TW201621272A - Multi-band reconfigurable subsurface radar profiler system - Google Patents

Multi-band reconfigurable subsurface radar profiler system Download PDF

Info

Publication number
TW201621272A
TW201621272A TW104112248A TW104112248A TW201621272A TW 201621272 A TW201621272 A TW 201621272A TW 104112248 A TW104112248 A TW 104112248A TW 104112248 A TW104112248 A TW 104112248A TW 201621272 A TW201621272 A TW 201621272A
Authority
TW
Taiwan
Prior art keywords
radar
signal
frequency
data
sar
Prior art date
Application number
TW104112248A
Other languages
Chinese (zh)
Other versions
TWI662253B (en
Inventor
天賜 林
文杰 郭
俊吉 陳
明炎 蔡
Original Assignee
艾雷達私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾雷達私人有限公司 filed Critical 艾雷達私人有限公司
Publication of TW201621272A publication Critical patent/TW201621272A/en
Application granted granted Critical
Publication of TWI662253B publication Critical patent/TWI662253B/en

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

A multi-band reconfigurable subsurface radar profiler system for land surface and subsurface monitoring includes a baseband synthetic aperture radar (SAR) subsystem, a radio frequency (RF) transceiver subsystem for transmitting and receiving a plurality of waves, a scanning subsystem for land surface and subsurface monitoring, and a power supply including a power management module for providing power to the system.

Description

多頻帶可重組次表面雷達剖面測勘系統 Multi-band reconfigurable subsurface radar profile surveying system

本發明之實施例係關於監測地下變形技術,且更特定言之,本發明之實施例係關於用於遠端監測滑坡易發區域且在滑坡發生之前預測即將來臨之滑坡之方法及系統。 Embodiments of the present invention relate to monitoring subsurface deformation techniques, and more particularly, embodiments of the present invention relate to methods and systems for remotely monitoring landslide prone areas and predicting upcoming landslides prior to landslide occurrence.

傳統上,存在習知方法以藉由提前對即將來臨之滑坡或涉及陸地移位之類似事件之潛在受影響區域提供警告而評估危險狀況(諸如,滑坡)。而且,歸因於由滑坡、地形下沉及建構及維護人造結構(例如橋樑、塔、建築物、水壩及其它此等結構)時造成之不同類型之不穩定性引起之土地移動,可造成危險及災害,其通常可導致相當大人員損失及經濟損失。因此,即時監測土地移動以避免此等危險及災害且每當存在此等事件之跡象及發生概率時都通知公眾,此係重要的。然而,即時監測滑坡狀況之問題在於:在大多數情況下,定期檢查單個經隔離之感測器同時進行視覺現場評估以判定一滑坡之潛在風險,且不存在足夠多或適當種類之感測器資料來實現對一即將來臨之事件之一準確且及時預測。 Traditionally, there are conventional methods for assessing dangerous conditions (such as landslides) by providing warnings in advance of potential landslides or potential affected areas involving similar events involving land displacement. Moreover, it can be dangerous due to land movement caused by landslides, terrain subsidence and the different types of instability caused by the construction and maintenance of man-made structures such as bridges, towers, buildings, dams and other such structures. And disasters, which can often result in considerable loss of personnel and economic losses. Therefore, it is important to monitor land movements in real time to avoid such hazards and disasters and to inform the public whenever there are signs and occurrences of such events. However, the immediate problem of monitoring landslide conditions is that, in most cases, a single quarantined sensor is periodically inspected for simultaneous visual field assessment to determine the potential risk of a landslide, and there are not enough or appropriate types of sensors. Information to achieve accurate and timely prediction of one of the upcoming events.

多種類型之量測感測器能夠量測斜坡之小幅度移動(諸如,土地之移位、傾斜、下沉及類似者),(例如)一地下傾斜儀、一沉降量測裝置、一地表伸長儀、一裂縫量測裝置及類似者安裝於該斜坡中以執行 量測,且當該量測資料超過一預設臨限值時發送危險信號。在使用中,用於供電之一電源電纜及用於使量測資料發射至一資料記錄器之一通信電纜彼此連接。然而,安裝成本較高,此係因為當安裝該量測裝置時需要許多熟練工人在地面鑽出一深孔。仍然存在一問題:該等量測感測器難以廣泛地安裝於偏遠地區。此外,必須為用於偵測滑坡之該等量測感測器供電,且該等量測感測器必須連接至該通信電纜。然而,此一電纜佈線處理工作難以在陡坡中進行,且必須在不配備有通信及電力基礎設施之山區安裝單獨通信及供電設備。 Various types of metrology sensors are capable of measuring small amplitude movements of slopes (such as displacement, tilting, sinking, and the like), such as a subsurface tilt meter, a settling gauge, and a surface extension An instrument, a crack measuring device and the like are installed in the slope to perform Measure and transmit a danger signal when the measured data exceeds a predetermined threshold. In use, one of the power cables for powering and one of the communication cables for transmitting the measurement data to a data recorder are connected to each other. However, the installation cost is higher because many skilled workers are required to drill a deep hole in the ground when installing the measuring device. There is still a problem: the measurement sensors are difficult to install widely in remote areas. In addition, the measurement sensors for detecting the landslide must be powered and the measurement sensors must be connected to the communication cable. However, this cable routing process is difficult to perform on steep slopes and separate communication and power supply equipment must be installed in mountain areas that are not equipped with communication and power infrastructure.

目前,在一滑坡事件之前及期間即時收集及分析之資料尚不足以允許實現對一潛在滑坡之路線及強度之邏輯預測。一般而言,可基於發生於一特定區域中之以往事件或關於以往事件之時間及嚴重程度之有根據之猜測而發出一滑坡警告。而且,對土地變形及結構移動之監測使用測地學方法(諸如,全站儀、水平測量及GPS勘測)。特定言之,該等用於變形監測之測地學勘測方法包含一經緯儀導線勘測、一三角量測方法及全站儀方法。然而,此等方法在相異點進行觀察之能力有限。而且,此等方法無效率且大區域之量測速度緩慢。此外,其它習知之測地學勘測方法,其提供合理準確度,但是需要有經驗之專業人員現場進行工作,其導致沉重工作負擔、高人身危險及低效率。特定言之,歸因於在夜晚或連續降雨時無法意識到之危險,此等方法之現場工作係一高人身危險之工作。另一方面,雷射掃描及攝影技術可覆蓋更寬之區域,但是其只可應用於白天及良好之天氣狀況下,此係因為雷射會受霧霾及降雨影響。 At present, the data collected and analyzed immediately before and during a landslide event is not sufficient to allow for a logical prediction of the route and intensity of a potential landslide. In general, a landslide warning can be issued based on past events occurring in a particular area or based on educated guesses about the timing and severity of past events. Moreover, geodetic methods (such as total station, level measurement, and GPS surveys) are used for monitoring land deformation and structural movement. In particular, the geodetic survey methods for deformation monitoring include a theodolite wire survey, a triangulation method, and a total station method. However, these methods have limited ability to observe at different points. Moreover, these methods are inefficient and the measurement speed of large areas is slow. In addition, other conventional geodetic survey methods provide reasonable accuracy, but require experienced professionals to work on site, which results in heavy workload, high personal risk and inefficiency. In particular, the on-site work of these methods is a high-risk job due to the dangers that are not realized at night or during continuous rainfall. On the other hand, laser scanning and photography technology can cover a wider area, but it can only be used during daytime and good weather conditions, because the laser is affected by smog and rainfall.

一最新技術係利用通常稱作InSAR之一基於地面之干涉法合成孔徑雷達。其係用於使用InSAR處理監測地表變形變化之一遙測技術。儘管InSAR系統在全天候狀況下都能以高空間解析度及高地表偵測變化準確度更有效率地監測大區域之移位,但其仍具有許多缺點。現有 基於地面之InSAR系統通常利用限於地表變形監測之一毫米波頻率系統。具有毫米數量級之短波長之一毫米波信號不能穿透地表以具有監測點之一地下剖面圖。然而,滑坡之主要原因起始於次表面變形。因此,與表面變形相比較,監測次表面變形之能力亦非常重要。而且,毫米波InSAR系統並不適合用於監測被森林樹冠層及植被覆蓋之地表。此係因為毫米波InSAR系統對細微之樹葉移動極為敏感且其可在地表監測時產生一虛假返回信號。 A state-of-the-art technology utilizes a ground-based interferometric synthetic aperture radar, commonly referred to as InSAR. It is used in telemetry to monitor surface deformation changes using InSAR processing. Although the InSAR system can monitor the displacement of large areas more efficiently with high spatial resolution and high surface detection variation accuracy under all weather conditions, it still has many shortcomings. existing Ground-based InSAR systems typically utilize a one-millimeter-wave frequency system that is limited to surface deformation monitoring. One millimeter wave signal having a short wavelength of the order of millimeters cannot penetrate the surface to have a subsurface profile of one of the monitoring points. However, the main cause of landslides begins with subsurface deformation. Therefore, the ability to monitor subsurface deformation is also very important compared to surface deformation. Moreover, the millimeter-wave InSAR system is not suitable for monitoring the surface covered by forest canopy and vegetation. This is because the millimeter-wave InSAR system is extremely sensitive to the movement of delicate leaves and it can produce a false return signal when monitored at the surface.

而且,越來越需要使用非破壞性遙測技術以進行災難監測、風險評估以及建立用於危險及災害管理之早期警告框架。而且,與覆蓋面積小之習知地面真實情況監測儀器相比較,仍然存在對大面積監測之一需要。 Moreover, there is an increasing need to use non-destructive telemetry for disaster monitoring, risk assessment, and early warning frameworks for hazard and disaster management. Moreover, compared to conventional ground truth monitoring instruments with small coverage areas, there is still a need for large area monitoring.

據此,所屬領域中仍然需要系統及方法來解決以高偵測準確度即時地對土地及建築物結構變形進行連續監測之無效率且最小化現場工作之風險。 Accordingly, there is still a need in the art for systems and methods to address the inefficiency and minimize the risk of on-site work for continuous monitoring of land and building structural deformations with high detection accuracy.

本發明之實施例通常揭示一種多頻帶可重組次表面雷達剖面測勘系統,其用於地球地表、地下及人造結構移動之一區域之監測及剖面測勘以即時判定發生於次表面之任何種類之變形。特定言之,該雷達剖面測勘系統係一高度緊湊之嵌入式雷達系統,該嵌入式雷達系統可安裝於地面或車輛上以監測地球地表、地下及人造結構移動及測勘其剖面。 Embodiments of the present invention generally disclose a multi-band reconfigurable subsurface radar profile surveying system for monitoring and profile surveying of one of the earth's surface, underground, and man-made structural movements to instantly determine any species occurring on the subsurface The deformation. In particular, the radar profile survey system is a highly compact embedded radar system that can be installed on the ground or on a vehicle to monitor the earth's surface, underground and man-made structures and to survey their profiles.

根據本發明之一實施例,該雷達剖面測勘系統包含一基帶合成孔徑雷達(SAR)子系統、一射頻(RF)發射器及接收器(收發器)子系統、一掃描子系統及一電源,該電源包含用於供電至雷達剖面測勘系統之一電力管理模組。在使用中,該雷達剖面測勘系統能夠安裝於至少一個平臺上,該至少一個平臺可為一機動化平臺或位於一地表上之 一固定平臺。而且,該雷達剖面測勘系統可安裝於一移動車輛之一平臺上以提供對土地移動之連續監測。特定言之,該射頻(RF)收發器子系統發射及接收複數個波,且該射頻(RF)收發器電連接至該基帶SAR子系統。該掃描子系統包含用於地表和次表面監測之一掃描構件。 According to an embodiment of the invention, the radar profile survey system comprises a baseband synthetic aperture radar (SAR) subsystem, a radio frequency (RF) transmitter and receiver (transceiver) subsystem, a scanning subsystem and a power supply The power supply includes a power management module for powering to a radar profile surveying system. In use, the radar profile survey system can be mounted on at least one platform, the at least one platform can be a motorized platform or located on a surface A fixed platform. Moreover, the radar profile survey system can be installed on one of the platforms of a moving vehicle to provide continuous monitoring of land movement. In particular, the radio frequency (RF) transceiver subsystem transmits and receives a plurality of waves, and the radio frequency (RF) transceiver is electrically coupled to the baseband SAR subsystem. The scanning subsystem includes one of the scanning members for surface and subsurface monitoring.

根據本發明之一實施例,地表面及次表面之掃描可通過一電子射束控制技術而以電子形式達成。 In accordance with an embodiment of the invention, scanning of the ground and subsurfaces can be accomplished electronically by an electron beam steering technique.

根據本發明之另一實施例,地表面及次表面之掃描可通過一機動化平臺控制而以機械方式達成。 According to another embodiment of the invention, the scanning of the ground surface and the subsurface can be achieved mechanically by a motorized platform control.

根據本發明之一實施例,該雷達剖面測勘系統可穿透至地表下大約10公分處以得到地下剖面圖及地下移動機構。 According to an embodiment of the invention, the radar profile survey system can penetrate to approximately 10 cm below the surface to obtain a subsurface profile and an underground moving mechanism.

根據本發明之一實施例,一種用於監測一區域及測勘其剖面之方法包含以下步驟:藉由發射複數個信號以完成該區域之一掃描而進行之一雷達信號採集;及判定該掃描是否係對該區域之一新掃描。特定言之,每一次掃描包含發射於至少一個載波頻率之調頻連續波(FMCW)信號之一序列。進一步言之,該方法包含以下步驟:處理回應於該複數個信號中之各個信號作為數位化資料所接收之複數個回波信號並將其儲存於資料庫中,其中每一次掃描包含複數個數位檔且該所儲存之掃描係對該區域之一新掃描。 In accordance with an embodiment of the present invention, a method for monitoring an area and surveying its profile includes the steps of: acquiring one of the radar signals by transmitting a plurality of signals to complete scanning of one of the regions; and determining the scan Whether it is a new scan of one of the areas. In particular, each scan includes a sequence of frequency modulated continuous wave (FMCW) signals transmitted at at least one carrier frequency. Further, the method includes the steps of: processing a plurality of echo signals received as the digitized data in response to each of the plurality of signals and storing the same in a database, wherein each scan comprises a plurality of digits The file and the stored scan are newly scanned for one of the areas.

根據本發明之一實施例,該方法進一步包含以下步驟:將該資料轉換成複數個合成孔徑雷達(SAR)影像;將每一合成孔徑雷達(SAR)影像儲存於資料庫中;及判定該所儲存之合成孔徑雷達(SAR)影像是否係該區域之一新的合成孔徑雷達(SAR)影像。根據本發明之一實施例,一種用於藉由使用一雷達剖面測勘系統監測一潛在危險區域中之自然災害之方法包含以下步驟:將該雷達剖面測勘系統安裝至遠離該潛在危險區域之一平臺上;以一預定義時間間隔執行定期監測;以高精度變化偵測能力產生一場景之一3D影像;及經由一有線 及/或無線通信網路將該3D影像發送至一資料中心及/或一監測機構,該有線及/或無線通信網路包含(但不限於)一區域網路(LAN)、一廣域網路(WAN)及一個人區域網路(PAN)。 According to an embodiment of the invention, the method further comprises the steps of: converting the data into a plurality of synthetic aperture radar (SAR) images; storing each synthetic aperture radar (SAR) image in a database; and determining the Whether the stored Synthetic Aperture Radar (SAR) image is a new synthetic aperture radar (SAR) image of the region. In accordance with an embodiment of the present invention, a method for monitoring a natural disaster in a potentially hazardous area by using a radar profile surveying system includes the steps of installing the radar profile survey system away from the potentially hazardous area On a platform; performing periodic monitoring at a predefined time interval; generating a 3D image of a scene with high-precision change detection capability; and via a cable And/or the wireless communication network sends the 3D image to a data center and/or a monitoring network, including but not limited to a local area network (LAN), a wide area network ( WAN) and a personal area network (PAN).

根據本發明之一個實施例,上面安裝有該雷達剖面測勘系統之該平臺係一固定平臺。 According to an embodiment of the invention, the platform on which the radar profile surveying system is mounted is a fixed platform.

根據本發明之另一實施例,上面安裝有該雷達剖面測勘系統之該平臺係一行動平臺。 According to another embodiment of the present invention, the platform on which the radar profile surveying system is mounted is a mobile platform.

根據本發明之另一實施例,一種用於通過一雷達時序控制器(RTC)及一高速類比至數位轉換器(ADC)而獲取資料之方法包含以下步驟:藉由由該雷達時序控制器(RTC)獲得對該高速類比至數位轉換器(ADC)之控制處置來初始化資料獲取程序;等待自一外部時序控制單元之一觸發信號;及以指定時脈速率及樣本數目採樣類比至數位轉換器(ADC)。 In accordance with another embodiment of the present invention, a method for obtaining data by a radar timing controller (RTC) and a high speed analog to digital converter (ADC) includes the following steps: by the radar timing controller ( RTC) obtains control processing of the high speed analog to digital converter (ADC) to initialize the data acquisition program; waits for a trigger signal from one of the external timing control units; and samples the analog to digital converter at a specified clock rate and number of samples (ADC).

100‧‧‧次表面雷達剖面測勘系統 100‧‧‧ Surface Radar Profile Survey System

101‧‧‧基帶合成孔徑雷達(SAR)子系統 101‧‧‧Baseband Synthetic Aperture Radar (SAR) Subsystem

103‧‧‧雷達時序控制器(RTC) 103‧‧‧Radar Timing Controller (RTC)

105‧‧‧信號合成器 105‧‧‧Signal Synthesizer

106‧‧‧輸入 106‧‧‧Enter

107‧‧‧數位邏輯平臺 107‧‧‧Digital Logic Platform

108‧‧‧高速數位至類比轉換器 108‧‧‧High speed digital to analog converter

110‧‧‧掃描子系統/掃描平臺 110‧‧‧Scan Subsystem/Scan Platform

111‧‧‧參考時脈 111‧‧‧Reference clock

112‧‧‧序列介面 112‧‧‧Sequence interface

113‧‧‧內部暫存器 113‧‧‧Internal register

114‧‧‧直接數位合成器(DDS)核心 114‧‧‧Direct Digital Synthesizer (DDS) Core

115‧‧‧資料記錄器 115‧‧‧ data logger

116‧‧‧頻率分佈圖產生器 116‧‧‧frequency profile generator

117‧‧‧有限狀態機(FSM) 117‧‧‧Limited State Machine (FSM)

118‧‧‧時序控制單元(TCU) 118‧‧‧Time Control Unit (TCU)

119‧‧‧時脈分配器 119‧‧‧ clock distributor

120‧‧‧記錄資料庫 120‧‧‧Record database

125‧‧‧處理器系統 125‧‧‧Processor System

131‧‧‧雙通道類比至數位轉換器(ADC) 131‧‧‧Dual Analog to Digital Converter (ADC)

132‧‧‧基於FPGA範圍相關器 132‧‧‧Based on FPGA Range Correlator

133‧‧‧基於FPGA方位相關器 133‧‧‧Based on FPGA Azimuth Correlator

134‧‧‧2D SAR影像 134‧‧2D SAR imagery

141‧‧‧參考相位 141‧‧‧Reference phase

142‧‧‧高解析度斜坡產生器鎖相環(PLL) 142‧‧‧High-resolution ramp generator phase-locked loop (PLL)

143‧‧‧寬頻帶電壓控制振盪器(VCO) 143‧‧‧Broadband Voltage Controlled Oscillator (VCO)

144‧‧‧可程式化分數式分頻器 144‧‧‧Programmable Fractional Divider

145‧‧‧倍頻器 145‧‧‧Multiplier

146‧‧‧高功率放大器(HPA) 146‧‧‧High Power Amplifier (HPA)

147‧‧‧多頻帶發射天線 147‧‧‧Multi-band transmit antenna

148‧‧‧低雜訊放大器(LNA) 148‧‧‧Low Noise Amplifier (LNA)

149‧‧‧正交混頻器 149‧‧‧Orthogonal Mixer

155‧‧‧射頻(RF)收發器子系統 155‧‧‧ Radio Frequency (RF) Transceiver Subsystem

160‧‧‧掃描構件/嵌入式掃描控制器 160‧‧‧Scanning components/embedded scanning controller

165‧‧‧電源/電力管理模組 165‧‧‧Power/Power Management Module

200‧‧‧圖形表示 200‧‧‧ graphical representation

205‧‧‧步驟 205‧‧‧Steps

210‧‧‧步驟 210‧‧‧Steps

215‧‧‧步驟 215‧‧ steps

220‧‧‧步驟 220‧‧‧Steps

300‧‧‧圖形流程圖/方法 300‧‧‧Graph flow chart/method

305‧‧‧步驟 305‧‧‧Steps

307‧‧‧步驟 307‧‧‧Steps

308‧‧‧步驟 308‧‧‧Steps

310‧‧‧步驟 310‧‧‧Steps

312‧‧‧步驟 312‧‧ steps

315‧‧‧步驟 315‧‧‧Steps

316‧‧‧步驟 316‧‧‧Steps

320‧‧‧步驟 320‧‧‧Steps

325‧‧‧步驟 325‧‧‧Steps

330‧‧‧步驟 330‧‧‧Steps

335‧‧‧步驟 335‧‧‧Steps

450‧‧‧太陽能電力管理系統/太陽能供電雷達剖面測勘系統 450‧‧‧Solar Power Management System/Solar-Powered Radar Profile Surveying System

455‧‧‧商用太陽能電池板 455‧‧‧Commercial solar panels

460‧‧‧電池充電控制器 460‧‧‧Battery Charge Controller

465‧‧‧電池組 465‧‧‧Battery Pack

470‧‧‧DC-AC電力轉換器 470‧‧‧DC-AC Power Converter

475‧‧‧指定電負載用具 475‧‧‧Specified electrical load equipment

550‧‧‧擷取系統 550‧‧‧ capture system

555‧‧‧伺服器 555‧‧‧Server

557‧‧‧處理器 557‧‧‧Processor

560‧‧‧通信網路 560‧‧‧Communication network

5651……565N‧‧‧用戶端裝置 565 1 ......565 N ‧‧‧Customer device

570‧‧‧環境感測器 570‧‧‧Environmental Sensor

800‧‧‧方法 800‧‧‧ method

802‧‧‧步驟 802‧‧ steps

805‧‧‧步驟 805‧‧‧Steps

810‧‧‧步驟 810‧‧‧Steps

815‧‧‧步驟 815‧‧‧Steps

820‧‧‧步驟 820‧‧‧Steps

825‧‧‧步驟 825‧‧ steps

830‧‧‧步驟 830‧‧ steps

835‧‧‧步驟 835‧‧ steps

900‧‧‧方法 900‧‧‧ method

910‧‧‧步驟 910‧‧ steps

915‧‧‧步驟 915‧‧ steps

920‧‧‧步驟 920‧‧‧Steps

925‧‧‧步驟 925‧‧ steps

930‧‧‧步驟 930‧‧‧Steps

935‧‧‧步驟 935‧‧ steps

1000‧‧‧方法 1000‧‧‧ method

1005‧‧‧步驟 1005‧‧‧Steps

1010‧‧‧步驟 1010‧‧‧Steps

1015‧‧‧步驟 1015‧‧‧Steps

1020‧‧‧步驟 1020‧‧‧Steps

1025‧‧‧步驟 1025‧‧‧Steps

1030‧‧‧步驟 1030‧‧‧Steps

1035‧‧‧步驟 1035‧‧‧Steps

1040‧‧‧步驟 1040‧‧‧Steps

1045‧‧‧步驟 1045‧‧‧Steps

1050‧‧‧步驟 1050‧‧‧Steps

為使本發明之上文所述之特徵能夠被詳細地瞭解,可藉由參考其中一些在附圖中加以繪示之實施例進行對上文簡要概述之本發明之更特定描述。然而,應注意,附圖僅繪示本發明之典型實施例且因此不應被視為限制其範圍,此係因為本發明可允許其它同等有效之實施例。 For a more detailed description of the features of the invention described above, reference to the embodiments of the invention It is to be understood, however, that the appended claims are in the

圖1繪示根據本發明之一個實施例之一次表面雷達剖面測勘系統之一系統架構之一功能方塊圖;圖2繪示根據本發明之一個實施例之用於滑坡監測之多頻帶可重組次表面雷達剖面測勘系統之一典型應用之一圖形表示;圖3繪示根據本發明之一個實施例之雷達剖面測勘系統之一可重組信號合成器之一簡化方塊圖;圖4繪示根據本發明之一個實施例之雷達剖面測勘系統之一嵌入 式合成孔徑雷達(SAR)處理器之一方塊圖;圖5繪示根據本發明之一個實施例之雷達剖面測勘系統之一射頻(RF)收發器子系統之一方塊圖;圖6繪示根據本發明之一個實施例之通過雷達剖面測勘系統之雷達時序控制器(RTC)及高速類比至數位轉換器(ADC)進行之一資料獲取方法之一圖形流程圖;圖7繪示根據本發明之另一實施例之一太陽能供電雷達剖面測勘系統;圖8繪示根據本發明之一個實施例之自雷達剖面測勘系統產生之資料之一遠端資料控制及擷取系統之一方塊圖;圖9繪示根據本發明之一個實施例之信號之時域標繪圖之一圖形表示;圖10繪示根據本發明之一個實施例之基帶信號之一頻率分佈圖;圖11A繪示根據本發明之一個實施例之低頻帶雷達信號之一樣本頻譜;圖11B繪示根據本發明之一個實施例之高頻帶雷達信號之一樣本頻譜;圖12繪示根據本發明之一個實施例之用於藉由使用一雷達剖面測勘系統而監測地表面及次表面之一方法之一流程圖;圖13繪示根據本發明之一個實施例之用於合成孔徑雷達(SAR)影像處理之一方法之一流程圖;圖14繪示根據本發明之一個實施例之用於對合成孔徑雷達(SAR)影像進行干涉法合成孔徑雷達(InSAR)處理之一方法之一流程圖;及圖15A及圖15B繪示根據本發明之一個實施例之處理原始資料所需之多個設計參數之一表格; 雖然本文中藉由舉例針對若干實施例及示意圖描述用於地下變形監測之方法及系統,但是熟悉此項技術者將識別:用於監測地表面及次表面以判定任何變形之方法及系統不限於所描述之實施例或圖式。應瞭解,各圖式及其詳細描述不意欲將實施例限於所揭示之特定形式。而是,本發明將涵蓋落於如隨附申請專利範圍界定之用於計算最佳產品用途之方法及設備之精神和範疇內之所有修改、等效物及替代物。本文中所使用之任何標題僅為組織目的,且並無限制該描述或申請專利範圍之範疇之意圖。如本文中所使用,詞語「可」係以一允許意義使用(即,意指:具有……之可能性),而非強制意義(即,意指:必須)。類似地,詞語「包含(include、including及includes)」意指包含但不限於。 1 is a functional block diagram of a system architecture of a surface radar profile surveying system according to an embodiment of the present invention; FIG. 2 illustrates a multi-band reconfigurable for landslide monitoring according to an embodiment of the present invention. A schematic representation of one of the typical applications of the subsurface radar profile surveying system; FIG. 3 is a simplified block diagram of one of the reconfigurable signal synthesizers of the radar profile surveying system according to an embodiment of the present invention; Embedding one of the radar profile survey systems according to an embodiment of the present invention Block diagram of a Synthetic Aperture Radar (SAR) processor; FIG. 5 is a block diagram of a radio frequency (RF) transceiver subsystem of a radar profile surveying system in accordance with an embodiment of the present invention; A flow chart of one of data acquisition methods by a radar timing controller (RTC) and a high speed analog to digital converter (ADC) of a radar profile surveying system according to an embodiment of the present invention; FIG. 7 illustrates Another embodiment of the invention is a solar powered radar profile surveying system; FIG. 8 illustrates one of the remote data control and capture systems of one of the data generated by the radar profile surveying system according to an embodiment of the present invention. FIG. 9 is a pictorial representation of a time domain plot of a signal in accordance with an embodiment of the present invention; FIG. 10 is a diagram showing a frequency distribution of a baseband signal in accordance with an embodiment of the present invention; FIG. One sample spectrum of a low-band radar signal according to an embodiment of the present invention; FIG. 11B illustrates a sample spectrum of a high-band radar signal according to an embodiment of the present invention; FIG. 12 illustrates a real image according to the present invention. A flow chart of one of the methods for monitoring the ground surface and the subsurface by using a radar profile survey system; FIG. 13 illustrates a synthetic aperture radar (SAR) image according to an embodiment of the present invention. One of the flow charts of one of the methods; FIG. 14 is a flow chart of one of the methods for performing interferometric synthetic aperture radar (InSAR) processing on synthetic aperture radar (SAR) images according to an embodiment of the present invention; 15A and 15B are diagrams showing one of a plurality of design parameters required to process original data according to an embodiment of the present invention; Although methods and systems for subsurface deformation monitoring are described herein by way of example for a number of embodiments and schematics, those skilled in the art will recognize that methods and systems for monitoring the surface and subsurface to determine any deformation are not limited. The described embodiment or schema. It should be understood that the various drawings are not intended to Rather, the invention is to cover all modifications, equivalents, and alternatives in the spirit and scope of the method and apparatus of the invention. Any headings used herein are for organizational purposes only and are not intended to limit the scope of the description or claims. As used herein, the word "may" is used in an allowed sense (ie, meaning: having the possibility of ...) rather than a mandatory meaning (ie, meaning: must). Similarly, the words "include," "include" and "include" are meant to include but not limited to.

本文中所揭示之用於地下變形監測之一多頻帶雷達剖面測勘系統之各個實施例為公眾提供早期警告。該雷達系統能夠產生用於人造結構及地球環境監測之高解析度成像,且特別適用於土地剖面量測應用。此外,本發明係一高度緊湊之嵌入式雷達系統,其可安裝於地面或車輛上以監測地球地表、地下及人造結構移動並測勘其剖面。所使用之核心技術包含微波遙測、干涉合成孔徑雷達(InSAR)處理、射頻(RF)電路設計、嵌入式信號處理、場可程式化閘陣列(FPGA)設計及其相關技術。 Various embodiments of the multi-band radar profile surveying system for subsurface deformation monitoring disclosed herein provide early warning to the public. The radar system produces high-resolution imaging for man-made structures and monitoring of the Earth's environment, and is especially suited for land profile measurement applications. Furthermore, the present invention is a highly compact embedded radar system that can be mounted on the ground or on a vehicle to monitor the earth's surface, underground and man-made structures and to survey their profiles. The core technologies used include microwave telemetry, interferometric synthetic aperture radar (InSAR) processing, radio frequency (RF) circuit design, embedded signal processing, field programmable gate array (FPGA) design, and related technologies.

此外,本系統包含一多頻帶雷達剖面量測儀處理演算法,該演算法係干涉合成孔徑雷達(InSAR)演算法及合成孔徑雷達影像形成演算法之一組合。該方法藉由使用本發明之基於雷達之系統提供對一地表面及次表面區域之即時監測。特定言之,該等系統及方法解決土地及建築物結構變形之連續監測之無效率。本發明之多頻帶可重組次表面雷達剖面測勘系統組合低頻微波(諸如,UHF、L、S頻帶)及高頻微 波(諸如,C、X、Ku頻帶)雷達收發器子系統以在相同時間同時監測地表面及次表面。本系統可穿透至地表下大約10公分處以獲得地下剖面圖及地下移動機構。而且,本系統包含一3D合成孔徑雷達(SAR)掃描器,該掃描器具有平臺之一雙軸運動以進行垂直及水平量測。 In addition, the system includes a multi-band radar profile measuring instrument processing algorithm, which is a combination of an interferometric synthetic aperture radar (InSAR) algorithm and a synthetic aperture radar image forming algorithm. The method provides for immediate monitoring of a surface and subsurface area by using the radar based system of the present invention. In particular, the systems and methods address the inefficiency of continuous monitoring of structural deformation of land and buildings. The multi-band reconfigurable subsurface radar profile surveying system of the present invention combines low frequency microwaves (such as UHF, L, S bands) and high frequency micro Wave (such as C, X, Ku band) radar transceiver subsystems simultaneously monitor the ground and secondary surfaces at the same time. The system can penetrate to approximately 10 cm below the surface to obtain a subsurface profile and an underground moving mechanism. Moreover, the system includes a 3D Synthetic Aperture Radar (SAR) scanner with one of the platform's biaxial motion for vertical and horizontal measurements.

而且,該等量測產生該地下剖面圖及一干涉圖。該土地剖面圖係自雷達穿透至地球表面下大約10公分處而產生,土地剖面圖提供關於如滑坡之事件之發生概率之有用資訊。 Moreover, the measurements produce the subsurface profile and an interferogram. The land profile is generated from the radar penetrating approximately 10 cm below the Earth's surface, and the land profile provides useful information about the probability of occurrence of events such as landslides.

在以下詳細描述中,闡述許多特定細節以提供對所主張標的物之一完全理解。然而,熟悉此項技術者將瞭解,所主張標的物可在無此等特定細節之情況下實踐。在其它例項中,對於一般技術者瞭解之方法、設備或系統將不予以詳細描述以免混淆所主張標的物。 In the following detailed description, numerous specific details are set forth However, those skilled in the art will appreciate that the claimed subject matter can be practiced without the specific details. In other instances, methods, devices, or systems that are known to those of ordinary skill in the art are not described in detail to avoid obscuring the claimed subject matter.

以下詳細描述之一些部分係依據對儲存於一特定設備或專用計算裝置或平臺之一記憶體內之二進制數位信號之操作之演算法或符號表示而呈現。在此特定說明書之背景中,只要伺服器、用戶端裝置或類似者經程式化以作為一專用電腦依據自程式軟體之指令執行特定功能,術語伺服器、用戶端裝置或類似者就可包含一通用電腦。演算法描述或符號表示係由熟悉信號處理及相關領域之一般技術者使用以向該領域之其它技術者傳達其工作實質之技術之實例。演算法在此處被視為且通常被視為導致一所需結果之一自一致操作序列或類似信號處理。在此背景中,操作或處理涉及物理量之物理操控。通常,雖然並非必須,然此等量可採取能夠被儲存、傳送、組合、比較或以其它方式操控或變換之電信號或磁信號之形式。已證實主要由於習慣用語之原因,將此等信號稱作位元、資料、值、元件、符號、字元、項、數目、數位或類似者通常係方便的。然而,應瞭解,所有此等或類似術語將與適當之物理量相關聯且僅僅係出於方便性之標籤。除非另有具體繪示,否則自以下討論顯而易見的是,將瞭解在本說明書全文中, 利用諸如「處理」、「計算(computing)」、「計算(calculating)」、「判定」或類似者之術語之討論係指諸如一專用電腦或一類似專用電子計算裝置之一特定設備之動作或處理。因此,在本說明書之背景中,一專用電腦或一類似專用電子計算裝置能夠操控或變換信號,該信號通常被表示為該專用電腦或類似專用電子計算裝置之記憶體、暫存器或其它資訊儲存裝置、發射裝置或顯示裝置內之物理性電子或磁量。 Some portions of the detailed description that follows are presented in terms of algorithms or symbolic representations of operations on binary digital signals stored in memory of a particular device or dedicated computing device or platform. In the context of this particular specification, the term server, client device or the like may include one as long as the server, client device or the like is programmed to perform a particular function as a dedicated computer in accordance with instructions of the self-programming software. General purpose computer. Algorithmic descriptions or symbolic representations are examples of techniques used by those skilled in the art of signal processing and related art to convey the substance of their work to other skilled in the art. The algorithm is here considered and is generally considered to result in a self-consistent sequence of operations or similar signal processing that results in a desired result. In this context, operations or processing involve physical manipulation of physical quantities. Usually, though not necessarily, the equivalents may be in the form of an electrical or magnetic signal that can be stored, transferred, combined, compared, or otherwise manipulated or transformed. It has proven convenient at times, principally for reasons of idiom, to refer to such signals as bits, data, values, elements, symbols, characters, terms, numbers, digits or the like. It should be understood, however, that all such or similar terms are to be associated with the appropriate physical quantities and are merely for convenience. Unless otherwise specifically indicated, it will be apparent from the following discussion that it will be understood throughout this specification that The use of terms such as "processing", "computing", "calculating", "decision" or the like refers to the action of a particular device, such as a dedicated computer or a dedicated electronic computing device or deal with. Thus, in the context of the present specification, a dedicated computer or a similar dedicated electronic computing device is capable of manipulating or transforming a signal, which is typically represented as a memory, register or other information of the special purpose computer or similar dedicated electronic computing device. A physical or magnetic quantity within a storage device, launch device, or display device.

圖1繪示根據本發明之一個實施例之用於監測一地表面及次表面之區域之一次表面雷達剖面測勘系統100之一系統架構之一功能方塊圖。雷達剖面測勘系統100包含:一基帶合成孔徑雷達(SAR)子系統101,其用於產生、接收並處理數位形式之雷達信號;一射頻(RF)收發器子系統155,其用於發射及接收複數個波;一掃描子系統110,其包含用於地表面及次表面監測之一掃描構件160;及一電源165,其包含用於供電至系統100之一電力管理模組。特定言之,基帶合成孔徑雷達(SAR)子系統101電連接至射頻(RF)收發器子系統155及掃描子系統控制器160。 1 is a functional block diagram of one of the system architectures of a primary surface radar profile survey system 100 for monitoring a surface of a ground surface and a subsurface in accordance with an embodiment of the present invention. The radar profile survey system 100 includes a baseband synthetic aperture radar (SAR) subsystem 101 for generating, receiving, and processing radar signals in digital form, and a radio frequency (RF) transceiver subsystem 155 for transmitting and A plurality of waves are received; a scanning subsystem 110 including one of the scanning members 160 for ground surface and subsurface monitoring; and a power source 165 including a power management module for supplying power to the system 100. In particular, the baseband Synthetic Aperture Radar (SAR) subsystem 101 is electrically coupled to a radio frequency (RF) transceiver subsystem 155 and a scanning subsystem controller 160.

根據一個實施例,基帶SAR子系統101進一步包含:一雷達時序控制器(RTC)103,其用於對所有子系統提供時序及控制信號;一資料記錄器115,其用於接收傳入雷達信號資料並將其記錄於記錄資料庫120中;及一嵌入式雷達處理器,其用於即時處理該雷達信號資料。進一步言之,信號合成器105係將該等所需雷達波形提供給射頻(RF)收發器子系統155之一基於場可程式化閘陣列(FPGA)之數位信號合成器。掃描子系統110之該掃描構件包含一高精度3D合成孔徑雷達(SAR)掃描器以在垂直及水平方向上對關注區域進行連續雷達量測,以產生地下剖面圖及干涉圖。明確言之,在約1公里至2公里之一感測距離處,調頻連續波(FMCW)信號之一或多個載波頻率之穿透深度係地表下大約10公分。 According to one embodiment, the baseband SAR subsystem 101 further includes a radar timing controller (RTC) 103 for providing timing and control signals to all subsystems; a data logger 115 for receiving incoming radar signals The data is recorded in the record database 120; and an embedded radar processor is used to process the radar signal data on the fly. Further, signal synthesizer 105 provides the desired radar waveform to a digitally programmable gate array (FPGA) based digital signal synthesizer of one of radio frequency (RF) transceiver subsystems 155. The scanning component of scanning subsystem 110 includes a high precision 3D synthetic aperture radar (SAR) scanner to continuously measure the region of interest in the vertical and horizontal directions to produce a subsurface profile and an interferogram. Specifically, at one of the sensing distances of about 1 km to 2 km, the penetration depth of one or more carrier frequencies of the frequency modulated continuous wave (FMCW) signal is about 10 cm below the surface.

特定言之,掃描子系統110係一機動化雙軸掃描平臺以在兩個方向上掃描,且掃描子系統進一步包含用於馬達控制且與雷達時序控制器(RTC)103串列通信之一嵌入式掃描控制器160。明確言之,系統100安裝於沿大約1.5米之一方位範圍移動之掃描平臺110上。當兩次影像採集之間之時間內發生地形移位時,目標之相位相應地改變。本系統100中使用干涉合成孔徑雷達(InSAR)處理技術以連續地監測該區域中之移位。因此,該連續監測提供早期警告信號且適用於提供關於滑坡之及時資訊。 In particular, scanning subsystem 110 is a motorized dual axis scanning platform to scan in both directions, and the scanning subsystem further includes one of a series of communication for motor control and radar timing controller (RTC) 103 embedded Scan controller 160. Specifically, system 100 is mounted on scanning platform 110 that moves along an azimuth range of approximately 1.5 meters. When the terrain shift occurs between the two image acquisitions, the phase of the target changes accordingly. Interferometric Synthetic Aperture Radar (InSAR) processing techniques are used in the present system 100 to continuously monitor shifts in the region. Therefore, this continuous monitoring provides an early warning signal and is suitable for providing timely information about the landslide.

在一個實施例中,信號合成器105係一基於場可程式化閘陣列(FPGA)之數位信號合成器。其用於合成將通過射頻(RF)收發器子系統155發射之一基帶調頻連續波(FMCW)信號。 In one embodiment, signal synthesizer 105 is a digital signal synthesizer based on a field programmable gate array (FPGA). It is used to synthesize a baseband frequency modulated continuous wave (FMCW) signal that will be transmitted through a radio frequency (RF) transceiver subsystem 155.

根據一個實施例,雷達剖面測勘系統100安裝於機動化平臺上以提供對土地移動之連續監測。雷達剖面測勘系統100之該輸出資料(呈一經處理影像之形式)經由一通信網路560傳達至一伺服器555及多個用戶端裝置565。 According to one embodiment, the radar profile survey system 100 is mounted on a motorized platform to provide continuous monitoring of land movement. The output data of the radar profile survey system 100 (in the form of a processed image) is communicated via a communication network 560 to a server 555 and a plurality of client devices 565.

在一個實施例中,電力管理模組165係一機電電源。 In one embodiment, power management module 165 is an electromechanical power source.

根據另一實施例,當不能存取主電源(尤其在偏遠地區)時,如圖7中繪示之一小型太陽能電力管理系統450整合至嵌入式雷達系統100中。 According to another embodiment, when the main power source (especially in a remote area) cannot be accessed, one of the small solar power management systems 450 as shown in FIG. 7 is integrated into the embedded radar system 100.

根據一個實施例,射頻(RF)收發器子系統155包含組態成超外差組態之一多頻帶、高線性度且低相雜訊之調頻連續波(FMCW)通道。 According to one embodiment, radio frequency (RF) transceiver subsystem 155 includes a frequency modulated continuous wave (FMCW) channel configured as a multi-band, high linearity, and low phase noise configured in a superheterodyne configuration.

根據一個實施例,當地表之土壤類型有利時,可達成載波頻率之進一步穿透。 According to one embodiment, further penetration of the carrier frequency can be achieved when the soil type of the local watch is favorable.

根據一個實施例,該一或多個載波頻率選自包含由C、X及Ku頻率頻帶組成之多個高頻微波、由一UHF、L、S頻率頻帶組成之複數個低頻微波及其組合之一群組。 According to an embodiment, the one or more carrier frequencies are selected from the group consisting of a plurality of high frequency microwaves consisting of C, X and Ku frequency bands, a plurality of low frequency microwaves consisting of a UHF, L, S frequency band and combinations thereof a group.

圖2繪示根據本發明之一個實施例之用於滑坡監測之多頻帶可重組次表面雷達剖面測勘系統100之一典型應用之一圖形表示200。在步驟205處,將嵌入式雷達系統100安裝至遠離潛在危險區域之一固定平臺上。特定言之,雷達剖面測勘系統100以大約每小時一至兩次掃描之一預定義間隔執行對地球環境及人造結構之定期監測。在步驟210處,雷達剖面測勘系統之嵌入式合成孔徑雷達(SAR)處理器125以高精度變化偵測能力產生地表之場景之一3D影像。在步驟215處,經由通信網路560將所產生之3D影像通信至伺服器555及用戶端裝置565。經由伺服器555對一機構或資料中心之線上報告提供資料以供進一步分析及風險評估。特定言之,通信網路560係一無線通信網路。在操作中,無線通信網路560可使用不同標準化通信協定(諸如,全球行動通信系統(GSM)及通用行動電信系統(UMTS))。此等標準化通信協定中之各者可指定允許藉由該無線通信網路同時服務於多個行動無線通信裝置之存取技術。 2 illustrates a graphical representation 200 of one exemplary application of a multi-band reconfigurable subsurface radar profile surveying system 100 for landslide monitoring in accordance with one embodiment of the present invention. At step 205, the embedded radar system 100 is mounted to a fixed platform that is remote from one of the potentially hazardous areas. In particular, the radar profile surveying system 100 performs periodic monitoring of the earth's environment and man-made structures at a predefined interval of approximately one to two scans per hour. At step 210, the embedded Synthetic Aperture Radar (SAR) processor 125 of the radar profile survey system produces 3D images of one of the surface scenes with high-precision change detection capabilities. At step 215, the generated 3D image is communicated to server 555 and client device 565 via communication network 560. Information is provided to an online report of an institution or data center via server 555 for further analysis and risk assessment. In particular, communication network 560 is a wireless communication network. In operation, wireless communication network 560 can use different standardized communication protocols such as Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS). Each of these standardized communication protocols may specify an access technology that allows simultaneous service of multiple mobile wireless communication devices over the wireless communication network.

在步驟220處,若在藉由資料中心經由伺服器555分析資料之後檢測到一潛在危險事件,則觸發早期警告信號以警示該區域之人群進行疏散。類似設備可安裝於各個潛在危險區域中以監測例如橋樑、塔、建築物、水壩或類似者之人造結構,其可形成一全國性之早期警告網路以拯救生命並防止相當大經濟損失。 At step 220, if a potentially dangerous event is detected after analyzing the data via the server 555 by the data center, an early warning signal is triggered to alert the crowd in the area to evacuate. Similar equipment can be installed in various potentially hazardous areas to monitor man-made structures such as bridges, towers, buildings, dams or the like, which can form a nationwide early warning network to save lives and prevent considerable economic losses.

圖3繪示根據本發明之一個實施例之雷達剖面測勘系統100之一可重組基帶信號合成器105之一簡化方塊圖。可重組基帶信號合成器105包含一輸入106、一數位邏輯平臺107及至少一個高速數位至類比轉換器108。數位邏輯模組107包含用於提供重組能力之複數個內部暫存器113。在操作中,對於可重組特徵,若干內部暫存器113包含控制暫存器(CR0至CR2)及參數暫存器(PR0至PR5),該暫存器可通過連接至一嵌入式控制器103或處理器系統125之一預定義序列介面112重 組。數位邏輯模組107進一步包含一直接數位合成器(DDS)核心114、一頻率分佈圖產生器116、一有限狀態機(FSM)117、一時序控制單元(TCU)118及一時脈分配器119。輸入模組106包含一參考時脈111及一序列介面112。特定言之,一頻率分佈圖產生器116產生直接數位合成器(DDS)核心114所需之調諧字,且因此產生一所要基帶輸出信號。DDS核心114之該輸出係在數位域中,且使用兩個數位至類比轉換器108轉換成類比表示。進一步言之,有限狀態機(FSM)117同步整個信號合成器105之操作序列。所需之所有時脈信號都產生於時序及控制單元(TCU)118內部且通過時脈分配器119進行分配。時序及控制單元(TCU)電連接至輸入模組106之參考時脈111。 3 is a simplified block diagram of one of the reconfigurable baseband signal synthesizers 105 of a radar profile surveying system 100 in accordance with one embodiment of the present invention. Reconfigurable baseband signal synthesizer 105 includes an input 106, a digital logic platform 107, and at least one high speed digital to analog converter 108. The digital logic module 107 includes a plurality of internal registers 113 for providing recombination capabilities. In operation, for reconfigurable features, a number of internal registers 113 include control registers (CR0 to CR2) and parameter registers (PR0 to PR5), which can be connected to an embedded controller 103. Or one of the processor systems 125 has a predefined sequence interface 112 group. The digital logic module 107 further includes a direct digital synthesizer (DDS) core 114, a frequency profile generator 116, a finite state machine (FSM) 117, a timing control unit (TCU) 118, and a clock distributor 119. The input module 106 includes a reference clock 111 and a sequence interface 112. In particular, a frequency profile generator 116 generates the tuning words required by the direct digital synthesizer (DDS) core 114 and thus produces a desired baseband output signal. The output of DDS core 114 is in the digit domain and is converted to an analog representation using two digits to analog converter 108. Further, the finite state machine (FSM) 117 synchronizes the sequence of operations of the entire signal synthesizer 105. All of the required clock signals are generated internally by the timing and control unit (TCU) 118 and distributed by the clock distributor 119. The timing and control unit (TCU) is electrically coupled to the reference clock 111 of the input module 106.

圖4繪示根據本發明之一個實施例之即時處理傳入原始資料之雷達剖面測勘系統100之一嵌入式合成孔徑雷達(SAR)處理器125之一方塊圖。特定言之,嵌入式SAR處理器125藉由組合嵌入式處理器及可程式化之場可程式化閘陣列(FPGA)之優點而利用一混合架構執行即時雷達信號處理。明確言之,嵌入式SAR處理器125包含:一雙通道類比至數位轉換器(ADC)131,其用於將複數個所接收FMCW中頻(IF)信號轉換成數位樣本;一基於FPGA範圍相關器132,其用於將傳入樣本變換成1D壓縮範圍域樣本;及一基於FPGA方位相關器133,其用於將多個壓縮範圍域樣本變換成2D壓縮方位域樣本。特定言之,基於FPGA之範圍相關器132藉由以下動作實行:首先將傳入同相(I)及正交相位(Q)樣本組合為複數形式;且執行快速傅立葉轉換(FFT)以將樣本轉換至對應於所接收之FMCW信號之範圍分佈圖之頻域。特定言之,基於FPGA之方位相關器133藉由以下動作實行:將範圍樣本分為多個子範圍分格,在該子範圍分格中範圍遷移小於一個像素;且將方位樣本分為多個子孔徑分格,其中每一子孔徑與其對應參考信號相關,且最後所有子孔徑經相干性地相加以獲得高解析度之目標回應。 藉由使用此子孔徑架構,可對每一子孔徑應用一專用基於FPGA處理單元以達成即時並行處理。在每次完整掃描結束時,嵌入式SAR處理器125之輸出係一2D SAR影像134,該影像134由範圍及方位域中之每一像素之幅度及相位資訊組成。進一步言之,將2D SAR影像134覆蓋至場景之一數位高程模型(DEM)上以獲得受觀察區域之3D影像剖面圖。 4 is a block diagram of an embedded Synthetic Aperture Radar (SAR) processor 125 of one of the radar profile survey systems 100 for processing incoming incoming data in real time, in accordance with one embodiment of the present invention. In particular, the embedded SAR processor 125 utilizes a hybrid architecture to perform real-time radar signal processing by combining the advantages of an embedded processor and a programmable field programmable gate array (FPGA). Specifically, the embedded SAR processor 125 includes a dual channel analog to digital converter (ADC) 131 for converting a plurality of received FMCW intermediate frequency (IF) signals into digital samples; an FPGA-based correlator 132 for transforming the incoming samples into 1D compressed range domain samples; and an FPGA based position correlator 133 for transforming the plurality of compressed range domain samples into 2D compressed azimuthal domain samples. In particular, the FPGA-based range correlator 132 is implemented by first combining incoming in-phase (I) and quadrature-phase (Q) samples into a complex form; and performing fast Fourier transform (FFT) to convert the samples. To the frequency domain corresponding to the range profile of the received FMCW signal. In particular, the FPGA-based azimuth correlator 133 is implemented by dividing the range sample into a plurality of sub-range cells in which the range shift is less than one pixel; and the azimuth sample is divided into a plurality of sub-apertures. A cell, wherein each subaperture is associated with its corresponding reference signal, and finally all of the subapertures are coherently added to obtain a high resolution target response. By using this subaperture architecture, a dedicated FPGA-based processing unit can be applied to each sub-aperture to achieve instant parallel processing. At the end of each complete scan, the output of embedded SAR processor 125 is a 2D SAR image 134 that consists of amplitude and phase information for each pixel in the range and orientation domains. Further, the 2D SAR image 134 is overlaid onto a digital elevation model (DEM) of the scene to obtain a 3D image profile of the observed area.

圖5繪示根據本發明之一個實施例之雷達剖面測勘系統100之一射頻(RF)收發器子系統155之一方塊圖。特定言之,實施具有可重組波形類型之一多頻帶雷達以達成地表面及次表面監測兩者。在本射頻(RF)收發器子系統155中使用一FMCW(調頻連續波)雷達組態。射頻(RF)收發器子系統155包含一高解析度斜坡產生器鎖相環(PLL)142以提供具有次赫茲級解析度之一高線性度FMCW波形。使用一寬頻帶電壓控制振盪器(VCO)143,其中VCO輸出相位饋送至一可程式化分數式(fractional-N)分頻器144。特定言之,PLL 142包含一低雜訊相頻偵測器,其比較VCO相位與一參考相位141,並調整VCO以保持相位為匹配的。VCO之輸出係一高度線性、低相雜訊FMCW波形,且其中心頻率在諸如自500兆赫(MHz)至6000兆赫之一寬頻率頻帶內可程式化。一倍頻器145用於將頻率範圍擴大諸如4之一因數,且因此該系統可提供諸如自2000兆赫至24000兆赫之一多頻帶可重組掃頻。進一步言之,該FMCW信號藉由一高功率放大器(HPA)146放大且通過一多頻帶發射天線147發射。返回信號由該接收天線接收,藉由一低雜訊放大器(LNA)148放大,且藉由使用一正交混頻器149混合傳入之接收信號與發射信號之一部分而降頻轉換成中頻(IF)信號。中頻(IF)信號藉由類比至數位轉換器(ADC)131轉換成數位樣本,並儲存於資料記錄器115中以供進一步處理。 5 is a block diagram of a radio frequency (RF) transceiver subsystem 155 of one of the radar profile survey systems 100 in accordance with one embodiment of the present invention. In particular, one of the multi-band radars with reconfigurable waveform types is implemented to achieve both ground surface and subsurface monitoring. An FMCW (Frequency Modulated Continuous Wave) radar configuration is used in the present radio frequency (RF) transceiver subsystem 155. Radio frequency (RF) transceiver subsystem 155 includes a high resolution ramp generator phase locked loop (PLL) 142 to provide a high linearity FMCW waveform having one of the sub- Hertz stage resolutions. A wideband voltage controlled oscillator (VCO) 143 is used in which the VCO output phase is fed to a fractional-N divider 144. In particular, PLL 142 includes a low noise phase frequency detector that compares the VCO phase with a reference phase 141 and adjusts the VCO to maintain phase matching. The output of the VCO is a highly linear, low phase noise FMCW waveform with a center frequency that can be programmed in a frequency band such as from 500 megahertz (MHz) to 6000 MHz. A frequency multiplier 145 is used to amplify the frequency range by a factor of four, and thus the system can provide a multi-band reconfigurable sweep such as from one of 2000 megahertz to 24,000 megahertz. Further, the FMCW signal is amplified by a high power amplifier (HPA) 146 and transmitted through a multi-band transmit antenna 147. The return signal is received by the receiving antenna, amplified by a low noise amplifier (LNA) 148, and downconverted to an intermediate frequency by mixing a portion of the incoming received signal with the transmitted signal using a quadrature mixer 149. (IF) signal. The intermediate frequency (IF) signal is converted to digital samples by an analog to digital converter (ADC) 131 and stored in data logger 115 for further processing.

根據本發明之一個實施例,可跨多頻帶頻率上以高線性度及低 相雜訊數位式地重組該調頻連續波(FMCW)信號之掃頻,該多頻帶頻率諸如自低微波頻率(UHF、L、S頻帶)至高微波頻率(C、X、Ku頻帶)。因此,雷達剖面測勘儀能夠產生及接收多頻帶信號以用於次表面剖面測勘。 According to an embodiment of the present invention, high linearity and lowness can be achieved across multiple frequency bands The phase noise digitally reorganizes the frequency sweep of the frequency modulated continuous wave (FMCW) signal, such as from a low microwave frequency (UHF, L, S band) to a high microwave frequency (C, X, Ku band). Therefore, the radar profile surveyer is capable of generating and receiving multi-band signals for subsurface profile surveying.

圖6繪示根據本發明之一個實施例之通過雷達剖面測勘系統100之雷達時序控制器(RTC)子系統103及高速ADC 131進行之一資料獲取方法之一圖形流程圖300。方法300開始於步驟305。在步驟305處,啟動並初始化高速類比至數位轉換器(ADC)131。方法300進行至步驟307。在步驟307處,RTC 103獲得對高速ADC 131之一控制處置。方法300進行至步驟308。在步驟308處,RTC 103等待自基帶信號合成器105之一觸發信號。因此,收集原始SAR採樣資料。方法300進行至步驟312。在步驟312處,將所採樣資料儲存於板載記憶體中。 6 is a graphical flow diagram 300 of one of the data acquisition methods performed by the radar timing controller (RTC) subsystem 103 and the high speed ADC 131 of the radar profile survey system 100, in accordance with one embodiment of the present invention. The method 300 begins in step 305. At step 305, a high speed analog to digital converter (ADC) 131 is enabled and initialized. The method 300 proceeds to step 307. At step 307, the RTC 103 obtains a control treatment for one of the high speed ADCs 131. The method 300 proceeds to step 308. At step 308, the RTC 103 waits for a trigger signal from one of the baseband signal synthesizers 105. Therefore, raw SAR sampling data is collected. The method 300 proceeds to step 312. At step 312, the sampled data is stored in onboard memory.

方法300自步驟312進行至步驟315。在步驟315處,自高速匯流排擷取具有指定時脈速率及樣本數目之ADC採樣資料。明確言之,在每次觸發時同時採樣I通道處之信號及Q通道處之信號兩者。方法300進行至步驟320。在步驟320處,將資料儲存於資料記錄器115之固態硬碟(SSD)中。後續將傳送所儲存資料以供處理。 The method 300 proceeds from step 312 to step 315. At step 315, ADC sample data having a specified clock rate and number of samples is retrieved from the high speed bus. Specifically, both the signal at the I channel and the signal at the Q channel are simultaneously sampled at each trigger. The method 300 proceeds to step 320. At step 320, the data is stored in a solid state drive (SSD) of the data logger 115. The stored data will be transferred for processing.

根據本發明之一個實施例,方法300自步驟320進行至步驟325。在步驟325處,做一判定:是否存在一新採樣資料。若判定存在新採樣資料,則方法300自步驟325進行至步驟315。 Method 300 proceeds from step 320 to step 325, in accordance with an embodiment of the present invention. At step 325, a determination is made as to whether a new sampled data is present. If it is determined that there is new sampled material, then method 300 proceeds from step 325 to step 315.

根據本發明之另一實施例,若判定不存在新採樣資料,則方法300自步驟325進行至步驟330。在步驟330處,停用ADC 131且該方法進行至步驟335。在步驟335處,方法300結束。 In accordance with another embodiment of the present invention, if it is determined that there is no new sampled material, then method 300 proceeds from step 325 to step 330. At step 330, ADC 131 is deactivated and the method proceeds to step 335. At step 335, method 300 ends.

根據本發明之又另一實施例,方法300自步驟312進行至步驟316。在步驟316處,做一判定:是否存在由3D合成孔徑雷達(SAR)掃描器160掃描之任何原始樣本資料。若判定原始樣本資料可用,則方 法300自步驟316進行至步驟308。 In accordance with yet another embodiment of the present invention, method 300 proceeds from step 312 to step 316. At step 316, a determination is made as to whether any original sample data scanned by the 3D Synthetic Aperture Radar (SAR) scanner 160 is present. If it is determined that the original sample data is available, then The method 300 proceeds from step 316 to step 308.

根據本發明之又另一實施例,若在步驟316處判定原始樣本資料不可用,則方法300自步驟316進行至步驟335。在步驟335處,方法300結束。 In accordance with yet another embodiment of the present invention, if it is determined at step 316 that the original sample data is not available, then method 300 proceeds from step 316 to step 335. At step 335, method 300 ends.

圖7繪示根據本發明之另一實施例之一太陽能供電雷達剖面測勘系統450之一方塊圖。目標滑坡監測通常落於不具有一適當電源之一偏遠地區中。因此,在習知機電發電系統不可用之位置中,將太陽能供電系統用於多頻帶可重組次表面雷達剖面測勘系統100。取決於系統450之功能及操作要求,需要特定組件,且其可包含一些主要組件。該等主要組件包含一DC-AC電力轉換器470、一電池組465、一電池充電控制器460及複數個指定電負載用具475。特定言之,指定電負載用具475可係一馬達、雷達處理器、RF子系統、多個LED、螢光燈或類似者。 7 is a block diagram of a solar powered radar profile survey system 450 in accordance with another embodiment of the present invention. Target landslide monitoring usually falls in a remote area that does not have a suitable power source. Thus, solar power systems are used in multi-band reconfigurable subsurface radar profile surveying systems 100 where conventional electromechanical power generation systems are not available. Depending on the functionality and operational requirements of system 450, certain components are required and may include some major components. The primary components include a DC-AC power converter 470, a battery pack 465, a battery charge controller 460, and a plurality of designated electrical load appliances 475. In particular, the designated electrical load appliance 475 can be a motor, radar processor, RF subsystem, multiple LEDs, fluorescent lights, or the like.

根據本發明之一個實施例,在開發主控制器板之後,需要建立與商用太陽能電池板455及其充電控制器460之集成。取決於太陽能電池板充電控制器,建立連接。該連接可與太陽能電池板455串聯或並聯。 In accordance with an embodiment of the present invention, integration with commercial solar panel 455 and its charge controller 460 needs to be established after development of the main controller board. The connection is established depending on the solar panel charging controller. This connection can be in series or in parallel with the solar panel 455.

圖8繪示根據本發明之一個實施例之自雷達剖面測勘系統100產生之資料之一遠端資料控制及一擷取系統550之一方塊圖。特定言之,遠端資料控制及擷取系統550有助於減小維護時間及實地再訪問頻率。遠端資料控制及擷取系統550包含資料伺服器555、通信網路560及一或多個用戶端電腦5651、5652……565N。即時收集之雷達資料定期遠端地發送至資料伺服器555。 8 is a block diagram of a remote data control and capture system 550 of one of the data generated by the radar profile survey system 100 in accordance with one embodiment of the present invention. In particular, the remote data control and retrieval system 550 helps reduce maintenance time and frequency of revisiting in the field. The remote data control and retrieval system 550 includes a data server 555, a communication network 560, and one or more client computers 565 1 , 565 2 . . . 565 N . The radar data collected in real time is periodically sent to the data server 555 remotely.

用戶端電腦565研究藉由雷達系統100之嵌入式SAR處理器(ESP)125處理且經由通信網路560儲存於伺服器555中之雷達資料。在操作中,用戶端電腦5651、5652……565N發送資料到伺服器555及自伺服 器555接收資料以監測並研究所處理資料之結果。在使用中,使用者介面係一用戶端裝置,且該用戶端裝置係一用戶端計算裝置565。 The client computer 565 investigates radar data processed by the embedded SAR processor (ESP) 125 of the radar system 100 and stored in the server 555 via the communication network 560. In operation, the client computers 565 1 , 565 2 ... 565 N send data to the server 555 and receive data from the server 555 to monitor and investigate the results of processing the data. In use, the user interface is a client device and the client device is a client computing device 565.

伺服器555包含一中央處理單元(CPU)、複數個支援電路,及用於儲存該雷達資料之一記憶體。伺服器555可操作以收集對應於所掃描區域之雷達資料,並經由通信網路560儲存該雷達資料。伺服器555包含一處理器557,處理器557經組態以執行至少一個指令集以經由用戶端裝置565將該雷達資料提供至至少一個使用者。該等支援電路可包含一顯示裝置以及支援CPU之功能之其它電路。此等電路可包含時脈電路、快取、電源、網卡、視訊電路及類似者。該記憶體可包括唯讀記憶體、隨機存取記憶體、可移除記憶體、磁碟機、光學驅動器及/或其它形式之數位儲存裝置。 The server 555 includes a central processing unit (CPU), a plurality of support circuits, and a memory for storing the radar data. The server 555 is operable to collect radar data corresponding to the scanned area and store the radar data via the communication network 560. The server 555 includes a processor 557 configured to execute at least one set of instructions to provide the radar data to at least one user via the client device 565. The support circuits may include a display device and other circuits that support the functions of the CPU. Such circuits may include clock circuits, caches, power supplies, network cards, video circuits, and the like. The memory can include read only memory, random access memory, removable memory, disk drives, optical drives, and/or other forms of digital storage devices.

通信網路560促進雷達系統100之嵌入式SAR處理器(ESP)125、伺服器555與一或多個用戶端電腦565之間之通信。通信網路560可係如通常在所屬領域中已知之任何種類之有線或無線網路以及其組合。在一些實施例中,通信網路560至少部分係一封包交換網路,諸如網際網路。在一些實施例中,通信網路560係一3G網路。3G網路可包含支援一CDMA演變資料優化(EVDO)版本A標準之一或多個廣域蜂巢式網路、一GPRS網路、或在支援高下行鏈路資料速率(高於例如2.5兆比特每秒之資料速率)之一無線介面上操作之任何其它網路。 Communication network 560 facilitates communication between embedded SAR processor (ESP) 125 of radar system 100, server 555, and one or more client computers 565. Communication network 560 can be any type of wired or wireless network, as generally known in the art, and combinations thereof. In some embodiments, communication network 560 is at least partially a packet switched network, such as the Internet. In some embodiments, communication network 560 is a 3G network. The 3G network may include support for one of the CDMA Evolution Data Optimized (EVDO) Release A standards or multiple wide-area cellular networks, a GPRS network, or supporting high downlink data rates (above, for example, 2.5 megabits) Any data rate per second operating on the wireless interface.

用戶端電腦565將資料提供到伺服器555及自伺服器555接收資料。用戶端電腦565包含複數個計算裝置,包含但不限於桌上型電腦、膝上型電腦、筆記型電腦、智慧型電話、平板電腦、及/或能夠執行多個模組且與伺服器555互動之任何其它計算裝置。在藉由某些軟體程式化時,用戶端電腦565用作一專用電腦,以用於發送及接收自伺服器555之資料之目的。 The client computer 565 provides the data to the server 555 and receives the data from the server 555. The client computer 565 includes a plurality of computing devices including, but not limited to, a desktop computer, a laptop computer, a notebook computer, a smart phone, a tablet computer, and/or capable of executing a plurality of modules and interacting with the server 555 Any other computing device. When stylized by some software, the client computer 565 functions as a dedicated computer for transmitting and receiving data from the server 555.

在一些實施例中,用戶端電腦565係可運輸至設施及自設施運輸 回以存取該資料之一可攜式裝置。 In some embodiments, the client computer 565 can be transported to and from the facility. A portable device that is accessed to access the data.

該等支援電路可包含一顯示裝置以及支援CPU之功能之其它電路。此等電路可包含時脈電路、快取、電源、網卡、視訊電路及類似者。 The support circuits may include a display device and other circuits that support the functions of the CPU. Such circuits may include clock circuits, caches, power supplies, network cards, video circuits, and the like.

在另一實施例中,一或多個環境感測器判定區域之環境條件,且經由通信網路560通信藉由環境感測器570感測之資料並將其儲存於伺服器555中。 In another embodiment, one or more environmental sensors determine the environmental conditions of the area and communicate the data sensed by the environmental sensor 570 via the communication network 560 and store it in the server 555.

在又另一實施例中,伺服器555包含一圖形化使用者介面(GUI)模組及用於安裝並執行該GUI模組之一單板電腦。進一步言之,該單板電腦包含用於執行指令集以自該等掃描構件收集即時雷達資料並經由通信網路560將所收集資料發送至嵌入式雷達處理器(ESP)子系統125之一處理模組。特定言之,一數據機連接至該單板電腦。 In yet another embodiment, the server 555 includes a graphical user interface (GUI) module and a single board computer for installing and executing the GUI module. Further, the single board computer includes means for executing a set of instructions to collect real-time radar data from the scanning components and to transmit the collected data to one of the embedded radar processor (ESP) subsystems 125 via the communication network 560. Module. Specifically, a modem is connected to the single board computer.

在一個實施例中,該數據機係一GSM數據機。 In one embodiment, the data machine is a GSM modem.

圖9繪示根據本發明之一個實施例之信號之時域標繪圖之一圖形表示。圖10繪示根據本發明之一個實施例之基帶信號之一頻率分佈圖,圖11A繪示根據本發明之一個實施例之低頻帶雷達信號之一樣本頻率頻譜,且圖11B繪示根據本發明之一個實施例之高頻帶雷達信號之一樣本頻率頻譜。 Figure 9 is a graphical representation of one of the time domain plots of signals in accordance with one embodiment of the present invention. 10 is a frequency distribution diagram of a baseband signal according to an embodiment of the present invention, FIG. 11A illustrates a sample frequency spectrum of a low-band radar signal according to an embodiment of the present invention, and FIG. 11B illustrates a sample frequency spectrum according to the present invention. One of the high frequency band radar signals of one embodiment is a sample frequency spectrum.

圖12繪示根據本發明之一個實施例之用於藉由使用雷達剖面測勘系統100監測地表面及次表面之一方法800之一流程圖。方法800開始於步驟802且進行至步驟805。在步驟805處,執行一判定以決定:地表之關注區域之掃描是否係對該區域之一新掃描。特定言之,藉由發射信號以完成對區域之掃描而執行雷達信號採集。在操作中,每一次掃描包含發射一或多個載波頻率之調頻連續波(FMCW)信號之一序列。 12 is a flow diagram of a method 800 for monitoring a surface and a subsurface by using a radar profile survey system 100, in accordance with an embodiment of the present invention. The method 800 begins in step 802 and proceeds to step 805. At step 805, a determination is made to determine if the scan of the region of interest of the surface is a new scan of one of the regions. In particular, radar signal acquisition is performed by transmitting a signal to complete the scanning of the area. In operation, each scan includes a sequence of frequency modulated continuous wave (FMCW) signals that transmit one or more carrier frequencies.

在一個實施例中,發射Ku頻帶(即,係自大約12千兆赫至大約18 千兆赫之範圍內之射頻集合之頻率)之FMCW信號之一序列。 In one embodiment, the Ku band is transmitted (ie, from about 12 GHz to about 18) A sequence of FMCW signals of the frequency of the set of radio frequencies in the range of gigahertz.

在一個實施例中,若對地表之關注區域之掃描係對區域之一新掃描,則方法800進行至步驟810。在步驟810處,處理回應於該複數個信號中之各個信號作為數位化資料所接收之回波信號並將其儲存於資料庫120中。特定言之,處理並儲存回波信號之步驟包含:藉由將數位化資料保存於以日期及時間資訊標記之一資料夾中而建立資料分級結構;並將用於每個調頻連續波(FMCW)信號之資料配置成兩行格式。在使用中,該兩行格式包含用於I通道(同相)之第一行及用於Q通道(正交相位)之第二行,其中基於多個參數配置資料。在使用中,該多個參數包含處理原始資料所需之各種系統組態及設計參數。如圖15A及圖15B中繪示,已徵集處理原始資料所需之各種此等參數。 In one embodiment, if the scan of the region of interest of the surface is scanned for one of the regions, then method 800 proceeds to step 810. At step 810, echo signals received in response to the respective signals of the plurality of signals as digitized data are processed and stored in the database 120. Specifically, the step of processing and storing the echo signal includes: establishing a data hierarchy by storing the digitized data in a folder of date and time information tags; and using it for each frequency modulated continuous wave (FMCW) The signal data is configured in a two-line format. In use, the two-line format includes a first row for the I channel (in-phase) and a second row for the Q channel (quadrature phase), where the data is configured based on a plurality of parameters. In use, the plurality of parameters include various system configurations and design parameters required to process the original data. As shown in Figures 15A and 15B, various such parameters required to process the original data have been collected.

一般技術者將瞭解,可根據要求進一步使用許多此等不同參數。明確言之,方位步進之每次掃描包含建立一數位檔並將該檔儲存於資料庫120中。然而,整個操作重複大約150次以形成完整區域掃描,且據此其對於每次區域掃描造成合計150個檔。 One of ordinary skill will appreciate that many of these different parameters can be further utilized as desired. Specifically, each scan of the azimuth step includes establishing a digit file and storing the file in the database 120. However, the entire operation was repeated approximately 150 times to form a full area scan, and accordingly it resulted in a total of 150 files for each area scan.

方法800進行至步驟815。在步驟815處,將所儲存資料轉換成多個合成孔徑雷達(SAR)影像。方法800進行至步驟820。在820處,將每個合成孔徑雷達(SAR)影像儲存於資料庫120中。方法800進行至步驟825。 The method 800 proceeds to step 815. At step 815, the stored data is converted into a plurality of Synthetic Aperture Radar (SAR) images. The method 800 proceeds to step 820. At 820, each Synthetic Aperture Radar (SAR) image is stored in a repository 120. The method 800 proceeds to step 825.

在另一實施例中,若對地表之關注區域之掃描不是對區域之一新掃描,則方法800進行至步驟825。在步驟825處,做一判定:所儲存之合成孔徑雷達(SAR)影像是否係該區域之一新合成孔徑雷達(SAR)影像。 In another embodiment, if the scan of the region of interest on the surface is not a new scan of one of the regions, then method 800 proceeds to step 825. At step 825, a determination is made as to whether the stored Synthetic Aperture Radar (SAR) image is a New Synthetic Aperture Radar (SAR) image of the region.

在一個實施例中,若所儲存之合成孔徑雷達(SAR)影像係該區域之一新合成孔徑雷達(SAR)影像,則方法800進行至步驟830。在步驟830處,對該複數個合成孔徑雷達(SAR)影像中之每一合成孔徑雷達 (SAR)影像執行干涉法合成孔徑雷達(InSAR)處理。方法800進行至步驟835。在835處,藉由經由通信網路560通信伺服器555之資料庫中之資料而更新區域之一偵測圖。伺服器555即時地接收資料至系統100之ESP 125及自系統100之ESP 125接收資料。 In one embodiment, if the stored Synthetic Aperture Radar (SAR) image is a New Synthetic Aperture Radar (SAR) image of the region, then method 800 proceeds to step 830. At step 830, each of the plurality of synthetic aperture radar (SAR) images (SAR) imagery performs interferometric synthetic aperture radar (InSAR) processing. The method 800 proceeds to step 835. At 835, one of the regions is updated by communicating the data in the database of the server 555 via the communication network 560. The server 555 receives the data to the ESP 125 of the system 100 and receives the data from the ESP 125 of the system 100.

在一些實施例中,伺服器555經由通信網路560維持最近監測之資料之記錄。一般技術者將識別將資料自系統100之ESP 125傳送至伺服器555之多種無線方法。 In some embodiments, server 555 maintains a record of the most recently monitored data via communication network 560. One of ordinary skill will recognize a variety of wireless methods for transferring data from the ESP 125 of the system 100 to the server 555.

在另一實施例中,若所儲存之合成孔徑雷達(SAR)影像不是該區域之一新合成孔徑雷達(SAR)影像,則方法800進行至步驟805。 In another embodiment, if the stored Synthetic Aperture Radar (SAR) image is not a New Synthetic Aperture Radar (SAR) image of the region, then method 800 proceeds to step 805.

圖13繪示根據本發明之一個實施例之用於合成孔徑雷達(SAR)影像處理之一方法900之一流程圖。方法900開始於步驟910。在步驟910處,藉由系統100之嵌入式SAR處理器(ESP)125之八核處理器(未展示)以每個方位步進擷取儲存於資料庫120中之原始資料並將該資料轉換成時間序列信號。在使用中,方位步進之每次掃描包含建立一數位檔並將該檔儲存於資料庫120中。然而,整個操作重複大約150次以形成一完整區域掃描,且據此其對於每次區域掃描造成合計150個檔。方法900進行至步驟915。在步驟915處,藉由將調頻連續波(FMCW)信號轉換至一頻域並將頻率改變為一範圍標度而執行範圍壓縮。在使用中,在此步驟處使用快速傅立葉轉換(FFT)。方法900進行至步驟920。在步驟920處,計算聚焦之一所需合成長度且在方位域中執行補零。在步驟925處,評估一範圍信號參考並在一2D頻域中執行一二次範圍壓縮。在步驟930處,計算一方位信號參考且在一都卜勒域(Doppler domain)之範圍中執行方位壓縮。在步驟935處,將各個信號轉換成一空間域,且減小一影像大小以具體觀察該區域之一關注區。 13 is a flow diagram of one method 900 for synthetic aperture radar (SAR) image processing in accordance with one embodiment of the present invention. The method 900 begins at step 910. At step 910, the original data stored in the database 120 is captured in each orientation by the eight-core processor (not shown) of the embedded SAR processor (ESP) 125 of the system 100 and converted. Time series signal. In use, each scan of the azimuth step includes establishing a digital file and storing the file in the database 120. However, the entire operation was repeated approximately 150 times to form a full area scan, and accordingly it resulted in a total of 150 tracks for each area scan. The method 900 proceeds to step 915. At step 915, range compression is performed by converting a frequency modulated continuous wave (FMCW) signal to a frequency domain and changing the frequency to a range scale. In use, a Fast Fourier Transform (FFT) is used at this step. The method 900 proceeds to step 920. At step 920, one of the desired composite lengths of the focus is calculated and zero padding is performed in the azimuth domain. At step 925, a range of signal references is evaluated and a second range of compression is performed in a 2D frequency domain. At step 930, an orientation signal reference is calculated and azimuthal compression is performed in the range of a Doppler domain. At step 935, the individual signals are converted to a spatial domain and an image size is reduced to specifically view one of the regions of interest in the region.

圖14繪示根據本發明之一個實施例之用於對合成孔徑雷達(SAR)影像執行干涉法合成孔徑雷達(InSAR)處理之一方法1000之一流程 圖。方法1000開始於步驟1005且進行至步驟1010。在步驟1010處,自資料庫120即時擷取該區域之當前合成孔徑雷達(SAR)影像。因此,更新振幅離差指數(ADI)。方法1000進行至步驟1015。在步驟1015處,基於振幅離差指數(ADI)選擇多個永久散射體(PS)及多個PS候選者(PSC)。方法1000進行至步驟1020。在步驟1020處,更新PS/PSC網路。方法1000進行至步驟1025。在步驟1025處,在資料庫120中更新觀察方差。進一步言之,計算基於觀察方差之分歧指數。方法1000進行至步驟1030。在步驟1030處,執行一2D空間展開。方法1000進行至步驟1035。在步驟1035處,藉由利用一卡爾曼濾波器(Kalman filter)計算分歧之概率。進一步言之,更新空間展開解。方法1000進行至步驟1040。在步驟1040處,做一判定:是否已找到一最佳解。 14 illustrates a flow of one of the methods 1000 for performing interferometric synthetic aperture radar (InSAR) processing on synthetic aperture radar (SAR) images, in accordance with one embodiment of the present invention. Figure. The method 1000 begins at step 1005 and proceeds to step 1010. At step 1010, the current synthetic aperture radar (SAR) image of the region is captured from the database 120. Therefore, the amplitude dispersion index (ADI) is updated. The method 1000 proceeds to step 1015. At step 1015, a plurality of permanent scatterers (PS) and a plurality of PS candidates (PSCs) are selected based on an amplitude dispersion index (ADI). The method 1000 proceeds to step 1020. At step 1020, the PS/PSC network is updated. The method 1000 proceeds to step 1025. At step 1025, the observed variance is updated in the repository 120. Further, the divergence index based on the observed variance is calculated. The method 1000 proceeds to step 1030. At step 1030, a 2D spatial expansion is performed. The method 1000 proceeds to step 1035. At step 1035, the probability of divergence is calculated by using a Kalman filter. Further, the update space expands the solution. The method 1000 proceeds to step 1040. At step 1040, a determination is made as to whether an optimal solution has been found.

根據本發明之另一實施例,若判定未找到一最佳解,則方法1000進行至步驟1025。 In accordance with another embodiment of the present invention, if it is determined that an optimal solution has not been found, then method 1000 proceeds to step 1025.

根據本發明之一個實施例,若判定已找到一最佳解,則方法1000進行至步驟1045。在步驟1045處,進行永久散射體(PS)之空間整合且產生一干涉法合成孔徑雷達(InSAR)影像。方法1000進行至步驟1050。在步驟1050處,方法1000結束。 In accordance with an embodiment of the present invention, if it is determined that an optimal solution has been found, then method 1000 proceeds to step 1045. At step 1045, spatial integration of the permanent scatterers (PS) is performed and an interferometric Synthetic Aperture Radar (InSAR) image is generated. The method 1000 proceeds to step 1050. At step 1050, method 1000 ends.

因此,本發明提供用於監測地球表面中之陸地變形、地下移動、建築物變形及物體偵測之高解析度多頻帶次表面剖面測勘之方法及系統。本雷達系統即時判定在地下發生之任何種類之變形。本發明解決對使用一非破壞性遙測技術系統進行災難監測及風險評估以及建立用於危險管理之早期警告框架之增加之需求。特定言之,本發明意欲解決對土地及建築物結構變形之連續監測之低效率。 Accordingly, the present invention provides a method and system for monitoring high resolution multi-band subsurface profile surveys of terrestrial deformation, subsurface movement, building deformation, and object detection in the earth's surface. The radar system instantly determines any type of deformation that occurs underground. The present invention addresses the need for disaster monitoring and risk assessment using a non-destructive telemetry technology system and the establishment of an early warning framework for risk management. In particular, the present invention is intended to address the inefficiency of continuous monitoring of structural deformation of land and buildings.

而且,本發明提供具有亞毫米級偵測精確度之全天候(24/7)遠端監測且最小化現場工作之風險。與其中覆蓋面積為小的習知地面真實情況儀器相比,另一改良係使用本發明系統進行之大面積監測。因 此,本系統係一種針對大面積之高風險滑坡或建築物及橋樑結構監測之一有效方法。特定言之,本雷達剖面測勘系統可穿透至地表下大約10公分處以得到地下剖面圖及地下移動機構,其係現有基於地面之InSAR系統不具備的。而且,自雷達穿透至地球表面下大約10公分處產生之土地剖面圖提供用於滑坡早期警告系統開發及分析之有用資訊。此外,本系統具有一緊湊外殼設計且係可攜式系統。 Moreover, the present invention provides all-weather (24/7) remote monitoring with sub-millimeter detection accuracy and minimizes the risk of field work. Another improvement is the large area monitoring using the system of the present invention compared to conventional ground truth devices in which the coverage area is small. because Therefore, the system is an effective method for monitoring large-area high-risk landslides or building and bridge structures. In particular, the radar profile survey system can penetrate to approximately 10 cm below the surface to obtain a subsurface profile and an underground moving mechanism that is not available with existing ground-based InSAR systems. Moreover, the land profile generated from the radar penetration to approximately 10 cm below the Earth's surface provides useful information for the development and analysis of early warning systems for landslides. In addition, the system has a compact housing design and is a portable system.

在使用中,本系統具有用於監測較低陸地變形之一較低勘測成本。明確言之,本系統具有一高速資料獲取且易於使用。因此,本系統提供對陸地變形之小幅度變化之連續遠端監測,其即時發生而不干擾陸地結構。 In use, the system has a lower survey cost for monitoring one of the lower terrestrial deformations. Specifically, the system has a high-speed data acquisition and is easy to use. Thus, the present system provides continuous remote monitoring of small changes in terrestrial deformation that occur instantaneously without interfering with terrestrial structures.

據此,雖然已展示及描述本發明之較佳實施例,但是應瞭解,本發明可按除本文中具體展示及描述以外之其它方式體現,且在該實施例內,在不背離本文隨附之申請專利範圍之範疇之本發明之基本理念或原理之情況下可對部件之形式及配置作出某些改變。 Accordingly, the present invention has been shown and described with respect to the preferred embodiments of the invention Certain changes in the form and configuration of the components may be made in the context of the basic concepts or principles of the invention in the scope of the claims.

100‧‧‧次表面雷達剖面測勘系統 100‧‧‧ Surface Radar Profile Survey System

101‧‧‧基帶合成孔徑雷達(SAR)子系統 101‧‧‧Baseband Synthetic Aperture Radar (SAR) Subsystem

103‧‧‧雷達時序控制器(RTC) 103‧‧‧Radar Timing Controller (RTC)

105‧‧‧信號合成器 105‧‧‧Signal Synthesizer

110‧‧‧掃描子系統/掃描平臺 110‧‧‧Scan Subsystem/Scan Platform

115‧‧‧資料記錄器 115‧‧‧ data logger

120‧‧‧記錄資料庫 120‧‧‧Record database

125‧‧‧處理器系統 125‧‧‧Processor System

147‧‧‧多頻帶發射天線 147‧‧‧Multi-band transmit antenna

155‧‧‧射頻(RF)收發器子系統 155‧‧‧ Radio Frequency (RF) Transceiver Subsystem

160‧‧‧掃描構件/嵌入式掃描控制器 160‧‧‧Scanning components/embedded scanning controller

165‧‧‧電源/電力管理模組 165‧‧‧Power/Power Management Module

560‧‧‧通信網路 560‧‧‧Communication network

Claims (35)

一種用於地表面及次表面監測之多頻帶可重組次表面雷達剖面測勘系統,該系統包括:一基帶合成孔徑雷達(SAR)子系統,其用於產生、接收及處理呈一數位形式之雷達信號;一射頻(RF)發射器及接收器(收發器)子系統,其用於發射及接收複數個波,該射頻(RF)收發器子系統電連接至該基帶SAR子系統;一掃描子系統,其包括用於地表面及次表面監測之一掃描構件,該掃描子系統電連接至該基帶SAR子系統及射頻(RF)收發器子系統;及一電源,其包括用於提供電力至該系統之一電力管理模組。 A multi-band reconfigurable subsurface radar profile surveying system for ground surface and subsurface monitoring, the system comprising: a baseband synthetic aperture radar (SAR) subsystem for generating, receiving and processing in a digital form a radar signal; a radio frequency (RF) transmitter and receiver (transceiver) subsystem for transmitting and receiving a plurality of waves, the radio frequency (RF) transceiver subsystem electrically coupled to the baseband SAR subsystem; a subsystem comprising one of scanning components for ground surface and subsurface monitoring, the scanning subsystem electrically coupled to the baseband SAR subsystem and a radio frequency (RF) transceiver subsystem; and a power source including for providing power To one of the power management modules of the system. 如請求項1之雷達剖面測勘系統,其中該系統進一步包括:一可重組基帶信號合成器,其用於產生該等所要雷達波形及時序及控制信號;一資料記錄器,其用於接收及記錄傳入雷達信號資料於一資料庫中;及一嵌入式合成孔徑雷達(SAR)處理器子系統,其用於即時處理該雷達信號資料。 The radar profile survey system of claim 1, wherein the system further comprises: a reconfigurable baseband signal synthesizer for generating the desired radar waveforms and timing and control signals; and a data logger for receiving and Recording incoming radar signal data in a database; and an embedded synthetic aperture radar (SAR) processor subsystem for processing the radar signal data in real time. 如請求項2之雷達剖面測勘系統,其中該嵌入式雷達處理器子系統包括:一雙通道類比至數位轉換器(ADC),其用於使複數個該所接收FMCW中頻(IF)信號轉換至數位樣本;一基於場可程式化閘陣列(FPGA)範圍相關器,其用於使該等傳入樣本變換成1D壓縮範圍域樣本;及 一基於場可程式化閘陣列(FPGA)方位相關器,其用於使複數個壓縮範圍域樣本變換成複數個2D壓縮方位域樣本。 The radar profile survey system of claim 2, wherein the embedded radar processor subsystem comprises: a dual channel analog to digital converter (ADC) for causing a plurality of received FMCW intermediate frequency (IF) signals Converting to a digital sample; a field programmable gate array (FPGA) range correlator for transforming the incoming samples into 1D compressed range domain samples; A field programmable gate array (FPGA) position correlator for transforming a plurality of compressed range domain samples into a plurality of 2D compressed azimuthal domain samples. 如請求項2之雷達剖面測勘系統,其中該信號合成器子系統係一基於場可程式化閘陣列(FPGA)數位信號合成器。 The radar profile surveying system of claim 2, wherein the signal synthesizer subsystem is a field programmable gate array (FPGA) digital signal synthesizer. 如請求項4之雷達剖面測勘系統,其中該信號合成器係包括一輸入模組、一數位邏輯模組及至少一個數位至類比轉換器之一可重組基帶數位信號合成器。 The radar profile surveying system of claim 4, wherein the signal synthesizer comprises an input module, a digital logic module, and at least one digital to analog converter reconfigurable baseband digital signal synthesizer. 如請求項5之雷達剖面測勘系統,其中該輸入模組包括一參考時脈及一序列介面。 The radar profile survey system of claim 5, wherein the input module comprises a reference clock and a sequence interface. 如請求項5之雷達剖面測勘系統,其中該數位邏輯模組包括:複數個內部暫存器,其等用於提供重組能力;一直接數位合成器(DDS)核心;一頻率分佈圖產生器,其用於產生該DDS核心所需之一調諧字及產生一所要基帶輸出信號;一有限狀態機(FSM),其用於同步該信號合成器之操作序列;一時序控制單元(TCU),其用於產生複數個時脈信號,該TCU電連接至該輸入模組之該參考時脈;及一時脈分配器,其用於分配該複數個時脈信號,其中該所要基帶輸出信號係呈將由該至少一個數位至類比轉換器轉換成類比格式之數位格式。 The radar profile survey system of claim 5, wherein the digital logic module comprises: a plurality of internal registers, which are used to provide recombination capability; a direct digital synthesizer (DDS) core; a frequency profile generator Which is used to generate one of the required tuning words of the DDS core and to generate a desired baseband output signal; a finite state machine (FSM) for synchronizing the operational sequence of the signal synthesizer; a timing control unit (TCU), The method is configured to generate a plurality of clock signals, the TCU is electrically connected to the reference clock of the input module, and a clock divider is configured to allocate the plurality of clock signals, wherein the desired baseband output signal is Converting the at least one digit to the analog converter into a digital format of the analog format. 如請求項1之雷達剖面測勘系統,其中該射頻RF收發器子系統包括一多頻帶天線及一射頻(RF)收發器,該射頻(RF)收發器電連接至該基帶合成孔徑雷達(SAR)子系統。 The radar profile surveying system of claim 1, wherein the RF RF transceiver subsystem comprises a multi-band antenna and a radio frequency (RF) transceiver electrically coupled to the baseband synthetic aperture radar (SAR) ) Subsystem. 如請求項8之雷達剖面測勘系統,其中該射頻(RF)收發器子系統係一多頻帶、高度線性以及一低相雜訊調頻連續波(FMCW)雷達系統。 The radar profile survey system of claim 8, wherein the radio frequency (RF) transceiver subsystem is a multi-band, highly linear, and low-phase noise modulated continuous wave (FMCW) radar system. 如請求項8之雷達剖面測勘系統,其中該射頻(RF)收發器子系統包括一調頻連續波(FMCW)通道。 The radar profile survey system of claim 8, wherein the radio frequency (RF) transceiver subsystem comprises a frequency modulated continuous wave (FMCW) channel. 如請求項10之雷達剖面測勘系統,其中該射頻(RF)收發器子系統進一步包括:一高解析度斜坡產生器鎖相環(PLL),其用於提供一高度線性FMCW波形;使用一寬頻帶電壓控制振盪器(VCO),其中一VCO輸出相位被饋送至一可程式化分數式分頻器中;及一倍頻器,其用於將一頻率範圍擴大至少一個因數以提供自大約2000兆赫至大約24000兆赫之一範圍中之一多頻帶可重組掃頻;其中電壓控制振盪器(VCO)之該輸出係高度線性且一低相雜訊FMCW波形,且電壓控制振盪器(VCO)之該輸出之中心頻率可在大約500兆赫至大約6000兆赫之一範圍中之一寬頻率頻帶內程式化。 The radar profile survey system of claim 10, wherein the radio frequency (RF) transceiver subsystem further comprises: a high resolution ramp generator phase locked loop (PLL) for providing a highly linear FMCW waveform; a wideband voltage controlled oscillator (VCO) in which a VCO output phase is fed into a programmable fractional frequency divider; and a frequency multiplier for expanding a frequency range by at least one factor to provide One of the multi-band reconfigurable sweeps in one of the range of 2000 MHz to approximately 24,000 MHz; wherein the output of the voltage controlled oscillator (VCO) is highly linear and a low phase noise FMCW waveform, and the voltage controlled oscillator (VCO) The center frequency of the output can be programmed in one of a wide frequency band in the range of about 500 megahertz to about 6000 megahertz. 如請求項11之雷達剖面測勘系統,其中該鎖相環(PLL)包括一低雜訊相頻偵測器,且該低雜訊相頻偵測器比較該電壓控制振盪器(VCO)相位與一參考相位且調整該電壓控制振盪器(VCO)以保持至少一個相位為匹配的。 The radar profile survey system of claim 11, wherein the phase locked loop (PLL) comprises a low noise phase frequency detector, and the low noise phase frequency detector compares the voltage controlled oscillator (VCO) phase The voltage controlled oscillator (VCO) is adjusted with a reference phase to maintain at least one phase. 如請求項12之雷達剖面測勘系統,其中該射頻(RF)收發器子系統進一步包括:一高功率放大器(HPA),其用於放大該調頻連續波(FMCW)信號,且該FMCW信號通過一多頻帶發射天線而發射;一接收天線,其用於接收一返回信號;一低雜訊放大器(LNA),其用於放大該返回信號;及一正交混頻器,其用於混合該傳入之接收信號與一發射信號 之一部分以降頻轉換成一中頻(IF)信號,且該中頻(IF)信號由該類比至數位轉換器(ADC)轉換成複數個數位樣本且儲存於該資料記錄器115中以供處理;其中可跨一多頻帶頻率上以高線性度及低相雜訊數位式地重組該調頻連續波(FMCW)信號之一掃頻,該多頻帶頻率諸如自選自UHF、L及S頻帶之低微波頻率至選自C、X及Ku頻帶之複數個高微波頻率。 The radar profile survey system of claim 12, wherein the radio frequency (RF) transceiver subsystem further comprises: a high power amplifier (HPA) for amplifying the frequency modulated continuous wave (FMCW) signal, and the FMCW signal passes a multi-band transmit antenna for transmitting; a receive antenna for receiving a return signal; a low noise amplifier (LNA) for amplifying the return signal; and a quadrature mixer for mixing the Incoming received signal and a transmitted signal a portion is down-converted into an intermediate frequency (IF) signal, and the intermediate frequency (IF) signal is converted by the analog-to-digital converter (ADC) into a plurality of digital samples and stored in the data logger 115 for processing; The frequency modulated one of the frequency modulated continuous wave (FMCW) signals can be digitally reconfigured with high linearity and low phase noise, such as from a low microwave frequency selected from the UHF, L, and S bands, across a multi-band frequency. To a plurality of high microwave frequencies selected from the C, X, and Ku bands. 如請求項13之雷達剖面測勘系統,其中該射頻(RF)收發器子系統進一步包括一射頻(RF)混頻器,其用於混合該中頻(IF)信號與接收自一發射器鏈之一調頻連續波(FMCW)線性調頻信號以形成一基帶信號。 The radar profile survey system of claim 13, wherein the radio frequency (RF) transceiver subsystem further comprises a radio frequency (RF) mixer for mixing the intermediate frequency (IF) signal with a transmitter chain A frequency modulated continuous wave (FMCW) chirp signal is formed to form a baseband signal. 如請求項12之雷達剖面測勘系統,其中該射頻(RF)收發器子系統進一步包括一中頻(IF)放大器及一濾波器以用於該基帶信號之信號調節。 The radar profile survey system of claim 12, wherein the radio frequency (RF) transceiver subsystem further comprises an intermediate frequency (IF) amplifier and a filter for signal conditioning of the baseband signal. 如請求項1之雷達剖面測勘系統,其中該掃描子系統之該掃描構件進一步包括一3D合成孔徑雷達(SAR)掃描器以在一垂直及一水平方向上進行量測,以產生一地下剖面圖及一干涉圖。 The radar profile survey system of claim 1, wherein the scanning component of the scanning subsystem further comprises a 3D synthetic aperture radar (SAR) scanner for measuring in a vertical and a horizontal direction to generate a subsurface profile Figure and an interferogram. 如請求項16之雷達剖面測勘系統,其中該SAR掃描器係一機動化之雙軸掃描器以在兩個方向上掃描。 The radar profile survey system of claim 16, wherein the SAR scanner is a motorized dual axis scanner for scanning in both directions. 如請求項1之雷達剖面測勘系統,其中該掃描子系統進一步包括一掃描平臺,該掃描平臺包括用於馬達控制之一嵌入式控制器。 The radar profile survey system of claim 1, wherein the scan subsystem further comprises a scan platform comprising an embedded controller for motor control. 如請求項18之雷達剖面測勘系統,其中該嵌入式控制器電連接至該信號合成器。 The radar profile survey system of claim 18, wherein the embedded controller is electrically coupled to the signal synthesizer. 如請求項1之雷達剖面測勘系統,其中該電源係一機電電源。 The radar profile survey system of claim 1, wherein the power source is an electromechanical power source. 如請求項1之雷達剖面測勘系統,其中該電源係一太陽能電源。 The radar profile surveying system of claim 1, wherein the power source is a solar power source. 如請求項21之雷達剖面測勘系統,其中該太陽能電源包括:複數個太陽能電池板;一充電控制器,其電連接至該至少一個太陽能電池板;一電池,其用於給該掃描構件供電,該電池電連接至該充電控制器以控制該電池之充電;一DC-AC電力轉換器,其電連接至該電池;及至少一個指定電負載裝置,其電連接至該DC-AC電力轉換器,其中該充電控制器並聯連接至該複數個太陽能電池板。 The radar profile survey system of claim 21, wherein the solar power source comprises: a plurality of solar panels; a charge controller electrically coupled to the at least one solar panel; and a battery for powering the scanning member a battery electrically coupled to the charge controller to control charging of the battery; a DC-AC power converter electrically coupled to the battery; and at least one designated electrical load device electrically coupled to the DC-AC power conversion The charging controller is connected in parallel to the plurality of solar panels. 如請求項2之雷達剖面測勘系統,其中該雷達剖面測勘系統進一步包括一遠端資料控制及擷取系統。 The radar profile survey system of claim 2, wherein the radar profile survey system further comprises a remote data control and capture system. 如請求項23之雷達剖面測勘系統,其中該遠端資料控制及擷取系統包括:一圖形化使用者介面(GUI)模組;一單板電腦,其用於安裝及執行該GUI模組,其中該單板電腦包括一處理模組以執行一指令集,以自該掃描構件收集即時雷達資料且經由一通信網路將該所收集資料發送至該嵌入式雷達處理子系統;一數據機,其連接至該單板電腦;至少一個環境感測器,其用於判定環境條件;及一電源,其用於給該遠端資料控制及擷取系統提供電力。 The radar profile surveying system of claim 23, wherein the remote data control and retrieval system comprises: a graphical user interface (GUI) module; a single board computer for installing and executing the GUI module The single board computer includes a processing module to execute an instruction set to collect real-time radar data from the scanning component and transmit the collected data to the embedded radar processing subsystem via a communication network; a data machine Connected to the single board computer; at least one environmental sensor for determining environmental conditions; and a power source for providing power to the remote data control and retrieval system. 如請求項23之雷達剖面測勘系統,其中該數據機係一GSM數據機。 The radar profile survey system of claim 23, wherein the data machine is a GSM modem. 一種用於藉由使用一雷達系統來監測地表面及次表面之方法,該方法包括以下步驟:發射複數個信號以完成一區域之一掃描,每一次掃描包括發射複數個載波頻率之調頻連續波(FMCW)信號之一序列; 判定該掃描是否係對該區域之一新掃描;處理回應於該複數個信號中之各個信號接收之複數個回波信號並將其儲存作為資料,其中每一次掃描包括建立複數個數位檔;將該資料轉換成複數個合成孔徑雷達(SAR)影像;及儲存每一合成孔徑雷達(SAR)影像;及判定該儲存之合成孔徑雷達(SAR)影像是否係該區域之一新合成孔徑雷達(SAR)影像。 A method for monitoring a ground surface and a secondary surface by using a radar system, the method comprising the steps of: transmitting a plurality of signals to complete scanning of one of the regions, each scanning comprising transmitting a frequency modulated continuous wave of a plurality of carrier frequencies a sequence of one of the (FMCW) signals; Determining whether the scan is a new scan of one of the regions; processing a plurality of echo signals received in response to respective ones of the plurality of signals and storing the data as data, wherein each scan includes establishing a plurality of digit files; Converting the data into a plurality of synthetic aperture radar (SAR) images; and storing each synthetic aperture radar (SAR) image; and determining whether the stored synthetic aperture radar (SAR) image is one of the regions of the new synthetic aperture radar (SAR) )image. 如請求項26之方法,其中該儲存之合成孔徑雷達(SAR)影像係該區域之一新合成孔徑雷達(SAR)影像,該方法進一步包括以下步驟:對該複數個合成孔徑雷達(SAR)影像中之每一合成孔徑雷達(SAR)影像執行干涉法合成孔徑雷達(InSAR)處理,及在該區域之一偵測圖中更新變化。 The method of claim 26, wherein the stored synthetic aperture radar (SAR) image is a new synthetic aperture radar (SAR) image of the region, the method further comprising the step of: imaging the plurality of synthetic aperture radar (SAR) images Each of the Synthetic Aperture Radar (SAR) images performs interferometric Synthetic Aperture Radar (InSAR) processing and updates the changes in one of the regions. 如請求項26之方法,其中該處理及儲存回波信號之步驟包括:藉由將該數位化資料儲存於以日期及時間資訊標記之一資料夾中而建立資料分級結構;及以兩行格式配置每個調頻連續波(FMCW)信號之該資料,該兩行格式包括用於I通道(同相)之一第一行及用於Q通道(正交相位)之一第二行,其中該資料基於複數個參數而配置。 The method of claim 26, wherein the step of processing and storing the echo signal comprises: establishing a data hierarchy by storing the digitized data in a folder of date and time information tags; and in two lines format Configuring the data for each frequency modulated continuous wave (FMCW) signal comprising a first line for one of the I channels (in phase) and a second line for one of the Q channels (quadrature phase), wherein the data Configured based on a number of parameters. 如請求項26之方法,其中將該資料轉換成複數個合成孔徑雷達(SAR)影像之該步驟包括:自該複數個檔中之每一檔擷取該資料;將原始資料轉換成用於每一檔之時間序列信號;藉由將FMCW信號轉換至頻域且將頻率改變成範圍標度而執行範圍壓縮;計算用於聚焦之所需合成長度且在方位域中執行補零; 計算範圍信號參考且在2D頻域中執行二次範圍壓縮;計算方位信號參考且在範圍都卜勒域中執行方位壓縮;將各個信號轉換至空間域;及減小用於具體觀察一關注區域之影像大小。 The method of claim 26, wherein the step of converting the data into a plurality of synthetic aperture radar (SAR) images comprises: extracting the data from each of the plurality of files; converting the original data to be used for each a time-series signal; performing range compression by converting the FMCW signal to the frequency domain and changing the frequency to a range scale; calculating a desired composite length for focusing and performing zero-padding in the azimuth domain; Calculating the range signal reference and performing quadratic range compression in the 2D frequency domain; calculating the azimuth signal reference and performing azimuth compression in the range Doppler domain; converting each signal to the spatial domain; and reducing for specific observation of a region of interest Image size. 如請求項27之方法,其中對該複數個合成孔徑雷達(SAR)影像中之每一合成孔徑雷達(SAR)影像執行干涉法合成孔徑雷達(InSAR)處理之該步驟包括:自該資料庫擷取一合成孔徑雷達(SAR)影像且更新一振幅離差指數(ADI);基於ADI選擇永久散射體(PS)及PS候選者(PSC)且更新PS/PSC網路;更新觀察方差且基於觀察方差計算分歧指數;執行2D空間展開;使用卡爾曼濾波器計算分歧之概率且更新空間展開解;及判定是否已找到一最佳解。 The method of claim 27, wherein the step of performing interferometric synthetic aperture radar (InSAR) processing on each of the plurality of synthetic aperture radar (SAR) images comprises: from the database 撷Take a synthetic aperture radar (SAR) image and update an amplitude dispersion index (ADI); select permanent scatterers (PS) and PS candidates (PSC) based on ADI and update the PS/PSC network; update the observed variance and based on observation The variance calculates the divergence index; performs 2D spatial expansion; uses the Kalman filter to calculate the probability of divergence and updates the spatial expansion solution; and determines whether an optimal solution has been found. 如請求項29之方法,其中該方法進一步包括以下步驟:空間整合永久散射體(PS),及產生一干涉法合成孔徑雷達(InSAR)影像。 The method of claim 29, wherein the method further comprises the steps of: spatially integrating the permanent scatterer (PS), and generating an interferometric synthetic aperture radar (InSAR) image. 一種用於通過一雷達時序控制器(RTC)及一高速類比至數位轉換器(ADC)獲取資料之方法,該方法包括以下步驟:藉由由該雷達時序控制器(RTC)獲得對類比至數位轉換器(ADC)之控制處置而起始資料獲取程序;等待自一外部時序控制單元之一觸發信號;及以指定時脈速率及樣本數目採樣類比至數位轉換器(ADC)。 A method for acquiring data by a radar timing controller (RTC) and a high speed analog to digital converter (ADC), the method comprising the steps of: obtaining analog to digital by the radar timing controller (RTC) The converter (ADC) controls the processing and initiates a data acquisition procedure; waits for a signal to be triggered from one of the external timing control units; and samples the analog to digital converter (ADC) at a specified clock rate and number of samples. 如請求項32之方法,其中該方法進一步包括隨著每一觸發同時採樣I通道及Q通道兩者處之信號之步驟。 The method of claim 32, wherein the method further comprises the step of simultaneously sampling the signals at both the I channel and the Q channel with each trigger. 如請求項26之方法,其中該複數個載波頻率選自包括由C、X及Ku頻率頻帶組成之複數個高頻微波、由UHF、L及S頻率頻帶組成之複數個低頻微波及其組合之一群組。 The method of claim 26, wherein the plurality of carrier frequencies are selected from the group consisting of a plurality of high frequency microwaves consisting of C, X, and Ku frequency bands, a plurality of low frequency microwaves consisting of UHF, L, and S frequency bands, and combinations thereof a group. 一種用於藉由使用一雷達剖面量測系統監測一潛在危險區域中之一自然災害之方法,該方法包括以下步驟:將該雷達系統安裝至遠離該潛在危險區域之一固定平臺上;以一預定義時間間隔執行定期監測;以高精度變化偵測能力產生一場景之一3D影像;及經由一無線網路將該3D影像發送到一資料中心及/或一監測機構。 A method for monitoring a natural disaster in a potentially hazardous area by using a radar profile measurement system, the method comprising the steps of: installing the radar system on a fixed platform remote from the potentially hazardous area; Performing periodic monitoring at a predefined time interval; generating a 3D image of a scene with high-precision change detection capability; and transmitting the 3D image to a data center and/or a monitoring mechanism via a wireless network.
TW104112248A 2014-12-04 2015-04-16 Multi-band reconfigurable subsurface radar profiler system and monitoring method thereof TWI662253B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MYPI2014703638A MY187762A (en) 2014-12-04 2014-12-04 Multi-band reconfigurable subsurface radar profiler system
??PI2014703638 2014-12-04

Publications (2)

Publication Number Publication Date
TW201621272A true TW201621272A (en) 2016-06-16
TWI662253B TWI662253B (en) 2019-06-11

Family

ID=58058212

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104112248A TWI662253B (en) 2014-12-04 2015-04-16 Multi-band reconfigurable subsurface radar profiler system and monitoring method thereof

Country Status (3)

Country Link
CN (1) CN106154264B (en)
MY (1) MY187762A (en)
TW (1) TWI662253B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108663413B (en) * 2018-05-09 2020-10-09 环境保护部华南环境科学研究所 Method and system for nondestructive scanning of refuse landfill based on air-ground integration
CN111064466B (en) * 2019-12-27 2023-08-18 成都蓝大科技有限公司 Negative feedback method and system thereof
CN114660601B (en) * 2022-03-18 2023-06-30 中国科学院光电技术研究所 Vibration suppression method and device applied to synthetic aperture imaging system
TWI841990B (en) * 2022-06-24 2024-05-11 中華大學學校財團法人中華大學 Real-time 3d image recongnition assistance system for smart ground-penetrating radar detection

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8694258B2 (en) * 2010-02-14 2014-04-08 Vermeer Manufacturing Company Derivative imaging for subsurface object detection
CN202166734U (en) * 2011-07-27 2012-03-14 中国电子科技集团公司第三十八研究所 Wideband frequency-modulation continuous-wave radar transceiving subsystem
CN102866389B (en) * 2012-09-11 2014-07-09 中国科学院空间科学与应用研究中心 Double-channel radar echo simulator and method and system for generating double-channel radar echo signal
TWM466267U (en) * 2013-01-18 2013-11-21 Nat Applied Res Laboratories Radar system for analysis of space/ocean wave field and coastal topography changes
CN103105604B (en) * 2013-01-23 2015-05-20 武汉华博通讯有限公司 Radar receiving digital coherent processing system
US20140266868A1 (en) * 2013-03-15 2014-09-18 Src, Inc. Methods And Systems For Multiple Input Multiple Output Synthetic Aperture Radar Ground Moving Target Indicator
CN103884317A (en) * 2014-04-14 2014-06-25 西安阿尔特测控技术有限公司 Real-time monitoring system for settlement of roadbed of high-speed rail
CN104142495B (en) * 2014-07-23 2017-01-11 西安空间无线电技术研究所 Squint SAR point target interpolation and section interception method based on frequency spectrum
CN104123470A (en) * 2014-07-25 2014-10-29 首都师范大学 Method for optimizing land subsidence monitoring net

Also Published As

Publication number Publication date
CN106154264A (en) 2016-11-23
TWI662253B (en) 2019-06-11
CN106154264B (en) 2021-12-17
MY187762A (en) 2021-10-19

Similar Documents

Publication Publication Date Title
Casagli et al. Landslide detection, monitoring and prediction with remote-sensing techniques
Monserrat et al. A review of ground-based SAR interferometry for deformation measurement
Caduff et al. A review of terrestrial radar interferometry for measuring surface change in the geosciences
Atzeni et al. Early warning monitoring of natural and engineered slopes with ground-based synthetic-aperture radar
Antonello et al. Ground-based SAR interferometry for monitoring mass movements
Leva et al. Temporal analysis of a landslide by means of a ground-based SAR interferometer
Macchiarulo et al. Multi-temporal InSAR for transport infrastructure monitoring: recent trends and challenges
CN106154264B (en) Multi-band reconfigurable underground radar profiler system
de Macedo et al. A compact ground-based interferometric radar for landslide monitoring: The Xerém experiment
Werner et al. GAMMA’s portable radar interferometer
Werner et al. A real-aperture radar for ground-based differential interferometry
Luzi et al. Advances in ground‐based microwave interferometry for landslide survey: a case study
Anghel et al. Compact ground-based interferometric synthetic aperture radar: Short-range structural monitoring
Wadge et al. AVTIS: A novel millimetre-wave ground based instrument for volcano remote sensing
Rodríguez-Morales et al. A compact, reconfigurable, multi-UWB radar for snow thickness evaluation and altimetry: Development and field trials
Luzi et al. Advanced techniques for dam monitoring
Macfarlane et al. Topographic and thermal mapping of volcanic terrain using the AVTIS ground-based 94-GHz dual-mode radar/radiometric imager
Antonello et al. SAR interferometry from satellite and ground-based system for monitoring deformations on the Stromboli volcano
Sansosti et al. Radar remote sensing from space for surface deformation analysis: present and future opportunities from the new SAR sensor generation
Macfarlane et al. A 94-GHz dual-mode active/passive imager for remote sensing
Chet et al. Ku-band ground-based SAR experiments for surface deformation monitoring
Tien-Sze et al. Development of a ground-based Synthetic Aperture Radar for land deformation monitoring
JP2010236871A (en) Image processing device and radio communication device and image processing method and image processing program
Frey et al. Dual-frequency car-borne DInSAR at L-band and Ku-band for mobile mapping of surface displacements
Liu et al. FastGBSAR case studies in China: Monitoring of a dam and instable slope