TW201621315A - 使用maldi-tof質譜分析以早期偵測高風險群中之肝細胞癌 - Google Patents

使用maldi-tof質譜分析以早期偵測高風險群中之肝細胞癌 Download PDF

Info

Publication number
TW201621315A
TW201621315A TW104137058A TW104137058A TW201621315A TW 201621315 A TW201621315 A TW 201621315A TW 104137058 A TW104137058 A TW 104137058A TW 104137058 A TW104137058 A TW 104137058A TW 201621315 A TW201621315 A TW 201621315A
Authority
TW
Taiwan
Prior art keywords
hcc
classifier
sample
patients
patient
Prior art date
Application number
TW104137058A
Other languages
English (en)
Inventor
喬安娜 羅德
卡洛斯 奧利維拉
茱莉亞 葛瑞葛里伊娃
海瑞奇 羅德
迪法林漢 曼哈林漢
Original Assignee
拜歐迪希克斯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 拜歐迪希克斯公司 filed Critical 拜歐迪希克斯公司
Publication of TW201621315A publication Critical patent/TW201621315A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • G01N33/6851Methods of protein analysis involving laser desorption ionisation mass spectrometry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/211Selection of the most significant subset of features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24147Distances to closest patterns, e.g. nearest neighbour classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/698Matching; Classification
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/164Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Primary Health Care (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hospice & Palliative Care (AREA)

Abstract

本發明揭示偵測肝病患者中之肝細胞癌(HCC)。在經組態為分類器之通用電腦中比較該患者之基於血液樣品之質譜分析數據與多數其他肝病患者(包括患及未患HCC之患者)之質譜分析數據參照集。該分類器產生該測試樣品之類別標記,例如HCC或非HCC。本發明亦揭示用於早期偵測肝病患者中之HCC之實驗室系統。本發明亦闡述替代性測試策略,其使用肺癌患者之基於血液樣品之AFP測量及呈類別標記質譜數據形式的分類參照集,包括多階段測試。

Description

使用MALDI-TOF質譜分析以早期偵測高風險群中之肝細胞癌 優先權
本申請案根據35 U.S.C.§ 119主張於2014年12月3日提出申請之美國臨時申請案第62/086,805號之優先權益,該申請案之內容以引用方式併入本文中。
肝細胞癌(HCC)係最常見之肝膽管(肝臟、膽囊及膽管)癌且係世界範圍內排名第四之最常見癌症。National Comprehensive Cancer Network(NCCN)Clinical Practice Guidelines in Oncology:Hepatobiliary Cancers第1版(2013)。根據國家癌症研究所(National Cancer Institute)之cancer.gov網站,估計在2014年在美國將診斷出約33,000例新HCC病例且23,000人將死於此疾病。HCC之風險因子包括B型肝炎病毒(HBV)或C型肝炎病毒(HCV)感染、酒精性肝硬化及其他肝臟病況,例如血色素沉著症或晚期原發性膽汁性肝硬化(PBC)。NCCN Guidelines,上文文獻。患有該等病況之患者中HCC之發生率足以允許其構成可行的高風險篩選群。
間隔6-12個月量測血清α-胎兒蛋白(AFP)及肝臟超音波檢查術用於高風險群中之HCC篩選。然而,美國肝病研究學會(American Association for the Study of Liver Disease,AASLD)指南不再推薦AFP 測試作為診斷評估之一部分(參見NCCN Guidelines,上文文獻),此乃因其缺少足夠的靈敏度或特異性。儘管高血清AFP含量可視為具有HCC診斷性,但其僅出現在相對較小百分比之HCC患者中。在Dr.Singal等人之統合分析中已顯示,量測AFP並不向用於偵測早期HCC之超音波篩選提供額外益處。A.Singal等人,Meta-analysis:Surveillance With Ultrasound for Early-stage Hepatocellular Carcinoma in Patients with Cirrhosis Aliment Pharmacol.Ther.第30卷第1期第37-47頁(2009)。然而,仍推薦對AFP含量升高之患者進行其他成像研究及更頻繁監測。超音波評估缺少操作間及操作內以及機器可變性且可難以在肥胖患者中進行。儘管CT增強掃描允許偵測遠小於超音波之腫瘤或結節(<1cm),但該等掃描無法在腎功能衰竭患者中實施且在篩選設置中來自重複CT掃描之輻射劑量可能成問題。
正在HCC偵測及診斷背景下研究之探究性血清生物標記物包括去-γ-羧基凝血酶原(DCP),亦稱為由維生素K缺乏誘導之蛋白質-II(PIVKA-II)及小扁豆凝集素反應性AFP(AFP-L3)(AFP之亞型)。與HCC生物標記物相關之所關注先前技術包括E.E.Schwegler等人,SELDI-TOF MS profiling of serum for detection of the progression of Chronic Hepatitis C to Hepatocellular Carcinoma Hepatology第41卷第3期第634-642頁(2005);D.G.Ward等人,Changes in serum proteome associated with the development of hepatocellular carcinoma in hepatitis C-related cirrhosis British Journal of Cancer第94卷第287-292頁(2006);D.W.Ward等人,Preclinical and post-treatment changes in the HCC-associated serum proteome British Journal of Cancer第95卷第1379-1383頁(2005)。其他所關注先前技術包括A.Flores等人,Emerging trends in hepatocellular carcinoma:Focus on Diagnosis and Therapeutics Clinical Medicine Insights:Oncology第8卷第71-76頁 (2014);L.Li等人,Micro-riboneucleic acids:potential noninvasive biomarkers for hepatocellular carcinoma Journal of Hepatocellular Carcinoma第1卷第21-33頁(2014年5月);P.Prieto等人,DKK1 as a serum biomarker for hepatocellular carcinoma Hepatobiliary Surg.Nutr.第2卷第3期第127-128頁(2013);H.Kim等人,Development of Biomarkers for Screening Hepatocellular Carcinoma using Global Data Mining and Multiple Reaction Monitoring PLoS One第8卷第5期第1-11頁(2013);C.Liu等人,MALDI-TOF MS combined with Magnetic Beads for Detecting Serum Protein Biomarkers and Establishing of Boosting Decision Tree Model for Diagnosis of Hepatocellular Carcinoma Am.J.Clin.Patho.第134卷第235-241頁(2010);S.Shang等人,Identification of Osteopontin as a Novel Marker for Early Hepatocellullar Carcinoma Hepatology第55卷第483-490頁(2012)。
開發經改良用於具有罹患HCC之高風險之患者的篩選方案係重要的臨床目標,尤其在其能夠偵測早期HCC時。若在早期偵測到,則可經由切除或移植來治療HCC且70%可達成5年存活率。參見A.Singal等人論文,上文文獻。然而,業內存在極少經批準用於不可切除性HCC之治療,且疾病晚期中之預後仍極差,其中5年存活率僅為約5%。目前,小於30%之患者經診斷早至足以成為切除或移植之適宜候選者。參見A.Singal等人論文,上文文獻。
本文件闡述使用基質輔助雷射脫附及電離-飛行時間(MALDI-TOF)質譜分析偵測高風險群中之HCC的基於血清之測試、用於該測試中之分類器、及產生用於篩選高風險患者以早期偵測HCC之分類器之方法。
在第一態樣中,揭示用於早期偵測肝病患者(即高風險群)中之 HCC之方法。該方法包括藉由使自患者獲得之基於血液之樣品經歷至少100,000次雷射射擊對該樣品實施MALDI-TOF質譜分析並獲取質譜數據之步驟。此步驟較佳可利用H.Rőder等人於2013年3月15日提出申請之美國專利申請案第13/836,436號、授予本發明受讓人之美國專利申請公開案第US 2013/0320203號中所述之所謂的「深度MALDI」質譜分析技術(該等申請案之內容皆以引用方式併入本文中),包括MALDI板上斑點之自動光柵掃描及來自多數斑點之光譜之求和。該方法包括以下步驟:獲得多數預定質譜特徵(例如本文件附錄中之一者中所列示之50個、100個、200個或所有特徵)之質譜數據的積分強度值。該方法進一步包括利用執行分類器之程式化電腦對質譜數據進行操作之步驟。該操作步驟利用分類演算法比較該等積分強度值與自多數肝病患者獲得之類別標記質譜數據參照集的特徵值,且產生樣品之類別標記,其中該類別標記與患者可能患有HCC抑或可能未患HCC相關。類別標記之名稱並不尤其重要,且在一些二元分類方案中可具有形式類別1或類別2、HCC或非HCC、可能或不可能或其他形式。
在較佳實施例中,使用規則化組合方法,使用下文及H.Rőder等人於2014年9月15日提出申請之待決美國專利申請案第14/486,442號、授予本發明受讓人之美國專利申請公開案第2015/0102216號中所述之技術,分類器組態呈經過濾微型分類器之組合,該等申請案之內容以引用方式併入本文中。
在一個實施例中,獲得步驟獲得本文件附錄中之一者中所列示之至少50個特徵、至少100個特徵或另一選擇為至少200個特徵、例如附錄中之一者中所列示之所有特徵的積分強度值。
分類器將HCC或非HCC(或同義字)之分類標記指派給患者之樣品。分類為HCC之患者經鑒定為可能患有HCC,而分類為非HCC之彼等患者經鑒定為可能未患HCC。然後可使用該類別標記來指導患者之 治療,例如若患者分類為HCC,則可端視癌症之時期使患者立即接受適當療法。
在另一態樣中,揭示用於早期偵測肝病患者中之HCC之分類器。該分類器包括記憶體,其儲存自多數肝病患者(包括患及未患HCC之患者)之基於血液之樣品獲得的質譜數據參照集,例如本文件附錄中之一者中所列示特徵之特徵值。該分類器亦包括用多數指令編碼之程式化電腦,該等指令用於執行一分類器,該分類器利用丟棄規則化或一些其他規則化組合方法組態呈經過濾微型分類器之組合。
在另一態樣中,揭示對來自肝病患者之基於血液之樣品實施測試以偵測HCC之實驗室測試系統。該實驗室測試系統包括MALDI-TOF質譜儀,其經組態以藉由使來自患者之基於血液之樣品經歷至少100,000次雷射射擊對該樣品實施質譜分析並獲取所得質譜數據;記憶體,其儲存自多數其他肝臟疾病患者之基於血液之樣品獲得之質譜數據參照集及相關類別標記;及用多數指令編碼之程式化電腦,該等指令用於執行一分類器,該分類器利用丟棄規則化組態呈經過濾微型分類器之組合。質譜數據參照集包括本文件附錄中所列示之至少一些m/z特徵(例如實例1附錄A、實例1附錄B或實例2附錄A、附錄B或附錄C之所有特徵)之特徵值。程式化電腦經程式化以產生與患者是否可能患有HCC相關之樣品之類別標記。
在本發明之另一態樣中,揭示產生用於早期偵測肝病患者中之HCC之分類器的方法。該方法包括以下步驟:a)對來自多數肝病患者之基於血液之樣品集實施MALDI-TOF質譜分析,該等患者包括一些HCC患者及一些非HCC患者;b)儲存作為對基於血液之樣品集實施步驟a)之結果之質譜分析數據開發集,該質譜分析數據開發集包括多數質譜特徵之特徵值;c)將初始分類標記指派給步驟b)之開發集之每一成員;d)將開發集分成訓練集及測試集;e)使用一或多個特 徵值構建多數微型分類器;f)過濾對訓練集進行操作之微型分類器之性能且僅保留符合性能臨限值之彼等微型分類器;及g)藉由使用規則化組合方法組合經過濾微型分類器來產生主分類器。在步驟h)中,評估主分類器對測試集之性能。該方法包括對將開發集分成訓練集及測試集之許多不同實現重複步驟d)、e)、f)、g)及h)之步驟i)。在步驟j)中,根據步驟g)產生之主分類器及步驟i)之重複迭代定義最終分類器。
在另一態樣中,揭示用於早期偵測肝病患者中之HCC之替代性方法。該方法包括對患者之基於血液之樣品實施質譜分析並獲取質譜數據之步驟a)。該方法包括藉由以下方式對在步驟a)中所獲取之質譜數據實施測試之步驟b):藉助分類演算法比較該等質譜數據與自複數個非小細胞肺癌(NSCLC)患者之基於血液之樣品獲得之類別標記質譜訓練集,指派給訓練集中之該等樣品之類別標記為良好或同義字或不良或同義字,良好標記指示訓練集中之該等患者在NSCLC之EGFR-I治療後具有與具有不良類別標記之患者相比較佳之結果,其中步驟b)之測試產生基於血液之樣品之類別標記,且若類別標記為不良或同義字,則患者經鑒定為患有HCC。在可能實施例中,測試b)在本文中係申請者受讓人之闡述於美國專利7,736,905(其以引用方式併入)中之商業VeriStrat測試,或該測試之同義字,例如藉由使用深度MALDI光譜之子集來模擬通常在商業上用於VeriStrat測試中之3×2000射擊光譜。
此替代性測試利用若干年來對VeriStrat測試所獲得之某些理解。在多項臨床驗證研究中已顯示,對於許多不同類型之實體上皮腫瘤癌症,預治療血清/血漿為VeriStrat「良好」之患者在用EGFR-I治療時具有顯著優於樣品產生VeriStrat「不良」記號之彼等患者的結果。參見J.Grigorieva等人之公開專利申請案U.S.2011/0208433,該申請案 之內容以引用方式併入本文中。不良質譜記號先前已經鑒定指示實體上皮腫瘤癌症患者之相對較差之預後。吾等認為不良記號指示癌症之存在。因此,在本發明測試實例中,若患者之血清樣品在VeriStrat測試下測試為不良,則指示患者(患有肝病)可能患有HCC,且基於血液之樣品不必經歷本文件詳細闡述之HCC/非HCC測試。
在變化形式中,實施步驟a)且實施測試b),但若類別標記為良好或同義字,則實施如本文詳細闡述之HCC/非HCC測試並報告類別標記。
在另一變化形式中,用於偵測高風險群中之HCC之測試如下:a)實施AFP測試,且若AFP表現量>100ng/ml,則將患者分類為HCC。若AFP表現量100ng/ml,則實施本文件中所述之HCC/非HCC測試。若HCC/非HCC測試結果為HCC,則報告HCC結果。若患者測試為非HCC,則報告非HCC結果。
作為另一變化形式,闡述三階段測試方法。在階段1中,使患者經歷VeriStrat測試。若患者測試為VeriStrat不良,則報告HCC結果。在階段2中,若患者測試為VeriStrat良好,則實施AFP表現量測試。若患者測試AFP表現量>100ng/ml,則報告HCC結果。在階段3中,若VeriStrat良好患者之AFP表現量100ng/ml,則實施本文件之HCC/非HCC測試且報告此測試之結果。結果亦可報告為包括每一階段結果之一組結果。
100‧‧‧開發樣品集
104‧‧‧HCC
106‧‧‧非HCC
110‧‧‧測試集
112‧‧‧訓練集
122‧‧‧特徵空間
135‧‧‧環路
800‧‧‧樣品
802‧‧‧MALDI-ToF樣品「板」
806‧‧‧質譜儀
808‧‧‧質譜
810‧‧‧通用電腦
812‧‧‧中央處理單元
814‧‧‧記憶體
820‧‧‧CMC/D分類器
822‧‧‧參照質譜數據集
824‧‧‧代碼
826‧‧‧程式代碼
828‧‧‧數據結構
830‧‧‧程式代碼
832‧‧‧預處理例程
836‧‧‧特徵校正函數代碼
838‧‧‧代碼例程
840‧‧‧模組
858‧‧‧過程
圖1係顯示用於產生本文件中所揭示分類器之分類器開發方法之流程圖。該方法使用與自多數患及未患HCC之患者獲得之基於血液之樣品相關的質譜數據。
圖2A-2C係顯示在預處理質譜數據以構建本發明實例1之分類器中之正規化步驟之結果的盒鬚圖。
圖3係接受器操作曲線(ROC),其顯示實例1之分類器開發時一些初步嘗試之分類器性能,從而顯示分類特徵之不同選擇及不同訓練集之圖。
圖4係基於實例1中HCC對非HCC患者之匹配集比較選擇之前100個特徵的t-分佈隨機近鄰嵌入(tSNE)圖。此包括99個質譜特徵及AFP表現量。在該等圖中,A及B係t-SNE低維空間之兩個坐標。
圖5圖解說明ROC曲線,其顯示使用相同特徵空間遍歷及相同K=11之開發集(實例1)中之分類器之性能,其中一條曲線顯示對開發集中之所有樣品進行訓練之性能,且另一條曲線顯示僅對不具極高AFP含量之樣品進行訓練之性能。
圖6顯示使用根據實例1之25,000射擊質譜定義之精簡特徵集嘗試之分類器方法的ROC曲線。而圖5中所顯示之分類器性能曲線(開發集,實例1)係基於100,000+射擊光譜及較高特徵數,在圖6中使用替代性特徵定義方法,其經設計以避免將雜訊、高可變性特徵添加至用於分類之特徵空間中。
圖7A係實例1之開發集中之若干不同分類器之ROC曲線集,該等分類器具有經選擇以具有最佳潛在性能之參數。
圖7B係自實例1之驗證練習產生之分類器之ROC曲線。
圖8係用於對肝病患者之血液樣品實施測試以確定患者是否患有HCC之實驗室測試系統的圖表。
圖9A-9C係不同組之正規化純量之盒鬚圖,其顯示在預處理用於開發實例2之早期偵測HCC分類器之第二實例之質譜數據中之正規化步驟的結果。
圖10A-10C係用於實例2之最終正規化步驟之依據組比較之正規化純量的盒鬚圖。
圖11係本發明實例2(開發集)之分類器之ROC曲線的圖,其中 k=9(圓形)及k=11(星形)。實線顯示開發樣品集上之單變量AFP含量之ROC曲線。實心符號顯示所選截止值之位置。
圖12係k=9分類器之ROC曲線之圖,其顯示實例2之開發集(圓形)及驗證集(星形)結果。實心符號顯示所選截止值之位置。兩個樣品集中單變量AFP之ROC曲線亦顯示於該圖中。
圖13係k=11分類器之ROC曲線之圖,其顯示實例2中之開發集(圓形)及驗證集(星形)結果。實心符號顯示所選截止值之位置。兩個樣品集中單變量AFP之ROC曲線亦顯示於該圖中。
本發明揭示用於早期偵測肝病患者(即高風險群之成員)中之HCC之方法。該方法包括藉由使自患者獲得之基於血液之樣品經歷至少100,000次雷射射擊對該樣品實施MALDI-TOF質譜分析並獲取質譜數據之步驟。此步驟較佳可利用H.Rőder等人於2013年3月15日提出申請之美國專利申請案第13/836,436號、授予本發明受讓人之專利申請公開案第U.S.2013/0320203號(該等申請案之內容皆以引用方式併入本文中)中所述之所謂的「深度MALDI」質譜分析技術,包括MALDI板上斑點之自動光柵掃描及來自多數斑點之光譜之求和。該方法包括以下步驟:獲得多數預定質譜特徵(例如本文件附錄中之一者中所列示之50個、100個或所有特徵)之質譜數據的積分強度值。該方法進一步包括利用執行分類器之程式化電腦對質譜數據進行操作之步驟。該操作步驟利用分類演算法比較該等積分強度值與自多數肝病患者獲得之類別標記質譜數據參照集的特徵值,且產生樣品之類別標記,其中該類別標記與患者可能患有HCC抑或可能未患HCC相關。類別標記之名稱並不尤其重要,且在一些二元分類方案中可具有形式類別1或類別2、HCC或非HCC、可能或不可能或其他形式。
在較佳實施例中,使用規則化組合方法,使用下文及H.Rőder等 人於2014年9月15日提出申請之待決美國專利申請案第14/486,442號、授予本發明受讓人之專利申請公開案第U.S.2015/0102216號中所述之技術,分類器組態呈經過濾微型分類器之組合,該等申請案之內容以引用方式併入本文中。
在實例1之以下描述中,將首先闡述用於產生電腦執行之分類器之患者樣品,包括光譜獲取及預處理,且分類器開發方法在本文中稱為「利用丟棄組合微型分類器」或CMC/D且顯示於圖1中。然後該描述將論述所產生之多種不同分類器之性能,及可經調節以發現具有最佳性能之分類器之多個參數。
使用第二樣品集開發用於早期偵測高風險群中之HCC之分類器的另一實例將闡述於實例2中。
然後該描述轉向圖8中所顯示之實驗室測試系統,其中可對肝病患者之基於血液之樣品實施測試以偵測HCC之存在。實驗室測試中心包括質譜儀及執行根據圖1之方法產生且詳細闡述於下文中之分類器之通用電腦。
本說明書將進一步闡述使用不同的訓練集及分類器方法早期偵測高風險患者中之HCC之替代性測試方法,其可單獨實施或與下文所述之HCC/非HCC測試串聯實施。
實例1 I.患者樣品、光譜獲取及預處理 患者樣品
實例1中之分類器開發方法利用來自52個肝細胞癌(HCC)患者、53個肝硬化但非HCC患者之血清樣品及非肝病且非癌症患者之34個樣品(14個來自非癌症患者之一個樣品集,且20個來自類風濕性關節炎患者之另一樣品集)。在肝臟切除或移植時採集肝病患者(HCC或非HCC)之樣品。發現經診斷患有HCC之四個患者(皆患有潛在C型肝炎) 在手術時無剩餘活肝臟腫瘤。可自肝病患者獲得以下臨床數據:潛在肝病來源、血清AFP含量、膽紅素、INR(國際正規化比率,其係一種肝臟功能測試)、肌酸酐及白蛋白含量、血小板計數、腦病等級及(對於大部分患者)MELD(末期肝病模型)評分。另外,對於HCC患者,可獲得腫瘤大小、T分期(自TNM,即惡性分期之分類)、手術類型(切除或移植)。
不同患者組之一些臨床特徵概述於表1中。
顯然,與肝硬化(非HCC)組中之患者相比,HCC組中之患者具有 顯著較佳之肝臟功能。
表2概述HCC組中52個患者之腫瘤量測。
光譜獲取 樣品製備
將樣品解凍,且將每一實驗樣品及品質控制參照血清(自五個健康患者之血清獲得之彙集樣品,購自ProMedDx)之3μl等份點至VeriStrat©纖維素血清卡(Therapak)上。在環境溫度下將卡乾燥1小時,此後用6mm皮膚生檢打孔器(Acuderm)打出全血清斑點。將每一孔片置於具有0.45μm耐綸膜之離心過濾器(VWR)中。將100μl HPLC級水(JT Baker)添加至含有孔片之離心過濾器中。將孔片溫和地渦旋10分鐘,然後在約10,000rcf(相對離心力)下旋轉減慢2分鐘。去除溢 流物且將其轉移回至孔片上用於第二輪提取。對於第二輪提取,將孔片溫和地渦旋3分鐘,然後在約10,000rcf下旋轉減慢2分鐘。然後將來自每一樣品之20微升濾液轉移至0.5ml eppendorf管用於MALDI分析。
將等體積之新鮮製備之基質(將25mg芥子酸溶解於1ml 50%乙腈:50%水加0.1% TFA中)添加至每一20μl血清提取物中,且將混合物渦旋30sec。將前三等份(2×2μl)樣品:基質混合物棄至管帽中。然後將三等份2μl樣品:基質混合物點至拋光鋼MALDI靶板(Bruker Daltonics)上。在生物安全罩中乾燥MALDI靶,然後將其置於MALDI-TOF質譜儀中。
分四批處理此樣品集(139個實驗樣品加QC樣品)用於MALDI分析。在批次1至3中含有最多46個實驗樣品加6個參照樣品。將參照樣品之製劑添加至該三批中每一者之開頭(2個製劑)、中間(2個製劑)及末尾(2個製劑)中。批次4僅含有四個實驗樣品(具有樣品ID 58、71、76及108)及四個參照樣品製劑,兩個在該批次開頭且兩個在該批次末尾。該四個樣品先前已在三個先前批次中之一者上運行,但該等運行尚未產生足夠的光柵光譜。
質譜之獲取
使用配備有2000Hz SmartBeam雷射之MALDI-TOF質譜儀(Ultraflextreme,來自Bruker Daltonics,Bremen,Germany)獲得MALDI光譜。利用陽離子偵測以線性模式使用以下設置獲取數據:加速電壓設定為25kV,提取電壓設定為23.15kV,透鏡電壓設定為7kV,且延遲提取時間設定為200ns。使用由胰島素、泛素、細胞色素c及肌紅蛋白組成之Bruker蛋白質標準混合物在外部校準儀器。
自63個預定位置/MALDI斑點(63×800×3個斑點/樣品)(總共為151,200次雷射射擊/樣品)收集800射擊光譜。儘管在此實例中進行了 151,200次射擊以使得獲取189個(63×3)800射擊光譜,但吾等認為將獲得適宜深度光譜資訊,只要來自至少100,000次雷射射擊之良好品質光譜可平均即可。使用先前所引用之深度MALDI專利申請案之技術,將可獲得自甚至更高之射擊數(例如500,000或1,000,000次射擊)平均之光譜。關閉雷射功率之模糊控制。在獲取期間不使用評估準則過濾出光譜。在獲取後進行光譜之所有過濾及處理。
光譜預處理 A.使光譜平均以產生一個光譜/樣品
使用深度MALDI儀器設置獲取可用於每一患者之189個(68×3)重複光譜。使用紋波過濾器過濾光譜以去除數位轉換器產生之人工雜訊。出於發現欲用於比對之峰之目的減去背景。將峰偵測之臨限值設定為3之信號對雜訊比。然後使用表3中所列示之校準點比對原始光譜(未減去背景)。僅偵測到最少20個峰且已使用5個校準點之光譜視為包括在平均值中。由於未知將通過該等針對每一樣品之要求之光譜數,故隨機選擇140個光譜以納入平均值中,從而產生112K次射擊之平均光譜(140×800次射擊)。
平均光譜之預處理:第一種方法 初始預處理
減去光譜之背景(兩個窗口80,000/10,000)且使用下表(表4)中所列示之部分離子流(PIC)窗口正規化。質譜之背景減去及部分離子流正規化為業內已知且闡述於授予受讓人Biodesix之美國專利7,736,904中,因此為簡潔起見省略詳細描述。
該等窗口係利用一方法來選擇,該方法防止使用在所關注組之間(HCC對肝硬化)顯著不同之窗口(此可導致分類潛能降低),且亦防止固有不穩定之特徵。整個m/z區域分成大小不同之106個倉以防止倉邊界落在峰內。對於每一m/z倉,測定每一樣品之特徵值。使用Wilcoxon秩和測試藉由表5中所列示之組比較來比較該等特徵值。若 所得p值介於0-0.1之間,則自正規化排除該區域。若特徵值(所有樣品)之CV大於1.0,則排除該區域。上述僅5個窗口符合所有3個組比較之要求。該等窗口皆不含高強度特徵。
使用剩餘倉作為PIC正規化窗口且計算每一樣品之正規化純量。實施組之最終比較以確保所用各組及正規化參數不相關。圖2之盒鬚圖展示各組具有相似的正規化純量分佈。
然後使用表6中所列示之校準點校準光譜以去除比對中之微小差異。
特徵定義
藉由同時觀察每組(HCC、肝硬化、其他)光譜平均值之子集來手動選擇特徵定義。藉由評估光譜編譯之每一特徵來指派左及右峰邊界。此方法確保充分捕獲任何個別光譜之特徵。鑒定出總共307個特徵。將特徵定義應用於每一光譜以產生特徵值之特徵表。在對批次校正進行額外分析(參見下文)後發現,高m/z特徵(>22,000Da)並不充分可再現且其自用於CMC/D分類器產生之特徵列表去除。此留下可用於CMC/D分類器產生之300個特徵。該等特徵列示於實例1附錄A中。
不同批次之參照樣品之分析
在每一批次(僅具有4個製劑之批次4除外)中製備六個參照樣品(品質控制樣品)製劑以及實驗樣品。將該等製劑中之兩者平鋪在開頭(複本1及2),將兩個製劑平鋪在末尾(複本5及6),且將兩個製劑平鋪在實驗樣品中(複本3及4)。參照樣品複本之目的係在每一批次中提供可用於校正各批次在光譜獲取中之預期每日波動的普通樣品。如上文所述預處理參照樣品。
將特異性針對參照樣品且針對其穩定性進行選擇之特徵定義集應用於光譜。該等特徵定義可參見先前臨時申請案之附錄C表C1,該申請案以引用方式併入本文中。所得特徵表僅用於分析參照樣品。分析參照樣品光譜以發現來自每一批次之開頭及末尾之最相似之兩個複本。使用以下函數比較各複本之每一可能組合(1與5、1與6、2與5、2與6):A=min(abs(1-ftrval1/ftrval2),abs(1-ftrval2/ftrval1))
其中ftrval1(ftrval2)係複本對之第一(第二)複本之特徵值。此量A 給出該對複本之相似性之量測。使用已知穩定之所選20特徵集(表7)來確定取自各批次開頭及末尾之參照光譜(「血清P2」)複本之最相似組合。此方法防止在批次校正程序中使用離群複本光譜。
對於A使用截止值0.2時,與大多數合格特徵之組合被認為最相似且用於批次校正目的。在相持之情形下,使用排序為1_5、1_6、2_5、2_6之最左側組合。例如,對於批次1,組合1_5及2_5使所有20個特徵皆達成0.2截止值。選擇1_5組合之原因在於其距離預定順序之 左邊最遠。若對於一批次未發現20個特徵中之15個通過截止值之組合,則該批次將視為不合格且將需要再運行。在此計劃中,使用該等準則所有4個批次皆通過。對於每一批次,發現最相似參照光譜複本之組合,且藉由平均每一特徵之兩個複本之特徵值自該兩個複本產生平均特徵值集。使用該等平均特徵值作為每一批次之參照用於批次校正之目的。
批次校正
使用批次1作為基線批次來校正所有其他批次。使用參照樣品藉由以下程序發現批次2-4中每一者之校正係數。
在每一批次j(2j14)內,比率及平均振幅 係針對以(m/z) i 為中心之每一i th特徵來定義,其中係所校正批次中特徵i之平均參照光譜振幅,且係批次1(參照標準)中特徵i之參照光譜振幅。假設兩個批次之間之振幅比率遵循以下依賴性
基於不同批次,藉由最小化平方殘差之和且使用參照樣品之實驗數據來構建連續擬合。用於產生此擬合之特徵僅係可用全集之子集(闡述於先前臨時申請案第62/086,805號之附錄C、表C.1中),其中去除已知具有較差可再現性之特徵。所採用步驟不包括離群點以避免參數估計之偏差。對不同批次獲得之係數a 0a 1b 0b 1c 0之值列示於先前臨時申請案第62/086,805號之附錄C(表C.2)中。對用於構建參照光譜之每一批次之擬合之點的(m/z) i 平面的投影與該擬合本身所定義之表面一起顯示於先前臨時申請案之附錄C之圖C.1中。
最終擬合後,立即對每一批次測定r j (,(m/z)),下一步驟係根據 校正所有樣品、所有特徵(在(m/z)處具有振幅A)。在 此校正後,對參照光譜計算之經校正(,(m/z) i ,)特徵值在由r=1定義之水平線附近,如先前臨時申請案之附錄C之圖C.2中所顯示。
平均光譜之預處理:第二種方法(減小特徵空間)
此方法之理念係使用來自應用於完全112k光譜之25k射擊光譜之特徵定義來產生具有較小可變性之特徵集。
初始預處理
減去原始深度MALDI光譜之背景,且使用與第一種方法中相同之經修改部分流正規化方法、僅使用在如由單變量p值指定之臨床組之間不分化之區域正規化(參見Initial pre-processing in Preprocessing of averaged spectra:First approach:Initial Preprocessing)。
特徵定義係藉由目視檢驗產生164個特徵(參見實例1附錄B)之25k射擊光譜來產生。使用該等特徵,使用僅針對112k射擊光譜之經稍微修改之批次校正程序(列示於下文中)實施單獨批次校正(先前臨時申請案之附錄C、表D.2。)
批次校正(經修改)
對此方法使用經修改之批次校正程序。此遵循以下步驟:
1.使用25k特徵定義產生各批次之特徵表
2.對於在每一批次之開頭及末尾之4個參照樣品運行,對於所有特徵值,使用min(abs(1-ftrval j /ftrval k )、abs(1-ftrval k /ftrval j ))作為評估準則(如在用於第一種方法之批次校正方法中所定義),形成每一特徵之四個可能的對組合,其中jk指示參照光譜,即對於jk具有四種組合:1-5、1-6、2-5、2-6。
3.對該等j,k對中之每一者計算其中評估準則超過0.2之特徵數。
4.選擇最少特徵數超過評估準則之對。(先前臨時申請案之附錄D、表D.2)。
5.平均所選對之特徵值且使用其作為其批次之參照
6.對該等產生之參照光譜實施上述批次校正方法。
所得批次校正擬合值列示於先前臨時申請案之附錄D表D.3中。
正規化
使用針對第一種預處理方法概述之程序將批次校正之特徵表再正規化。簡言之,根據批次校正之特徵表鑒定不使單變量p值大於.05之三個臨床組分開之特徵。該等特徵在PIC工具中用於亞選擇特徵集以供進一步正規化。對此正規化步驟使用以下特徵:3818、3954、4052、5105、12293。
特徵精簡
進一步分析所得經批次校正且再正規化之特徵表以組合如由大於0.85之相關係數所定義顯著相關之彼等特徵。此所得特徵表含有75個特徵。然後去除含有雙電荷血紅素特徵之組合特徵。相關圖及組合特徵之列表分別顯示於先前臨時申請案之圖D.2附錄D及表D.4中,該申請案之內容以引用方式併入本文中。
如下文所解釋,使用如上文所解釋經歷預處理之質譜數據產生之特徵表(實例1附錄A或實例1附錄B中所列示每一特徵之積分強度值)來產生分類器。此質譜數據集在圖1中稱為開發樣品集100。產生分類器之方法闡述於以下章節中。
CMC/D分類器開發及用於早期偵測高風險患者中之HCC之分類器的產生
使用利用丟棄規則化組合微型分類器(mC)(CMC/D)之方法的新穎分類器開發過程示意性顯示於圖1中。此過程中之步驟詳細解釋於下文中。該方法、其多個優點及其若干使用實例較詳細解釋於2014年9月15日提出申請之美國專利申請案第14/486,442號、美國專利申請公開案2015/0102216中,該等申請案之內容皆以引用方式併入。將在此處首先提供該方法之簡短解釋,且然後結合圖1進行詳細圖解說明以 產生HCC分類器。
與生命科學中可獲得大訓練數據集(大數據挑戰(big data challenge))時致力於開發分類器之機器學習之標準應用相比,問題設置不同。在此處問題在於,通常臨床研究產生之可用樣品數(n)通常有限,且每個樣品之屬性數(p)通常超過樣品數。在該等深度數據問題中,嘗試自個別情況之深度描述獲得資訊,而非自許多情況獲得資訊。本發明方法利用此理解,且如此處,尤其可用於其中p>>n之問題中。
該方法包括第一步驟a)獲得多數樣品之用於分類之量測數據,即反映樣品之一些物理特性或特徵之量測數據。每一樣品之數據係由多數特徵值及類別標記組成。在此實例中,數據採用呈特徵值(多數m/z範圍或峰處之積分峰強度值)以及指示樣品之一些屬性之標記(例如,患者患有HCC、患者未患HCC)形式的質譜分析數據形式。在此實例中,在研究與樣品相關之臨床數據後,由人類操作員將類別標記指派給每一樣品。較佳地,在此步驟中,如先前在此詳細描述中所述,在MALDI-TOF質譜分析中自施加至樣品之至少100,000次雷射射擊獲得量測數據;即呈現用於產生分類器之基於血液之個別樣品之深度描述。
該方法進行至步驟b)使用高達預選特徵集大小s(s=整數1...n)之樣品特徵值集構建多數個別微型分類器。例如,可使用單一特徵(s=1)或一對特徵(s=2)或三個特徵(s=3)或甚至含有3個以上特徵之更高階組合來構建多數個別微型或自動分類器。s值之選擇通常小至足以允許執行該方法之代碼在合理時間量內運行,但在一些情況下或在較長代碼運行時間可接受時可較大。s值之選擇亦可取決於數據集中之量測數據值數(p),且其中p為數百、數千或甚至成千上萬,s通常將為1或2或可能為3,此端視可用計算資源而定。微型分類器執行監督 學習分類演算法,例如k-最近鄰,其中比較樣品實例之特徵或一對特徵之值與訓練集中相同特徵之值,且鑒定s維特徵空間中之最近鄰(例如k=5),並藉由多數投票將類別標記指派給每一微型分類器之樣品實例。在實踐中,可存在數千個該等微型分類器,此端視用於分類之特徵數而定。
該方法進行至過濾步驟c),即測試每一個別微型分類器之性能(例如精度),以正確地將多數樣品中之至少一些分類,或藉由一些其他度量(例如在由用於訓練集樣品之個別微型分類器之分類定義之各組間獲得的危害比(HR)之間之差異)量測個別微型分類器性能,且僅保留分類精度、預測能力或其他性能度量超過預定臨限值之彼等微型分類器以獲得經過濾(經修剪)微型分類器集。若微型分類器過濾之所選性能度量為分類精度,則可比較分類操作產生之類別標記與提前已知樣品之類別標記。然而,可使用其他性能度量且使用分類操作產生之類別標記來評估。僅維護在用於分類之所選性能度量下以合理方式充分起作用之彼等微型分類器。可使用替代性監督分類演算法來產生微型分類器,例如線性判別、決策樹、概率分類方法、基於邊界之分類器(如支持向量機器)及根據經標記訓練數據集訓練分類器之任何其他分類方法。
為克服因一些依賴子集偏差之單變量特徵選擇方法所致之偏差問題,採用所有可能特徵中之大部分作為微型分類器之候選者。然後使用最多預選大小(參數s)之特徵集構建所有可能的KNN分類器。從而得到許多「微型分類器」:例如,若以每一樣品之100個特徵(p=100)開始,則將自該等一對特徵(s=2)之所有不同的可能組合獲得4950個「微型分類器」,使用三個特徵(s=3)之所有可能組合獲得161,700個微型分類器,等等。當然,探究可能微型分類器之空間及定義其之特徵的其他方法係可能的且可用於替代此階層式方法。當 然,該等「微型分類器」中之許多將具有較差性能,且因此在過濾步驟c)中僅使用通過預定準則之彼等「微型分類器」。該等準則係端視特定問題來選擇:若具有兩類別分類問題,則將僅選擇分類精度超過預定臨限值、即可在一定合理程度上進行預測之彼等微型分類器。即使利用「微型分類器」之此過濾,最終仍獲得數千個「微型分類器」候選者,其性能跨越自邊緣至中等至極佳性能之整個範圍。
該方法進行至步驟d)藉由使用規則化組合方法組合經過濾微型分類器來產生主分類器。在一個實施例中,此規則化組合方法採用對樣品之類別標記重複實施經過濾微型分類器集之邏輯訓練的形式。此係藉由以下方式來進行:隨機選擇小部分經過濾微型分類器作為自經過濾微型分類器集實施極值丟棄(該技術在本文中稱為丟棄規則化)之結果,並對該等所選微型分類器實施邏輯訓練。儘管精神與標準分類器組合方法(例如,參見S.Tulyakov等人,Review of Classifier Combination Methods,Studies in Computational Intelligence,第90卷,2008,第361-386頁)類似,但特定問題在於一些「微型分類器」可能僅隨機而人為地完美,且因此將主導組合。為避免此過擬合至特定主導型「微型分類器」,藉由針對該等邏輯訓練步驟中之每一者僅隨機選擇小部分「微型分類器」來產生許多邏輯訓練步驟。在此情形下,倘若具有許多微型分類器及小訓練集,則使用極值丟棄,其中在每一迭代中丟棄超過99%之經過濾微型分類器。
更詳細而言,每一微型分類器之結果係兩個值中之一者,在此實例中為「類別1」或同義地「HCC」,或「類別2」或同義地「非HCC」。然後可經由標準邏輯迴歸(例如,參見Wikipedia中之邏輯迴歸條目)定義獲得「類別1」標記之概率來組合微型分類器之結果方程式(1)
其中,若用於樣品之特徵值之微型分類器mc返回「類別1」,則I(mc(特徵值))=1,且若微型分類器返回「類別2」,則I(mc(特徵值))=0。各微型分類器之權重(w mc)未知且需要由訓練集中所有樣品以上式之迴歸擬合來確定,分別對於訓練集中標記類別1之樣品在該式之左手側使用+1,且對於標記類別2之樣品則使用0。由於微型分類器(且因此權重)遠多於樣品,通常有數千個微型分類器及僅數十個樣品,故此一擬合將總是產生幾乎完美之分類,且可輕易地由可能隨機而極佳地擬合特定問題之微型分類器主導。吾等不希望最終測試由僅對此特定集執行良好而不能普遍良好之單一特殊微型分類器主導。因此,設計一種規則化該行為之方法:替代一個將所有微型分類器之所有權重一次性擬合至訓練數據之總迴歸,僅使用少數微型分類器用於一個迴歸,但重複此過程多次以產生主分類器。例如,隨機挑選三個微型分類器,對其三個權重實施一個迴歸,挑選另一組三個微型分類器,並確定其權重,且重複此過程多次,產生許多隨機挑選,即三個微型分類器之實現。定義CMC/D主分類器之最終權重則係所有該等實現內權重之平均值。實現數應大得足以使各微型分類器在整個過程中極可能被挑選至少一次。此方法之精神類似於「丟棄」規則化,其為一種用於深度學習社群中之方法,以將雜訊添加至神經網路訓練中來避免陷入目標函數之局部最小值。
可用於實施步驟(d)中之規則化組合方法之其他方法包括:
‧使用懲罰函數之邏輯迴歸,如脊迴歸(基於Tikhonov regularization,Tikhonov,Andrey Nikolayevich(1943).「 」[On the stability of inverse problems].Doklady Akademii Nauk SSSR 39(5):195-198。)
‧Lasso方法(Tibshirani,R.(1996).Regression shrinkage and selection via the lasso.J.Royal.Statist.Soc B.,第58卷,第1期,第267-288頁)。
‧藉由丟棄規則化之神經網路(Nitish Shrivastava,「Improving Neural Networks with Dropout」,Master’s Thesis,Graduate Department of Computer Science,University of Toronto;可自University of Toronto之computer science department網站獲得,關於連結請參見先前臨時申請案)。
‧一般規則化神經網路(Girosi F.等人,Neural computation,(7),219(1995)。
上文所引用之公開案皆以引用方式併入本文中。使用丟棄規則化之方法已顯示有希望避免過擬合並增加產生可普遍化測試(即可在獨立樣品集中進行驗證之測試)之可能性。
在該方法之步驟e)中,將開發樣品集隨機分成測試集及訓練集,且在程式化電腦中重複步驟b)-d)用於將樣品集分成測試集及訓練集之不同實現,由此產生複數個主分類器,一個針對將樣品集分成訓練集及測試集之每一實現。
該方法進行至步驟f)根據複數個主分類器中之一者或一者以上之組合定義最終分類器。在本發明實例中,使用自在所有主分類器內平均之邏輯組合獲得之概率之截止值來定義最終分類器(測試/訓練劃分)。為將用於開發集中之樣品分類,此經調節以使得截止值應用於自平均主分類器內邏輯組合之輸出獲得之概率,對於主分類器而言給定樣品不在訓練集中。
現參照圖1,具有開發樣品集100,在此情形下為105個肝病患者之基於血液之樣品之質譜分析數據。除如上文所解釋定義之質譜特徵 外,亦使用α-胎兒蛋白(AFP)表現量(以ng/ml表示)作為CMC/D方法之特徵,即,使用每一樣品之所量測AFP值來增大質譜特徵空間,且以與質譜特徵相同之方式處理AFP以產生微型分類器。另外,在圖1之分類器之一些開發中,自開發樣品集100排除具有高血清AFP含量之彼等患者,而在其他分類器產生練習中納入彼等患者。此態樣將進一步詳細地論述於下文中。
初始類別標記之定義(步驟102)
藉由指派類別標記HCC(來自經診斷患有HCC、在收集樣品時仍具有活腫瘤體徵之52患者集之48個患者)(在圖1中顯示為104)或非HCC(53個肝硬化但非HCC患者)(在圖1中顯示為106)來訓練分類器。不直接使用未患任何肝病之患者之34個樣品來訓練分類器。
訓練集及測試集之選擇(步驟108)
在步驟102已確立類別標記之初始定義後,在步驟108立即將欲用於建立分類器之開發集或其子集劃分成訓練集及測試集。在步驟134使用測試集110來測試分類器性能(參見下文),使用訓練集112來訓練分類器,且對訓練集112實施操作120、126及130。
微型分類器之產生及過濾(mC,步驟120及126)
在步驟120,使用來自已經鑒定之300個質譜特徵之特徵子集(亦及可能地AFP含量)構建使用訓練集作為其參照集之許多k最近鄰(kNN)微型分類器(mC)。對於許多研究,檢查所有可能的單一特徵及一對特徵(s=2);然而,當使用較少特徵時,亦考慮三個特徵或所有可能的四或五特徵集(s=3、4或5)。對於300個質譜特徵,僅遍歷所有單一特徵及一對特徵相當於考慮45,150個可能的mC。用於遍歷此計劃之mC空間之參數為5、7或11之K值。對於mC遍歷參數,以單一特徵(層級1)開始,使用實例1附錄A之所有特徵(或一些特徵子集);使用mC之每一層級或「深度」(1、2、3、4或5)處之所有特徵組合。如 圖1中之124所顯示,開發集中之樣品之特徵表包括所選特徵處之積分強度值(以陰影顯示),且如122所顯示,在多維特徵空間中使用kNN比較特徵(單一特徵、一對特徵等),且在步驟128僅保留產生「良好」分類之彼等比較(由+號指示)。
特定而言,在步驟126中為靶向具有某些性能特徵之最終分類器,過濾在步驟120構建之mC。將每一mC應用於其訓練集及可能地其他集(不包括來自測試集之樣品),且根據所得訓練集分類計算性能度量。僅滿足該等性能度量之臨限值之mC通過過濾以進一步用於該方法中。棄去未通過過濾之mC。對於此計劃,僅使用精度過濾,即將分類器應用於樣品集(例如該訓練集或非肝病患者之子集)且所得分類之精度必須在mC之預設範圍內以通過過濾。用於此計劃中之過濾選擇列示於下文所述之表8、9及10中。
此特定問題及患者群呈現顯著挑戰,此乃因除兩組因存在或不存在癌症而不同外,各組之肝臟功能亦不同,此在質譜中清晰可見。因此,儘管容易地製造可基於相對肝臟功能等級以良好精度分離「HCC」組與「非HCC」組的分類器,但此分類器將無法偵測癌症之存在或不存在,且因此無法通過高風險篩選設置。為避免基於此極強混擾因子產生分類器,基於相對肝臟功能等級使用額外過濾器來消除mC。將34個非肝病患者之集劃分成兩個子集。使用一半作為mC上之過濾器以確保除對分類器訓練集之足夠性能外,mC將較大比例之該等具有健康肝臟之患者分類為非癌症。使用非肝病患者集中之剩餘一半作為測試集,以確保任何最終測試亦將具有健康肝臟之患者分類為非癌症。此方法消除僅基於肝臟功能、而非癌症之存在或存在產生分類器之可能性。
自使用邏輯迴歸與丟棄組合微型分類器來產生最終分類器(步驟130、132)
完成mC之過濾後,立即在步驟130藉由邏輯迴歸訓練使用訓練集標記將mC組合於一個主分類器(MC)中。為幫助避免過擬合,使用極值丟棄將迴歸規則化。此研究中之大部分CMC/D方法隨機選擇10個mC納入每一邏輯迴歸迭代中。基於通過過濾之mC之典型數量選擇丟棄迭代的數量用於每一方法以確保每一mC可能多次納入丟棄過程內。
訓練/測試劃分(環路135)及主分類器性能之分析(步驟134)
使用分層隨機化將類別組多次劃分成訓練集及測試集(環路135及重複步驟108)。在步驟130每一訓練/測試劃分產生MC,其可應用於劃分測試集110以在步驟134評估性能。使用多數訓練/測試劃分會避免選擇單一、尤其有利或困難的訓練集用於分類器產生,且避免來自測試可能尤其易於或難以分類之測試集的性能評估之偏差。
最終分類器定義(步驟144)
定義每一MC之邏輯迴歸(132)之輸出係兩個訓練類別中之一者之概率。許多訓練集及測試集劃分內之該等MC輸出可在步驟144組合以若干可能的方式製造一個所得或「最終」分類器。
‧將截止值(例如0.5)應用於該等概率,可產生針對每一MC之樣品之二元分類標記。然後可以多數投票組合該等標記以獲得樣品之一個二元分類。在分析開發集中分類器之性能時,對訓練分類器所用之樣品使用經修改多數投票有幫助。對於用於一些訓練/測試集劃分實現之訓練集中之樣品,經修改多數投票(MMV)定義為在不具訓練集中之樣品之MC內的MC標記之多數投票。對於從未用於任何訓練集中之樣品,經修改多數投票與多數投票相同。
‧MC概率可在MC內平均以對一個樣品產生一個平均概率。當使用開發集工作時,此方法亦可經調節以在MC內以與MMV程序類似之方式平均,對於該等MC而言給定樣品並未納入訓練集中。該等平均 概率可用作分類器之輸出或可應用臨限值以將其轉換成二元分類。
‧另外,可計算樣品之MC概率之標準偏差。此可潛在地提供可歸於樣品之平均概率之確定性或不確定性的額外資訊。儘管不可用於提供樣品之直接分類,但該等輸出可用於多數分類器堆疊時。
本發明CMC/D方法在訓練集112中之兩個類別(HCC、非HCC)具有大致相等之大小時最有效。為達成此,可能需要以不同速率對在步驟102定義之類別採樣。另外,已觀察到性能在kNN參照集之大小極緩慢下降時快速劣化。當一個訓練類別中存在較小數量時,可有利地將大部分樣品納入每一實現中之kNN參照集中,僅留下極少樣品作為測試集。此方法仍最有效,前提係訓練/測試集劃分實現的數量按比例放大至允許當所有樣品在實現之測試集中時對其進行充分統計。
研究圖1之CMC/D方法之許多執行,改變用於測試/訓練劃分之開發集中樣品之群或子集、用於CMC/D方法中之過濾及所探究之特徵空間。具有不同參數之每一該執行在表8、9及10中稱為「方法」。
該等方法中之一些涉及在實例1附錄A之質譜特徵集內細化或精簡的特徵選擇。儘管通常可使用多種方法將質譜特徵集縮減至更相關之小集,但關於吾等類別(HCC、非HCC)之間之肝臟功能之偏差仍使事情變複雜。全集中之許多特徵將顯示僅基於肝臟功能分化類別之明顯能力,且該等特徵之數量可能多於可基於癌症之存在或不存在分化類別之特徵的數量。為嘗試確保維持實際上基於癌症/非癌症而非肝臟功能分化類別之特徵,利用極接近平衡根據MELD評分構建開發集之樣品之子集。此必要地為可用樣品之小子集(11個HCC患者及11個潛在肝病且非HCC患者)。特徵選擇係基於該等特徵區分此22患者子集內HCC與非HCC之能力。使用跨越該等組之t-測試之p值作為選擇頂尖特徵之準則。
在使用標準CMC/D工作流程及第一定義特徵集之新穎分類器開 發期間所嘗試之一些方法的概述呈現於表8及9中。表8含有使用所有48個HCC患者進行訓練之方法,且表9含有首先排除一些具有高AFP表現量(如根據檢查t-SNE圖所測定,參見先前臨時申請案之附錄E,該申請案以引用方式併入本文中)之HCC患者且對剩餘HCC患者進行訓練之方法。所有方法使用患有潛在肝病之所有非HCC患者進行訓練。應注意,亦基於微型分類器使用相同特徵定義將健康患者組之質譜分類之精度來過濾微型分類器。(對健康患者之正確分類指派為非HCC分類。因此,精度為1將使所有健康患者樣品分類為非HCC且精度為0將使所有健康患者分類為HCC。)在所用特徵欄中,「無AFP」意指自特徵集排除與AFP相關之特徵,「加AFP」意指特徵集包括AFP特徵。
使用第二交替定義特徵集(列示於實例1附錄B中)之方法概述於表10中。該等方法皆對HCC患者之子集進行訓練,如由藉由檢驗各別t-SNE圖確定之AFP截止值所定義。
開發集100 CMC/D分類器結果
使用接受器操作員特徵(ROC)曲線評估每一分類器方法之性能,其允許對應用於對每一樣品獲得之平均概率之不同截止值的每一方法獲得之靈敏度及特異性可視化。當將樣品用於訓練時,跨越樣品在測試集中之實現(MC)計算平均概率(袋外估計)。對於從未用於訓練中之樣品,僅在所有實現(MC)內將概率平均。有時將樣品用於所有實現中之訓練中。當進行此時,對樣品無法獲得可靠分類且其無法用於評估分類器性能。根據研究此問題之先前經驗,已知肝臟功能之混擾係主要威脅,因此亦檢查非肝病患者之測試集之分類以知悉該等主要分類為非HCC。
圖3顯示分類器開發時之一些早期嘗試之ROC結果,其中使用所有樣品來訓練分類器,即將48個HCC樣品及53個非HCC樣品之全集劃分成測試集及訓練集。對於參照,亦使用AFP中之簡單截止值繪製對該等樣品獲得之ROC曲線(黑色實線)。
圖3中所顯示之CMC/D方法僅使用一對特徵及單一特徵(2深)及K=11以形成KNN mC。使用不具AFP之所有質譜特徵(十字形)給出性能與單獨AFP類似之分類器。擴大特徵空間以納入AFP特徵(圓形)會改良性能,從而加強可在高特異性下達成之靈敏度。僅使用如根據MELD評分精確匹配之HCC與非HCC樣品集之間之t-測試之最低p值確定的前100個特徵(包括AFP特徵)(圖3中之星形),維持高特異性性能且增加可在高靈敏度下達成之特異性。因此,去選擇具有極少或無分類方法資訊之特徵並納入AFP特徵經確定係可用於達成良好分類性能之要素。
為研究可如何進一步改良性能,使用t-分佈隨機近鄰嵌入(tSNE)方法使特徵空間可視化。t-SNE係允許2D或3D圖像中之高維數據可視化,從而捕獲數據之大量局部結構,同時亦揭露整體結構(例如,若干標度之簇之存在)之工具。該方法將數據點之間之高維歐氏距離(Euclidean distance)轉換成高斯相似度(Gaussian similarity)。在低維(2D或3D)空間中,使用Student-t分佈替代高斯分佈來應用同一方法以計算點對之間之相似度。然後,以迭代方式,該方法尋求原始數據集之低維表示以最小化在高維及低維空間中計算之相似度之間的錯配。以此方式,構建2D或3D點圖像以允許可視化及鑒定給定數據集中之結構。圖4係如藉由t-測試p值所確定之前100個特徵(99個光譜特徵及AFP特徵)之特徵空間之tSNE圖。A及B係t-SNE低維空間之兩個坐標。
圖4圖圖解說明該問題之兩個令人感興趣之態樣。第一,儘管所 用特徵係基於具有精確匹配之MELD評分且因此密切匹配之肝臟功能的兩組之間的比較來確定,但顯然仍藉由肝臟功能分離各組。來自無肝臟損傷患者之樣品在圖之右下方聚集,而肝病但非HCC患者(已知其作為一組具有最差肝臟功能)往往朝向圖之中心及左上方聚集。來自HCC患者(其作為一組具有優於非HCC患者之肝臟功能但差於健康患者之肝臟功能)之樣品往往在圖之中心聚集。因此,即使在經設計以最小化主要針對肝臟功能選擇特徵之去選擇後,在不同類別之特徵之行為中仍存在很大程度之肝臟功能依賴性。圖4圖之第二令人感興趣之特徵係可見於右上方之HCC患者之分組。可用臨床數據之研究揭露該等患者係具有極高AFP含量(大於約65ng/ml)之彼等。由於該等樣品皆屬HCC類別且在特徵空間中與剩餘樣品不相連,故嘗試以下分類器開發方法:去除易於將訓練樣品分類之該等並精簡來替代針對正確地分類其他HCC樣品及非HCC樣品之較艱難任務訓練分類器。
圖5顯示第二組分類器之ROC曲線,其顯示當自開發集排除具有極高AFP之樣品且僅使用剩餘未經排除之樣品實施訓練時,使用相同特徵集、特徵空間之相同探究深度(3深,使用三個特徵及一對特徵及單一特徵)及相同的K=11獲得之性能之顯著改良。
使用AFP、前100個特徵且進入更深特徵空間、包括形成mC之三個特徵以及一對特徵及單一特徵的分類方法提供良好性能,從而達成83%/81%或81%/83%之靈敏度/特異性。其在大於90%之特異性下亦維持相當之靈敏度(68%)。
使用經設計以避免將雜訊、高可變性特徵添加至用於分類之特徵空間中的替代性特徵定義方法(預處理平均光譜(第二方法)),觀察到性能之一些類似圖案。使用根據25k射擊質譜定義之特徵之一些分類器方法的ROC圖顯示於圖6中。性能在藉由組合相關特徵精簡特徵全集時得到改良(圓形),且然後在藉由僅使用具有最小p值之50個特 徵來比較根據MELD評分精確匹配之患者集內的HCC對非HCC組自74個精簡特徵選擇前50個特徵時得到進一步改良(星形)。
探究該等不同的分類器產生方法並測試對用於KNN mC之K及用於mC過濾之不同範圍的不同選擇,圖7A中所顯示之分類方法經選擇具有最佳潛在性能。
選擇使用第一種特徵定義方法之一種方法及使用第二特徵定義方法之第二種方法用於最佳同時高靈敏度及特異性。亦顯示具有最佳性能但不使用AFP特徵之方法(星形)。最終候選者係在極高特異性下達成良好靈敏度之方法(三角形)。
出於驗證之目的,需要選擇平均概率之截止值來定義來自每一分類方法之一個分類器。表11概述對圖7A中所顯示之四種分類方法中之每一者選擇之截止值以及相關靈敏度及特異性。該等分類器之性能作為每一曲線上之實心點顯示於圖7A上。
現將解釋可如何及為何調節如ROC曲線中所展示之靈敏度/特異性。臨床考慮應驅動用於所考慮臨床問題之截止值之選擇。使用圖1自一個CMC/D運行或分類器產生練習產生每一ROC圖。替代使用多數投票(或經修改多數投票),跨越此樣品在測試集中之所有實現計算每一樣品之自邏輯組合產生之平均概率(替代跨越此樣品在測試集中 之所有實現具有0.5概率截止值之多數分類,如對MMV所進行)。因此,對於每一樣品獲得介於0與1之間之數值,其對應於將樣品指派給兩個分類中之一者(稱為類別1之任一者)之平均概率。可設定截止值「p」(對於任何0<=p<=1),且將平均概率低於p之所有樣品放置在類別2中並將平均概率大於或等於p之所有樣品放置在類別1中。隨著p自0增加至1,獲得所有樣品之可能分類集且該等分類之精度繪製為ROC曲線(根據每一p之每一分類集之靈敏度及特異性)。因此,ROC曲線實際上顯示大量藉由截止值p參數化之可能的個別分類器之結果。若挑選p=0.5,則通常獲得接近MMV方法之分類及所得靈敏度及特異性。然而,可挑選任何p值,此端視ROC曲線在何處給出臨床上最有用之測試而定(有時需要極高靈敏度且有時高特異性較佳)。
對於表11中所定義之分類器,獲得每一樣品之分類。該等列示於先前臨時申請案之附錄E中,該申請案以引用方式併入。對於每一分類器,根據肝硬化來源、TNM T時期及腫瘤大小之性能分別概述於表12、13及14中。自將非肝病或HCC患者之測試集之樣品分類發現,具有健康肝臟之患者主要分類為非HCC。
對第二樣品集驗證實例1之分類器
實施練習以觀察是否可對用於開發HCC之高風險群中之患者的完全獨立之基於血液之樣品集驗證如上文在實例1中所解釋產生之分類器。
驗證樣品集群係由193個來自希臘之肝病患者、110個HCC患者及 83個患有潛在肝病且未偵測到HCC之患者的基於血液之樣品組成。HCC及非HCC患者之肝病之主要病因皆係B型肝炎。提供180個患者(103個患有HCC且77個無HCC)之α-胎兒蛋白(AFP)表現量且在此章節中僅呈現該180個患者之數據。該群之一些臨床特徵根據患者組概述於表15中。
應注意,此群中之非HCC患者具有相對良好之肝臟功能(88% Child-Pugh A)。HCC組患有極晚期疾病(70% C類BCLC,即對索拉菲尼治療而言合格,而對於移植、切除或TACE療法而言過晚)。此亦可自表16中所顯示之HCC患者之腫瘤大小之數據觀察到。
如針對上述開發集所確切闡述實施樣品製備及光譜獲取。以四個批次運行樣品,每一批次在批次開頭時使用兩個參照樣品製劑且在批次末尾時使用兩個參照樣品製劑。
隨機選擇140個光柵光譜且對其進行處理以產生一個112K射擊平均光譜/樣品,如上文所詳細闡述。
遵循上文針對批次校正所述之程序,對深度MALDI平均值進行 批次校正以解釋質譜儀之m/Z靈敏度之可能變化。
對經批次校正之特徵表運行上文表11中所述之分類器之最後一個條目(「100個特徵,3深,K=11,所有樣品」),且概率截止值鎖定為0.31168。將在受讓人Biodesix之美國專利7,736,905之VeriStrat測試下測試VeriStrat不良之樣品(180個樣品中之25個)指派給HCC類別,參見本文件後來替代性測試方法之論述。為所有其他樣品指派分類器產生之分類。(應注意,在開發集中僅一個樣品分類為VeriStrat不良且所測試之所有分類器將此樣品指派給HCC類別。)將113個樣品指派給HCC分類且將67個指派給非HCC分類。
驗證集結果
在具有可用AFP表現量之總群中,分類器之靈敏度為89%(92/103)且特異性為73%(56/77)。在目前或先前患有B型肝炎感染之患者亞組內,靈敏度及特異性分別為91%及78%。在具有最佳肝臟功能Child-Pugh A之患者亞組內,性能為90%靈敏度及75%特異性。
根據不同患者特徵之性能的細分顯示於表17中。
在HCC組內,亦根據腫瘤大小及BCLC分類種類來評估性能(表18)。
除在開發過程期間評估具有所選截止值之分類器外,研究自改變截止值產生之分類器集之性能,且與對驗證集上之單變量AFP分類獲得之ROC曲線進行比較。結果顯示於圖7B中。特定而言,圖7B繪製允許改變概率截止值之分類器之ROC曲線。亦顯示驗證集上具有可變截止值之單變量AFP表現量之ROC曲線用於比較。實心符號顯示在開發期間選擇之概率截止值。
實例1結論
該等表中之數據顯示,分類器在患有獨立於肝病來源之潛在肝病之患者中具有良好性能。分類器將具有較大腫瘤(大於10cm或T=3或4)之所有患者正確地鑒定為HCC。然而,更重要的是,偵測最小腫瘤(<2cm或T1)之靈敏度仍極高(對於所有4種分類器超過或為約70%)。因此,當治癒性治療或有效干預仍可能時可偵測到小腫瘤。
已顯示,可使用基於血液之樣品及深度MALDI質譜分析來開發能夠偵測潛在肝病患者中之HCC之分類器。候選分類器展示在篩選具有罹患HCC之高風險之患者方面臨床上相關之測試集性能。分類器性能看上去不易引起在所研究病因範圍內之潛在肝病,其跨越美國群中肝病之最常見病因。高性能擴展至對小於2cm之小病灶或TNM T1期之偵測。此對於任何HCC篩選程式影響患者存活至關重要,儘可能早地鑒定癌症,此時可向新診斷之患者提供有效療法。
HCC早期偵測分類器在完全獨立的驗證群中驗證良好且展示自開發集群普遍良好之能力,其中潛在肝病之主要病因係C型肝炎感染,對於獨立驗證集,其中肝病之主要病因係B型肝炎。在此靈敏度下分類器之性能遠優於可自驗證集上之單獨AFP獲得者。
與開發集中之73%相比,驗證集中之靈敏度為89%。應注意,開發集中之患者皆患有相對較早期之HCC,適於藉由移植或切除來治療(A類BCLC),而驗證集中之大部分患者患有更晚期HCC。此要素可能 解釋靈敏度之增加。應注意,目前小於30%之HCC患者經診斷早至足以進行手術干預,因此可預期典型早期偵測設置中之靈敏度大於開發集中之靈敏度,且應介於驗證集結果與開發集結果之間。
與開發集中之95%相比,驗證集中之特異性為73%。驗證集中之非HCC患者具有與開發集中之非HCC患者相當好的肝臟功能,該等患者皆因潛在肝病而接受肝臟移植。另外,根據MELD評分(驗證HCC亞組之中值10對開發HCC亞組之中值14對開發非HCC亞組之中值25),驗證群HCC患者亦具有較佳肝臟功能。非HCC組內分類指派誤差之研究揭露其主要發生在具有較佳肝臟功能且AFP處於正常範圍之較高部分中之患者中。鑒於缺少來自非HCC且具有良好肝臟功能之患者之訓練樣品,可預期此結果。
儘管驗證研究已顯示分類器之靈敏度可能為臨床應用極可接受,但特異性看上去稍低。然而,開發集由具有極差肝臟功能之非HCC患者主導。非常樂觀的是,組合原始開發集之樣品與此驗證群之一些樣品之分類器再開發將允許在該等已經良好的靈敏度下測試特異性之相當改良。再開發亦將允許測試開發納入使用可最容易用作商業HCC早期偵測測試之組份之特定AFP測試實施的AFP量測。因此,實施HCC/非HCC質譜分析分類器及測試之再開發且結果解釋於隨附實例2中。
實例2
在此實例中闡述測試之再開發以鑒定潛在肝病患者之高風險群內之肝細胞癌(HCC)患者。自HCC患者可獲得158個樣品(110個來自Thrace,Greece且48個來自Texas,USA),自非HCC但潛在肝病患者可獲得135個樣品(83個來自Greece且52來自Texas)。自經診斷患有HCC且已接受化學栓塞併發現在手術時(樣品收集時)未留下活腫瘤之患者可獲得另外四個Texas樣品。對目前無法獲得HCC/非HCC狀況及其他 臨床資訊者可獲得另外兩個Greek樣品(Biodesix ID 146及195),且對無法獲得AFP者(不慎未運行)可獲得另外一個Texas樣品(ID 35)。另外,自非肝病或HCC患者可獲得32個內部樣品。所有樣品皆為血清樣品。
具有完整臨床數據及經充分定義之HCC狀況之293個患者之臨床特徵顯示於表19中。(由於來自Texas群之所有HCC患者正經受肝臟切除或移植,故假設其皆在A類BCLC中。)
**可具有一種以上之病因
光譜獲取、處理及平均;特徵定義
此再開發使用在實例1(Texas樣品)之測試開發迭代期間獲取之深度MALDI光譜。使用相同的樣品製備及光譜獲取程序自Thrace樣品再獲取光譜。樣品製備、光譜獲取及光譜平均之完整細節可參見上文實例1之描述。使用與實例1中所定義相同之特徵定義。為完整起見,將在分類器開發中鑒定且使用之300個質譜特徵列示於本文件之實例1附錄A中。
平均光譜之初始預處理
減去光譜之背景(兩個窗口80,000/10,000)且使用表4中所列示之部分離子流(PIC)窗口正規化,參見實例1。
該等窗口係利用一方法來選擇,該方法防止使用在所關注組之間(HCC對肝硬化)顯著不同之窗口(此可導致分類潛能降低),且亦防止固有不穩定之特徵。整個m/z區域分成大小不同之106個倉以防止倉邊界落在峰內。對於每一m/z倉,測定每一樣品之特徵值。使用Wilcoxon秩和測試藉由表20中所列示之組比較來比較該等特徵值。若所得p值介於0-0.1之間,則自正規化排除該區域。若特徵值(所有樣品)之CV大於1.0,則排除該區域。實例1、表4中所述之僅5個窗口符合所有3個組比較之要求。該等窗口皆不含高強度特徵。
使用剩餘倉作為PIC正規化窗口且計算每一樣品之正規化純量。實施組之最終比較以確保所用各組及正規化參數不相關。圖9A、9B 及9C之盒鬚圖展示組1、2及3具有相似的正規化純量分佈。
然後使用實例1之表6中所列示之點校準光譜以去除比對中之微小差異。
不同批次之參照光譜、批次校正、正規化之分析
使用實例1之描述中所解釋之方法實施參照光譜、批次校正及部分離子流正規化之分析。為正規化,對表21中所列示特徵之值求和以發現每一樣品之正規化因子。然後用所有特徵值除以正規化因子以獲得用於CMC/D分類器開發中之最終特徵表。
最後,經由組比較檢查正規化純量以確保特徵表之有用信號不減少。儘管組比較1與2並無顯著不同,但組比較3顯著不同。此並不令人驚奇,因為當獲得目前正規化特徵列表時,並未使用發現在「另一」組中最穩定之特徵。然而,經由HCC及肝臟損傷樣品之正規化達成之穩定性增加足以改良CMC/D之性能(數據未顯示),且不使用來自 「另一」組無HCC或潛在肝病患者之樣品進行分類器之訓練或直接性能評估。
圖10顯示用於組1(圖10A)、組2(圖10B)及組3(圖10C)之最終正規化步驟之組比較之正規化純量的盒鬚圖。
α-胎兒蛋白表現量之測量
實例1之先前技術可行性研究顯示納入血清α-胎兒蛋白(AFP)含量作為新穎分類器開發之特徵改良測試性能。在分類器再開發之前,評估AFP之若干測量方法之可再現性。選擇在主要關注區域(2ng/ml<AFP<100ng/ml)內具有最佳可再現性之套組。
「VeriStrat樣」分類之指派
已觀察到,基於血液之樣品之VeriStrat不良分類(參見美國專利7,736,905)在癌症患者外不常出現。因此,VeriStrat不良分類可能指示癌症之存在,但具有低靈敏度。為將此資訊用於HCC患者之分類中,藉由平均三份3個深度MALDI 800射擊光柵光譜並將VeriStrat分類演算法及VeriStrat NSCLC訓練集應用於三個平均光譜來獲得基於血液之樣品之「VeriStrat樣」分類。檢查分類為「VeriStrat樣」不良之所有樣品以確保該分類並非因存在已知可以m/Z約11.72kDa出現之混擾峰而獲得。此峰已在肝臟功能嚴重受損之患者中觀察到,且因此此檢查在此患者群中極重要。「VeriStrat樣」不良分類係因11.72kDa之峰所致之樣品並不分類為「VeriStrat樣」不良。
以此方式獲得用於此計畫中之所有樣品之「VeriStrat樣」分類。組合群(cohort)中293個患者之「VeriStrat樣」分類概述於表22中。
實例2分類器開發 將樣品劃分成分類器開發集(圖1,100)及內部驗證集
如先前所解釋,實例2之樣品集來自兩個不同的患者群。在對HCC患者進行切除或移植時及對非HCC患者進行移植時收集Texas樣品。因此,兩個群之間之肝臟功能存在大偏差:HCC患者具有優於彼等非HCC患者之肝臟功能。此群之潛在肝病之最常見病因係C型肝炎(HCV)。另外,由於HCC患者對切除或移植而言合格,所有患者具有相對較早期之HCC。相比之下,Thrace HCC樣品係來自較晚期癌症患者;大部分HCC患者為3期或4期BCLC(僅為索拉菲尼療法或最佳支持性護理之候選者)。非HCC患者通常具有遠優於Texas群之相應患者之肝臟功能,且HCC及非HCC患者之潛在肝病之最常見病因皆係B型肝炎(HBV),其與肝硬化之相關性小於與HCV感染之相關性。
由於該兩個群呈現互補患者群,故決定對兩個群之組合再開發分類器以較佳表示HCC高風險篩選程式中所預期之患者範圍。
如下實施至開發集(圖1,100)及驗證集之劃分。來自兩個群之具有已知HCC狀況之所有樣品及其相關臨床數據列示於試算表中。試算表係根據組(HCC/非HCC)進行分選。根據TNM狀況、病灶大小(T1 1cm<病灶大小3cm,T1 3cm<病灶大小4cm,T1 4cm<病灶大小,T2、T3、T4、NA 2cm<病灶大小4cm,NA 4cm<病灶 大小6cm,NA 6cm<病灶大小10cm,NA 10cm<病灶大小15cm,NA 15cm<病灶大小)對HCC樣品分組,且根據MELD評分進行分選。將樣品劃分成毗鄰配對且將一者指派給開發集並將另一者指派給驗證集,從而嘗試維持VeriStrat標記、潛在肝病病因及AFP含量之總體平衡。根據潛在肝病病因、Child-Pugh狀況、MELD評分(可用時)及AFP之初步評估來分選非HCC樣品。(出於此劃分之目的,根據Texas樣品之可用臨床數據僅估計「最小」Child-Pugh狀況。亦應注意,考慮用於劃分之AFP含量係初步AFP量測且並非用於分類器開發及樣品分類之彼等。)比較所得開發集與驗證集之間之臨床特徵且發現其相似,顯示於表23中。
比較:MELD HCC開發集對驗證集:t-測試p值=0.63
Mann-Whitney p值=0.55
AFP HCC開發集對驗證集:t-測試p值=0.44
Mann-Whitney p值=0.73
AFP非HCC開發集對驗證集:t-測試p值=0.48
Mann-Whitney p值=0.76
開發集100(圖1)係由80個HCC樣品(56個Thrace、24個Texas)及68個非HCC樣品(42個Thrace、26個Texas)組成。另外,將來自非HCC且非潛在肝病患者之32個樣品用於開發中。驗證集係由78個HCC樣品(54個Thrace、24個Texas)及67個非HCC樣品(41個Thrace、26個Texas)組成。
使用圖1程序之新穎分類器開發
使用上文實例1詳細論述之圖1程序實施新穎分類器開發過程。除可用質譜特徵外,將AFP含量納入特徵空間122中(圖1)。
類別標記之定義(圖1之102)
使用類別標記HCC及非HCC來訓練分類器。由於認為具有 「VeriStrat樣」不良分類之樣品(N=15)極可能來自癌症患者,故將該等樣品定義為HCC且不用於訓練分類器。
已提出AFP作為HCC之篩選測試。升高的AFP含量高度表明HCC,但低AFP含量並不排除癌症之存在。充分性能之此缺少意味著目前並不推薦AFP量測作為HCC之篩選測試。HCC患者中之AFP含量可超過正常範圍(低於10-20ng/ml)許多數量級。不使用AFP超過100ng/ml之樣品來訓練分類器。該等樣品(N=25)在最終分類中定義為HCC。使用AFP低於或等於100ng/ml之樣品來訓練分類器,且使用AFP含量作為除300個質譜特徵外之特徵。
微型分類器之產生及過濾(圖1之步驟120、122)
在步驟135之625個不同實現或環路中,將不分類為「VeriStrat樣」不良之AFP含量小於或等於100ng/ml之開發樣品之子集劃分成訓練集及測試集(在圖1中分別為112、110)。根據MELD評分(可用時)對訓練/測試劃分進行分層。由於圖1之程序在訓練類別具有相同樣品數時最有效,故對於每一實現,將HCC組劃分成30個訓練樣品及12個測試樣品,同時將非HCC組劃分成30個訓練樣品及36個測試樣品。
使用特徵之子集構建使用訓練集作為其參照集之許多k最近鄰(kNN)微型分類器(mC)(步驟120所定義)。為能夠考慮單一、兩個或三個特徵之子集並改良分類器性能,需要去選擇來自無法用於分類之301集之特徵。此係以袋裝方式(即跨越多數樣品子集)基於使用單一特徵建立之kNN分類器之性能的過濾來進行。此方法更詳細闡述於J.Röder等人於2015年4月30日提出申請之美國專利申請案第62/143,844號中,該申請案之內容以引用方式併入本文中。
袋裝過濾程序之本質如下。產生可用樣品之開發集至兩個子集之多數劃分。一個子集用於特徵(去)選擇且其餘一個擱在一邊。對於每一劃分,使用作為分類器之訓練集之給定子集及一個單一特徵產生 kNN分類器。對於此計劃使用k=5。將所產生之分類器應用於訓練子集及健康患者樣品之子集,且根據分類精度評估分類器性能。將過濾器應用於該等性能估計,使得該特徵僅在使用此樣品子集進行訓練之分類器具有足夠性能時通過過濾。對於此計劃,所用過濾器定義於表24中。
將對於給定子集選擇通過過濾之所有特徵添加至列表中。對於所產生之所有子集實現重複此步驟。然後跨越子集實現編譯通過過濾之特徵列表以確定特徵通過過濾之頻率。在大部分子集中通過過濾之一對特徵於所解決之問題可能有用且穩健,此乃因其不依賴於任何特定樣品子集。對於極少數子集實現通過過濾之特徵可能已過擬合至彼等少數子集且不太可能有用。
去選擇在小於或等於156個子集實現(25%)中通過過濾之特徵,且僅使用在大於25%之子集實現中通過過濾之特徵進行分類器開發。所得減小的特徵集於實例2附錄C中給出。
應用袋裝過濾方法可減小特徵集,其列示於實例2附錄C中,其用於步驟120中。儘管對分類器開發測試k=5、9及11之值,但經選擇用於驗證之分類器使用k=9及k=11。
為靶向具有某些性能特徵之最終分類器,在步驟126中過濾該等mC。將每一mC應用於其訓練集且根據所得訓練集分類計算性能度量。僅滿足該等性能度量之臨限值之mC通過過濾以進一步用於該方法中。棄去未通過過濾之mC。對於此計劃,僅使用精度過濾,即將分類器應用於樣品集(例如該訓練集或非肝病患者之子集)且所得分類 之精度必須在mC之預設範圍內以通過過濾。用於此計劃中之過濾選擇列示於表25中。
此特定問題及患者群呈現相當挑戰,此乃因患者之間肝臟功能之差異在質譜中清晰可見,且極多質譜特徵受自其收集樣品之患者之相對肝臟功能等級之影響。此甚至在僅使用Texas患者樣品之分類器開發之先前嘗試中更顯著,對於該等Texas患者樣品,HCC患者具有極顯著優於非HCC患者之肝臟功能(實例1)。此再開發藉由組合兩個互補患者群極大地減輕此問題。然而,依賴於肝臟功能之特徵之混擾仍係挑戰。為避免產生性能依賴於一定程度之此混擾因子之分類器,使用額外過濾器進行特徵去選擇及步驟126以消除將基於樣品子集中之相對肝臟功能等級以其他方式通過過濾之mC。將非肝病且非HCC之32患者集劃分成兩個子集。使用一半作為mC上之過濾器以確保除對分類器訓練集之足夠性能外,mC將較大比例之該等具有健康肝臟之患者分類為非癌症。使用剩餘一半非肝病患者集作為測試集以確保任何最終測試亦將具有健康肝臟之患者分類為非癌症。此方法消除僅基於或主要基於肝臟功能而非癌症之存在或不存在產生分類器的可能性。
使用邏輯迴歸與丟棄組合微型分類器(步驟132)
完成mC之過濾後,立即使用利用訓練集標記訓練之邏輯迴歸將mC組合於一個主分類器132(MC)中。為幫助避免過擬合,使用極值丟棄將迴歸規則化,且隨機選擇僅10個mC納入60,000個邏輯迴歸迭代之每一者中。基於通過過濾之mC之典型數量選擇丟棄迭代的數量 以確保每一mC可能多次納入丟棄過程內。步驟132之結果係通過過濾之mC分類器之邏輯迴歸係數集,其定義用於給定訓練集及測試集劃分之「主分類器」(MC)(步驟108)。
訓練/測試劃分
使用多數訓練/測試劃分(環路135)會避免選擇單一、尤其有利或困難的訓練集用於分類器產生,且避免來自測試可能尤其易於或難以分類之測試集的性能評估之偏差。
最終分類器定義(步驟144)
定義每一MC之邏輯迴歸(132)之輸出係兩個訓練類別(HCC或非HCC)中之一者之概率。該等MC概率可經平均以對一個樣品產生一個平均概率。當使用開發集工作時,此方法經調節以在MC內平均,對於該等MC而言給定樣品並未納入訓練集中。可藉由應用臨限值(截止值)將該等平均概率轉換成二元分類。可使用ROC曲線來研究根據圖1之程序產生之藉由截止值之不同選擇參數化之整個分類器家族的性能並幫助選擇適用於臨床問題之截止值。
開發集結果
使用ROC曲線評估分類器之性能,其允許對應用於對每一樣品獲得之平均概率之不同截止值的每一方法獲得之靈敏度及特異性可視化。當將樣品用於訓練時,跨越樣品在測試集中之實現(MC)計算平均概率(袋外估計)。對於從未用於訓練中之樣品,僅在所有訓練/測試集實現(MC)內將概率平均。應注意,ROC曲線亦包括基於「VeriStrat樣」不良分類或大於100ng/ml之AFP表現量指派為HCC分類之樣品。出於ROC分析之目的,為該等樣品指派平均概率0。
圖11顯示針對k=9及11產生之分類器之(開發集之)ROC曲線。為進行比較,亦顯示針對開發集上單變量AFP之ROC曲線。ROC曲線之曲線下面積(AUC)於表26中給出。尤其在期望高靈敏度及特異性之臨 床相關領域中,兩種分類器顯示顯著大於單變量AFP之分類能力。
為定義欲驗證之測試且根據臨床特徵評估分類器之性能,必須確立平均概率之截止值(即ROC曲線上之點)。表27含有對每一k選擇之截止值以及相關靈敏度及特異性。對k=9及k=11分類器選擇之截止值之位置亦以實心點顯示於圖11中。
對於表27中所定義之分類器,獲得每一樣品之分類。開發集中根據潛在肝病來源、TNM T時期、腫瘤大小及BCLC種類之分類器性能概述於表28、29及30中。
表28-30中之數據顯示分類器在獨立於肝病來源之潛在肝病患者中具有良好性能。分類器將具有較大腫瘤(大於10cm)之16個患者中之14個正確地鑒定為HCC,且將兩個患者分類為T=3或4。偵測最小腫瘤之靈敏度仍較高(對於k=9分類器,對於小於2cm之病灶為100%,對於小於75%之病灶為75%,且將67%病灶分類為T1)。至關重要的是,分類器將73%(k=9)及69%(k=11)之A類BCLC患者(對於切除或移植而言合格之彼等)鑒定為進行HCC治療。用於鑒定較晚期HCC患者(其中患者係以目前最常用之方式診斷)之精度大於95%。
自將非肝病或HCC患者之測試集之樣品分類發現,具有健康肝臟之患者主要分類為非HCC。另外,患有HCC但在移植或切除時不具活腫瘤團塊之四個患者通常分類為HCC。此數據顯示於表31及32中。
驗證集結果
自先前論述回憶將可用於實例2之分類器開發練習之樣品集初始劃分成開發集及驗證集。將在圖1之步驟144定義之兩個所開發分類器(k=9、k=11)應用於驗證樣品集之質譜分析數據。亦分析驗證樣品集中之AFP含量且用作特徵空間中之特徵以根據圖1進行分類器訓練。在圖12及13中,比較該等結果與驗證集中單變量AFP之彼等及開發集中之結果以及相應的單變量AFP。截止值之位置以實心圓形及實心星形顯示於圖12及13中。分類器跨越整個ROC曲線及在AUC方面驗證良好。相對於單變量AFP增加的分類能力仍具有相似量值。
兩種分類器之驗證集之AUC於表33中給出,且針對所選截止值之靈敏度及特異性顯示於表34中。
根據潛在肝病來源、TNM T時期及腫瘤大小之性能概述於表35、36及37中。
儘管偵測最小病灶(<2cm及T1)之精度小於開發集中之精度,但此差異可歸因於較小可用樣品數。大小小於3cm之腫瘤之精度仍為67%,且鑒定早期HCC(A類BCLC)患者之精度仍相對較高(64%)。鑒定較晚期HCC(BCLC C及D)患者之精度在94%下驗證良好(對於k=9分類器)。
實例2結論
實例2已展示兩種分類器之開發,二者皆具有針對開發集超過80%靈敏度及80%特異性之性能。兩種分類器對驗證集驗證良好,二者皆具有接近80%之靈敏度及80%之特異性,此顯示對開發集計算之性能估計係可靠的。根據在臨床上相關之固定特異性下之AUC及增加的靈敏度,分類器一致地顯示明顯優於單變量AFP之性能。兩種分類器(k=9、k=11)之性能極相似且無實際顯著差異,指示對一者優於另一者之偏好。
對於極小病灶難以獲得分類器性能之可靠估計。使用目前篩選及診斷方法通常無法可靠地偵測該等病灶,且即使幸運地具有適於藉由切除或移植治療之最早期HCC患者之樣品群,仍存在已知病灶大小小於2cm之僅6個患者及已知病灶大小小於3cm之僅14個患者。跨越組合群,k=9分類器鑒定出67%(4/6)之病灶大小小於2cm之患者及71%(10/14)之病灶大小小於3cm之患者。分類器能夠跨越整個樣品集偵測早期HCC(A類BCLC)且精度為69%。此尤其重要之原因在於,目前小於30%之患者在呈切除或移植形式之干預可顯著改良結果之此疾病早期被診斷出。
III.實驗室測試中心及電腦執行之分類器(圖8)
圖8圖解說明使用根據圖1產生之分類器處理測試樣品(在此實例中為來自肝病患者之基於血液之樣品)並產生樣品之標記或結果(HCC、非HCC)的實驗室測試中心或系統。該系統包括質譜儀806及通用電腦810,該通用電腦810具有執行以機器可讀指令編碼之CMC/D分類器820及參照質譜數據集(包括儲存在記憶體814中之類別標記質譜分析數據之特徵表822)的CPU 812。應瞭解,根據圖1之方法,圖8之質譜儀806及電腦810可用於產生CMC/D分類器820。
圖8系統之操作將闡述於測試提供血液樣品之患者是否患有HCC之上下文中。以下論述假設,在使用分類器產生測試樣品之標記或標記組時已產生CMC/D分類器820。
圖8之系統獲得多數樣品800,例如來自不同肝病患者之基於血液之樣品(血清或血漿),且以論次付費的形式產生標記或標記組。分類器(在電腦810中執行)利用樣品800來偵測HCC之存在。測試之結果係二元類別標記(或該等標記之組),例如HCC、非HCC或諸如此類。所報告類別標記或結果之特定名稱並不尤其重要且可為一般名稱,例如「類別1」、「類別2」或諸如此類,但如先前所述,類別標記與分 類器所回答之問題(在此情形下為HCC之存在或不存在)相關之臨床屬性相關。
可在血清卡或其中將基於血液之樣品吸至纖維素或其他類型卡上之類似物上獲得樣品。將樣品之等份點至MALDI-ToF樣品「板」802之若干斑點上且將板插入MALDI-ToF質譜儀806中。質譜儀806自樣品之每一斑點獲取質譜808。質譜係以數位形式表示且供應至程式化通用電腦810。電腦810包括執行程式化指令之中央處理單元812。記憶體814儲存表示質譜808之數據。光譜獲取細節(包括深度MALDI(100,000+次雷射射擊)及用於分類器產生之光譜處理(上文詳細闡述))亦用於測試樣品。
記憶體814亦儲存最終CMC/D分類器820,其包括a)呈N個類別標記光譜之特徵表形式之參照質譜數據集822,其中N係一些整數數值,在此實例中為用於開發如上文所解釋之分類器之開發集或開發樣品集之一些子集(例如,在排除具有高AFP含量之彼等患者後)。參照集可視情況包括訓練集中每一成員之血清AFP表現量,且此AFP含量可用作除質譜特徵外之分類特徵。根據先前論述應注意,所開發之一些分類器使用AFP含量作為另一分類特徵,而其他分類器不使用AFP含量且僅使用質譜特徵。最終CMC/D分類器包括b)代碼824,其表示kNN分類演算法(其係在如上文所解釋之微型分類器中執行),c)程式代碼826,其用於執行針對患者之質譜根據圖1產生之最終分類器,包括邏輯迴歸係數、概率截止值及表示形成最終分類器之主分類器之數據,及d)數據結構828,其用於儲存分類結果,包括測試樣品之最終類別標記。記憶體814亦儲存用於執行850處所顯示之處理之程式代碼830,其包括用於在步驟852自質譜儀獲取質譜數據之代碼(未顯示);用於執行背景減去、正規化及比對步驟854(細節解釋於上文中)之預處理例程832;用於過濾及平均每個斑點多數位置處及多數MALDI斑 點內之800射擊光譜以製造單一100,000+射擊平均光譜(如上文所解釋)之模組(未顯示);用於計算經背景減去、正規化及校準之光譜中預定m/z位置之積分強度值(步驟856)之模組;及使用針對在步驟856獲得之值之參照數據集822執行最終分類器820之代碼例程838。過程858在步驟860產生類別標記。模組840如860所指示報告類別標記(即「HCC」、「非HCC」或同義字)。
程式代碼830可包括其他及可選模組,例如用於校正質譜儀之性能波動之特徵校正函數代碼836(闡述於共同待決美國專利申請案第14/486,442號中)、用於處理參照樣品之光譜以定義特徵校正函數之例程集、儲存特徵依賴性雜訊特徵並產生雜訊特徵值實現且將該等雜訊特徵值實現分類之模組、儲存統計演算法以獲得關於雜訊特徵值實現之分類器性能之統計數據的模組、或組合根據樣品之多數個別複本測試所定義之類別標記以產生此樣品之單一類別標記的模組。如熟習此項技術者將明瞭,可包括其他可選軟體模組。
圖8之系統可以實驗室測試處理中心來執行,以自腫瘤科醫生、患者、診所等獲得多數患者樣品,且以論次付費的形式產生患者樣品之類別標記。質譜儀806無需在物理上位於實驗室測試中心,而電腦810可在電腦網路上獲得表示測試樣品之質譜之數據。在一個實施例中,當亦將AFP含量用於分類演算法中時,亦使患者之基於血液之樣品經歷AFP分析以量測血清AFP含量及儲存在電腦記憶體中之值。然後將此含量與基於血液之樣品之質譜數據一起用於分類演算法中。用於實施AFP分析之儀器可在物理上包括在實驗室測試中心中,或另一選擇為其可存在於第三方測試服務之實驗室。在後一情況下,將自患者獲得之一些適宜量之基於血液之樣品送至第三方進行AFP測試且將結果返回並儲存在記憶體中以供分類器使用。
其他考慮
應注意,所產生之分類器可使用例如實例1附錄A(或其一些子集)或實例2附錄C(或其一些子集)之特徵,且尚未精確地確定該等峰對應於哪些蛋白質。亦無此需要。重要的是分類器性能。吾等認為其可直接或間接涉及在本文件開頭所引用之科學文獻中所提及之蛋白質生物標記物。應注意,利用「深度MALDI」質譜分析及使用50、100或甚至200或更多個峰,分類器可能基於仍未發現之在血清中循環之蛋白質生物標記物。該方法基本上利用以下事實:使用>100,000射擊MALDI-TOF質譜可偵測該等蛋白質,且特定而言低豐度蛋白質,且將其用於分類器之開發及應用,即使明確未知該等峰對應於哪些蛋白質。
亦應理解,用於將測試樣品分類為HCC或非HCC之最終分類器之確切參數可顯著不同,此端視希望如何確切地調諧分類器之性能參數而定。在上表中已闡述所考慮之多種可能分類器之參數。ROC曲線亦顯示多種分類器產生方法及參數調諧之性能。該等考慮包括關於用於早期偵測HCC之「最佳」分類器之以下額外思考。
a. 質譜特徵數
用於認為「最佳」之分類之特徵數可係實例1附錄A之所有300個特徵、使用鑑別力之t-統計學選擇之100個特徵、自精簡特徵集選擇之50個特徵或一些其他數量之特徵,例如實例1附錄B或實例2附錄C中所列示特徵之子集。為理解此情況,問題在於最佳的意義;在因有限開發集所致之不可避免之不確定性內,似乎可建立相當多表現大致相等之測試。該數量亦可取決於是靈敏度抑或特異性在臨床實踐中更重要。在實例1中,已評估四種具有指定概率截止值之分類器,即:
1.在分類器開發樣品集中具有靈敏度與特異性之間之最佳開發性能平衡者,例如85%靈敏度、81%特異性。
2.不使用血清AFP含量作為分類特徵者。
3.具有高特異性者。
4.來自精簡特徵集者。
在此處運用若干理念,即a)偵測儘可能多的早期HCC患者(推動靈敏度);b)嘗試避免使用平臺外值,例如不使用AFP含量之分類器,以使測試更易於商業化(即,若無需運行ELISA分析及/或自第三方獲得測試結果(例如AFP含量),則其在技術上更容易,另外亦存在樣品體積及使用卡進行該等「平臺外」額外分析之問題);c)避免因隨訪之成本問題所致之偽陽性;及d)嘗試最佳化分類器之穩健性及最大可再現性。特定而言,關於條目d),挑選吾等認為更可再現且具有更大信號對雜訊(S/N)比之特徵的一種方式係,對較小射擊數之平均值定義特徵且然後計算在更多射擊內平均之光譜之特徵的理念。隨著射擊數增加,峰之變異數係數(CV)往往減小(但因不可再現性之其他來源(例如樣品製劑問題)所致而不低於一些固有值)且出現新峰。該等新峰具有較高CV,此乃因其藉由平均更多射擊自雜訊剛剛出現。因此,此理念可幫助丟棄一些雜訊特徵(替代藉由t-測試進行特徵去選擇),且其亦可幫助僅具有更可再現之特徵。此後者可藉由將任何最終測試確立為可再現以滿足管理機構而有助於使生活更容易。
關於特徵去選擇,淘汰不添加資訊之「雜訊」特徵似乎較佳,所保留之確切數量並不至關重要。因此,實例2附錄C之特徵列表係充分起作用之減小的特徵集之實例。
b. mC之最佳深度(特徵數、參數s)
結果在此處增加深度s似乎有幫助,利用3深及有時4深(在精簡特徵之情形下)會獲得較佳結果。4深似乎對非精簡特徵無幫助。利用4深與100個特徵難以有所作為,且5深甚至禁止(運行時間)用於50個特徵。用100個特徵運行一或兩次4深,但結果並不優於3深。在現有計算資源下,在3以上改變微型分類器之深度的同時試用許多參數設置 極其耗時。因此,在摘要中無法說明哪個深度最佳,僅說明對於50個精簡特徵,4深優於3深及2深,且對於100個特徵,3深優於2深。因此,mC特徵之最佳深度在一定程度上取決於用於分類之特徵數。
c. 訓練/參照集:構成訓練集之患者之特徵(圖1之步驟108)
探究開發包括及排除訓練集中具有高AFP含量之患者之分類器。一種候選分類器對所有HCC患者進行訓練且不自訓練集丟棄具有高AFP之彼等患者。另一方面,所探究之一些分類器在訓練集中包括具有高AFP之患者時表現較差。因此,在開發分類器時,應探究所有選擇並選擇具有最佳性能之分類器,且該分類器將具有可排除或可不排除來自具有高AFP含量之患者之樣品的訓練集。對於除AFP外可能與肝病相關之生物標記物之其他非質譜分析量測,可保留相同備註。另外,為靶向特定亞群之分類器性能或為將性能擴大至較寬群中,使用其樣品來訓練分類器之患者之臨床特徵可起重要作用。亦可利用改變用於分類器訓練之樣品集之臨床特徵來調諧分類器性能。特定而言,可有利地添加至來自患有肝病但無HCC且肝臟功能優於對肝臟移植而言合格之患者的患者(開發集中之非HCC群)之開發集樣品或來自弱勢來源之肝病患者之樣品中。此可潛在地改良分類器在更一般高風險篩選群中之性能。
d. K最近鄰演算法中之K值(圖1之步驟120)
根據實例1之表11及實例2應注意,探究具有針對微型分類器之不同K值之多種分類器。一些分類器使用K=11。在分類器開發期間發現一些具有較佳性能及較低K值之分類器。「所有樣品」分類器及「無AFP」(排除高AFP患者)分類器使用K=11,精簡特徵分類器使用K=7且「根據AFP未經排除」分類器使用K=5。因此,最佳K值取決於多個要素且可藉由試驗及誤差並選擇具有最佳分類器性能之值來獲得。
e. mC之健康亞組過濾(圖1之步驟126)
基於mC將健康患者之質譜分類為非HCC之良好程度,探究用於過濾mC(圖1中之步驟126)之若干不同值,例如0.5<健康患者精度<1.0、0.6<健康患者精度<1.0及其他。對健康亞組過濾選擇之最佳值在很大程度上取決於所產生之特定分類器。在開發中發現,嘗試使此範圍儘可能地寬通常產生較佳性能,直至到達肝臟功能佔優勢且健康患者開始隨機分類或全部分類為HCC之點為止。參數應經選擇使得應使用來自儘可能多的mC之資訊(即寬過濾,例如0.6<健康患者精度<1),只要肝臟功能偏差不佔優勢即可。
f. 最終分類器之定義(圖1之步驟144)
如先前所述,業內存在在圖1之步驟144利用圖1方法產生之連續迭代之所有MC定義最終分類器之若干可能方法。一種可能性係使用所有MC之多數投票。另一可能性係選擇所有MC內平均概率之截止值(例如0.5),將分類器所產生之ROC曲線考慮在內並計算MC之概率之平均值,且然後基於平均值係在截止值以上抑或以下指派類別標記。已探究實例1之所有四種候選分類器及實例2之另外兩者之平均概率之截止值。儘管一個截止值極接近0.5,且因此亦接近將使用經修改多數投票(MMV)程序獲得者,但其他極低且具有經改良之性能。
為測試患者樣品,目前設想產生單一標記(HCC、非HCC),可能報告為概率(百分比),如上文所解釋。為改良性能,可視情況針對患者之不同肝臟功能等級(例如較高MELD或較低MELD)或可能地HBV對其他肝硬化來源執行不同分類器,且將該等分類器之結果以及類別標記或百分比報告為結果之組合或組。
IV.替代性HCC測試方法
本發明涵蓋如下用於早期偵測肝病患者中之HCC之替代性測試程序。
首先,使用質譜分析實施基於血液之樣品之測試以觀察患者之質譜在申請者受讓人之VeriStrat®測試下是否分類為「不良」。VeriStrat測試闡述於美國專利7,736,905及F.Taguchi等人,Mass Spectrometry to Classify Non-Small-Cell Lung Cancer Patients for Clinical Outcome After Treatment with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors:a Multicohort Cross-Institutional Study J.N.C.I.第99卷第838-846頁(2007)中,該等文獻之內容皆以引用方式併入本文中。基本上,在此測試中,使用k-NN分類演算法比較患者之血清或血漿樣品之質譜在如在‘905專利中鑒定之預定m/z特徵下之積分強度值與自非小細胞肺癌患者之基於血液之樣品獲得之類別標記光譜的訓練集中該等特徵之值(該測試之商業版不使用CMC/D分類器)。所測試樣品之類別標記產生自比較測試光譜之特徵值與多維特徵空間中之最近鄰值並藉由多數投票指派類別標記。若與具有不良類別標記之患者相比,訓練集中之該等患者在投與表皮生長因子受體抑制劑(EGFR-I)治療NSCLC中具有較佳結果,則將訓練集中之該等光譜標記為「良好」。VeriStrat測試產生測試樣品之類別標記,即VeriStrat良好(或簡稱為「良好」)或VeriStrat不良(或簡稱為「不良」)。在一些罕見情況下,該測試可產生不確定類別標記。在多項臨床驗證研究中已顯示,對於許多不同類型之實體上皮腫瘤癌症,預治療血清/血漿為VeriStrat「良好」之患者在使用EGFR-I治療時具有顯著優於樣品產生VeriStrat「不良」記號之彼等患者的結果。參見J.Grigorieva等人之公開申請案U.S.2011/0208433,其內容以引用方式併入本文中。不良質譜記號先前已經鑒定指示實體上皮腫瘤癌症患者之相對較差之預後。吾等認為不良記號指示癌症之存在。因此,在本發明測試實例中,若患者之血清樣品在VeriStrat測試下測試為不良,則患者(患有肝病)經指示可能患有HCC,且基於血液之樣品不必經歷 先前闡述於本文件中之HCC/非HCC測試。
其次,若在第一測試中,患者之樣品在VeriStrat測試下分類為良好(或不確定),則使患者之質譜經歷先前闡述於本文件中之HCC/非HCC測試,參見圖8。大部分HCC肝病患者在VeriStrat測試下分類為良好,因此需要對該等患者進行HCC/非HCC測試。若此測試之結果係類別標記「HCC」或同義字,則該等患者經鑒定為患有HCC且報告此結果。若此測試之結果係類別標記「非HCC」或同義字,則其經鑒定為未患HCC且報告此結果。
在一個實施例中,針對不良狀況之第一測試利用自先前闡述於本文件中之深度MALDI質譜獲得之光譜。特定而言,由於‘905專利之VeriStrat測試不使用深度MALDI光譜而使用來自三等份基於血液之樣品之約2000射擊光譜,藉由自三個不同的800射擊光譜提取光譜來模擬該等光譜,每一800射擊光譜係在MALDI板上單一斑點上之不同位置獲得,且平均該等光譜以產生一個2400射擊光譜。以三份自MALDI板上之三個不同斑點或視情況自一或兩個斑點實施此步驟,以提供三個為VeriStrat測試所需之重複光譜。(應記住,在先前所述之深度MALDI光譜獲取中,自MALDI板上3個單獨斑點上之63個不同位置獲取800射擊光譜,然後使其經歷平均及其他處理步驟)。因此,在測試之此變化形式中、且較佳在如上文詳細闡述之深度MALDI方法中,倘若自肝病患者獲得之基於血液之樣品在第一測試下測試良好且然後進行至在HCC/非HCC測試下測試,則該樣品僅需要經歷一次質譜分析。
理論上,即使樣品在VeriStrat測試下測試為不良仍可實施HCC/非HCC測試。若患者之樣品分類為不良且在HCC/非HCC測試下分類為「HCC」,則更確信HCC類別標記正確地指示HCC之存在。
在另一變化形式中,用於偵測高風險群中之HCC之測試如下:a) 實施AFP表現量測試,且若AFP表現量>100ng/ml則患者分類為HCC。若AFP表現量100ng/ml,則實施本文件中所述之HCC/非HCC測試。若HCC/非HCC測試結果為HCC,則報告HCC結果。若患者測試為非HCC,則報告非HCC結果。
作為另一變化形式,闡述三階段測試方法。在階段1中,使患者經歷先前段落及美國專利7,736,905中所述之VeriStrat測試。若患者測試為VeriStrat不良,則報告HCC結果。在階段2中,若患者測試為VeriStrat良好,則實施AFP表現量測試。若患者測試AFP表現量>100ng/ml,則報告HCC結果。在階段3中,若VeriStrat良好患者之AFP表現量100ng/ml,則實施本文件之HCC/非HCC測試且報告此測試之結果。
提供隨附申請專利範圍作為所揭示本發明之進一步描述。
附錄 實例1附錄A:特徵定義
實例1附錄B 25k射擊光譜產生之特徵定義
實例2附錄A:特徵定義
將實例1附錄A中所列示之300個相同特徵用於分類器產生。
實例2附錄B 穩定特徵之特徵定義
實例2附錄C 用於分類器中之減小的特徵集

Claims (31)

  1. 一種用於早期偵測肝病患者之HCC之方法,其包含以下步驟:(a)藉由使自該患者獲得之基於血液之樣品經歷至少100,000次雷射射擊對該樣品實施MALDI-TOF質譜分析,並獲取質譜數據;(b)獲得多數預定質譜特徵之質譜數據之積分強度值;及(c)利用執行分類器之程式化電腦對該等質譜數據進行操作;其中在該操作步驟中,該分類器利用分類演算法比較該等積分強度值與自具有步驟(b)中所獲得值之多數其他肝病患者獲得之類別標記質譜數據之訓練集的特徵值,且產生該樣品之類別標記,其中該類別標記與該患者是否患有HCC相關。
  2. 如請求項1之方法,其中該分類器係使用規則化組合方法組態呈經過濾微型分類器之組合。
  3. 如請求項1之方法,其中該獲得步驟(b)包含獲得附錄之一中所列之至少50個特徵之積分強度值。
  4. 如請求項3之方法,其中該獲得步驟包含獲得實例1附錄A或實例2附錄C中所列之至少100個特徵之積分強度值。
  5. 如請求項3之方法,其中該獲得步驟包含獲得該等附錄之一之所有特徵之積分強度值。
  6. 如請求項1之方法,其中該參照集包含用於開發該分類器之樣品集之全部或子集。
  7. 如請求項6之方法,其中該參照集係用於開發經修剪以去除具有高AFP表現量患者之分類器之樣品集之子集。
  8. 如請求項1之方法,其中該特徵集係由該等質譜特徵及AFP表現量組成。
  9. 如請求項2之方法,其中該等微型分類器使用該質譜特徵集中之單一特徵、一對特徵,或單一特徵、一對特徵及三個特徵實施分類。
  10. 一種用於早期偵測肝病患者之HCC之分類器,其包含組合:記憶體,其儲存自多數肝病患者之基於血液樣品獲得之質譜數據參照集,該等患者包括一些HCC患者及一些非HCC患者;程式化電腦,其經組態以執行分類器,該分類器使用丟棄(drop-out)規則化組態呈經過濾微型分類器之組合;其中該質譜數據參照集包括該等附錄之一所列之至少一些m/z特徵之特徵值。
  11. 如請求項10之分類器,其中該參照集包含在MALDI-TOF質譜分析中自與該參照集相關之基於血液之樣品經歷至少100,000次雷射射擊獲得之質譜分析數據。
  12. 如請求項10之分類器,其中該參照集包括該等附錄之一所列m/z特徵之至少50個特徵值。
  13. 如請求項10之分類器,其中該參照集包括實例1附錄A或實例2附錄C中所列m/z特徵之至少100個特徵值。
  14. 一種對肝病患者之基於血液之樣品實施測試以偵測HCC之實驗室測試系統,其包含:MALDI-TOF質譜儀,其經組態以藉由使患者之基於血液之樣品經歷至少100,000次雷射射擊對該樣品實施質譜分析並獲取所得質譜數據;記憶體,其儲存自多數肝病患者之基於血液樣品獲得之質譜數據參照集及相關類別標記,該等患者包括HCC患者及非HCC患者;及程式化電腦,其經組態以執行分類器,該分類器使用丟棄規 則化組態呈經過濾微型分類器之組合;其中該質譜數據參照集包括附錄之一所列之至少一些m/z特徵之特徵值,且其中該程式化電腦係經程式化以產生該樣品之類別標記,其中該類別標記與患者患有或未患HCC相關。
  15. 一種產生用於偵測肝病患者HCC之分類器之方法,其包含以下步驟:a)對多數肝病患者之基於血液之樣品集實施MALDI-TOF質譜分析,該等患者包括一些HCC患者及一些非HCC患者;b)儲存該基於血液之樣品集實施步驟a)之結果之質譜分析數據開發集,該質譜分析數據開發集包括多數質譜特徵之特徵值;c)基於與該樣品相關之患者是否患有HCC,將分類標記指派給步驟b)之該開發集之各成員;d)將該開發集分成訓練集及測試集;e)使用該等特徵值中之一或多者構建多數微型分類器;f)過濾對該訓練集進行操作之微型分類器之性能且僅保留符合性能臨限值之微型分類器;g)藉由使用規則化組合方法組合該等經過濾微型分類器來產生主分類器;h)評估該主分類器對該測試集之性能;i)對於將該開發集分成訓練集及測試集之許多不同實現重複步驟d)、e)、f)、g)及h);及j)自步驟g)產生之主分類器及步驟i)之重複迭代定義最終分類器。
  16. 如請求項15之方法,其中該樣品之開發集排除具有高AFP表現量 之患者。
  17. 如請求項15之方法,其中該等特徵值包括與該開發集之基於血液之樣品中測得之AFP表現量相關之特徵值。
  18. 如請求項15之方法,其中該過濾步驟f)包括以下子步驟:測試該等微型分類器分類健康患者之光譜之性能,及僅保留健康患者分類正確度超過預定限值之微型分類器。
  19. 如請求項18之方法,其中該方法進一步包含改變該預定限值及使用該預定限值之不同值評估主分類器性能之步驟。
  20. 如請求項15之方法,其中該等微型分類器執行K最近鄰演算法,且其中K值為5、7、9及11中之一者。
  21. 如請求項15之方法,該等微型分類器使用該特徵值集中之單一特徵、一對特徵,或單一特徵、一對特徵及三個特徵對該訓練集實施分類。
  22. 如請求項15之方法,其中該等微型分類器使用該等附錄之一所列之該特徵集中之至少50個特徵。
  23. 如請求項15之方法,其進一步包含以下步驟:對實例1附錄A中所列之該特徵集中不同數量之特徵重複步驟d)至j)。
  24. 一種測試肝病患者以偵測HCC之方法,其包含以下步驟:a)對該患者之基於血液之樣品實施質譜分析並獲取質譜數據;及b)藉由以下對步驟a)中所獲取之質譜數據實施測試:藉助分類演算法比較該等質譜數據與自多數非小細胞肺癌(NSCLC)患者之基於血液樣品獲得之類別標記質譜之訓練集,指派給該等樣品之類別標記為良好或同義字或不良或同義字,該良好標記指示該訓練集中之患者在該NSCLC之治療中與具有不良類別標記之患者相比具有較佳EGFR-I之結果, 其中步驟b)之測試產生基於血液之樣品之類別標記,且若該類別標記為不良或同義字,則該患者經鑒定為患有HCC。
  25. 一種測試肝病患者以早期偵測HCC之方法,其包含以下步驟:a)對該患者之基於血液之樣品實施質譜分析並獲取質譜數據;及b)藉由以下對步驟a)中所獲取之質譜數據實施測試:藉助分類演算法比較該等質譜數據與自多數NSCLC患者之基於血液之樣品獲得之類別標記質譜之訓練集,指派給該等樣品之類別標記為良好或同義字或不良或同義字,該良好標記指示該訓練集中之患者在該NSCLC之治療中與具有不良類別標記之患者相比具有較佳EGFR-I之結果,其中步驟b)之測試產生基於血液之樣品之類別標記;及c)若測試b)產生之類別標記為良好或同義字,則實施如請求項1之方法且報告該方法產生之類別標記。
  26. 如請求項24之方法,步驟b)之測試係由步驟a)中所獲取之質譜數據之子集實施。
  27. 如請求項24之方法,其中步驟a)包含在MALDI-TOF質譜分析中自至少100,000次雷射射擊產生質譜數據,及藉由平均三個三光譜子集產生三個平均光譜,且其中測試b)係基於所選光譜子集產生之平均值實施。
  28. 如請求項14之實驗室測試系統,其中該記憶體進一步儲存代表自多數NSCLC患者之基於血液之樣品獲得的類別標記質譜訓練集之數據,指派給該等樣品之類別標記為良好或同義字或不良或同義字,該良好標記指示該訓練集中之患者在該NSCLC之治療中與具有不良類別標記之患者相比具有較佳EGFR-I之結果。
  29. 如請求項14之實驗室測試系統,其中該記憶體進一步儲存自該 患者之基於血液之樣品獲得之AFP表現量,且其中該參照集進一步儲存該參照集之各成員之AFP表現量。
  30. 一種用於確定肝病患者是否可能患有HCC之多階段測試方法,其包含:a)測量該患者之血液樣品中之AFP表現量,且若該量大於100ng/ml,則報告HCC結果或同義結果;b)若AFP表現量之測量值100ng/ml,則實施如請求項24之測試,且若如請求項24之測試之結果為不良類別標記,則報告HCC結果或同義結果,及c)若步驟b)之測試為良好類別標記或同義字,則實施如請求項1之方法且報告該方法產生之類別標記。
  31. 如請求項30之多階段測試方法,其進一步包含報告包括步驟a)、b)及c)之結果之一組測試結果的步驟。
TW104137058A 2014-12-03 2015-11-10 使用maldi-tof質譜分析以早期偵測高風險群中之肝細胞癌 TW201621315A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462086805P 2014-12-03 2014-12-03

Publications (1)

Publication Number Publication Date
TW201621315A true TW201621315A (zh) 2016-06-16

Family

ID=56092231

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104137058A TW201621315A (zh) 2014-12-03 2015-11-10 使用maldi-tof質譜分析以早期偵測高風險群中之肝細胞癌

Country Status (3)

Country Link
US (2) US10037874B2 (zh)
TW (1) TW201621315A (zh)
WO (1) WO2016089553A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574911A (zh) * 2014-08-20 2017-04-19 株式会社岛津制作所 质谱分析装置
US9563744B1 (en) * 2014-12-03 2017-02-07 Biodesix, Inc. Method of predicting development and severity of graft-versus-host disease
WO2016175990A1 (en) 2015-04-30 2016-11-03 Biodesix, Inc. Bagged filtering method for selection and deselection of features for classification
CN112710723A (zh) 2015-07-13 2021-04-27 佰欧迪塞克斯公司 受益于pd-1抗体药物的肺癌患者的预测性测试和分类器开发方法
US10838376B2 (en) * 2015-09-10 2020-11-17 I.Systems Automação Industrial S.A Method of generating fuzzy knowledge base for a programmable fuzzy controller
WO2017136139A1 (en) 2016-02-01 2017-08-10 Biodesix, Inc. Predictive test for melanoma patient benefit from interleukin-2 (il2) therapy
US11150238B2 (en) 2017-01-05 2021-10-19 Biodesix, Inc. Method for identification of cancer patients with durable benefit from immunotherapy in overall poor prognosis subgroups
CA3085765A1 (en) * 2017-12-15 2019-06-20 Iovance Biotherapeutics, Inc. Systems and methods for determining the beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof and beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof
EP3773691A4 (en) 2018-03-29 2022-06-15 Biodesix, Inc. DEVICE AND METHOD FOR IDENTIFICATION OF PRIMARY IMMUNORESISTANCE IN CANCER PATIENTS
WO2019220833A1 (ja) * 2018-05-18 2019-11-21 株式会社島津製作所 診断支援システムおよび診断支援装置
CN109359678B (zh) * 2018-10-09 2022-08-30 四川轻化工大学 一种白酒图谱的高精度分类识别算法
CN110097082B (zh) * 2019-03-29 2021-08-27 广州思德医疗科技有限公司 一种训练集的拆分方法及装置
EP3948652B1 (en) * 2019-04-02 2023-07-19 Deutsches Rheuma-Forschungszentrum Berlin Cytometry data analysis
US11556848B2 (en) * 2019-10-21 2023-01-17 International Business Machines Corporation Resolving conflicts between experts' intuition and data-driven artificial intelligence models
US20220180973A1 (en) * 2020-12-08 2022-06-09 Quark Biosciences Taiwan, Inc. Early detection and prediction method of pan-cancer
CN113484405B (zh) * 2021-07-05 2022-10-11 上海交通大学 一种亚微反应器的制备方法及基于其的血清代谢物检测方法
WO2023133309A1 (en) * 2022-01-07 2023-07-13 Mayo Foundation For Medical Education And Research Noninvasive methods for quantifying and monitoring liver disease severity
WO2024174260A1 (zh) * 2023-02-24 2024-08-29 信标生医股份有限公司 基于液态活检的癌症早期筛检方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650275A (en) * 1990-06-11 1997-07-22 Nexstar Pharmacueticals Inc Target detection method using spectroscopically detectable nucleic acid ligands
WO2002077895A2 (en) * 2001-03-26 2002-10-03 Epigenomics Ag Method for epigenetic feature selection
CN1608203A (zh) 2001-10-26 2005-04-20 植物药学公司 用于定量分析并评估植物样品性质的矩阵法
TWI338779B (en) 2005-07-21 2011-03-11 Academia Sinica Methods,compositions and systems for assaying at least one target analyte in a sample
US7858390B2 (en) 2006-03-31 2010-12-28 Biodesix, Inc. Selection of colorectal cancer patients for treatment with drugs targeting EGFR pathway
US7736905B2 (en) 2006-03-31 2010-06-15 Biodesix, Inc. Method and system for determining whether a drug will be effective on a patient with a disease
US7906342B2 (en) 2006-03-31 2011-03-15 Biodesix, Inc. Monitoring treatment of cancer patients with drugs targeting EGFR pathway using mass spectrometry of patient samples
US7867775B2 (en) 2006-03-31 2011-01-11 Biodesix, Inc. Selection of head and neck cancer patients for treatment with drugs targeting EGFR pathway
AU2011219069C1 (en) 2010-02-24 2014-07-17 Biodesix, Inc. Cancer patient selection for administration of therapeutic agents using mass spectral analysis
US8914238B2 (en) 2011-01-28 2014-12-16 Biodesix, Inc. Method for predicting breast cancer patient response to endocrine therapy
CA2874989A1 (en) 2012-05-29 2013-12-05 Biodesix, Inc. Deep-maldi tof mass spectrometry of complex biological samples, e.g., serum, and uses thereof
CN104685360B (zh) 2012-06-26 2018-02-13 比奥德希克斯股份有限公司 用于选择和去选择用产生免疫应答的疗法治疗的癌症患者的质谱方法
EP2870479A1 (en) 2012-07-05 2015-05-13 Biodesix, Inc. Method for predicting whether a cancer patient will not benefit from platinum-based chemotherapy agents
AU2014318499B2 (en) 2013-09-16 2019-05-16 Biodesix, Inc Classifier generation method using combination of mini-classifiers with regularization and uses thereof
WO2015178946A1 (en) * 2014-04-04 2015-11-26 Biodesix, Inc. Treatment selection for lung cancer patients using mass spectrum of blood-based sample
US9563744B1 (en) * 2014-12-03 2017-02-07 Biodesix, Inc. Method of predicting development and severity of graft-versus-host disease

Also Published As

Publication number Publication date
US10217620B2 (en) 2019-02-26
WO2016089553A1 (en) 2016-06-09
US20180323049A1 (en) 2018-11-08
US10037874B2 (en) 2018-07-31
US20160163522A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
TW201621315A (zh) 使用maldi-tof質譜分析以早期偵測高風險群中之肝細胞癌
US10713590B2 (en) Bagged filtering method for selection and deselection of features for classification
US10489550B2 (en) Predictive test for aggressiveness or indolence of prostate cancer from mass spectrometry of blood-based sample
US9477906B2 (en) Classification generation method using combination of mini-classifiers with regularization and uses thereof
EP3508842A1 (en) Mass spectrometric data analysis apparatus and analysis method
Boskamp et al. A new classification method for MALDI imaging mass spectrometry data acquired on formalin-fixed paraffin-embedded tissue samples
US20160019342A1 (en) Treatment selection for lung cancer patients using mass spectrum of blood-based sample
US20080086272A1 (en) Identification and use of biomarkers for the diagnosis and the prognosis of inflammatory diseases
US9563744B1 (en) Method of predicting development and severity of graft-versus-host disease
WO2013016700A1 (en) Methods for generating predictive models for epithelial ovarian cancer and methods for identifying eoc
US11621057B2 (en) Classifier generation methods and predictive test for ovarian cancer patient prognosis under platinum chemotherapy
Mu et al. Statistical analysis of a lung cancer spectral histopathology (SHP) data set
JP2016200435A (ja) マススペクトル解析システム,方法およびプログラム
Widlak et al. Serum mass profile signature as a biomarker of early lung cancer
CN113711313A (zh) 用于识别手术后处于高复发风险的早期nsclc患者的预测性测试
WO2019190732A1 (en) Apparatus and method for identification of primary immune resistance in cancer patients
US20230197426A1 (en) Predictive test for prognosis of myelodysplastic syndrome patients using mass spectrometry of blood-based sample
CN116106398A (zh) 用于诊断ckd的标志物
Mittal Breast cancer diagnosis using Fourier transform infrared imaging and statistical learning
Barla et al. Proteome profiling without selection bias
CN115966299A (zh) 一种基于MALDI-ToF MS的数据的疾病诊断模型
Behera A Multifaceted Analysis of Early Stage Non-Small Cell Lung Cancer Data
Pham et al. Computational Analysis of High‐Throughput MALDI‐TOF‐MS‐Based Peptide Profiling
Wang Statistical methods for the analysis of mass spectrometry-based proteomics data
Mantena Biomarker Identification for Prostate Cancer Using an Efficient Feature Selection Algorithm