而將電洞注入主動層中。半導體層的堆疊結構包括一電子阻障層以及用以在電極36與主動層之間提供良好電氣接觸的一附加層,電子阻障層是由三元合金所製成,例如氮化鎵鋁(AlGaN)或氮化銦鋁(AlInN),電子阻障層與主動層 及附加層接觸;附加層是以例如氮化鎵(GaN)所製成,並且與電子阻障層接觸以及與電極36接觸。接合層可經摻雜為與上部30相反的傳導類型,例如P型摻雜。 The bonding layer is a stacked structure corresponding to a semiconductor layer or a semiconductor layer. And a P-N or P-I-N junction may be formed with the active layer and/or the upper portion 30. It can inject holes into the active layer via electrodes 36. The stacked structure of the semiconductor layer includes an electron blocking layer and an additional layer for providing good electrical contact between the electrode 36 and the active layer. The electron blocking layer is made of a ternary alloy such as gallium nitride aluminum ( AlGaN) or indium aluminum nitride (AlInN), electron barrier layer and active layer And an additional layer contact; the additional layer is made of, for example, gallium nitride (GaN) and is in contact with the electron blocking layer and in contact with the electrode 36. The bonding layer can be doped to a conductivity type opposite to the upper portion 30, such as a P-type dopant.
電極36能夠偏壓各細線26的主動層,並能夠讓發 光二極體DEL發出的電磁輻射通過。形成電極36的材料為透明傳導材料,例如氧化銦錫(ITO)、氧化鋁鋅或石墨烯。作為例示,根據需要的發光波長,電極36具有的厚度是介於10奈米至150奈米的範圍內。 The electrode 36 is capable of biasing the active layer of each of the thin wires 26 and enabling the hair The electromagnetic radiation emitted by the photodiode DEL passes. The material forming the electrode 36 is a transparent conductive material such as indium tin oxide (ITO), aluminum zinc oxide or graphene. By way of illustration, electrode 36 has a thickness in the range of 10 nm to 150 nm, depending on the desired wavelength of illumination.
傳導層38是單層、或對應於兩層或兩層以上的堆疊 結構。傳導層38可進一步至少部分反射發光二極體DEL所發出的輻射。作為例示,傳導層38是對應於一金屬單層。根據另一實例,傳導層38對應於層體堆疊結構,例如包括覆蓋有介電層或覆蓋有複數層介電層的金屬層。傳導層38的金屬層是形成於接合層上,例如由鈦所製成。作為例示,形成傳導層38的金屬層之材料(單層或多層)可為鋁、以鋁為主的合金(特別是AlSiz、AlxCuy(例如x等於1且y等於0.8%))、銀、金、鎳、鉻、銠、釕、鈀、或這些化合物的其中兩個的合金、或這些化合物中兩個以上之合金。作為例示,傳導層38(單層或多層)具有的厚度是介於100奈米至2000奈米的範圍內。 The conductive layer 38 is a single layer, or a stack structure corresponding to two or more layers. The conductive layer 38 can further at least partially reflect the radiation emitted by the light emitting diode DEL. By way of illustration, the conductive layer 38 corresponds to a single metal layer. According to another example, the conductive layer 38 corresponds to a layer stack structure, for example comprising a metal layer covered with a dielectric layer or covered with a plurality of dielectric layers. The metal layer of conductive layer 38 is formed on the bonding layer, such as titanium. By way of illustration, the conductive metal layer forming material layer 38 (monolayer or multilayer) can be aluminum, aluminum-based alloys (particularly AlSi z, Al x Cu y (e.g., x equals 1 and y equals 0.8%)) , silver, gold, nickel, chromium, ruthenium, osmium, palladium, or an alloy of two of these compounds, or an alloy of two or more of these compounds. By way of illustration, the conductive layer 38 (single or multilayer) has a thickness in the range of from 100 nanometers to 2000 nanometers.
提供第2A圖所示結構的製造方法之具體實施例包括下列步驟: A specific embodiment of the manufacturing method for providing the structure shown in FIG. 2A includes the following steps:
(1)於基板10的表面22上形成種晶墊片24。 (1) A seed spacer 24 is formed on the surface 22 of the substrate 10.
種晶墊片24可由例如化學氣相沉積法(CVD)或金 屬有機物化學氣相沉積法(MOCVD)(也稱為金屬有機物氣相磊晶法(MOVPE))而得。然而,也可以使用例如分子束磊晶法(MBE)、氣體源分子束磊晶法(GSMBE)、金屬有機物MBE(MOMBE)、電漿輔助MBE(PAMBE)、原子層磊晶法(ALE)、氫氣相磊晶法(HVPE)以及原子層沉積法(ALD)。此外,也可使用例如蒸鍍法或反應性陰極濺鍍法。 The seed spacer 24 can be, for example, chemical vapor deposition (CVD) or gold. It is obtained by organic chemical vapor deposition (MOCVD) (also known as metal organic vapor phase epitaxy (MOVPE)). However, for example, molecular beam epitaxy (MBE), gas source molecular beam epitaxy (GSMBE), metal organic MBE (MOMBE), plasma assisted MBE (PAMBE), atomic layer epitaxy (ALE), Hydrogen phase epitaxy (HVPE) and atomic layer deposition (ALD). Further, for example, an evaporation method or a reactive cathode sputtering method can also be used.
當種晶墊片24是由氮化鋁所製成時,它們實質上會 呈現有紋理且具有優選極性。墊片24的紋理是由在沉積種晶墊片24之後實施的額外處理而得。例如在氨氣流(NH3)下進行之退火。 When the seed spacers 24 are made of aluminum nitride, they are substantially textured and have a preferred polarity. The texture of the spacer 24 is derived from additional processing performed after depositing the seed spacer 24. For example, annealing is carried out under an ammonia gas stream (NH 3 ).
(2)保護基板10的表面22中未覆蓋有種晶墊片24 的部分,以避免細線在這些部分上之後續成長。這可藉由氮化步驟而得,此氮化步驟會在基板10的表面處、種晶墊片24之間形成氮化矽區域(例如Si3N4)。 (2) The portion of the surface 22 of the protective substrate 10 that is not covered with the seed pad 24 is prevented from subsequent growth of the thin wires on these portions. This can be achieved by a nitridation step which forms a tantalum nitride region (e.g., Si 3 N 4 ) between the seed pads 24 at the surface of the substrate 10.
(3)使各細線26的下部28成長達高度H2。每一細線 26都從下方種晶墊片24的頂部開始成長。 (3) The lower portion 28 of each of the thin wires 26 is grown to a height H 2 . Each of the thin wires 26 grows from the top of the seed crystal spacer 24 below.
可藉由CVD、MOCVD、MBE、GSMBE、PAMBE、 ALE、HVPE類型之製程來成長細線26。此外,也可使用電化學製程,例如化學浴沉積(CBD)、水熱製程、液體氣溶膠熱解、或電沉積。 Can be by CVD, MOCVD, MBE, GSMBE, PAMBE, ALE, HVPE type process to grow thin line 26. In addition, electrochemical processes such as chemical bath deposition (CBD), hydrothermal processes, liquid aerosol pyrolysis, or electrodeposition can also be used.
作為例示,細線成長方法包括將一第III族元素的前 驅物與一第V族元素的前驅物注入反應器中。第III族元素的前驅物的實例為三甲基鎵(TMGa)、三乙基鎵(TEGa)、三甲基銦(TMIn)或三甲基鋁(TMAl)。第V族元素的前驅物 的實例為氨(NH3)、叔丁基膦(TBP)、砷化氫(AsH3)或偏二甲肼(UDMH)。 By way of illustration, the method of thin line growth involves injecting a precursor of a Group III element with a precursor of a Group V element into the reactor. Examples of precursors of Group III elements are trimethylgallium (TMGa), triethylgallium (TEGa), trimethylindium (TMIn) or trimethylaluminum (TMAl). Examples of precursors of Group V elements are ammonia (NH 3 ), tert-butylphosphine (TBP), arsine (AsH 3 ) or dimethyl hydrazine (UDMH).
根據本發明的具體實施例,在III-V族化合物的細線 的第一成長相中,除了III-V族化合物的前驅物以外,還超量添加了額外元素的前驅物。該額外元素為矽(Si)。矽的前驅物的實例為矽烷(SiH4)。 According to a specific embodiment of the present invention, in the first growth phase of the fine line of the group III-V compound, in addition to the precursor of the group III-V compound, a precursor of an additional element is excessively added. This extra element is bismuth (Si). An example of a precursor of ruthenium is decane (SiH 4 ).
作為例示,在上部28是由重摻雜的N型GaN所製 成的例子中,可藉由對噴淋頭形式的MOCVD反應器中注入鎵前驅物氣體(例如三甲基鎵(TMGa))與氮前驅物氣體(例如氨(NH3))而實施MOCVD方法。作為例示,可使用愛思強公司(AIXTRON)所商品化之噴淋頭形式的3x2”MOCVD反應器。三甲基鎵與氨之間的分子流量比例是在5-200的範圍內,較佳是在10-100的範圍內,能夠促進細線的成長。作為例示,可確保有機金屬元素在所有方向上都擴散至反應器之載氣是以有機金屬元素充填於TMGa起泡器中。後者是根據標準操作條件而設定。例如針對TMGa選擇60sccm(每分鐘標準立方公分)之流量,而為NH3使用300-sccm之流量(標準NH3氣瓶)。使用大約為800豪巴(800hPa)之壓力。氣體混合物進一步包括注入MOCVD中之矽烷,此材料為矽的前驅物。矽烷可以氫氣稀釋為1000ppm,並提供20-sccm之流量。反應器中的溫度是例如為介於950℃至1100℃之範圍內,較佳是從990℃至1060℃。為了將物種從起泡器的出口傳送至兩個反應器充氣室,係使用2000-sccm之載氣(例如分佈於兩個充氣室之間的氮氣)流量。前述氣體流量係僅作 為示值而提供,應根據反應器的大小與規格而加以採用。 By way of illustration, in an example where the upper portion 28 is made of heavily doped N-type GaN, a gallium precursor gas (eg, trimethylgallium (TMGa)) can be injected into the MOCVD reactor in the form of a showerhead. The MOCVD method is carried out with a nitrogen precursor gas such as ammonia (NH 3 ). As an illustration, a 3x2" MOCVD reactor in the form of a shower head commercially available from AIXTRON can be used. The molecular flow ratio between trimethylgallium and ammonia is in the range of 5 to 200, preferably. It is in the range of 10-100, which can promote the growth of fine wires. As an example, the carrier gas which ensures that the organometallic element diffuses into the reactor in all directions is filled with the organometallic element in the TMGa bubbler. The standard operating conditions and settings. for example, select 60 sccm TMGa (standard cubic centimeters per minute) of flow, the flow rate of NH 3 using the 300-sccm (standard cylinders NH 3). use of about 800 mbar (800hPa) of The gas mixture further comprises a decane injected into the MOCVD, the material being a precursor of ruthenium. The decane can be diluted with hydrogen to 1000 ppm and provide a flow rate of 20-sccm. The temperature in the reactor is, for example, between 950 ° C and 1100 ° C. Within the range, preferably from 990 ° C to 1060 ° C. To transport species from the outlet of the bubbler to the two reactor plenums, a 2000-sccm carrier gas is used (eg, distributed between the two plenums) Nitrogen) flow. Said gas flow based only values shown are provided, and should be employed according to the size of the reactor and specifications.
前驅物氣體中矽烷的存在導致在GaN化合物內含有 矽。因此可得到較低的N型摻雜部分28。這進一步解釋成氮化矽層(未示)的形成,隨著部分28成長,此氮化矽層覆蓋了高度為H2之部分28的周圍(除頂部以外)。 The presence of decane in the precursor gas results in the inclusion of ruthenium in the GaN compound. A lower N-doped portion 28 can thus be obtained. This is further explained by the formation of a tantalum nitride layer (not shown) which, as the portion 28 grows, covers the periphery of the portion 28 of height H 2 (except for the top).
(4)在下部28的頂部上成長各細線26之上部30(所 具高度為H3)。為了上部30的成長,作為例示,保持MOCVD反應器的前述操作條件,但以例如大於或等於10的因次降低、或停止反應器中的矽烷流量。因為源自相鄰鈍化部分的摻質擴散於主動部分中、或因為GaN殘餘摻雜,故即使是停止矽烷流量,上部30仍為N型摻雜。 (4) The upper portion 30 of each of the thin wires 26 is grown on the top of the lower portion 28 (the height is H 3 ). For the growth of the upper portion 30, as an example, the aforementioned operating conditions of the MOCVD reactor are maintained, but the amount of decane in the reactor is reduced, for example, by a factor of greater than or equal to 10. Since the dopant originating from the adjacent passivation portion diffuses in the active portion, or because of the GaN residual doping, the upper portion 30 is N-type doped even if the decane flow rate is stopped.
(5)藉由磊晶形成各細線26之形成殼層34的層體。 在有覆蓋下部28周圍的氮化矽層的存在下,形成殼層34之層體的沉積係僅發生於細線26的上部30。 (5) The layer body forming the shell layer 34 of each of the thin wires 26 is formed by epitaxy. The deposition of the layer forming the shell 34 occurs only in the upper portion 30 of the thin line 26 in the presence of a layer of tantalum nitride covering the periphery of the lower portion 28.
(6)於步驟(5)所得的整體結構上方例如保形沉積一 絕緣層並蝕刻此層以暴露出各細線26的殼層34,藉以形成絕緣層32。在前述具體實施例中,絕緣層32並不覆蓋殼層34。 作為變化例,絕緣層32可覆蓋一部分的殼層34。此外,絕緣層32可形成於殼層34之前。 (6) above the overall structure obtained in the step (5), for example, a conformal deposition This layer is etched and etched to expose the shell 34 of each of the thin lines 26, thereby forming the insulating layer 32. In the foregoing specific embodiment, the insulating layer 32 does not cover the shell layer 34. As a variant, the insulating layer 32 may cover a portion of the shell layer 34. Further, the insulating layer 32 may be formed before the shell layer 34.
(7)藉由例如保形性沉積而形成電極36。 (7) The electrode 36 is formed by, for example, conformal deposition.
(8)藉由例如物理氣相沉積法(PVD)於步驟(7)所得的整體結構上形成傳導層38,並蝕刻此層以暴露出各細線26。第2B圖說明了在已經於整體晶圓10上沉積包封層40之後所得的結構。包封層40的最大厚度是介於例如12微米至 1000微米的範圍內(約為50微米),使得包封層40完全覆蓋在發光二極體DEL的頂部處之電極36。包封層40是以至少部分透明的絕緣材料所製成。 (8) The conductive layer 38 is formed on the entire structure obtained in the step (7) by, for example, physical vapor deposition (PVD), and this layer is etched to expose the respective thin lines 26. FIG. 2B illustrates the resulting structure after the encapsulation layer 40 has been deposited on the monolithic wafer 10. The maximum thickness of the encapsulation layer 40 is between, for example, 12 microns to In the range of 1000 microns (approximately 50 microns), the encapsulation layer 40 completely covers the electrode 36 at the top of the light-emitting diode DEL. The encapsulation layer 40 is made of an at least partially transparent insulating material.
包封層40是以至少部分透明的無機材料所製成。 The encapsulation layer 40 is made of an at least partially transparent inorganic material.
作為例示,無機材料是選自包括氧化矽(具有SiOx 之類型、或具有SiOyNz之類型,其中x是介於1和2之間的實數,y與z為介於0和1之間的實數)與氧化鋁(例如Al2O3)之群組。然後藉由低溫CVD沉積無機材料,特別是在低於300℃-400℃的溫度,例如藉由PECVD(電漿增強之化學氣相沉積法)。 By way of illustration, the inorganic material is selected from the group consisting of cerium oxide (type having SiO x or having SiO y N z , where x is a real number between 1 and 2, and y and z are between 0 and 1 A group of real numbers) and a group of aluminas (for example, Al 2 O 3 ). The inorganic material is then deposited by low temperature CVD, particularly at temperatures below 300 °C to 400 °C, such as by PECVD (plasma enhanced chemical vapor deposition).
包封層40由至少部分透明的有機材料製成。作為例 示,包封層40為矽膠聚合物、環氧化物聚合物、丙烯酸聚合物、或聚碳酸酯。接著以旋轉塗佈法、噴墨印刷法或絲印法來沉積包封層40。在可編程設備的自動模式中也可能使用時間/壓力分配器或容積分配器之分配方法。 The encapsulation layer 40 is made of an at least partially transparent organic material. As an example The encapsulation layer 40 is a silicone polymer, an epoxide polymer, an acrylic polymer, or a polycarbonate. The encapsulation layer 40 is then deposited by spin coating, ink jet printing or silk screen printing. It is also possible to use a time/pressure distributor or a volume divider dispensing method in the automatic mode of the programmable device.
第2C圖說明在包封層40上附接額外支座42(稱為 柄部)之後所得的結構。作為例示,柄部具有的厚度是介於200微米至1000微米的範圍內。 Figure 2C illustrates the attachment of an additional support 42 on the encapsulation layer 40 (referred to as The structure obtained after the handle). By way of illustration, the handle has a thickness in the range of 200 microns to 1000 microns.
根據一具體實施例,一旦進行鋸切,柄部42是要保 留在光電裝置上的。柄部42是以至少部分透明的材料所製成,它可為玻璃,特別是硼矽酸鹽玻璃(例如派熱司玻璃Pyrex)或藍寶石。觀察者可感知到在與包封層40相對的柄部42之表面43上發光二極體DEL所發出的光線。 According to a specific embodiment, once sawing is performed, the handle 42 is to be protected. Stay on the optoelectronic device. The handle 42 is made of an at least partially transparent material which may be glass, particularly borosilicate glass (e.g., Pyrex glass) or sapphire. The observer can perceive the light emitted by the LED DEL on the surface 43 of the handle 42 opposite the encapsulation layer 40.
根據另一具體實施例,在製造方法的後續步驟中, 柄部42是要被移除的。在這個例子中,柄部42是由可與製造方法的後續步驟相容之任何類型材料製成。可為矽或與微電子元件平坦度條件相容的任何平坦基板。 According to another specific embodiment, in a subsequent step of the manufacturing method, The handle 42 is to be removed. In this example, the handle 42 is made of any type of material that is compatible with the subsequent steps of the manufacturing process. It can be any flat substrate that is compatible with or compatible with the flatness conditions of the microelectronic components.
柄部42係藉由任何方式附接至包封層40,例如藉 由接合,或藉由使用一層有機的可溫度交聯膠(未示),或是藉由分子接合(直接接合)或以UV固化膠之光學接合。當包封層40是以有機材料製成時,這種材料可作為柄部42之膠使用。當使用膠層時,它應該是至少部分透明的。 The handle 42 is attached to the encapsulation layer 40 by any means, such as Bonding, or by using an organic temperature-crosslinkable glue (not shown), or by molecular bonding (direct bonding) or optical bonding of UV-curing glue. When the encapsulating layer 40 is made of an organic material, this material can be used as a glue for the handle 42. When a glue layer is used, it should be at least partially transparent.
第2D圖說明在薄化基板10之步驟後所得到的結 構。在薄化之後,基板10的厚度會介於20微米至200微米的範圍內,例如約為30微米。薄化步驟可藉由一次或一次以上的研磨或蝕刻步驟而、及/或藉由化學機械研磨方法(CMP)而實施。薄化的基板10包括與表面22相對之表面44。表面22與44較佳為平行。 FIG. 2D illustrates the junction obtained after the step of thinning the substrate 10. Structure. After thinning, the thickness of the substrate 10 may range from 20 microns to 200 microns, such as about 30 microns. The thinning step can be carried out by one or more grinding or etching steps, and/or by chemical mechanical polishing (CMP). The thinned substrate 10 includes a surface 44 opposite the surface 22. Surfaces 22 and 44 are preferably parallel.
第2E圖說明在下列步驟之後所得到的結構:- 於基板10的後表面上形成絕緣層45,其是由例如二氧化矽(SiO2)或由氮氧化矽(SiON)所製成。絕緣層45是例如由PECVD之保形沉積而實施;- 對於各光電裝置,蝕刻至少一個開口46,開口46跨越絕緣層45、基板10、絕緣層32以及電極36,以暴露出金屬層38的一部分。基板10的蝕刻可為深反應性離子蝕刻(DRIE)。絕緣層32的部分的蝕刻也可利用絕緣層32適用之化學而藉由電漿蝕刻來執行。同時,蝕刻電極層36。作為變化例,可在形成金屬層38之步驟前,先自形成導通 孔46的區域將層36移除。開口46具有圓形截面。開口46的直徑是介於5微米至200微米的範圍內,這是根據如第1圖中所示之單元光電構件14的大小而定,例如約為15微米。接著同時形成複數個圓形開口46以產生平行的連接部。這可減少連接部的電阻。這類連接部是配置在形成發光二極體DEL之區域的周圍。作為變化例,開口46對應於凹槽,例如沿著光電裝置的至少一側延伸。較佳為,凹槽寬度是介於15微米至200微米的範圍內,這是根據如第1圖中所示之單元光電構件14的大小而定,例如約為15微米;- 於開口46的內部壁部上、以及可能在層45上形成絕緣層48,絕緣層48是例如以SiO2或由SiON所製成,在圖式中並未繪示出覆蓋了層45之層48的部分。絕緣層48是例如以保形PECVD所形成。絕緣層48具有之厚度是介於200奈米至5000奈米的範圍內,例如約為3微米;- 蝕刻絕緣層48以暴露在開口46底部的傳導層38。此蝕刻為非等向性;且- 於絕緣層45中蝕刻至少一個開口50,以暴露出基板10的一部分表面44。為執行此蝕刻,利用例如樹脂來暫時擋住開口46。 Fig. 2E illustrates the structure obtained after the following steps: - An insulating layer 45 is formed on the rear surface of the substrate 10, which is made of, for example, cerium oxide (SiO 2 ) or cerium oxynitride (SiON). The insulating layer 45 is implemented, for example, by conformal deposition of PECVD; - for each optoelectronic device, at least one opening 46 is etched across the insulating layer 45, the substrate 10, the insulating layer 32, and the electrode 36 to expose the metal layer 38 portion. The etching of the substrate 10 may be deep reactive ion etching (DRIE). The etching of portions of the insulating layer 32 can also be performed by plasma etching using the chemistry of the insulating layer 32. At the same time, the electrode layer 36 is etched. As a variant, the layer 36 may be removed from the area where the vias 46 are formed prior to the step of forming the metal layer 38. The opening 46 has a circular cross section. The diameter of the opening 46 is in the range of 5 microns to 200 microns, depending on the size of the unit photovoltaic member 14 as shown in Figure 1, for example about 15 microns. A plurality of circular openings 46 are then formed simultaneously to create parallel connections. This reduces the resistance of the connection. Such a connection portion is disposed around a region where the light-emitting diode DEL is formed. As a variant, the opening 46 corresponds to a groove, for example extending along at least one side of the optoelectronic device. Preferably, the groove width is in the range of 15 micrometers to 200 micrometers, depending on the size of the unit photovoltaic member 14 as shown in FIG. 1, for example, about 15 micrometers; An insulating layer 48 is formed on the inner wall and possibly on layer 45. The insulating layer 48 is for example made of SiO 2 or of SiON, the portion of layer 48 covering layer 45 is not shown in the drawings. The insulating layer 48 is formed, for example, by conformal PECVD. The insulating layer 48 has a thickness in the range of 200 nanometers to 5000 nanometers, for example, about 3 micrometers; - the insulating layer 48 is etched to expose the conductive layer 38 at the bottom of the opening 46. The etch is anisotropic; and at least one opening 50 is etched into the insulating layer 45 to expose a portion of the surface 44 of the substrate 10. To perform this etching, for example, resin is used to temporarily block the opening 46.
第2F圖說明了在開口50中形成第二電極52及在絕緣層48上形成傳導層54之後所得到的結構,傳導層54覆蓋開口46的內部壁部而與金屬部分36接觸,並延伸於開口46周圍的表面44上。電極52與傳導層54包括兩層(如圖式中 所示)或是兩層以上的堆疊結構。例如其為TiCu或TiAl。此層可以另一金屬層予以覆蓋,例如金、銅、或共晶合金(Ni/Au或Su/Ag/Cu),以實施焊接方法。第二電極52與傳導層54是以電化學沉積法(ECD)所形成,特別是在銅的例子中。電極層52與傳導層54的厚度是在介於1微米至10微米的範圍內,例如約為5微米。 2F illustrates the structure obtained after the second electrode 52 is formed in the opening 50 and the conductive layer 54 is formed on the insulating layer 48. The conductive layer 54 covers the inner wall portion of the opening 46 to be in contact with the metal portion 36 and extends over On the surface 44 around the opening 46. The electrode 52 and the conductive layer 54 comprise two layers (as shown in the figure) Shown) or a stack of more than two layers. For example, it is TiCu or TiAl. This layer may be covered with another metal layer, such as gold, copper, or a eutectic alloy (Ni/Au or Su/Ag/Cu) to carry out the soldering process. The second electrode 52 and the conductive layer 54 are formed by electrochemical deposition (ECD), particularly in the case of copper. The thickness of electrode layer 52 and conductive layer 54 is in the range of from 1 micron to 10 microns, such as about 5 microns.
包括開口46、絕緣層48與傳導層54之組件形成垂直連接部56或TSV(矽穿孔)。垂直連接部56可從基板10的後表面偏壓第一電極36,而細線26的偏壓是由貫穿基板10的第二電極52而得。 The assembly including the opening 46, the insulating layer 48 and the conductive layer 54 form a vertical connection 56 or TSV (twisted perforation). The vertical connection portion 56 can bias the first electrode 36 from the rear surface of the substrate 10, and the bias of the thin wire 26 is obtained by penetrating the second electrode 52 of the substrate 10.
第3A圖與第3B圖為在具有細線的光電裝置之製造方法的另一具體實施例連續步驟中所得到的結構之部分簡化截面圖,該方法包括關於第2A圖至第2E圖中所述之所有步驟。 3A and 3B are partial simplified cross-sectional views of the structure obtained in a continuous step of another embodiment of a method of fabricating a photovoltaic device having a thin line, the method comprising the following description with respect to FIGS. 2A-2E All the steps.
第3A圖說明了在下列步驟之後所得到的結構:- 在絕緣層44的開口50中形成傳導墊片60;- 沉積絕緣層62,其特別是覆蓋了金屬墊片60。絕緣層62是由氧化矽或由氮化矽所製成,或對應於兩堆疊層或更多堆疊層之堆疊結構,且具有之厚度是介於200奈米至1000奈米內;及- 於絕緣層62中蝕刻出開口64,以暴露出部分的傳導墊片60。 Figure 3A illustrates the resulting structure after the following steps: - formation of a conductive spacer 60 in the opening 50 of the insulating layer 44; - deposition of an insulating layer 62, in particular covering the metal spacer 60. The insulating layer 62 is made of yttrium oxide or tantalum nitride, or a stack structure corresponding to two stacked layers or more stacked layers, and has a thickness of between 200 nm and 1000 nm; and - An opening 64 is etched into the insulating layer 62 to expose a portion of the conductive spacer 60.
第3B圖說明了在類似於前述關於第2F圖之於開口64中形成第二電極66及於開口46中形成傳導層54之步驟後 所得到的結構。 FIG. 3B illustrates the steps of forming the second electrode 66 in the opening 64 and forming the conductive layer 54 in the opening 46 in the same manner as described above with respect to the 2F drawing. The resulting structure.
關於第3A圖與第3B圖所述之具體實施例可有利地調整第二電極66的位置與大小。 The particular embodiment described with respect to Figures 3A and 3B can advantageously adjust the position and size of the second electrode 66.
第4圖說明製造方法的另一具體實施例,其於第2F圖之前述步驟之後,包括下列步驟:- 沉積絕緣層68,此絕緣層68特別是覆蓋了墊片52並填充開口46。它可為絕緣聚合物,例如厚度介於2微米至20微米之範圍內的BCB(苯並環丁烯)阻劑,或是厚度介於200奈米至1000奈米之範圍內的氧化矽或氮化矽、或這兩者;- 於絕緣層68中形成開口70,以暴露出部分的第二電極52與傳導層54。當絕緣層68是由無機材料製成時,此蝕刻為電漿式蝕刻;而當絕緣層68是以阻劑製成時,則為光照與顯影步驟;及- 於開口70中形成傳導凸塊72。凸塊72是以可與電子業中焊接操作相容之材料製成,例如以錫為主、或以金為主之合金。凸塊72是用以將光電裝置附接至支座(未示)。在前述具體實施例中,電流是通過基板10而在第一電極36與第二電極52、66之間流動。 Figure 4 illustrates another embodiment of the fabrication method which, after the foregoing steps of Figure 2F, comprises the steps of: - depositing an insulating layer 68, which in particular covers the spacer 52 and fills the opening 46. It may be an insulating polymer such as a BCB (benzocyclobutene) resist having a thickness ranging from 2 micrometers to 20 micrometers, or a cerium oxide having a thickness ranging from 200 nanometers to 1000 nanometers or Tantalum nitride, or both; - An opening 70 is formed in the insulating layer 68 to expose a portion of the second electrode 52 and the conductive layer 54. When the insulating layer 68 is made of an inorganic material, the etching is plasma etching; and when the insulating layer 68 is made of a resist, it is a light and development step; and - forming a conductive bump in the opening 70 72. The bump 72 is made of a material that is compatible with the soldering operation in the electronics industry, such as tin-based or gold-based alloys. Bumps 72 are used to attach the optoelectronic device to a mount (not shown). In the foregoing specific embodiment, current flows between the first electrode 36 and the second electrode 52, 66 through the substrate 10.
第5圖說明了另一個具體實施例,其中發光二極體是直接偏置在細線26的基部處。細線26是形成於種晶層74上,其接著則為光電裝置的發光二極體DEL之組件所常見。垂直連接部76是形成於基板10,例如與垂直連接部56類似,但差別在於垂直連接部76是連接至種晶層74。 Figure 5 illustrates another embodiment in which the light emitting diode is directly biased at the base of the thin wire 26. The thin lines 26 are formed on the seed layer 74, which is then common to the components of the light-emitting diode DEL of the photovoltaic device. The vertical connection portion 76 is formed on the substrate 10, for example, similar to the vertical connection portion 56, but with the difference that the vertical connection portion 76 is connected to the seed layer 74.
第6A圖至第6C圖為具有細線之光電裝置的製造方法的另一具體實施例連續步驟中所得結構的部分簡化截面圖,該方法包括關於第2A圖至第2E圖所述之所有步驟。 6A to 6C are partially simplified cross-sectional views of the structure obtained in a continuous step of another embodiment of the method of manufacturing a photovoltaic device having a thin line, the method including all the steps described in relation to Figs. 2A to 2E.
第6A圖說明在沉積厚金屬層80(例如銅)之後所得的結構。其為ECD。金屬層80的厚度為例如在10微米的級數內。金屬層80係足夠厚以填充開口46。 Figure 6A illustrates the resulting structure after depositing a thick metal layer 80, such as copper. It is an ECD. The thickness of the metal layer 80 is, for example, in the order of 10 microns. Metal layer 80 is thick enough to fill opening 46.
第6B圖說明了在研磨金屬層80以劃定開口50中之金屬部分82與開口46中之金屬部分84的步驟之後所得的結構。層80之平坦化步驟可藉由CMP來實施。 FIG. 6B illustrates the resulting structure after the step of grinding the metal layer 80 to define the metal portion 82 in the opening 50 and the metal portion 84 in the opening 46. The planarization step of layer 80 can be implemented by CMP.
第6C圖說明在類似於先前關於第3A圖與第3B圖所述步驟之後的結構,包括在基板10的整個後表面上沉積絕緣層86以及形成第二電極88與傳導墊片90,其中第二電極88越過與金屬部分82接觸的層86,傳導墊片90越過與金屬部分84接觸的層86。在後表面側部的結構上沉積鈍化層,特別是以聚合物製成的鈍化層,於鈍化層中形成開口以暴露出電極88與傳導墊片90。 6C illustrates a structure after a step similar to that previously described with respect to FIGS. 3A and 3B, including depositing an insulating layer 86 on the entire rear surface of the substrate 10 and forming a second electrode 88 and a conductive spacer 90, wherein The second electrode 88 passes over the layer 86 in contact with the metal portion 82, and the conductive spacer 90 passes over the layer 86 in contact with the metal portion 84. A passivation layer is deposited over the structure of the side of the back surface, particularly a passivation layer made of a polymer, and an opening is formed in the passivation layer to expose the electrode 88 and the conductive spacer 90.
包括開口46、絕緣層48、金屬部分84與金屬墊片90之組件形成了TSV 91,TSV 91扮演與先前所述之TSV 56相同的角色。金屬墊片88與90是用以組裝包封於最終支座(例如電路板)上的光電構件。組裝方法是藉由焊接而實施。選擇可與電子學中使用的焊接操作相容之金屬堆疊結構,特別是可與例如以有機保焊性磨光(OSP)或Ni-Au磨光(藉由化學性的製程(ENIG,無電鍍鎳浸沒金)或電化學)、Sn、Sn-Ag、Ni-Pd-Au、Sn-Ag-Cu、Ti-Wn-Au、或ENEPIG(無電 鍍鎳/無電鍍鈀/浸沒金)之銅焊接相容的焊接操作。 The assembly including the opening 46, the insulating layer 48, the metal portion 84 and the metal spacer 90 forms the TSV 91, which plays the same role as the previously described TSV 56. Metal spacers 88 and 90 are used to assemble optoelectronic components that are encapsulated on a final support, such as a circuit board. The assembly method is carried out by welding. Choose a metal stack structure that is compatible with the soldering operations used in electronics, especially with organic solder resist polishing (OSP) or Ni-Au polishing (by chemical process (ENIG, electroless plating) Nickel immersion gold) or electrochemical), Sn, Sn-Ag, Ni-Pd-Au, Sn-Ag-Cu, Ti-Wn-Au, or ENEPIG (without electricity) Nickel-plated/electroless palladium/immersion gold) copper-welded compatible soldering operations.
第7A圖與第7B圖為具有細線之光電裝置的製造方 法之另一具體實施例連續步驟所得的結構的部分簡化截面圖。 7A and 7B are manufacturers of photovoltaic devices with thin wires A further simplified cross-sectional view of the structure resulting from the sequential steps of another embodiment of the process.
初始步驟包括先前關於第2A圖所述之步驟,差別 在於,在步驟(5)至(7)之前,於基板10中形成開口92。開口92是藉由DRIE類型之蝕刻而形成。在薄化步驟之後,開口92的深度嚴格地大於基板10的厚度。作為例示,開口92的深度是介於10微米至200微米的範圍內,例如約為35微米的等級。 The initial steps include the steps previously described with respect to Figure 2A, the difference It is to form the opening 92 in the substrate 10 before the steps (5) to (7). The opening 92 is formed by etching of the DRIE type. After the thinning step, the depth of the opening 92 is strictly greater than the thickness of the substrate 10. By way of illustration, the depth of the opening 92 is in the range of 10 microns to 200 microns, such as on the order of 35 microns.
在實施步驟(5)至(7)時,絕緣層32、電極36與傳導 層38亦形成於開口92中。 In the implementation of steps (5) to (7), the insulating layer 32, the electrode 36 and the conduction Layer 38 is also formed in opening 92.
第7B圖說明在實施下列步驟之後所得到的結構:- 沉積包封層40,類似於先前關於第2B圖所述者。包封層40部分或完全進入開口92中;- 安裝柄部42,類似於先前關於第2C圖所說明者;- 薄化基板10,類似於先前關於第2D圖整體對開口92所說明;- 於基板10的後表面44上形成絕緣層94,同時保護開口92;及- 於絕緣層94中形成開口96,以暴露出一部分的基板10。 Figure 7B illustrates the resulting structure after performing the following steps: - Deposition of the encapsulation layer 40, similar to that previously described with respect to Figure 2B. The encapsulation layer 40 partially or completely enters the opening 92; - the handle 42 is mounted, similar to that previously described with respect to FIG. 2C; - thinning the substrate 10, similar to the previous description of the opening 92 as a whole with respect to the 2D diagram; An insulating layer 94 is formed on the rear surface 44 of the substrate 10 while protecting the opening 92; and an opening 96 is formed in the insulating layer 94 to expose a portion of the substrate 10.
包括開口92與延伸於開口92中之部分的絕緣層32、部分的電極層36及部分的傳導層38之組件形成了TSV 98,TSV 98扮演與先前所述之TSV 56相同的角色。 The assembly of the insulating layer 32 including the opening 92 and portions extending in the opening 92, a portion of the electrode layer 36, and a portion of the conductive layer 38 form the TSV 98, which plays the same role as the previously described TSV 56.
方法的後續步驟與先前關於第2F圖所說明的步驟相同。 The subsequent steps of the method are the same as those previously described with respect to Figure 2F.
第8圖說明了基板10至少在TSV水平面上被鋸切一次的具體實施例,TSV對應於先前所述之TSVs 56、91或98的其中一個。鋸切暴露出延伸於TSV的內部壁部上之傳導層的一部分。接著從光電裝置側進行發光二極體DEL的第一電極36之偏壓。作為例示,光電裝置可藉由與基板14的後表面接觸之連接墊片102及藉由接觸TSV的側向暴露部分之連接墊片104而附接至支座100。 Figure 8 illustrates a particular embodiment in which the substrate 10 is sawed at least once on the TSV level, the TSV corresponding to one of the previously described TSVs 56, 91 or 98. The sawing exposes a portion of the conductive layer that extends over the inner wall of the TSV. Next, the bias of the first electrode 36 of the light-emitting diode DEL is performed from the photovoltaic device side. By way of illustration, the optoelectronic device can be attached to the pedestal 100 by a connection pad 102 that contacts the rear surface of the substrate 14 and a connection pad 104 that contacts the laterally exposed portion of the TSV.
第9圖說明了在光電裝置的各細線26的水平面處設有TSV 106之具體實施例。各TSV 106會與相關聯細線26的種晶墊片24接觸。TSVs 106可不彼此連接。細線26可接著被個別地偏壓。作為變化例,設於基板10的後表面44側上的電極(未示)係可連接至與同一光電裝置相關聯的所有垂直連接部106。 Figure 9 illustrates a specific embodiment of the TSV 106 disposed at the level of each of the thin wires 26 of the optoelectronic device. Each TSV 106 will be in contact with the seeding pad 24 of the associated thin wire 26. The TSVs 106 may not be connected to each other. The thin lines 26 can then be individually biased. As a variant, electrodes (not shown) provided on the side of the rear surface 44 of the substrate 10 can be connected to all of the vertical connections 106 associated with the same optoelectronic device.
第10圖說明了TSV 110同時與複數條細線26的種晶墊片24接觸之具體實施例。垂直連接部106、110係根據先前所述之形成TSVs 56、91與98的任一製造方法而形成。 Figure 10 illustrates a specific embodiment in which the TSV 110 is simultaneously in contact with the seed spacer 24 of the plurality of thin wires 26. The vertical connecting portions 106, 110 are formed according to any of the manufacturing methods for forming the TSVs 56, 91, and 98 as previously described.
第11A圖至第11D圖為具有細線之光電裝置的製造方法的另一具體實施例連續步驟所得結構的部分簡化截面圖。 11A to 11D are partially simplified cross-sectional views showing a structure obtained by a continuous step of another specific embodiment of a method of manufacturing a photovoltaic device having a thin line.
第11A圖與第11B圖說明在實施了先前關於第2A圖所述步驟(1)之前的步驟之後所得的結構。 Fig. 11A and Fig. 11B illustrate the structure obtained after the steps before the step (1) described in the previous Fig. 2A are carried out.
第11A圖說明了在實施下列步驟後所得的結構: - 於基板10中蝕刻開口120。開口120是藉由反應性離子蝕刻類型的蝕刻而形成,例如DRIE蝕刻。在薄化步驟之後,開口120的深度會嚴格大於基板10的標的厚度。作為例示,開口120的深度是介於10微米至200微米的範圍內,例如約35微米。開口120的側向壁部之間的距離是介於1至10微米的範圍內,且例如為2微米;及- 於開口120的側向壁部上形成例如由氧化矽所製成之絕緣部分122,舉例而言,藉由加熱氧化方法。在這個步驟中,絕緣部分也可形成在開口120的底部與剩餘的基板10上。絕緣部分的厚度是介於100奈米至3000奈米的範圍內,例如約200奈米。 Figure 11A illustrates the structure obtained after performing the following steps: - etching the opening 120 in the substrate 10. Opening 120 is formed by reactive ion etching type etching, such as DRIE etching. After the thinning step, the depth of the opening 120 will be strictly greater than the target thickness of the substrate 10. By way of illustration, the depth of the opening 120 is in the range of 10 microns to 200 microns, such as about 35 microns. The distance between the lateral wall portions of the opening 120 is in the range of 1 to 10 microns, and is, for example, 2 microns; and - forming an insulating portion made of, for example, yttria on the lateral wall portion of the opening 120 122, for example, by a heating oxidation process. In this step, an insulating portion may also be formed on the bottom of the opening 120 and the remaining substrate 10. The thickness of the insulating portion is in the range of 100 nm to 3000 nm, for example about 200 nm.
第11B圖說明在實施下列步驟之後所得到的結構:- 非等向性蝕刻在開口120的底部處之絕緣部分以及覆蓋基板10的表面22之絕緣部分,以保留在開口120的側向壁部上的絕緣部分122。作為例示,可省略覆蓋基板10的表面22之絕緣部分的蝕刻。在此例中,以光微影技術形成之遮罩係設以保護前述未蝕刻的絕緣部分;- 以填充材料填充開口120,填充材料為例如多晶矽、鎢或耐火金屬材料,其支援在高溫下實施、特別是關於步驟2A至2D之前述步驟中之熱預算,例如以LPCVD進行沉積。多晶矽有利地具有接近矽之熱膨脹係數,且因此可減少在高溫下實施、特別是關於步驟2A至2D之前述步驟期間的機械應力;移除填充材料層,例如以CMP類型方法。如在對開 口122的底部處之絕緣部分進行非等向性蝕刻期間省略了對覆蓋基板10的表面22之絕緣部分的蝕刻,則前述未蝕刻層在移除填充材料層時係有利地作為終止層。在此例中,填充層的移除之後是進行蝕刻覆蓋基板10的表面22之絕緣部分之步驟。因此得到填充材料的一部分124。 Figure 11B illustrates the resulting structure after performing the following steps: - an isotropically etched insulating portion at the bottom of the opening 120 and an insulating portion covering the surface 22 of the substrate 10 to remain in the lateral wall portion of the opening 120 The upper insulating portion 122. As an illustration, etching of the insulating portion covering the surface 22 of the substrate 10 may be omitted. In this example, a mask formed by photolithography is used to protect the unetched insulating portion; - the opening 120 is filled with a filling material such as polysilicon, tungsten or refractory metal material, which supports at high temperatures The implementation, in particular with regard to the thermal budget in the aforementioned steps of steps 2A to 2D, is carried out, for example, by LPCVD. The polycrystalline germanium advantageously has a coefficient of thermal expansion close to that of germanium, and thus can reduce the mechanical stresses that are carried out at elevated temperatures, particularly with respect to the aforementioned steps of steps 2A to 2D; the layer of filler material is removed, for example in a CMP type process. As in the opposite The etching of the insulating portion of the surface 22 of the cover substrate 10 is omitted during the anisotropic etching of the insulating portion at the bottom of the port 122, and the aforementioned unetched layer is advantageously used as a termination layer when the layer of the filling material is removed. In this case, the removal of the fill layer is followed by the step of etching the insulating portion of the surface 22 of the substrate 10. A portion 124 of the filler material is thus obtained.
第11C圖說明了在實施與第2A圖至第2D圖之前述 相關說明類似的步驟之後所得的結構,差別在於此例包括:在形成傳導層38之前,進行於電極層36中蝕刻開口125及蝕刻絕緣層32以使傳導層38變成與部分124接觸之步驟。 Figure 11C illustrates the implementation of the foregoing and Figures 2A through 2D. The structure resulting from the similar steps is described in this example, including the step of etching the opening 125 in the electrode layer 36 and etching the insulating layer 32 to bring the conductive layer 38 into contact with the portion 124 prior to forming the conductive layer 38.
第11D圖說明了在實施下列步驟(類似關於第7B圖、第3A圖與第3B圖之前述說明)之後所得的結構:- 薄化基板10至達到傳導部分124;- 於基板10的後表面44上形成絕緣層126;- 在絕緣層126中形成開口128,以暴露出基板10的後表面44的一部分,及於絕緣層126中形成開口130,以暴露出傳導部分124;- 於開口128中形成傳導墊片132而與基板10接觸,並於開口130中形成傳導墊片134而與傳導部分124接觸;- 形成絕緣層136,其覆蓋絕緣層126與傳導墊片132、134;- 於絕緣層136中形成開口138,以暴露出傳導墊片132的一部分,並形成開口140以暴露出傳導墊片134;及- 於開口138中形成一第二電極142而接觸於傳導墊片132,並於開口130中形成傳導墊片144而接觸於傳導墊片134。 Figure 11D illustrates the structure obtained after performing the following steps (similar to the foregoing description of Figures 7B, 3A and 3B): - thinning the substrate 10 to the conductive portion 124; - on the back surface of the substrate 10 An insulating layer 126 is formed over 44; - an opening 128 is formed in the insulating layer 126 to expose a portion of the back surface 44 of the substrate 10, and an opening 130 is formed in the insulating layer 126 to expose the conductive portion 124; - the opening 128 Forming a conductive spacer 132 in contact with the substrate 10, and forming a conductive spacer 134 in the opening 130 to be in contact with the conductive portion 124; - forming an insulating layer 136 covering the insulating layer 126 and the conductive pads 132, 134; An opening 138 is formed in the insulating layer 136 to expose a portion of the conductive pad 132, and an opening 140 is formed to expose the conductive pad 134; and a second electrode 142 is formed in the opening 138 to contact the conductive pad 132, A conductive pad 144 is formed in the opening 130 to contact the conductive pad 134.
包括由絕緣部分122劃定之填充材料的部分124之 組件形成了TSV 145,TSV 145扮演與先前所述TSV 56相同的角色。連接墊片144與金屬層38之傳導部分124是由傳導材料的部分124所形成。 A portion 124 of the filler material defined by the insulating portion 122 The components form TSV 145, which plays the same role as TSV 56 previously described. The conductive portion 124 of the connection pad 144 and the metal layer 38 is formed by a portion 124 of conductive material.
作為變化例,可不存在絕緣層126,而傳導墊片 132、144則是直接形成在基板10上。 As a variant, there may be no insulating layer 126, but a conductive spacer 132 and 144 are formed directly on the substrate 10.
根據另一變化例,作為形成以絕緣部分與基板10絕 緣之填充材料的部分124之替代,該方法可包括形成劃定基板的一部分之絕緣凹槽(其扮演部分124之角色)之步驟。 較佳為,重摻雜矽(例如具有之摻雜濃度大於或等於每立方公分1019個原子)係用以降低此連接部的電阻。此傳導部分是藉由在主動區域周圍的一個或複數個矽凹槽、或藉由一個或複數個絕緣矽導通孔而形成。 According to another variation, instead of forming a portion 124 of a fill material that is insulated from the substrate 10 by the insulating portion, the method can include the step of forming an insulating recess (which acts as the portion 124) that defines a portion of the substrate. Preferably, heavily doped germanium (e.g., having a doping concentration greater than or equal to 10 19 atoms per cubic centimeter) is used to reduce the electrical resistance of the junction. The conductive portion is formed by one or a plurality of turns of the trench around the active region, or by one or a plurality of insulating germanium vias.
可實施關於第11A圖至第11D圖之前述具體實施例 來形成如前述關於第9圖與第10圖所說明之垂直連接部106與110。 The foregoing specific embodiment regarding FIGS. 11A to 11D can be implemented The vertical connecting portions 106 and 110 as described above with respect to FIGS. 9 and 10 are formed.
第12A圖至第12E圖為具有細線之光電裝置的製造 方法之另一具體實施例中連續步驟所得的結構的部分簡化截面圖。初始步驟包括如前述第2A圖至第2C圖之相關步驟,差別在於不存在傳導層38。 12A to 12E are diagrams showing the manufacture of photovoltaic devices having thin wires A partially simplified cross-sectional view of the structure resulting from successive steps in another embodiment of the method. The initial steps include the associated steps of Figures 2A through 2C as previously described, with the difference that there is no conductive layer 38.
第12A圖說明了在移除基板10之步驟後所得到的 結構。基板10的移除是藉由一次或一次以上的蝕刻步驟來執行。在基板移除之後所顯露出的結構後表面是以元件符號150來表示。在第12A圖中,蝕刻係停止於絕緣層32上及種晶墊 片24上。作為變化例,該方法可進一步包括移除種晶墊片24。 Figure 12A illustrates the result obtained after the step of removing the substrate 10. structure. The removal of the substrate 10 is performed by one or more etching steps. The structural back surface that is exposed after the substrate is removed is indicated by the symbol 150. In Fig. 12A, the etching stops on the insulating layer 32 and the seed pad On the sheet 24. As a variant, the method may further comprise removing the seeding spacer 24.
第12B圖說明在實施下列步驟之後得到的結構:- 於絕緣層32中蝕刻開口152;- 於後表面150上及於開口152中沉積鏡層154;及- 沉積傳導層156,其覆蓋鏡層154。 Figure 12B illustrates the structure obtained after performing the following steps: - etching the opening 152 in the insulating layer 32; - depositing a mirror layer 154 on the back surface 150 and in the opening 152; and - depositing a conductive layer 156 covering the mirror layer 154.
鏡層154為單層、或對應於含有兩層或兩層以上的堆疊結構。作為例示,鏡層154對應於金屬單層。根據另一實例,鏡層154是對應於包括覆有介電層或覆有複數層介電層之金屬層的層體堆疊結構。鏡層154中的金屬層是形成於接合層上,例如是由鈦所製成。鏡層154(單層或多層)的厚度大於15奈米,例如是在介於30奈米至2微米的範圍內。鏡層154可以ECD沉積而成。 The mirror layer 154 is a single layer or corresponds to a stacked structure containing two or more layers. By way of illustration, mirror layer 154 corresponds to a metal monolayer. According to another example, the mirror layer 154 corresponds to a layer stack structure including a metal layer covered with a dielectric layer or covered with a plurality of dielectric layers. The metal layer in the mirror layer 154 is formed on the bonding layer, for example, made of titanium. The thickness of the mirror layer 154 (single or multilayer) is greater than 15 nanometers, for example, in the range of 30 nanometers to 2 micrometers. The mirror layer 154 can be deposited by ECD.
根據一具體實施例,鏡層154可至少部分地反射由發光二極體DEL發出的輻射。 According to a specific embodiment, the mirror layer 154 can at least partially reflect the radiation emitted by the light emitting diode DEL.
根據一具體實施例,形成種晶墊片24與鏡層154(單層或多層)之材料的複合光學指數以及種晶墊片24與鏡層154的厚度都可被選擇,以提高種晶墊片24與鏡層154的平均反射率。層體或層體堆疊結構的平均反射率是指,在一已知波長下,所有的可能入射角度之該層體或層體堆疊結構所反射的電磁能量與入射電磁能量之比例的平均值。希望平均反射率可盡可能為高,較佳是大於80%。 According to a specific embodiment, the composite optical index of the material forming the seed pad 24 and the mirror layer 154 (single layer or multilayer) and the thickness of the seed pad 24 and the mirror layer 154 can be selected to enhance the seed pad. The average reflectance of the sheet 24 and the mirror layer 154. The average reflectivity of a layer or layer stack structure refers to the average of the ratio of electromagnetic energy reflected by the layer or layer stack structure of all possible incident angles to incident electromagnetic energy at a known wavelength. It is desirable that the average reflectance be as high as possible, preferably greater than 80%.
複合光學指數(也稱為複合折射率)是一個無因次數值,此數值表示介質的光學特性,特別是吸收與擴散特性。折射率等於複合光學指數中的實部。消光係數(也稱為衰減 係數)測量了通過此材料之電磁輻射能量損失。消光係數等於複合光學指數中的虛部的相反值。材料的折射率與消光係數可由例如橢圓偏光儀決定。橢圓偏光儀數據的分析方法係描述於Hiroyuki Fujiwara的文獻「光譜橢圓偏極術、原理與方法(“Spectroscopic ellipsometry,Principles and Applications”)」(由John Wiley & Sons有限公司於2007年出版)中。 The composite optical index (also known as the composite refractive index) is a dimensionless number that represents the optical properties of the medium, particularly the absorption and diffusion characteristics. The refractive index is equal to the real part of the composite optical index. The extinction coefficient (also known as the attenuation coefficient) measures the energy loss of electromagnetic radiation through this material. The extinction coefficient is equal to the opposite of the imaginary part of the composite optical index. The refractive index and extinction coefficient of the material can be determined, for example, by an ellipsometer. The analytical method of ellipsometry data is described in Hiroyuki Fujiwara's "Spectroscopic ellipsometry, Principles and Applications" (published by John Wiley & Sons Co., Ltd. in 2007).
作為例示,形成鏡層154(單層或多層)中之金屬 層的材料為鋁、銀、鉻、銠、釕、鈀、或由這些化合物中兩種或這些化合物中兩種以上之合金。 As an illustration, the metal in the mirror layer 154 (single or multilayer) is formed The material of the layer is aluminum, silver, chromium, ruthenium, rhodium, palladium, or an alloy of two or more of these compounds or two or more of these compounds.
根據一具體實施例,各種晶墊片24的厚度小於或等於20奈米。 According to a specific embodiment, the thickness of the various crystal spacers 24 is less than or equal to 20 nanometers.
根據一具體實施例,對於380奈米至650奈米之波長範圍,各種晶墊片24的反射率是介於1至3的範圍內。 According to a specific embodiment, the reflectance of the various crystal spacers 24 is in the range of 1 to 3 for the wavelength range of 380 nm to 650 nm.
根據一具體實施例,對於380奈米至650奈米之波長範圍,各種晶墊片24的消光係數小於或等於3。 According to a specific embodiment, the extinction coefficients of the various crystal spacers 24 are less than or equal to 3 for the wavelength range of 380 nm to 650 nm.
作為例示,形成各種晶墊片24之材料係對應於前述實例。 By way of illustration, the materials from which the various crystal spacers 24 are formed correspond to the foregoing examples.
傳導層156可由鋁、銀、或任何其他傳導材料製成。作為例示,它具有的厚度是介於30奈米至2000奈米之範圍內。傳導層156可由ECD沉積而成。鏡層154與傳導層156可相混。 Conductive layer 156 can be made of aluminum, silver, or any other conductive material. By way of illustration, it has a thickness in the range of from 30 nanometers to 2000 nanometers. Conductive layer 156 can be deposited from ECD. The mirror layer 154 and the conductive layer 156 can be mixed.
第12C圖說明了在蝕刻傳導層156與鏡層154以劃定墊片158之步驟之後所得的結構,包括連接至電極層36與 墊片164之鏡層154的一部分160與傳導層156的一部分162,包括連接至種晶墊片24之鏡層154的一部分166與傳導層156的一部分168。 Figure 12C illustrates the resulting structure after etching the conductive layer 156 and the mirror layer 154 to define the spacer 158, including connection to the electrode layer 36 and A portion 160 of the mirror layer 154 of the spacer 164 and a portion 162 of the conductive layer 156 includes a portion 166 of the mirror layer 154 and a portion 168 of the conductive layer 156 that are coupled to the seed spacer 24.
第12D圖說明在下列步驟之後得到的結構:- 沉積絕緣層170,其延伸於墊片158、164上及墊片158、164之間;- 於絕緣層170中蝕刻出暴露傳導墊片158之開口172及暴露傳導墊片164之開口174;及- 沉積傳導層176,其覆蓋絕緣層170並進入開口172、174中。 Figure 12D illustrates the structure obtained after the following steps: - depositing an insulating layer 170 extending over the pads 158, 164 and between the pads 158, 164; - etching the exposed conductive pads 158 in the insulating layer 170 Opening 172 and opening 174 exposing conductive pad 164; and - depositing conductive layer 176 that covers insulating layer 170 and enters openings 172, 174.
絕緣層170是由以低溫PECVD沉積之二氧化矽所製成,或由BCB、環氧樹脂類型的有機材料所製成,具有之厚度為數微米,一般是3至5微米。 The insulating layer 170 is made of cerium oxide deposited by low temperature PECVD, or made of an organic material of the BCB or epoxy type, and has a thickness of several micrometers, typically 3 to 5 micrometers.
傳導層176由TiCu或TiCl所製成。作為例示,它具有的厚度是介於500奈米至2微米的範圍內。 The conductive layer 176 is made of TiCu or TiCl. By way of illustration, it has a thickness in the range of from 500 nanometers to 2 micrometers.
第12E圖說明了在蝕刻傳導層176以劃定連接至傳導墊片158的傳導墊片178、連接至傳導墊片164的第二電極180、及與絕緣層170接觸的傳導部分182之步驟之後所得的結構。傳導部分182扮演輻射體的角色。絕緣層170特別可使熱沉182與電接觸墊片158電氣絕緣,且/或與傳導層156電氣絕緣。 Figure 12E illustrates the steps after etching the conductive layer 176 to delineate the conductive pads 178 connected to the conductive pads 158, the second electrodes 180 connected to the conductive pads 164, and the conductive portions 182 in contact with the insulating layer 170. The resulting structure. The conductive portion 182 acts as a radiator. The insulating layer 170 particularly insulates the heat sink 182 from the electrical contact pads 158 and/or is electrically isolated from the conductive layer 156.
關於第12A圖至第12E圖所述之具體實施例具有可抑制因基板18所致之串聯電阻的優點。 The specific embodiment described with respect to FIGS. 12A to 12E has an advantage of suppressing the series resistance due to the substrate 18.
第13圖與第14圖分別為光電裝置190的具體實施 例之部分且簡化之截面圖與上視圖,光電裝置190具有在薄化基板10之步驟後及在鋸切基板10前形成於基板晶圓10上的細線。在第13圖中,已進一步部分顯示了與光電裝置190相鄰的光電裝置192。 Figure 13 and Figure 14 show the specific implementation of the photovoltaic device 190, respectively. In part and simplified cross-sectional and top views, the optoelectronic device 190 has thin lines formed on the substrate wafer 10 after the step of thinning the substrate 10 and before sawing the substrate 10. In Fig. 13, the optoelectronic device 192 adjacent to the optoelectronic device 190 has been further partially shown.
各光電裝置190、192被填有絕緣材料的一個或複數 個凹槽194(在本實例中為兩個)圍繞,凹槽194延伸於薄化基板10的整體厚度間。作為例示,每一個凹槽具有大於1微米之寬度,例如約2微米。兩個凹槽194之間的距離大於5微米,例如約6微米。基板10的鋸切線(如短虛線196所示)是形成於光電裝置190的凹槽194與相鄰光電裝置192的凹槽194之間。在進行鋸切之後,凹槽194提供了矽基板與光電裝置190的側向電氣絕緣。 Each of the optoelectronic devices 190, 192 is filled with one or more of an insulating material A recess 194 (two in this example) surrounds the recess 194 extending between the overall thickness of the thinned substrate 10. By way of illustration, each groove has a width greater than 1 micron, such as about 2 microns. The distance between the two grooves 194 is greater than 5 microns, such as about 6 microns. The sawing line of substrate 10 (shown by short dashed line 196) is formed between recess 194 of optoelectronic device 190 and recess 194 of adjacent optoelectronic device 192. The grooves 194 provide lateral electrical isolation of the germanium substrate from the optoelectronic device 190 after sawing.
如第14圖所示,額外的凹槽198連接兩個相鄰光電 裝置190、192的外部凹槽194。在鋸切之後,在各光電裝置190、192的周圍處仍保留有基板10的一部分200。凹槽198可將周圍部分200分為複數個絕緣區段202。這在傳導墊片會與這些區段接觸的情況下可降低短路風險。 As shown in Figure 14, the additional recess 198 connects two adjacent optoelectronics The outer groove 194 of the device 190, 192. After sawing, a portion 200 of the substrate 10 remains there around the photovoltaic devices 190, 192. The groove 198 can divide the surrounding portion 200 into a plurality of insulating segments 202. This reduces the risk of short circuit if the conductive pads are in contact with these segments.
根據一具體實施例,光電裝置進一步包括螢光體, 螢光體在受發光二極體所發出的光激發時,可發出與發光二極體發出的光波長不同波長的光。作為例示,發光二極體可發出藍光,而螢光體在受藍光激發時可發出黃光,因此,觀察者會感知到由藍光與黃光組合而成的光,而根據每種光的比例,其實質上為白光。觀察者所感知到的最終顏色是以例如由國際照明委員會的標準所定義之色度座標予以特徵化。 According to a specific embodiment, the optoelectronic device further comprises a phosphor, When excited by the light emitted by the light-emitting diode, the phosphor emits light having a wavelength different from that of the light emitted from the light-emitting diode. As an illustration, the light emitting diode emits blue light, and the phosphor emits yellow light when excited by blue light. Therefore, the observer perceives light composed of blue light and yellow light, and according to the ratio of each light. It is essentially white light. The final color perceived by the observer is characterized by a chromaticity coordinate as defined, for example, by the International Commission on Illumination.
根據一具體實施例,在包封層40內設有螢光體層。 較佳為,螢光體的平均直徑可經過選擇,使得在形成包封層40期間,有至少部分的螢光體是分佈於細線26之間。較佳為,螢光體具有之直徑是介於45奈米至500奈米的範圍內。 然後可根據標的色度座標來調整螢光體濃度與螢光體層的厚度。 According to a specific embodiment, a phosphor layer is provided within the encapsulation layer 40. Preferably, the average diameter of the phosphors can be selected such that during formation of the encapsulation layer 40, at least a portion of the phosphors are distributed between the filaments 26. Preferably, the phosphor has a diameter in the range of from 45 nanometers to 500 nanometers. The phosphor concentration and the thickness of the phosphor layer can then be adjusted according to the target chromaticity coordinates.
光電裝置的取光率一般是定義為光電裝置逸出的光 子數對發光二極體所發出的光子量之比例。每一個發光二極體發出所有方向的光,且特別是朝向鄰近的發光二極體。發光二極體的主動層傾向於捕捉具有小於或等於傳送波長之波長的光子。因此,鄰近的發光二極體的主動層會捕捉發光二極體所發出的光的一部分。在細線26之間設置螢光體的優點是,在藍光抵達鄰近的發光二極體之前,螢光體可將發光二極體所發出之部分的光(例如藍光)轉換為較高波長的光(例如黃光)。由於黃光不會被鄰近的發光二極體的主動層吸收,因此可增加光電裝置的取光率。 The light extraction rate of an optoelectronic device is generally defined as the light that the photovoltaic device escapes. The ratio of the number of sub-numbers to the amount of photons emitted by the light-emitting diode. Each of the light-emitting diodes emits light in all directions, and in particular toward adjacent light-emitting diodes. The active layer of the light emitting diode tends to capture photons having wavelengths less than or equal to the wavelength of the transmission. Therefore, the active layer of the adjacent light-emitting diode captures a portion of the light emitted by the light-emitting diode. The advantage of providing a phosphor between the thin lines 26 is that the phosphor converts a portion of the light emitted by the light-emitting diode (eg, blue light) to a higher wavelength light before the blue light reaches the adjacent light-emitting diode. (eg yellow light). Since the yellow light is not absorbed by the active layer of the adjacent light-emitting diode, the light extraction rate of the photovoltaic device can be increased.
另一個優點是,由於螢光體比較靠近基板10,因此 可增進在操作中加熱螢光體期間所產生熱量之基板排放。 Another advantage is that since the phosphor is relatively close to the substrate 10, Substrate emissions that generate heat during heating of the phosphor during operation can be enhanced.
另一個優點是,由於螢光體不是設在獨立層體中, 因此可減少光電裝置的總厚度。 Another advantage is that since the phosphor is not located in a separate layer, Therefore, the total thickness of the photovoltaic device can be reduced.
另一優點為,可增進光電裝置所發出的光的均勻 性。的確,自包封層40逸出之所有方向的光是對應於發光二極體發出的光與螢光體發出的光之組合。 Another advantage is that the uniformity of light emitted by the photovoltaic device can be improved Sex. Indeed, the light in all directions that escape from the encapsulation layer 40 corresponds to the combination of the light emitted by the light-emitting diode and the light emitted by the phosphor.
第15圖說明了包括如第2F圖所示之所有元件的光 電裝置205的具體實施例,且在包封層40和柄部42之間進一步包括,於包封層40上延伸的一螢光體層206以及可能有延伸於螢光體層206上之膠層208與延伸於膠層208上之柄部42。螢光體層206的厚度可介於50微米至100微米的範圍內。螢光體層206對應於內嵌有螢光體之矽膠層或環氧化物聚合物層。螢光體層206可由旋轉塗佈方法、噴墨印刷法、或絲印法或片材沉積方法沉積而得。螢光體濃度與螢光體層206的厚度是根據標的色度座標而加以調整。相較於螢光體存在於包封層40中之具體實施例,在此可使用較大直徑的螢光體。此外,在螢光體層206中的螢光體分佈與螢光體層206的厚度可更輕易被控制。 Figure 15 illustrates the light including all the components as shown in Figure 2F. A specific embodiment of the electrical device 205 further includes a phosphor layer 206 extending over the encapsulation layer 40 and a glue layer 208 extending over the phosphor layer 206 between the encapsulation layer 40 and the handle 42. And a handle 42 extending over the glue layer 208. The thickness of the phosphor layer 206 can range from 50 microns to 100 microns. The phosphor layer 206 corresponds to a silicone layer or an epoxide polymer layer in which a phosphor is embedded. The phosphor layer 206 can be deposited by a spin coating method, an inkjet printing method, or a silk screen method or a sheet deposition method. The phosphor concentration and the thickness of the phosphor layer 206 are adjusted according to the target chromaticity coordinates. In contrast to the specific embodiment in which the phosphor is present in the encapsulation layer 40, larger diameter phosphors can be used herein. Furthermore, the phosphor distribution in the phosphor layer 206 and the thickness of the phosphor layer 206 can be more easily controlled.
第16圖說明包括如第15圖所示光電裝置205的所 有元件之光電裝置210的具體實施例,差別在於螢光體層206覆蓋了柄部42。保護層(未示)係覆蓋螢光體層206。在這個具體實施例中,螢光體層206是有利地形成於光電裝置製造方法的最後幾個步驟中。因此可在光電裝置製造方法的絕大部分期間進一步調整光電裝置的顯色特性。此外,如有需要,可藉由調整螢光體層(例如增加另一螢光體層)而在製程終點輕易修正光電裝置的顯色特性。 Figure 16 illustrates the arrangement of the photovoltaic device 205 as shown in Figure 15 A particular embodiment of a component optoelectronic device 210 differs in that the phosphor layer 206 covers the handle 42. A protective layer (not shown) covers the phosphor layer 206. In this particular embodiment, the phosphor layer 206 is advantageously formed in the last few steps of the optoelectronic device fabrication process. Therefore, the color development characteristics of the photovoltaic device can be further adjusted during most of the photovoltaic device manufacturing method. In addition, if desired, the color rendering characteristics of the photovoltaic device can be easily corrected at the end of the process by adjusting the phosphor layer (e.g., adding another phosphor layer).
第17圖說明了包括如第16圖所示之光電裝置210 的所有元件之光電裝置215的具體實施例,且進一步包括了延伸於柄部42中且填有螢光體層206的凹槽216。較佳為,凹槽216延伸於柄部42的整體厚度間。每一凹槽216的側向壁部之間的距離較佳是實質上等於覆蓋柄部42之螢光體層 206的厚度。 Figure 17 illustrates the optoelectronic device 210 as shown in Figure 16 A particular embodiment of optoelectronic device 215 for all of the components, and further includes a recess 216 extending into the handle 42 and filled with a phosphor layer 206. Preferably, the recess 216 extends between the overall thickness of the handle 42. The distance between the lateral wall portions of each recess 216 is preferably substantially equal to the phosphor layer covering the handle 42. The thickness of 206.
對於第16圖所示的光電裝置210而言,發光二極體 DEL發出的光的一部分會自柄部42的側向邊緣逸出而不通過螢光體層206。因此,側向逸出的光的顏色會與通過螢光體層206的光的顏色不同,而這是在需要光色均勻時所不想要的。 對於光電裝置215而言,從柄部42側向逸出的光會通過填有螢光體層206的凹槽216。因此,從柄部42通過表面43或側向逸出的光即可有利地具有均勻顏色。 For the photovoltaic device 210 shown in Fig. 16, the light emitting diode A portion of the light emitted by DEL will escape from the lateral edges of the handle 42 without passing through the phosphor layer 206. Thus, the color of the laterally escaping light will be different from the color of the light passing through the phosphor layer 206, which is undesirable when uniform light color is desired. For optoelectronic device 215, light escaping from the side of handle 42 will pass through recess 216 filled with phosphor layer 206. Thus, light escaping from the shank 42 through the surface 43 or laterally advantageously has a uniform color.
第18圖說明了包括第15圖所示之光電裝置205的 所有元件之光電裝置220的具體實施例,差別在於未顯示出膠層208,且在包封層40與螢光體層206之間插置有中間層222。 Figure 18 illustrates the optoelectronic device 205 including Figure 15 A specific embodiment of the optoelectronic device 220 of all components differs in that the glue layer 208 is not shown and an intermediate layer 222 is interposed between the encapsulation layer 40 and the phosphor layer 206.
中間層222可讓發光二極體DEL以第一波長發出、 或於第一波長範圍中發出的光線通過,並且可以第二波長、或於第二波長範圍中反射由螢光體所發出的光線。即可有利地提高光電裝置220的取光率。作為例示,中間層222對應於一分色鏡,分色鏡為可反射波長在特定範圍內之光線,並讓波長不屬於此範圍的光線通過。分色鏡可由具有不同光學指數的介電層之堆疊結構所形成。 The intermediate layer 222 allows the light emitting diode DEL to emit at a first wavelength, Or light emitted in the first wavelength range passes, and the light emitted by the phosphor may be reflected at the second wavelength or in the second wavelength range. The light extraction rate of the photovoltaic device 220 can be advantageously increased. By way of example, the intermediate layer 222 corresponds to a dichroic mirror that reflects light having a wavelength within a specific range and allows light of a wavelength not belonging to this range to pass. The dichroic mirror can be formed from a stacked structure of dielectric layers having different optical indices.
根據另一實例,中間層222是以折射率小於包封層 40折射率且小於螢光體層折射率的材料製成之單層。中間層222是對應於矽膠層或環氧化物聚合物層。此外,可在形成中間層222之前,對包封層40的表面224施以表面處理(稱為紋理化),以於表面224上形成高起區域。在中間層222與 螢光體層206之間的界面226呈實質平坦。 According to another example, the intermediate layer 222 has a refractive index less than the encapsulation layer. A single layer of material having a refractive index of 40 and less than the refractive index of the phosphor layer. The intermediate layer 222 corresponds to a silicone layer or an epoxide polymer layer. Further, the surface 224 of the encapsulation layer 40 may be subjected to a surface treatment (referred to as texturing) to form a raised region on the surface 224 prior to forming the intermediate layer 222. In the middle layer 222 with The interface 226 between the phosphor layers 206 is substantially flat.
即使中間層222的折射率小於包封層40的折射率, 發光二極體DEL所發出的光線仍會通過不規則的界面224,而螢光體所發出的光線則主要於界面226上反射,這是因為界面226是平坦的且中間層222的折射率小於螢光體層206的折射率。 Even if the refractive index of the intermediate layer 222 is smaller than the refractive index of the encapsulation layer 40, The light emitted by the LED DEL will still pass through the irregular interface 224, while the light emitted by the phosphor is mainly reflected on the interface 226 because the interface 226 is flat and the refractive index of the intermediate layer 222 is less than The refractive index of the phosphor layer 206.
可於表面處形成高起區域之紋理化方法係施用於柄 部42的表面43及/或與柄部42接觸之螢光體層206的表面228。 A texturing method that can form a raised region at the surface is applied to the handle The surface 43 of the portion 42 and/or the surface 228 of the phosphor layer 206 that is in contact with the handle 42.
對於由無機材料層製成的層體而言,層體表面之紋 理化方法包括化學蝕刻步驟或機械研磨步驟,可在有遮罩保護部分的已處理表面下進行以促進高起區域在表面處的形成。對於以有機材料製成的層體而言,層體表面的紋理化方法包括壓印、塑模成型等步驟。 For a layer made of an inorganic material layer, the surface of the layer surface The physicochemical method includes a chemical etching step or a mechanical grinding step, which can be performed under the treated surface having the mask protective portion to promote the formation of the raised region at the surface. For a layer made of an organic material, the method of texturing the surface of the layer includes steps such as embossing, molding, and the like.
對於先前所述的光電裝置而言,發光二極體DEL所 發出的光的一部分會透過包封層40的側向邊緣逸出。這一般都是不想要的,因為觀察者在光電裝置的正常操作條件下並不會感知到此光。根據一具體實施例,光電裝置進一步包括可反射自光電裝置側向逸出的光線之裝置,以提高從柄部42的表面43逸出的光量。 For the optoelectronic device previously described, the light-emitting diode DEL A portion of the emitted light escapes through the lateral edges of the encapsulation layer 40. This is generally undesirable because the viewer does not perceive the light under normal operating conditions of the optoelectronic device. According to a specific embodiment, the optoelectronic device further includes means for reflecting light escaping laterally from the optoelectronic device to increase the amount of light escaping from the surface 43 of the handle 42.
第19圖說明包括第2F圖所示光電裝置的所有構件之光電裝置230的具體實施例,且其進一步包括配置在絕緣層32上且至少部分圍繞發光二極體DEL的組件之區塊232。每一個區塊232都覆有金屬層234,例如對應於傳導層38之 延伸部。作為例示,區塊232係對應於在沉積包封層40之前形成在絕緣層32上的阻劑區塊。較佳為,區塊232的高度小於包封層40的最大高度。在第19圖中,區塊232的側向邊緣236實質垂直於基板10的表面22。作為變化例,側向側部236可相對於表面22呈傾斜,以促進光線向柄部42的表面43反射。 Figure 19 illustrates a particular embodiment of optoelectronic device 230 including all of the components of the optoelectronic device shown in Figure 2F, and further including a block 232 disposed on insulating layer 32 and at least partially surrounding the components of light emitting diode DEL. Each of the blocks 232 is covered with a metal layer 234, for example corresponding to the conductive layer 38. Extension. By way of illustration, block 232 corresponds to a resist block formed on insulating layer 32 prior to deposition of encapsulation layer 40. Preferably, the height of the block 232 is less than the maximum height of the encapsulation layer 40. In FIG. 19, the lateral edge 236 of the block 232 is substantially perpendicular to the surface 22 of the substrate 10. As a variant, the lateral sides 236 can be inclined relative to the surface 22 to promote light reflection toward the surface 43 of the handle 42.
第20圖說明包括第2F圖所示光電裝置的所有構件之光電裝置240的具體實施例,且其進一步包括配置在絕緣層32上且至少部分圍繞發光二極體DEL之組件的區塊242。區塊242是以反射材料製成,其可為填有反射粒子(例如氧化鈦TiO2粒子)的矽膠。作為例示,區塊242是在沉積包封層40之前以絲印方法形成在絕緣層32上。較佳為,區塊242的高度小於包封層40的最大高度。在第20圖中,區塊242的側向邊緣244係實質垂直於基板10的表面22。作為變化例,側向邊緣244可相對於表面22呈傾斜,以促進光線向柄部42的表面43反射。 Figure 20 illustrates a particular embodiment of optoelectronic device 240 including all of the components of the optoelectronic device shown in Figure 2F, and further including a block 242 disposed on insulating layer 32 and at least partially surrounding the components of light emitting diode DEL. Block 242 is made of a reflective material that can be a silicone filled with reflective particles (e.g., titanium oxide TiO 2 particles). By way of illustration, block 242 is formed on insulating layer 32 by a silkscreen process prior to deposition of encapsulation layer 40. Preferably, the height of the block 242 is less than the maximum height of the encapsulation layer 40. In FIG. 20, the lateral edge 244 of the block 242 is substantially perpendicular to the surface 22 of the substrate 10. As a variant, the lateral edge 244 can be inclined relative to the surface 22 to promote light reflection toward the surface 43 of the handle 42.
第21圖說明了包括如第2F圖所示光電裝置的全部構件之光電裝置245的具體實施例,差別在於發光二極體DEL是形成在基板10中所形成的腔部246中。腔部246的側向側部248覆有絕緣層250(例如對應於絕緣層32的延伸部)且覆有金屬層252(例如對應於傳導層38的延伸部)。較佳為,腔部246的深度小於包封層40的最大高度。在第21圖中,腔部的側向側部248實質上垂直於柄部42的表面43。作為變化例,側向側部248可相對於表面43呈傾斜,以促進光線向 柄部42的表面43反射。 Figure 21 illustrates a specific embodiment of a photovoltaic device 245 comprising all of the components of the photovoltaic device as shown in Figure 2F, with the difference that the light-emitting diode DEL is formed in the cavity 246 formed in the substrate 10. The lateral sides 248 of the cavity 246 are covered with an insulating layer 250 (e.g., corresponding to the extension of the insulating layer 32) and are covered with a metal layer 252 (e.g., corresponding to the extension of the conductive layer 38). Preferably, the depth of the cavity portion 246 is less than the maximum height of the encapsulation layer 40. In FIG. 21, the lateral sides 248 of the cavity are substantially perpendicular to the surface 43 of the handle 42. As a variant, the lateral sides 248 can be inclined relative to the surface 43 to promote light direction The surface 43 of the handle 42 is reflected.
第22圖說明了包括第2F圖所示光電裝置的所有構 件之光電裝置255的具體實施例,且其進一步包括圍繞發光二極體DEL之凹槽256,在第22圖中繪示了單一凹槽。凹槽256通過基板10與包封層40。各凹槽256的內部壁部覆有反射層258,例如金屬層,例如以銀或鋁或清漆層製成,且具有之厚度是介於30奈米至2000奈米之範圍內。一絕緣層(未示)係設以使反射層258與基板10絕緣。凹槽256是在先前關於第2D圖所述之基板10的薄化步驟之後形成。其優於光電裝置230、240與245的一個優點是,包封層40可形成於一平坦表面上,這使得其沉積較為容易。 Figure 22 illustrates all the structures of the photovoltaic device shown in Figure 2F. A particular embodiment of a photovoltaic device 255, and which further includes a recess 256 surrounding the light emitting diode DEL, a single recess is illustrated in FIG. The groove 256 passes through the substrate 10 and the encapsulation layer 40. The inner wall of each recess 256 is covered with a reflective layer 258, such as a metal layer, for example, made of a layer of silver or aluminum or varnish, and having a thickness in the range of from 30 nanometers to 2000 nanometers. An insulating layer (not shown) is provided to insulate the reflective layer 258 from the substrate 10. The groove 256 is formed after the thinning step of the substrate 10 previously described with respect to FIG. 2D. One advantage over the optoelectronic devices 230, 240 and 245 is that the encapsulation layer 40 can be formed on a flat surface, which makes it easier to deposit.
第23圖說明了包括如第2F所示光電裝置的所有構 件之光電裝置260的具體實施例,且其進一步包括形成於包封層40中且圍繞發光二極體DEL之凹槽262,其中在第23圖中僅繪示出單一凹槽。凹槽262中填有空氣。當包封層40是以無機材料製成時,可於形成包封層40之步驟後藉由蝕刻來形成凹槽262。在包封層40中,凹槽262劃定出一中央區塊264與周圍區塊266,中央區塊264中嵌有發光二極體,周圍區塊266則至少部分圍繞中央區塊264。每一個周圍區塊266都覆有金屬層268,例如以銀或鋁製成,且具有之厚度是介於30奈米至2000奈米的範圍內。膠層269是設於柄部42與區塊264、266之間。在第23圖中,周圍區塊266的側向側部270係實質上垂直於基板10的表面22。作為變化例,側向側部270可相對於表面22呈傾斜,以促進光線向柄部42 的表面43反射。其優於光電裝置230、240與245的一個優點是,包封層40可形成於一平坦表面上,這使得其沉積較為容易。 Figure 23 illustrates all the structures including the photovoltaic device as shown in Fig. 2F. A particular embodiment of a photovoltaic device 260, and which further includes a recess 262 formed in the encapsulation layer 40 and surrounding the light emitting diode DEL, wherein only a single recess is depicted in FIG. The groove 262 is filled with air. When the encapsulation layer 40 is made of an inorganic material, the recess 262 may be formed by etching after the step of forming the encapsulation layer 40. In the encapsulation layer 40, the recess 262 defines a central block 264 and a surrounding block 266, the central block 264 is embedded with a light emitting diode, and the surrounding block 266 at least partially surrounds the central block 264. Each of the surrounding blocks 266 is covered with a metal layer 268, such as silver or aluminum, and has a thickness in the range of 30 nm to 2000 nm. The glue layer 269 is disposed between the handle 42 and the blocks 264, 266. In FIG. 23, the lateral sides 270 of the perimeter block 266 are substantially perpendicular to the surface 22 of the substrate 10. As a variant, the lateral sides 270 can be inclined relative to the surface 22 to promote light toward the handle 42. The surface 43 is reflected. One advantage over the optoelectronic devices 230, 240 and 245 is that the encapsulation layer 40 can be formed on a flat surface, which makes it easier to deposit.
第24圖說明包括如第2F圖中所示光電裝置的所有 構件和進一步包括在發光二極體DEL間延伸於電極層32上、未覆蓋發光二極體DEL之絕緣層276的光電裝置275的具體實施例。絕緣層276上覆蓋有反射層278。反射層278較佳為金屬層,例如由鋁製成、有鋁合金(特別是AlSiz、AlxCuy,舉例而言,x等於1且y等於0.8%)製成、或由銀、金、鎳或鈀所製成。作為例示,反射層278具有之厚度為介於30奈米與2000奈米之間。反射層278可包括複數層之堆疊結構,特別是包括接合層(例如由鈦所製成)。絕緣層276的厚度及反射層278的厚度是經過選擇為使反射層之與包封層40接觸的表面280靠近殼層34的端部,例如離殼層34的端部小於1微米遠。相較於先前說明的具體實施例,反射表面280可有利地避免發光二極體DEL的殼層34所發出的光線到達發光二極體的外部而穿透到發光二極體的下部28或鄰近發光二極體的下部28。因此可增加取光率。 Figure 24 illustrates all of the components including the photovoltaic device as shown in Figure 2F and further comprising an optoelectronic device 275 extending over the electrode layer 32 between the light-emitting diodes DEL and not covering the insulating layer 276 of the light-emitting diode DEL. Specific embodiment. The insulating layer 276 is covered with a reflective layer 278. Reflective layer 278 is preferably a metal layer, for example made of aluminum, aluminum alloy (especially AlSi z, Al x Cu y, for example, x equals 1 and y is equal to 0.8%) is made, or of silver, gold Made of nickel or palladium. By way of illustration, reflective layer 278 has a thickness between 30 nanometers and 2000 nanometers. The reflective layer 278 can comprise a stacked structure of a plurality of layers, particularly including a bonding layer (eg, made of titanium). The thickness of the insulating layer 276 and the thickness of the reflective layer 278 are selected such that the surface 280 of the reflective layer in contact with the encapsulating layer 40 is near the end of the shell 34, such as less than 1 micron from the end of the shell layer 34. Compared to the previously described specific embodiment, the reflective surface 280 can advantageously prevent the light emitted by the shell 34 of the LED DEL from reaching the outside of the LED and penetrating into the lower portion 28 or adjacent to the LED. The lower portion 28 of the light emitting diode. Therefore, the light extraction rate can be increased.
第25圖說明包括第24圖所示光電裝置275的所有 構件之光電裝置285的具體實施例,其差異為絕緣層276和反射層280被替換為延伸於電極層32上方、於發光二極體DEL之間而不覆蓋發光二極體DEL之反射層286。其為填有反射粒子(例如TiO2粒子)的矽膠層、或TiO2層。反射層286的厚度是選擇為使得反射層286與包封層40接觸的表面 288會靠近殼層34的端部,例如離殼層34的端部小於1微米遠。因此可增加取光率。 Figure 25 illustrates a specific embodiment of a photovoltaic device 285 comprising all of the components of the photovoltaic device 275 shown in Figure 24, with the difference that the insulating layer 276 and the reflective layer 280 are replaced by extending over the electrode layer 32 to the light emitting diode. The reflective layer 286 of the light-emitting diode DEL is not covered between the DELs. It is a silicone layer filled with reflective particles (for example, TiO 2 particles) or a TiO 2 layer. The thickness of the reflective layer 286 is selected such that the surface 288 of the reflective layer 286 in contact with the encapsulation layer 40 is adjacent the end of the shell layer 34, such as less than 1 micron from the end of the shell layer 34. Therefore, the light extraction rate can be increased.
根據具體實施例,在柄部42的表面43上設有一個 或複數個透鏡。這些透鏡可增加從表面43漏出的光線在與表面43垂直的方向中之聚焦,因而增加觀看表面43的使用者所感知之光線量。 According to a particular embodiment, a surface 43 is provided on the surface 42 of the handle 42 Or a plurality of lenses. These lenses increase the focus of light leaking from surface 43 in a direction perpendicular to surface 43, thereby increasing the amount of light perceived by the user viewing surface 43.
第26圖說明包括第19圖所示光電裝置230的所有 構件之光電裝置290的具體實施例,其差異在於不存在柄部42。此外,對於每一個發光二極體DEL,光電裝置290包括配置在包封層40上之收斂透鏡292。 Figure 26 illustrates all of the optoelectronic devices 230 shown in Figure 19 A particular embodiment of the optoelectronic device 290 of the component differs in that the handle 42 is absent. Furthermore, for each of the light-emitting diodes DEL, the optoelectronic device 290 includes a converging lens 292 disposed on the encapsulation layer 40.
第27圖為類似於第26圖之視圖的具體實施例295,其中透鏡296與複數個發光二極體DEL相關聯。 Figure 27 is a specific embodiment 295 similar to the view of Figure 26, in which lens 296 is associated with a plurality of light emitting diodes DEL.
已經說明了本發明的特定具體實施例。熟習該領域技藝之人士將可進行各種調整與修飾。此外,雖然在前述具體實施例中,每一細線26在與其中一個種晶墊片24接觸的細線基部處都包含了鈍化部分28,但也可不具鈍化部分28。 Specific embodiments of the invention have been described. Various modifications and modifications will occur to those skilled in the art. Moreover, while in the foregoing embodiment, each of the thin wires 26 includes a passivation portion 28 at the base of the thin wire that contacts one of the seed spacers 24, the passivation portion 28 may not be provided.
此外,雖然具體實施例是針對殼層34覆蓋了相關聯細線26的頂部與細線26的一部分側向側部之光電裝置所說明,但也可能僅於細線26的頂部設有殼層。 Moreover, while the specific embodiment is illustrated with respect to the optoelectronic device in which the shell layer 34 covers the top of the associated thin line 26 and a portion of the lateral side of the thin line 26, it is also possible to provide the shell layer only at the top of the thin line 26.
DEL‧‧‧發光二極體 DEL‧‧‧Light Emitting Diode
10‧‧‧基板 10‧‧‧Substrate
22‧‧‧基板的表面 22‧‧‧ Surface of the substrate
40‧‧‧包封層 40‧‧‧Encapsulation layer
42‧‧‧柄部 42‧‧‧ handle
44‧‧‧基板的表面 44‧‧‧ Surface of the substrate
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103145023A TWI647864B (en) | 2014-12-23 | 2014-12-23 | Method for manufacturing opto-electronic device with light emitting diodes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103145023A TWI647864B (en) | 2014-12-23 | 2014-12-23 | Method for manufacturing opto-electronic device with light emitting diodes |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201624768A true TW201624768A (en) | 2016-07-01 |
TWI647864B TWI647864B (en) | 2019-01-11 |
Family
ID=56984857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103145023A TWI647864B (en) | 2014-12-23 | 2014-12-23 | Method for manufacturing opto-electronic device with light emitting diodes |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI647864B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI801474B (en) * | 2017-12-22 | 2023-05-11 | 原子能與替代能源委員會 | Method for transferring electroluminescent structures |
TWI816744B (en) * | 2018-02-06 | 2023-10-01 | 法商艾利迪公司 | Optoelectronic device with electronic components at the level of the rear face of the substrate and manufacturing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2011268135B2 (en) * | 2010-06-18 | 2014-06-12 | Glo Ab | Nanowire LED structure and method for manufacturing the same |
-
2014
- 2014-12-23 TW TW103145023A patent/TWI647864B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI801474B (en) * | 2017-12-22 | 2023-05-11 | 原子能與替代能源委員會 | Method for transferring electroluminescent structures |
TWI816744B (en) * | 2018-02-06 | 2023-10-01 | 法商艾利迪公司 | Optoelectronic device with electronic components at the level of the rear face of the substrate and manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
TWI647864B (en) | 2019-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102343220B1 (en) | Method for producing optoelectronic devices comprising light-emitting diodes | |
JP7146827B2 (en) | Optoelectronic device with three-dimensional semiconductor structure in axial configuration | |
US11398579B2 (en) | Method for producing optoelectronic devices comprising light-emitting diodes | |
CN107112344B (en) | Optoelectronic device with light-emitting diodes | |
CN110265389B (en) | Optoelectronic device comprising a light emitting diode and a control circuit | |
US9960205B2 (en) | Optoelectronic device comprising light-emitting diodes | |
TWI745518B (en) | Optoelectronic device with light-emitting diodes and method for manufacturing the same | |
US9059149B2 (en) | Electronic device package and packaging substrate for the same | |
US11264539B2 (en) | Light emitting diodes containing deactivated regions and methods of making the same | |
JP2021527334A (en) | Devices and Methods for III-V Emission Micropixel Array Devices with Hydrogen Diffusion Barrier Layers | |
JP2014036231A (en) | Semiconductor element manufacturing method | |
TWI647864B (en) | Method for manufacturing opto-electronic device with light emitting diodes | |
KR101686750B1 (en) | Light emitting diode with array pattern and method for manufacturing the same | |
TWM517915U (en) | Protection for the epitaxial structure of metal devices | |
US11605759B2 (en) | Optoelectronic device comprising light-emitting diodes |