TW201619875A - Maintenance scheduling method and system thereof - Google Patents

Maintenance scheduling method and system thereof Download PDF

Info

Publication number
TW201619875A
TW201619875A TW103141060A TW103141060A TW201619875A TW 201619875 A TW201619875 A TW 201619875A TW 103141060 A TW103141060 A TW 103141060A TW 103141060 A TW103141060 A TW 103141060A TW 201619875 A TW201619875 A TW 201619875A
Authority
TW
Taiwan
Prior art keywords
maintenance
candidate
time
cost
maintenance time
Prior art date
Application number
TW103141060A
Other languages
Chinese (zh)
Other versions
TWI549075B (en
Inventor
闕壯華
林群惟
陳德銘
賴建良
張森嘉
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW103141060A priority Critical patent/TWI549075B/en
Priority to CN201410738322.6A priority patent/CN105719042A/en
Publication of TW201619875A publication Critical patent/TW201619875A/en
Application granted granted Critical
Publication of TWI549075B publication Critical patent/TWI549075B/en

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

A maintenance scheduling method and system thereof are provided. The maintenance scheduling method includes: obtaining cost information, record information, and sensing information, according to the cost information, record information, and the sensing information, respectively computing at least one set of candidate maintenance time, expected maintenance cost, and confidence based on the results of a plurality of maintenance procedures; when the candidate maintenance time are a plurality of candidate maintenance time, the scheduled maintenance time is determined according to the expected maintenance costs, the confidence, and the candidate maintenance time.

Description

機台維護排程的方法與系統 Method and system for scheduling maintenance of machine

本揭露係關於一種機台維護排程的方法與系統,特別係關於一種成本導向的機台維護排程的方法與系統。 The present disclosure relates to a method and system for scheduling maintenance of a machine, and more particularly to a method and system for cost-oriented maintenance scheduling of a machine.

由於製造業為台灣重要的經濟命脈,但因時代的演進,現今的製程資料量更多且更為複雜。現行機台維護排程大多參考設備提供商建議的維護時間和歷史維護紀錄,來進行零件維護,但機台仍時有不預期故障的情況發生並造成損失,成為影響公司營運風險最重要的因素之一。因此,如何提供一種預測維修時間的方法與系統,以降低不預期故障造成的維修及生產成本的損失,為企待解決的問題。 Since manufacturing is an important economic lifeline of Taiwan, due to the evolution of the times, the amount of process data available today is more and more complicated. Most of the current machine maintenance schedules refer to the maintenance time and historical maintenance records recommended by the equipment provider for part maintenance. However, the machine still has unexpected failures and causes losses, which is the most important factor affecting the company's operational risks. one. Therefore, how to provide a method and system for predicting repair time to reduce the loss of maintenance and production costs caused by unexpected failures is an issue to be solved.

有鑒於上述問題,本揭露提出一種成本導向的機台維護排程的方法與系統,利用成本導向的機制提供最佳成本效益的資產設備維護排程建議,減少製造過程的非預期停工,以達到最佳的生產效益。 In view of the above problems, the present disclosure proposes a method and system for cost-oriented machine maintenance scheduling, using a cost-oriented mechanism to provide optimal cost-effective asset equipment maintenance scheduling recommendations, and reducing unplanned downtime in the manufacturing process to achieve The best production efficiency.

依據本揭露的一種機台維護排程的方法,包含下列步驟:取得關於一個機台中一個零件的成本資訊、紀錄資訊及感 測資訊。根據成本資訊、紀錄資訊及感測資訊,由多個維護程序的結果計算出至少一組候選維護時間、預期維護成本及信心度,其中前述候選維護時間、前述維護成本與前述信心度一一對應。當前述候選維護時間係一個候選維護時間時,以此候選維護時間作為關於機台的排定維護時間。當前述候選維護時間係多個候選維護時間時,根據這些預期維護成本及前述信心度,從這些候選維護時間中得到關於機台的排定維護時間。 According to the method for maintaining schedule of a machine according to the present disclosure, the method comprises the following steps: obtaining cost information, recording information and feeling about a part in a machine. Measurement information. Calculating at least one set of candidate maintenance time, expected maintenance cost, and confidence from the results of the plurality of maintenance programs according to the cost information, the record information, and the sensing information, wherein the candidate maintenance time, the foregoing maintenance cost, and the aforementioned confidence are in one-to-one correspondence . When the foregoing candidate maintenance time is a candidate maintenance time, the candidate maintenance time is used as the scheduled maintenance time for the machine. When the foregoing candidate maintenance time is a plurality of candidate maintenance times, the scheduled maintenance time for the machine is obtained from the candidate maintenance times based on the expected maintenance costs and the aforementioned confidence.

依據本揭露的一種機台維護排程系統,包含一個資料擷取模組,一個計算模組以及一個決策模組。資料擷取模組用以取得關於一個機台的一個零件的一個成本資訊、一個紀錄資訊及一個感測資訊。計算模組用以根據成本資訊、紀錄資訊及感測資訊,由多個維護程序的結果計算出至少一組候選維護時間、預期維護成本及信心度,其中前述候選維護時間、前述預期維護成本與前述信心度一一對應。決策模組用以根據前述候選維護時間、前述維護成本及前述信心度決定關於此機台的一個排定維護時間。 A machine maintenance scheduling system according to the present disclosure comprises a data acquisition module, a calculation module and a decision module. The data capture module is used to obtain a cost information, a record information and a sensing information about a part of a machine. The calculation module is configured to calculate at least one set of candidate maintenance time, expected maintenance cost, and confidence from the results of the plurality of maintenance programs according to the cost information, the record information, and the sensing information, wherein the candidate maintenance time, the foregoing expected maintenance cost, and The aforementioned confidence is one-to-one correspondence. The decision module is configured to determine a scheduled maintenance time for the machine based on the candidate maintenance time, the aforementioned maintenance cost, and the aforementioned confidence.

綜上所述,本揭露提供一個可最佳化成本效益的機台維護排程解決方案,透過分析多個維護模組所產生的資訊,再利用成本導向的機制提供最佳成本效益的資產設備維護排程建議,減少製造過程的非預期停工,以增進生產效益。 In summary, the present disclosure provides an optimized cost-effective machine maintenance scheduling solution that analyzes the information generated by multiple maintenance modules and then utilizes a cost-oriented mechanism to provide the most cost-effective asset equipment. Maintain scheduling recommendations to reduce unplanned downtime in the manufacturing process to increase production efficiency.

以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本揭露之精神與原理,並且提供本揭露之 專利申請範圍更進一步之解釋。 The above description of the disclosure and the following description of the embodiments are intended to demonstrate and explain the spirit and principles of the disclosure, and to provide the disclosure The scope of the patent application is further explained.

1‧‧‧機台 1‧‧‧ machine

11‧‧‧零件 11‧‧‧ Parts

2‧‧‧資料庫 2‧‧‧Database

3‧‧‧機台維護排程系統 3‧‧‧Machine Maintenance Scheduling System

31‧‧‧資料擷取模組 31‧‧‧Data Capture Module

33A~33N‧‧‧維護程序 33A~33N‧‧‧ Maintenance procedures

35‧‧‧計算模組 35‧‧‧Computation Module

37‧‧‧決策模組 37‧‧‧Decision module

第1圖係依據本揭露一實施例之機台維護排程的系統架構圖。 1 is a system architecture diagram of a machine maintenance schedule according to an embodiment of the present disclosure.

第2圖係依據本揭露一實施例之機台維護排程的系統功能方塊圖。 2 is a block diagram of a system function of a machine maintenance schedule according to an embodiment of the present disclosure.

第3圖係依據本揭露一實施例之機台維護排程的方法流程圖。 FIG. 3 is a flow chart of a method for maintaining schedule of a machine according to an embodiment of the present disclosure.

第4圖係依據本揭露一實施例中的成本導向維護排程法所計算之預期維護成本對應候選維護時間的折線圖。 Figure 4 is a line graph corresponding to the candidate maintenance time for the expected maintenance cost calculated by the cost-oriented maintenance scheduling method in accordance with an embodiment of the present disclosure.

以下在實施方式中詳細敘述本揭露之詳細特徵,其內容足以使任何熟習相關技藝者了解本揭露之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本揭露相關之目的。以下之實施例係進一步詳細說明本揭露之觀點,但非以任何觀點限制本揭露之範疇。 The detailed features of the disclosure are described in detail below in the embodiments, which are sufficient to enable anyone skilled in the art to understand the technical contents of the disclosure and to implement the invention, and the scope of the disclosure, the scope of the application, and the drawings, Those skilled in the art will readily appreciate the relevant objects of the present disclosure. The following examples are intended to further illustrate the present disclosure, but are not intended to limit the scope of the disclosure.

請參照第1圖,第1圖係依據本揭露一實施例之機台維護排程的系統架構圖。如第一圖所示,機台1具有一個零件11,且與資料庫2連結以儲存零件11運作時的相關資訊,像是運作記錄,感測器所傳送的感測資訊等。其中零件11有其固定壽命,舉例來說,像是一個雷射光源,其光源發射器可能固定半年需要更換,然而此光源發射器也可能在半年以內就發生不預期的 損壞。因此,與資料庫2連結的機台維護排程系統3擷取其中的相關資訊,欲決定出零件11的最佳維護時間,以使提升機台1的運作效率。 Please refer to FIG. 1 . FIG. 1 is a system architecture diagram of a machine maintenance schedule according to an embodiment of the present disclosure. As shown in the first figure, the machine 1 has a component 11 and is coupled to the database 2 to store information about the operation of the component 11, such as operational records, sensing information transmitted by the sensor, and the like. The part 11 has a fixed life. For example, if it is a laser light source, the light source emitter may need to be replaced for half a year. However, the light source emitter may also occur unexpectedly within half a year. damage. Therefore, the machine maintenance scheduling system 3 connected to the database 2 retrieves the relevant information, and determines the optimal maintenance time of the part 11 to improve the operation efficiency of the machine 1.

有關機台維護排程系統3的詳細架構,請一併參照第2圖,第2圖係依據本揭露一實施例之機台維護排程的系統功能方塊圖。如第2圖所示,本揭露的機台維護排程的系統3係包含資料擷取模組31、計算模組35、決策模組37以及多個維護程序33A至33N。資料擷取模組31係用以取得前述資料庫中的成本資訊、紀錄資訊及感測資訊。多個維護程序33A至33N會以根據資料擷取模組31取得的成本資訊、紀錄資訊及感測資訊分別計算出的一個候選維護時間,亦可包含一個信心度。計算模組35係用以根據資料擷取模組31取得的成本資訊、紀錄資訊及感測資訊,以多個維護程序33A至33N的結果,計算出一組以上的候選維護時間、預期維護成本及信心度,其中候選維護時間、預期維護成本與信心度一一對應。決策模組37係用以根據前述候選維護時間、前述預期維護成本及前述信心度決定一個排定維護時間。 For a detailed structure of the machine maintenance scheduling system 3, please refer to FIG. 2 together. FIG. 2 is a system function block diagram of the machine maintenance schedule according to an embodiment of the present disclosure. As shown in FIG. 2, the system 3 of the machine maintenance schedule of the present disclosure includes a data acquisition module 31, a calculation module 35, a decision module 37, and a plurality of maintenance programs 33A to 33N. The data capture module 31 is configured to obtain cost information, record information, and sensing information in the foregoing database. The plurality of maintenance programs 33A to 33N may respectively calculate a candidate maintenance time based on the cost information, the record information, and the sensing information obtained by the data capture module 31, and may also include a confidence level. The calculation module 35 is configured to calculate a set of candidate maintenance time and expected maintenance cost based on the results of the plurality of maintenance programs 33A to 33N according to the cost information, the record information, and the sensing information obtained by the data capture module 31. And confidence, in which candidate maintenance time, expected maintenance cost and confidence are in one-to-one correspondence. The decision module 37 is configured to determine a scheduled maintenance time based on the aforementioned candidate maintenance time, the aforementioned expected maintenance cost, and the aforementioned confidence.

其中,上述的成本資訊係選自由使用者介面輸入、讀檔方式及資料庫系統所組成的群組其中之一,紀錄資訊係選自由讀檔方式及資料庫系統所組成的群組其中之一,感測資訊係選自由讀檔方式、資料擷取卡介面及資料庫系統所組成的群組其中之一。前述資料擷取模組係從上述的介面中取得成本資訊、紀錄資訊及感測資訊,機台的輸入介面可由不同的方式實作,本揭露 並不以此為限。 The cost information is selected from one of a group consisting of a user interface input, a reading mode, and a database system. The record information is selected from one of a group consisting of a reading mode and a database system. The sensing information is selected from one of a group consisting of a reading method, a data capture interface, and a database system. The above data acquisition module obtains cost information, record information and sensing information from the above interface, and the input interface of the machine can be implemented in different ways. Not limited to this.

此外,前述維護程序主要的功能即在於根據機台的資訊提供候選維護時間或預測信心值,維護程序可以是預防性維護程序、條件式維護程序或預測性維護程序,各程序可以各式不同的模型提供資產設備候選維護時間建議。前述之模型可透過不同演算法實作,例如類神經網路(neural network),支持向量機(support vector machine),與本揭露稍後所揭示之成本導向維護模型(Cost-Based Predictive Maintenance Model)等,本揭露並不以此為限。 In addition, the main function of the aforementioned maintenance program is to provide candidate maintenance time or predicted confidence value according to the information of the machine. The maintenance program may be a preventive maintenance program, a conditional maintenance program or a predictive maintenance program, and each program may be different. The model provides asset equipment candidate maintenance time recommendations. The aforementioned model can be implemented by different algorithms, such as a neural network, a support vector machine, and a Cost-Based Predictive Maintenance Model disclosed later in the disclosure. Etc., this disclosure is not limited to this.

關於本揭露所提出的成本導向維護模型,係依據最小化訓練資料的維護成本來建立模型,即該模型會使訓練資料的維護時間與實際零件壽命所計算出的維護成本最低,其中計算維護成本時,若當此零件的維護時間點以前即發生非預期損壞時,每一維護成本係由零件的一個原始成本加上一個損失成本,再除以一個非預期使用壽命,其中非預期使用壽命係根據零件的一個啟用時間與零件發生非預期損壞的時間計算得到。若當此零件的維護時間點以前並無發生非預期損壞時,每一維護成本係由零件的一個原始成本除以一個預期使用壽命,其中預期使用壽命係根據零件的一個啟用時間與此時間點計算得到,再依據此維護成本的計算方式建立訓練法則來進行維護模型的建立。更明確的來說,在一實施例中,維護成本的係依據下列方程式: 其中為零件的預測剩餘使用壽命,r為零件的實際剩餘使用壽命,C p 為零件的原始成本,C u 為零件非預期損壞產生的損失成本,t f 為零件的實際可使用的壽命,(t f -△r)為零件的預期使用壽命,△r為零件的實際剩餘使用壽命減去零件的預測剩餘使用壽命(r-)。若維護模型的參數為θ,則預測的剩餘使用壽命可透過函數f θ (.)計算的到,因此每一筆訓練資料都可透過f θ (.)計算出剩餘使用壽命,並依據方程式(1)求出該筆資料的維護成本,最後再將所有訓練資料的維護成本加總得到總維護成本,為了訓練出最小化總維護成本的模型參數,可將總維護成本對參數θ偏微分並利用最陡梯度法(steepest decent)進行參數更新,直到收斂為止。 With regard to the cost-oriented maintenance model proposed in the present disclosure, the model is established based on minimizing the maintenance cost of the training data, that is, the model minimizes the maintenance cost of the training data and the actual part life, wherein the maintenance cost is calculated. When unintended damage occurs before the maintenance time of the part, each maintenance cost is calculated by adding an original cost of the part plus a loss cost, and dividing by an unexpected service life, where the unintended service life is Calculated based on an opening time of the part and the time the part was unexpectedly damaged. If there is no unanticipated damage before the maintenance time of this part, each maintenance cost is divided by an original cost of the part by an expected service life, which is based on an activation time of the part and this time point. Calculated, and then based on the calculation of the maintenance cost, establish a training rule to establish the maintenance model. More specifically, in one embodiment, maintenance costs The system is based on the following equation: among them For the predicted remaining service life of the part, r is the actual remaining service life of the part, C p is the original cost of the part, C u is the loss cost of the unintended damage of the part, t f is the actual usable life of the part, ( t f - △ r ) is the expected service life of the part, Δ r is the actual remaining life of the part minus the predicted remaining life of the part ( r - ). If the parameter of the maintenance model is θ , the predicted remaining service life It can be calculated by the function f θ (.), so each training data can calculate the remaining service life through f θ (.) And according to the equation (1), the maintenance cost of the data is obtained, and finally the maintenance cost of all the training materials is added to obtain the total maintenance cost. In order to train the model parameters that minimize the total maintenance cost, the total maintenance cost can be The parameter θ is differentially differentiated and the parameter update is performed using the steepest gradient method (steepest decent) until convergence.

請參照第3圖,第3圖係依據本揭露一實施例之機台維護排程的方法流程圖。如第3圖所示,於步驟S301中,取得關於機台的成本資訊、紀錄資訊及感測資訊。於步驟S303中,根據成本資訊、紀錄資訊及感測資訊,與一個以上的維護程序的結果計算出一組以上的候選維護時間、預期維護成本及信心度。於步驟S305中,根據前述候選維護時間、前述預期維護成本及前述信心度得到關於機台的排定維護時間。 Please refer to FIG. 3, which is a flow chart of a method for maintaining schedule of a machine according to an embodiment of the present disclosure. As shown in FIG. 3, in step S301, cost information, record information, and sensing information about the machine are obtained. In step S303, a set of more than one candidate maintenance time, expected maintenance cost, and confidence are calculated based on the cost information, the record information, and the sensing information, and the results of one or more maintenance programs. In step S305, the scheduled maintenance time for the machine is obtained according to the foregoing candidate maintenance time, the aforementioned expected maintenance cost, and the aforementioned confidence.

其中在步驟S303中,候選維護時間、預期維護成本與信心度一一對應。預期維護成本係依據對應的候選維護時間、多個維護成本與機台的一個零件的一使用壽命機率分佈計算出期 望值而得到。其中使用壽命機率分佈可以是多項式分布(multinomial distribution),或其他任意可模擬使用壽命機率的模型,本揭露並不以此為限。 In step S303, the candidate maintenance time, the expected maintenance cost, and the confidence level are in one-to-one correspondence. The expected maintenance cost is calculated based on the corresponding candidate maintenance time, multiple maintenance costs, and a service life probability distribution of one part of the machine. I hope to get it. The service life probability distribution may be a multinomial distribution, or any other model that can simulate the probability of service life, and the disclosure is not limited thereto.

其中在計算預期維護成本時,可利用公式(1)配合零件的使用壽命機率分佈計算加以計算。舉例來說,請參照第4圖,第4圖係依據本揭露一實施例中的成本導向維護排程法所計算之預期維護成本對應候選維護時間的折線圖。如第4圖所示,橫軸為時間點,縱軸為計算出來攤提至每一天的預期維護成本。假設過去的紀錄資訊為10次零件的使用壽命,天數分別是55,55,55,56,58,59,62,62,68,對應的多項式分佈機率為p(55)=0.3,p(56)=0.1,p(58)=0.2,p(59)=0.1,p(62)=0.2,p(68)=0.1。在此多項式分布的假設下,假設本次零件的實際使用壽命只可能是55、56、58、62與68,且機率分別是0.3、0.1、0.2、0.1、0.2與0.1,零件的原始成本為6萬元,非預期損壞產生的損失成本為10萬元。則當候選維護時間點為50天時,因沒有發生非預期損壞,所以預期維護成本為: 當候選維護時間點為60天時,若實際可使用壽命為55、56與58時,會發生非預期損壞,而若實際可使用壽命為62與68則沒有發生非預期損壞,所以預期維護成本為: 當候選維護時間點為70天時,只會發生非預期損壞,所以預期維 護成本為: 以此類推即可計算出候選維護時間點為50天至70天,攤提至每一天的維護成本期望值(如第4圖所示)。 In calculating the expected maintenance cost, the formula (1) can be used to calculate the service life probability distribution calculation of the part. For example, please refer to FIG. 4 , which is a line graph corresponding to the candidate maintenance time for the expected maintenance cost calculated by the cost-oriented maintenance scheduling method according to an embodiment of the disclosure. As shown in Figure 4, the horizontal axis is the time point and the vertical axis is the estimated maintenance cost that is calculated to be amortized to each day. Assume that the past record information is the service life of 10 parts, the days are 55, 55, 55, 56, 58, 59, 62, 62, 68, and the corresponding polynomial distribution probability is p (55) = 0.3, p (56 ) = 0.1, p (58) = 0.2, p (59) = 0.1, p (62) = 0.2, p (68) = 0.1. Under the assumption of this polynomial distribution, it is assumed that the actual service life of this part can only be 55, 56, 58, 62 and 68, and the probability is 0.3, 0.1, 0.2, 0.1, 0.2 and 0.1, respectively. The original cost of the part is 60,000 yuan, the cost of damage caused by unintended damage is 100,000 yuan. When the candidate maintenance time point is 50 days, the expected maintenance cost is as follows: When the candidate maintenance time is 60 days, if the actual service life is 55, 56 and 58, unintended damage will occur, and if the actual service life is 62 and 68, no unexpected damage will occur, so the maintenance cost is expected. for: When the candidate maintenance time point is 70 days, only unexpected damage will occur, so the expected maintenance cost is: By analogy, the candidate maintenance time point is calculated from 50 days to 70 days, and the maintenance cost expectation value is amortized to each day (as shown in Figure 4).

此外,前述每一個候選維護時間所對應的信心度係依據前述維護程序中,提供候選維護時間的至少一個維護程序所得到。其中當該些維護程序的某一維護程序係屬於預防性維護模組或條件式維護模組,則不提供對應的該預測信心值。當該些維護程序的某一個維護程序係屬於預測性維護模組,對應至候選維護時間的信心度係選自前述維護程序的每一個維護程序所提供的一個預測信心值最大者與前述維護程序中選定預測候選維護時間於這些維護程序的比例,而後兩者取其大。更明確的來說,在一實施例中,候選維護時間所對應的信心度係依據下列方程式: 其中C(t)為一信心度方程式,C(t)之值為對應候選維護時間t的信心度,S(t)為候選維護時間t對應的預測信心值集合,NP表示某預防性維護模組或條件式維護模組提供了候選維護時間t,但無提供預測信心值。NA表示某預測性維護模組提供了候選維護時間t,但該未提供預測信心值。max(S(t)-NA)即找出預測信心值集合最大的預測信心值,∥S(t)-NP∥為預測信心值集合S(t)在候選維護時 間t所含有的元素數量。則為候選維護時間t在所有預測性維護排程模組的候選維護時間的比例,即代表各預測性維護模組支持這個候選維護時間t的贊同度,越多預測性維護模組選擇候選維護時間t,則其數值越高。換句話說,候選維護時間t的信心度即為預測信心值集合最大的預測信心值與候選維護時間t的贊同度之間兩者取其大。綜上所述,即使維護模組皆沒有提供預測信心值,只要有至少一個選擇這個候選維護時間t的維護模組係預測性維護模組,則信心度仍可由此候選維護時間t在所有預測性維護模組的候選維護時間的比例,即代表各維護模組支持這個候選維護時間t的贊同度計算而得。 In addition, the confidence level corresponding to each of the foregoing candidate maintenance times is obtained according to at least one maintenance program that provides candidate maintenance time in the foregoing maintenance procedure. When a maintenance program of the maintenance program belongs to a preventive maintenance module or a conditional maintenance module, the corresponding predicted confidence value is not provided. When one of the maintenance programs of the maintenance program belongs to the predictive maintenance module, the confidence corresponding to the candidate maintenance time is selected from a maintenance confidence program provided by each maintenance program of the foregoing maintenance program and the aforementioned maintenance program. The ratio of candidate maintenance time selected in these maintenance procedures is selected, and the latter two are taken as large. More specifically, in an embodiment, the confidence corresponding to the candidate maintenance time is based on the following equation: Where C ( t ) is a confidence equation, C ( t ) is the confidence corresponding to the candidate maintenance time t , S ( t ) is the set of predicted confidence values corresponding to the candidate maintenance time t , and NP is a certain preventive maintenance model. The group or conditional maintenance module provides candidate maintenance time t , but does not provide predictive confidence values. NA indicates that a predictive maintenance module provides a candidate maintenance time t , but this does not provide a predictive confidence value. Max( S ( t )- NA ) is to find the prediction confidence value with the largest set of prediction confidence values, ∥ S ( t )- NP ∥ is the number of elements of the prediction confidence value set S ( t ) at the candidate maintenance time t . The ratio of candidate maintenance time t to the candidate maintenance time of all predictive maintenance scheduling modules, that is, the degree of approval of each candidate maintenance module to support this candidate maintenance time t , the more predictive maintenance module selection candidate maintenance At time t , the higher the value. In other words, the confidence level of the candidate maintenance time t is that both the prediction confidence value of the maximum confidence value set and the approval degree of the candidate maintenance time t are both large. In summary, even if the maintenance module does not provide the predicted confidence value, as long as at least one maintenance module that selects the candidate maintenance time t is a predictive maintenance module, the confidence can still be predicted by the candidate maintenance time t. The ratio of the candidate maintenance time of the maintenance module is calculated based on the approval of each maintenance module to support this candidate maintenance time t .

舉例來說,若維護模組提供的信心值集合分別為S(9月1日)={NP、NP},S(9月5日)={NA、0.8},S(9月12日)={NA},則透過方程式(2),在候選維護時間9月1日中,因該維護排程模組為預防性維護模組或條件式維護模組並未提供預測信心值,所以C(9月1日)=NP。在候選維護時間9月5日中,有二個維護模組預測且有一維護模組提供的信心值為0.8,因此C(9月5日)=max(0.8,2/(2+1))=0.8。在候選維護時間9月12日中,僅有一維護模組預測,因此C(9月12日)=max(-,1/(2+1))=0.33。 For example, if the set of confidence values provided by the maintenance module is S (September 1st) = {NP, NP}, S (September 5th) = {NA, 0.8}, S (September 12) ={NA}, through equation (2), in the candidate maintenance time September 1st, because the maintenance scheduling module does not provide predictive confidence value for the preventive maintenance module or conditional maintenance module, so C (September 1) = NP. In the candidate maintenance time September 5, there are two maintenance modules predicted and one maintenance module provides a confidence value of 0.8, so C (September 5) = max (0.8, 2 / (2 + 1)) =0.8. In the candidate maintenance time September 12, there is only one maintenance module prediction, so C (September 12) = max (-, 1 / (2 + 1)) = 0.33.

接著,在步驟S305中,本揭露的機台維護排程系統的決策模組從前述候選維護時間中決定關於機台的排定維護時間。在一實施例中,決策模組係從候選維護時間中選擇所對應的 信心度超過一信心度閾值(threshold value)的至少一個候選維護時間,再從前述信心度超過信心度閾值的候選維護時間中,選擇對應的預期維護成本最低的候選維護時間作為該排定維護時間。 Next, in step S305, the decision module of the machine maintenance scheduling system of the present disclosure determines the scheduled maintenance time for the machine from the candidate maintenance time. In an embodiment, the decision module selects the corresponding one from the candidate maintenance time. The confidence level exceeds at least one candidate maintenance time of a confidence threshold, and the candidate maintenance time with the lowest expected maintenance cost is selected as the scheduled maintenance time from the candidate maintenance time in which the confidence exceeds the confidence threshold. .

舉例來說,若機台維護排程系統依據前述維護模組所提供的資訊,得出的候選維護時間分別是9月1日,9月5日,9月10日,9月12日,9月15日,且其對應的信心度分別是0.1,0.6,0.7,0.2,0.3,預期維護成本分別是1,4,3,5,7(萬元),假設信心度閾值為0.5,則決策模組逐一判斷各信心度,超過0.5的候選維護時間為9月5日(0.6),9月10日(0.7),且兩者中預期維護成本最低者係9月10日(3萬元),因此最終得到的排定維護時間為9月10日。 For example, if the machine maintenance scheduling system is based on the information provided by the aforementioned maintenance module, the candidate maintenance time is September 1st, September 5th, September 10th, September 12th, 9th. On the 15th of the month, the corresponding confidence levels are 0.1, 0.6, 0.7, 0.2, 0.3, and the expected maintenance costs are 1, 4, 3, 5, 7 (ten thousand yuan) respectively. If the confidence threshold is 0.5, the decision is made. The module judges each confidence one by one. The candidate maintenance time of more than 0.5 is September 5 (0.6) and September 10 (0.7), and the lowest expected maintenance cost is September 10 (30,000 yuan). Therefore, the final scheduled maintenance time is September 10.

在另一實施例中,決策模組係從維護時,利用此些信心度做為多個權重,與對應的候選維護時間加權平均作為此排定維護時間。 In another embodiment, the decision module uses the confidence level as a plurality of weights from the maintenance, and the corresponding candidate maintenance time weighted average is used as the scheduled maintenance time.

舉例來說,若機台維護排程系統依據維護模組所提供的資訊,得出的候選維護時間分別是9月1日,9月5日,9月10日,9月12日,9月15日,且其對應的信心度分別是0.1,0.6,0.7,0.2,0.3,預期維護成本分別是1,4,3,5,7(萬元),假設目前的日期為8月16日,候選維護時間在9月1日對應之零件剩餘壽命為15天,9月5日為19天,9月10日為21天,9月12日為23天,9月15日為26天,則這五個候選維護時間的權重分別為 For example, if the machine maintenance scheduling system is based on the information provided by the maintenance module, the candidate maintenance time is September 1, September 5, September 10, September 12, September. On the 15th, and their corresponding confidence levels are 0.1, 0.6, 0.7, 0.2, 0.3, the expected maintenance costs are 1, 4, 3, 5, 7 (ten thousand yuan), assuming the current date is August 16th. The candidate maintenance time is 15 days for the parts remaining on September 1, 19 days for September 5, 21 days for September 10, 23 days for September 12, and 26 days for September 15. The weights of these five candidate maintenance times are

9月1日:(0.1/(0.1+0.6+0.7+0.2+0.3))=5.3% September 1st: (0.1/(0.1+0.6+0.7+0.2+0.3))=5.3%

9月5日:(0.6/(0.1+0.6+0.7+0.2+0.3))=31.6% September 5th: (0.6/(0.1+0.6+0.7+0.2+0.3))=31.6%

9月10日:(0.7/(0.1+0.6+0.7+0.2+0.3))=36.8% September 10th: (0.7/(0.1+0.6+0.7+0.2+0.3))=36.8%

9月12日:(0.2/(0.1+0.6+0.7+0.2+0.3))=10.5% September 12th: (0.2/(0.1+0.6+0.7+0.2+0.3))=10.5%

9月15日:(0.3/(0.1+0.6+0.7+0.2+0.3))=15.8% September 15th: (0.3/(0.1+0.6+0.7+0.2+0.3))=15.8%

以加權平均計算後,由於(15*5.3%+19*31.6%+21*36.8%+23*10.5%+26*15.8%)=21.05,因此可以得到的剩餘壽命為21天,再以此推估排定維護時間為9月10日。 After the weighted average calculation, since (15*5.3%+19*31.6%+21*36.8%+23*10.5%+26*15.8%)=21.05, the remaining life that can be obtained is 21 days, and then push Estimated scheduled maintenance time is September 10.

綜上所述,本揭露提供一個可最佳化成本效益的機台維護排程解決方案,透過分析多個維護模組所產生的資訊,以研發零件健康狀況評估和故障預診斷預測模型,再利用成本導向的機制提供最佳成本效益的資產設備維護排程建議,減少製造過程的非預期停工,以增進生產效益。 In summary, the present disclosure provides an optimized cost-effective machine maintenance scheduling solution that analyzes the information generated by multiple maintenance modules to develop a part health assessment and fault pre-diagnosis prediction model. Use cost-oriented mechanisms to provide optimal cost-effective asset equipment maintenance scheduling recommendations and reduce unplanned downtime in the manufacturing process to increase production efficiency.

雖然本揭露以前述之實施例揭露如上,然其並非用以限定本揭露。在不脫離本揭露之精神和範圍內,所為之更動與潤飾,均屬本揭露之專利保護範圍。關於本揭露所界定之保護範圍請參考所附之申請專利範圍。 Although the disclosure is disclosed above in the foregoing embodiments, it is not intended to limit the disclosure. All changes and refinements are beyond the scope of this disclosure. Please refer to the attached patent application for the scope of protection defined by this disclosure.

1‧‧‧機台 1‧‧‧ machine

11‧‧‧零件 11‧‧‧ Parts

2‧‧‧資料庫 2‧‧‧Database

3‧‧‧機台維護排程系統 3‧‧‧Machine Maintenance Scheduling System

Claims (25)

一種機台維護排程的方法,包含:取得關於一機台中一零件的一成本資訊、一紀錄資訊及一感測資訊;根據該成本資訊、該紀錄資訊及該感測資訊,由多個維護程序的結果,計算出至少一組候選維護時間、預期維護成本及信心度,其中該候選維護時間、預期維護成本與信心度一一對應;當該至少一候選維護時間係一個候選維護時間時,以該候選維護時間作為關於該機台的一排定維護時間;以及當該至少一候選維護時間係多個候選維護時間時,根據該些預期維護成本及該至少一信心度,從該些候選維護時間中得到關於該機台該排定維護時間。 A method for maintaining a schedule of a machine includes: obtaining a cost information, a record information, and a sensing information about a part of a machine; and based on the cost information, the record information, and the sensing information, As a result of the maintenance process, at least one candidate maintenance time, expected maintenance cost, and confidence are calculated, wherein the candidate maintenance time, the expected maintenance cost, and the confidence level are in one-to-one correspondence; when the at least one candidate maintenance time is a candidate maintenance time Taking the candidate maintenance time as a scheduled maintenance time for the machine; and when the at least one candidate maintenance time is a plurality of candidate maintenance times, according to the expected maintenance cost and the at least one confidence degree, The scheduled maintenance time is obtained for the machine in the candidate maintenance time. 如請求項1所述的方法,其中該成本資訊係選自由使用者介面輸入、讀檔方式及資料庫系統所組成的群組其中之一取得。 The method of claim 1, wherein the cost information is selected from one of a group consisting of a user interface input, a reading mode, and a database system. 如請求項1所述的方法,其中該紀錄資訊係選自由讀檔方式及資料庫系統所組成的群組其中之一取得。 The method of claim 1, wherein the record information is selected from one of a group consisting of a read mode and a database system. 如請求項1所述的方法,其中該感測資訊係選自由讀檔方式、資料擷取卡介面及資料庫系統所組成的群組其中之一取得。 The method of claim 1, wherein the sensing information is selected from one of a group consisting of a reading mode, a data capture interface, and a database system. 如請求項1所述的方法,其中該些維護程序中包含一成本導 向維護程序,係依據該機台的該感測資訊及/或該零件的一健康指標,以最小化維護成本為目標,建立一成本導向維護模型,以計算出對應的該候選維護時間。 The method of claim 1, wherein the maintenance program includes a cost guide To the maintenance program, based on the sensing information of the machine and/or a health indicator of the part, aiming at minimizing maintenance cost, a cost-oriented maintenance model is established to calculate the corresponding candidate maintenance time. 如請求項1所述的方法,其中該至少一預期維護成本的每一該預期維護成本係依據對應的該候選維護時間、多個預期維護成本與該機台的該零件的一使用壽命機率分佈計算出期望值而得到。 The method of claim 1, wherein each of the expected maintenance costs of the at least one expected maintenance cost is based on the corresponding candidate maintenance time, the plurality of expected maintenance costs, and a service life probability distribution of the part of the machine. Calculated by calculating the expected value. 如請求項6所述的方法,其中當判斷該零件於該候選維護時間以前將發生非預期損壞時,該些維護成本的每一該維護成本係由該零件的一原始成本加上一損失成本,再除以一非預期使用壽命,其中該非預期使用壽命係根據該零件的一啟用時間與該零件發生非預期損壞的時間計算得到。 The method of claim 6, wherein each of the maintenance costs of the maintenance costs is an original cost of the part plus a loss cost when it is determined that the part will be unintendedly damaged before the candidate maintenance time. And dividing by an unexpected service life, wherein the unintended service life is calculated based on an activation time of the part and a time when the part is unintendedly damaged. 如請求項6所述的方法,其中當判斷該零件於該候選維護時間以前不發生非預期損壞時,該些維護成本的每一該維護成本係由該零件的一原始成本除以一預期使用壽命,其中該預期使用壽命係根據該零件的一啟用時間與該候選維護時間計算得到。 The method of claim 6, wherein, when it is determined that the part does not undergo unintended damage before the candidate maintenance time, each of the maintenance costs of the maintenance costs is divided by an original cost of the part by an intended use. Lifetime, wherein the expected service life is calculated based on an activation time of the part and the candidate maintenance time. 如請求項1所述的方法,其中每一該候選維護時間所對應的該信心度係依據該些維護程序中,提供該候選維護時間的該至少一維護程序所得到。 The method of claim 1, wherein the confidence corresponding to each of the candidate maintenance times is obtained according to the at least one maintenance program that provides the candidate maintenance time in the maintenance procedures. 如請求項9所述的方法,其中當提供該候選維護時間的該至少一維護程序其中至少之一係一預測性維護模組,對應至該 候選維護時間的該信心度係選自該至少一維護程序中每一該維護程序所提供的預測信心值中最大者與該些維護程序中選定該候選維護時間的該些維護程序的比例,兩者取其大。 The method of claim 9, wherein at least one of the at least one maintenance program providing the candidate maintenance time is a predictive maintenance module corresponding to the The confidence level of the candidate maintenance time is selected from the ratio of the largest of the predicted confidence values provided by each of the at least one maintenance program to the maintenance programs selected for the candidate maintenance time among the maintenance programs, Take it big. 如請求項1所述的方法,其中根據該些預期維護成本及該至少一信心度,從該些候選維護時間中得到關於該機台該排定維護時間的步驟中,係從該些候選維護時間中選擇所對應的該信心度超過一信心度閾值(threshold value)的該至少一候選維護時間,再從該至少一候選維護時間中,選擇對應的該預期維護成本最低的該候選維護時間作為該排定維護時間。 The method of claim 1, wherein the step of obtaining the scheduled maintenance time from the candidate maintenance time according to the expected maintenance cost and the at least one confidence level is performed from the candidate maintenance The at least one candidate maintenance time in which the confidence level exceeds a confidence threshold is selected in the time, and the candidate maintenance time with the lowest expected maintenance cost is selected from the at least one candidate maintenance time. This schedules maintenance time. 如請求項1所述的方法,其中根據該些預期維護成本及該至少一信心度,從該些候選維護時間中得到關於該機台該排定維護時間的步驟中,利用該些信心度做為多個權重,與對應的該些候選維護時間利用加權平均方式,計算出該排定維護時間。 The method of claim 1, wherein the step of obtaining the scheduled maintenance time for the machine from the candidate maintenance times is performed according to the expected maintenance cost and the at least one confidence level, and the confidence level is used The scheduled maintenance time is calculated by using a weighted average method for the plurality of weights and the corresponding candidate maintenance times. 一種機台維護排程系統,包含:一資料擷取模組,用以取得關於一機台的一零件的一成本資訊、一紀錄資訊及一感測資訊;一計算模組,用以根據該成本資訊、該紀錄資訊及該感測資訊,由多個維護程序的結果,計算出至少一組候選維護時間、預期維護成本及信心度,其中該候選維護時間、預期維護成本與信心度一一對應;以及一決策模組,用以根據該至少一組候選維護時間、預期 維護成本及信心度決定關於該機台的一排定維護時間。 A machine maintenance scheduling system includes: a data acquisition module for obtaining a cost information, a record information and a sensing information about a part of a machine; a calculation module for The cost information, the record information, and the sensing information are calculated by the results of the plurality of maintenance programs to calculate at least one set of candidate maintenance time, expected maintenance cost, and confidence, wherein the candidate maintenance time, the expected maintenance cost, and the confidence level are a correspondence; and a decision module for maintaining time and expectations based on the at least one set of candidates Maintenance costs and confidence determine a scheduled maintenance time for the machine. 如請求項13所述的系統,其中該資料擷取模組係選自由使用者介面輸入、讀檔方式及資料庫系統所組成的群組其中之一取得該成本資訊。 The system of claim 13, wherein the data capture module is selected from one of a group consisting of a user interface input, a read mode, and a database system. 如請求項13所述的系統,其中該資料擷取模組係選自由讀檔方式及資料庫系統所組成的群組其中之一取得該紀錄資訊。 The system of claim 13, wherein the data capture module is selected from one of a group consisting of a read mode and a database system to obtain the record information. 如請求項13所述的系統,其中該資料擷取模組係選自由讀檔方式、資料擷取卡介面及資料庫系統所組成的群組其中之一取得該感測資訊。 The system of claim 13, wherein the data capture module is selected from one of a group consisting of a read mode, a data capture interface, and a database system to obtain the sensing information. 如請求項13所述的系統,其中該些維護程序中包含一成本導向維護程序,係依據該機台的該感測資訊及/或該零件的一健康指標,以最小化維護成本為目標,建立一成本導向維護模型,以計算出對應的該候選維護時間。 The system of claim 13, wherein the maintenance program includes a cost-oriented maintenance program, which is based on the sensing information of the machine and/or a health indicator of the part, and aims to minimize maintenance cost. A cost-oriented maintenance model is established to calculate the corresponding candidate maintenance time. 如請求項13所述的系統,其中該至少一預期維護成本的每一該預期維護成本係該計算模組依據對應的該候選維護時間、多個維護成本與該機台的該零件的一使用壽命機率分佈計算出期望值而得到。 The system of claim 13, wherein each of the expected maintenance costs of the at least one expected maintenance cost is based on the corresponding candidate maintenance time, the plurality of maintenance costs, and a use of the part of the machine. The life probability distribution is obtained by calculating the expected value. 如請求項18所述的系統,其中當該計算模組判斷該零件於該候選維護時間以前將發生非預期損壞時,該些維護成本的每一該維護成本係由該零件的一原始成本加上一損失成本,再除以一非預期使用壽命,其中該非預期使用壽命係根據該零件的一啟用時間與該零件發生非預期損壞的時間計算得到。 The system of claim 18, wherein when the computing module determines that the part will experience unanticipated damage before the candidate maintenance time, each of the maintenance costs of the maintenance costs is increased by an original cost of the part. The last lost cost is divided by an unexpected service life, wherein the unintended service life is calculated based on an activation time of the part and a time when the part is unexpectedly damaged. 如請求項18所述的系統,其中當該計算模組判斷該零件於該候選維護時間以前不發生非預期損壞時,該些維護成本的每一該維護成本係由該零件的一原始成本除以一預期使用壽命,其中該預期使用壽命係根據該零件的一啟用時間與該候選維護時間計算得到。 The system of claim 18, wherein each maintenance cost of the maintenance costs is divided by an original cost of the part when the computing module determines that the part does not experience unanticipated damage before the candidate maintenance time At an expected service life, wherein the expected service life is calculated based on an activation time of the part and the candidate maintenance time. 如請求項13所述的系統,其中每一該候選維護時間所對應的該信心度係該計算模組依據該些維護程序中,提供該候選維護時間的該至少一維護程序所得到。 The system of claim 13, wherein the confidence level corresponding to each of the candidate maintenance times is obtained by the at least one maintenance program that provides the candidate maintenance time according to the maintenance programs. 如請求項21所述的系統,其中當提供該候選維護時間的該至少一維護程序其中至少之一係一預測性維護模組,對應至該候選維護時間的該信心度係選自該至少一維護程序中每一該維護程序所提供的預測信心值中最大者與該些維護程序中選定該候選維護時間的該些維護程序的比例,兩者取其大。 The system of claim 21, wherein at least one of the at least one maintenance program providing the candidate maintenance time is a predictive maintenance module, the confidence corresponding to the candidate maintenance time is selected from the at least one The ratio of the largest of the predicted confidence values provided by each of the maintenance programs in the maintenance program to the maintenance programs selected for the candidate maintenance time in the maintenance programs, which are both large. 如請求項13所述的系統,其中當該決策模組根據該至少一組候選維護時間、預期維護成本及信心度決定該排定維護時間時,若該至少一候選維護時間係一個候選維護時間時,該決策模組以該候選維護時間作為關於該機台的該排定維護時間,若該至少一候選維護時間係多個候選維護時間時,該決策模組根據該些預期維護成本及該至少一信心度,從該些候選維護時間中得到關於該機台該排定維護時間。 The system of claim 13, wherein the at least one candidate maintenance time is a candidate maintenance time when the decision module determines the scheduled maintenance time according to the at least one candidate maintenance time, the expected maintenance cost, and the confidence level. The decision module uses the candidate maintenance time as the scheduled maintenance time for the machine. If the at least one candidate maintenance time is a plurality of candidate maintenance times, the decision module is based on the expected maintenance costs and the At least one confidence level, the scheduled maintenance time for the machine is obtained from the candidate maintenance times. 如請求項23所述的系統,其中當該至少一候選維護時間係一個候選維護時間時,該決策模組係從該些候選維護時間中選 擇所對應的該信心度超過一信心度閾值的該至少一候選維護時間,再從該至少一候選維護時間中,選擇對應的該預期維護成本最低的該候選維護時間作為該排定維護時間。 The system of claim 23, wherein the decision module selects from the candidate maintenance times when the at least one candidate maintenance time is a candidate maintenance time And selecting the at least one candidate maintenance time that the confidence level exceeds a confidence threshold, and selecting, from the at least one candidate maintenance time, the candidate maintenance time with the lowest expected maintenance cost as the scheduled maintenance time. 如請求項23所述的系統,其中根據該些預期維護成本及該至少一信心度,從該些候選維護時間中得到關於該機台該排定維護時間的步驟中,利用該些信心度做為多個權重,與對應的該些候選維護時間利用加權平均方式,計算出該排定維護時間。 The system of claim 23, wherein the step of obtaining the scheduled maintenance time for the machine from the candidate maintenance times is performed according to the expected maintenance cost and the at least one confidence level, and the confidence level is used The scheduled maintenance time is calculated by using a weighted average method for the plurality of weights and the corresponding candidate maintenance times.
TW103141060A 2014-11-26 2014-11-26 Maintenance scheduling method and system thereof TWI549075B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103141060A TWI549075B (en) 2014-11-26 2014-11-26 Maintenance scheduling method and system thereof
CN201410738322.6A CN105719042A (en) 2014-11-26 2014-12-05 Method and system for machine maintenance scheduling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103141060A TWI549075B (en) 2014-11-26 2014-11-26 Maintenance scheduling method and system thereof

Publications (2)

Publication Number Publication Date
TW201619875A true TW201619875A (en) 2016-06-01
TWI549075B TWI549075B (en) 2016-09-11

Family

ID=56144231

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103141060A TWI549075B (en) 2014-11-26 2014-11-26 Maintenance scheduling method and system thereof

Country Status (2)

Country Link
CN (1) CN105719042A (en)
TW (1) TWI549075B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI603210B (en) 2016-12-13 2017-10-21 財團法人工業技術研究院 System and method for predicting remaining lifetime of a component of equipment
CN108241343A (en) * 2016-12-24 2018-07-03 青岛海尔模具有限公司 A kind of intelligent plant management platform system
TWI632441B (en) 2017-01-20 2018-08-11 財團法人工業技術研究院 Prognostics method and device for processing apparatus
TWI724871B (en) * 2020-04-17 2021-04-11 逢甲大學 Intelligent manufacturing and advanced scheduling decision-making auxiliary information management system
CN111598269A (en) * 2020-05-26 2020-08-28 上海烟草集团有限责任公司 Equipment maintenance plan scheduling method, system, medium and device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532426B1 (en) * 1999-09-17 2003-03-11 The Boeing Company System and method for analyzing different scenarios for operating and designing equipment
TW579476B (en) * 2002-08-16 2004-03-11 Taiwan Semiconductor Mfg Preventive maintenance schedule system and method for machine member using machine monitoring mechanism
US7299156B2 (en) * 2004-01-26 2007-11-20 Macronix International Co., Ltd. Method for estimating a maintenance date and apparatus using the same
TWI380226B (en) * 2008-12-03 2012-12-21 Ind Tech Res Inst System and method of prognostic analysis and resource planning for apparatu
TW201135613A (en) * 2010-04-07 2011-10-16 Inotera Memories Inc Method for planning production schedule of equipment and associated computer readable medium
US9002722B2 (en) * 2011-12-12 2015-04-07 The Boeing Company Lifecycle obsolescence forecasting tool
CN103679280B (en) * 2012-09-26 2016-12-21 中国人民解放军第二炮兵工程大学 A kind of equipment optimum maintaining method of the gradual degeneration of performance
CN103994199B (en) * 2014-05-27 2016-06-01 中能电力科技开发有限公司 Based on the wheel casing maintenance time defining method of condition monitoring

Also Published As

Publication number Publication date
CN105719042A (en) 2016-06-29
TWI549075B (en) 2016-09-11

Similar Documents

Publication Publication Date Title
Compare et al. Challenges to IoT-enabled predictive maintenance for industry 4.0
TWI549075B (en) Maintenance scheduling method and system thereof
Gustavsson et al. Preventive maintenance scheduling of multi-component systems with interval costs
Huynh et al. A parametric predictive maintenance decision-making framework considering improved system health prognosis precision
JP6275070B2 (en) Equipment inspection order setting device and program
CN110502786A (en) The twin processing method of number, device, system and equipment for production line
US8201424B2 (en) Synthetic redundancy via prognostics
US20240012407A1 (en) Condition-Based Method for Malfunction Prediction
US20150039374A1 (en) Planning periodic inspection of geo-distributed infrastructure systems
Liu et al. A general modeling and analysis framework for software fault detection and correction process
Petchrompo et al. A value-based approach to optimizing long-term maintenance plans for a multi-asset k-out-of-N system
WO2019196427A1 (en) Method and device for optimizing backup on the basis of supporting fault event constrained unit commitment
US20160048805A1 (en) Method of collaborative software development
Srinivasan et al. Semi-Markov decision process with partial information for maintenance decisions
Cherkaoui et al. Quantitative assessments of performance and robustness of maintenance policies for stochastically deteriorating production systems
Guo et al. Maintenance optimization for systems with dependent competing risks using a copula function
Basirat et al. System dynamics meta-modelling for reliability considerations in maintenance
Tlili et al. Condition‐Based Maintenance Strategy for Production Systems Generating Environmental Damage
KR20110046091A (en) Importance analysis method considering the severity and the opportunity
JP7167992B2 (en) label correction device
WO2016200611A1 (en) Dynamically adjusting industrial system outage plans
Imam et al. World Class Maintenance (WCM): Measurable indicators creating opportunities for the Norwegian Oil and Gas industry
Mkandawire et al. Component risk trending based on systems thinking incorporating Markov and Weibull inferences
CN117669984A (en) Workshop scheduling method based on reinforcement learning of digital twin and knowledge graph
Shafiee Modelling and analysis of availability for critical interdependent infrastructures