TW201624475A - Memory device and power control method thereof - Google Patents

Memory device and power control method thereof Download PDF

Info

Publication number
TW201624475A
TW201624475A TW103145402A TW103145402A TW201624475A TW 201624475 A TW201624475 A TW 201624475A TW 103145402 A TW103145402 A TW 103145402A TW 103145402 A TW103145402 A TW 103145402A TW 201624475 A TW201624475 A TW 201624475A
Authority
TW
Taiwan
Prior art keywords
data
dram
sram
memory device
memory
Prior art date
Application number
TW103145402A
Other languages
Chinese (zh)
Other versions
TWI571886B (en
Inventor
杜盈德
侯建杕
孫啓翔
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW103145402A priority Critical patent/TWI571886B/en
Publication of TW201624475A publication Critical patent/TW201624475A/en
Application granted granted Critical
Publication of TWI571886B publication Critical patent/TWI571886B/en

Links

Landscapes

  • Power Sources (AREA)
  • Static Random-Access Memory (AREA)

Abstract

A memory device and a power control method thereof are disclosed. The power control method, adopted by the memory device including a DRAM, a SRAM, and a data controller, includes determining, by the data controller, the importance of a data; and when the importance of the data belongs to important data, storing, by the power controller, the data into the SRAM.

Description

記憶裝置和其電力控制方法 Memory device and its power control method

本發明係有關於電力管理,尤指適用於記憶裝置之電力控制方法。 The present invention relates to power management, and more particularly to a power control method suitable for use in a memory device.

隨著可穿戴式設備問市,具備低功耗的動態隨機存取記憶體需求也隨之增加。由於穿戴式設備本身也並非長期處在運作狀態之下,穿戴式設備的特點往往是要求長時間不需充電且大部分時間處於待機模式。 As wearable devices come to market, the demand for dynamic random access memory with low power consumption has also increased. Since the wearable device itself is not under long-term operation, the wearable device often requires a long time without charging and most of the time in standby mode.

因此,需要一種記憶裝置以及電力控制方法,用以降低穿戴式設備在待機模式時的電流。 Therefore, there is a need for a memory device and a power control method for reducing the current of the wearable device in the standby mode.

基於上述目的,本發明揭露了一種記憶裝置,包括一動態隨機存取記憶體(Dynamic Random Access Memory,下稱DRAM)、一靜態隨機存取記憶體(Static Random Access Memory,下稱SRAM)、一資料匯流排、一位址匯流排、以及一指令線。上述資料匯流排耦接上述DRAM和上述SRAM,傳送一資料。上述位址匯流排耦接上述DRAM和上述SRAM,傳送一記憶體位址。上述指令線耦接上述DRAM和上述SRAM,傳送一指令。 Based on the above, the present invention discloses a memory device including a dynamic random access memory (DRAM), a static random access memory (SRAM), and a static random access memory (SRAM). Data bus, one address bus, and one command line. The data bus is coupled to the DRAM and the SRAM to transmit a data. The address bus is coupled to the DRAM and the SRAM to transmit a memory address. The instruction line is coupled to the DRAM and the SRAM, and transmits an instruction.

本發明更揭露了一種電力控制方法,適用於包括 一DRAM、一SRAM、以及一資料控制器之一記憶裝置,包括:藉由上述資料控制器判斷資料之重要性;以及當上述資料判斷上述重要性為重要資料時,將上述資料儲存至上述SRAM。 The invention further discloses a power control method suitable for inclusion a memory device of a DRAM, an SRAM, and a data controller, comprising: determining, by the data controller, the importance of the data; and when the data determines that the importance is important, storing the data in the SRAM .

1‧‧‧記憶裝置 1‧‧‧ memory device

10‧‧‧隨機存取記憶體(RAM) 10‧‧‧ Random Access Memory (RAM)

100‧‧‧動態隨機存取記憶體(DRAM) 100‧‧‧Dynamic Random Access Memory (DRAM)

102‧‧‧靜態隨機存取記憶體(SRAM) 102‧‧‧Static Random Access Memory (SRAM)

12‧‧‧指令解碼器 12‧‧‧ instruction decoder

14‧‧‧位址解碼器 14‧‧‧ address decoder

16‧‧‧電力控制器 16‧‧‧Power Controller

18‧‧‧資料控制器 18‧‧‧ data controller

CLK‧‧‧時脈訊號 CLK‧‧‧ clock signal

CS‧‧‧晶片選擇訊號 CS‧‧‧ wafer selection signal

CKE‧‧‧訊號 CKE‧‧‧ signal

RAS/CAS‧‧‧列位址選擇訊號/行位址選擇訊號 RAS/CAS‧‧‧ column address selection signal/row address selection signal

W/R‧‧‧讀取或寫入指令 W/R‧‧‧Read or write instructions

AD‧‧‧位址資料 AD‧‧‧ address data

RAD/CAD‧‧‧列位址/行位址 RAD/CAD‧‧‧List address/row address

DQ‧‧‧記憶資料 DQ‧‧‧ memory data

1000、1004、1006、1010、1014、1018‧‧‧DRAM感應放大器(DRAM S/A) 1000, 1004, 1006, 1010, 1014, 1018‧‧‧ DRAM sense amplifiers (DRAM S/A)

1002、1008、1012、1016‧‧‧DRAM記憶單元 1002, 1008, 1012, 1016‧‧‧ DRAM memory unit

1022‧‧‧SRAM感應放大器(SRAM S/A) 1022‧‧‧SRAM sense amplifier (SRAM S/A)

1020‧‧‧SRAM記憶單元 1020‧‧‧SRAM memory unit

S300、S302、...、S310‧‧‧步驟 S300, S302, ..., S310‧‧‧ steps

第1圖係為本發明實施例中一種記憶裝置1的方塊圖。 1 is a block diagram of a memory device 1 in an embodiment of the present invention.

第2圖係為第1圖記憶裝置1的詳細示意圖。 Fig. 2 is a detailed schematic view of the memory device 1 of Fig. 1.

第3圖係為本發明實施例中另一種電力控制方法3的流程圖。 FIG. 3 is a flow chart of another power control method 3 in the embodiment of the present invention.

在此必須說明的是,於下揭露內容中所提出之不同實施例或範例,係用以說明本發明所揭示之不同技術特徵,其所描述之特定範例或排列係用以簡化本發明,然非用以限定本發明。此外,在不同實施例或範例中可能重覆使用相同之參考數字與符號,此等重覆使用之參考數字與符號係用以說明本發明所揭示之內容,而非用以表示不同實施例或範例間之關係。 The various embodiments and examples set forth in the following disclosure are intended to illustrate various technical features disclosed herein, and the specific examples or arrangements described herein are used to simplify the invention. It is not intended to limit the invention. In addition, the same reference numerals and symbols may be used in the different embodiments or examples, and the repeated reference numerals and symbols are used to illustrate the disclosure of the present invention, and are not intended to represent different embodiments or The relationship between the examples.

說明書揭露內容中所提出的低電力模式也可稱為閒置模式、待機模式、睡眠模式、沈睡模式、冬眠模式、省電模式、深度省電模式(deep power down,DPD)、或其他關閉全部電或部分記憶體電源的電力模式。 The low power mode proposed in the disclosure of the specification may also be referred to as an idle mode, a standby mode, a sleep mode, a sleep mode, a hibernation mode, a power saving mode, a deep power down (DPD), or other off power. Or the power mode of a partial memory power supply.

第1圖係為本發明實施例中一種記憶裝置1的方塊圖,包括隨機存取記憶體(Random Access Memory,下稱RAM)10、指令解碼器12、位址解碼器14、電力控制器16以 及資料控制器18。記憶裝置1適用於可穿戴式或其他可攜式設備,上述可穿戴式或其他可攜式設備僅使用有限電力例如電池運作,大多數時間處於閒置狀態,並且有長時間不需充電的需求。上述可穿戴式或其他可攜式設備可例如為智慧錶或智慧手機。 1 is a block diagram of a memory device 1 according to an embodiment of the present invention, including a random access memory (RAM) 10, an instruction decoder 12, an address decoder 14, and a power controller 16. Take And data controller 18. The memory device 1 is suitable for use in a wearable or other portable device that operates with limited power, such as a battery, is idle for most of the time, and has a need for no charging for a long time. The above wearable or other portable device may be, for example, a smart watch or a smart phone.

RAM 10為一種暫存記憶體,包括動態隨機存取記憶體(Dynamic Random Access Memory,下稱DRAM)100以及靜態隨機存取記憶體(Static Random Access Memory,下稱SRAM)102。RAM 10為作業系統或其他正在執行中的程式的臨時資料儲存媒介,並載入各式各樣的程式與資料以供系統的中央處理器(Central Processing Unit,CPU)(未圖示)直接執行與運用。 The RAM 10 is a temporary memory, and includes a Dynamic Random Access Memory (DRAM) 100 and a Static Random Access Memory (SRAM) 102. The RAM 10 is a temporary data storage medium for the operating system or other programs being executed, and loads various programs and data for direct execution by the system's Central Processing Unit (CPU) (not shown). And use.

CPU可透過資料匯流排(未圖示)而從RAM 10的DRAM 100和SRAM 102存取記憶資料DQ,例如128-bit的記憶資料DQ。指令解碼器12、以及位址解碼器14透過指令線(未圖示)和位址匯流排(未圖示)耦接RAM 10的DRAM 100和SRAM 102。電力控制器16可直接分成兩路連接至DRAM 100和SRAM 102,一路控制DRAM 100的供電,一路控制SRAM 102的供電。在低電壓模式時直接關閉DRAM 100的供電。指令解碼器12由外部接收時脈訊號CLK、晶片選擇訊號CS、CKE、列位址選擇/行位址選擇訊號RAS/CAS,並產生讀取或寫入指令W/R。位址解碼器14接收位址資料AD,例如32-bit的位址資料AD用以產生的列位址/行位址RAD/CAD,上述列位址/行位址RAD/CAD用於指定RAM 10中要讀取或寫入的記 憶單元位址。 The CPU can access the memory data DQ, such as 128-bit memory data DQ, from the DRAM 100 and the SRAM 102 of the RAM 10 through a data bus (not shown). The instruction decoder 12 and the address decoder 14 are coupled to the DRAM 100 and the SRAM 102 of the RAM 10 via command lines (not shown) and an address bus (not shown). The power controller 16 can be directly divided into two connections to the DRAM 100 and the SRAM 102, one to control the power supply of the DRAM 100, and one to control the power supply of the SRAM 102. The power supply to the DRAM 100 is directly turned off in the low voltage mode. The command decoder 12 externally receives the clock signal CLK, the chip select signal CS, CKE, the column address selection/row address selection signal RAS/CAS, and generates a read or write command W/R. The address decoder 14 receives the address data AD, for example, the 32-bit address data AD is used to generate the column address/row address RAD/CAD, and the above column address/row address RAD/CAD is used to designate the RAM. 10 records to be read or written Recall the unit address.

DRAM 100包括DRAM記憶單元陣列(未圖示),其中每個DRAM記憶單元包括一電晶體和一電容(1-Transister 1-Capacitor,1T1C),資料或資訊存放於電容內。由於電容會漏電,所以需要不斷定時充電(refresh)以維持電位以及儲存的資料或資訊。因為要不斷定時充電,所以DRAM 100被稱為「動態」隨機存取記憶體。SRAM 102包括SRAM記憶單元陣列(未圖示),其中每個SRAM記憶單元由自鎖電路(latching circuit)實現,例如由電晶體形成的自鎖電路。SRAM記憶單元不必作自動充電的動作,會出現充電或放電動作的唯一時刻是當寫入時。如果沒有寫入的指令,在SRAM記憶單元裏所儲存資料或資訊不會受到更動。因為開機時SRAM 102內的SRAM記憶單元不需定時充電維持其儲存的資料或資訊,所以被稱為「靜態」隨機存取記憶體。雖然SRAM記憶單元不需定時充電,但仍須待機電流維持其電路運作及其記錄的資料或資訊。當記憶裝置1關機而沒有電力供給至DRAM 100和SRAM 102時,DRAM 100的內部儲存資料或資訊會完全消失,且會失去SRAM 102的內部儲存資料或資訊。 The DRAM 100 includes a DRAM memory cell array (not shown), wherein each DRAM memory cell includes a transistor and a capacitor (1-Transister 1-Capacitor, 1T1C), and data or information is stored in the capacitor. Since the capacitor leaks, it is necessary to constantly charge (refresh) to maintain the potential and the stored data or information. The DRAM 100 is referred to as "dynamic" random access memory because of constant timing charging. The SRAM 102 includes an array of SRAM memory cells (not shown), wherein each of the SRAM memory cells is implemented by a latching circuit, such as a self-locking circuit formed of a transistor. The SRAM memory unit does not have to be charged automatically, and the only moment when charging or discharging occurs is when writing. If there is no written command, the data or information stored in the SRAM memory unit will not be changed. Because the SRAM memory unit in the SRAM 102 does not need to be periodically charged to maintain its stored data or information when it is turned on, it is called a "static" random access memory. Although the SRAM memory unit does not require periodic charging, it still requires standby current to maintain its circuit operation and the data or information recorded. When the memory device 1 is turned off and no power is supplied to the DRAM 100 and the SRAM 102, the internal stored data or information of the DRAM 100 may completely disappear, and the internal stored data or information of the SRAM 102 may be lost.

當開機時,記憶裝置1可以正常模式或低電力模式運作。在正常模式時會正常供電給DRAM 100和SRAM 102並對DRAM 100定時充電,以正常存取RAM 10內的記憶資料。在低電力模式時,待機電流會供應給SRAM 102且DRAM 100會停止供電和停止定時充電,以減低DRAM 100的電力消耗,節省記憶裝置1的耗電並增加可穿戴式或可攜式設備的電 池續電力。於一實施例中,由於DRAM 100可能存有某些重要資料,當進入低電力模式時,會先將DRAM 100上某些重要資料移動到SRAM 102上而後才對DRAM 100完全停止供電和定時充電。由於重要資料已經儲存到SRAM 102上,因此進入低電力模式時,完全不需要定時充電,所以可以減少充電電流。接著可以令SRAM 102進入DPD模式更能達成進一步的省電。於另一實施例中,在正常模式時就會將重要資料預先透過SRAM 102進行存取,不重要或非重要的資料則透過DRAM 100存取。因此當進入低電力模式時就不需要再進行資料搬遷的動作。 When turned on, the memory device 1 can operate in a normal mode or a low power mode. In the normal mode, the DRAM 100 and the SRAM 102 are normally supplied with power and the DRAM 100 is periodically charged to normally access the memory data in the RAM 10. In the low power mode, standby current is supplied to the SRAM 102 and the DRAM 100 stops powering and stops timing charging to reduce the power consumption of the DRAM 100, saving power consumption of the memory device 1 and increasing the wearable or portable device. Electricity The pool continues to power. In an embodiment, since the DRAM 100 may have some important data, when entering the low power mode, some important data on the DRAM 100 is first moved to the SRAM 102, and then the DRAM 100 is completely powered off and timed. . Since important data has been stored on the SRAM 102, when the low power mode is entered, timing charging is not required at all, so the charging current can be reduced. It is then possible to bring the SRAM 102 into the DPD mode to achieve further power savings. In another embodiment, important data is accessed in advance through SRAM 102 in normal mode, and unimportant or non-critical data is accessed through DRAM 100. Therefore, when entering the low power mode, there is no need to perform data relocation.

在另一實施例中,低電力模式時DRAM 100會更對一部分的DRAM 100記憶單元供電和定時充電,並停止對剩餘部分的DRAM 100記憶單元供電和定時充電。如此可減低記憶裝置1的耗電。 In another embodiment, the DRAM 100 will power and periodically charge a portion of the DRAM 100 memory cells in the low power mode and stop powering and timing charging the remaining portion of the DRAM 100 memory cells. This can reduce the power consumption of the memory device 1.

當記憶裝置1再次由低電力模式回復到正常模式時,會正常供電給DRAM 100。在一實施例中正常模式下會從SRAM 102將重要資料移回DRAM 100,並對DRAM 100定時充電以維持內部儲存的資料。在另一實施例中,正常模式下則繼續將重要資料保留在SRAM 102而不需另行搬遷。 When the memory device 1 returns to the normal mode again from the low power mode, power is normally supplied to the DRAM 100. In an embodiment, the active data is moved back to the DRAM 100 from the SRAM 102 in normal mode, and the DRAM 100 is timed to maintain the internally stored data. In another embodiment, the normal mode continues to retain important data in the SRAM 102 without additional relocation.

舉例而言,當不使用或不需要記憶裝置1超過一段預定時間,例如超過2分鐘之後,CPU即可對RAM 10發出進入低電力模式,例如深度省電模式(deep power down,下稱DPD)的指令。相應於上述進入低電力模式的指令,RAM 10會將DRAM 100內某些重要資料儲存至SRAM 102上然後才進入 低電力模式,完全停止對(部分或全部)DRAM 100供電和定時充電。在低電力模式時,失去電力的(部分或全部)DRAM 100會喪失所有儲存的資料。同時由於DRAM 100不需供電所以電池續航力可提昇。當記憶裝置1被喚醒並回到正常模式時,例如使用者操作可穿戴式或定時背景程式觸發時,CPU即可對RAM 10發出回到正常模式的指令。相應於上述正常模式指令,RAM 10會將SRAM 102內保存的重要資料回存至DRAM 100,藉此可繼續使用重要資料執行應用程式。 For example, when the memory device 1 is not used or required for more than a predetermined period of time, for example, more than 2 minutes, the CPU can issue a low power mode to the RAM 10, such as a deep power down (hereinafter referred to as DPD). Instructions. Corresponding to the above instructions for entering the low power mode, the RAM 10 stores some important data in the DRAM 100 onto the SRAM 102 before entering. Low power mode, completely stopping (partial or full) DRAM 100 power and timing charging. In low power mode, the (partial or full) DRAM 100 that loses power loses all stored data. At the same time, since the DRAM 100 does not need to be powered, the battery life can be improved. When the memory device 1 is woken up and returns to the normal mode, for example, when the user operates a wearable or timed background program trigger, the CPU can issue an instruction to the RAM 10 to return to the normal mode. Corresponding to the normal mode command described above, the RAM 10 restores the important data stored in the SRAM 102 to the DRAM 100, whereby the application can continue to be executed using the important data.

在另一個例子中,在正常模式時就會將重要資料預先透過SRAM 102進行存取,不重要的資料則透過DRAM 100存取。當不使用或不需要記憶裝置1超過一段預定時間,例如超過2分鐘之後,CPU即可對RAM 10發出進入低電力模式,例如DPD的指令。相應於上述進入低電力模式的指令,由於重要資料已預先存入SRAM 102所以不需要再進行資料搬遷,同時完全停止對DRAM 100供電。當記憶裝置1回到正常模式時,例如使用者操作可穿戴式或定時背景程式觸發時,CPU即可對RAM 10發出回到正常模式的指令。相應於上述正常模式指令,RAM 10會繼續將重要資料保存在SRAM 102之內。 In another example, important data is accessed in advance through SRAM 102 in normal mode, and unimportant data is accessed through DRAM 100. When the memory device 1 is not used or required for more than a predetermined period of time, for example, more than 2 minutes, the CPU can issue an instruction to the RAM 10 to enter a low power mode, such as DPD. Corresponding to the above-mentioned instruction to enter the low power mode, since important data has been previously stored in the SRAM 102, data relocation is not required, and power supply to the DRAM 100 is completely stopped. When the memory device 1 returns to the normal mode, for example, when the user operates a wearable or timed background program trigger, the CPU can issue an instruction to the RAM 10 to return to the normal mode. In response to the normal mode command described above, the RAM 10 continues to store important data within the SRAM 102.

電力控制器16可定義SRAM 102之記憶單元的位置為低電力模式時的供電位址。一旦進入低電力模式,資料控制器18可將重要資料移動到供電位址所指定的SRAM 102記憶單元上,電力控制器16只供給SRAM 102的供電。 The power controller 16 can define a power supply address when the location of the memory unit of the SRAM 102 is in the low power mode. Upon entering the low power mode, the data controller 18 can move the important data to the SRAM 102 memory unit designated by the power supply address, and the power controller 16 only supplies power to the SRAM 102.

第2圖係為第1圖記憶裝置1的詳細示意圖,其 中RAM 10包括DRAM 100和SRAM 102。DRAM 100包括感應放大器DRAM S/A 1000、1004、1006、1010、1014、和1018以及DRAM記憶單元1002、1008、1012、和1016;SRAM 102包括感應放大器SRAM S/A 1022以及SRAM記憶單元1020。 2 is a detailed schematic view of the memory device 1 of FIG. 1 The medium RAM 10 includes a DRAM 100 and an SRAM 102. DRAM 100 includes sense amplifier DRAM S/A 1000, 1004, 1006, 1010, 1014, and 1018 and DRAM memory cells 1002, 1008, 1012, and 1016; SRAM 102 includes sense amplifier SRAM S/A 1022 and SRAM memory unit 1020.

DRAM 100和SRAM 102共用相同的位址匯流排接收記憶體位址資料AD,例如32-bit的位址資料AD、相同的資料匯流排接收記憶資料DQ,例如128-bit的記憶資料DQ、以及共用的指令線接收指令資料W/R,例如讀取/寫入指令資料W/R。透過共用的位址匯流排、資料匯流排和指令線可存取DRAM 100和SRAM 102內部的記憶資料。DRAM 100和SRAM 102可串連傳送記憶資料DQ,且以並連傳送位址資料AD和指令資料W/R。在第2圖實施例中,DRAM 100和SRAM 102傳送記憶資料DQ的耦接點在DRAM 100之最後記憶區段之DRAM記憶單元1016和SRAM 102之記憶區段之SRAM記憶單元1020,但是熟習此技藝者可知DRAM 100和SRAM 102傳送記憶資料DQ的耦接點可發生在DRAM 100之任一記憶區段和SRAM 102之記憶區段之間。 The DRAM 100 and the SRAM 102 share the same address bus receiving memory address data AD, such as 32-bit address data AD, the same data bus receiving memory data DQ, such as 128-bit memory data DQ, and sharing. The command line receives the command data W/R, such as the read/write command data W/R. Memory data within DRAM 100 and SRAM 102 can be accessed through a shared address bus, data bus, and command line. The DRAM 100 and the SRAM 102 can transfer the memory data DQ in series, and transmit the address data AD and the instruction data W/R in parallel. In the embodiment of FIG. 2, the DRAM 100 and SRAM 102 transfer the memory data DQ at the DRAM memory unit 1016 of the last memory segment of the DRAM 100 and the SRAM memory unit 1020 of the memory segment of the SRAM 102, but are familiar with this. The skilled artisan will appreciate that the coupling point of DRAM 100 and SRAM 102 to transfer memory data DQ can occur between any of the memory sections of DRAM 100 and the memory section of SRAM 102.

如第1圖的描述,記憶裝置1會以兩種電力模式運作,即正常模式或低電力模式,且SRAM 102中記憶區段之SRAM記憶單元1020的位址可定義為低電力模式時的供電位址。在一實施例中,低電力模式下資料控制器18會先將DRAM 100之記憶區段之DRAM記憶單元1002、1008、1012、和1016中儲存的重要資料移動到低電力模式時的供電位址,也就是SRAM 102之記憶區段之SRAM記憶單元1020之上,然後才 對DRAM 100完全停止供電和定時充電。由於重要資料已經儲存到SRAM 102上,因此進入低電力模式時不需要定時充電或供電,可以減少充電電流。在另一實施例中,正常模式下資料控制器18會直接將重要資料透過SRAM 102進行存取,不重要的資料則透過DRAM 100存取。當進入低電力模式時由於重要資料已預先存入SRAM 102所以不需要另外搬遷資料。 As described in FIG. 1, the memory device 1 operates in two power modes, a normal mode or a low power mode, and the address of the SRAM memory unit 1020 of the memory segment in the SRAM 102 can be defined as the power supply in the low power mode. Address. In an embodiment, the data controller 18 in the low power mode first moves the important data stored in the DRAM memory cells 1002, 1008, 1012, and 1016 of the memory segment of the DRAM 100 to the power supply address in the low power mode. , that is, the SRAM memory unit 1020 of the memory section of the SRAM 102, and then The DRAM 100 is completely powered off and timed. Since important data has been stored on the SRAM 102, there is no need for timing charging or power supply when entering the low power mode, which can reduce the charging current. In another embodiment, the data controller 18 in the normal mode directly accesses the important data through the SRAM 102, and the unimportant data is accessed through the DRAM 100. When entering the low power mode, since important data has been previously stored in the SRAM 102, no additional relocation data is required.

在某些實施例中,DRAM 100之部分記憶區段也可定義為低電力模式時的供電位址,例如記憶區段1016。在低電力模式下只會維持低電力模式時的供電位址的記憶區段1016供電和充電而不會對剩餘的記憶區段1012、1008和1002供電和充電。這個方法不需事先移動記憶區段1016的重要資料但會耗費電流對記憶區段1016充電。 In some embodiments, a portion of the memory segment of DRAM 100 may also be defined as a power supply address in a low power mode, such as memory segment 1016. The memory segment 1016, which only maintains the power address in the low power mode, is powered and charged in the low power mode without powering and charging the remaining memory segments 1012, 1008, and 1002. This method does not require prior movement of the important data of the memory segment 1016 but consumes current to charge the memory segment 1016.

回到正常模式後,電力控制器16會正常供電給DRAM 100和SRAM 102的所有記憶區段。在一實施例中,資料控制器18會從SRAM 102記憶區段的SRAM記憶單元1020將重要資料移回DRAM 100的DRAM記憶單元1002、1008、1012、和1016,並對DRAM 100定時充電以維持內部儲存的資料。在另一實施例中,當記憶裝置1回到正常模式時,重要資料會持續保存在SRAM 102之內。 Upon returning to the normal mode, the power controller 16 will normally supply power to all of the memory sections of the DRAM 100 and SRAM 102. In one embodiment, the data controller 18 moves the important data from the SRAM memory unit 1020 of the SRAM 102 memory segment back to the DRAM memory cells 1002, 1008, 1012, and 1016 of the DRAM 100, and periodically charges the DRAM 100 to maintain Internally stored data. In another embodiment, when the memory device 1 returns to the normal mode, important data is continuously stored within the SRAM 102.

第3圖係為本發明實施例中另一種電力控制方法3的流程圖,使用第1和第2圖的記憶裝置1。電力控制方法3可以透過電力控制器16內的邏輯電路或以程式碼的形式實現。 Fig. 3 is a flow chart showing another power control method 3 in the embodiment of the present invention, using the memory device 1 of the first and second figures. The power control method 3 can be implemented by logic circuitry within the power controller 16 or in the form of a code.

在開機後電力控制器16便會執行電力控制方法3(S300)。首先電力控制器16會定時判斷記憶裝置1之電力模 式(S302),例如每10秒判斷一次電力模式。上述電力模式可由一或多個外部CPU、處理器、或控制器發出的指令而改變。例如當不使用或不需要記憶裝置1超過一段預定時間,例如超過2分鐘之後,外部CPU即可對記憶裝置1發出進入低電力模式,例如深度省電模式(deep power down,下稱DPD)的指令。當包括記憶裝置1的可穿戴設備開機、或使用者觸碰穿戴設備開機、或一背景應用程式觸發喚醒記憶裝置1時,外部CPU即可對記憶裝置1發出進入正常模式的指令。 The power controller 16 executes the power control method 3 (S300) after the power is turned on. First, the power controller 16 periodically determines the power mode of the memory device 1. In the formula (S302), for example, the power mode is judged every 10 seconds. The power modes described above may be changed by instructions issued by one or more external CPUs, processors, or controllers. For example, when the memory device 1 is not used or required for more than a predetermined period of time, for example, more than 2 minutes, the external CPU can issue a low power mode to the memory device 1, such as a deep power down (hereinafter referred to as DPD). instruction. When the wearable device including the memory device 1 is turned on, or the user touches the wearable device to turn on the device, or a background application triggers the wake-up memory device 1, the external CPU can issue an instruction to the memory device 1 to enter the normal mode.

當資料控制器18判斷電力模式為低電力模式時首先會將DRAM 100內某些重要資料透過資料匯流排儲存至SRAM 102(S304)上然後才進入低電力模式,完全停止對(部分或全部)DRAM 100供電和定時充電(S306)。由於(部分或全部)DRAM 100不需供電所以電池續航力可提昇。 When the data controller 18 determines that the power mode is the low power mode, some important data in the DRAM 100 is first stored in the SRAM 102 (S304) through the data bus and then enters the low power mode, and the pair (partially or completely) is completely stopped. The DRAM 100 is powered and timed (S306). Since (partial or full) DRAM 100 does not require power supply, battery life can be improved.

當資料控制器18判斷電力模式為正常模式時首先會回復DRAM 100的供電,接著將SRAM 102內儲存的重要資料透過資料匯流排搬回DRAM 100並定時充電DRAM 100(S308),藉此繼續使用重要資料執行相關應用程式。 When the data controller 18 determines that the power mode is the normal mode, it first restores the power supply of the DRAM 100, and then transfers the important data stored in the SRAM 102 back to the DRAM 100 through the data bus and periodically charges the DRAM 100 (S308), thereby continuing to use. Important information to execute related applications.

電力控制方法3到此即結束(S310)。 The power control method 3 ends here (S310).

第1圖到第3圖揭露的記憶裝置1和其電力控制方法3藉由在記憶裝置1中加入SRAM 102,在低電力模式時可將重要資料保存在不需充電的SRAM 102,且在正常模式時可將重要資料搬回DRAM 100繼續使用,或是讓重要資料繼續儲存在SRAM 102內不用再進行搬遷,增加電池續航力,同時不需犧牲記憶裝置1的運作效能。 The memory device 1 and the power control method 3 thereof disclosed in FIGS. 1 to 3 can be loaded with the SRAM 102 in the memory device 1 in the low power mode, and the important data can be saved in the SRAM 102 that is not required to be charged, and is in a normal state. In the mode, the important data can be moved back to the DRAM 100 to continue to use, or the important data can be stored in the SRAM 102 without further relocation, thereby increasing the battery life without sacrificing the operation performance of the memory device 1.

熟習於本技藝人士可更理解說明書中所述之各個邏輯區塊、模組、處理器、執行裝置、電路和演算法步驟可由電路硬體(例如數位實現硬體、類比實現硬體,或兩者的結合,其可由來源碼或或其他相關技術加以設計實現),使用指令之各種形式的程式碼或設計碼(這裡可另外稱為軟體或軟體模組),或上述兩者的結合而加以實現。為了清楚顯示上述軟體和硬體的互換性,說明書描述之各種圖示元件、區塊、模組、電路、及步驟通常以其功能進行描述。這些功能要以軟體或硬體實現會會和完整系統的特定應用和設計限制有關。熟習於本技藝人士可針對每個特定應用而以各種方式實現描述之功能,但是實現方式的決定不會偏離本發明的精神和範圍。 Those skilled in the art will appreciate that the various logical blocks, modules, processors, actuators, circuits, and algorithm steps described in the specification can be implemented by circuit hardware (eg, digitally implemented hardware, analog hardware, or both). Combination of the following, which can be designed and implemented by source code or other related technologies), using various forms of code or design code of instructions (also referred to herein as software or software modules), or a combination of the two. achieve. To clearly illustrate the interchangeability of the above described software and hardware, the various illustrated elements, blocks, modules, circuits, and steps described in the specification are generally described in terms of their function. The implementation of these features in software or hardware will be related to the specific application and design constraints of the complete system. The described functionality may be implemented in a variety of ways for each particular application, but the implementation is not deviated from the spirit and scope of the invention.

另外,本發明描述之各種邏輯區塊、模組、以及電路可以使用積體電路(積體電路,IC)實現或由接入終端或存取點執行。積體電路可包括通用處理器、數位訊號處理器(Digital Signal Processor,DSP)、特定應用積體電路(Application Specific Integrated Circuit,ASIC)、可程式規劃邏輯元件(Field Programmable Gate Array,FPGA)或其他可程控邏輯元件、離散式邏輯電路或電晶體邏輯閘、離散式硬體元件、電性元件、光學元件、機械元件或用於執行本發明所描述之執行的功能之其任意組合,其可執行積體電路內駐、外部,或兩者皆有的程式碼或程式指令。通用處理器可以為微處理器,或者,該處理器可以為任意商用處理器、控制器、微處理器、或狀態機。處理器也可由計算裝置的結合加以實現,例如DSP和微處理器、複數個微處理器、一或多個微處理器以及 DSP核心、或其他各種設定的結合。 In addition, the various logic blocks, modules, and circuits described herein can be implemented using integrated circuits (integrated circuits, ICs) or by an access terminal or access point. The integrated circuit may include a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programmable logic elements, discrete logic circuits or transistor logic gates, discrete hardware components, electrical components, optical components, mechanical components, or any combination of functions for performing the operations described herein can be performed A code or program instruction in the integrated circuit, external, or both. A general purpose processor may be a microprocessor, or the processor may be any commercially available processor, controller, microprocessor, or state machine. The processor can also be implemented by a combination of computing devices, such as a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors, and A combination of DSP cores, or various other settings.

熟習於本技藝人士可理解本發明揭露程序步驟的特定順序或序列僅為舉例。根據設計偏好,熟習於本技藝人士可理解只要不偏離本發明的精神和範圍,本發明揭露程序步驟的特定順序或序列可以以其他順序重新排列。本發明實施例之方法和要求所伴隨的各種步驟順序只是舉例,而不限定於本發明揭露程序步驟的特定順序或序列。 It will be understood by those skilled in the art that the specific sequence or sequence of steps of the present disclosure is merely exemplary. The specific order or sequence of steps of the program disclosed herein may be re-arranged in other orders, as may be apparent to those skilled in the art. The order of the steps in the method and the requirements of the embodiments of the present invention are merely examples, and are not limited to the specific order or sequence of steps of the present invention.

所述之方法或演算法步驟可以以硬體或處理器執行軟體模組,或以兩者結合的方式實現。軟體模組(例如包括可執行指令和相關資料)及其他資料可內駐於資料記憶體之內,如RAM記憶體、快閃記憶體、ROM記憶體、EPROM記憶體、EEPROM記憶體、暫存器、硬碟、軟碟、光碟片、或是任何其他機器可讀取(如電腦可讀取)儲存媒體。資料儲存媒體可耦接至機器,如電腦或處理器(其可稱為“處理器”),處理器可從儲存媒體讀取及寫入程式碼。資料儲存媒體可整合至處理器。處理器和儲存媒體可內駐ASIC之內。ASIC可內駐在用戶設備。或者處理器和儲存媒體可以以離散元件的形式駐在用戶設備之內。另外,適用的電腦程式產品可包括電腦可讀取媒體,包括關於一或多個揭露書揭露的程式碼。在一些實施例中,適用的電腦程式產品可包括封裝材料。 The method or algorithm step can be implemented by a hardware or a processor, or a combination of the two. Software modules (including executable instructions and related materials) and other data can be stored in the data memory, such as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, temporary storage A storage medium (such as a computer readable) that can be read by a device, hard drive, floppy disk, CD, or any other machine. The data storage medium can be coupled to a machine, such as a computer or processor (which can be referred to as a "processor"), which can read and write code from the storage medium. The data storage medium can be integrated into the processor. The processor and storage media can be hosted within the ASIC. The ASIC can reside in the user equipment. Alternatively, the processor and the storage medium may reside within the user equipment in the form of discrete components. In addition, suitable computer program products may include computer readable media, including code disclosed with respect to one or more disclosures. In some embodiments, a suitable computer program product can include packaging materials.

本發明雖以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The present invention has been described above by way of a preferred embodiment, and is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

S300、S302、...、S310‧‧‧步驟 S300, S302, ..., S310‧‧‧ steps

Claims (15)

一種記憶裝置,包括:一動態隨機存取記憶體(Dynamic Random Access Memory,下稱DRAM);一靜態隨機存取記憶體(Static Random Access Memory,下稱SRAM);一資料匯流排,耦接上述DRAM和上述SRAM,傳送一資料;一位址匯流排,耦接上述DRAM和上述SRAM,傳送一記憶體位址;以及一指令線,耦接上述DRAM和上述SRAM,傳送一指令。 A memory device includes: a dynamic random access memory (DRAM); a static random access memory (SRAM); a data bus, coupled to the above The DRAM and the SRAM transmit a data; an address bus, coupled to the DRAM and the SRAM, to transmit a memory address; and a command line coupled to the DRAM and the SRAM to transmit an instruction. 如申請專利範圍第1項所述之記憶裝置,更包括:一資料控制器,耦接上述DRAM和上述SRAM,判斷上述資料之重要性。 The memory device of claim 1, further comprising: a data controller coupled to the DRAM and the SRAM to determine the importance of the data. 如申請專利範圍第2項所述之記憶裝置,其中:當上述資料之上述重要性為重要資料時,上述資料控制器將上述資料儲存至上述SRAM。 The memory device of claim 2, wherein: when the above-mentioned importance of the data is important, the data controller stores the data in the SRAM. 如申請專利範圍第2項所述之記憶裝置,其中:當上述資料之上述重要性為非重要資料時,上述資料控制器將上述資料儲存至上述DRAM。 The memory device of claim 2, wherein: when the above-mentioned importance of the data is non-essential data, the data controller stores the data in the DRAM. 如申請專利範圍第2項所述之記憶裝置,其中:上述資料控制器判斷上述記憶裝置之一電力模式,以及當上述電力模式為一低電力模式時,將上述重要資料從上述DRAM儲存至上述SRAM,並停止對上述DRAM充電。 The memory device of claim 2, wherein: the data controller determines a power mode of the memory device, and when the power mode is a low power mode, storing the important data from the DRAM to the SRAM, and stop charging the above DRAM. 如申請專利範圍第5項所述之記憶裝置,其中:當上述電力模式為一正常模式時,上述電力控制器將上述SRAM儲存之重要資料儲存至上述DRAM,以及對上述DRAM充電。 The memory device of claim 5, wherein: when the power mode is a normal mode, the power controller stores the important data stored in the SRAM to the DRAM and charges the DRAM. 如申請專利範圍第1項所述之記憶裝置,其中上述資料匯流排串連耦接上述DRAM和上述SRAM。 The memory device of claim 1, wherein the data bus is coupled in series with the DRAM and the SRAM. 如申請專利範圍第1項所述之記憶裝置,其中上述SRAM為一自鎖電路,記錄一記憶資料。 The memory device of claim 1, wherein the SRAM is a self-locking circuit for recording a memory material. 一種電力控制方法,適用於包括一DRAM、一SRAM、以及一資料控制器之一記憶裝置,包括:藉由上述資料控制器判斷資料之重要性;以及當上述資料之上述重要性為重要資料時,將上述資料儲存至上述SRAM。 A power control method for a memory device including a DRAM, an SRAM, and a data controller, comprising: determining, by the data controller, the importance of the data; and when the above-mentioned importance of the data is important data , the above data is stored in the above SRAM. 如申請專利範圍第9項所述之電力控制方法,更包括:當上述資料之上述重要性為非重要資料時,將上述資料儲存至上述DRAM。 For example, the power control method described in claim 9 further includes: when the above-mentioned importance of the above information is non-essential data, storing the above data in the DRAM. 如申請專利範圍第9項所述之電力控制方法,其中上述將上述資料儲存至上述SRAM步驟包括:藉由上述資料控制器判斷上述記憶裝置之一電力模式;以及當上述電力模式為一低電力模式時,將上述重要資料從上述DRAM儲存至上述SRAM,並停止對上述DRAM充電。 The power control method of claim 9, wherein the storing the data to the SRAM step comprises: determining, by the data controller, a power mode of the memory device; and when the power mode is a low power In the mode, the above important data is stored from the DRAM to the SRAM, and charging of the DRAM is stopped. 如申請專利範圍第9項所述之電力控制方法,更包括:藉由上述資料控制器判斷上述記憶裝置之一電力模式;以 及當上述電力模式為一正常模式時,藉由上述電力控制器將上述SRAM儲存之重要資料儲存至上述DRAM,以及對上述DRAM充電。 The power control method of claim 9, further comprising: determining, by the data controller, a power mode of the memory device; And when the power mode is a normal mode, the important data stored in the SRAM is stored in the DRAM by the power controller, and the DRAM is charged. 如申請專利範圍第9項所述之電力控制方法,其中上述記憶裝置更包括:一資料匯流排,耦接上述DRAM和上述SRAM,傳送一記憶資料;一位址匯流排,耦接上述DRAM和上述SRAM,傳送一記憶體位址;以及一指令線,耦接上述DRAM和上述SRAM,傳送一指令。 The power control method of claim 9, wherein the memory device further comprises: a data bus, coupled to the DRAM and the SRAM, and transmitting a memory data; and an address bus, coupled to the DRAM and The SRAM transmits a memory address; and a command line coupled to the DRAM and the SRAM to transmit an instruction. 如申請專利範圍第13項所述之電力控制方法,其中上述資料匯流排串連耦接上述DRAM和上述SRAM。 The power control method of claim 13, wherein the data bus is coupled in series with the DRAM and the SRAM. 如申請專利範圍第9項所述之電力控制方法,其中上述SRAM為一自鎖電路,記錄一記憶資料。 The power control method according to claim 9, wherein the SRAM is a self-locking circuit for recording a memory data.
TW103145402A 2014-12-25 2014-12-25 Memory device and power control method thereof TWI571886B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103145402A TWI571886B (en) 2014-12-25 2014-12-25 Memory device and power control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103145402A TWI571886B (en) 2014-12-25 2014-12-25 Memory device and power control method thereof

Publications (2)

Publication Number Publication Date
TW201624475A true TW201624475A (en) 2016-07-01
TWI571886B TWI571886B (en) 2017-02-21

Family

ID=56984817

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103145402A TWI571886B (en) 2014-12-25 2014-12-25 Memory device and power control method thereof

Country Status (1)

Country Link
TW (1) TWI571886B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW473671B (en) * 1998-03-17 2002-01-21 Utron Technology Inc Hybrid static and dynamic main memory architecture
JP2000339954A (en) * 1999-05-31 2000-12-08 Fujitsu Ltd Semiconductor memory device
CN100468363C (en) * 2005-12-28 2009-03-11 技嘉科技股份有限公司 Method for building non-volatile memory space in computer main memory and computer core system
CN101656100A (en) * 2008-08-19 2010-02-24 光宝科技股份有限公司 Volatile random access memory device
US20120063045A1 (en) * 2010-09-10 2012-03-15 Intersil Americas Inc. Detecting and selectively ignoring power supply transients

Also Published As

Publication number Publication date
TWI571886B (en) 2017-02-21

Similar Documents

Publication Publication Date Title
TWI691958B (en) Partial refresh technique to save memory refresh power
US9418723B2 (en) Techniques to reduce memory cell refreshes for a memory device
KR102593418B1 (en) Refresh timer synchronization between memory controller and memory
CN109983423A (en) The Memory Controller that schedule memory is safeguarded can be executed from dormant state
KR102525229B1 (en) Memory module and system including the same
US11520498B2 (en) Memory management to improve power performance
EP3705979B1 (en) Ssd restart based on off-time tracker
JP2006018797A (en) Method for reducing standby electricity of integrated circuit device, method for operating memory array with cache of integrated circuit, and integrated circuit device
US20170068304A1 (en) Low-power memory-access method and associated apparatus
JP2011165306A (en) Semiconductor memory device using internal high power supply voltage in self-refresh operation mode and high power supply voltage application method of the same
TWI224728B (en) Method and related apparatus for maintaining stored data of a dynamic random access memory
WO2013147746A1 (en) Reduction of power consumption in memory devices during refresh modes
US10496298B2 (en) Configurable flush of data from volatile memory to non-volatile memory
TWI571886B (en) Memory device and power control method thereof
CN105824760B (en) Storage device and power control method thereof
US9454437B2 (en) Non-volatile logic based processing device
KR20160146401A (en) Memory system
US9361968B2 (en) Non-volatile random access memory power management using self-refresh commands
TW201310225A (en) Method of reducing power consumption of a computer system in sleeping mode and related computer system
US9460774B1 (en) Self-refresh device and semiconductor device including the self-refresh device
US11556253B1 (en) Reducing power consumption by selective memory chip hibernation
US11043256B2 (en) High bandwidth destructive read embedded memory
JP6357576B1 (en) Volatile memory device and self refresh method thereof
TWI285894B (en) Generation device of the refresh clock varied with the capacitance of memory capacitor and method thereof
JP2012133454A (en) Integrated device and control method